The Latent Variable Approach as Applied to Transitive Reasoning
ERIC Educational Resources Information Center
Bouwmeester, Samantha; Vermunt, Jeroen K.; Sijtsma, Klaas
2012-01-01
We discuss the limitations of hypothesis testing using (quasi-) experiments in the study of cognitive development and suggest latent variable modeling as a viable alternative to experimentation. Latent variable models allow testing a theory as a whole, incorporating individual differences with respect to developmental processes or abilities in the…
Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc
2017-01-01
Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780
Thomas, Philipp; Rammsayer, Thomas; Schweizer, Karl; Troche, Stefan
2015-01-01
Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.
A descriptivist approach to trait conceptualization and inference.
Jonas, Katherine G; Markon, Kristian E
2016-01-01
In their recent article, How Functionalist and Process Approaches to Behavior Can Explain Trait Covariation, Wood, Gardner, and Harms (2015) underscore the need for more process-based understandings of individual differences. At the same time, the article illustrates a common error in the use and interpretation of latent variable models: namely, the misuse of models to arbitrate issues of causation and the nature of latent variables. Here, we explain how latent variables can be understood simply as parsimonious summaries of data, and how statistical inference can be based on choosing those summaries that minimize information required to represent the data using the model. Although Wood, Gardner, and Harms acknowledge this perspective, they underestimate its significance, including its importance to modeling and the conceptualization of psychological measurement. We believe this perspective has important implications for understanding individual differences in a number of domains, including current debates surrounding the role of formative versus reflective latent variables. (c) 2015 APA, all rights reserved).
ERIC Educational Resources Information Center
van der Maas, Han L. J.; Molenaar, Dylan; Maris, Gunter; Kievit, Rogier A.; Borsboom, Denny
2011-01-01
This article analyzes latent variable models from a cognitive psychology perspective. We start by discussing work by Tuerlinckx and De Boeck (2005), who proved that a diffusion model for 2-choice response processes entails a 2-parameter logistic item response theory (IRT) model for individual differences in the response data. Following this line…
Accuracy of latent-variable estimation in Bayesian semi-supervised learning.
Yamazaki, Keisuke
2015-09-01
Hierarchical probabilistic models, such as Gaussian mixture models, are widely used for unsupervised learning tasks. These models consist of observable and latent variables, which represent the observable data and the underlying data-generation process, respectively. Unsupervised learning tasks, such as cluster analysis, are regarded as estimations of latent variables based on the observable ones. The estimation of latent variables in semi-supervised learning, where some labels are observed, will be more precise than that in unsupervised, and one of the concerns is to clarify the effect of the labeled data. However, there has not been sufficient theoretical analysis of the accuracy of the estimation of latent variables. In a previous study, a distribution-based error function was formulated, and its asymptotic form was calculated for unsupervised learning with generative models. It has been shown that, for the estimation of latent variables, the Bayes method is more accurate than the maximum-likelihood method. The present paper reveals the asymptotic forms of the error function in Bayesian semi-supervised learning for both discriminative and generative models. The results show that the generative model, which uses all of the given data, performs better when the model is well specified. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hertzog, Christopher; Dixon, Roger A; Hultsch, David F; MacDonald, Stuart W S
2003-12-01
The authors used 6-year longitudinal data from the Victoria Longitudinal Study (VLS) to investigate individual differences in amount of episodic memory change. Latent change models revealed reliable individual differences in cognitive change. Changes in episodic memory were significantly correlated with changes in other cognitive variables, including speed and working memory. A structural equation model for the latent change scores showed that changes in speed and working memory predicted changes in episodic memory, as expected by processing resource theory. However, these effects were best modeled as being mediated by changes in induction and fact retrieval. Dissociations were detected between cross-sectional ability correlations and longitudinal changes. Shuffling the tasks used to define the Working Memory latent variable altered patterns of change correlations.
Exploring heterogeneity in clinical trials with latent class analysis
Abarda, Abdallah; Contractor, Ateka A.; Wang, Juan; Dayton, C. Mitchell
2018-01-01
Case-mix is common in clinical trials and treatment effect can vary across different subgroups. Conventionally, a subgroup analysis is performed by dividing the overall study population by one or two grouping variables. It is usually impossible to explore complex high-order intersections among confounding variables. Latent class analysis (LCA) provides a framework to identify latent classes by observed manifest variables. Distal clinical outcomes and treatment effect can be different across these classes. This paper provides a step-by-step tutorial on how to perform LCA with R. A simulated dataset is generated to illustrate the process. In the example, the classify-analyze approach is employed to explore the differential treatment effects on distal outcomes across latent classes. PMID:29955579
Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Shi, Xinyuan; Qiao, Yanjiang
2017-01-01
ABSTRACT The dissolution is one of the critical quality attributes (CQAs) of oral solid dosage forms because it relates to the absorption of drug. In this paper, the influence of raw materials, granules and process parameters on the dissolution of paracetamol tablet was analyzed using latent variable modeling methods. The variability in raw materials and granules was understood based on the principle component analysis (PCA), respectively. A multi-block partial least squares (MBPLS) model was used to determine the critical factors affecting the dissolution. The results showed that the binder amount, the post granulation time, the API content in granule, the fill depth and the punch tip separation distance were the critical factors with variable importance in the projection (VIP) values larger than 1. The importance of each unit of the whole process was also ranked using the block importance in the projection (BIP) index. It was concluded that latent variable models (LVMs) were very useful tools to extract information from the available data and improve the understanding on dissolution behavior of paracetamol tablet. The obtained LVMs were also helpful to propose the process design space and to design control strategies in the further research. PMID:27689242
ERIC Educational Resources Information Center
Preßler, Anna-Lena; Könen, Tanja; Hasselhorn, Marcus; Krajewski, Kristin
2014-01-01
The aim of the present study was to empirically disentangle the interdependencies of the impact of nonverbal intelligence, working memory capacities, and phonological processing skills on early reading decoding and spelling within a latent variable approach. In a sample of 127 children, these cognitive preconditions were assessed before the onset…
Geiser, Christian; Keller, Brian T.; Lockhart, Ginger; Eid, Michael; Cole, David A.; Koch, Tobias
2014-01-01
Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present paper, we contrast LST and LGC models from the perspective of measurement invariance (MI) testing. We show that establishing a pure state-variability process requires (a) the inclusion of a mean structure and (b) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with non-invariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion-specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided. PMID:24652650
Hudson, Jennifer L; Kendall, Philip C; Chu, Brian C; Gosch, Elizabeth; Martin, Erin; Taylor, Alan; Knight, Ashleigh
2014-01-01
This study examined the relations between treatment process variables and child anxiety outcomes. Independent raters watched/listened to taped therapy sessions of 151 anxiety-disordered (6-14 yr-old; M = 10.71) children (43% boys) and assessed process variables (child alliance, therapist alliance, child involvement, therapist flexibility and therapist functionality) within a manual-based cognitive-behavioural treatment. Latent growth modelling examined three latent variables (intercept, slope, and quadratic) for each process variable. Child age, gender, family income and ethnicity were examined as potential antecedents. Outcome was analyzed using factorially derived clinician, mother, father, child and teacher scores from questionnaire and structured diagnostic interviews at pretreatment, posttreatment and 12-month follow-up. Latent growth models demonstrated a concave quadratic curve for child involvement and therapist flexibility over time. A predominantly linear, downward slope was observed for alliance, and functional flexibility remained consistent over time. Increased alliance, child involvement and therapist flexibility showed some albeit inconsistent, associations with positive treatment outcome. Findings support the notion that maintaining the initial high level of alliance or involvement is important for clinical improvement. There is some support that progressively increasing alliance/involvement also positively impacts on treatment outcome. These findings were not consistent across outcome measurement points or reporters. Copyright © 2013 Elsevier Ltd. All rights reserved.
On the explaining-away phenomenon in multivariate latent variable models.
van Rijn, Peter; Rijmen, Frank
2015-02-01
Many probabilistic models for psychological and educational measurements contain latent variables. Well-known examples are factor analysis, item response theory, and latent class model families. We discuss what is referred to as the 'explaining-away' phenomenon in the context of such latent variable models. This phenomenon can occur when multiple latent variables are related to the same observed variable, and can elicit seemingly counterintuitive conditional dependencies between latent variables given observed variables. We illustrate the implications of explaining away for a number of well-known latent variable models by using both theoretical and real data examples. © 2014 The British Psychological Society.
Hayashi, Yoshihiro; Oshima, Etsuko; Maeda, Jin; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2012-01-01
A multivariate statistical technique was applied to the design of an orally disintegrating tablet and to clarify the causal correlation among variables of the manufacturing process and pharmaceutical responses. Orally disintegrating tablets (ODTs) composed mainly of mannitol were prepared via the wet-granulation method using crystal transition from the δ to the β form of mannitol. Process parameters (water amounts (X(1)), kneading time (X(2)), compression force (X(3)), and amounts of magnesium stearate (X(4))) were optimized using a nonlinear response surface method (RSM) incorporating a thin plate spline interpolation (RSM-S). The results of a verification study revealed that the experimental responses, such as tensile strength and disintegration time, coincided well with the predictions. A latent structure analysis of the pharmaceutical formulations of the tablet performed using a Bayesian network led to the clear visualization of a causal connection among variables of the manufacturing process and tablet characteristics. The quantity of β-mannitol in the granules (Q(β)) was affected by X(2) and influenced all granule properties. The specific surface area of the granules was affected by X(1) and Q(β) and had an effect on all tablet characteristics. Moreover, the causal relationships among the variables were clarified by inferring conditional probability distributions. These techniques provide a better understanding of the complicated latent structure among variables of the manufacturing process and tablet characteristics.
TPSLVM: a dimensionality reduction algorithm based on thin plate splines.
Jiang, Xinwei; Gao, Junbin; Wang, Tianjiang; Shi, Daming
2014-10-01
Dimensionality reduction (DR) has been considered as one of the most significant tools for data analysis. One type of DR algorithms is based on latent variable models (LVM). LVM-based models can handle the preimage problem easily. In this paper we propose a new LVM-based DR model, named thin plate spline latent variable model (TPSLVM). Compared to the well-known Gaussian process latent variable model (GPLVM), our proposed TPSLVM is more powerful especially when the dimensionality of the latent space is low. Also, TPSLVM is robust to shift and rotation. This paper investigates two extensions of TPSLVM, i.e., the back-constrained TPSLVM (BC-TPSLVM) and TPSLVM with dynamics (TPSLVM-DM) as well as their combination BC-TPSLVM-DM. Experimental results show that TPSLVM and its extensions provide better data visualization and more efficient dimensionality reduction compared to PCA, GPLVM, ISOMAP, etc.
Hounkpatin, Hilda Osafo; Boyce, Christopher J; Dunn, Graham; Wood, Alex M
2017-09-18
A number of structural equation models have been developed to examine change in 1 variable or the longitudinal association between 2 variables. The most common of these are the latent growth model, the autoregressive cross-lagged model, the autoregressive latent trajectory model, and the latent change score model. The authors first overview each of these models through evaluating their different assumptions surrounding the nature of change and how these assumptions may result in different data interpretations. They then, to elucidate these issues in an empirical example, examine the longitudinal association between personality traits and life satisfaction. In a representative Dutch sample (N = 8,320), with participants providing data on both personality and life satisfaction measures every 2 years over an 8-year period, the authors reproduce findings from previous research. However, some of the structural equation models overviewed have not previously been applied to the personality-life satisfaction relation. The extended empirical examination suggests intraindividual changes in life satisfaction predict subsequent intraindividual changes in personality traits. The availability of data sets with 3 or more assessment waves allows the application of more advanced structural equation models such as the autoregressive latent trajectory or the extended latent change score model, which accounts for the complex dynamic nature of change processes and allows stronger inferences on the nature of the association between variables. However, the choice of model should be determined by theories of change processes in the variables being studied. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Interexaminer variation of minutia markup on latent fingerprints.
Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn
2016-07-01
Latent print examiners often differ in the number of minutiae they mark during analysis of a latent, and also during comparison of a latent with an exemplar. Differences in minutia counts understate interexaminer variability: examiners' markups may have similar minutia counts but differ greatly in which specific minutiae were marked. We assessed variability in minutia markup among 170 volunteer latent print examiners. Each provided detailed markup documenting their examinations of 22 latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. An average of 12 examiners marked each latent. The primary factors associated with minutia reproducibility were clarity, which regions of the prints examiners chose to mark, and agreement on value or comparison determinations. In clear areas (where the examiner was "certain of the location, presence, and absence of all minutiae"), median reproducibility was 82%; in unclear areas, median reproducibility was 46%. Differing interpretations regarding which regions should be marked (e.g., when there is ambiguity in the continuity of a print) contributed to variability in minutia markup: especially in unclear areas, marked minutiae were often far from the nearest minutia marked by a majority of examiners. Low reproducibility was also associated with differences in value or comparison determinations. Lack of standardization in minutia markup and unfamiliarity with test procedures presumably contribute to the variability we observed. We have identified factors accounting for interexaminer variability; implementing standards for detailed markup as part of documentation and focusing future training efforts on these factors may help to facilitate transparency and reduce subjectivity in the examination process. Published by Elsevier Ireland Ltd.
ERIC Educational Resources Information Center
Maslowsky, Julie; Jager, Justin; Hemken, Douglas
2015-01-01
Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS)…
Bayesian Adaptive Lasso for Ordinal Regression with Latent Variables
ERIC Educational Resources Information Center
Feng, Xiang-Nan; Wu, Hao-Tian; Song, Xin-Yuan
2017-01-01
We consider an ordinal regression model with latent variables to investigate the effects of observable and latent explanatory variables on the ordinal responses of interest. Each latent variable is characterized by correlated observed variables through a confirmatory factor analysis model. We develop a Bayesian adaptive lasso procedure to conduct…
Avoiding and Correcting Bias in Score-Based Latent Variable Regression with Discrete Manifest Items
ERIC Educational Resources Information Center
Lu, Irene R. R.; Thomas, D. Roland
2008-01-01
This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…
Bayesian Semiparametric Structural Equation Models with Latent Variables
ERIC Educational Resources Information Center
Yang, Mingan; Dunson, David B.
2010-01-01
Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…
A longitudinal study of mortality and air pollution for São Paulo, Brazil.
Botter, Denise A; Jørgensen, Bent; Peres, Antonieta A Q
2002-09-01
We study the effects of various air-pollution variables on the daily death counts for people over 65 years in São Paulo, Brazil, from 1991 to 1993, controlling for meteorological variables. We use a state space model where the air-pollution variables enter via the latent process, and the meteorological variables via the observation equation. The latent process represents the potential mortality due to air pollution, and is estimated by Kalman filter techniques. The effect of air pollution on mortality is found to be a function of the variation in the sulphur dioxide level for the previous 3 days, whereas the other air-pollution variables (total suspended particulates, nitrogen dioxide, carbon monoxide, ozone) are not significant when sulphur dioxide is in the equation. There are significant effects of humidity and up to lag 3 of temperature, and a significant seasonal variation.
A Latent Variable Approach to Executive Control in Healthy Ageing
ERIC Educational Resources Information Center
Adrover-Roig, Daniel; Sese, Albert; Barcelo, Francisco; Palmer, Alfonso
2012-01-01
It is a well-established finding that the central executive is fractionated in at least three separable component processes: Updating, Shifting, and Inhibition of information (Miyake et al., 2000). However, the fractionation of the central executive among the elderly has been less well explored, and Miyake's et al. latent structure has not yet…
Defining a Family of Cognitive Diagnosis Models Using Log-Linear Models with Latent Variables
ERIC Educational Resources Information Center
Henson, Robert A.; Templin, Jonathan L.; Willse, John T.
2009-01-01
This paper uses log-linear models with latent variables (Hagenaars, in "Loglinear Models with Latent Variables," 1993) to define a family of cognitive diagnosis models. In doing so, the relationship between many common models is explicitly defined and discussed. In addition, because the log-linear model with latent variables is a general model for…
Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara
2013-01-01
Background Despite widespread acceptance of the ‘biopsychosocial model’, the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Methods and Findings Participants were 32,827 (age 18–85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ2 (3199, N = 23,397) = 126654·8, p<·001; RCFI = ·97; RMSEA = ·04 (·038–·039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. Conclusion These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies. PMID:24146890
Kinderman, Peter; Schwannauer, Matthias; Pontin, Eleanor; Tai, Sara
2013-01-01
Despite widespread acceptance of the 'biopsychosocial model', the aetiology of mental health problems has provoked debate amongst researchers and practitioners for decades. The role of psychological factors in the development of mental health problems remains particularly contentious, and to date there has not been a large enough dataset to conduct the necessary multivariate analysis of whether psychological factors influence, or are influenced by, mental health. This study reports on the first empirical, multivariate, test of the relationships between the key elements of the biospychosocial model of mental ill-health. Participants were 32,827 (age 18-85 years) self-selected respondents from the general population who completed an open-access online battery of questionnaires hosted by the BBC. An initial confirmatory factor analysis was performed to assess the adequacy of the proposed factor structure and the relationships between latent and measured variables. The predictive path model was then tested whereby the latent variables of psychological processes were positioned as mediating between the causal latent variables (biological, social and circumstantial) and the outcome latent variables of mental health problems and well-being. This revealed an excellent fit to the data, S-B χ(2) (3199, N = 23,397) = 126654.8, p<.001; RCFI = .97; RMSEA = .04 (.038-.039). As hypothesised, a family history of mental health difficulties, social deprivation, and traumatic or abusive life-experiences all strongly predicted higher levels of anxiety and depression. However, these relationships were strongly mediated by psychological processes; specifically lack of adaptive coping, rumination and self-blame. These results support a significant revision of the biopsychosocial model, as psychological processes determine the causal impact of biological, social, and circumstantial risk factors on mental health. This has clear implications for policy, education and clinical practice as psychological processes such as rumination and self-blame are amenable to evidence-based psychological therapies.
ERIC Educational Resources Information Center
Bauer, Daniel J.; Curran, Patrick J.
2004-01-01
Structural equation mixture modeling (SEMM) integrates continuous and discrete latent variable models. Drawing on prior research on the relationships between continuous and discrete latent variable models, the authors identify 3 conditions that may lead to the estimation of spurious latent classes in SEMM: misspecification of the structural model,…
An IRT Model with a Parameter-Driven Process for Change
ERIC Educational Resources Information Center
Rijmen, Frank; De Boeck, Paul; van der Maas, Han L. J.
2005-01-01
An IRT model with a parameter-driven process for change is proposed. Quantitative differences between persons are taken into account by a continuous latent variable, as in common IRT models. In addition, qualitative inter-individual differences and auto-dependencies are accounted for by assuming within-subject variability with respect to the…
Latent mnemonic strengths are latent: a comment on Mickes, Wixted, and Wais (2007).
Rouder, Jeffrey N; Pratte, Michael S; Morey, Richard D
2010-06-01
Mickes, Wixted, and Wais (2007) proposed a simple test of latent strength variability in recognition memory. They asked participants to rate their confidence using either a 20-point or a 99-point strength scale and plotted distributions of the resulting ratings. They found 25% more variability in ratings for studied than for new items, which they interpreted as providing evidence that latent mnemonic strength distributions are 25% more variable for studied than for new items. We show here that this conclusion is critically dependent on assumptions--so much so that these assumptions determine the conclusions. In fact, opposite conclusions, such that study does not affect the variability of latent strength, may be reached by making different but equally plausible assumptions. Because all measurements of mnemonic strength variability are critically dependent on untestable assumptions, all are arbitrary. Hence, there is no principled method for assessing the relative variability of latent mnemonic strength distributions.
A Latent Variable Approach to the Simple View of Reading
ERIC Educational Resources Information Center
Kershaw, Sarah; Schatschneider, Chris
2012-01-01
The present study utilized a latent variable modeling approach to examine the Simple View of Reading in a sample of students from 3rd, 7th, and 10th grades (N = 215, 188, and 180, respectively). Latent interaction modeling and other latent variable models were employed to investigate (a) the functional form of the relationship between decoding and…
Inverse Ising problem in continuous time: A latent variable approach
NASA Astrophysics Data System (ADS)
Donner, Christian; Opper, Manfred
2017-12-01
We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.
Latent Transition Analysis with a Mixture Item Response Theory Measurement Model
ERIC Educational Resources Information Center
Cho, Sun-Joo; Cohen, Allan S.; Kim, Seock-Ho; Bottge, Brian
2010-01-01
A latent transition analysis (LTA) model was described with a mixture Rasch model (MRM) as the measurement model. Unlike the LTA, which was developed with a latent class measurement model, the LTA-MRM permits within-class variability on the latent variable, making it more useful for measuring treatment effects within latent classes. A simulation…
Person Re-Identification via Distance Metric Learning With Latent Variables.
Sun, Chong; Wang, Dong; Lu, Huchuan
2017-01-01
In this paper, we propose an effective person re-identification method with latent variables, which represents a pedestrian as the mixture of a holistic model and a number of flexible models. Three types of latent variables are introduced to model uncertain factors in the re-identification problem, including vertical misalignments, horizontal misalignments and leg posture variations. The distance between two pedestrians can be determined by minimizing a given distance function with respect to latent variables, and then be used to conduct the re-identification task. In addition, we develop a latent metric learning method for learning the effective metric matrix, which can be solved via an iterative manner: once latent information is specified, the metric matrix can be obtained based on some typical metric learning methods; with the computed metric matrix, the latent variables can be determined by searching the state space exhaustively. Finally, extensive experiments are conducted on seven databases to evaluate the proposed method. The experimental results demonstrate that our method achieves better performance than other competing algorithms.
Adolescent cigarette smoking: health-related behavior or normative transgression?
Turbin, M S; Jessor, R; Costa, F M
2000-09-01
Relations among measures of adolescent behavior were examined to determine whether cigarette smoking fits into a structure of problem behaviors-behaviors that involve normative transgression-or a structure of health-related behaviors, or both. In an ethnically and socioeconomically diverse sample of 1782 male and female high school adolescents, four first-order problem behavior latent variables-sexual intercourse experience, alcohol abuse, illicit drug use, and delinquency-were established and together were shown to reflect a second-order latent variable of problem behavior. Four first-order latent variables of health-related behaviors-unhealthy dietary habits, sedentary behavior, unsafe behavior, and poor dental hygiene-were also established and together were shown to reflect a second-order latent variable of health-compromising behavior. The structure of relations among those latent variables was modeled. Cigarette smoking had a significant and substantial loading only on the problem-behavior latent variable; its loading on the health-compromising behavior latent variable was essentially zero. Adolescent cigarette smoking relates strongly and directly to problem behaviors and only indirectly, if at all, to health-compromising behaviors. Interventions to prevent or reduce adolescent smoking should attend more to factors that influence problem behaviors.
Using structural equation modeling to investigate relationships among ecological variables
Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.
2000-01-01
Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0.1258. Natural variability had a positive direct effect on biodiversity of magnitude 0.5347 and a negative indirect effect mediated through growth potential of magnitude -0.1105 yielding a positive total effects of magnitude 0.4242. Sediment contamination had a negative direct effect on biodiversity of magnitude -0.1956 and a negative indirect effect on growth potential via biodiversity of magnitude -0.067. Biodiversity had a positive effect on growth potential of magnitude 0.8432, and growth potential had a positive effect on biodiversity of magnitude 0.3398. The correlation between biodiversity and growth potential was estimated at 0.7658 and that between sediment contamination and natural variability at -0.3769.
Variability in Proactive and Reactive Cognitive Control Processes Across the Adult Lifespan
Karayanidis, Frini; Whitson, Lisa Rebecca; Heathcote, Andrew; Michie, Patricia T.
2011-01-01
Task-switching paradigms produce a highly consistent age-related increase in mixing cost [longer response time (RT) on repeat trials in mixed-task than single-task blocks] but a less consistent age effect on switch cost (longer RT on switch than repeat trials in mixed-task blocks). We use two approaches to examine the adult lifespan trajectory of control processes contributing to mixing cost and switch cost: latent variables derived from an evidence accumulation model of choice, and event-related potentials (ERP) that temporally differentiate proactive (cue-driven) and reactive (target-driven) control processes. Under highly practiced and prepared task conditions, aging was associated with increasing RT mixing cost but reducing RT switch cost. Both effects were largely due to the same cause: an age effect for mixed-repeat trials. In terms of latent variables, increasing age was associated with slower non-decision processes, slower rate of evidence accumulation about the target, and higher response criterion. Age effects on mixing costs were evident only on response criterion, the amount of evidence required to trigger a decision, whereas age effects on switch cost were present for all three latent variables. ERPs showed age-related increases in preparation for mixed-repeat trials, anticipatory attention, and post-target interference. Cue-locked ERPs that are linked to proactive control were associated with early emergence of age differences in response criterion. These results are consistent with age effects on strategic processes controlling decision caution. Consistent with an age-related decline in cognitive flexibility, younger adults flexibly adjusted response criterion from trial-to-trial on mixed-task blocks, whereas older adults maintained a high criterion for all trials. PMID:22073037
A Framework for Multifaceted Evaluation of Student Models
ERIC Educational Resources Information Center
Huang, Yun; González-Brenes, José P.; Kumar, Rohit; Brusilovsky, Peter
2015-01-01
Latent variable models, such as the popular Knowledge Tracing method, are often used to enable adaptive tutoring systems to personalize education. However, finding optimal model parameters is usually a difficult non-convex optimization problem when considering latent variable models. Prior work has reported that latent variable models obtained…
Much Ado about Nothing--Or at Best, Very Little
ERIC Educational Resources Information Center
Widaman, Keith F.
2014-01-01
Latent variable structural equation modeling has become the analytic method of choice in many domains of research in psychology and allied social sciences. One important aspect of a latent variable model concerns the relations hypothesized to hold between latent variables and their indicators. The most common specification of structural equation…
A Composite Likelihood Inference in Latent Variable Models for Ordinal Longitudinal Responses
ERIC Educational Resources Information Center
Vasdekis, Vassilis G. S.; Cagnone, Silvia; Moustaki, Irini
2012-01-01
The paper proposes a composite likelihood estimation approach that uses bivariate instead of multivariate marginal probabilities for ordinal longitudinal responses using a latent variable model. The model considers time-dependent latent variables and item-specific random effects to be accountable for the interdependencies of the multivariate…
A Bayesian Semiparametric Latent Variable Model for Mixed Responses
ERIC Educational Resources Information Center
Fahrmeir, Ludwig; Raach, Alexander
2007-01-01
In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…
Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Takayama, Kozo
2015-01-01
The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and design space. In this article, we integrate thin-plate spline (TPS) interpolation, Kohonen's self-organizing map (SOM) and a Bayesian network (BN) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared using a standard formulation. We measured the tensile strength and disintegration time as response variables and the compressibility, cohesion and dispersibility of the pretableting blend as latent variables. We predicted these variables quantitatively using nonlinear TPS, generated a large amount of data on pretableting blends and tablets and clustered these data into several clusters using a SOM. Our results show that we are able to predict the experimental values of the latent and response variables with a high degree of accuracy and are able to classify the tablet data into several distinct clusters. In addition, to visualize the latent structure between the causal and latent factors and the response variables, we applied a BN method to the SOM clustering results. We found that despite having inserted latent variables between the causal factors and response variables, their relation is equivalent to the results for the SOM clustering, and thus we are able to explain the underlying latent structure. Consequently, this technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulation.
Latent variable models are network models.
Molenaar, Peter C M
2010-06-01
Cramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.
Examining Parallelism of Sets of Psychometric Measures Using Latent Variable Modeling
ERIC Educational Resources Information Center
Raykov, Tenko; Patelis, Thanos; Marcoulides, George A.
2011-01-01
A latent variable modeling approach that can be used to examine whether several psychometric tests are parallel is discussed. The method consists of sequentially testing the properties of parallel measures via a corresponding relaxation of parameter constraints in a saturated model or an appropriately constructed latent variable model. The…
Predictive Inference Using Latent Variables with Covariates*
Schofield, Lynne Steuerle; Junker, Brian; Taylor, Lowell J.; Black, Dan A.
2014-01-01
Plausible Values (PVs) are a standard multiple imputation tool for analysis of large education survey data that measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally-generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations (MESE) model of Schofield (2008). PMID:25231627
ERIC Educational Resources Information Center
Henson, James M.; Reise, Steven P.; Kim, Kevin H.
2007-01-01
The accuracy of structural model parameter estimates in latent variable mixture modeling was explored with a 3 (sample size) [times] 3 (exogenous latent mean difference) [times] 3 (endogenous latent mean difference) [times] 3 (correlation between factors) [times] 3 (mixture proportions) factorial design. In addition, the efficacy of several…
Gene Variants Associated with Antisocial Behaviour: A Latent Variable Approach
ERIC Educational Resources Information Center
Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.
2013-01-01
Objective: The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods: Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a…
The Least-Squares Estimation of Latent Trait Variables.
ERIC Educational Resources Information Center
Tatsuoka, Kikumi
This paper presents a new method for estimating a given latent trait variable by the least-squares approach. The beta weights are obtained recursively with the help of Fourier series and expressed as functions of item parameters of response curves. The values of the latent trait variable estimated by this method and by maximum likelihood method…
Selection of latent variables for multiple mixed-outcome models
ZHOU, LING; LIN, HUAZHEN; SONG, XINYUAN; LI, YI
2014-01-01
Latent variable models have been widely used for modeling the dependence structure of multiple outcomes data. However, the formulation of a latent variable model is often unknown a priori, the misspecification will distort the dependence structure and lead to unreliable model inference. Moreover, multiple outcomes with varying types present enormous analytical challenges. In this paper, we present a class of general latent variable models that can accommodate mixed types of outcomes. We propose a novel selection approach that simultaneously selects latent variables and estimates parameters. We show that the proposed estimator is consistent, asymptotically normal and has the oracle property. The practical utility of the methods is confirmed via simulations as well as an application to the analysis of the World Values Survey, a global research project that explores peoples’ values and beliefs and the social and personal characteristics that might influence them. PMID:27642219
The Development of Verbal and Visual Working Memory Processes: A Latent Variable Approach
ERIC Educational Resources Information Center
Koppenol-Gonzalez, Gabriela V.; Bouwmeester, Samantha; Vermunt, Jeroen K.
2012-01-01
Working memory (WM) processing in children has been studied with different approaches, focusing on either the organizational structure of WM processing during development (factor analytic) or the influence of different task conditions on WM processing (experimental). The current study combined both approaches, aiming to distinguish verbal and…
ERIC Educational Resources Information Center
Kelava, Augustin; Nagengast, Benjamin
2012-01-01
Structural equation models with interaction and quadratic effects have become a standard tool for testing nonlinear hypotheses in the social sciences. Most of the current approaches assume normally distributed latent predictor variables. In this article, we present a Bayesian model for the estimation of latent nonlinear effects when the latent…
Gene variants associated with antisocial behaviour: A latent variable approach
Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.
2013-01-01
Objective The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation program in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours, and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Results Eight single-nucleotide polymorphisms (SNPs) from 8 genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all 8 genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid, and cholinergic signaling as well as stress response pathways in mediating susceptibility to antisocial behaviour. Conclusions This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential “co-action” of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the etiology of complex behaviour. If replicated in future studies, this approach may allow the identification of a ‘shared’ variance across genetic risk alleles associated with complex neuropsychiatric dimensional phenotypes using relatively small numbers of well-characterized research participants. PMID:23822756
ERIC Educational Resources Information Center
Henseler, Jorg; Chin, Wynne W.
2010-01-01
In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…
Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.
2012-01-01
A Monte Carlo simulation was conducted to investigate the robustness of four latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of non-normality of the observed exogenous variables. Results showed that the CPI and LMS approaches yielded biased estimates of the interaction effect when the exogenous variables were highly non-normal. When the violation of non-normality was not severe (normal; symmetric with excess kurtosis < 1), the LMS approach yielded the most efficient estimates of the latent interaction effect with the highest statistical power. In highly non-normal conditions, the GAPI and UPI approaches with ML estimation yielded unbiased latent interaction effect estimates, with acceptable actual Type-I error rates for both the Wald and likelihood ratio tests of interaction effect at N ≥ 500. An empirical example illustrated the use of the four approaches in testing a latent variable interaction between academic self-efficacy and positive family role models in the prediction of academic performance. PMID:23457417
Association between latent toxoplasmosis and cognition in adults: a cross-sectional study.
Gale, S D; Brown, B L; Erickson, L D; Berrett, A; Hedges, D W
2015-04-01
Latent infection from Toxoplasma gondii (T. gondii) is widespread worldwide and has been associated with cognitive deficits in some but not all animal models and in humans. We tested the hypothesis that latent toxoplasmosis is associated with decreased cognitive function in a large cross-sectional dataset, the National Health and Nutrition Examination Survey (NHANES). There were 4178 participants aged 20-59 years, of whom 19.1% had IgG antibodies against T. gondii. Two ordinary least squares (OLS) regression models adjusted for the NHANES complex sampling design and weighted to represent the US population were estimated for simple reaction time, processing speed and short-term memory or attention. The first model included only main effects of latent toxoplasmosis and demographic control variables, and the second added interaction terms between latent toxoplasmosis and the poverty-to-income ratio (PIR), educational attainment and race-ethnicity. We also used multivariate models to assess all three cognitive outcomes in the same model. Although the models evaluating main effects only demonstrated no association between latent toxoplasmosis and the cognitive outcomes, significant interactions between latent toxoplasmosis and the PIR, between latent toxoplasmosis and educational attainment, and between latent toxoplasmosis and race-ethnicity indicated that latent toxoplasmosis may adversely affect cognitive function in certain groups.
ERIC Educational Resources Information Center
Samejima, Fumiko
In latent trait theory the latent space, or space of the hypothetical construct, is usually represented by some unidimensional or multi-dimensional continuum of real numbers. Like the latent space, the item response can either be treated as a discrete variable or as a continuous variable. Latent trait theory relates the item response to the latent…
Assessment of input uncertainty by seasonally categorized latent variables using SWAT
USDA-ARS?s Scientific Manuscript database
Watershed processes have been explored with sophisticated simulation models for the past few decades. It has been stated that uncertainty attributed to alternative sources such as model parameters, forcing inputs, and measured data should be incorporated during the simulation process. Among varyin...
Replicates in high dimensions, with applications to latent variable graphical models.
Tan, Kean Ming; Ning, Yang; Witten, Daniela M; Liu, Han
2016-12-01
In classical statistics, much thought has been put into experimental design and data collection. In the high-dimensional setting, however, experimental design has been less of a focus. In this paper, we stress the importance of collecting multiple replicates for each subject in this setting. We consider learning the structure of a graphical model with latent variables, under the assumption that these variables take a constant value across replicates within each subject. By collecting multiple replicates for each subject, we are able to estimate the conditional dependence relationships among the observed variables given the latent variables. To test the null hypothesis of conditional independence between two observed variables, we propose a pairwise decorrelated score test. Theoretical guarantees are established for parameter estimation and for this test. We show that our proposal is able to estimate latent variable graphical models more accurately than some existing proposals, and apply the proposed method to a brain imaging dataset.
Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry
2010-01-01
Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. PMID:20580644
Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry
2010-08-06
Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. Copyright 2010 Elsevier Ltd. All rights reserved.
Saunders, Kate; Bilderbeck, Amy; Palmius, Niclas; Goodwin, Guy; De Vos, Maarten
2017-01-01
Background We recently described a new questionnaire to monitor mood called mood zoom (MZ). MZ comprises 6 items assessing mood symptoms on a 7-point Likert scale; we had previously used standard principal component analysis (PCA) to tentatively understand its properties, but the presence of multiple nonzero loadings obstructed the interpretation of its latent variables. Objective The aim of this study was to rigorously investigate the internal properties and latent variables of MZ using an algorithmic approach which may lead to more interpretable results than PCA. Additionally, we explored three other widely used psychiatric questionnaires to investigate latent variable structure similarities with MZ: (1) Altman self-rating mania scale (ASRM), assessing mania; (2) quick inventory of depressive symptomatology (QIDS) self-report, assessing depression; and (3) generalized anxiety disorder (7-item) (GAD-7), assessing anxiety. Methods We elicited responses from 131 participants: 48 bipolar disorder (BD), 32 borderline personality disorder (BPD), and 51 healthy controls (HC), collected longitudinally (median [interquartile range, IQR]: 363 [276] days). Participants were requested to complete ASRM, QIDS, and GAD-7 weekly (all 3 questionnaires were completed on the Web) and MZ daily (using a custom-based smartphone app). We applied sparse PCA (SPCA) to determine the latent variables for the four questionnaires, where a small subset of the original items contributes toward each latent variable. Results We found that MZ had great consistency across the three cohorts studied. Three main principal components were derived using SPCA, which can be tentatively interpreted as (1) anxiety and sadness, (2) positive affect, and (3) irritability. The MZ principal component comprising anxiety and sadness explains most of the variance in BD and BPD, whereas the positive affect of MZ explains most of the variance in HC. The latent variables in ASRM were identical for the patient groups but different for HC; nevertheless, the latent variables shared common items across both the patient group and HC. On the contrary, QIDS had overall very different principal components across groups; sleep was a key element in HC and BD but was absent in BPD. In GAD-7, nervousness was the principal component explaining most of the variance in BD and HC. Conclusions This study has important implications for understanding self-reported mood. MZ has a consistent, intuitively interpretable latent variable structure and hence may be a good instrument for generic mood assessment. Irritability appears to be the key distinguishing latent variable between BD and BPD and might be useful for differential diagnosis. Anxiety and sadness are closely interlinked, a finding that might inform treatment effects to jointly address these covarying symptoms. Anxiety and nervousness appear to be amongst the cardinal latent variable symptoms in BD and merit close attention in clinical practice. PMID:28546141
ERIC Educational Resources Information Center
Pek, Jolynn; Losardo, Diane; Bauer, Daniel J.
2011-01-01
Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…
ERIC Educational Resources Information Center
Cham, Heining; West, Stephen G.; Ma, Yue; Aiken, Leona S.
2012-01-01
A Monte Carlo simulation was conducted to investigate the robustness of 4 latent variable interaction modeling approaches (Constrained Product Indicator [CPI], Generalized Appended Product Indicator [GAPI], Unconstrained Product Indicator [UPI], and Latent Moderated Structural Equations [LMS]) under high degrees of nonnormality of the observed…
Dynamic Latent Trait Models with Mixed Hidden Markov Structure for Mixed Longitudinal Outcomes.
Zhang, Yue; Berhane, Kiros
2016-01-01
We propose a general Bayesian joint modeling approach to model mixed longitudinal outcomes from the exponential family for taking into account any differential misclassification that may exist among categorical outcomes. Under this framework, outcomes observed without measurement error are related to latent trait variables through generalized linear mixed effect models. The misclassified outcomes are related to the latent class variables, which represent unobserved real states, using mixed hidden Markov models (MHMM). In addition to enabling the estimation of parameters in prevalence, transition and misclassification probabilities, MHMMs capture cluster level heterogeneity. A transition modeling structure allows the latent trait and latent class variables to depend on observed predictors at the same time period and also on latent trait and latent class variables at previous time periods for each individual. Simulation studies are conducted to make comparisons with traditional models in order to illustrate the gains from the proposed approach. The new approach is applied to data from the Southern California Children Health Study (CHS) to jointly model questionnaire based asthma state and multiple lung function measurements in order to gain better insight about the underlying biological mechanism that governs the inter-relationship between asthma state and lung function development.
The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.
Congdon, Peter
2011-01-01
Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.
An EM Algorithm for Maximum Likelihood Estimation of Process Factor Analysis Models
ERIC Educational Resources Information Center
Lee, Taehun
2010-01-01
In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the…
Application of Local Linear Embedding to Nonlinear Exploratory Latent Structure Analysis
ERIC Educational Resources Information Center
Wang, Haonan; Iyer, Hari
2007-01-01
In this paper we discuss the use of a recent dimension reduction technique called Locally Linear Embedding, introduced by Roweis and Saul, for performing an exploratory latent structure analysis. The coordinate variables from the locally linear embedding describing the manifold on which the data reside serve as the latent variable scores. We…
Introduction to Latent Class Analysis with Applications
ERIC Educational Resources Information Center
Porcu, Mariano; Giambona, Francesca
2017-01-01
Latent class analysis (LCA) is a statistical method used to group individuals (cases, units) into classes (categories) of an unobserved (latent) variable on the basis of the responses made on a set of nominal, ordinal, or continuous observed variables. In this article, we introduce LCA in order to demonstrate its usefulness to early adolescence…
Mixture Distribution Latent State-Trait Analysis: Basic Ideas and Applications
ERIC Educational Resources Information Center
Courvoisier, Delphine S.; Eid, Michael; Nussbeck, Fridtjof W.
2007-01-01
Extensions of latent state-trait models for continuous observed variables to mixture latent state-trait models with and without covariates of change are presented that can separate individuals differing in their occasion-specific variability. An empirical application to the repeated measurement of mood states (N = 501) revealed that a model with 2…
Mannarini, Stefania; Boffo, Marilisa; Rossi, Alessandro; Balottin, Laura
2017-01-01
Background: Although scientific research on the etiology of mental disorders has improved the knowledge of biogenetic and psychosocial aspects related to the onset of mental illness, stigmatizing attitudes and behaviors are still very prevalent and pose a significant social problem. Aim: The aim of this study was to deepen the knowledge of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics, such as culture and religion of the perceiver. More precisely, the main purpose is the definition of a structure of variables, namely perceived dangerousness, social closeness, and avoidance of the ill person, together with the beliefs about the best treatment to be undertaken and the sick person' gender, capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned. Method: The study involved 305 university students, 183 from the University of Padua, Italy, and 122 from the University of Haifa, Israel. For the analyses, a latent class analysis (LCA) approach was chosen to identify a latent categorical structure accounting for the covariance between the observed variables. Such a latent structure was expected to be moderated by cultural background (Italy versus Israel) and religious beliefs, whereas causal beliefs, recommended treatment, dangerousness, social closeness, and public avoidance were the manifest variables, namely the observed indicators of the latent variable. Results: Two sets of results were obtained. First, the relevance of the manifest variables as indicators of the hypothesized latent variable was highlighted. Second, a two-latent-class categorical dimension represented by prejudicial attitudes, causal beliefs, and treatments concerning schizophrenia was found. Specifically, the differential effects of the two cultures and the religious beliefs on the latent structure and their relations highlighted the relevance of the observed variables as indicators of the expected latent variable. Conclusion: The present study contributes to the improvement of the understanding of how attitudes toward people with mental illness are affected by specific personal beliefs and characteristics of the perceiver. The definition of a structure of variables capable of describing the complexity of the stigma construct in particular as far as schizophrenia is concerned was achieved from a cross-cultural perspective.
ERIC Educational Resources Information Center
Wall, Melanie M.; Guo, Jia; Amemiya, Yasuo
2012-01-01
Mixture factor analysis is examined as a means of flexibly estimating nonnormally distributed continuous latent factors in the presence of both continuous and dichotomous observed variables. A simulation study compares mixture factor analysis with normal maximum likelihood (ML) latent factor modeling. Different results emerge for continuous versus…
ERIC Educational Resources Information Center
Holm-Denoma, Jill M.; Richey, J. Anthony; Joiner, Thomas E., Jr.
2010-01-01
Although the latent structure of various eating disorders has been explored in previous studies, no published studies have examined the latent structure of theoretically relevant variables that have been shown to cut across eating disorder diagnoses. The current study examined 3 such variables (dietary restraint, body dissatisfaction, and drive…
McAuley, Tara; White, Desirée
2010-01-01
The present study addressed three related aims: (1) to replicate and extend previous work regarding the non-unitary nature of processing speed, response inhibition, and working memory during development, (2) to quantify the rate at which processing speed, response inhibition, and working memory develop and the extent to which the development of these latter abilities reflect general changes in processing speed, and (3) to evaluate whether commonly used tasks of processing speed, response inhibition, and working memory are valid and reliable when used with a developmentally diverse group. To address these aims, a latent variables approach was used to analyze data from 147 participants 6 to 24 years of age. Results showed that processing speed, response inhibition, and working memory were separable abilities and that the extent of this separability was stable cross the age range of participants. All three constructs improved as a function of age; however, only the effect of age on working memory remained significant after processing speed was controlled. The psychometric properties of tasks used to assess the constructs were age invariant, thus validating their use in studies of executive development. PMID:20888572
The Houdini Transformation: True, but Illusory.
Bentler, Peter M; Molenaar, Peter C M
2012-01-01
Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This paper verifies the Houdini transformation on a general latent variable model using algebraic methods. The results show that the Houdini transformation is illusory, in the sense that the Houdini transformed model remains a latent variable model. Contrary to common knowledge, a model that is a path model with only observed variables and residual errors may, in fact, be a latent variable model.
The Houdini Transformation: True, but Illusory
Bentler, Peter M.; Molenaar, Peter C. M.
2012-01-01
Molenaar (2003, 2011) showed that a common factor model could be transformed into an equivalent model without factors, involving only observed variables and residual errors. He called this invertible transformation the Houdini transformation. His derivation involved concepts from time series and state space theory. This paper verifies the Houdini transformation on a general latent variable model using algebraic methods. The results show that the Houdini transformation is illusory, in the sense that the Houdini transformed model remains a latent variable model. Contrary to common knowledge, a model that is a path model with only observed variables and residual errors may, in fact, be a latent variable model. PMID:23180888
Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach
ERIC Educational Resources Information Center
Klauer, Karl Christoph
2010-01-01
Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into…
Executive and Phonological Processes in Second-Language Acquisition
ERIC Educational Resources Information Center
Engel de Abreu, Pascale M. J.; Gathercole, Susan E.
2012-01-01
This article reports a latent variable study exploring the specific links among executive processes of working memory, phonological short-term memory, phonological awareness, and proficiency in first (L1), second (L2), and third (L3) languages in 8- to 9-year-olds experiencing multilingual education. Children completed multiple L1-measures of…
ERIC Educational Resources Information Center
Rast, Philippe
2011-01-01
The present study aimed at modeling individual differences in a verbal learning task by means of a latent structured growth curve approach based on an exponential function that yielded 3 parameters: initial recall, learning rate, and asymptotic performance. Three cognitive variables--speed of information processing, verbal knowledge, working…
ERIC Educational Resources Information Center
Rupp, Andre A.
2012-01-01
In the focus article of this issue, von Davier, Naemi, and Roberts essentially coupled: (1) a short methodological review of structural similarities of latent variable models with discrete and continuous latent variables; and (2) 2 short empirical case studies that show how these models can be applied to real, rather than simulated, large-scale…
ERIC Educational Resources Information Center
Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.
2011-01-01
Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…
ERIC Educational Resources Information Center
von Davier, Matthias
2014-01-01
Diagnostic models combine multiple binary latent variables in an attempt to produce a latent structure that provides more information about test takers' performance than do unidimensional latent variable models. Recent developments in diagnostic modeling emphasize the possibility that multiple skills may interact in a conjunctive way within the…
Measurement Model Specification Error in LISREL Structural Equation Models.
ERIC Educational Resources Information Center
Baldwin, Beatrice; Lomax, Richard
This LISREL study examines the robustness of the maximum likelihood estimates under varying degrees of measurement model misspecification. A true model containing five latent variables (two endogenous and three exogenous) and two indicator variables per latent variable was used. Measurement model misspecification considered included errors of…
Estimating Interaction Effects With Incomplete Predictor Variables
Enders, Craig K.; Baraldi, Amanda N.; Cham, Heining
2014-01-01
The existing missing data literature does not provide a clear prescription for estimating interaction effects with missing data, particularly when the interaction involves a pair of continuous variables. In this article, we describe maximum likelihood and multiple imputation procedures for this common analysis problem. We outline 3 latent variable model specifications for interaction analyses with missing data. These models apply procedures from the latent variable interaction literature to analyses with a single indicator per construct (e.g., a regression analysis with scale scores). We also discuss multiple imputation for interaction effects, emphasizing an approach that applies standard imputation procedures to the product of 2 raw score predictors. We thoroughly describe the process of probing interaction effects with maximum likelihood and multiple imputation. For both missing data handling techniques, we outline centering and transformation strategies that researchers can implement in popular software packages, and we use a series of real data analyses to illustrate these methods. Finally, we use computer simulations to evaluate the performance of the proposed techniques. PMID:24707955
Hoyle, R H
1991-02-01
Indirect measures of psychological constructs are vital to clinical research. On occasion, however, the meaning of indirect measures of psychological constructs is obfuscated by statistical procedures that do not account for the complex relations between items and latent variables and among latent variables. Covariance structure analysis (CSA) is a statistical procedure for testing hypotheses about the relations among items that indirectly measure a psychological construct and relations among psychological constructs. This article introduces clinical researchers to the strengths and limitations of CSA as a statistical procedure for conceiving and testing structural hypotheses that are not tested adequately with other statistical procedures. The article is organized around two empirical examples that illustrate the use of CSA for evaluating measurement models with correlated error terms, higher-order factors, and measured and latent variables.
Unfinished Business in Clarifying Causal Measurement: Commentary on Bainter and Bollen
ERIC Educational Resources Information Center
Markus, Keith A.
2014-01-01
In a series of articles and comments, Kenneth Bollen and his collaborators have incrementally refined an account of structural equation models that (a) model a latent variable as the effect of several observed variables and (b) carry an interpretation of the observed variables as, in some sense, measures of the latent variable that they cause.…
2011-01-01
Background Very little is known about the attitudes and views that might underlie and explain the variation in occupational disability assessment behaviour between insurance physicians. In an earlier study we presented an adjusted ASE model (Attitude, Social norm, Self-efficacy) to identify the determinants of the disability assessment behaviour among insurance physicians. The research question of this study is how Attitude, Social norm, Self-efficacy and Intention shape the behaviour that insurance physicians themselves report with regard to the process (Behaviour: process) and content of the assessment (Behaviour: assessment) while taking account of Knowledge and Barriers. Methods This study was based on 231 questionnaires filled in by insurance physicians, resulting into 48 scales and dimension scores. The number of variables was reduced by a separate estimation of each of the theoretical ASE constructs as a latent variable in a measurement model. The saved factor scores of these latent variables were treated as observed variables when we estimated a path model with Lisrel to confirm the ASE model. We estimated latent ASE constructs for most of the assigned scales and dimensions. All could be described and interpreted. We used these constructs to build a path model that showed a good fit. Results Contrary to our initial expectations, we did not find direct effects for Attitude on Intention and for Intention on self reported assessment behaviour in the model. This may well have been due to the operationalization of the concept of 'Intention'. We did, however, find that Attitude had a positive direct effect on Behaviour: process and Behaviour: Assessment and that Intention had a negative direct effect on Behaviour: process. Conclusion A path model pointed to the existence of relationships between Attitude on the one hand and self-reported behaviour by insurance physicians with regard to process and content of occupational disability assessments on the other hand. In addition, Intention was only related to the self reported behaviour with regard to the process of occupational disability assessments. These findings provide some evidence of the relevance of the ASE model in this setting. Further research is needed to determine whether the ASE variables measured for insurance physicians are related to the real practice outcomes of occupational disability assessments. PMID:21771326
Multimethod latent class analysis
Nussbeck, Fridtjof W.; Eid, Michael
2015-01-01
Correct and, hence, valid classifications of individuals are of high importance in the social sciences as these classifications are the basis for diagnoses and/or the assignment to a treatment. The via regia to inspect the validity of psychological ratings is the multitrait-multimethod (MTMM) approach. First, a latent variable model for the analysis of rater agreement (latent rater agreement model) will be presented that allows for the analysis of convergent validity between different measurement approaches (e.g., raters). Models of rater agreement are transferred to the level of latent variables. Second, the latent rater agreement model will be extended to a more informative MTMM latent class model. This model allows for estimating (i) the convergence of ratings, (ii) method biases in terms of differential latent distributions of raters and differential associations of categorizations within raters (specific rater bias), and (iii) the distinguishability of categories indicating if categories are satisfyingly distinct from each other. Finally, an empirical application is presented to exemplify the interpretation of the MTMM latent class model. PMID:26441714
ERIC Educational Resources Information Center
Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.
2002-01-01
Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…
Integrative Lifecourse and Genetic Analysis of Military Working Dogs
2015-12-01
done as the samples are collected in order to avoid experimental variability and batch effects . Detailed description and discussion of this task...associated loss of power to detect all associations but those of large effect sizes) and latent variables (e.g., population structure – addressed in...processes associated with tissue development and maintenance are thus grouped with external environmental effects . This in turn suggests how those
On the Asymptotic Relative Efficiency of Planned Missingness Designs.
Rhemtulla, Mijke; Savalei, Victoria; Little, Todd D
2016-03-01
In planned missingness (PM) designs, certain data are set a priori to be missing. PM designs can increase validity and reduce cost; however, little is known about the loss of efficiency that accompanies these designs. The present paper compares PM designs to reduced sample (RN) designs that have the same total number of data points concentrated in fewer participants. In 4 studies, we consider models for both observed and latent variables, designs that do or do not include an "X set" of variables with complete data, and a full range of between- and within-set correlation values. All results are obtained using asymptotic relative efficiency formulas, and thus no data are generated; this novel approach allows us to examine whether PM designs have theoretical advantages over RN designs removing the impact of sampling error. Our primary findings are that (a) in manifest variable regression models, estimates of regression coefficients have much lower relative efficiency in PM designs as compared to RN designs, (b) relative efficiency of factor correlation or latent regression coefficient estimates is maximized when the indicators of each latent variable come from different sets, and (c) the addition of an X set improves efficiency in manifest variable regression models only for the parameters that directly involve the X-set variables, but it substantially improves efficiency of most parameters in latent variable models. We conclude that PM designs can be beneficial when the model of interest is a latent variable model; recommendations are made for how to optimize such a design.
Toma, Luiza; Mathijs, Erik
2007-04-01
This paper aims to identify the factors underlying farmers' propensity to participate in organic farming programmes in a Romanian rural region that confronts non-point source pollution. For this, we employ structural equation modelling with latent variables using a specific data set collected through an agri-environmental farm survey in 2001. The model includes one 'behavioural intention' latent variable ('propensity to participate in organic farming programmes') and five 'attitude' and 'socio-economic' latent variables ('socio-demographic characteristics', 'economic characteristics', 'agri-environmental information access', 'environmental risk perception' and 'general environmental concern'). The results indicate that, overall, the model has an adequate fit to the data. All loadings are statistically significant, supporting the theoretical basis for assignment of indicators for each latent variable. The significance tests for the structural model parameters show 'environmental risk perception' as the strongest determinant of farmers' propensity to participate in organic farming programmes.
ERIC Educational Resources Information Center
Kriston, Levente; Melchior, Hanne; Hergert, Anika; Bergelt, Corinna; Watzke, Birgit; Schulz, Holger; von Wolff, Alessa
2011-01-01
The aim of our study was to develop a graphical tool that can be used in addition to standard statistical criteria to support decisions on the number of classes in explorative categorical latent variable modeling for rehabilitation research. Data from two rehabilitation research projects were used. In the first study, a latent profile analysis was…
Data on the interexaminer variation of minutia markup on latent fingerprints.
Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn
2016-09-01
The data in this article supports the research paper entitled "Interexaminer variation of minutia markup on latent fingerprints" [1]. The data in this article describes the variability in minutia markup during both analysis of the latents and comparison between latents and exemplars. The data was collected in the "White Box Latent Print Examiner Study," in which each of 170 volunteer latent print examiners provided detailed markup documenting their examinations of latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. Each examiner examined 22 latent-exemplar pairs; an average of 12 examiners marked each latent.
Xu, Man K.; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J. S.; Croudace, Tim J.; Barnett, Jennifer H.; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B.
2017-01-01
Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene (MAOA) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = −0.167; CI: −0.289, −0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits. PMID:29075213
Xu, Man K; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J S; Croudace, Tim J; Barnett, Jennifer H; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B
2017-01-01
Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene ( MAOA ) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = -0.167; CI: -0.289, -0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits.
van der Maas, Han L J; Molenaar, Dylan; Maris, Gunter; Kievit, Rogier A; Borsboom, Denny
2011-04-01
This article analyzes latent variable models from a cognitive psychology perspective. We start by discussing work by Tuerlinckx and De Boeck (2005), who proved that a diffusion model for 2-choice response processes entails a 2-parameter logistic item response theory (IRT) model for individual differences in the response data. Following this line of reasoning, we discuss the appropriateness of IRT for measuring abilities and bipolar traits, such as pro versus contra attitudes. Surprisingly, if a diffusion model underlies the response processes, IRT models are appropriate for bipolar traits but not for ability tests. A reconsideration of the concept of ability that is appropriate for such situations leads to a new item response model for accuracy and speed based on the idea that ability has a natural zero point. The model implies fundamentally new ways to think about guessing, response speed, and person fit in IRT. We discuss the relation between this model and existing models as well as implications for psychology and psychometrics. 2011 APA, all rights reserved
Group Comparisons in the Presence of Missing Data Using Latent Variable Modeling Techniques
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.
2010-01-01
A latent variable modeling approach for examining population similarities and differences in observed variable relationship and mean indexes in incomplete data sets is discussed. The method is based on the full information maximum likelihood procedure of model fitting and parameter estimation. The procedure can be employed to test group identities…
Stochastic Approximation Methods for Latent Regression Item Response Models
ERIC Educational Resources Information Center
von Davier, Matthias; Sinharay, Sandip
2010-01-01
This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…
Estimation and Model Selection for Finite Mixtures of Latent Interaction Models
ERIC Educational Resources Information Center
Hsu, Jui-Chen
2011-01-01
Latent interaction models and mixture models have received considerable attention in social science research recently, but little is known about how to handle if unobserved population heterogeneity exists in the endogenous latent variables of the nonlinear structural equation models. The current study estimates a mixture of latent interaction…
Kane, Michael J; Hambrick, David Z; Tuholski, Stephen W; Wilhelm, Oliver; Payne, Tabitha W; Engle, Randall W
2004-06-01
A latent-variable study examined whether verbal and visuospatial working memory (WM) capacity measures reflect a primarily domain-general construct by testing 236 participants in 3 span tests each of verbal WM. visuospatial WM, verbal short-term memory (STM), and visuospatial STM. as well as in tests of verbal and spatial reasoning and general fluid intelligence (Gf). Confirmatory' factor analyses and structural equation models indicated that the WM tasks largely reflected a domain-general factor, whereas STM tasks, based on the same stimuli as the WM tasks, were much more domain specific. The WM construct was a strong predictor of Gf and a weaker predictor of domain-specific reasoning, and the reverse was true for the STM construct. The findings support a domain-general view of WM capacity, in which executive-attention processes drive the broad predictive utility of WM span measures, and domain-specific storage and rehearsal processes relate more strongly to domain-specific aspects of complex cognition. ((c) 2004 APA, all rights reserved)
Goold, Conor; Newberry, Ruth C
2017-01-01
Studies of animal personality attempt to uncover underlying or "latent" personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4-10 months, 10 months-3 years, 3-6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate "aggressive personality" trait attributions can be costly to dogs, recipients of aggression and society in general.
Latent variable method for automatic adaptation to background states in motor imagery BCI
NASA Astrophysics Data System (ADS)
Dagaev, Nikolay; Volkova, Ksenia; Ossadtchi, Alexei
2018-02-01
Objective. Brain-computer interface (BCI) systems are known to be vulnerable to variabilities in background states of a user. Usually, no detailed information on these states is available even during the training stage. Thus there is a need in a method which is capable of taking background states into account in an unsupervised way. Approach. We propose a latent variable method that is based on a probabilistic model with a discrete latent variable. In order to estimate the model’s parameters, we suggest to use the expectation maximization algorithm. The proposed method is aimed at assessing characteristics of background states without any corresponding data labeling. In the context of asynchronous motor imagery paradigm, we applied this method to the real data from twelve able-bodied subjects with open/closed eyes serving as background states. Main results. We found that the latent variable method improved classification of target states compared to the baseline method (in seven of twelve subjects). In addition, we found that our method was also capable of background states recognition (in six of twelve subjects). Significance. Without any supervised information on background states, the latent variable method provides a way to improve classification in BCI by taking background states into account at the training stage and then by making decisions on target states weighted by posterior probabilities of background states at the prediction stage.
Latent class instrumental variables: A clinical and biostatistical perspective
Baker, Stuart G.; Kramer, Barnett S.; Lindeman, Karen S.
2015-01-01
In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. PMID:26239275
Stamovlasis, Dimitrios; Papageorgiou, George; Tsitsipis, Georgios; Tsikalas, Themistoklis; Vaiopoulou, Julie
2018-01-01
This paper illustrates two psychometric methods, latent class analysis (LCA) and taxometric analysis (TA) using empirical data from research probing children's mental representation in science learning. LCA is used to obtain a typology based on observed variables and to further investigate how the encountered classes might be related to external variables, where the effectiveness of classification process and the unbiased estimations of parameters become the main concern. In the step-wise LCA, the class membership is assigned and subsequently its relationship with covariates is established. This leading-edge modeling approach suffers from severe downward-biased estimations. The illustration of LCA is focused on alternative bias correction approaches and demonstrates the effect of modal and proportional class-membership assignment along with BCH and ML correction procedures. The illustration of LCA is presented with three covariates, which are psychometric variables operationalizing formal reasoning, divergent thinking and field dependence-independence, respectively. Moreover, taxometric analysis, a method designed to detect the type of the latent structural model, categorical or dimensional, is introduced, along with the relevant basic concepts and tools. TA was applied complementarily in the same data sets to answer the fundamental hypothesis about children's naïve knowledge on the matters under study and it comprises an additional asset in building theory which is fundamental for educational practices. Taxometric analysis provided results that were ambiguous as far as the type of the latent structure. This finding initiates further discussion and sets a problematization within this framework rethinking fundamental assumptions and epistemological issues. PMID:29713300
Lessons Learned in Part-of-Speech Tagging of Conversational Speech
2010-10-01
for conversational speech recognition. In Plenary Meeting and Symposium on Prosody and Speech Processing. Slav Petrov and Dan Klein. 2007. Improved...inference for unlexicalized parsing. In HLT-NAACL. Slav Petrov. 2010. Products of random latent variable grammars. In HLT-NAACL. Brian Roark, Yang Liu
Yeung, Wing-Fai; Chung, Ka-Fai; Zhang, Nevin Lian-Wen; Zhang, Shi Ping; Yung, Kam-Ping; Chen, Pei-Xian; Ho, Yan-Yee
2016-01-01
Chinese medicine (CM) syndrome (zheng) differentiation is based on the co-occurrence of CM manifestation profiles, such as signs and symptoms, and pulse and tongue features. Insomnia is a symptom that frequently occurs in major depressive disorder despite adequate antidepressant treatment. This study aims to identify co-occurrence patterns in participants with persistent insomnia and major depressive disorder from clinical feature data using latent tree analysis, and to compare the latent variables with relevant CM syndromes. One hundred and forty-two participants with persistent insomnia and a history of major depressive disorder completed a standardized checklist (the Chinese Medicine Insomnia Symptom Checklist) specially developed for CM syndrome classification of insomnia. The checklist covers symptoms and signs, including tongue and pulse features. The clinical features assessed by the checklist were analyzed using Lantern software. CM practitioners with relevant experience compared the clinical feature variables under each latent variable with reference to relevant CM syndromes, based on a previous review of CM syndromes. The symptom data were analyzed to build the latent tree model and the model with the highest Bayes information criterion score was regarded as the best model. This model contained 18 latent variables, each of which divided participants into two clusters. Six clusters represented more than 50 % of the sample. The clinical feature co-occurrence patterns of these six clusters were interpreted as the CM syndromes Liver qi stagnation transforming into fire, Liver fire flaming upward, Stomach disharmony, Hyperactivity of fire due to yin deficiency, Heart-kidney noninteraction, and Qi deficiency of the heart and gallbladder. The clinical feature variables that contributed significant cumulative information coverage (at least 95 %) were identified. Latent tree model analysis on a sample of depressed participants with insomnia revealed 13 clinical feature co-occurrence patterns, four mutual-exclusion patterns, and one pattern with a single clinical feature variable.
Development of lifetime comorbidity in the WHO World Mental Health (WMH) Surveys
Kessler, Ronald C.; Ormel, Johan; Petukhova, Maria; McLaughlin, Katie A.; Green, Jennifer Greif; Russo, Leo J.; Stein, Dan J.; Zaslavsky, Alan M; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Andrade, Laura; Benjet, Corina; de Girolamo, Giovanni; de Graaf, Ron; Demyttenaere, Koen; Fayyad, John; Haro, Josep Maria; Hu, Chi yi; Karam, Aimee; Lee, Sing; Lepine, Jean-Pierre; Matchsinger, Herbert; Mihaescu-Pintia, Constanta; Posada-Villa, Jose; Sagar, Rajesh; Üstün, T. Bedirhan
2010-01-01
CONTEXT Although numerous studies have examined the role of latent variables in the structure of comorbidity among mental disorders, none has examined their role in the development of comorbidity. OBJECTIVE To study the role of latent variables in the development of comorbidity among 18 lifetime DSM-IV disorders in the WHO World Mental Health (WMH) surveys. SETTING/PARTICIPANTS Nationally or regionally representative community surveys in 14 countries with a total of 21,229 respondents. MAIN OUTCOME MEASURES First onset of 18 lifetime DSM-IV anxiety, mood, behavior, and substance disorders assessed retrospectively in the WHO Composite International Diagnostic Interview (CIDI). RESULTS Separate internalizing (anxiety and mood disorders) and externalizing (behavior and substance disorders) factors were found in exploratory factor analysis of lifetime disorders. Consistently significant positive time-lagged associations were found in survival analyses for virtually all temporally primary lifetime disorders predicting subsequent onset of other disorders. Within-domain (i.e., internalizing or externalizing) associations were generally stronger than between-domain associations. The vast majority of time-lagged associations were explained by a model that assumed the existence of mediating latent internalizing and externalizing variables. Specific phobia and obsessive-compulsive disorder (internalizing) and hyperactivity disorder and oppositional-defiant disorder (externalizing) were the most important predictors. A small number of residual associations remained significant after controlling the latent variables. CONCLUSIONS The good fit of the latent variable model suggests that common causal pathways account for most of the comorbidity among the disorders considered here. These common pathways should be the focus of future research on the development of comorbidity, although several important pair-wise associations that cannot be accounted for by latent variables also exist that warrant further focused study. PMID:21199968
Lamont, Andrea E.; Vermunt, Jeroen K.; Van Horn, M. Lee
2016-01-01
Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we test the effects of violating an implicit assumption often made in these models – i.e., independent variables in the model are not directly related to latent classes. Results indicated that the major risk of failing to model the relationship between predictor and latent class was an increase in the probability of selecting additional latent classes and biased class proportions. Additionally, this study tests whether regression mixture models can detect a piecewise relationship between a predictor and outcome. Results suggest that these models are able to detect piecewise relations, but only when the relationship between the latent class and the predictor is included in model estimation. We illustrate the implications of making this assumption through a re-analysis of applied data examining heterogeneity in the effects of family resources on academic achievement. We compare previous results (which assumed no relation between independent variables and latent class) to the model where this assumption is lifted. Implications and analytic suggestions for conducting regression mixture based on these findings are noted. PMID:26881956
ERIC Educational Resources Information Center
von Davier, Matthias; Sinharay, Sandip
2009-01-01
This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the…
A General Approach to Defining Latent Growth Components
ERIC Educational Resources Information Center
Mayer, Axel; Steyer, Rolf; Mueller, Horst
2012-01-01
We present a 3-step approach to defining latent growth components. In the first step, a measurement model with at least 2 indicators for each time point is formulated to identify measurement error variances and obtain latent variables that are purged from measurement error. In the second step, we use contrast matrices to define the latent growth…
Memory Span and General Intelligence: A Latent-Variable Approach
ERIC Educational Resources Information Center
Colom, Roberto; Abad, Francisco J.; Rebollo, Irene; Chun Shih, Pei
2005-01-01
There are several studies showing that working memory and intelligence are strongly related. However, working memory tasks require simultaneous processing and storage, so the causes of their relationship with intelligence are currently a matter of discussion. The present study examined the simultaneous relationships among short-term memory (STM),…
A Database Approach for Predicting and Monitoring Baked Anode Properties
NASA Astrophysics Data System (ADS)
Lauzon-Gauthier, Julien; Duchesne, Carl; Tessier, Jayson
2012-11-01
The baked anode quality control strategy currently used by most carbon plants based on testing anode core samples in the laboratory is inadequate for facing increased raw material variability. The low core sampling rate limited by lab capacity and the common practice of reporting averaged properties based on some anode population mask a significant amount of individual anode variability. In addition, lab results are typically available a few weeks after production and the anodes are often already set in the reduction cells preventing early remedial actions when necessary. A database approach is proposed in this work to develop a soft-sensor for predicting individual baked anode properties at the end of baking cycle. A large historical database including raw material properties, process operating parameters and anode core data was collected from a modern Alcoa plant. A multivariate latent variable PLS regression method was used for analyzing the large database and building the soft-sensor model. It is shown that the general low frequency trends in most anode physical and mechanical properties driven by raw material changes are very well captured by the model. Improvements in the data infrastructure (instrumentation, sampling frequency and location) will be necessary for predicting higher frequency variations in individual baked anode properties. This paper also demonstrates how multivariate latent variable models can be interpreted against process knowledge and used for real-time process monitoring of carbon plants, and detection of faults and abnormal operation.
Latent class instrumental variables: a clinical and biostatistical perspective.
Baker, Stuart G; Kramer, Barnett S; Lindeman, Karen S
2016-01-15
In some two-arm randomized trials, some participants receive the treatment assigned to the other arm as a result of technical problems, refusal of a treatment invitation, or a choice of treatment in an encouragement design. In some before-and-after studies, the availability of a new treatment changes from one time period to this next. Under assumptions that are often reasonable, the latent class instrumental variable (IV) method estimates the effect of treatment received in the aforementioned scenarios involving all-or-none compliance and all-or-none availability. Key aspects are four initial latent classes (sometimes called principal strata) based on treatment received if in each randomization group or time period, the exclusion restriction assumption (in which randomization group or time period is an instrumental variable), the monotonicity assumption (which drops an implausible latent class from the analysis), and the estimated effect of receiving treatment in one latent class (sometimes called efficacy, the local average treatment effect, or the complier average causal effect). Since its independent formulations in the biostatistics and econometrics literatures, the latent class IV method (which has no well-established name) has gained increasing popularity. We review the latent class IV method from a clinical and biostatistical perspective, focusing on underlying assumptions, methodological extensions, and applications in our fields of obstetrics and cancer research. Copyright © 2015 John Wiley & Sons, Ltd.
Whiteway, Matthew R; Butts, Daniel A
2017-03-01
The activity of sensory cortical neurons is not only driven by external stimuli but also shaped by other sources of input to the cortex. Unlike external stimuli, these other sources of input are challenging to experimentally control, or even observe, and as a result contribute to variability of neural responses to sensory stimuli. However, such sources of input are likely not "noise" and may play an integral role in sensory cortex function. Here we introduce the rectified latent variable model (RLVM) in order to identify these sources of input using simultaneously recorded cortical neuron populations. The RLVM is novel in that it employs nonnegative (rectified) latent variables and is much less restrictive in the mathematical constraints on solutions because of the use of an autoencoder neural network to initialize model parameters. We show that the RLVM outperforms principal component analysis, factor analysis, and independent component analysis, using simulated data across a range of conditions. We then apply this model to two-photon imaging of hundreds of simultaneously recorded neurons in mouse primary somatosensory cortex during a tactile discrimination task. Across many experiments, the RLVM identifies latent variables related to both the tactile stimulation as well as nonstimulus aspects of the behavioral task, with a majority of activity explained by the latter. These results suggest that properly identifying such latent variables is necessary for a full understanding of sensory cortical function and demonstrate novel methods for leveraging large population recordings to this end. NEW & NOTEWORTHY The rapid development of neural recording technologies presents new opportunities for understanding patterns of activity across neural populations. Here we show how a latent variable model with appropriate nonlinear form can be used to identify sources of input to a neural population and infer their time courses. Furthermore, we demonstrate how these sources are related to behavioral contexts outside of direct experimental control. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
Park, Jungkyu; Yu, Hsiu-Ting
2016-01-01
The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…
Fenton, Bradford W.; Grey, Scott F.; Tossone, Krystel; McCarroll, Michele; Von Gruenigen, Vivian E.
2015-01-01
Chronic pelvic pain affects multiple aspects of a patient's physical, social, and emotional functioning. Latent class analysis (LCA) of Patient Reported Outcome Measures Information System (PROMIS) domains has the potential to improve clinical insight into these patients' pain. Based on the 11 PROMIS domains applied to n=613 patients referred for evaluation in a chronic pelvic pain specialty center, exploratory factor analysis (EFA) was used to identify unidimensional superdomains. Latent profile analysis (LPA) was performed to identify the number of homogeneous classes present and to further define the pain classification system. The EFA combined the 11 PROMIS domains into four unidimensional superdomains of biopsychosocial dysfunction: Pain, Negative Affect, Fatigue, and Social Function. Based on multiple fit criteria, a latent class model revealed four distinct classes of CPP: No dysfunction (3.2%); Low Dysfunction (17.8%); Moderate Dysfunction (53.2%); and High Dysfunction (25.8%). This study is the first description of a novel approach to the complex disease process such as chronic pelvic pain and was validated by demographic, medical, and psychosocial variables. In addition to an essentially normal class, three classes of increasing biopsychosocial dysfunction were identified. The LCA approach has the potential for application to other complex multifactorial disease processes. PMID:26355825
Measuring individual differences in responses to date-rape vignettes using latent variable models.
Tuliao, Antover P; Hoffman, Lesa; McChargue, Dennis E
2017-01-01
Vignette methodology can be a flexible and powerful way to examine individual differences in response to dangerous real-life scenarios. However, most studies underutilize the usefulness of such methodology by analyzing only one outcome, which limits the ability to track event-related changes (e.g., vacillation in risk perception). The current study was designed to illustrate the dynamic influence of risk perception on exit point from a date-rape vignette. Our primary goal was to provide an illustrative example of how to use latent variable models for vignette methodology, including latent growth curve modeling with piecewise slopes, as well as latent variable measurement models. Through the combination of a step-by-step exposition in this text and corresponding model syntax available electronically, we detail an alternative statistical "blueprint" to enhance future violence research efforts using vignette methodology. Aggr. Behav. 43:60-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Eastwood, John Graeme; Jalaludin, Bin Badrudin; Kemp, Lynn Ann; Phung, Hai Ngoc
2014-01-01
We have previously reported in this journal on an ecological study of perinatal depressive symptoms in South Western Sydney. In that article, we briefly reported on a factor analysis that was utilized to identify empirical indicators for analysis. In this article, we report on the mixed method approach that was used to identify those latent variables. Social epidemiology has been slow to embrace a latent variable approach to the study of social, political, economic, and cultural structures and mechanisms, partly for philosophical reasons. Critical realist ontology and epistemology have been advocated as an appropriate methodological approach to both theory building and theory testing in the health sciences. We describe here an emergent mixed method approach that uses qualitative methods to identify latent constructs followed by factor analysis using empirical indicators chosen to measure identified qualitative codes. Comparative analysis of the findings is reported together with a limited description of realist approaches to abstract reasoning.
Using SAS PROC CALIS to fit Level-1 error covariance structures of latent growth models.
Ding, Cherng G; Jane, Ten-Der
2012-09-01
In the present article, we demonstrates the use of SAS PROC CALIS to fit various types of Level-1 error covariance structures of latent growth models (LGM). Advantages of the SEM approach, on which PROC CALIS is based, include the capabilities of modeling the change over time for latent constructs, measured by multiple indicators; embedding LGM into a larger latent variable model; incorporating measurement models for latent predictors; and better assessing model fit and the flexibility in specifying error covariance structures. The strength of PROC CALIS is always accompanied with technical coding work, which needs to be specifically addressed. We provide a tutorial on the SAS syntax for modeling the growth of a manifest variable and the growth of a latent construct, focusing the documentation on the specification of Level-1 error covariance structures. Illustrations are conducted with the data generated from two given latent growth models. The coding provided is helpful when the growth model has been well determined and the Level-1 error covariance structure is to be identified.
Heteroscedastic Latent Trait Models for Dichotomous Data.
Molenaar, Dylan
2015-09-01
Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it could be tested whether the observed (polychoric) covariance matrix differs across the levels of an observed moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models have valuable applications in intelligence, personality and psychopathology research. However, existing approaches are only limited to continuous and polytomous data, while dichotomous data are common in intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model is presented for dichotomous data. The model is studied in a simulation study, and applied to data pertaining alcohol use and cognitive ability.
Maximum Likelihood Estimation of Nonlinear Structural Equation Models with Ignorable Missing Data
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan; Lee, John C. K.
2003-01-01
The existing maximum likelihood theory and its computer software in structural equation modeling are established on the basis of linear relationships among latent variables with fully observed data. However, in social and behavioral sciences, nonlinear relationships among the latent variables are important for establishing more meaningful models…
Estimating and Visualizing Nonlinear Relations among Latent Variables: A Semiparametric Approach
ERIC Educational Resources Information Center
Pek, Jolynn; Sterba, Sonya K.; Kok, Bethany E.; Bauer, Daniel J.
2009-01-01
The graphical presentation of any scientific finding enhances its description, interpretation, and evaluation. Research involving latent variables is no exception, especially when potential nonlinear effects are suspect. This article has multiple aims. First, it provides a nontechnical overview of a semiparametric approach to modeling nonlinear…
Generalized Structured Component Analysis with Latent Interactions
ERIC Educational Resources Information Center
Hwang, Heungsun; Ho, Moon-Ho Ringo; Lee, Jonathan
2010-01-01
Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling. In practice, researchers may often be interested in examining the interaction effects of latent variables. However, GSCA has been geared only for the specification and testing of the main effects of variables. Thus, an extension of GSCA…
Behavioral Scale Reliability and Measurement Invariance Evaluation Using Latent Variable Modeling
ERIC Educational Resources Information Center
Raykov, Tenko
2004-01-01
A latent variable modeling approach to reliability and measurement invariance evaluation for multiple-component measuring instruments is outlined. An initial discussion deals with the limitations of coefficient alpha, a frequently used index of composite reliability. A widely and readily applicable structural modeling framework is next described…
Multilevel and Latent Variable Modeling with Composite Links and Exploded Likelihoods
ERIC Educational Resources Information Center
Rabe-Hesketh, Sophia; Skrondal, Anders
2007-01-01
Composite links and exploded likelihoods are powerful yet simple tools for specifying a wide range of latent variable models. Applications considered include survival or duration models, models for rankings, small area estimation with census information, models for ordinal responses, item response models with guessing, randomized response models,…
Evaluation of Validity and Reliability for Hierarchical Scales Using Latent Variable Modeling
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.
2012-01-01
A latent variable modeling method is outlined, which accomplishes estimation of criterion validity and reliability for a multicomponent measuring instrument with hierarchical structure. The approach provides point and interval estimates for the scale criterion validity and reliability coefficients, and can also be used for testing composite or…
Meta-Analysis of Scale Reliability Using Latent Variable Modeling
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.
2013-01-01
A latent variable modeling approach is outlined that can be used for meta-analysis of reliability coefficients of multicomponent measuring instruments. Important limitations of efforts to combine composite reliability findings across multiple studies are initially pointed out. A reliability synthesis procedure is discussed that is based on…
Diagnostic Procedures for Detecting Nonlinear Relationships between Latent Variables
ERIC Educational Resources Information Center
Bauer, Daniel J.; Baldasaro, Ruth E.; Gottfredson, Nisha C.
2012-01-01
Structural equation models are commonly used to estimate relationships between latent variables. Almost universally, the fitted models specify that these relationships are linear in form. This assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques. This article presents and evaluates two procedures that can…
Chen, Jinsong; Zhang, Dake; Choi, Jaehwa
2015-12-01
It is common to encounter latent variables with ordinal data in social or behavioral research. Although a mediated effect of latent variables (latent mediated effect, or LME) with ordinal data may appear to be a straightforward combination of LME with continuous data and latent variables with ordinal data, the methodological challenges to combine the two are not trivial. This research covers model structures as complex as LME and formulates both point and interval estimates of LME for ordinal data using the Bayesian full-information approach. We also combine weighted least squares (WLS) estimation with the bias-corrected bootstrapping (BCB; Efron Journal of the American Statistical Association, 82, 171-185, 1987) method or the traditional delta method as the limited-information approach. We evaluated the viability of these different approaches across various conditions through simulation studies, and provide an empirical example to illustrate the approaches. We found that the Bayesian approach with reasonably informative priors is preferred when both point and interval estimates are of interest and the sample size is 200 or above.
Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M.; Weismer, Susan Ellis
2017-01-01
Purpose We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Method Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF components, inhibition, updating, and task-shifting, were each indexed using 2 nonverbal tasks. A latent variables approach was used to extract latent scores that represented each EF construct. Children were also administered common standardized language measures. Multiple regression analyses were conducted to examine the relationship between EF and language skills. Results Nonverbal updating was associated with the Receptive Language Index on the Clinical Evaluation of Language Fundamentals–Fourth Edition (CELF-4). When composites denoting lexical–semantic and syntactic abilities were derived, nonverbal inhibition (but not shifting or updating) was found to predict children's syntactic abilities. These relationships held when the effects of age, IQ, and socioeconomic status were controlled. Conclusions The study makes a methodological contribution by explicating a method by which researchers can use the latent variables approach when measuring EF performance in school-age children. The study makes a theoretical and a clinical contribution by suggesting that language performance may be related to domain-general EFs. PMID:28306755
Kaushanskaya, Margarita; Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M; Weismer, Susan Ellis
2017-04-14
We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF components, inhibition, updating, and task-shifting, were each indexed using 2 nonverbal tasks. A latent variables approach was used to extract latent scores that represented each EF construct. Children were also administered common standardized language measures. Multiple regression analyses were conducted to examine the relationship between EF and language skills. Nonverbal updating was associated with the Receptive Language Index on the Clinical Evaluation of Language Fundamentals-Fourth Edition (CELF-4). When composites denoting lexical-semantic and syntactic abilities were derived, nonverbal inhibition (but not shifting or updating) was found to predict children's syntactic abilities. These relationships held when the effects of age, IQ, and socioeconomic status were controlled. The study makes a methodological contribution by explicating a method by which researchers can use the latent variables approach when measuring EF performance in school-age children. The study makes a theoretical and a clinical contribution by suggesting that language performance may be related to domain-general EFs.
2017-01-01
Studies of animal personality attempt to uncover underlying or “latent” personality traits that explain broad patterns of behaviour, often by applying latent variable statistical models (e.g., factor analysis) to multivariate data sets. Two integral, but infrequently confirmed, assumptions of latent variable models in animal personality are: i) behavioural variables are independent (i.e., uncorrelated) conditional on the latent personality traits they reflect (local independence), and ii) personality traits are associated with behavioural variables in the same way across individuals or groups of individuals (measurement invariance). We tested these assumptions using observations of aggression in four age classes (4–10 months, 10 months–3 years, 3–6 years, over 6 years) of male and female shelter dogs (N = 4,743) in 11 different contexts. A structural equation model supported the hypothesis of two positively correlated personality traits underlying aggression across contexts: aggressiveness towards people and aggressiveness towards dogs (comparative fit index: 0.96; Tucker-Lewis index: 0.95; root mean square error of approximation: 0.03). Aggression across contexts was moderately repeatable (towards people: intraclass correlation coefficient (ICC) = 0.479; towards dogs: ICC = 0.303). However, certain contexts related to aggressiveness towards people (but not dogs) shared significant residual relationships unaccounted for by latent levels of aggressiveness. Furthermore, aggressiveness towards people and dogs in different contexts interacted with sex and age. Thus, sex and age differences in displays of aggression were not simple functions of underlying aggressiveness. Our results illustrate that the robustness of traits in latent variable models must be critically assessed before making conclusions about the effects of, or factors influencing, animal personality. Our findings are of concern because inaccurate “aggressive personality” trait attributions can be costly to dogs, recipients of aggression and society in general. PMID:28854267
Estimators for longitudinal latent exposure models: examining measurement model assumptions.
Sánchez, Brisa N; Kim, Sehee; Sammel, Mary D
2017-06-15
Latent variable (LV) models are increasingly being used in environmental epidemiology as a way to summarize multiple environmental exposures and thus minimize statistical concerns that arise in multiple regression. LV models may be especially useful when multivariate exposures are collected repeatedly over time. LV models can accommodate a variety of assumptions but, at the same time, present the user with many choices for model specification particularly in the case of exposure data collected repeatedly over time. For instance, the user could assume conditional independence of observed exposure biomarkers given the latent exposure and, in the case of longitudinal latent exposure variables, time invariance of the measurement model. Choosing which assumptions to relax is not always straightforward. We were motivated by a study of prenatal lead exposure and mental development, where assumptions of the measurement model for the time-changing longitudinal exposure have appreciable impact on (maximum-likelihood) inferences about the health effects of lead exposure. Although we were not particularly interested in characterizing the change of the LV itself, imposing a longitudinal LV structure on the repeated multivariate exposure measures could result in high efficiency gains for the exposure-disease association. We examine the biases of maximum likelihood estimators when assumptions about the measurement model for the longitudinal latent exposure variable are violated. We adapt existing instrumental variable estimators to the case of longitudinal exposures and propose them as an alternative to estimate the health effects of a time-changing latent predictor. We show that instrumental variable estimators remain unbiased for a wide range of data generating models and have advantages in terms of mean squared error. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
van Tricht, Mirjam J; Bour, Lo J; Koelman, Johannes H T M; Derks, Eske M; Braff, David L; de Wilde, Odette M; Boerée, Thijs; Linszen, Don H; de Haan, Lieuwe; Nieman, Dorien H
2015-04-01
We aimed to determine profiles of information processing deficits in the pathway to first psychosis. Sixty-one subjects at ultrahigh risk (UHR) for psychosis were assessed, of whom 18 converted to a first episode of psychosis (FEP) within the follow-up period. Additionally, 47 FEP and 30 control subjects were included. Using 10 neurophysiological parameters associated with information processing, latent class analyses yielded three classes at baseline. Class membership was related to group status. Within the UHR sample, two classes were found. Transition to psychosis was nominally associated with class membership. Neurophysiological profiles were unstable over time, but associations between specific neurophysiological components at baseline and follow-up were found. We conclude that certain constellations of neurophysiological variables aid in the differentiation between controls and patients in the prodrome and after first psychosis. Copyright © 2014 Society for Psychophysiological Research.
Kirby, James B.; Bollen, Kenneth A.
2009-01-01
Structural Equation Modeling with latent variables (SEM) is a powerful tool for social and behavioral scientists, combining many of the strengths of psychometrics and econometrics into a single framework. The most common estimator for SEM is the full-information maximum likelihood estimator (ML), but there is continuing interest in limited information estimators because of their distributional robustness and their greater resistance to structural specification errors. However, the literature discussing model fit for limited information estimators for latent variable models is sparse compared to that for full information estimators. We address this shortcoming by providing several specification tests based on the 2SLS estimator for latent variable structural equation models developed by Bollen (1996). We explain how these tests can be used to not only identify a misspecified model, but to help diagnose the source of misspecification within a model. We present and discuss results from a Monte Carlo experiment designed to evaluate the finite sample properties of these tests. Our findings suggest that the 2SLS tests successfully identify most misspecified models, even those with modest misspecification, and that they provide researchers with information that can help diagnose the source of misspecification. PMID:20419054
Matrix completion by deep matrix factorization.
Fan, Jicong; Cheng, Jieyu
2018-02-01
Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.
Paths to tobacco abstinence: A repeated-measures latent class analysis.
McCarthy, Danielle E; Ebssa, Lemma; Witkiewitz, Katie; Shiffman, Saul
2015-08-01
Knowledge of smoking change processes may be enhanced by identifying pathways to stable abstinence. We sought to identify latent classes of smokers based on their day-to-day smoking status in the first weeks of a cessation attempt. We examined treatment effects on class membership and compared classes on baseline individual differences and 6-month abstinence rates. In this secondary analysis of a double-blind randomized placebo-controlled clinical trial (N = 1,433) of 5 smoking cessation pharmacotherapies (nicotine patch, nicotine lozenge, bupropion SR, patch and lozenge, or bupropion SR and lozenge), we conducted repeated-measures latent class analysis of daily smoking status (any smoking vs. none) for the first 27 days of a quit attempt. Treatment and covariate relations with latent class membership were examined. Distal outcome analysis compared confirmed 6-month abstinence rates among the latent classes. A 5-class solution was selected. Three-quarters of smokers were in stable smoking or abstinent classes, but 25% were in classes with unstable abstinence probabilities over time. Active treatment (compared to placebo), and particularly the patch and lozenge combination, promoted early quitting. Latent classes differed in 6-month abstinence rates and on several baseline variables, including nicotine dependence, quitting history, self-efficacy, sleep disturbance, and minority status. Repeated-measures latent class analysis identified latent classes of smoking change patterns affected by treatment, related to known risk factors, and predictive of distal outcomes. Tracking behavior early in a change attempt may identify prognostic patterns of change and facilitate adaptive treatment planning. (c) 2015 APA, all rights reserved).
ERIC Educational Resources Information Center
Christopher, Micaela E.; Miyake, Akira; Keenan, Janice M.; Pennington, Bruce; DeFries, John C.; Wadsworth, Sally J.; Willcutt, Erik; Olson, Richard K.
2012-01-01
The present study explored whether different executive control and speed measures (working memory, inhibition, processing speed, and naming speed) independently predict individual differences in word reading and reading comprehension. Although previous studies suggest these cognitive constructs are important for reading, the authors analyze the…
Distributed neural system for emotional intelligence revealed by lesion mapping.
Barbey, Aron K; Colom, Roberto; Grafman, Jordan
2014-03-01
Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease.
Distributed neural system for emotional intelligence revealed by lesion mapping
Colom, Roberto; Grafman, Jordan
2014-01-01
Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease. PMID:23171618
Stein, Judith A; Nyamathi, Adeline; Ullman, Jodie B; Bentler, Peter M
2007-01-01
Studies among normative samples generally demonstrate a positive impact of marriage on health behaviors and other related attitudes. In this study, we examine the impact of marriage on HIV/AIDS risk behaviors and attitudes among impoverished, highly stressed, homeless couples, many with severe substance abuse problems. A multilevel analysis of 368 high-risk sexually intimate married and unmarried heterosexual couples assessed individual and couple-level effects on social support, substance use problems, HIV/AIDS knowledge, perceived HIV/AIDS risk, needle-sharing, condom use, multiple sex partners, and HIV/AIDS testing. More variance was explained in the protective and risk variables by couple-level latent variable predictors than by individual latent variable predictors, although some gender effects were found (e.g., more alcohol problems among men). The couple-level variable of marriage predicted lower perceived risk, less deviant social support, and fewer sex partners but predicted more needle-sharing.
Abstract: Inference and Interval Estimation for Indirect Effects With Latent Variable Models.
Falk, Carl F; Biesanz, Jeremy C
2011-11-30
Models specifying indirect effects (or mediation) and structural equation modeling are both popular in the social sciences. Yet relatively little research has compared methods that test for indirect effects among latent variables and provided precise estimates of the effectiveness of different methods. This simulation study provides an extensive comparison of methods for constructing confidence intervals and for making inferences about indirect effects with latent variables. We compared the percentile (PC) bootstrap, bias-corrected (BC) bootstrap, bias-corrected accelerated (BC a ) bootstrap, likelihood-based confidence intervals (Neale & Miller, 1997), partial posterior predictive (Biesanz, Falk, and Savalei, 2010), and joint significance tests based on Wald tests or likelihood ratio tests. All models included three reflective latent variables representing the independent, dependent, and mediating variables. The design included the following fully crossed conditions: (a) sample size: 100, 200, and 500; (b) number of indicators per latent variable: 3 versus 5; (c) reliability per set of indicators: .7 versus .9; (d) and 16 different path combinations for the indirect effect (α = 0, .14, .39, or .59; and β = 0, .14, .39, or .59). Simulations were performed using a WestGrid cluster of 1680 3.06GHz Intel Xeon processors running R and OpenMx. Results based on 1,000 replications per cell and 2,000 resamples per bootstrap method indicated that the BC and BC a bootstrap methods have inflated Type I error rates. Likelihood-based confidence intervals and the PC bootstrap emerged as methods that adequately control Type I error and have good coverage rates.
Psychometrics in Psychological Research: Role Model or Partner in Science?
ERIC Educational Resources Information Center
Sijtsma, Klaas
2006-01-01
This is a reaction to Borsboom's (2006) discussion paper on the issue that psychology takes so little notice of the modern developments in psychometrics, in particular, latent variable methods. Contrary to Borsboom, it is argued that latent variables are summaries of interesting data properties, that construct validation should involve studying…
An Alternative Approach for Nonlinear Latent Variable Models
ERIC Educational Resources Information Center
Mooijaart, Ab; Bentler, Peter M.
2010-01-01
In the last decades there has been an increasing interest in nonlinear latent variable models. Since the seminal paper of Kenny and Judd, several methods have been proposed for dealing with these kinds of models. This article introduces an alternative approach. The methodology involves fitting some third-order moments in addition to the means and…
Using Structural Equation Models with Latent Variables to Study Student Growth and Development.
ERIC Educational Resources Information Center
Pike, Gary R.
1991-01-01
Analysis of data on freshman-to-senior developmental gains in 722 University of Tennessee-Knoxville students provides evidence of the advantages of structural equation modeling with latent variables and suggests that the group differences identified by traditional analysis of variance and covariance techniques may be an artifact of measurement…
Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…
Aptitude, Achievement and Competence in Medicine: A Latent Variable Path Model
ERIC Educational Resources Information Center
Collin, V. Terri; Violato, Claudio; Hecker, Kent
2009-01-01
To develop and test a latent variable path model of general achievement, aptitude for medicine and competence in medicine employing data from the Medical College Admission Test (MCAT), pre-medical undergraduate grade point average (UGPA) and demographic characteristics for competence in pre-clinical and measures of competence (United States…
Evaluation of Reliability Coefficients for Two-Level Models via Latent Variable Analysis
ERIC Educational Resources Information Center
Raykov, Tenko; Penev, Spiridon
2010-01-01
A latent variable analysis procedure for evaluation of reliability coefficients for 2-level models is outlined. The method provides point and interval estimates of group means' reliability, overall reliability of means, and conditional reliability. In addition, the approach can be used to test simple hypotheses about these parameters. The…
Evaluation of Scale Reliability with Binary Measures Using Latent Variable Modeling
ERIC Educational Resources Information Center
Raykov, Tenko; Dimitrov, Dimiter M.; Asparouhov, Tihomir
2010-01-01
A method for interval estimation of scale reliability with discrete data is outlined. The approach is applicable with multi-item instruments consisting of binary measures, and is developed within the latent variable modeling methodology. The procedure is useful for evaluation of consistency of single measures and of sum scores from item sets…
Estimation of Latent Group Effects: Psychometric Technical Report No. 2.
ERIC Educational Resources Information Center
Mislevy, Robert J.
Conventional methods of multivariate normal analysis do not apply when the variables of interest are not observed directly, but must be inferred from fallible or incomplete data. For example, responses to mental test items may depend upon latent aptitude variables, which modeled in turn as functions of demographic effects in the population. A…
ERIC Educational Resources Information Center
Weissman, Alexander
2013-01-01
Convergence of the expectation-maximization (EM) algorithm to a global optimum of the marginal log likelihood function for unconstrained latent variable models with categorical indicators is presented. The sufficient conditions under which global convergence of the EM algorithm is attainable are provided in an information-theoretic context by…
A Comparison of Methods for Estimating Quadratic Effects in Nonlinear Structural Equation Models
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Weiss, Brandi A.; Hsu, Jui-Chen
2012-01-01
Two Monte Carlo simulations were performed to compare methods for estimating and testing hypotheses of quadratic effects in latent variable regression models. The methods considered in the current study were (a) a 2-stage moderated regression approach using latent variable scores, (b) an unconstrained product indicator approach, (c) a latent…
ERIC Educational Resources Information Center
Raykov, Tenko
2011-01-01
Interval estimation of intraclass correlation coefficients in hierarchical designs is discussed within a latent variable modeling framework. A method accomplishing this aim is outlined, which is applicable in two-level studies where participants (or generally lower-order units) are clustered within higher-order units. The procedure can also be…
Evaluation of Weighted Scale Reliability and Criterion Validity: A Latent Variable Modeling Approach
ERIC Educational Resources Information Center
Raykov, Tenko
2007-01-01
A method is outlined for evaluating the reliability and criterion validity of weighted scales based on sets of unidimensional measures. The approach is developed within the framework of latent variable modeling methodology and is useful for point and interval estimation of these measurement quality coefficients in counseling and education…
Multilevel Latent Class Analysis: Parametric and Nonparametric Models
ERIC Educational Resources Information Center
Finch, W. Holmes; French, Brian F.
2014-01-01
Latent class analysis is an analytic technique often used in educational and psychological research to identify meaningful groups of individuals within a larger heterogeneous population based on a set of variables. This technique is flexible, encompassing not only a static set of variables but also longitudinal data in the form of growth mixture…
Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion
NASA Astrophysics Data System (ADS)
Hamid, M. R. Ab; Sami, W.; Mohmad Sidek, M. H.
2017-09-01
Assessment of discriminant validity is a must in any research that involves latent variables for the prevention of multicollinearity issues. Fornell and Larcker criterion is the most widely used method for this purpose. However, a new method has emerged for establishing the discriminant validity assessment through heterotrait-monotrait (HTMT) ratio of correlations method. Therefore, this article presents the results of discriminant validity assessment using these methods. Data from previous study was used that involved 429 respondents for empirical validation of value-based excellence model in higher education institutions (HEI) in Malaysia. From the analysis, the convergent, divergent and discriminant validity were established and admissible using Fornell and Larcker criterion. However, the discriminant validity is an issue when employing the HTMT criterion. This shows that the latent variables under study faced the issue of multicollinearity and should be looked into for further details. This also implied that the HTMT criterion is a stringent measure that could detect the possible indiscriminant among the latent variables. In conclusion, the instrument which consisted of six latent variables was still lacking in terms of discriminant validity and should be explored further.
Bark beetle-induced tree mortality alters stand energy budgets due to water budget changes
NASA Astrophysics Data System (ADS)
Reed, David E.; Ewers, Brent E.; Pendall, Elise; Frank, John; Kelly, Robert
2018-01-01
Insect outbreaks are major disturbances that affect a land area similar to that of forest fires across North America. The recent mountain pine bark beetle ( D endroctonus ponderosae) outbreak and its associated blue stain fungi ( Grosmannia clavigera) are impacting water partitioning processes of forests in the Rocky Mountain region as the spatially heterogeneous disturbance spreads across the landscape. Water cycling may dramatically change due to increasing spatial heterogeneity from uneven mortality. Water and energy storage within trees and soils may also decrease, due to hydraulic failure and mortality caused by blue stain fungi followed by shifts in the water budget. This forest disturbance was unique in comparison to fire or timber harvesting because water fluxes were altered before significant structural change occurred to the canopy. We investigated the impacts of bark beetles on lodgepole pine ( Pinus contorta) stand and ecosystem level hydrologic processes and the resulting vertical and horizontal spatial variability in energy storage. Bark beetle-impacted stands had on average 57 % higher soil moisture, 1.5 °C higher soil temperature, and 0.8 °C higher tree bole temperature over four growing seasons compared to unimpacted stands. Seasonal latent heat flux was highly correlated with soil moisture. Thus, high mortality levels led to an increase in ecosystem level Bowen ratio as sensible heat fluxes increased yearly and latent heat fluxes varied with soil moisture levels. Decline in canopy biomass (leaf, stem, and branch) was not seen, but ground-to-atmosphere longwave radiation flux increased, as the ground surface was a larger component of the longwave radiation. Variability in soil, latent, and sensible heat flux and radiation measurements increased during the disturbance. Accounting for stand level variability in water and energy fluxes will provide a method to quantify potential drivers of ecosystem processes and services as well as lead to greater confidence in measurements for all dynamic disturbances.
ERIC Educational Resources Information Center
Dolan, Conor V.; Molenaar, Peter C. M.
1994-01-01
In multigroup covariance structure analysis with structured means, the traditional latent selection model is formulated as a special case of phenotypic selection. Illustrations with real and simulated data demonstrate how one can test specific hypotheses concerning selection on latent variables. (SLD)
Spurious Latent Classes in the Mixture Rasch Model
ERIC Educational Resources Information Center
Alexeev, Natalia; Templin, Jonathan; Cohen, Allan S.
2011-01-01
Mixture Rasch models have been used to study a number of psychometric issues such as goodness of fit, response strategy differences, strategy shifts, and multidimensionality. Although these models offer the potential for improving understanding of the latent variables being measured, under some conditions overextraction of latent classes may…
Piecewise Linear-Linear Latent Growth Mixture Models with Unknown Knots
ERIC Educational Resources Information Center
Kohli, Nidhi; Harring, Jeffrey R.; Hancock, Gregory R.
2013-01-01
Latent growth curve models with piecewise functions are flexible and useful analytic models for investigating individual behaviors that exhibit distinct phases of development in observed variables. As an extension of this framework, this study considers a piecewise linear-linear latent growth mixture model (LGMM) for describing segmented change of…
Brunwasser, Steven M; Gebretsadik, Tebeb; Gold, Diane R; Turi, Kedir N; Stone, Cosby A; Datta, Soma; Gern, James E; Hartert, Tina V
2018-01-01
The International Study of Asthma and Allergies in Children (ISAAC) Wheezing Module is commonly used to characterize pediatric asthma in epidemiological studies, including nearly all airway cohorts participating in the Environmental Influences on Child Health Outcomes (ECHO) consortium. However, there is no consensus model for operationalizing wheezing severity with this instrument in explanatory research studies. Severity is typically measured using coarsely-defined categorical variables, reducing power and potentially underestimating etiological associations. More precise measurement approaches could improve testing of etiological theories of wheezing illness. We evaluated a continuous latent variable model of pediatric wheezing severity based on four ISAAC Wheezing Module items. Analyses included subgroups of children from three independent cohorts whose parents reported past wheezing: infants ages 0-2 in the INSPIRE birth cohort study (Cohort 1; n = 657), 6-7-year-old North American children from Phase One of the ISAAC study (Cohort 2; n = 2,765), and 5-6-year-old children in the EHAAS birth cohort study (Cohort 3; n = 102). Models were estimated using structural equation modeling. In all cohorts, covariance patterns implied by the latent variable model were consistent with the observed data, as indicated by non-significant χ2 goodness of fit tests (no evidence of model misspecification). Cohort 1 analyses showed that the latent factor structure was stable across time points and child sexes. In both cohorts 1 and 3, the latent wheezing severity variable was prospectively associated with wheeze-related clinical outcomes, including physician asthma diagnosis, acute corticosteroid use, and wheeze-related outpatient medical visits when adjusting for confounders. We developed an easily applicable continuous latent variable model of pediatric wheezing severity based on items from the well-validated ISAAC Wheezing Module. This model prospectively associates with asthma morbidity, as demonstrated in two ECHO birth cohort studies, and provides a more statistically powerful method of testing etiologic hypotheses of childhood wheezing illness and asthma.
NASA Technical Reports Server (NTRS)
Branscome, Lee E.; Bleck, Rainer; Obrien, Enda
1990-01-01
The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial conditions typical of climatological winter conditions, they examined the behavior of synoptic and planetary waves growing in moist and dry environments. Surface conditions were representative of a zonally averaged ocean. They found that moist convection associated with baroclinic wave development was confined to the subtropics.
Medical University admission test: a confirmatory factor analysis of the results.
Luschin-Ebengreuth, Marion; Dimai, Hans P; Ithaler, Daniel; Neges, Heide M; Reibnegger, Gilbert
2016-05-01
The Graz Admission Test has been applied since the academic year 2006/2007. The validity of the Test was demonstrated by a significant improvement of study success and a significant reduction of dropout rate. The purpose of this study was a detailed analysis of the internal correlation structure of the various components of the Graz Admission Test. In particular, the question investigated was whether or not the various test parts constitute a suitable construct which might be designated as "Basic Knowledge in Natural Science." This study is an observational investigation, analyzing the results of the Graz Admission Test for the study of human medicine and dentistry. A total of 4741 applicants were included in the analysis. Principal component factor analysis (PCFA) as well as techniques from structural equation modeling, specifically confirmatory factor analysis (CFA), were employed to detect potential underlying latent variables governing the behavior of the measured variables. PCFA showed good clustering of the science test parts, including also text comprehension. A putative latent variable "Basic Knowledge in Natural Science," investigated by CFA, was indeed shown to govern the response behavior of the applicants in biology, chemistry, physics, and mathematics as well as text comprehension. The analysis of the correlation structure of the various test parts confirmed that the science test parts together with text comprehension constitute a satisfactory instrument for measuring a latent construct variable "Basic Knowledge in Natural Science." The present results suggest the fundamental importance of basic science knowledge for results obtained in the framework of the admission process for medical universities.
Three Cs in measurement models: causal indicators, composite indicators, and covariates.
Bollen, Kenneth A; Bauldry, Shawn
2011-09-01
In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the "Three Cs"). Causal indicators have conceptual unity, and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variables. Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects, and composites are a matter of convenience. The failure to distinguish the Three Cs has led to confusion and questions, such as, Are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points.
A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.
2012-01-01
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
ERIC Educational Resources Information Center
Kaushanskaya, Margarita; Park, Ji Sook; Gangopadhyay, Ishanti; Davidson, Meghan M.; Weismer, Susan Ellis
2017-01-01
Purpose: We aimed to outline the latent variables approach for measuring nonverbal executive function (EF) skills in school-age children, and to examine the relationship between nonverbal EF skills and language performance in this age group. Method: Seventy-one typically developing children, ages 8 through 11, participated in the study. Three EF…
ERIC Educational Resources Information Center
Seo, Hyojeong; Shaw, Leslie A.; Shogren, Karrie A.; Lang, Kyle M.; Little, Todd D.
2017-01-01
This article demonstrates the use of structural equation modeling to develop norms for a translated version of a standardized scale, the Supports Intensity Scale-Children's Version (SIS-C). The latent variable norming method proposed is useful when the standardization sample for a translated version is relatively small to derive norms…
Interrater Agreement Evaluation: A Latent Variable Modeling Approach
ERIC Educational Resources Information Center
Raykov, Tenko; Dimitrov, Dimiter M.; von Eye, Alexander; Marcoulides, George A.
2013-01-01
A latent variable modeling method for evaluation of interrater agreement is outlined. The procedure is useful for point and interval estimation of the degree of agreement among a given set of judges evaluating a group of targets. In addition, the approach allows one to test for identity in underlying thresholds across raters as well as to identify…
ERIC Educational Resources Information Center
Choi, Kilchan
2011-01-01
This report explores a new latent variable regression 4-level hierarchical model for monitoring school performance over time using multisite multiple-cohorts longitudinal data. This kind of data set has a 4-level hierarchical structure: time-series observation nested within students who are nested within different cohorts of students. These…
Standard Errors of Estimated Latent Variable Scores with Estimated Structural Parameters
ERIC Educational Resources Information Center
Hoshino, Takahiro; Shigemasu, Kazuo
2008-01-01
The authors propose a concise formula to evaluate the standard error of the estimated latent variable score when the true values of the structural parameters are not known and must be estimated. The formula can be applied to factor scores in factor analysis or ability parameters in item response theory, without bootstrap or Markov chain Monte…
An Alternative Two Stage Least Squares (2SLS) Estimator for Latent Variable Equations.
ERIC Educational Resources Information Center
Bollen, Kenneth A.
1996-01-01
An alternative two-stage least squares (2SLS) estimator of the parameters in LISREL type models is proposed and contrasted with existing estimators. The new 2SLS estimator allows observed and latent variables to originate from nonnormal distributions, is consistent, has a known asymptotic covariance matrix, and can be estimated with standard…
Classical Item Analysis Using Latent Variable Modeling: A Note on a Direct Evaluation Procedure
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.
2011-01-01
A directly applicable latent variable modeling procedure for classical item analysis is outlined. The method allows one to point and interval estimate item difficulty, item correlations, and item-total correlations for composites consisting of categorical items. The approach is readily employed in empirical research and as a by-product permits…
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.
2015-01-01
A direct approach to point and interval estimation of Cronbach's coefficient alpha for multiple component measuring instruments is outlined. The procedure is based on a latent variable modeling application with widely circulated software. As a by-product, using sample data the method permits ascertaining whether the population discrepancy…
Introduction to the special section on mixture modeling in personality assessment.
Wright, Aidan G C; Hallquist, Michael N
2014-01-01
Latent variable models offer a conceptual and statistical framework for evaluating the underlying structure of psychological constructs, including personality and psychopathology. Complex structures that combine or compare categorical and dimensional latent variables can be accommodated using mixture modeling approaches, which provide a powerful framework for testing nuanced theories about psychological structure. This special series includes introductory primers on cross-sectional and longitudinal mixture modeling, in addition to empirical examples applying these techniques to real-world data collected in clinical settings. This group of articles is designed to introduce personality assessment scientists and practitioners to a general latent variable framework that we hope will stimulate new research and application of mixture models to the assessment of personality and its pathology.
Sartipi, Majid; Nedjat, Saharnaz; Mansournia, Mohammad Ali; Baigi, Vali; Fotouhi, Akbar
2016-11-01
Some variables like Socioeconomic Status (SES) cannot be directly measured, instead, so-called 'latent variables' are measured indirectly through calculating tangible items. There are different methods for measuring latent variables such as data reduction methods e.g. Principal Components Analysis (PCA) and Latent Class Analysis (LCA). The purpose of our study was to measure assets index- as a representative of SES- through two methods of Non-Linear PCA (NLPCA) and LCA, and to compare them for choosing the most appropriate model. This was a cross sectional study in which 1995 respondents filled the questionnaires about their assets in Tehran. The data were analyzed by SPSS 19 (CATPCA command) and SAS 9.2 (PROC LCA command) to estimate their socioeconomic status. The results were compared based on the Intra-class Correlation Coefficient (ICC). The 6 derived classes from LCA based on BIC, were highly consistent with the 6 classes from CATPCA (Categorical PCA) (ICC = 0.87, 95%CI: 0.86 - 0.88). There is no gold standard to measure SES. Therefore, it is not possible to definitely say that a specific method is better than another one. LCA is a complicated method that presents detailed information about latent variables and required one assumption (local independency), while NLPCA is a simple method, which requires more assumptions. Generally, NLPCA seems to be an acceptable method of analysis because of its simplicity and high agreement with LCA.
Scaling water and energy fluxes in climate systems - Three land-atmospheric modeling experiments
NASA Technical Reports Server (NTRS)
Wood, Eric F.; Lakshmi, Venkataraman
1993-01-01
Three numerical experiments that investigate the scaling of land-surface processes - either of the inputs or parameters - are reported, and the aggregated processes are compared to the spatially variable case. The first is the aggregation of the hydrologic response in a catchment due to rainfall during a storm event and due to evaporative demands during interstorm periods. The second is the spatial and temporal aggregation of latent heat fluxes, as calculated from SiB. The third is the aggregation of remotely sensed land vegetation and latent and sensible heat fluxes using TM data from the FIFE experiment of 1987 in Kansas. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated.
Bámaca-Colbert, Mayra Y; Gayles, Jochebed G
2010-11-01
The overall aim of the current study was to identify the methodological approach and corresponding analytic procedure that best elucidated the associations among Mexican-origin mother-daughter cultural orientation dissonance, family functioning, and adolescent adjustment. To do so, we employed, and compared, two methodological approaches (i.e., variable-centered and person-centered) via four analytic procedures (i.e., difference score, interactive, matched/mismatched grouping, and latent profiles). The sample consisted of 319 girls in the 7th or 10th grade and their mother or mother figure from a large Southwestern, metropolitan area in the US. Family factors were found to be important predictors of adolescent adjustment in all models. Although some findings were similar across all models, overall, findings suggested that the latent profile procedure best elucidated the associations among the variables examined in this study. In addition, associations were present across early and middle adolescents, with a few findings being only present for one group. Implications for using these analytic procedures in studying cultural and family processes are discussed.
Variable-Length Computerized Adaptive Testing Using the Higher Order DINA Model
ERIC Educational Resources Information Center
Hsu, Chia-Ling; Wang, Wen-Chung
2015-01-01
Cognitive diagnosis models provide profile information about a set of latent binary attributes, whereas item response models yield a summary report on a latent continuous trait. To utilize the advantages of both models, higher order cognitive diagnosis models were developed in which information about both latent binary attributes and latent…
Testing Manifest Monotonicity Using Order-Constrained Statistical Inference
ERIC Educational Resources Information Center
Tijmstra, Jesper; Hessen, David J.; van der Heijden, Peter G. M.; Sijtsma, Klaas
2013-01-01
Most dichotomous item response models share the assumption of latent monotonicity, which states that the probability of a positive response to an item is a nondecreasing function of a latent variable intended to be measured. Latent monotonicity cannot be evaluated directly, but it implies manifest monotonicity across a variety of observed scores,…
ERIC Educational Resources Information Center
Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane
2015-01-01
Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…
Klein, Edwin; Janssen, Chris; Phuah, Jiayao; Sturgeon, Timothy J.; Montelaro, Ronald C.; Lin, Philana Ling; Flynn, JoAnne L.
2010-01-01
HIV-infected individuals with latent Mycobacterium tuberculosis (Mtb) infection are at significantly greater risk of reactivation tuberculosis (TB) than HIV-negative individuals with latent TB, even while CD4 T cell numbers are well preserved. Factors underlying high rates of reactivation are poorly understood and investigative tools are limited. We used cynomolgus macaques with latent TB co-infected with SIVmac251 to develop the first animal model of reactivated TB in HIV-infected humans to better explore these factors. All latent animals developed reactivated TB following SIV infection, with a variable time to reactivation (up to 11 months post-SIV). Reactivation was independent of virus load but correlated with depletion of peripheral T cells during acute SIV infection. Animals experiencing reactivation early after SIV infection (<17 weeks) had fewer CD4 T cells in the periphery and airways than animals reactivating in later phases of SIV infection. Co-infected animals had fewer T cells in involved lungs than SIV-negative animals with active TB despite similar T cell numbers in draining lymph nodes. Granulomas from these animals demonstrated histopathologic characteristics consistent with a chronically active disease process. These results suggest initial T cell depletion may strongly influence outcomes of HIV-Mtb co-infection. PMID:20224771
Szekér, Szabolcs; Vathy-Fogarassy, Ágnes
2018-01-01
Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.
ERIC Educational Resources Information Center
Smith, David Arthur
2010-01-01
Much recent work in natural language processing treats linguistic analysis as an inference problem over graphs. This development opens up useful connections between machine learning, graph theory, and linguistics. The first part of this dissertation formulates syntactic dependency parsing as a dynamic Markov random field with the novel…
The Biasing Effects of Unmodeled ARMA Time Series Processes on Latent Growth Curve Model Estimates
ERIC Educational Resources Information Center
Sivo, Stephen; Fan, Xitao; Witta, Lea
2005-01-01
The purpose of this study was to evaluate the robustness of estimated growth curve models when there is stationary autocorrelation among manifest variable errors. The results suggest that when, in practice, growth curve models are fitted to longitudinal data, alternative rival hypotheses to consider would include growth models that also specify…
ERIC Educational Resources Information Center
Niileksela, Christopher R.
2012-01-01
Recent advances in the understanding of the relations between cognitive abilities and academic skills have helped shape a better understanding of which cognitive processes may underlie different types of SLD (Flanagan, Fiorello, & Ortiz, 2010). Similarities and differences in cognitive-achievement relations for children with and without SLDs…
Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates
Bollen, Kenneth A.; Bauldry, Shawn
2013-01-01
In the last two decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that we can classify indicators into two categories, effect (reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous view is too simple. Instead, there are effect indicators and three types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the “three Cs”). Causal indicators have conceptual unity and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variable(s). Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects and composites are a matter of convenience. The failure to distinguish the “three Cs” has led to confusion and questions such as: are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points. PMID:21767021
Multilayer Joint Gait-Pose Manifolds for Human Gait Motion Modeling.
Ding, Meng; Fan, Guolian
2015-11-01
We present new multilayer joint gait-pose manifolds (multilayer JGPMs) for complex human gait motion modeling, where three latent variables are defined jointly in a low-dimensional manifold to represent a variety of body configurations. Specifically, the pose variable (along the pose manifold) denotes a specific stage in a walking cycle; the gait variable (along the gait manifold) represents different walking styles; and the linear scale variable characterizes the maximum stride in a walking cycle. We discuss two kinds of topological priors for coupling the pose and gait manifolds, i.e., cylindrical and toroidal, to examine their effectiveness and suitability for motion modeling. We resort to a topologically-constrained Gaussian process (GP) latent variable model to learn the multilayer JGPMs where two new techniques are introduced to facilitate model learning under limited training data. First is training data diversification that creates a set of simulated motion data with different strides. Second is the topology-aware local learning to speed up model learning by taking advantage of the local topological structure. The experimental results on the Carnegie Mellon University motion capture data demonstrate the advantages of our proposed multilayer models over several existing GP-based motion models in terms of the overall performance of human gait motion modeling.
Endres, Michael J; Donkin, Chris; Finn, Peter R
2014-04-01
Externalizing psychopathology (EXT) is associated with low executive working memory (EWM) capacity and problems with inhibitory control and decision-making; however, the specific cognitive processes underlying these problems are not well known. This study used a linear ballistic accumulator computational model of go/no-go associative-incentive learning conducted with and without a working memory (WM) load to investigate these cognitive processes in 510 young adults varying in EXT (lifetime problems with substance use, conduct disorder, ADHD, adult antisocial behavior). High scores on an EXT factor were associated with low EWM capacity and higher scores on a latent variable reflecting the cognitive processes underlying disinhibited decision-making (more false alarms, faster evidence accumulation rates for false alarms [vFA], and lower scores on a Response Precision Index [RPI] measure of information processing efficiency). The WM load increased disinhibited decision-making, decisional uncertainty, and response caution for all subjects. Higher EWM capacity was associated with lower scores on the latent disinhibited decision-making variable (lower false alarms, lower vFAs and RPI scores) in both WM load conditions. EWM capacity partially mediated the association between EXT and disinhibited decision-making under no-WM load, and completely mediated this association under WM load. The results underline the role that EWM has in associative-incentive go/no-go learning and indicate that common to numerous types of EXT are impairments in the cognitive processes associated with the evidence accumulation-evaluation-decision process. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Endres, Michael J.; Donkin, Chris; Finn, Peter R.
2014-01-01
Externalizing psychopathology (EXT) is associated with low executive working memory (EWM) capacity and problems with inhibitory control and decision-making; however, the specific cognitive processes underlying these problems are not well known. This study used a linear ballistic accumulator computational model of go/no-go associative-incentive learning conducted with and without a working memory (WM) load to investigate these cognitive processes in 510 young adults varying in EXT (lifetime problems with substance use, conduct disorder, ADHD, adult antisocial behavior). High scores on an EXT factor were associated with low EWM capacity and higher scores on a latent variable reflecting the cognitive processes underlying disinhibited decision making (more false alarms, faster evidence accumulation rates for false alarms (vFA), and lower scores on a Response Precision Index (RPI) measure of information processing efficiency). The WM load increased disinhibited decision making, decisional uncertainty, and response caution for all subjects. Higher EWM capacity was associated with lower scores on the latent disinhibited decision making variable (lower false alarms, lower vFAs and RPI scores) in both WM load conditions. EWM capacity partially mediated the association between EXT and disinhibited decision making under no-WM load, and completely mediated this association under WM load. The results underline the role that EWM has in associative – incentive go/no-go learning and indicate that common to numerous types of EXT are impairments in the cognitive processes associated with the evidence accumulation – evaluation – decision process. PMID:24611834
Growth Modeling with Non-Ignorable Dropout: Alternative Analyses of the STAR*D Antidepressant Trial
Muthén, Bengt; Asparouhov, Tihomir; Hunter, Aimee; Leuchter, Andrew
2011-01-01
This paper uses a general latent variable framework to study a series of models for non-ignorable missingness due to dropout. Non-ignorable missing data modeling acknowledges that missingness may depend on not only covariates and observed outcomes at previous time points as with the standard missing at random (MAR) assumption, but also on latent variables such as values that would have been observed (missing outcomes), developmental trends (growth factors), and qualitatively different types of development (latent trajectory classes). These alternative predictors of missing data can be explored in a general latent variable framework using the Mplus program. A flexible new model uses an extended pattern-mixture approach where missingness is a function of latent dropout classes in combination with growth mixture modeling using latent trajectory classes. A new selection model allows not only an influence of the outcomes on missingness, but allows this influence to vary across latent trajectory classes. Recommendations are given for choosing models. The missing data models are applied to longitudinal data from STAR*D, the largest antidepressant clinical trial in the U.S. to date. Despite the importance of this trial, STAR*D growth model analyses using non-ignorable missing data techniques have not been explored until now. The STAR*D data are shown to feature distinct trajectory classes, including a low class corresponding to substantial improvement in depression, a minority class with a U-shaped curve corresponding to transient improvement, and a high class corresponding to no improvement. The analyses provide a new way to assess drug efficiency in the presence of dropout. PMID:21381817
Cognitive declines in healthy aging: evidence from multiple aspects of interference resolution.
Pettigrew, Corinne; Martin, Randi C
2014-06-01
The present study tested the hypothesis that older adults show age-related deficits in interference resolution, also referred to as inhibitory control. Although oftentimes considered as a unitary aspect of executive function, various lines of work support the notion that interference resolution may be better understood as multiple constructs, including resistance to proactive interference (PI) and response-distractor inhibition (e.g., Friedman & Miyake, 2004). Using this dichotomy, the present study assessed whether older adults (relative to younger adults) show impaired performance across both, 1, or neither of these interference resolution constructs. To do so, we used multiple tasks to tap each construct and examined age effects at both the single task and latent variable levels. Older adults consistently demonstrated exaggerated interference effects across resistance to PI tasks. Although the results for the response-distractor inhibition tasks were less consistent at the individual task level analyses, age effects were evident on multiple tasks, as well as at the latent variable level. However, results of the latent variable modeling suggested declines in interference resolution are best explained by variance that is common to the 2 interference resolution constructs measured herein. Furthermore, the effect of age on interference resolution was found to be both distinct from declines in working memory, and independent of processing speed. These findings suggest multiple cognitive domains are independently sensitive to age, but that declines in the interference resolution constructs measured herein may originate from a common cause. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Kerrigan, Deanna; Tudor, Carrie; Motlhaoleng, Katlego; Lebina, Limakatso; Qomfu, Cokiswa; Variava, Ebrahim; Chon, Sandy; Martinson, Neil; Golub, Jonathan E
2018-04-16
Tuberculosis (TB) is the leading cause of mortality among people living with HIV (PLHIV), despite the availability of effective preventive therapy. The TEKO trial is assessing the impact of using a blood test, Quantiferon-TB Gold In-Tube Test (QGIT), to screen for latent TB compared to the Tuberculin Screening Test (TST) among PLHIV in South Africa. Fifty-six qualitative interviews were conducted with PLHIV and clinical providers participating in the TEKO trial. We explored TB screening, diagnosis, and treatment guidelines and processes and the use of the QGIT to screen for latent TB infection at the time of CD4 blood draw. Thematic content analysis was conducted. Considerable variability in TB screening procedures was documented due to lack of personnel and clarity regarding current national TB guidelines for PLHIV. Few clinics had started using the TST per national guidelines and many patients had never heard of isoniazid preventive therapy (IPT). Nearly all participants supported the idea of latent TB screening using routine blood drawn for CD4 counts. Findings indicate that screening for latent TB infection using QGIT from blood drawn for CD4 counts among PLHIV is an acceptable approach to increase latent TB detection given the challenges associated with ensuring systematic latent TB screening in overburdened public clinics. The results presented here were from formative research related to the TEKO trial (Identifier NCT02119130 , registered 10 April 2014).
Partial Granger causality--eliminating exogenous inputs and latent variables.
Guo, Shuixia; Seth, Anil K; Kendrick, Keith M; Zhou, Cong; Feng, Jianfeng
2008-07-15
Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.
ERIC Educational Resources Information Center
Schweizer, Karl
2006-01-01
A model with fixed relations between manifest and latent variables is presented for investigating choice reaction time data. The numbers for fixation originate from the polynomial function. Two options are considered: the component-based (1 latent variable for each component of the polynomial function) and composite-based options (1 latent…
ERIC Educational Resources Information Center
Yang, Ji Seung; Cai, Li
2014-01-01
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…
ERIC Educational Resources Information Center
Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.
2016-01-01
Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Tong, Bing
2016-01-01
A latent variable modeling procedure is discussed that can be used to test if two or more homogeneous multicomponent instruments with distinct components are measuring the same underlying construct. The method is widely applicable in scale construction and development research and can also be of special interest in construct validation studies.…
Hu, Chuanpu; Randazzo, Bruce; Sharma, Amarnath; Zhou, Honghui
2017-10-01
Exposure-response modeling plays an important role in optimizing dose and dosing regimens during clinical drug development. The modeling of multiple endpoints is made possible in part by recent progress in latent variable indirect response (IDR) modeling for ordered categorical endpoints. This manuscript aims to investigate the level of improvement achievable by jointly modeling two such endpoints in the latent variable IDR modeling framework through the sharing of model parameters. This is illustrated with an application to the exposure-response of guselkumab, a human IgG1 monoclonal antibody in clinical development that blocks IL-23. A Phase 2b study was conducted in 238 patients with psoriasis for which disease severity was assessed using Psoriasis Area and Severity Index (PASI) and Physician's Global Assessment (PGA) scores. A latent variable Type I IDR model was developed to evaluate the therapeutic effect of guselkumab dosing on 75, 90 and 100% improvement of PASI scores from baseline and PGA scores, with placebo effect empirically modeled. The results showed that the joint model is able to describe the observed data better with fewer parameters compared with the common approach of separately modeling the endpoints.
Levant, Ronald F; Hall, Rosalie J; Weigold, Ingrid K; McCurdy, Eric R
2016-10-01
The construct validity of the Male Role Norms Inventory-Short Form (MRNI-SF) was assessed using a latent variable approach implemented with structural equation modeling (SEM). The MRNI-SF was specified as having a bifactor structure, and validation scales were also specified as latent variables. The latent variable approach had the advantages of separating effects of general and specific factors and controlling for some sources of measurement error. Data (N = 484) were from a diverse sample (38.8% men of color, 22.3% men of diverse sexualities) of community-dwelling and college men who responded to an online survey. The construct validity of the MRNI-SF General Traditional Masculinity Ideology factor was supported for all 4 of the proposed latent correlations with: (a) Male Role Attitudes Scale; (b) general factor of Conformity to Masculine Norms Inventory-46; (c) higher-order factor of Gender Role Conflict Scale; and (d) Personal Attributes Questionnaire-Masculinity Scale. Significant correlations with relevant other latent factors provided concurrent validity evidence for the MRNI-SF specific factors of Negativity toward Sexual Minorities, Importance of Sex, Restrictive Emotionality, and Toughness, with all 8 of the hypothesized relationships supported. However, 3 relationships concerning Dominance were not supported. (The construct validity of the remaining 2 MRNI-SF specific factors-Avoidance of Femininity and Self-Reliance through Mechanical Skills was not assessed.) Comparisons were made, and meaningful differences noted, between the latent correlations emphasized in this study and their raw variable counterparts. Results are discussed in terms of the advantages of an SEM approach and the unique characteristics of the bifactor model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Using Design-Based Latent Growth Curve Modeling with Cluster-Level Predictor to Address Dependency
ERIC Educational Resources Information Center
Wu, Jiun-Yu; Kwok, Oi-Man; Willson, Victor L.
2014-01-01
The authors compared the effects of using the true Multilevel Latent Growth Curve Model (MLGCM) with single-level regular and design-based Latent Growth Curve Models (LGCM) with or without the higher-level predictor on various criterion variables for multilevel longitudinal data. They found that random effect estimates were biased when the…
A Vernacular for Linear Latent Growth Models
ERIC Educational Resources Information Center
Hancock, Gregory R.; Choi, Jaehwa
2006-01-01
In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…
A Latent Transition Analysis Model for Assessing Change in Cognitive Skills
ERIC Educational Resources Information Center
Li, Feiming; Cohen, Allan; Bottge, Brian; Templin, Jonathan
2016-01-01
Latent transition analysis (LTA) was initially developed to provide a means of measuring change in dynamic latent variables. In this article, we illustrate the use of a cognitive diagnostic model, the DINA model, as the measurement model in a LTA, thereby demonstrating a means of analyzing change in cognitive skills over time. An example is…
ERIC Educational Resources Information Center
Raykov, Tenko; Dimitrov, Dimiter M.; Marcoulides, George A.; Li, Tatyana; Menold, Natalja
2018-01-01
A latent variable modeling method for studying measurement invariance when evaluating latent constructs with multiple binary or binary scored items with no guessing is outlined. The approach extends the continuous indicator procedure described by Raykov and colleagues, utilizes similarly the false discovery rate approach to multiple testing, and…
Mannarini, Stefania; Balottin, Laura; Toldo, Irene; Gatta, Michela
2016-10-01
The study, conducted on Italian preadolscents aged 11 to 13 belonging to the general population, aims to investigate the relationship between the emotional functioning, namely, alexithymia, and the risk of developing behavioral and emotional problems measured using the Strength and Difficulty Questionnaire. The latent class analysis approach allowed to identify two latent variables, accounting for the internalizing (emotional symptoms and difficulties in emotional awareness) and for the externalizing problems (conduct problems and hyperactivity, problematic relationships with peers, poor prosocial behaviors and externally oriented thinking). The two latent variables featured two latent classes: the difficulty in dealing with problems and the strength to face problems that was representative of most of the healthy participants with specific gender differences. Along with the analysis of psychopathological behaviors, the study of resilience and strengths can prove to be a key step in order to develop valuable preventive approaches to tackle psychiatric disorders. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Tropical Dynamics Process Studies and Numerical Methods
2011-06-16
model. Model input and output arc defined in the Table below. Variable Description Ih Latent heat flux (W/ mA2 ) sh Sensible heat flux (W/ mA2 ) lwo...Net longwave flux (W/ mA2 ) swo Net shortwave flux (W/ mA2 ) 11 Wind speed (m/s) us Atmospheric friction velocity tb Bulk temperature (deg C) dtwo Warm
ERIC Educational Resources Information Center
von Davier, Matthias
2016-01-01
This report presents results on a parallel implementation of the expectation-maximization (EM) algorithm for multidimensional latent variable models. The developments presented here are based on code that parallelizes both the E step and the M step of the parallel-E parallel-M algorithm. Examples presented in this report include item response…
ERIC Educational Resources Information Center
Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.
2016-01-01
Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Akaeze, Hope O.
2017-01-01
This note is concerned with examining the relationship between within-group and between-group variances in two-level nested designs. A latent variable modeling approach is outlined that permits point and interval estimation of their ratio and allows their comparison in a multilevel study. The procedure can also be used to test various hypotheses…
ERIC Educational Resources Information Center
Frisby, Craig L.; Wang, Ze
2016-01-01
Data from the standardization sample of the Woodcock-Johnson Psychoeducational Battery--Third Edition (WJ III) Cognitive standard battery and Test Session Observation Checklist items were analyzed to understand the relationship between g (general mental ability) and test session behavior (TSB; n = 5,769). Latent variable modeling methods were used…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garikapati, Venu; Astroza, Sebastian; Pendyala, Ram M.
Travel model systems often adopt a single decision structure that links several activity-travel choices together. The single decision structure is then used to predict activity-travel choices, with those downstream in the decision-making chain influenced by those upstream in the sequence. The adoption of a singular sequential causal structure to depict relationships among activity-travel choices in travel demand model systems ignores the possibility that some choices are made jointly as a bundle as well as the possible presence of structural heterogeneity in the population with respect to decision-making processes. As different segments in the population may adopt and follow different causalmore » decision-making mechanisms when making selected choices jointly, it would be of value to develop simultaneous equations model systems relating multiple endogenous choice variables that are able to identify population subgroups following alternative causal decision structures. Because the segments are not known a priori, they are considered latent and determined endogenously within a joint modeling framework proposed in this paper. The methodology is applied to a national mobility survey data set to identify population segments that follow different causal structures relating residential location choice, vehicle ownership, and car-share and mobility service usage. It is found that the model revealing three distinct latent segments best describes the data, confirming the efficacy of the modeling approach and the existence of structural heterogeneity in decision-making in the population. Future versions of activity-travel model systems should strive to incorporate such structural heterogeneity to better reflect varying decision processes across population subgroups.« less
ERIC Educational Resources Information Center
Olatunji, Bunmi O.; Cole, David A.
2009-01-01
In an 8-wave, 4-year longitudinal study, 787 children (Grades 3-6) completed the Revised Children's Manifest Anxiety Scale (C. R. Reynolds & B. O. Richmond, 1985), a measure of the Physiological Reactivity, Worry-Oversensitivity, and Social Alienation dimensions of anxiety. A latent variable (trait-state-occasion) model and a latent growth curve…
Causal Indicators Can Help to Interpret Factors
ERIC Educational Resources Information Center
Bentler, Peter M.
2016-01-01
The latent factor in a causal indicator model is no more than the latent factor of the factor part of the model. However, if the causal indicator variables are well-understood and help to improve the prediction of individuals' factor scores, they can help to interpret the meaning of the latent factor. Aguirre-Urreta, Rönkkö, and Marakas (2016)…
Effects of additional data on Bayesian clustering.
Yamazaki, Keisuke
2017-10-01
Hierarchical probabilistic models, such as mixture models, are used for cluster analysis. These models have two types of variables: observable and latent. In cluster analysis, the latent variable is estimated, and it is expected that additional information will improve the accuracy of the estimation of the latent variable. Many proposed learning methods are able to use additional data; these include semi-supervised learning and transfer learning. However, from a statistical point of view, a complex probabilistic model that encompasses both the initial and additional data might be less accurate due to having a higher-dimensional parameter. The present paper presents a theoretical analysis of the accuracy of such a model and clarifies which factor has the greatest effect on its accuracy, the advantages of obtaining additional data, and the disadvantages of increasing the complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Childhood malnutrition in Egypt using geoadditive Gaussian and latent variable models.
Khatab, Khaled
2010-04-01
Major progress has been made over the last 30 years in reducing the prevalence of malnutrition amongst children less than 5 years of age in developing countries. However, approximately 27% of children under the age of 5 in these countries are still malnourished. This work focuses on the childhood malnutrition in one of the biggest developing countries, Egypt. This study examined the association between bio-demographic and socioeconomic determinants and the malnutrition problem in children less than 5 years of age using the 2003 Demographic and Health survey data for Egypt. In the first step, we use separate geoadditive Gaussian models with the continuous response variables stunting (height-for-age), underweight (weight-for-age), and wasting (weight-for-height) as indicators of nutritional status in our case study. In a second step, based on the results of the first step, we apply the geoadditive Gaussian latent variable model for continuous indicators in which the 3 measurements of the malnutrition status of children are assumed as indicators for the latent variable "nutritional status".
ERIC Educational Resources Information Center
Lippke, Sonia; Nigg, Claudio R.; Maddock, Jay E.
2007-01-01
This is the first study to test whether the stages of change of the transtheoretical model are qualitatively different through exploring discontinuity patterns in theory of planned behavior (TPB) variables using latent multigroup structural equation modeling (MSEM) with AMOS. Discontinuity patterns in terms of latent means and prediction patterns…
Multivariate Analysis of Genotype-Phenotype Association.
Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela
2016-04-01
With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.
On Latent Growth Models for Composites and Their Constituents.
Hancock, Gregory R; Mao, Xiulin; Kher, Hemant
2013-09-01
Over the last decade and a half, latent growth modeling has become an extremely popular and versatile technique for evaluating longitudinal change and its determinants. Most common among the models applied are those for a single measured variable over time. This model has been extended in a variety of ways, most relevant for the current work being the multidomain and the second-order latent growth models. Whereas the former allows for growth function characteristics to be modeled for multiple outcomes simultaneously, with the degree of growth characteristics' relations assessed within the model (e.g., cross-domain slope factor correlations), the latter models growth in latent outcomes, each of which has effect indicators repeated over time. But what if one has an outcome that is believed to be formative relative to its indicator variables rather than latent? In this case, where the outcome is a composite of multiple constituents, modeling change over time is less straightforward. This article provides analytical and applied details for simultaneously modeling growth in composites and their constituent elements, including a real data example using a general computer self-efficacy questionnaire.
Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.
2014-01-01
Objective Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than three, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance DataHigh was developed to fulfill a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity. PMID:24216250
NASA Astrophysics Data System (ADS)
Cowley, Benjamin R.; Kaufman, Matthew T.; Butler, Zachary S.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.
2013-12-01
Objective. Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. Approach. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. Main results. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. Significance. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.
Cowley, Benjamin R; Kaufman, Matthew T; Butler, Zachary S; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M
2013-12-01
Analyzing and interpreting the activity of a heterogeneous population of neurons can be challenging, especially as the number of neurons, experimental trials, and experimental conditions increases. One approach is to extract a set of latent variables that succinctly captures the prominent co-fluctuation patterns across the neural population. A key problem is that the number of latent variables needed to adequately describe the population activity is often greater than 3, thereby preventing direct visualization of the latent space. By visualizing a small number of 2-d projections of the latent space or each latent variable individually, it is easy to miss salient features of the population activity. To address this limitation, we developed a Matlab graphical user interface (called DataHigh) that allows the user to quickly and smoothly navigate through a continuum of different 2-d projections of the latent space. We also implemented a suite of additional visualization tools (including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses) and an optional tool for performing dimensionality reduction. To demonstrate the utility and versatility of DataHigh, we used it to analyze single-trial spike count and single-trial timecourse population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded using single electrodes. DataHigh was developed to fulfil a need for visualization in exploratory neural data analysis, which can provide intuition that is critical for building scientific hypotheses and models of population activity.
ERIC Educational Resources Information Center
Chen, Qi; Hughes, Jan N.; Liew, Jeffrey; Kwok, Oi-Man
2010-01-01
The longitudinal relationships between two dimensions of peer relationships and subsequent academic adjustment were investigated in a sample of 543 relatively low achieving children (M = 6.57 years at Year 1, 1st grade). Latent variable SEM was used to test a four stage model positing indirect effects of peer acceptance and peer academic…
Cross-Sectional Analysis of Longitudinal Mediation Processes.
O'Laughlin, Kristine D; Martin, Monica J; Ferrer, Emilio
2018-01-01
Statistical mediation analysis can help to identify and explain the mechanisms behind psychological processes. Examining a set of variables for mediation effects is a ubiquitous process in the social sciences literature; however, despite evidence suggesting that cross-sectional data can misrepresent the mediation of longitudinal processes, cross-sectional analyses continue to be used in this manner. Alternative longitudinal mediation models, including those rooted in a structural equation modeling framework (cross-lagged panel, latent growth curve, and latent difference score models) are currently available and may provide a better representation of mediation processes for longitudinal data. The purpose of this paper is twofold: first, we provide a comparison of cross-sectional and longitudinal mediation models; second, we advocate using models to evaluate mediation effects that capture the temporal sequence of the process under study. Two separate empirical examples are presented to illustrate differences in the conclusions drawn from cross-sectional and longitudinal mediation analyses. Findings from these examples yielded substantial differences in interpretations between the cross-sectional and longitudinal mediation models considered here. Based on these observations, researchers should use caution when attempting to use cross-sectional data in place of longitudinal data for mediation analyses.
ERIC Educational Resources Information Center
McDonald, Roderick P.
2011-01-01
A distinction is proposed between measures and predictors of latent variables. The discussion addresses the consequences of the distinction for the true-score model, the linear factor model, Structural Equation Models, longitudinal and multilevel models, and item-response models. A distribution-free treatment of calibration and…
Massof, Robert W
2014-10-01
A simple theoretical framework explains patient responses to items in rating scale questionnaires. Fixed latent variables position each patient and each item on the same linear scale. Item responses are governed by a set of fixed category thresholds, one for each ordinal response category. A patient's item responses are magnitude estimates of the difference between the patient variable and the patient's estimate of the item variable, relative to his/her personally defined response category thresholds. Differences between patients in their personal estimates of the item variable and in their personal choices of category thresholds are represented by random variables added to the corresponding fixed variables. Effects of intervention correspond to changes in the patient variable, the patient's response bias, and/or latent item variables for a subset of items. Intervention effects on patients' item responses were simulated by assuming the random variables are normally distributed with a constant scalar covariance matrix. Rasch analysis was used to estimate latent variables from the simulated responses. The simulations demonstrate that changes in the patient variable and changes in response bias produce indistinguishable effects on item responses and manifest as changes only in the estimated patient variable. Changes in a subset of item variables manifest as intervention-specific differential item functioning and as changes in the estimated person variable that equals the average of changes in the item variables. Simulations demonstrate that intervention-specific differential item functioning produces inefficiencies and inaccuracies in computer adaptive testing. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Demographic analysis from summaries of an age-structured population
Link, William A.; Royle, J. Andrew; Hatfield, Jeff S.
2003-01-01
Demographic analyses of age-structured populations typically rely on life history data for individuals, or when individual animals are not identified, on information about the numbers of individuals in each age class through time. While it is usually difficult to determine the age class of a randomly encountered individual, it is often the case that the individual can be readily and reliably assigned to one of a set of age classes. For example, it is often possible to distinguish first-year from older birds. In such cases, the population age structure can be regarded as a latent variable governed by a process prior, and the data as summaries of this latent structure. In this article, we consider the problem of uncovering the latent structure and estimating process parameters from summaries of age class information. We present a demographic analysis for the critically endangered migratory population of whooping cranes (Grus americana), based only on counts of first-year birds and of older birds. We estimate age and year-specific survival rates. We address the controversial issue of whether management action on the breeding grounds has influenced recruitment, relating recruitment rates to the number of seventh-year and older birds, and examining the pattern of variation through time in this rate.
On Fitting a Multivariate Two-Part Latent Growth Model
Xu, Shu; Blozis, Shelley A.; Vandewater, Elizabeth A.
2017-01-01
A 2-part latent growth model can be used to analyze semicontinuous data to simultaneously study change in the probability that an individual engages in a behavior, and if engaged, change in the behavior. This article uses a Monte Carlo (MC) integration algorithm to study the interrelationships between the growth factors of 2 variables measured longitudinally where each variable can follow a 2-part latent growth model. A SAS macro implementing Mplus is developed to estimate the model to take into account the sampling uncertainty of this simulation-based computational approach. A sample of time-use data is used to show how maximum likelihood estimates can be obtained using a rectangular numerical integration method and an MC integration method. PMID:29333054
Gale, Shawn D; Erickson, Lance D; Brown, Bruce L; Hedges, Dawson W
2015-01-01
Helicobacter pylori and latent toxoplasmosis are widespread diseases that have been associated with cognitive deficits and Alzheimer's disease. We sought to determine whether interactions between Helicobacter pylori and latent toxoplasmosis, age, race-ethnicity, educational attainment, economic status, and general health predict cognitive function in young and middle-aged adults. To do so, we used multivariable regression and multivariate models to analyze data obtained from the United States' National Health and Nutrition Examination Survey from the Centers for Disease Control and Prevention, which can be weighted to represent the US population. In this sample, we found that 31.6 percent of women and 36.2 percent of men of the overall sample had IgG Antibodies against Helicobacter pylori, although the seroprevalence of Helicobacter pylori varied with sociodemographic variables. There were no main effects for Helicobacter pylori or latent toxoplasmosis for any of the cognitive measures in models adjusting for age, sex, race-ethnicity, educational attainment, economic standing, and self-rated health predicting cognitive function. However, interactions between Helicobacter pylori and race-ethnicity, educational attainment, latent toxoplasmosis in the fully adjusted models predicted cognitive function. People seropositive for both Helicobacter pylori and latent toxoplasmosis - both of which appear to be common in the general population - appear to be more susceptible to cognitive deficits than are people seropositive for either Helicobacter pylori and or latent toxoplasmosis alone, suggesting a synergistic effect between these two infectious diseases on cognition in young to middle-aged adults.
Learning Multisensory Integration and Coordinate Transformation via Density Estimation
Sabes, Philip N.
2013-01-01
Sensory processing in the brain includes three key operations: multisensory integration—the task of combining cues into a single estimate of a common underlying stimulus; coordinate transformations—the change of reference frame for a stimulus (e.g., retinotopic to body-centered) effected through knowledge about an intervening variable (e.g., gaze position); and the incorporation of prior information. Statistically optimal sensory processing requires that each of these operations maintains the correct posterior distribution over the stimulus. Elements of this optimality have been demonstrated in many behavioral contexts in humans and other animals, suggesting that the neural computations are indeed optimal. That the relationships between sensory modalities are complex and plastic further suggests that these computations are learned—but how? We provide a principled answer, by treating the acquisition of these mappings as a case of density estimation, a well-studied problem in machine learning and statistics, in which the distribution of observed data is modeled in terms of a set of fixed parameters and a set of latent variables. In our case, the observed data are unisensory-population activities, the fixed parameters are synaptic connections, and the latent variables are multisensory-population activities. In particular, we train a restricted Boltzmann machine with the biologically plausible contrastive-divergence rule to learn a range of neural computations not previously demonstrated under a single approach: optimal integration; encoding of priors; hierarchical integration of cues; learning when not to integrate; and coordinate transformation. The model makes testable predictions about the nature of multisensory representations. PMID:23637588
Latent lifestyle preferences and household location decisions
NASA Astrophysics Data System (ADS)
Walker, Joan L.; Li, Jieping
2007-04-01
Lifestyle, indicating preferences towards a particular way of living, is a key driver of the decision of where to live. We employ latent class choice models to represent this behavior, where the latent classes are the lifestyles and the choice model is the choice of residential location. Thus, we simultaneously estimate lifestyle groups and how lifestyle impacts location decisions. Empirical results indicate three latent lifestyle segments: suburban dwellers, urban dwellers, and transit-riders. The suggested lifestyle segments have intriguing policy implications. Lifecycle characteristics are used to predict lifestyle preferences, although there remain significant aspects that cannot be explained by observable variables.
NASA Astrophysics Data System (ADS)
Mathew, Sneha Susan; Kumar, Karanam Kishore
2018-05-01
The latent heat released in the clouds over the tropics plays a vital role in driving the Hadley circulation (HC). The present study discusses the influence of latent heating (LH) on the HC parameters viz., centre, strength and total width by using precipitation LH profiles derived from the space-borne observations of the Precipitation Radar (PR) onboard Tropical Rain Measuring Mission (TRMM) and meridional stream function (MSF) derived from ECMWF-Interim reanalysis. The latitude of peak latent heating, width of the latent heating distribution and the total LH released within the ascending limb of the HC are estimated and their influence on the HC centre, strength and width is quantified, for the first time. The present results show that the latitude of peak LH significantly influences the position of the HC centre with correlation coefficient of 0.90. This high correlation between these two quantities seems to be due to their co-variability with the apparent motion of the Sun across the latitudes. The intensity of the HC in the NH as well as SH shows high correlation with the latitude of peak LH with coefficients - 0.85 and - 0.78, respectively. These results indicate that farther the latitude of peak LH from the equator in the summer hemisphere, stronger is the HC intensity in the winter hemisphere. The present analysis also reveals that the total LH released within the ascending limb of HC substantially influence the total width of the HC, with correlation coefficient 0.52, as compared to the other two LH parameters. This observation can be attributed to the fact that the HC is sensitive to the latent heat release in the mid-tropospheric levels in the tropics. An attempt is also made to investigate the degree of variability of these parameters after deseasonalization and results are discussed in the light of present understanding. The significance of the present study lies in providing the observational evidence for the influence of latent heating on the HC strength/width variability, quantitatively, for the first time using TRMM observations of precipitation latent heating.
Dalvand, Sahar; Koohpayehzadeh, Jalil; Karimlou, Masoud; Asgari, Fereshteh; Rafei, Ali; Seifi, Behjat; Niksima, Seyed Hassan; Bakhshi, Enayatollah
2015-01-01
Because the use of BMI (Body Mass Index) alone as a measure of adiposity has been criticized, in the present study our aim was to fit a latent variable model to simultaneously examine the factors that affect waist circumference (continuous outcome) and obesity (binary outcome) among Iranian adults. Data included 18,990 Iranian individuals aged 20-65 years that are derived from the third National Survey of Noncommunicable Diseases Risk Factors in Iran. Using latent variable model, we estimated the relation of two correlated responses (waist circumference and obesity) with independent variables including age, gender, PR (Place of Residence), PA (physical activity), smoking status, SBP (Systolic Blood Pressure), DBP (Diastolic Blood Pressure), CHOL (cholesterol), FBG (Fasting Blood Glucose), diabetes, and FHD (family history of diabetes). All variables were related to both obesity and waist circumference (WC). Older age, female sex, being an urban resident, physical inactivity, nonsmoking, hypertension, hypercholesterolemia, hyperglycemia, diabetes, and having family history of diabetes were significant risk factors that increased WC and obesity. Findings from this study of Iranian adult settings offer more insights into factors associated with high WC and high prevalence of obesity in this population.
Multiple indicators, multiple causes measurement error models
Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; ...
2014-06-25
Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less
Multiple Indicators, Multiple Causes Measurement Error Models
Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.
2014-01-01
Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535
Multiple indicators, multiple causes measurement error models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.
Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less
Wang, Peng-Wei; Yen, Cheng-Fang
2017-12-08
Adolescent suicidal behavior may consist of different symptoms, including suicidal ideation, suicidal planning and suicidal attempts. Adolescent substance use behavior may contribute to adolescent suicidal behavior. However, research on the relationships between specific substance use and individual suicidal behavior is insufficient, as adolescents may not use only one substance or develop only one facet of suicidal behavior. Latent variables permit us to describe the relationships between clusters of related behaviors more accurately than studying the relationships between specific behaviors. Thus, the aim of this study was to explore how adolescent substance use behavior contributes to suicidal behavior using latent variables representing adolescent suicidal and substance use behaviors. A total of 13,985 adolescents were recruited using a stratified random sampling strategy. The participants indicated whether they had experienced suicidal ideation, planning and attempts and reported their cigarette, alcohol, ketamine and MDMA use during the past year. Latent analysis was used to examine the relationship between substance use and suicidal behavior. Adolescents who used any one of the above substances exhibited more suicidal behavior. The results of latent variables analysis revealed that adolescent substance use contributed to suicidal behavior and that boys exhibited more severe substance use behavior than girls. However, there was no gender difference in the association between substance use and suicidal behavior. Substance use behavior in adolescents is related to more suicidal behavior. In addition, the contribution of substance use to suicidal behavior does not differ between genders.
Benson, Nicholas F; Kranzler, John H; Floyd, Randy G
2016-10-01
Prior research examining cognitive ability and academic achievement relations have been based on different theoretical models, have employed both latent variables as well as observed variables, and have used a variety of analytic methods. Not surprisingly, results have been inconsistent across studies. The aims of this study were to (a) examine how relations between psychometric g, Cattell-Horn-Carroll (CHC) broad abilities, and academic achievement differ across higher-order and bifactor models; (b) examine how well various types of observed scores corresponded with latent variables; and (c) compare two types of observed scores (i.e., refined and non-refined factor scores) as predictors of academic achievement. Results suggest that cognitive-achievement relations vary across theoretical models and that both types of factor scores tend to correspond well with the models on which they are based. However, orthogonal refined factor scores (derived from a bifactor model) have the advantage of controlling for multicollinearity arising from the measurement of psychometric g across all measures of cognitive abilities. Results indicate that the refined factor scores provide more precise representations of their targeted constructs than non-refined factor scores and maintain close correspondence with the cognitive-achievement relations observed for latent variables. Thus, we argue that orthogonal refined factor scores provide more accurate representations of the relations between CHC broad abilities and achievement outcomes than non-refined scores do. Further, the use of refined factor scores addresses calls for the application of scores based on latent variable models. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Nagengast, Benjamin; Trautwein, Ulrich; Kelava, Augustin; Lüdtke, Oliver
2013-05-01
Historically, expectancy-value models of motivation assumed a synergistic relation between expectancy and value: motivation is high only when both expectancy and value are high. Motivational processes were studied from a within-person perspective, with expectancies and values being assessed or experimentally manipulated across multiple domains and the focus being placed on intraindividual differences. In contrast, contemporary expectancy-value models in educational psychology concentrate almost exclusively on linear effects of expectancy and value on motivational outcomes, with a focus on between-person differences. Recent advances in latent variable methodology allow both issues to be addressed in observational studies. Using the expectancy-value model of homework motivation as a theoretical framework, this study estimated multilevel structural equation models with latent interactions in a sample of 511 secondary school students and found synergistic effects between domain-specific homework expectancy and homework value in predicting homework engagement in 6 subjects. This approach not only brings the "×" back into expectancy-value theory but also reestablishes the within-person perspective as the appropriate level of analysis for latent expectancy-value models.
Krasne, Sally; Wimmers, Paul F; Relan, Anju; Drake, Thomas A
2006-05-01
Formative assessments are systematically designed instructional interventions to assess and provide feedback on students' strengths and weaknesses in the course of teaching and learning. Despite their known benefits to student attitudes and learning, medical school curricula have been slow to integrate such assessments into the curriculum. This study investigates how performance on two different modes of formative assessment relate to each other and to performance on summative assessments in an integrated, medical-school environment. Two types of formative assessment were administered to 146 first-year medical students each week over 8 weeks: a timed, closed-book component to assess factual recall and image recognition, and an un-timed, open-book component to assess higher order reasoning including the ability to identify and access appropriate resources and to integrate and apply knowledge. Analogous summative assessments were administered in the ninth week. Models relating formative and summative assessment performance were tested using Structural Equation Modeling. Two latent variables underlying achievement on formative and summative assessments could be identified; a "formative-assessment factor" and a "summative-assessment factor," with the former predicting the latter. A latent variable underlying achievement on open-book formative assessments was highly predictive of achievement on both open- and closed-book summative assessments, whereas a latent variable underlying closed-book assessments only predicted performance on the closed-book summative assessment. Formative assessments can be used as effective predictive tools of summative performance in medical school. Open-book, un-timed assessments of higher order processes appeared to be better predictors of overall summative performance than closed-book, timed assessments of factual recall and image recognition.
Fitting Cure Rate Model to Breast Cancer Data of Cancer Research Center.
Baghestani, Ahmad Reza; Zayeri, Farid; Akbari, Mohammad Esmaeil; Shojaee, Leyla; Khadembashi, Naghmeh; Shahmirzalou, Parviz
2015-01-01
The Cox PH model is one of the most significant statistical models in studying survival of patients. But, in the case of patients with long-term survival, it may not be the most appropriate. In such cases, a cure rate model seems more suitable. The purpose of this study was to determine clinical factors associated with cure rate of patients with breast cancer. In order to find factors affecting cure rate (response), a non-mixed cure rate model with negative binomial distribution for latent variable was used. Variables selected were recurrence cancer, status for HER2, estrogen receptor (ER) and progesterone receptor (PR), size of tumor, grade of cancer, stage of cancer, type of surgery, age at the diagnosis time and number of removed positive lymph nodes. All analyses were performed using PROC MCMC processes in the SAS 9.2 program. The mean (SD) age of patients was equal to 48.9 (11.1) months. For these patients, 1, 5 and 10-year survival rates were 95, 79 and 50 percent respectively. All of the mentioned variables were effective in cure fraction. Kaplan-Meier curve showed cure model's use competence. Unlike other variables, existence of ER and PR positivity will increase probability of cure in patients. In the present study, Weibull distribution was used for the purpose of analysing survival times. Model fitness with other distributions such as log-N and log-logistic and other distributions for latent variable is recommended.
Seeto, Mark
2017-01-01
Recent epidemiological data suggest the relation between hearing difficulty and depression is more evident in younger and middle-aged populations than in older adults. There are also suggestions that the relation may be more evident in specific subgroups; that is, other factors may influence a relationship between hearing and depression in different subgroups. Using cross-sectional data from the UK Biobank on 134,357 community-dwelling people and structural equation modelling, this study examined the potential mediating influence of social isolation and unemployment and the confounding influence of physical illness and cardiovascular conditions on the relation between a latent hearing variable and both a latent depressive episodes variable and a latent depressive symptoms variable. The models were stratified by age (40s, 50s, and 60s) and gender and further controlled for physical illness and professional support in associations involving social isolation and unemployment. The latent hearing variable was primarily defined by reported hearing difficulty in noise. For all subgroups, poor hearing was significantly related to both more depressive episodes and more depressive symptoms. In all models, the direct and generally small association exceeded the indirect associations via physical health and social interaction. Significant (depressive episodes) and near significant (depressive symptoms) higher direct associations were estimated for males in their 40s and 50s than for males in their 60s. There was at each age-group no significant difference in estimated associations across gender. Irrespective of the temporal order of variables, findings suggest that audiological services should facilitate psychosocial counselling. PMID:28752806
Keidser, Gitte; Seeto, Mark
2017-01-01
Recent epidemiological data suggest the relation between hearing difficulty and depression is more evident in younger and middle-aged populations than in older adults. There are also suggestions that the relation may be more evident in specific subgroups; that is, other factors may influence a relationship between hearing and depression in different subgroups. Using cross-sectional data from the UK Biobank on 134,357 community-dwelling people and structural equation modelling, this study examined the potential mediating influence of social isolation and unemployment and the confounding influence of physical illness and cardiovascular conditions on the relation between a latent hearing variable and both a latent depressive episodes variable and a latent depressive symptoms variable. The models were stratified by age (40s, 50s, and 60s) and gender and further controlled for physical illness and professional support in associations involving social isolation and unemployment. The latent hearing variable was primarily defined by reported hearing difficulty in noise. For all subgroups, poor hearing was significantly related to both more depressive episodes and more depressive symptoms. In all models, the direct and generally small association exceeded the indirect associations via physical health and social interaction. Significant (depressive episodes) and near significant (depressive symptoms) higher direct associations were estimated for males in their 40s and 50s than for males in their 60s. There was at each age-group no significant difference in estimated associations across gender. Irrespective of the temporal order of variables, findings suggest that audiological services should facilitate psychosocial counselling.
Piper, Megan E.; Bolt, Daniel M.; Kim, Su-Young; Japuntich, Sandra J.; Smith, Stevens S.; Niederdeppe, Jeff; Cannon, Dale S.; Baker, Timothy B.
2008-01-01
The construct of tobacco dependence is important from both scientific and public health perspectives, but it is poorly understood. The current research integrates person-centered analyses (e.g., latent profile analysis) and variable-centered analyses (e.g., exploratory factor analysis) to understand better the latent structure of dependence and to guide distillation of the phenotype. Using data from four samples of smokers (including treatment and non-treatment samples), latent profiles were derived using the Wisconsin Inventory of Smoking Dependence Motives (WISDM) subscale scores. Across all four samples, results revealed a unique latent profile that had relative elevations on four dependence motive subscales (Automaticity, Craving, Loss of Control, and Tolerance). Variable-centered analyses supported the uniqueness of these four subscales both as measures of a common factor distinct from that underlying the other nine subscales, and as the strongest predictors of relapse, withdrawal and other dependence criteria. Conversely, the remaining nine motives carried little unique predictive validity regarding dependence. Applications of a factor mixture model further support the presence of a unique class of smokers in relation to a common factor underlying the four subscales. The results illustrate how person-centered analyses may be useful as a supplement to variable-centered analyses for uncovering variables that are necessary and/or sufficient predictors of disorder criteria, as they may uncover small segments of a population in which the variables are uniquely distributed. The results also suggest that severe dependence is associated with a pattern of smoking that is heavy, pervasive, automatic and relatively unresponsive to instrumental contingencies. PMID:19025223
Scale Reliability Evaluation with Heterogeneous Populations
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.
2015-01-01
A latent variable modeling approach for scale reliability evaluation in heterogeneous populations is discussed. The method can be used for point and interval estimation of reliability of multicomponent measuring instruments in populations representing mixtures of an unknown number of latent classes or subpopulations. The procedure is helpful also…
Measurement of Psychological Disorders Using Cognitive Diagnosis Models
ERIC Educational Resources Information Center
Templin, Jonathan L.; Henson, Robert A.
2006-01-01
Cognitive diagnosis models are constrained (multiple classification) latent class models that characterize the relationship of questionnaire responses to a set of dichotomous latent variables. Having emanated from educational measurement, several aspects of such models seem well suited to use in psychological assessment and diagnosis. This article…
Clayton, Francina J; Sears, Claire; Davis, Alice; Hulme, Charles
2018-07-01
Paired-associate learning (PAL) tasks measure the ability to form a novel association between a stimulus and a response. Performance on such tasks is strongly associated with reading ability, and there is increasing evidence that verbal task demands may be critical in explaining this relationship. The current study investigated the relationships between different forms of PAL and reading ability. A total of 97 children aged 8-10 years completed a battery of reading assessments and six different PAL tasks (phoneme-phoneme, visual-phoneme, nonverbal-nonverbal, visual-nonverbal, nonword-nonword, and visual-nonword) involving both familiar phonemes and unfamiliar nonwords. A latent variable path model showed that PAL ability is captured by two correlated latent variables: auditory-articulatory and visual-articulatory. The auditory-articulatory latent variable was the stronger predictor of reading ability, providing support for a verbal account of the PAL-reading relationship. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
A multilevel model for comorbid outcomes: obesity and diabetes in the US.
Congdon, Peter
2010-02-01
Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk.
Process connectivity reveals ecohydrologic sensitivity to drought and rainfall pulses
NASA Astrophysics Data System (ADS)
Goodwell, A. E.; Kumar, P.
2017-12-01
Ecohydrologic fluxes within atmosphere, canopy and soil systems exhibit complex and joint variability. This complexity arises from direct and indirect forcing and feedback interactions that can cause fluctuations to propagate between water, energy, and nutrient fluxes at various time scales. When an ecosystem is perturbed in the form of a single storm event, an accumulating drought, or changes in climate and land cover, this aspect of joint variability may dictate responsiveness and resilience of the entire system. A characterization of the time-dependent and multivariate connectivity between processes, fluxes, and states is necessary to identify and understand these aspects of ecohydrologic systems. We construct Temporal Information Partitioning Networks (TIPNets), based on information theory measures, to identify time-dependencies between variables measured at flux towers along elevation and climate gradients in relation to their responses to moisture-related perturbations. Along a flux tower transect in the Reynolds Creek Critical Zone Observatory (CZO) in Idaho, we detect a significant network response to a large 2015 dry season rainfall event that enhances microbial respiration and latent heat fluxes. At a transect in the Southern Sierra CZO in California, we explore network properties in relation to drought responses from 2011 to 2015. We find that both high and low elevation sites exhibit decreased connectivity between atmospheric and soil variables and latent heat fluxes, but the higher elevation site is less sensitive to this altered connectivity in terms of average monthly heat fluxes. Through a novel approach to gage the responsiveness of ecosystem fluxes to shifts in connectivity, this study aids our understanding of ecohydrologic sensitivity to short-term rainfall events and longer term droughts. This study is relevant to ecosystem resilience under a changing climate, and can lead to a greater understanding of shifting behaviors in many types of complex systems.
Xavier, Rose Mary; Pan, Wei; Dungan, Jennifer R; Keefe, Richard S E; Vorderstrasse, Allison
2018-03-01
Insight in schizophrenia is long known to have a complex relationship with psychopathology symptoms and cognition. However, very few studies have examined models that explain these interrelationships. In a large sample derived from the NIMH Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial (N=1391), we interrogated these interrelationships for potential causal pathways using structural equation modeling. Using the NIMH consensus model, latent variables were constructed for psychopathology symptom dimensions, including positive, negative, disorganized, excited and depressed from the Positive and Negative Syndrome Scale (PANSS) items. Neurocognitive variables were created from five predefined domains of working memory, verbal memory, reasoning, vigilance and processing speed. Illness insight and treatment insight were tested using latent variables constructed from the Illness and Treatment Attitude Questionnaire (ITAQ). Disorganized symptoms had the strongest effect on insight. Illness insight mediated the relationship of positive, depressed, and disorganized symptoms with treatment insight. Neurocognition mediated the relationship between disorganized and treatment insight and depressed symptoms and treatment insight. There was no effect of negative symptoms on either illness insight or treatment insight. Taken together, our results indicate overlapping and unique relational paths for illness and treatment insight dimensions, which could suggest differences in causal mechanisms and potential interventions to improve insight. Copyright © 2017 Elsevier B.V. All rights reserved.
Latent Variable Modeling of Brain Gray Matter Volume and Psychopathy in Incarcerated Offenders
Baskin-Sommers, Arielle R.; Neumann, Craig S.; Cope, Lora M.; Kiehl, Kent A.
2016-01-01
Advanced statistical modeling has become a prominent feature in psychological science and can be a useful approach for representing the neural architecture linked to psychopathology. Psychopathy, a disorder characterized by dysfunction in interpersonal-affective and impulsive-antisocial domains, is associated with widespread neural abnormalities. Several imaging studies suggest that underlying structural deficits in paralimbic regions are associated with psychopathy. While these studies are useful, they make assumptions about the organization of the brain and its relevance to individuals displaying psychopathic features. Capitalizing on statistical modeling, the present study (N=254) used latent variable methods to examine the structure of gray matter volume in male offenders, and assessed the latent relations between psychopathy and gray matter factors reflecting paralimbic and non-paralimbic regions. Results revealed good fit for a four-factor gray matter paralimbic model and these first-order factors were accounted for by a super-ordinate paralimbic ‘system’ factor. Moreover, a super-ordinate psychopathy factor significantly predicted the paralimbic, but not the non-paralimbic factor. The latent variable paralimbic model, specifically linked with psychopathy, goes beyond understanding of single brain regions within the system and provides evidence for psychopathy-related gray matter volume reductions in the paralimbic system as a whole. PMID:27269123
Gale, Shawn D.; Erickson, Lance D.; Brown, Bruce L.; Hedges, Dawson W.
2015-01-01
Helicobacter pylori and latent toxoplasmosis are widespread diseases that have been associated with cognitive deficits and Alzheimer’s disease. We sought to determine whether interactions between Helicobacter pylori and latent toxoplasmosis, age, race-ethnicity, educational attainment, economic status, and general health predict cognitive function in young and middle-aged adults. To do so, we used multivariable regression and multivariate models to analyze data obtained from the United States’ National Health and Nutrition Examination Survey from the Centers for Disease Control and Prevention, which can be weighted to represent the US population. In this sample, we found that 31.6 percent of women and 36.2 percent of men of the overall sample had IgG Antibodies against Helicobacter pylori, although the seroprevalence of Helicobacter pylori varied with sociodemographic variables. There were no main effects for Helicobacter pylori or latent toxoplasmosis for any of the cognitive measures in models adjusting for age, sex, race-ethnicity, educational attainment, economic standing, and self-rated health predicting cognitive function. However, interactions between Helicobacter pylori and race-ethnicity, educational attainment, latent toxoplasmosis in the fully adjusted models predicted cognitive function. People seropositive for both Helicobacter pylori and latent toxoplasmosis – both of which appear to be common in the general population – appear to be more susceptible to cognitive deficits than are people seropositive for either Helicobacter pylori and or latent toxoplasmosis alone, suggesting a synergistic effect between these two infectious diseases on cognition in young to middle-aged adults. PMID:25590622
Analyzing Longitudinal Item Response Data via the Pairwise Fitting Method
ERIC Educational Resources Information Center
Fu, Zhi-Hui; Tao, Jian; Shi, Ning-Zhong; Zhang, Ming; Lin, Nan
2011-01-01
Multidimensional item response theory (MIRT) models can be applied to longitudinal educational surveys where a group of individuals are administered different tests over time with some common items. However, computational problems typically arise as the dimension of the latent variables increases. This is especially true when the latent variable…
Latent Image Processing Can Bolster the Value of Quizzes.
ERIC Educational Resources Information Center
Singer, David
1985-01-01
Latent image processing is a method which reveals hidden ink when marked with a special pen. Using multiple-choice items with commercially available latent image transfers can provide immediate feedback on take-home quizzes. Students benefitted from formative evaluation and were challenged to search for alternative solutions and explain unexpected…
Öhlén, Joakim; Russell, Lara; Håkanson, Cecilia; Alvariza, Anette; Fürst, Carl Johan; Årestedt, Kristofer; Sawatzky, Richard
2017-01-01
Symptom relief is a key goal of palliative care. There is a need to consider complexities in symptom relief patterns for groups of people to understand and evaluate symptom relief as an indicator of quality of care at end of life. The aims of this study were to distinguish classes of patients who have different symptom relief patterns during the last week of life and to identify predictors of these classes in an adult register population. In a cross-sectional retrospective design, data were used from 87,026 decedents with expected deaths registered in the Swedish Register of Palliative Care in 2011 and 2012. Study variables were structured into patient characteristics, and processes and outcomes of quality of care. A latent class analysis was used to identify symptom relief patterns. Multivariate multinomial regression analyses were used to identify predictors of class membership. Five latent classes were generated: "relieved pain," "relieved pain and rattles," "relieved pain and anxiety," "partly relieved shortness of breath, rattles and anxiety," and "partly relieved pain, anxiety and confusion." Important predictors of class membership were age, sex, cause of death, and having someone present at death, individual prescriptions as needed (PRN) and expert consultations. Interindividual variability and complexity in symptom relief patterns may inform quality of care and its evaluation for dying people across care settings. Copyright © 2016 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Soltani, M.; Kunstmann, H.; Laux, P.; Mauder, M.
2016-12-01
In mountainous and prealpine regions echohydrological processes exhibit rapid changes within short distances due to the complex orography and strong elevation gradients. Water- and energy fluxes between the land surface and the atmosphere are crucial drivers for nearly all ecosystem processes. The aim of this research is to analyze the variability of surface water- and energy fluxes by both comprehensive observational hydrometeorological data analysis and process-based high resolution hydrological modeling for a mountainous and prealpine region in Germany. We particularly focus on the closure of the observed energy balance and on the added value of energy flux observations for parameter estimation in our hydrological model (GEOtop) by inverse modeling using PEST. Our study area is the catchment of the river Rott (55 km2), being part of the TERENO prealpine observatory in Southern Germany, and we focus particularly on the observations during the summer episode May to July 2013. We present the coupling of GEOtop and the parameter estimation tool PEST, which is based on the Gauss-Marquardt-Levenberg method, a gradient-based nonlinear parameter estimation algorithm. Estimation of the surface energy partitioning during the data analysis process revealed that the latent heat flux was considered as the main consumer of available energy. The relative imbalance was largest during nocturnal periods. An energy imbalance was observed at the eddy-covariance site Fendt due to either underestimated turbulent fluxes or overestimated available energy. The calculation of the simulated energy and water balances for the entire catchment indicated that 78% of net radiation leaves the catchment as latent heat flux, 17% as sensible heat, and 5% enters the soil in the form of soil heat flux. 45% of the catchment aggregated precipitation leaves the catchment as discharge and 55% as evaporation. Using the developed GEOtop-PEST interface, the hydrological model is calibrated by comparing simulated and observed discharge, soil moisture and -temperature, sensible-, latent-, and soil heat fluxes. A reasonable quality of fit could be achieved. Uncertainty- and covariance analyses are performed, allowing the derivation of confidence intervals for all estimated parameters.
Christopher, Micaela E.; Keenan, Janice M.; Hulslander, Jacqueline; DeFries, John C.; Miyake, Akira; Wadsworth, Sally J.; Willcutt, Erik; Pennington, Bruce; Olson, Richard K.
2016-01-01
While previous research has shown cognitive skills to be important predictors of reading ability in children, the respective roles for genetic and environmental influences on these relations is an open question. The present study explored the genetic and environmental etiologies underlying the relations between selected executive functions and cognitive abilities (working memory, inhibition, processing speed, and naming speed) with three components of reading ability (word reading, reading comprehension, and listening comprehension). Twin pairs drawn from the Colorado Front Range (n = 676; 224 monozygotic pairs; 452 dizygotic pairs) between the ages of eight and 16 (M = 11.11) were assessed on multiple measures of each cognitive and reading-related skill. Each cognitive and reading-related skill was modeled as a latent variable, and behavioral genetic analyses estimated the portions of phenotypic variance on each latent variable due to genetic, shared environmental, and nonshared environmental influences. The covariance between the cognitive skills and reading-related skills was driven primarily by genetic influences. The cognitive skills also shared large amounts of genetic variance, as did the reading-related skills. The common cognitive genetic variance was highly correlated with the common reading genetic variance, suggesting that genetic influences involved in general cognitive processing are also important for reading ability. Skill-specific genetic variance in working memory and processing speed also predicted components of reading ability. Taken together, the present study supports a genetic association between children’s cognitive ability and reading ability. PMID:26974208
Christopher, Micaela E.; Miyake, Akira; Keenan, Janice M.; Pennington, Bruce; DeFries, John C.; Wadsworth, Sally J.; Willcutt, Erik; Olson, Richard K.
2012-01-01
The present study explored whether different executive control and speed measures (working memory, inhibition, processing speed, and naming speed) independently predict individual differences in word reading and reading comprehension. Although previous studies suggest these cognitive constructs are important for reading, we analyze the constructs simultaneously to test whether each is a unique predictor. We used latent variables from 483 participants (ages 8 to 16) to portion each cognitive and reading construct into its unique and shared variance. In these models we address two specific issues: (a) given that our wide age range may span the theoretical transition from “learning to read” to “reading to learn,” we first test whether the relation between word reading and reading comprehension is stable across two age groups (ages 8 to 10 and 11 to 16); and (b) the main theoretical question of interest: whether what is shared and what is separable for word reading and reading comprehension are associated with individual differences in working memory, inhibition, and measures of processing and naming speed. The results indicated that: (a) the relation between word reading and reading comprehension is largely invariant across the age groups; (b) working memory and general processing speed, but not inhibition or the speeded naming of non-alphanumeric stimuli, are unique predictors of both word reading and comprehension, with working memory equally important for both reading abilities and processing speed more important for word reading. These results have implications for understanding why reading comprehension and word reading are highly correlated yet separable. PMID:22352396
Semiparametric regression analysis of failure time data with dependent interval censoring.
Chen, Chyong-Mei; Shen, Pao-Sheng
2017-09-20
Interval-censored failure-time data arise when subjects are examined or observed periodically such that the failure time of interest is not examined exactly but only known to be bracketed between two adjacent observation times. The commonly used approaches assume that the examination times and the failure time are independent or conditionally independent given covariates. In many practical applications, patients who are already in poor health or have a weak immune system before treatment usually tend to visit physicians more often after treatment than those with better health or immune system. In this situation, the visiting rate is positively correlated with the risk of failure due to the health status, which results in dependent interval-censored data. While some measurable factors affecting health status such as age, gender, and physical symptom can be included in the covariates, some health-related latent variables cannot be observed or measured. To deal with dependent interval censoring involving unobserved latent variable, we characterize the visiting/examination process as recurrent event process and propose a joint frailty model to account for the association of the failure time and visiting process. A shared gamma frailty is incorporated into the Cox model and proportional intensity model for the failure time and visiting process, respectively, in a multiplicative way. We propose a semiparametric maximum likelihood approach for estimating model parameters and show the asymptotic properties, including consistency and weak convergence. Extensive simulation studies are conducted and a data set of bladder cancer is analyzed for illustrative purposes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Repeatability and Reproducibility of Decisions by Latent Fingerprint Examiners
Ulery, Bradford T.; Hicklin, R. Austin; Buscaglia, JoAnn; Roberts, Maria Antonia
2012-01-01
The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. We tested latent print examiners on the extent to which they reached consistent decisions. This study assessed intra-examiner repeatability by retesting 72 examiners on comparisons of latent and exemplar fingerprints, after an interval of approximately seven months; each examiner was reassigned 25 image pairs for comparison, out of total pool of 744 image pairs. We compare these repeatability results with reproducibility (inter-examiner) results derived from our previous study. Examiners repeated 89.1% of their individualization decisions, and 90.1% of their exclusion decisions; most of the changed decisions resulted in inconclusive decisions. Repeatability of comparison decisions (individualization, exclusion, inconclusive) was 90.0% for mated pairs, and 85.9% for nonmated pairs. Repeatability and reproducibility were notably lower for comparisons assessed by the examiners as “difficult” than for “easy” or “moderate” comparisons, indicating that examiners' assessments of difficulty may be useful for quality assurance. No false positive errors were repeated (n = 4); 30% of false negative errors were repeated. One percent of latent value decisions were completely reversed (no value even for exclusion vs. of value for individualization). Most of the inter- and intra-examiner variability concerned whether the examiners considered the information available to be sufficient to reach a conclusion; this variability was concentrated on specific image pairs such that repeatability and reproducibility were very high on some comparisons and very low on others. Much of the variability appears to be due to making categorical decisions in borderline cases. PMID:22427888
Toward a Model-Based Approach to the Clinical Assessment of Personality Psychopathology
Eaton, Nicholas R.; Krueger, Robert F.; Docherty, Anna R.; Sponheim, Scott R.
2015-01-01
Recent years have witnessed tremendous growth in the scope and sophistication of statistical methods available to explore the latent structure of psychopathology, involving continuous, discrete, and hybrid latent variables. The availability of such methods has fostered optimism that they can facilitate movement from classification primarily crafted through expert consensus to classification derived from empirically-based models of psychopathological variation. The explication of diagnostic constructs with empirically supported structures can then facilitate the development of assessment tools that appropriately characterize these constructs. Our goal in this paper is to illustrate how new statistical methods can inform conceptualization of personality psychopathology and therefore its assessment. We use magical thinking as example, because both theory and earlier empirical work suggested the possibility of discrete aspects to the latent structure of personality psychopathology, particularly forms of psychopathology involving distortions of reality testing, yet other data suggest that personality psychopathology is generally continuous in nature. We directly compared the fit of a variety of latent variable models to magical thinking data from a sample enriched with clinically significant variation in psychotic symptomatology for explanatory purposes. Findings generally suggested a continuous latent variable model best represented magical thinking, but results varied somewhat depending on different indices of model fit. We discuss the implications of the findings for classification and applied personality assessment. We also highlight some limitations of this type of approach that are illustrated by these data, including the importance of substantive interpretation, in addition to use of model fit indices, when evaluating competing structural models. PMID:24007309
Processes involved in the development of latent fingerprints using the cyanoacrylate fuming method.
Lewis, L A; Smithwick, R W; Devault, G L; Bolinger, B; Lewis, S A
2001-03-01
Chemical processes involved in the development of latent fingerprints using the cyanoacrylate fuming method have been studied. Two major types of latent prints have been investigated-clean and oily prints. Scanning electron microscopy (SEM) has been used as a tool for determining the morphology of the polymer developed separately on clean and oily prints after cyanoacrylate fuming. A correlation between the chemical composition of an aged latent fingerprint, prior to development, and the quality of a developed fingerprint has been observed in the morphology. The moisture in the print prior to fuming has been found to be more important than the moisture in the air during fuming for the development of a useful latent print. In addition, the amount of time required to develop a high quality latent print has been found to be within 2 min. The cyanoacrylate polymerization process is extremely rapid. When heat is used to accelerate the fuming process, typically a period of 2 min is required to develop the print. The optimum development time depends upon the concentration of cyanoacrylate vapors within the enclosure.
Ordinal probability effect measures for group comparisons in multinomial cumulative link models.
Agresti, Alan; Kateri, Maria
2017-03-01
We consider simple ordinal model-based probability effect measures for comparing distributions of two groups, adjusted for explanatory variables. An "ordinal superiority" measure summarizes the probability that an observation from one distribution falls above an independent observation from the other distribution, adjusted for explanatory variables in a model. The measure applies directly to normal linear models and to a normal latent variable model for ordinal response variables. It equals Φ(β/2) for the corresponding ordinal model that applies a probit link function to cumulative multinomial probabilities, for standard normal cdf Φ and effect β that is the coefficient of the group indicator variable. For the more general latent variable model for ordinal responses that corresponds to a linear model with other possible error distributions and corresponding link functions for cumulative multinomial probabilities, the ordinal superiority measure equals exp(β)/[1+exp(β)] with the log-log link and equals approximately exp(β/2)/[1+exp(β/2)] with the logit link, where β is the group effect. Another ordinal superiority measure generalizes the difference of proportions from binary to ordinal responses. We also present related measures directly for ordinal models for the observed response that need not assume corresponding latent response models. We present confidence intervals for the measures and illustrate with an example. © 2016, The International Biometric Society.
2014-01-01
Background The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. Methods This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. Results DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. Conclusions These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross. PMID:25038628
Zagelbaum, Nicole K; Heslin, Kevin C; Stein, Judith A; Ruzek, Josef; Smith, Robert E; Nyugen, Tam; Dobalian, Aram
2014-07-19
The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross.
Widaman, Keith F.; Grimm, Kevin J.; Early, Dawnté R.; Robins, Richard W.; Conger, Rand D.
2013-01-01
Difficulties arise in multiple-group evaluations of factorial invariance if particular manifest variables are missing completely in certain groups. Ad hoc analytic alternatives can be used in such situations (e.g., deleting manifest variables), but some common approaches, such as multiple imputation, are not viable. At least 3 solutions to this problem are viable: analyzing differing sets of variables across groups, using pattern mixture approaches, and a new method using random number generation. The latter solution, proposed in this article, is to generate pseudo-random normal deviates for all observations for manifest variables that are missing completely in a given sample and then to specify multiple-group models in a way that respects the random nature of these values. An empirical example is presented in detail comparing the 3 approaches. The proposed solution can enable quantitative comparisons at the latent variable level between groups using programs that require the same number of manifest variables in each group. PMID:24019738
van Wieringen, Wessel N; van de Wiel, Mark A
2011-05-01
Realizing that genes often operate together, studies into the molecular biology of cancer shift focus from individual genes to pathways. In order to understand the regulatory mechanisms of a pathway, one must study its genes at all molecular levels. To facilitate such study at the genomic level, we developed exploratory factor analysis for the characterization of the variability of a pathway's copy number data. A latent variable model that describes the call probability data of a pathway is introduced and fitted with an EM algorithm. In two breast cancer data sets, it is shown that the first two latent variables of GO nodes, which inherit a clear interpretation from the call probabilities, are often related to the proportion of aberrations and a contrast of the probabilities of a loss and of a gain. Linking the latent variables to the node's gene expression data suggests that they capture the "global" effect of genomic aberrations on these transcript levels. In all, the proposed method provides an possibly insightful characterization of pathway copy number data, which may be fruitfully exploited to study the interaction between the pathway's DNA copy number aberrations and data from other molecular levels like gene expression.
Edwards, Justin P; Thornton, Angela M; Shevach, Ethan M
2014-09-15
Activated T regulatory cells (Tregs) express latent TGF-β1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF-β1 from the complex of latent TGF-β1 and latent TGF-β1 binding protein, their role in processing latent TGF-β1 from the latent TGF-β1/GARP complex is unclear. Mouse CD4(+)Foxp3(+) Treg, but not CD4(+)Foxp3(-) T cells, expressed integrin β8 (Itgb8) as detected by quantitative RT-PCR. Itgb8 expression was a marker of thymically derived (t)Treg, because it could not be detected on Foxp3(+)Helios(-) Tregs or on Foxp3(+) T cells induced in vitro. Tregs from Itgb8 conditional knockouts exhibited normal suppressor function in vitro and in vivo in a model of colitis but failed to provide TGF-β1 to drive Th17 or induced Treg differentiation in vitro. In addition, Itgb8 knockout Tregs expressed higher levels of latent TGF-β1 on their cell surface consistent with defective processing. Thus, integrin αvβ8 is a marker of tTregs and functions in a cell intrinsic manner in mediating the processing of latent TGF-β1 from the latent TGF-β1/GARP complex on the surface of tTregs.
Correcting Measurement Error in Latent Regression Covariates via the MC-SIMEX Method
ERIC Educational Resources Information Center
Rutkowski, Leslie; Zhou, Yan
2015-01-01
Given the importance of large-scale assessments to educational policy conversations, it is critical that subpopulation achievement is estimated reliably and with sufficient precision. Despite this importance, biased subpopulation estimates have been found to occur when variables in the conditioning model side of a latent regression model contain…
On the Power of Multivariate Latent Growth Curve Models to Detect Correlated Change
ERIC Educational Resources Information Center
Hertzog, Christopher; Lindenberger, Ulman; Ghisletta, Paolo; Oertzen, Timo von
2006-01-01
We evaluated the statistical power of single-indicator latent growth curve models (LGCMs) to detect correlated change between two variables (covariance of slopes) as a function of sample size, number of longitudinal measurement occasions, and reliability (measurement error variance). Power approximations following the method of Satorra and Saris…
ERIC Educational Resources Information Center
Kaya, Yasemin; Leite, Walter L.
2017-01-01
Cognitive diagnosis models are diagnostic models used to classify respondents into homogenous groups based on multiple categorical latent variables representing the measured cognitive attributes. This study aims to present longitudinal models for cognitive diagnosis modeling, which can be applied to repeated measurements in order to monitor…
On the Relation between the Linear Factor Model and the Latent Profile Model
ERIC Educational Resources Information Center
Halpin, Peter F.; Dolan, Conor V.; Grasman, Raoul P. P. P.; De Boeck, Paul
2011-01-01
The relationship between linear factor models and latent profile models is addressed within the context of maximum likelihood estimation based on the joint distribution of the manifest variables. Although the two models are well known to imply equivalent covariance decompositions, in general they do not yield equivalent estimates of the…
ERIC Educational Resources Information Center
Fryer, Luke K.
2017-01-01
During the past decade, quantitative researchers have examined the first-year university experience from both variable-centred and person-centred perspectives. These studies have, however, generally been cross-sectional and therefore often failed to address how student learning changes during this transition. Furthermore, research has been…
A Comparison of Four Approaches to Account for Method Effects in Latent State-Trait Analyses
ERIC Educational Resources Information Center
Geiser, Christian; Lockhart, Ginger
2012-01-01
Latent state-trait (LST) analysis is frequently applied in psychological research to determine the degree to which observed scores reflect stable person-specific effects, effects of situations and/or person-situation interactions, and random measurement error. Most LST applications use multiple repeatedly measured observed variables as indicators…
A comparison of latent class, K-means, and K-median methods for clustering dichotomous data.
Brusco, Michael J; Shireman, Emilie; Steinley, Douglas
2017-09-01
The problem of partitioning a collection of objects based on their measurements on a set of dichotomous variables is a well-established problem in psychological research, with applications including clinical diagnosis, educational testing, cognitive categorization, and choice analysis. Latent class analysis and K-means clustering are popular methods for partitioning objects based on dichotomous measures in the psychological literature. The K-median clustering method has recently been touted as a potentially useful tool for psychological data and might be preferable to its close neighbor, K-means, when the variable measures are dichotomous. We conducted simulation-based comparisons of the latent class, K-means, and K-median approaches for partitioning dichotomous data. Although all 3 methods proved capable of recovering cluster structure, K-median clustering yielded the best average performance, followed closely by latent class analysis. We also report results for the 3 methods within the context of an application to transitive reasoning data, in which it was found that the 3 approaches can exhibit profound differences when applied to real data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Unsworth, Nash
2009-09-01
A latent variable analysis was conducted to examine the nature of individual differences in the dynamics of free recall and cognitive abilities. Participants performed multiple measures of free recall, working memory capacity (WMC), and fluid intelligence (gF). For each free recall task, recall accuracy, recall latency, and number of intrusion errors were determined, and latent factors were derived for each. It was found that recall accuracy was negatively related to both recall latency and number of intrusions, and recall latency and number of intrusions were positively related. Furthermore, latent WMC and gF factors were positively related to recall accuracy, but negatively related to recall latency and number of intrusions. Finally, a cluster analysis revealed that subgroups of participants with deficits in focusing the search had deficits in recovering degraded representations or deficits in monitoring the products of retrieval. The results are consistent with the idea that variation in the dynamics of free recall, WMC, and gF are primarily due to differences in search set size, but differences in recovery and monitoring are also important.
Karayanidis, Frini; Jamadar, Sharna; Ruge, Hannes; Phillips, Natalie; Heathcote, Andrew; Forstmann, Birte U.
2010-01-01
Recent research has taken advantage of the temporal and spatial resolution of event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI) to identify the time course and neural circuitry of preparatory processes required to switch between different tasks. Here we overview some key findings contributing to understanding strategic processes in advance preparation. Findings from these methodologies are compatible with advance preparation conceptualized as a set of processes activated for both switch and repeat trials, but with substantial variability as a function of individual differences and task requirements. We then highlight new approaches that attempt to capitalize on this variability to link behavior and brain activation patterns. One approach examines correlations among behavioral, ERP and fMRI measures. A second “model-based” approach accounts for differences in preparatory processes by estimating quantitative model parameters that reflect latent psychological processes. We argue that integration of behavioral and neuroscientific methodologies is key to understanding the complex nature of advance preparation in task-switching. PMID:21833196
From loss to loneliness: The relationship between bereavement and depressive symptoms.
Fried, Eiko I; Bockting, Claudi; Arjadi, Retha; Borsboom, Denny; Amshoff, Maximilian; Cramer, Angélique O J; Epskamp, Sacha; Tuerlinckx, Francis; Carr, Deborah; Stroebe, Margaret
2015-05-01
Spousal bereavement can cause a rise in depressive symptoms. This study empirically evaluates 2 competing explanations concerning how this causal effect is brought about: (a) a traditional latent variable explanation, in which loss triggers depression which then leads to symptoms; and (b) a novel network explanation, in which bereavement directly affects particular depression symptoms which then activate other symptoms. We used data from the Changing Lives of Older Couples (CLOC) study and compared depressive symptomatology, assessed via the 11-item Center for Epidemiologic Studies Depression Scale (CES-D), among those who lost their partner (N = 241) with a still-married control group (N = 274). We modeled the effect of partner loss on depressive symptoms either as an indirect effect through a latent variable, or as a direct effect in a network constructed through a causal search algorithm. Compared to the control group, widow(er)s' scores were significantly higher for symptoms of loneliness, sadness, depressed mood, and appetite loss, and significantly lower for happiness and enjoyed life. The effect of partner loss on these symptoms was not mediated by a latent variable. The network model indicated that bereavement mainly affected loneliness, which in turn activated other depressive symptoms. The direct effects of spousal loss on particular symptoms are inconsistent with the predictions of latent variable models, but can be explained from a network perspective. The findings support a growing body of literature showing that specific adverse life events differentially affect depressive symptomatology, and suggest that future studies should examine interventions that directly target such symptoms. (c) 2015 APA, all rights reserved).
Neufeld, Sharon; Jones, Peter B.; Fonagy, Peter; Bullmore, Edward T.; Dolan, Raymond J.; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M.
2017-01-01
Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed ‘distress’ and five ‘distress independent’ specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits. PMID:28403164
St Clair, Michelle C; Neufeld, Sharon; Jones, Peter B; Fonagy, Peter; Bullmore, Edward T; Dolan, Raymond J; Moutoussis, Michael; Toseeb, Umar; Goodyer, Ian M
2017-01-01
Little is known about the underlying relationships between self-reported mental health items measuring both positive and negative emotional and behavioural symptoms at the population level in young people. Improved measurement of the full range of mental well-being and mental illness may aid in understanding the aetiological substrates underlying the development of both mental wellness as well as specific psychiatric diagnoses. A general population sample aged 14 to 24 years completed self-report questionnaires on anxiety, depression, psychotic-like symptoms, obsessionality and well-being. Exploratory and confirmatory factor models for categorical data and latent profile analyses were used to evaluate the structure of both mental wellness and illness items. First order, second order and bifactor structures were evaluated on 118 self-reported items obtained from 2228 participants. A bifactor solution was the best fitting latent variable model with one general latent factor termed 'distress' and five 'distress independent' specific factors defined as self-confidence, antisocial behaviour, worry, aberrant thinking, and mood. Next, six distinct subgroups were derived from a person-centred latent profile analysis of the factor scores. Finally, concurrent validity was assessed using information on hazardous behaviours (alcohol use, substance misuse, self-harm) and treatment for mental ill health: both discriminated between the latent traits and latent profile subgroups. The findings suggest a complex, multidimensional mental health structure in the youth population rather than the previously assumed first or second order factor structure. Additionally, the analysis revealed a low hazardous behaviour/low mental illness risk subgroup not previously described. Population sub-groups show greater validity over single variable factors in revealing mental illness risks. In conclusion, our findings indicate that the structure of self reported mental health is multidimensional in nature and uniquely finds improved prediction to mental illness risk within person-centred subgroups derived from the multidimensional latent traits.
The Effects of Model Misspecification and Sample Size on LISREL Maximum Likelihood Estimates.
ERIC Educational Resources Information Center
Baldwin, Beatrice
The robustness of LISREL computer program maximum likelihood estimates under specific conditions of model misspecification and sample size was examined. The population model used in this study contains one exogenous variable; three endogenous variables; and eight indicator variables, two for each latent variable. Conditions of model…
A Multilevel Model for Comorbid Outcomes: Obesity and Diabetes in the US
Congdon, Peter
2010-01-01
Multilevel models are overwhelmingly applied to single health outcomes, but when two or more health conditions are closely related, it is important that contextual variation in their joint prevalence (e.g., variations over different geographic settings) is considered. A multinomial multilevel logit regression approach for analysing joint prevalence is proposed here that includes subject level risk factors (e.g., age, race, education) while also taking account of geographic context. Data from a US population health survey (the 2007 Behavioral Risk Factor Surveillance System or BRFSS) are used to illustrate the method, with a six category multinomial outcome defined by diabetic status and weight category (obese, overweight, normal). The influence of geographic context is partly represented by known geographic variables (e.g., county poverty), and partly by a model for latent area influences. In particular, a shared latent variable (common factor) approach is proposed to measure the impact of unobserved area influences on joint weight and diabetes status, with the latent variable being spatially structured to reflect geographic clustering in risk. PMID:20616977
Supervised Gamma Process Poisson Factorization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Dylan Zachary
This thesis develops the supervised gamma process Poisson factorization (S- GPPF) framework, a novel supervised topic model for joint modeling of count matrices and document labels. S-GPPF is fully generative and nonparametric: document labels and count matrices are modeled under a uni ed probabilistic framework and the number of latent topics is controlled automatically via a gamma process prior. The framework provides for multi-class classification of documents using a generative max-margin classifier. Several recent data augmentation techniques are leveraged to provide for exact inference using a Gibbs sampling scheme. The first portion of this thesis reviews supervised topic modeling andmore » several key mathematical devices used in the formulation of S-GPPF. The thesis then introduces the S-GPPF generative model and derives the conditional posterior distributions of the latent variables for posterior inference via Gibbs sampling. The S-GPPF is shown to exhibit state-of-the-art performance for joint topic modeling and document classification on a dataset of conference abstracts, beating out competing supervised topic models. The unique properties of S-GPPF along with its competitive performance make it a novel contribution to supervised topic modeling.« less
Dror, Itiel E; Champod, Christophe; Langenburg, Glenn; Charlton, David; Hunt, Heloise; Rosenthal, Robert
2011-05-20
Deciding whether two fingerprint marks originate from the same source requires examination and comparison of their features. Many cognitive factors play a major role in such information processing. In this paper we examined the consistency (both between- and within-experts) in the analysis of latent marks, and whether the presence of a 'target' comparison print affects this analysis. Our findings showed that the context of a comparison print affected analysis of the latent mark, possibly influencing allocation of attention, visual search, and threshold for determining a 'signal'. We also found that even without the context of the comparison print there was still a lack of consistency in analysing latent marks. Not only was this reflected by inconsistency between different experts, but the same experts at different times were inconsistent with their own analysis. However, the characterization of these inconsistencies depends on the standard and definition of what constitutes inconsistent. Furthermore, these effects were not uniform; the lack of consistency varied across fingerprints and experts. We propose solutions to mediate variability in the analysis of friction ridge skin. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Leite, Walter L.; Zuo, Youzhen
2011-01-01
Among the many methods currently available for estimating latent variable interactions, the unconstrained approach is attractive to applied researchers because of its relatively easy implementation with any structural equation modeling (SEM) software. Using a Monte Carlo simulation study, we extended and evaluated the unconstrained approach to…
ERIC Educational Resources Information Center
Henry, Kimberly L.; Muthen, Bengt
2010-01-01
Latent class analysis (LCA) is a statistical method used to identify subtypes of related cases using a set of categorical or continuous observed variables. Traditional LCA assumes that observations are independent. However, multilevel data structures are common in social and behavioral research and alternative strategies are needed. In this…
Using the Graded Response Model to Control Spurious Interactions in Moderated Multiple Regression
ERIC Educational Resources Information Center
Morse, Brendan J.; Johanson, George A.; Griffeth, Rodger W.
2012-01-01
Recent simulation research has demonstrated that using simple raw score to operationalize a latent construct can result in inflated Type I error rates for the interaction term of a moderated statistical model when the interaction (or lack thereof) is proposed at the latent variable level. Rescaling the scores using an appropriate item response…
ERIC Educational Resources Information Center
Li, Tiandong
2012-01-01
In large-scale assessments, such as the National Assessment of Educational Progress (NAEP), plausible values based on Multiple Imputations (MI) have been used to estimate population characteristics for latent constructs under complex sample designs. Mislevy (1991) derived a closed-form analytic solution for a fixed-effect model in creating…
Squeezing Interval Change From Ordinal Panel Data: Latent Growth Curves With Ordinal Outcomes
ERIC Educational Resources Information Center
Mehta, Paras D.; Neale, Michael C.; Flay, Brian R.
2004-01-01
A didactic on latent growth curve modeling for ordinal outcomes is presented. The conceptual aspects of modeling growth with ordinal variables and the notion of threshold invariance are illustrated graphically using a hypothetical example. The ordinal growth model is described in terms of 3 nested models: (a) multivariate normality of the…
Fischer, H Felix; Rose, Matthias
2016-10-19
Recently, a growing number of Item-Response Theory (IRT) models has been published, which allow estimation of a common latent variable from data derived by different Patient Reported Outcomes (PROs). When using data from different PROs, direct estimation of the latent variable has some advantages over the use of sum score conversion tables. It requires substantial proficiency in the field of psychometrics to fit such models using contemporary IRT software. We developed a web application ( http://www.common-metrics.org ), which allows estimation of latent variable scores more easily using IRT models calibrating different measures on instrument independent scales. Currently, the application allows estimation using six different IRT models for Depression, Anxiety, and Physical Function. Based on published item parameters, users of the application can directly estimate latent trait estimates using expected a posteriori (EAP) for sum scores as well as for specific response patterns, Bayes modal (MAP), Weighted likelihood estimation (WLE) and Maximum likelihood (ML) methods and under three different prior distributions. The obtained estimates can be downloaded and analyzed using standard statistical software. This application enhances the usability of IRT modeling for researchers by allowing comparison of the latent trait estimates over different PROs, such as the Patient Health Questionnaire Depression (PHQ-9) and Anxiety (GAD-7) scales, the Center of Epidemiologic Studies Depression Scale (CES-D), the Beck Depression Inventory (BDI), PROMIS Anxiety and Depression Short Forms and others. Advantages of this approach include comparability of data derived with different measures and tolerance against missing values. The validity of the underlying models needs to be investigated in the future.
Edwards, Justin P.; Thornton, Angela M.; Shevach, Ethan M.
2014-01-01
Activated T regulatory cells (Treg) express latent TGF-β1 on their cell surface bound to GARP. Although integrins have been implicated in mediating the release of active TGF-β1 from the complex of latent TGF-β1 and latent TGF-β1 binding protein, their role in processing latent TGF-β1 from the latent TGF-β1/GARP complex is unclear. Mouse CD4+Foxp3+ Treg, but not CD4+Foxp3− T cells, expressed integrin β8 (Itgb8) as detected by qRT-PCR. Itgb8 expression was a marker of thymically-derived (t)Treg, as it could not be detected on Foxp3+Helios− Tregs or on Foxp3+ T cells induced in vitro. Tregs from Itgb8 conditional knockouts exhibited normal suppressor function in vitro and in vivo in a model of colitis, but failed to provide TGF-β1 to drive Th17 or iTreg differentiation in vitro. In addition, Itgb8 knockout Tregs expressed higher levels of latent TGF-β1 on their cell surface consistent with defective processing. Thus, integrin αvβ8 is a marker of tTregs and functions in a cell intrinsic manner in mediating the processing of latent TGF-β1 from the latent TGF-β1/GARP complex on the surface of tTregs. PMID:25127859
Multivariate Analysis of Ladle Vibration
NASA Astrophysics Data System (ADS)
Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle
2016-08-01
The homogeneity of composition and uniformity of temperature of the steel melt before it is transferred to the tundish are crucial in making high-quality steel product. The homogenization process is performed by stirring the melt using inert gas in ladles. Continuous monitoring of this process is important to make sure the action of stirring is constant throughout the ladle. Currently, the stirring process is monitored by process operators who largely rely on visual and acoustic phenomena from the ladle. However, due to lack of measurable signals, the accuracy and suitability of this manual monitoring are problematic. The actual flow of argon gas to the ladle may not be same as the flow gage reading due to leakage along the gas line components. As a result, the actual degree of stirring may not be correctly known. Various researchers have used one-dimensional vibration, and sound and image signals measured from the ladle to predict the degree of stirring inside. They developed online sensors which are indeed to monitor the online stirring phenomena. In this investigation, triaxial vibration signals have been measured from a cold water model which is a model of an industrial ladle. Three flow rate ranges and varying bath heights were used to collect vibration signals. The Fast Fourier Transform was applied to the dataset before it has been analyzed using principal component analysis (PCA) and partial least squares (PLS). PCA was used to unveil the structure in the experimental data. PLS was mainly applied to predict the stirring from the vibration response. It was found that for each flow rate range considered in this study, the informative signals reside in different frequency ranges. The first latent variables in these frequency ranges explain more than 95 pct of the variation in the stirring process for the entire single layer and the double layer data collected from the cold model. PLS analysis in these identified frequency ranges demonstrated that the latent variables of the response and predictor variables are highly correlated. The predicted variable has shown linear relationship with the stirring energy and bath recirculation speed. This outcome can improve the predictability of the mixing status in ladle metallurgy and make the online control of the process easier. Industrial testing of this input will follow.
Koppenol-Gonzalez, Gabriela V; Bouwmeester, Samantha; Boonstra, A Marije
2010-12-01
The Tower of London (TOL) is a widely used instrument for assessing planning ability. Inhibition and (spatial) working memory are assumed to contribute to performance on the TOL, but findings about the relationship between these cognitive processes are often inconsistent. Moreover, the influence of specific properties of TOL problems on cognitive processes and difficulty level is often not taken into account. Furthermore, it may be expected that several planning strategies can be distinguished that cannot be extracted from the total score. In this study, a factor analysis and a latent class regression analysis were performed to address these issues. The results showed that 4 strategy groups that differed with respect to preplanning time could be distinguished. The effect of problem properties also differed for the 4 groups. Additional analyses showed that the groups differed on average planning performance but that there were no significant differences between inhibition and spatial working memory performance. Finally, it seemed that multiple factors influence performance on the TOL, the most important ones being the score measurements, the problem properties, and strategy use.
Study of Hydrogen Production Method using Latent Heat of Liquefied Natural Gas
NASA Astrophysics Data System (ADS)
Ogawa, Masaru; Seki, Tatsuyoshi; Honda, Hiroshi; Nakamura, Motomu; Takatani, Yoshiaki
In recent years, Fuel Cell Electrical Vehicle is expected to improve urban environment. Particularly a hydrogen fuel type FCEV expected for urban use, because its excellent characters such as short startup time, high responsibility and zero emission. On the other hand, as far as hydrogen production is concerned, large amount of CO2 is exhausted into the atmosphere by the process of LNG reforming. In our research, we studied the utilization of LNG latent heat for hydrogen gas production process as well as liquefied hydrogen process. Furthermore, CO2---Capturing as liquid state or solid state from hydrogen gas production process by LNG is also studied. Results of research shows that LNG latent heat is very effect to cool hydrogen gas for conventional hydrogen liquefied process. However, the LNG latent heat is not available for LNG reforming process. If we want to use LNG latent heat for this process, we have to develop new hydrogen gas produce process. In this new method, both hydrogen and CO2 is cooled by LNG directly, and CO2 is removed from the reforming gas. In order to make this method practical, we should develop a new type heat-exchanger to prevent solid CO2 from interfering the performance of it.
Incorporating imperfect detection into joint models of communites: A response to Warton et al.
Beissinger, Steven R.; Iknayan, Kelly J.; Guillera-Arroita, Gurutzeta; Zipkin, Elise; Dorazio, Robert; Royle, Andy; Kery, Marc
2016-01-01
Warton et al. [1] advance community ecology by describing a statistical framework that can jointly model abundances (or distributions) across many taxa to quantify how community properties respond to environmental variables. This framework specifies the effects of both measured and unmeasured (latent) variables on the abundance (or occurrence) of each species. Latent variables are random effects that capture the effects of both missing environmental predictors and correlations in parameter values among different species. As presented in Warton et al., however, the joint modeling framework fails to account for the common problem of detection or measurement errors that always accompany field sampling of abundance or occupancy, and are well known to obscure species- and community-level inferences.
Variable Importance in Multivariate Group Comparisons.
ERIC Educational Resources Information Center
Huberty, Carl J.; Wisenbaker, Joseph M.
1992-01-01
Interpretations of relative variable importance in multivariate analysis of variance are discussed, with attention to (1) latent construct definition; (2) linear discriminant function scores; and (3) grouping variable effects. Two numerical ranking methods are proposed and compared by the bootstrap approach using two real data sets. (SLD)
Verification of High Resolution Soil Moisture and Latent Heat in Germany
NASA Astrophysics Data System (ADS)
Samaniego, L. E.; Warrach-Sagi, K.; Zink, M.; Wulfmeyer, V.
2012-12-01
Improving our understanding of soil-land-surface-atmosphere feedbacks is fundamental to make reliable predictions of water and energy fluxes on land systems influenced by anthropogenic activities. Estimating, for instance, which would be the likely consequences of changing climatic regimes on water availability and crop yield, requires of high resolution soil moisture. Modeling it at large-scales, however, is difficult and uncertain because of the interplay between state variables and fluxes and the significant parameter uncertainty of the predicting models. At larger scales, the sub-grid variability of the variables involved and the nonlinearity of the processes complicate the modeling exercise even further because parametrization schemes might be scale dependent. Two contrasting modeling paradigms (WRF/Noah-MP and mHM) were employed to quantify the effects of model and data complexity on soil moisture and latent heat over Germany. WRF/Noah-MP was forced ERA-interim on the boundaries of the rotated CORDEX-Grid (www.meteo.unican.es/wiki/cordexwrf) with a spatial resolution of 0.11o covering Europe during the period from 1989 to 2009. Land cover and soil texture were represented in WRF/Noah-MP with 1×1~km MODIS images and a single horizon, coarse resolution European-wide soil map with 16 soil texture classes, respectively. To ease comparison, the process-based hydrological model mHM was forced with daily precipitation and temperature fields generated by WRF during the same period. The spatial resolution of mHM was fixed at 4×4~km. The multiscale parameter regionalization technique (MPR, Samaniego et al. 2010) was embedded in mHM to be able to estimate effective model parameters using hyper-resolution input data (100×100~km) obtained from Corine land cover and detailed soil texture fields for various horizons comprising 72 soil texture classes for Germany, among other physiographical variables. mHM global parameters, in contrast with those of Noah-MP, were obtained by closing the water balance over major river basins in Germany. Simulated soil moisture and latent heat flux were also evaluated at several eddy covariance sites in Germany. Comparison of monthly soil moisture and latent heat fields obtained with both models over Germany exhibited significant differences, which are mainly attributed to the subgrid variability of key model parameters such as porosity and aerodynamic resistance. Comparison of soil moisture fields obtained with WRF/Noah-MP and mHM forced with grided metereological observations (German Meteorological Service) showed that the differences between both models are mainly due to a combination of precipitation bias and different soil texture resolution. However, EOF analyses indicate that CORDEX results start recovering structures due to soil and vegetation properties. This experiment clearly highlighted the importance of hyper resolution input data to address these challenge. High resolution mHM simulations also indicate that the parametric uncertainty of land surface models is significant, and should not be neglected if a model is to be employed for application at regional scales, e.g. for drought monitoring.
ERIC Educational Resources Information Center
Fagginger Auer, Marije F.; Hickendorff, Marian; Van Putten, Cornelis M.; Béguin, Anton A.; Heiser, Willem J.
2016-01-01
A first application of multilevel latent class analysis (MLCA) to educational large-scale assessment data is demonstrated. This statistical technique addresses several of the challenges that assessment data offers. Importantly, MLCA allows modeling of the often ignored teacher effects and of the joint influence of teacher and student variables.…
Consequences of Ignoring Guessing when Estimating the Latent Density in Item Response Theory
ERIC Educational Resources Information Center
Woods, Carol M.
2008-01-01
In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters. In extant Monte Carlo evaluations of RC-IRT, the item response function (IRF) used to fit the data is the same one used to generate the data. The present simulation study examines RC-IRT when the IRF is imperfectly…
Students' Views on Mathematics in Single-Sex and Coed Classrooms in Ghana
ERIC Educational Resources Information Center
Bofah, Emmanuel Adu-tutu; Hannula, Markku S.
2016-01-01
In this study, we investigated students' views on themselves as learners of mathematics as a function of school-by-sex (N = 2034, MAge = 18.49, SDAge = 1.25; 12th-grade; 58.2% girls). Using latent variable Structural Equation Modeling (SEM), the measurement and structural equivalence as well as the equality of latent means of scores across…
The Information a Test Provides on an Ability Parameter. Research Report. ETS RR-07-18
ERIC Educational Resources Information Center
Haberman, Shelby J.
2007-01-01
In item-response theory, if a latent-structure model has an ability variable, then elementary information theory may be employed to provide a criterion for evaluation of the information the test provides concerning ability. This criterion may be considered even in cases in which the latent-structure model is not valid, although interpretation of…
An introduction to mixture item response theory models.
De Ayala, R J; Santiago, S Y
2017-02-01
Mixture item response theory (IRT) allows one to address situations that involve a mixture of latent subpopulations that are qualitatively different but within which a measurement model based on a continuous latent variable holds. In this modeling framework, one can characterize students by both their location on a continuous latent variable as well as by their latent class membership. For example, in a study of risky youth behavior this approach would make it possible to estimate an individual's propensity to engage in risky youth behavior (i.e., on a continuous scale) and to use these estimates to identify youth who might be at the greatest risk given their class membership. Mixture IRT can be used with binary response data (e.g., true/false, agree/disagree, endorsement/not endorsement, correct/incorrect, presence/absence of a behavior), Likert response scales, partial correct scoring, nominal scales, or rating scales. In the following, we present mixture IRT modeling and two examples of its use. Data needed to reproduce analyses in this article are available as supplemental online materials at http://dx.doi.org/10.1016/j.jsp.2016.01.002. Copyright © 2016 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
Latent Heating Structures Derived from TRMM
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Smith, E. A.; Adler, R.; Hou, A.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.; Olson, W.; Satoh, S.
2004-01-01
Rainfall is the fundamental variable within the Earth's hydrological cycle because it is both the main forcing term leading to variations in continental and oceanic surface water budgets. The vertical distribution of latent heat release, which is accompanied with rain, modulates large-scale meridional and zonal circulations within the tropics as well as modifying the energetic efficiency of mid-latitude weather systems. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water.This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission 0. The TRMM observatory, whose development was a joint US-Japan space endeavor, was launched in November 1997. TRMM measurements provide an accurate account of rainfall over the global tropics, information which can be .used to estimate the four-dimensional structure of latent heating across the entire tropical and sub-tropical regions. Various algorithm methodologies for estimating latent heating based on rain rate measurements from TRMM observations are described. The strengths and weaknesses of these algorithms, as well as the latent heating products generated by these algorithms, are also discussed along with validation analyses of the products. The investigation paper provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, and concludes with remarks designed to stimulate further research on latent heating retrieval
Nonlinear dynamics of global atmospheric and Earth system processes
NASA Technical Reports Server (NTRS)
Saltzman, Barry
1993-01-01
During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.
Chen, Qi; Hughes, Jan N.; Liew, Jeffrey; Kwok, Oi-Man
2010-01-01
The longitudinal relationships between two dimensions of peer relationships and subsequent academic adjustment were investigated in a sample of 543 relatively low achieving children (M = 6.57 years at Year 1, 1st grade). Latent variable SEM was used to test a four stage model positing indirect effects of peer acceptance and peer academic reputation (PAR) assessed in Year 2 on academic achievement in Year 5, via the effects of the peer relationships variables on perceived academic competence in Year 3 and effortful engagement in Year 4. As expected, the effect of PAR on engagement was partially mediated by perceived academic competence, and the effect of perceived academic competence on achievement was partially mediated by engagement. In the context of PAR, peer acceptance did not contribute to the mediating variables or to achievement. Findings provide a clearer understanding of the processes by which early peer-relationships influence concurrent and future school-related outcomes. Implications for educational practice and future research are discussed. PMID:21113406
Estimation of diagnostic test accuracy without full verification: a review of latent class methods
Collins, John; Huynh, Minh
2014-01-01
The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172
Fall Risk, Supports and Services, and Falls Following a Nursing Home Discharge.
Noureldin, Marwa; Hass, Zachary; Abrahamson, Kathleen; Arling, Greg
2017-09-04
Falls are a major source of morbidity and mortality among older adults; however, little is known regarding fall occurrence during a nursing home (NH) to community transition. This study sought to examine whether the presence of supports and services impacts the relationship between fall-related risk factors and fall occurrence post NH discharge. Participants in the Minnesota Return to Community Initiative who were assisted in achieving a community discharge (N = 1459) comprised the study sample. The main outcome was fall occurrence within 30 days of discharge. Factor analyses were used to estimate latent models from variables of interest. A structural equation model (SEM) was estimated to determine the relationship between the emerging latent variables and falls. Fifteen percent of participants fell within 30 days of NH discharge. Factor analysis of fall-related risk factors produced three latent variables: fall concerns/history; activities of daily living impairments; and use of high-risk medications. A supports/services latent variable also emerged that included caregiver support frequency, medication management assistance, durable medical equipment use, discharge location, and receipt of home health or skilled nursing services. In the SEM model, high-risk medications use and fall concerns/history had direct positive effects on falling. Receiving supports/services did not affect falling directly; however, it reduced the effect of high-risk medication use on falling (p < .05). Within the context of a state-implemented transition program, findings highlight the importance of supports/services in mitigating against medication-related risk of falling post NH discharge. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Gloster, Andrew T; Klotsche, Jens; Gerlach, Alexander L; Hamm, Alfons; Ströhle, Andreas; Gauggel, Siegfried; Kircher, Tilo; Alpers, Georg W; Deckert, Jürgen; Wittchen, Hans-Ulrich
2014-02-01
The mechanisms of action underlying treatment are inadequately understood. This study examined 5 variables implicated in the treatment of panic disorder with agoraphobia (PD/AG): catastrophic agoraphobic cognitions, anxiety about bodily sensations, agoraphobic avoidance, anxiety sensitivity, and psychological flexibility. The relative importance of these process variables was examined across treatment phases: (a) psychoeducation/interoceptive exposure, (b) in situ exposure, and (c) generalization/follow-up. Data came from a randomized controlled trial of cognitive behavioral therapy for PD/AG (n = 301). Outcomes were the Panic and Agoraphobia Scale (Bandelow, 1995) and functioning as measured in the Clinical Global Impression scale (Guy, 1976). The effect of process variables on subsequent change in outcome variables was calculated using bivariate latent difference score modeling. Change in panic symptomatology was preceded by catastrophic appraisal and agoraphobic avoidance across all phases of treatment, by anxiety sensitivity during generalization/follow-up, and by psychological flexibility during exposure in situ. Change in functioning was preceded by agoraphobic avoidance and psychological flexibility across all phases of treatment, by fear of bodily symptoms during generalization/follow-up, and by anxiety sensitivity during exposure. The effects of process variables on outcomes differ across treatment phases and outcomes (i.e., symptomatology vs. functioning). Agoraphobic avoidance and psychological flexibility should be investigated and therapeutically targeted in addition to cognitive variables. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Muniz-Terrera, Graciela; Matthews, Fiona; Dening, Tom; Huppert, Felicia A; Brayne, Carol
2009-05-01
the investigation of cognitive decline in the older population has been hampered by analytical considerations. Most studies of older people over prolonged periods suffer from loss to follow-up, yet this has seldom been investigated fully to date. Such considerations limit our understanding of how basic variables such as education can affect cognitive trajectories. we examined cognitive trajectories in a population-based cohort study in Cambridge, UK, of people aged 75 and over in whom multiple interviews were conducted over time. Cognitive function was assessed using the Mini-Mental State Examination (MMSE). Socio-demographic variables were measured, including educational level and social class. An age-based quadratic latent growth model was fitted to cognitive scores. The effect of socio-demographic variables was examined on all latent variables and the probability of death and dropout. at baseline, age, education, social class and mobility were associated with cognitive performance. Education and social class were not related to decline or its rate of change. In contrast, poor mobility was associated with lower cognitive performance, increased cognitive decline and increased rate of change of cognitive decline. Gender, age, mobility and cognitive ability predicted death and dropout contrary to much of the current literature, education was not related to rate of cognitive decline or change in this rate as measured by MMSE. Higher levels of education do not appear to protect against cognitive decline, though if the MMSE is used in the diagnostic process, individuals with less education may be diagnosed as having dementia somewhat earlier.
Investigation of Mediational Processes Using Parallel Process Latent Growth Curve Modeling.
ERIC Educational Resources Information Center
Cheong, JeeWon; MacKinnon, David P.; Khoo, Siek Toon
2003-01-01
Investigated a method to evaluate mediational processes using latent growth curve modeling and tested it with empirical data from a longitudinal steroid use prevention program focusing on 1,506 high school football players over 4 years. Findings suggest the usefulness of the approach. (SLD)
Lo, Po-Han; Tsou, Mei-Yung; Chang, Kuang-Yi
2015-09-01
Patient-controlled epidural analgesia (PCEA) is commonly used for pain relief after total knee arthroplasty (TKA). This study aimed to model the trajectory of analgesic demand over time after TKA and explore its influential factors using latent curve analysis. Data were retrospectively collected from 916 patients receiving unilateral or bilateral TKA and postoperative PCEA. PCEA demands during 12-hour intervals for 48 hours were directly retrieved from infusion pumps. Potentially influential factors of PCEA demand, including age, height, weight, body mass index, sex, and infusion pump settings, were also collected. A latent curve analysis with 2 latent variables, the intercept (baseline) and slope (trend), was applied to model the changes in PCEA demand over time. The effects of influential factors on these 2 latent variables were estimated to examine how these factors interacted with time to alter the trajectory of PCEA demand over time. On average, the difference in analgesic demand between the first and second 12-hour intervals was only 15% of that between the first and third 12-hour intervals. No significant difference in PCEA demand was noted between the third and fourth 12-hour intervals. Aging tended to decrease the baseline PCEA demand but body mass index and infusion rate were positively correlated with the baseline. Only sex significantly affected the trend parameter and male individuals tended to have a smoother decreasing trend of analgesic demands over time. Patients receiving bilateral procedures did not consume more analgesics than their unilateral counterparts. Goodness of fit analysis indicated acceptable model fit to the observed data. Latent curve analysis provided valuable information about how analgesic demand after TKA changed over time and how patient characteristics affected its trajectory.
Rössler, Wulf; Hengartner, Michael P; Ajdacic-Gross, Vladeta; Haker, Helene; Angst, Jules
2013-10-01
Our aim was to deconstruct the variance underlying the expression of sub-clinical psychosis symptoms into portions associated with latent time-dependent states and time-invariant traits. We analyzed data of 335 subjects from the general population of Zurich, Switzerland, who had been repeatedly measured between 1979 (age 20/21) and 2008 (age 49/50). We applied two measures of sub-clinical psychosis derived from the SCL-90-R, namely schizotypal signs (STS) and schizophrenia nuclear symptoms (SNS). Variance was decomposed with latent state-trait analysis and associations with covariates were examined with generalized linear models. At ages 19/20 and 49/50, the latent states underlying STS accounted for 48% and 51% of variance, whereas for SNS those estimates were 62% and 50%. Between those age classes, however, expression of sub-clinical psychosis was strongly associated with stable traits (75% and 89% of total variance in STS and SNS, respectively, at age 27/28). Latent states underlying variance in STS and SNS were particularly related to partnership problems over almost the entire observation period. STS was additionally related to employment problems, whereas drug-use was a strong predictor of states underlying both syndromes at age 19/20. The latent trait underlying expression of STS and SNS was particularly related to low sense of mastery and self-esteem and to high depressiveness. Although most psychosis symptoms are transient and episodic in nature, the variability in their expression is predominantly caused by stable traits. Those time-invariant and rather consistent effects are particularly influential around age 30, whereas the occasion-specific states appear to be particularly influential at ages 20 and 50. © 2013.
ERIC Educational Resources Information Center
Aryadoust, Vahid
2015-01-01
The present study uses a mixture Rasch model to examine latent differential item functioning in English as a foreign language listening tests. Participants (n = 250) took a listening and lexico-grammatical test and completed the metacognitive awareness listening questionnaire comprising problem solving (PS), planning and evaluation (PE), mental…
An All-Fragments Grammar for Simple and Accurate Parsing
2012-03-21
Tsujii. Probabilistic CFG with latent annotations. In Proceedings of ACL, 2005. Slav Petrov and Dan Klein. Improved Inference for Unlexicalized Parsing. In...Proceedings of NAACL-HLT, 2007. Slav Petrov and Dan Klein. Sparse Multi-Scale Grammars for Discriminative Latent Variable Parsing. In Proceedings of...EMNLP, 2008. Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning Accurate, Compact, and Interpretable Tree Annotation. In Proceedings
Stability of Language in Childhood: A Multi-Age, -Domain, -Measure, and -Source Study
Bornstein, Marc H.; Putnick, Diane L.
2011-01-01
The stability of language across childhood is traditionally assessed by exploring longitudinal relations between individual language measures. However, language encompasses many domains and varies with different sources (child speech, parental report, experimenter assessment). This study evaluated individual variation in multiple age-appropriate measures of child language derived from multiple sources and stability between their latent variables in 192 young children across more than 2 years. Structural equation modeling demonstrated the loading of multiple measures of child language from different sources on single latent variables of language at ages 20 and 48 months. A large stability coefficient (r = .84) obtained between the 2 language latent variables. This stability obtained even when accounting for family socioeconomic status, maternal verbal intelligence, education, speech, and tendency to respond in a socially desirable fashion, and child social competence. Stability was also equivalent for children in diverse childcare situations and for girls and boys. Across age, from the beginning of language acquisition to just before school entry, aggregating multiple age-appropriate methods and measures at each age and multiple reporters, children show strong stability of individual differences in general language development. PMID:22004343
Data-driven subtypes of major depressive disorder: a systematic review
2012-01-01
Background According to current classification systems, patients with major depressive disorder (MDD) may have very different combinations of symptoms. This symptomatic diversity hinders the progress of research into the causal mechanisms and treatment allocation. Theoretically founded subtypes of depression such as atypical, psychotic, and melancholic depression have limited clinical applicability. Data-driven analyses of symptom dimensions or subtypes of depression are scarce. In this systematic review, we examine the evidence for the existence of data-driven symptomatic subtypes of depression. Methods We undertook a systematic literature search of MEDLINE, PsycINFO and Embase in May 2012. We included studies analyzing the depression criteria of the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) of adults with MDD in latent variable analyses. Results In total, 1176 articles were retrieved, of which 20 satisfied the inclusion criteria. These reports described a total of 34 latent variable analyses: 6 confirmatory factor analyses, 6 exploratory factor analyses, 12 principal component analyses, and 10 latent class analyses. The latent class techniques distinguished 2 to 5 classes, which mainly reflected subgroups with different overall severity: 62 of 71 significant differences on symptom level were congruent with a latent class solution reflecting severity. The latent class techniques did not consistently identify specific symptom clusters. Latent factor techniques mostly found a factor explaining the variance in the symptoms depressed mood and interest loss (11 of 13 analyses), often complemented by psychomotor retardation or fatigue (8 of 11 analyses). However, differences in found factors and classes were substantial. Conclusions The studies performed to date do not provide conclusive evidence for the existence of depressive symptom dimensions or symptomatic subtypes. The wide diversity of identified factors and classes might result either from the absence of patterns to be found, or from the theoretical and modeling choices preceding analysis. PMID:23210727
The nature of expertise in fingerprint examiners.
Busey, Thomas A; Parada, Francisco J
2010-04-01
Latent print examinations involve a complex set of psychological and cognitive processes. This article summarizes existing work that has addressed how training and experience creates changes in latent print examiners. Experience appears to improve overall accuracy, increase visual working memory, and lead to configural processing of upright fingerprints. Experts also demonstrate a narrower visual filter and, as a group, tend to show greater consistency when viewing ink prints. These findings address recent criticisms of latent print evidence, but many open questions still exist. Cognitive scientists are well positioned to conduct studies that will improve the training and practices of latent print examiners, and suggestions for becoming involved in fingerprint research are provided.
Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R.; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F.
2014-01-01
ABSTRACT We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed. PMID:24429365
Latent variable model for suicide risk in relation to social capital and socio-economic status.
Congdon, Peter
2012-08-01
There is little evidence on the association between suicide outcomes (ideation, attempts, self-harm) and social capital. This paper investigates such associations using a structural equation model based on health survey data, and allowing for both individual and contextual risk factors. Social capital and other major risk factors for suicide, namely socioeconomic status and social isolation, are modelled as latent variables that are proxied (or measured) by observed indicators or question responses for survey subjects. These latent scales predict suicide risk in the structural component of the model. Also relevant to explaining suicide risk are contextual variables, such as area deprivation and region of residence, as well as the subject's demographic status. The analysis is based on the 2007 Adult Psychiatric Morbidity Survey and includes 7,403 English subjects. A Bayesian modelling strategy is used. Models with and without social capital as a predictor of suicide risk are applied. A benefit to statistical fit is demonstrated when social capital is added as a predictor. Social capital varies significantly by geographic context variables (neighbourhood deprivation, region), and this impacts on the direct effects of these contextual variables on suicide risk. In particular, area deprivation is not confirmed as a distinct significant influence. The model develops a suicidality risk score incorporating social capital, and the success of this risk score in predicting actual suicide events is demonstrated. Social capital as reflected in neighbourhood perceptions is a significant factor affecting risks of different types of self-harm and may mediate the effects of other contextual variables such as area deprivation.
Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F; Luzuriaga, Katherine
2014-04-01
We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed.
Geiser, Christian; Griffin, Daniel; Shiffman, Saul
2016-01-01
Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT.
Geiser, Christian; Griffin, Daniel; Shiffman, Saul
2016-01-01
Sometimes, researchers are interested in whether an intervention, experimental manipulation, or other treatment causes changes in intra-individual state variability. The authors show how multigroup-multiphase latent state-trait (MG-MP-LST) models can be used to examine treatment effects with regard to both mean differences and differences in state variability. The approach is illustrated based on a randomized controlled trial in which N = 338 smokers were randomly assigned to nicotine replacement therapy (NRT) vs. placebo prior to quitting smoking. We found that post quitting, smokers in both the NRT and placebo group had significantly reduced intra-individual affect state variability with respect to the affect items calm and content relative to the pre-quitting phase. This reduction in state variability did not differ between the NRT and placebo groups, indicating that quitting smoking may lead to a stabilization of individuals' affect states regardless of whether or not individuals receive NRT. PMID:27499744
Vera, José Fernando; de Rooij, Mark; Heiser, Willem J
2014-11-01
In this paper we propose a latent class distance association model for clustering in the predictor space of large contingency tables with a categorical response variable. The rows of such a table are characterized as profiles of a set of explanatory variables, while the columns represent a single outcome variable. In many cases such tables are sparse, with many zero entries, which makes traditional models problematic. By clustering the row profiles into a few specific classes and representing these together with the categories of the response variable in a low-dimensional Euclidean space using a distance association model, a parsimonious prediction model can be obtained. A generalized EM algorithm is proposed to estimate the model parameters and the adjusted Bayesian information criterion statistic is employed to test the number of mixture components and the dimensionality of the representation. An empirical example highlighting the advantages of the new approach and comparing it with traditional approaches is presented. © 2014 The British Psychological Society.
Dadousis, C; Cipolat-Gotet, C; Bittante, G; Cecchinato, A
2018-02-01
We studied the genetics of cheese-related latent variables (factors; Fs) for application in dairy cattle breeding. In total, 26 traits, recorded in 1264 Brown Swiss cows, were analyzed through multivariate factor analysis (MFA). Traits analyzed were descriptors of milk quality and yield (including protein fractions) and measures of coagulation, curd firmness (CF), cheese yields (%CY) and nutrient recoveries in the curd (REC). A total of 10 Fs (mutual orthogonal with a varimax rotation) were obtained. To assess the practical use of the Fs into breeding, we inferred their genetic parameters using single and bivariate animal models under a Bayesian framework. Heritability estimates (intra-herd) varied between 0.11 and 0.72 (F3: Yield and F7: κ-β-CN, respectively). The Fs underlined basic characteristics of the cheese-making process, milk components and udder health, while retaining 74% of the original variability. The first two Fs were indicators of the CY percentage (F1: %CY) and the CF process (F2: CF t ), and presented similar heritability estimates: 0.268 and 0.295, respectively. The third factor was associated with the yield of milk and solids (F3: Yield) characterized by a low heritability (0.108) and the fourth with the cheese nitrogen (N) (F4: Cheese N) that conversely appeared to be characterized by a high heritability (0.618). Three Fs were associated with the proportion of the basic milk caseins on total milk protein (F5: as1-β-CN, F7: κ-β-CN, F8: as2-CN), also highly heritable (0.565, 0.723 and 0.397, respectively) and 1 factor with the phosphorylated form of the as1-CN (F9: as1-CN-Ph; 0.318). Moreover, 1 factor was linked to the whey protein α-LA (F10: α-LA; 0.147). An indicator factor of a cow's udder health (F6: Udder health) was also obtained and showed a moderate heritability (0.204). Although the Fs were phenotypically uncorrelated, considerable additive genetic correlations existed among them, with highest values observed between F10: α-LA and F6: Udder health (-0.67) as well as between F9: as1-CN-Ph and F3: Yield (-0.60). Our results show the usefulness of MFA in dairy cattle breeding. The ability to replace a large number of variables with a few latent indicators of the same biological meaning marks MFA as a valuable tool for developing breeding strategies to improve cow's cheese-related traits.
NASA Astrophysics Data System (ADS)
Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.
2015-04-01
The development of European surface wind storms out of normal mid-latitude cyclones is substantially influenced by upstream tropospheric growth factors over the Northern Atlantic. The main factors include divergence and vorticity advection in the upper troposphere, latent heat release and the presence of instabilities of short baroclinic waves of suitable wave lengths. In this study we examine a subset of these potential growth factors and their related influences on the transformation of extra-tropical cyclones into severe damage prone surface storm systems. Previous studies have shown links between specific growth factors and surface wind storms related to extreme cyclones. In our study we investigate in further detail spatial and temporal variability patterns of these upstream processes at different vertical levels of the troposphere. The analyses will comprise of the three growth factors baroclinicity, latent heat release and upper tropospheric divergence. Our definition of surface wind storms is based on the Storm Severity Index (SSI) alongside a wind tracking algorithm identifying areas of exceedances of the local 98th percentile of the 10m wind speed. We also make use of a well-established extra-tropical cyclone identification and tracking algorithm. These cyclone tracks form the base for a composite analysis of the aforementioned growth factors using ERA-Interim Reanalysis from 1979 - 2014 for the extended winter season (ONDJFM). Our composite analysis corroborates previous similar studies but extends them by using an impact based algorithm for the identification of strong wind systems. Based on this composite analysis we further identify variability patterns for each growth factor most important for the transformation of a cyclone into a surface wind storm. We thus also address the question whether the link between storm intensity and related growth factor anomaly taking into account its spatial variability is stable and can be quantified. While the robustness of our preliminary results is generally dependent on the growth factor investigated, some examples include i) the overall availability of latent heat seems to be less important than its spatial structure around the cyclone core and ii) the variability of upper-tropospheric baroclinicity appears to be highest north of the surface position of the cyclone, especially for those that transform into a surface storm.
Feature extraction for document text using Latent Dirichlet Allocation
NASA Astrophysics Data System (ADS)
Prihatini, P. M.; Suryawan, I. K.; Mandia, IN
2018-01-01
Feature extraction is one of stages in the information retrieval system that used to extract the unique feature values of a text document. The process of feature extraction can be done by several methods, one of which is Latent Dirichlet Allocation. However, researches related to text feature extraction using Latent Dirichlet Allocation method are rarely found for Indonesian text. Therefore, through this research, a text feature extraction will be implemented for Indonesian text. The research method consists of data acquisition, text pre-processing, initialization, topic sampling and evaluation. The evaluation is done by comparing Precision, Recall and F-Measure value between Latent Dirichlet Allocation and Term Frequency Inverse Document Frequency KMeans which commonly used for feature extraction. The evaluation results show that Precision, Recall and F-Measure value of Latent Dirichlet Allocation method is higher than Term Frequency Inverse Document Frequency KMeans method. This shows that Latent Dirichlet Allocation method is able to extract features and cluster Indonesian text better than Term Frequency Inverse Document Frequency KMeans method.
Latent Heating from TRMM Satellite Measurements
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.
2004-01-01
Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.
Spatial path models with multiple indicators and multiple causes: mental health in US counties.
Congdon, Peter
2011-06-01
This paper considers a structural model for the impact on area mental health outcomes (poor mental health, suicide) of spatially structured latent constructs: deprivation, social capital, social fragmentation and rurality. These constructs are measured by multiple observed effect indicators, with the constructs allowed to be correlated both between and within areas. However, in the scheme developed here, particular latent constructs may also be influenced by known variables, or, via path sequences, by other constructs, possibly nonlinearly. For example, area social capital may be measured by effect indicators (e.g. associational density, charitable activity), but influenced as causes by other constructs (e.g. area deprivation), and by observed features of the socio-ethnic structure of areas. A model incorporating these features is applied to suicide mortality and the prevalence of poor mental health in 3141 US counties, which are related to the latent spatial constructs and to observed variables (e.g. county ethnic mix). Copyright © 2011 Elsevier Ltd. All rights reserved.
A Bayesian Approach to More Stable Estimates of Group-Level Effects in Contextual Studies.
Zitzmann, Steffen; Lüdtke, Oliver; Robitzsch, Alexander
2015-01-01
Multilevel analyses are often used to estimate the effects of group-level constructs. However, when using aggregated individual data (e.g., student ratings) to assess a group-level construct (e.g., classroom climate), the observed group mean might not provide a reliable measure of the unobserved latent group mean. In the present article, we propose a Bayesian approach that can be used to estimate a multilevel latent covariate model, which corrects for the unreliable assessment of the latent group mean when estimating the group-level effect. A simulation study was conducted to evaluate the choice of different priors for the group-level variance of the predictor variable and to compare the Bayesian approach with the maximum likelihood approach implemented in the software Mplus. Results showed that, under problematic conditions (i.e., small number of groups, predictor variable with a small ICC), the Bayesian approach produced more accurate estimates of the group-level effect than the maximum likelihood approach did.
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)
2000-01-01
The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.
Uncovering a latent multinomial: Analysis of mark-recapture data with misidentification
Link, W.A.; Yoshizaki, J.; Bailey, L.L.; Pollock, K.H.
2010-01-01
Natural tags based on DNA fingerprints or natural features of animals are now becoming very widely used in wildlife population biology. However, classic capture-recapture models do not allow for misidentification of animals which is a potentially very serious problem with natural tags. Statistical analysis of misidentification processes is extremely difficult using traditional likelihood methods but is easily handled using Bayesian methods. We present a general framework for Bayesian analysis of categorical data arising from a latent multinomial distribution. Although our work is motivated by a specific model for misidentification in closed population capture-recapture analyses, with crucial assumptions which may not always be appropriate, the methods we develop extend naturally to a variety of other models with similar structure. Suppose that observed frequencies f are a known linear transformation f = A???x of a latent multinomial variable x with cell probability vector ?? = ??(??). Given that full conditional distributions [?? | x] can be sampled, implementation of Gibbs sampling requires only that we can sample from the full conditional distribution [x | f, ??], which is made possible by knowledge of the null space of A???. We illustrate the approach using two data sets with individual misidentification, one simulated, the other summarizing recapture data for salamanders based on natural marks. ?? 2009, The International Biometric Society.
Uncovering a Latent Multinomial: Analysis of Mark-Recapture Data with Misidentification
Link, W.A.; Yoshizaki, J.; Bailey, L.L.; Pollock, K.H.
2009-01-01
Natural tags based on DNA fingerprints or natural features of animals are now becoming very widely used in wildlife population biology. However, classic capture-recapture models do not allow for misidentification of animals which is a potentially very serious problem with natural tags. Statistical analysis of misidentification processes is extremely difficult using traditional likelihood methods but is easily handled using Bayesian methods. We present a general framework for Bayesian analysis of categorical data arising from a latent multinomial distribution. Although our work is motivated by a specific model for misidentification in closed population capture-recapture analyses, with crucial assumptions which may not always be appropriate, the methods we develop extend naturally to a variety of other models with similar structure. Suppose that observed frequencies f are a known linear transformation f=A'x of a latent multinomial variable x with cell probability vector pi= pi(theta). Given that full conditional distributions [theta | x] can be sampled, implementation of Gibbs sampling requires only that we can sample from the full conditional distribution [x | f, theta], which is made possible by knowledge of the null space of A'. We illustrate the approach using two data sets with individual misidentification, one simulated, the other summarizing recapture data for salamanders based on natural marks.
Mannarini, Stefania; Boffo, Marilisa
2015-01-01
Mental illness stigma is a serious societal problem and a critical impediment to treatment seeking for mentally ill people. To improve the understanding of mental illness stigma, this study focuses on the simultaneous analysis of people's aetiological beliefs, attitudes (i.e. perceived dangerousness and social distance), and recommended treatments related to several mental disorders by devising an over-arching latent structure that could explain the relations among these variables. Three hundred and sixty university students randomly received an unlabelled vignette depicting one of six mental disorders to be evaluated on the four variables on a Likert-type scale. A one-factor Latent Class Analysis (LCA) model was hypothesized, which comprised the four manifest variables as indicators and the mental disorder as external variable. The main findings were the following: (a) a one-factor LCA model was retrieved; (b) alcohol and drug addictions are the most strongly stigmatized; (c) a realistic opinion about the causes and treatment of schizophrenia, anxiety, bulimia, and depression was associated to lower prejudicial attitudes and social rejection. Beyond the general appraisal of mental illness an individual might have, the results generally point to the acknowledgement of the specific features of different diagnostic categories. The implications of the present results are discussed in the framework of a better understanding of mental illness stigma.
Archambeau, Cédric; Verleysen, Michel
2007-01-01
A new variational Bayesian learning algorithm for Student-t mixture models is introduced. This algorithm leads to (i) robust density estimation, (ii) robust clustering and (iii) robust automatic model selection. Gaussian mixture models are learning machines which are based on a divide-and-conquer approach. They are commonly used for density estimation and clustering tasks, but are sensitive to outliers. The Student-t distribution has heavier tails than the Gaussian distribution and is therefore less sensitive to any departure of the empirical distribution from Gaussianity. As a consequence, the Student-t distribution is suitable for constructing robust mixture models. In this work, we formalize the Bayesian Student-t mixture model as a latent variable model in a different way from Svensén and Bishop [Svensén, M., & Bishop, C. M. (2005). Robust Bayesian mixture modelling. Neurocomputing, 64, 235-252]. The main difference resides in the fact that it is not necessary to assume a factorized approximation of the posterior distribution on the latent indicator variables and the latent scale variables in order to obtain a tractable solution. Not neglecting the correlations between these unobserved random variables leads to a Bayesian model having an increased robustness. Furthermore, it is expected that the lower bound on the log-evidence is tighter. Based on this bound, the model complexity, i.e. the number of components in the mixture, can be inferred with a higher confidence.
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.
2014-01-01
This research note contributes to the discussion of methods that can be used to identify useful auxiliary variables for analyses of incomplete data sets. A latent variable approach is discussed, which is helpful in finding auxiliary variables with the property that if included in subsequent maximum likelihood analyses they may enhance considerably…
Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2005-01-01
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…
Causal Models with Unmeasured Variables: An Introduction to LISREL.
ERIC Educational Resources Information Center
Wolfle, Lee M.
Whenever one uses ordinary least squares regression, one is making an implicit assumption that all of the independent variables have been measured without error. Such an assumption is obviously unrealistic for most social data. One approach for estimating such regression models is to measure implied coefficients between latent variables for which…
Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.
ERIC Educational Resources Information Center
Olson, Jeffery E.
Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…
Fiske, Ian J.; Royle, J. Andrew; Gross, Kevin
2014-01-01
Ecologists and wildlife biologists increasingly use latent variable models to study patterns of species occurrence when detection is imperfect. These models have recently been generalized to accommodate both a more expansive description of state than simple presence or absence, and Markovian dynamics in the latent state over successive sampling seasons. In this paper, we write these multi-season, multi-state models as hidden Markov models to find both maximum likelihood estimates of model parameters and finite-sample estimators of the trajectory of the latent state over time. These estimators are especially useful for characterizing population trends in species of conservation concern. We also develop parametric bootstrap procedures that allow formal inference about latent trend. We examine model behavior through simulation, and we apply the model to data from the North American Amphibian Monitoring Program.
Inferring oscillatory modulation in neural spike trains
Arai, Kensuke; Kass, Robert E.
2017-01-01
Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak. PMID:28985231
ERIC Educational Resources Information Center
Choi, Kilchan; Seltzer, Michael
2005-01-01
In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a time period of substantive interest relate to differences in subsequent change. This report presents a fully Bayesian approach to estimating three-level hierarchical models in which latent variable…
Epilepsy and the Wnt Signaling Pathway
2015-06-01
status epilepticus (SE), head injury, infection or stroke). This is followed by a variable (months to years in humans) “latent period” followed by the...TERMS Status Epilepticus , Wnt Signaling, Epileptogenesis 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACTU U 18. NUMBER OF PAGES 4...disease sub-type. In this grant, we will investigate the mechanisms of Status Epilepticus (SE) and the ensuing latent period in animal models of
Individual heterogeneity in reproductive rates and cost of reproduction in a long-lived vertebrate
Chambert, Thierry; Rotella, Jay J; Higgs, Megan D; Garrott, Robert A
2013-01-01
Individual variation in reproductive success is a key feature of evolution, but also has important implications for predicting population responses to variable environments. Although such individual variation in reproductive outcomes has been reported in numerous studies, most analyses to date have not considered whether these realized differences were due to latent individual heterogeneity in reproduction or merely random chance causing different outcomes among like individuals. Furthermore, latent heterogeneity in fitness components might be expressed differently in contrasted environmental conditions, an issue that has only rarely been investigated. Here, we assessed (i) the potential existence of latent individual heterogeneity and (ii) the nature of its expression (fixed vs. variable) in a population of female Weddell seals (Leptonychotes weddellii), using a hierarchical modeling approach on a 30-year mark–recapture data set consisting of 954 individual encounter histories. We found strong support for the existence of latent individual heterogeneity in the population, with “robust” individuals expected to produce twice as many pups as “frail” individuals. Moreover, the expression of individual heterogeneity appeared consistent, with only mild evidence that it might be amplified when environmental conditions are severe. Finally, the explicit modeling of individual heterogeneity allowed us to detect a substantial cost of reproduction that was not evidenced when the heterogeneity was ignored. PMID:23919151
Blanchin, Myriam; Hardouin, Jean-Benoit; Le Neel, Tanguy; Kubis, Gildas; Blanchard, Claire; Mirallié, Eric; Sébille, Véronique
2011-04-15
Health sciences frequently deal with Patient Reported Outcomes (PRO) data for the evaluation of concepts, in particular health-related quality of life, which cannot be directly measured and are often called latent variables. Two approaches are commonly used for the analysis of such data: Classical Test Theory (CTT) and Item Response Theory (IRT). Longitudinal data are often collected to analyze the evolution of an outcome over time. The most adequate strategy to analyze longitudinal latent variables, which can be either based on CTT or IRT models, remains to be identified. This strategy must take into account the latent characteristic of what PROs are intended to measure as well as the specificity of longitudinal designs. A simple and widely used IRT model is the Rasch model. The purpose of our study was to compare CTT and Rasch-based approaches to analyze longitudinal PRO data regarding type I error, power, and time effect estimation bias. Four methods were compared: the Score and Mixed models (SM) method based on the CTT approach, the Rasch and Mixed models (RM), the Plausible Values (PV), and the Longitudinal Rasch model (LRM) methods all based on the Rasch model. All methods have shown comparable results in terms of type I error, all close to 5 per cent. LRM and SM methods presented comparable power and unbiased time effect estimations, whereas RM and PV methods showed low power and biased time effect estimations. This suggests that RM and PV methods should be avoided to analyze longitudinal latent variables. Copyright © 2010 John Wiley & Sons, Ltd.
Ulery, Bradford T.; Hicklin, R. Austin; Roberts, Maria Antonia; Buscaglia, JoAnn
2014-01-01
Latent print examiners use their expertise to determine whether the information present in a comparison of two fingerprints (or palmprints) is sufficient to conclude that the prints were from the same source (individualization). When fingerprint evidence is presented in court, it is the examiner's determination—not an objective metric—that is presented. This study was designed to ascertain the factors that explain examiners' determinations of sufficiency for individualization. Volunteer latent print examiners (n = 170) were each assigned 22 pairs of latent and exemplar prints for examination, and annotated features, correspondence of features, and clarity. The 320 image pairs were selected specifically to control clarity and quantity of features. The predominant factor differentiating annotations associated with individualization and inconclusive determinations is the count of corresponding minutiae; other factors such as clarity provided minimal additional discriminative value. Examiners' counts of corresponding minutiae were strongly associated with their own determinations; however, due to substantial variation of both annotations and determinations among examiners, one examiner's annotation and determination on a given comparison is a relatively weak predictor of whether another examiner would individualize. The extensive variability in annotations also means that we must treat any individual examiner's minutia counts as interpretations of the (unknowable) information content of the prints: saying “the prints had N corresponding minutiae marked” is not the same as “the prints had N corresponding minutiae.” More consistency in annotations, which could be achieved through standardization and training, should lead to process improvements and provide greater transparency in casework. PMID:25372036
Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A.; Sheffield, Tiffany D.; Nelson, Jennifer Mize
2010-01-01
Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and battery of laboratory tasks described in Wiebe, Espy and Charak (2008), latent EC was related strongly to emergent mathematics achievement in preschool, and was robust after controlling for crystallized intellectual skills. The relation between crystallized skills and emergent mathematics differed between girls and boys, although the predictive association between EC and mathematics did not. Two dimensions of the child’s social environment contributed to mathematics achievement: social network support through its relation to EC and environmental stressors through its relation with crystallized skills. These findings underscore the need to examine the dimensions, mechanisms, and individual pathways that influence the development of early competence in basic cognitive processes that underpin early academic achievement. PMID:21676089
Predictive Validity of Explicit and Implicit Threat Overestimation in Contamination Fear
Green, Jennifer S.; Teachman, Bethany A.
2012-01-01
We examined the predictive validity of explicit and implicit measures of threat overestimation in relation to contamination-fear outcomes using structural equation modeling. Undergraduate students high in contamination fear (N = 56) completed explicit measures of contamination threat likelihood and severity, as well as looming vulnerability cognitions, in addition to an implicit measure of danger associations with potential contaminants. Participants also completed measures of contamination-fear symptoms, as well as subjective distress and avoidance during a behavioral avoidance task, and state looming vulnerability cognitions during an exposure task. The latent explicit (but not implicit) threat overestimation variable was a significant and unique predictor of contamination fear symptoms and self-reported affective and cognitive facets of contamination fear. On the contrary, the implicit (but not explicit) latent measure predicted behavioral avoidance (at the level of a trend). Results are discussed in terms of differential predictive validity of implicit versus explicit markers of threat processing and multiple fear response systems. PMID:24073390
Bull, Rebecca; Espy, Kimberly Andrews; Wiebe, Sandra A; Sheffield, Tiffany D; Nelson, Jennifer Mize
2011-07-01
Latent variable modeling methods have demonstrated utility for understanding the structure of executive control (EC) across development. These methods are utilized to better characterize the relation between EC and mathematics achievement in the preschool period, and to understand contributing sources of individual variation. Using the sample and battery of laboratory tasks described in Wiebe, Espy and Charak (2008), latent EC was related strongly to emergent mathematics achievement in preschool, and was robust after controlling for crystallized intellectual skills. The relation between crystallized skills and emergent mathematics differed between girls and boys, although the predictive association between EC and mathematics did not. Two dimensions of the child 's social environment contributed to mathematics achievement: social network support through its relation to EC and environmental stressors through its relation with crystallized skills. These findings underscore the need to examine the dimensions, mechanisms, and individual pathways that influence the development of early competence in basic cognitive processes that underpin early academic achievement. © 2010 Blackwell Publishing Ltd.
Neural correlates of processing negative and sexually arousing pictures.
Bailey, Kira; West, Robert; Mullaney, Kellie M
2012-01-01
Recent work has questioned whether the negativity bias is a distinct component of affective picture processing. The current study was designed to determine whether there are different neural correlates of processing positive and negative pictures using event-related brain potentials. The early posterior negativity and late positive potential were greatest in amplitude for erotic pictures. Partial Least Squares analysis revealed one latent variable that distinguished erotic pictures from neutral and positive pictures and another that differentiated negative pictures from neutral and positive pictures. The effects of orienting task on the neural correlates of processing negative and erotic pictures indicate that affective picture processing is sensitive to both stimulus-driven, and attentional or decision processes. The current data, together with other recent findings from our laboratory, lead to the suggestion that there are distinct neural correlates of processing negative and positive stimuli during affective picture processing.
Neural Correlates of Processing Negative and Sexually Arousing Pictures
Bailey, Kira; West, Robert; Mullaney, Kellie M.
2012-01-01
Recent work has questioned whether the negativity bias is a distinct component of affective picture processing. The current study was designed to determine whether there are different neural correlates of processing positive and negative pictures using event-related brain potentials. The early posterior negativity and late positive potential were greatest in amplitude for erotic pictures. Partial Least Squares analysis revealed one latent variable that distinguished erotic pictures from neutral and positive pictures and another that differentiated negative pictures from neutral and positive pictures. The effects of orienting task on the neural correlates of processing negative and erotic pictures indicate that affective picture processing is sensitive to both stimulus-driven, and attentional or decision processes. The current data, together with other recent findings from our laboratory, lead to the suggestion that there are distinct neural correlates of processing negative and positive stimuli during affective picture processing. PMID:23029071
A model for the prediction of latent errors using data obtained during the development process
NASA Technical Reports Server (NTRS)
Gaffney, J. E., Jr.; Martello, S. J.
1984-01-01
A model implemented in a program that runs on the IBM PC for estimating the latent (or post ship) content of a body of software upon its initial release to the user is presented. The model employs the count of errors discovered at one or more of the error discovery processes during development, such as a design inspection, as the input data for a process which provides estimates of the total life-time (injected) error content and of the latent (or post ship) error content--the errors remaining a delivery. The model presented presumes that these activities cover all of the opportunities during the software development process for error discovery (and removal).
DOT National Transportation Integrated Search
2015-12-01
We develop an econometric framework for incorporating spatial dependence in integrated model systems of latent variables and multidimensional mixed data outcomes. The framework combines Bhats Generalized Heterogeneous Data Model (GHDM) with a spat...
Should "Multiple Imputations" Be Treated as "Multiple Indicators"?
ERIC Educational Resources Information Center
Mislevy, Robert J.
1993-01-01
Multiple imputations for latent variables are constructed so that analyses treating them as true variables have the correct expectations for population characteristics. Analyzing multiple imputations in accordance with their construction yields correct estimates of population characteristics, whereas analyzing them as multiple indicators generally…
Measurement Models for Reasoned Action Theory.
Hennessy, Michael; Bleakley, Amy; Fishbein, Martin
2012-03-01
Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach.
Application of latent variable model in Rosenberg self-esteem scale.
Leung, Shing-On; Wu, Hui-Ping
2013-01-01
Latent Variable Models (LVM) are applied to Rosenberg Self-Esteem Scale (RSES). Parameter estimations automatically give negative signs hence no recoding is necessary for negatively scored items. Bad items can be located through parameter estimate, item characteristic curves and other measures. Two factors are extracted with one on self-esteem and the other on the degree to take moderate views, with the later not often being covered in previous studies. A goodness-of-fit measure based on two-way margins is used but more works are needed. Results show that scaling provided by models with more formal statistical ground correlated highly with conventional method, which may provide justification for usual practice.
Architecture of cognitive flexibility revealed by lesion mapping
Barbey, Aron K.; Colom, Roberto; Grafman, Jordan
2013-01-01
Neuroscience has made remarkable progress in understanding the architecture of human intelligence, identifying a distributed network of brain structures that support goal-directed, intelligent behavior. However, the neural foundations of cognitive flexibility and adaptive aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 149) that investigates the neural bases of key competencies of cognitive flexibility (i.e., mental flexibility and the fluent generation of new ideas) and systematically examine their contributions to a broad spectrum of cognitive and social processes, including psychometric intelligence (Wechsler Adult Intelligence Scale), emotional intelligence (Mayer, Salovey, Caruso Emotional Intelligence Test), and personality (Neuroticism–Extraversion–Openness Personality Inventory). Latent variable modeling was applied to obtain error-free indices of each factor, followed by voxel-based lesion-symptom mapping to elucidate their neural substrates. Regression analyses revealed that latent scores for psychometric intelligence reliably predict latent scores for cognitive flexibility (adjusted R2 = 0.94). Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal, and parietal regions, including white matter association tracts, which bind these areas into an integrated system. A targeted analysis of the unique variance explained by cognitive flexibility further revealed selective damage within the right superior temporal gyrus, a region known to support insight and the recognition of novel semantic relations. The observed findings motivate an integrative framework for understanding the neural foundations of adaptive behavior, suggesting that core elements of cognitive flexibility emerge from a distributed network of brain regions that support specific competencies for human intelligence. PMID:23721727
Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M
2017-10-01
Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission. This is the first application of a deterministic state-space model to represent the discharge characteristics of motor units during voluntary contractions. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
Ockey, Gary
2011-01-01
Drawing on current theories in personality, second-language (L2) oral ability, and psychometrics, this study investigates the extent to which self-consciousness and assertiveness are explanatory variables of L2 oral ability. Three hundred sixty first-year Japanese university students who were studying English as a foreign language participated in…
Denys, S; Van Loey, A M; Hendrickx, M E
2000-01-01
A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.
Which Are the Determinants of Online Students' Efficiency in Higher Education?
NASA Astrophysics Data System (ADS)
Castillo-Merino, David; Serradell-Lopez, Enric; González-González, Inés
International literature shows that the positive effect on students performance from the adoption of innovations in the technology of teaching and learning do not affect all teaching methods and learning styles equally, as it depends on university strategy and policy towards Information and Communication Technologies (ICT) adoption, students abilities, technology uses in the educational process by teachers and students, or the selection of a methodology that matches with digital uses. This paper provides empirical answers to these questions with data from online students at the Open University of Catalonia (UOC). An empirical model based on structural equations has been defined to explain complex relationships between variables. Our results show that motivation is the main variable affecting online students' performance. It appears as a latent variable influenced by students' perception of efficiency, a driver for indirect positive and significant effect on students' performance from students' ability in ICT uses.
Weikert, Madeline; Motl, Robert W; Suh, Yoojin; McAuley, Edward; Wynn, Daniel
2010-03-15
Motion sensors such as accelerometers have been recognized as an ideal measure of physical activity in persons with MS. This study examined the hypothesis that accelerometer movement counts represent a measure of both physical activity and walking mobility in individuals with MS. The sample included 269 individuals with a definite diagnosis of relapsing-remitting MS who completed the Godin Leisure-Time Exercise Questionnaire (GLTEQ), International Physical Activity Questionnaire (IPAQ), Multiple Sclerosis Walking Scale-12 (MSWS-12), Patient Determined Disease Steps (PDDS), and then wore an ActiGraph accelerometer for 7days. The data were analyzed using bivariate correlation and confirmatory factor analysis. The results indicated that (a) the GLTEQ and IPAQ scores were strongly correlated and loaded significantly on a physical activity latent variable, (b) the MSWS-12 and PDDS scores strongly correlated and loaded significantly on a walking mobility latent variable, and (c) the accelerometer movement counts correlated similarly with the scores from the four self-report questionnaires and cross-loaded on both physical activity and walking mobility latent variables. Our data suggest that accelerometers are measuring both physical activity and walking mobility in persons with MS, whereas self-report instruments are measuring either physical activity or walking mobility in this population.
Hardin, Andrew
2017-09-01
In this issue, Bollen and Diamantopoulos (2017) defend causal-formative indicators against several common criticisms leveled by scholars who oppose their use. In doing so, the authors make several convincing assertions: Constructs exist independently from their measures; theory determines whether indicators cause or measure latent variables; and reflective and causal-formative indicators are both subject to interpretational confounding. However, despite being a well-reasoned, comprehensive defense of causal-formative indicators, no single article can address all of the issues associated with this debate. Thus, Bollen and Diamantopoulos leave a few fundamental issues unresolved. For example, how can researchers establish the reliability of indicators that may include measurement error? Moreover, how should researchers interpret disturbance terms that capture sources of influence related to both the empirical definition of the latent variable and to the theoretical definition of the construct? Relatedly, how should researchers reconcile the requirement for a census of causal-formative indicators with the knowledge that indicators are likely missing from the empirically estimated latent variable? This commentary develops 6 related research questions to draw attention to these fundamental issues, and to call for future research that can lead to the development of theory to guide the use of causal-formative indicators. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Comparing hierarchical models via the marginalized deviance information criterion.
Quintero, Adrian; Lesaffre, Emmanuel
2018-07-20
Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Solimun, Fernandes, Adji Achmad Rinaldo; Arisoesilaningsih, Endang
2017-12-01
Research in various fields generally investigates systems and involves latent variables. One method to analyze the model representing the system is path analysis. The data of latent variables measured using questionnaires by applying attitude scale model yields data in the form of score, before analyzed should be transformation so that it becomes data of scale. Path coefficient, is parameter estimator, calculated from scale data using method of successive interval (MSI) and summated rating scale (SRS). In this research will be identifying which data transformation method is better. Path coefficients have smaller varieties are said to be more efficient. The transformation method that produces scaled data and used in path analysis capable of producing path coefficients (parameter estimators) with smaller varieties is said to be better. The result of analysis using real data shows that on the influence of Attitude variable to Intention Entrepreneurship, has relative efficiency (ER) = 1, where it shows that the result of analysis using data transformation of MSI and SRS as efficient. On the other hand, for simulation data, at high correlation between items (0.7-0.9), MSI method is more efficient 1.3 times better than SRS method.
Belo, Celso; Naidoo, Saloshni
2017-06-08
Healthcare workers in high tuberculosis burdened countries are occupationally exposed to the tuberculosis disease with uncomplicated and complicated tuberculosis on the increase among them. Most of them acquire Mycobacterium tuberculosis but do not progress to the active disease - latent tuberculosis infection. The objective of this study was to assess the prevalence and risk factors associated with latent tuberculosis infection among healthcare workers in Nampula Central Hospital, Mozambique. This cross-sectional study of healthcare workers was conducted between 2014 and 2015. Participants (n = 209) were administered a questionnaire on demographics and occupational tuberculosis exposure and had a tuberculin skin test administered. Multivariate linear and logistic regression tested for associations between independent variables and dependent outcomes (tuberculin skin test induration and latent tuberculosis infection status). The prevalence of latent tuberculosis infection was 34.4%. Latent tuberculosis infection was highest in those working for more than eight years (39.3%), those who had no BCG vaccination (39.6%) and were immunocompromised (78.1%). Being immunocompromised was significantly associated with latent tuberculosis infection (OR 5.97 [95% CI 1.89; 18.87]). Positive but non-significant associations occurred with working in the medical domain (OR 1.02 [95% CI 0.17; 6.37]), length of employment > eight years (OR 1.97 [95% CI 0.70; 5.53]) and occupational contact with tuberculosis patients (OR 1.24 [95% CI 0.47; 3.27]). Personal and occupational factors were positively associated with latent tuberculosis infection among healthcare workers in Mozambique.
Liggett, Jacqueline; Sellbom, Martin; Carmichael, Kieran L C
2017-12-01
The current study examined the extent to which the trait-based operationalization of obsessive-compulsive personality disorder (OCPD) in Section III of the DSM-5 describes the same construct as the one described in Section II. A community sample of 313 adults completed a series of personality inventories indexing the DSM-5 Sections II and III diagnostic criteria for OCPD, in addition to a measure of functional impairment modelled after the criteria in Section III. Results indicated that latent constructs representing Section II and Section III OCPD overlapped substantially (r = .75, p < .001). Hierarchical latent regression models revealed that at least three of the four DSM-5 Section III facets (Rigid Perfectionism, Perseveration, and Intimacy Avoidance) uniquely accounted for a large proportion of variance (53%) in a latent Section II OCPD variable. Further, Anxiousness and (low) Impulsivity, as well as self and interpersonal impairment, augmented the prediction of latent OCPD scores.
Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Yang, Chan; Cui, Xianglong; Shi, Xinyuan; Qiao, Yanjiang
2016-01-01
The quality of Chinese herbal medicine tablets suffers from batch-to-batch variability due to a lack of manufacturing process understanding. In this paper, the Panax notoginseng saponins (PNS) immediate release tablet was taken as the research subject. By defining the dissolution of five active pharmaceutical ingredients and the tablet tensile strength as critical quality attributes (CQAs), influences of both the manipulated process parameters introduced by an orthogonal experiment design and the intermediate granules' properties on the CQAs were fully investigated by different chemometric methods, such as the partial least squares, the orthogonal projection to latent structures, and the multiblock partial least squares (MBPLS). By analyzing the loadings plots and variable importance in the projection indexes, the granule particle sizes and the minimal punch tip separation distance in tableting were identified as critical process parameters. Additionally, the MBPLS model suggested that the lubrication time in the final blending was also important in predicting tablet quality attributes. From the calculated block importance in the projection indexes, the tableting unit was confirmed to be the critical process unit of the manufacturing line. The results demonstrated that the combinatorial use of different multivariate modeling methods could help in understanding the complex process relationships as a whole. The output of this study can then be used to define a control strategy to improve the quality of the PNS immediate release tablet.
Structural identifiability of cyclic graphical models of biological networks with latent variables.
Wang, Yulin; Lu, Na; Miao, Hongyu
2016-06-13
Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and is thus of higher resolution in comparison with many existing approaches. Overall, this study provides a basis for systematic examination and refinement of graphical models of biological networks from the identifiability point of view, and it has a significant potential to be extended to more complex network structures or high-dimensional systems.
Evaluation of an urban canopy model in a tropical city: the role of tree evapotranspiration
NASA Astrophysics Data System (ADS)
Liu, Xuan; Li, Xian-Xiang; Harshan, Suraj; Roth, Matthias; Velasco, Erik
2017-09-01
A single layer urban canopy model (SLUCM) with enhanced hydrologic processes, is evaluated in a tropical city, Singapore. The evaluation was performed using an 11 month offline simulation with the coupled Noah land surface model/SLUCM over a compact low-rise residential area. Various hydrological processes are considered, including anthropogenic latent heat release, and evaporation from impervious urban facets. Results show that the prediction of energy fluxes, in particular latent heat flux, is improved when these processes were included. However, the simulated latent heat flux is still underestimated by ∼40%. Considering Singapore’s high green cover ratio, the tree evapotranspiration process is introduced into the model, which significantly improves the simulated latent heat flux. In particular, the systematic error of the model is greatly reduced, and becomes lower than the unsystematic error in some seasons. The effect of tree evapotranspiration on the urban surface energy balance is further demonstrated during an unusual dry spell. The present study demonstrates that even at sites with relatively low (11%) tree coverage, ignoring evapotranspiration from trees may cause serious underestimation of the latent heat flux and atmospheric humidity. The improved model is also transferable to other tropical or temperate regions to study the impact of tree evapotranspiration on urban climate.
NASA Astrophysics Data System (ADS)
Yin, Jin-Fang; Wang, Dong-Hai; Liang, Zhao-Ming; Liu, Chong-Jian; Zhai, Guo-Qing; Wang, Hong
2018-02-01
Simulations of the severe precipitation event that occurred in the warm sector over southern China on 08 May 2014 are conducted using the Advanced Weather Research and Forecasting (WRF-ARWv3.5.1) model to investigate the roles of microphysical latent heating and surface heat fluxes during the severe precipitation processes. At first, observations from surface rain gauges and ground-based weather radars are used to evaluate the model outputs. Results show that the spatial distribution of 24-h accumulated precipitation is well reproduced, and the temporal and spatial distributions of the simulated radar reflectivity agree well with the observations. Then, several sensitive simulations are performed with the identical model configurations, except for different options in microphysical latent heating and surface heat fluxes. From the results, one of the significant findings is that the latent heating from warm rain microphysical processes heats the atmosphere in the initial phase of the precipitation and thus convective systems start by self-triggering and self-organizing, despite the fact that the environmental conditions are not favorable to the occurrence of precipitation event at the initial phase. In the case of the severe precipitation event over the warm sector, both warm and ice microphysical processes are active with the ice microphysics processes activated almost two hours later. According to the sensitive results, there is a very weak precipitation without heavy rainfall belt when microphysical latent heating is turned off. In terms of this precipitation event, the warm microphysics processes play significant roles on precipitation intensity, while the ice microphysics processes have effects on the spatial distribution of precipitation. Both surface sensible and latent heating have effects on the precipitation intensity and spatial distribution. By comparison, the surface sensible heating has a strong influence on the spatial distribution of precipitation, and the surface latent heating has only a slight impact on the precipitation intensity. The results indicate that microphysical latent heating might be an important factor for severe precipitation forecast in the warm sector over southern China. Surface sensible heating can have considerable influence on the precipitation spatial distribution and should not be neglected in the case of weak large-scale conditions with abundant water vapor in the warm sector.
Helle, Samuli
2018-03-01
Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.
Physician communication in the operating room.
Kirschbaum, Kristin A; Rask, John P; Fortner, Sally A; Kulesher, Robert; Nelson, Michael T; Yen, Tony; Brennan, Matthew
2015-01-01
In this study, communication research was conducted with multidisciplinary groups of operating-room physicians. Theoretical frameworks from intercultural communication and rhetoric were used to (a) measure latent cultural communication variables and (b) conduct communication training with the physicians. A six-step protocol guided the research with teams of physicians from different surgical specialties: anesthesiologists, general surgeons, and obstetrician-gynecologists (n = 85). Latent cultural communication variables were measured by surveys administered to physicians before and after completion of the protocol. The centerpiece of the 2-hour research protocol was an instructional session that informed the surgical physicians about rhetorical choices that support participatory communication. Post-training results demonstrated scores increased on communication variables that contribute to collaborative communication and teamwork among the physicians. This study expands health communication research through application of combined intercultural and rhetorical frameworks, and establishes new ways communication theory can contribute to medical education.
Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S
2016-06-01
We extend dynamic generalized structured component analysis (GSCA) to enhance its data-analytic capability in structural equation modeling of multi-subject time series data. Time series data of multiple subjects are typically hierarchically structured, where time points are nested within subjects who are in turn nested within a group. The proposed approach, named multilevel dynamic GSCA, accommodates the nested structure in time series data. Explicitly taking the nested structure into account, the proposed method allows investigating subject-wise variability of the loadings and path coefficients by looking at the variance estimates of the corresponding random effects, as well as fixed loadings between observed and latent variables and fixed path coefficients between latent variables. We demonstrate the effectiveness of the proposed approach by applying the method to the multi-subject functional neuroimaging data for brain connectivity analysis, where time series data-level measurements are nested within subjects.
Molgaard Nielsen, Anne; Hestbaek, Lise; Vach, Werner; Kent, Peter; Kongsted, Alice
2017-08-09
Heterogeneity in patients with low back pain is well recognised and different approaches to subgrouping have been proposed. One statistical technique that is increasingly being used is Latent Class Analysis as it performs subgrouping based on pattern recognition with high accuracy. Previously, we developed two novel suggestions for subgrouping patients with low back pain based on Latent Class Analysis of patient baseline characteristics (patient history and physical examination), which resulted in 7 subgroups when using a single-stage analysis, and 9 subgroups when using a two-stage approach. However, their prognostic capacity was unexplored. This study (i) determined whether the subgrouping approaches were associated with the future outcomes of pain intensity, pain frequency and disability, (ii) assessed whether one of these two approaches was more strongly or more consistently associated with these outcomes, and (iii) assessed the performance of the novel subgroupings as compared to the following variables: two existing subgrouping tools (STarT Back Tool and Quebec Task Force classification), four baseline characteristics and a group of previously identified domain-specific patient categorisations (collectively, the 'comparator variables'). This was a longitudinal cohort study of 928 patients consulting for low back pain in primary care. The associations between each subgroup approach and outcomes at 2 weeks, 3 and 12 months, and with weekly SMS responses were tested in linear regression models, and their prognostic capacity (variance explained) was compared to that of the comparator variables listed above. The two previously identified subgroupings were similarly associated with all outcomes. The prognostic capacity of both subgroupings was better than that of the comparator variables, except for participants' recovery beliefs and the domain-specific categorisations, but was still limited. The explained variance ranged from 4.3%-6.9% for pain intensity and from 6.8%-20.3% for disability, and highest at the 2 weeks follow-up. Latent Class-derived subgroups provided additional prognostic information when compared to a range of variables, but the improvements were not substantial enough to warrant further development into a new prognostic tool. Further research could investigate if these novel subgrouping approaches may help to improve existing tools that subgroup low back pain patients.
Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang
2018-03-12
Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.
Extraction of latent images from printed media
NASA Astrophysics Data System (ADS)
Sergeyev, Vladislav; Fedoseev, Victor
2015-12-01
In this paper we propose an automatic technology for extraction of latent images from printed media such as documents, banknotes, financial securities, etc. This technology includes image processing by adaptively constructed Gabor filter bank for obtaining feature images, as well as subsequent stages of feature selection, grouping and multicomponent segmentation. The main advantage of the proposed technique is versatility: it allows to extract latent images made by different texture variations. Experimental results showing performance of the method over another known system for latent image extraction are given.
Latent Culture as a Force for Change and the Change Process in Operation.
ERIC Educational Resources Information Center
Banfield, Beryle
The purpose of this study was to apply a theory of latent culture to describe the role of middle class black parents and students in effecting change in an elite educational organization and to use Schein's conceptual model of the Kurk Lewin paradigm of the change process (Unfreezing--Changing--Refreezing) to analyze this process over a three year…
Mean Comparison: Manifest Variable versus Latent Variable
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Bentler, Peter M.
2006-01-01
An extension of multiple correspondence analysis is proposed that takes into account cluster-level heterogeneity in respondents' preferences/choices. The method involves combining multiple correspondence analysis and k-means in a unified framework. The former is used for uncovering a low-dimensional space of multivariate categorical variables…
The choice of product indicators in latent variable interaction models: post hoc analyses.
Foldnes, Njål; Hagtvet, Knut Arne
2014-09-01
The unconstrained product indicator (PI) approach is a simple and popular approach for modeling nonlinear effects among latent variables. This approach leaves the practitioner to choose the PIs to be included in the model, introducing arbitrariness into the modeling. In contrast to previous Monte Carlo studies, we evaluated the PI approach by 3 post hoc analyses applied to a real-world case adopted from a research effort in social psychology. The measurement design applied 3 and 4 indicators for the 2 latent 1st-order variables, leaving the researcher with a choice among more than 4,000 possible PI configurations. Sixty so-called matched-pair configurations that have been recommended in previous literature are of special interest. In the 1st post hoc analysis we estimated the interaction effect for all PI configurations, keeping the real-world sample fixed. The estimated interaction effect was substantially affected by the choice of PIs, also across matched-pair configurations. Subsequently, a post hoc Monte Carlo study was conducted, with varying sample sizes and data distributions. Convergence, bias, Type I error and power of the interaction test were investigated for each matched-pair configuration and the all-pairs configuration. Variation in estimates across matched-pair configurations for a typical sample was substantial. The choice of specific configuration significantly affected convergence and the interaction test's outcome. The all-pairs configuration performed overall better than the matched-pair configurations. A further advantage of the all-pairs over the matched-pairs approach is its unambiguity. The final study evaluates the all-pairs configuration for small sample sizes and compares it to the non-PI approach of latent moderated structural equations. PsycINFO Database Record (c) 2014 APA, all rights reserved.
An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes
ERIC Educational Resources Information Center
Kapland, David
2008-01-01
This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…
Koppenol-Gonzalez, Gabriela V; Bouwmeester, Samantha; Vermunt, Jeroen K
2014-10-01
In studies on the development of cognitive processes, children are often grouped based on their ages before analyzing the data. After the analysis, the differences between age groups are interpreted as developmental differences. We argue that this approach is problematic because the variance in cognitive performance within an age group is considered to be measurement error. However, if a part of this variance is systematic, it can provide very useful information about the cognitive processes used by some children of a certain age but not others. In the current study, we presented 210 children aged 5 to 12 years with serial order short-term memory tasks. First we analyze our data according to the approach using age groups, and then we apply latent class analysis to form latent classes of children based on their performance instead of their ages. We display the results of the age groups and the latent classes in terms of serial position curves, and we discuss the differences in results. Our findings show that there are considerable differences in performance between the age groups and the latent classes. We interpret our findings as indicating that the latent class analysis yielded a much more meaningful way of grouping children in terms of cognitive processes than the a priori grouping of children based on their ages. Copyright © 2014 Elsevier Inc. All rights reserved.
Bowden, Stephen C; Lissner, Dianne; McCarthy, Kerri A L; Weiss, Lawrence G; Holdnack, James A
2007-10-01
Equivalence of the psychological model underlying Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) scores obtained in the United States and Australia was examined in this study. Examination of metric invariance involves testing the hypothesis that all components of the measurement model relating observed scores to latent variables are numerically equal in different samples. The assumption of metric invariance is necessary for interpretation of scores derived from research studies that seek to generalize patterns of convergent and divergent validity and patterns of deficit or disability. An Australian community volunteer sample was compared to the US standardization data. A pattern of strict metric invariance was observed across samples. In addition, when the effects of different demographic characteristics of the US and Australian samples were included, structural parameters reflecting values of the latent cognitive variables were found not to differ. These results provide important evidence for the equivalence of measurement of core cognitive abilities with the WAIS-III and suggest that latent cognitive abilities in the US and Australia do not differ.
Discriminative latent models for recognizing contextual group activities.
Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N; Mori, Greg
2012-08-01
In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities.
Discriminative Latent Models for Recognizing Contextual Group Activities
Lan, Tian; Wang, Yang; Yang, Weilong; Robinovitch, Stephen N.; Mori, Greg
2012-01-01
In this paper, we go beyond recognizing the actions of individuals and focus on group activities. This is motivated from the observation that human actions are rarely performed in isolation; the contextual information of what other people in the scene are doing provides a useful cue for understanding high-level activities. We propose a novel framework for recognizing group activities which jointly captures the group activity, the individual person actions, and the interactions among them. Two types of contextual information, group-person interaction and person-person interaction, are explored in a latent variable framework. In particular, we propose three different approaches to model the person-person interaction. One approach is to explore the structures of person-person interaction. Differently from most of the previous latent structured models, which assume a predefined structure for the hidden layer, e.g., a tree structure, we treat the structure of the hidden layer as a latent variable and implicitly infer it during learning and inference. The second approach explores person-person interaction in the feature level. We introduce a new feature representation called the action context (AC) descriptor. The AC descriptor encodes information about not only the action of an individual person in the video, but also the behavior of other people nearby. The third approach combines the above two. Our experimental results demonstrate the benefit of using contextual information for disambiguating group activities. PMID:22144516
Olatunji, Bunmi O; Ebesutani, Chad; Kim, Jingu; Riemann, Bradley C; Jacobi, David M
2017-04-15
Although studies have linked disgust proneness to the etiology and maintenance of obsessive-compulsive disorder (OCD) in adults, there remains a paucity of research examining the specificity of this association among youth. The present study employed structural equation modeling to examine the association between disgust proneness, negative affect, and OCD symptom severity in a clinical sample of youth admitted to a residential treatment facility (N =471). Results indicate that disgust proneness and negative affect latent factors independently predicted an OCD symptom severity latent factor. However, when both variables were modeled as predictors simultaneously, latent disgust proneness remained significantly associated with OCD symptom severity, whereas the association between latent negative affect and OCD symptom severity became nonsignificant. Tests of mediation converged in support of disgust proneness as a significant intervening variable between negative affect and OCD symptom severity. Subsequent analysis showed that the path from disgust proneness to OCD symptom severity in the structural model was significantly stronger among those without a primary diagnosis of OCD compared to those with a primary diagnosis of OCD. Given the cross-sectional design, the causal inferences that can be made are limited. The present study is also limited by the exclusive reliance on self-report measures. Disgust proneness may play a uniquely important role in OCD among youth. Copyright © 2017 Elsevier B.V. All rights reserved.
Bayesian latent structure modeling of walking behavior in a physical activity intervention
Lawson, Andrew B; Ellerbe, Caitlyn; Carroll, Rachel; Alia, Kassandra; Coulon, Sandra; Wilson, Dawn K; VanHorn, M Lee; St George, Sara M
2017-01-01
The analysis of walking behavior in a physical activity intervention is considered. A Bayesian latent structure modeling approach is proposed whereby the ability and willingness of participants is modeled via latent effects. The dropout process is jointly modeled via a linked survival model. Computational issues are addressed via posterior sampling and a simulated evaluation of the longitudinal model’s ability to recover latent structure and predictor effects is considered. We evaluate the effect of a variety of socio-psychological and spatial neighborhood predictors on the propensity to walk and the estimation of latent ability and willingness in the full study. PMID:24741000
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.
2015-01-01
A latent variable modeling procedure that can be used to evaluate intraclass correlation coefficients in two-level settings with discrete response variables is discussed. The approach is readily applied when the purpose is to furnish confidence intervals at prespecified confidence levels for these coefficients in setups with binary or ordinal…
ERIC Educational Resources Information Center
Teachman, Jay D.
1995-01-01
Argues that data on siblings provide a way to account for the impact of unmeasured, omitted variables on relationships of interest because families form a sort of natural experiment, with similar experiences and common genetic heritage. Proposes a latent-variable structural equation approach to the problem, which provides estimates of both within-…
Quantum learning of classical stochastic processes: The completely positive realization problem
NASA Astrophysics Data System (ADS)
Monràs, Alex; Winter, Andreas
2016-01-01
Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print arXiv:1303.3771(2013)].
Measurement Models for Reasoned Action Theory
Hennessy, Michael; Bleakley, Amy; Fishbein, Martin
2012-01-01
Quantitative researchers distinguish between causal and effect indicators. What are the analytic problems when both types of measures are present in a quantitative reasoned action analysis? To answer this question, we use data from a longitudinal study to estimate the association between two constructs central to reasoned action theory: behavioral beliefs and attitudes toward the behavior. The belief items are causal indicators that define a latent variable index while the attitude items are effect indicators that reflect the operation of a latent variable scale. We identify the issues when effect and causal indicators are present in a single analysis and conclude that both types of indicators can be incorporated in the analysis of data based on the reasoned action approach. PMID:23243315
Donaldson, Gary W; Chapman, C Richard; Nakamura, Yoshi; Bradshaw, David H; Jacobson, Robert C; Chapman, Christopher N
2003-03-01
The defense response theory implies that individuals should respond to increasing levels of painful stimulation with correlated increases in affectively mediated psychophysiological responses. This paper employs structural equation modeling to infer the latent processes responsible for correlated growth in the pain report, evoked potential amplitudes, pupil dilation, and skin conductance of 92 normal volunteers who experienced 144 trials of three levels of increasingly painful electrical stimulation. The analysis assumed a two-level model of latent growth as a function of stimulus level. The first level of analysis formulated a nonlinear growth model for each response measure, and allowed intercorrelations among the parameters of these models across individuals. The second level of analysis posited latent process factors to account for these intercorrelations. The best-fitting parsimonious model suggests that two latent processes account for the correlations. One of these latent factors, the activation threshold, determines the initial threshold response, while the other, the response gradient, indicates the magnitude of the coherent increase in response with stimulus level. Collectively, these two second-order factors define the defense response, a broad construct comprising both subjective pain evaluation and physiological mechanisms.
NASA Astrophysics Data System (ADS)
Seitz, M.; Hübner, S.; Johnson, M.
2016-05-01
Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.
Murray, Alexandra J; Kwon, Kyungyoon J; Farber, Donna L; Siliciano, Robert F
2016-07-15
Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus, ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4(+) T cells. In this review, we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate. Copyright © 2016 by The American Association of Immunologists, Inc.
Murray, Alexandra J.; Kwon, Kyungyoon J.; Farber, Donna L.; Siliciano, Robert F.
2016-01-01
Combination antiretroviral therapy (ART) for HIV-1 infection reduces plasma virus levels to below the limit of detection of clinical assays. However, even with prolonged suppression of viral replication with ART, viremia rebounds rapidly after treatment interruption. Thus ART is not curative. The principal barrier to cure is a remarkably stable reservoir of latent HIV-1 in resting memory CD4+ T cells. Here we consider explanations for the remarkable stability of the latent reservoir. Stability does not appear to reflect replenishment from new infection events but rather normal physiologic processes that provide for immunologic memory. Of particular importance are proliferative processes that drive clonal expansion of infected cells. Recent evidence suggests that in some infected cells, proliferation is a consequence of proviral integration into host genes associated with cell growth. Efforts to cure HIV-1 infection by targeting the latent reservoir may need to consider the potential of latently infected cells to proliferate. PMID:27382129
A Two-Step Approach to Analyze Satisfaction Data
ERIC Educational Resources Information Center
Ferrari, Pier Alda; Pagani, Laura; Fiorio, Carlo V.
2011-01-01
In this paper a two-step procedure based on Nonlinear Principal Component Analysis (NLPCA) and Multilevel models (MLM) for the analysis of satisfaction data is proposed. The basic hypothesis is that observed ordinal variables describe different aspects of a latent continuous variable, which depends on covariates connected with individual and…
Factorial versus Typological Models: A Comparison of Methods for Personality Data
ERIC Educational Resources Information Center
von Davier, Matthias; Naemi, Bobby; Roberts, Richard D.
2012-01-01
This article describes an exploration of the distinction between typological and factorial latent variables in the domain of personality theory. Traditionally, many personality variables have been considered to be factorial in nature, even though there are examples of typological constructs dating back to Hippocrates. Recently, some…
A Latent-Variable Causal Model of Faculty Reputational Ratings.
ERIC Educational Resources Information Center
King, Suzanne; Wolfle, Lee M.
A reanalysis was conducted of Saunier's research (1985) on sources of variation in the National Research Council (NRC) reputational ratings of university faculty. Saunier conducted a stepwise regression analysis using 12 predictor variables. Due to problems with multicollinearity and because of the atheoretical nature of stepwise regression,…
Specifying and Refining a Complex Measurement Model.
ERIC Educational Resources Information Center
Levy, Roy; Mislevy, Robert J.
This paper aims to describe a Bayesian approach to modeling and estimating cognitive models both in terms of statistical machinery and actual instrument development. Such a method taps the knowledge of experts to provide initial estimates for the probabilistic relationships among the variables in a multivariate latent variable model and refines…
Undergraduate Nurse Variables that Predict Academic Achievement and Clinical Competence in Nursing
ERIC Educational Resources Information Center
Blackman, Ian; Hall, Margaret; Darmawan, I Gusti Ngurah.
2007-01-01
A hypothetical model was formulated to explore factors that influenced academic and clinical achievement for undergraduate nursing students. Sixteen latent variables were considered including the students' background, gender, type of first language, age, their previous successes with their undergraduate nursing studies and status given for…
The Cramér-Rao Bounds and Sensor Selection for Nonlinear Systems with Uncertain Observations.
Wang, Zhiguo; Shen, Xiaojing; Wang, Ping; Zhu, Yunmin
2018-04-05
This paper considers the problems of the posterior Cramér-Rao bound and sensor selection for multi-sensor nonlinear systems with uncertain observations. In order to effectively overcome the difficulties caused by uncertainty, we investigate two methods to derive the posterior Cramér-Rao bound. The first method is based on the recursive formula of the Cramér-Rao bound and the Gaussian mixture model. Nevertheless, it needs to compute a complex integral based on the joint probability density function of the sensor measurements and the target state. The computation burden of this method is relatively high, especially in large sensor networks. Inspired by the idea of the expectation maximization algorithm, the second method is to introduce some 0-1 latent variables to deal with the Gaussian mixture model. Since the regular condition of the posterior Cramér-Rao bound is unsatisfied for the discrete uncertain system, we use some continuous variables to approximate the discrete latent variables. Then, a new Cramér-Rao bound can be achieved by a limiting process of the Cramér-Rao bound of the continuous system. It avoids the complex integral, which can reduce the computation burden. Based on the new posterior Cramér-Rao bound, the optimal solution of the sensor selection problem can be derived analytically. Thus, it can be used to deal with the sensor selection of a large-scale sensor networks. Two typical numerical examples verify the effectiveness of the proposed methods.
NASA Astrophysics Data System (ADS)
Wilson, B. D.; McGibbney, L. J.; Mattmann, C. A.; Ramirez, P.; Joyce, M.; Whitehall, K. D.
2015-12-01
Quantifying scientific relevancy is of increasing importance to NASA and the research community. Scientific relevancy may be defined by mapping the impacts of a particular NASA mission, instrument, and/or retrieved variables to disciplines such as climate predictions, natural hazards detection and mitigation processes, education, and scientific discoveries. Related to relevancy, is the ability to expose data with similar attributes. This in turn depends upon the ability for us to extract latent, implicit document features from scientific data and resources and make them explicit, accessible and useable for search activities amongst others. This paper presents MemexGATE; a server side application, command line interface and computing environment for running large scale metadata extraction, general architecture text engineering, document classification and indexing tasks over document resources such as social media streams, scientific literature archives, legal documentation, etc. This work builds on existing experiences using MemexGATE (funded, developed and validated through the DARPA Memex Progrjam PI Mattmann) for extracting and leveraging latent content features from document resources within the Materials Research domain. We extend the software functionality capability to the domain of scientific literature with emphasis on the expansion of gazetteer lists, named entity rules, natural language construct labeling (e.g. synonym, antonym, hyponym, etc.) efforts to enable extraction of latent content features from data hosted by wide variety of scientific literature vendors (AGU Meeting Abstract Database, Springer, Wiley Online, Elsevier, etc.) hosting earth science literature. Such literature makes both implicit and explicit references to NASA datasets and relationships between such concepts stored across EOSDIS DAAC's hence we envisage that a significant part of this effort will also include development and understanding of relevancy signals which can ultimately be utilized for improved search and relevancy ranking across scientific literature.
Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers
ERIC Educational Resources Information Center
Anaya, Leticia H.
2011-01-01
In the Information Age, a proliferation of unstructured text electronic documents exists. Processing these documents by humans is a daunting task as humans have limited cognitive abilities for processing large volumes of documents that can often be extremely lengthy. To address this problem, text data computer algorithms are being developed.…
Vacca, G M; Paschino, P; Dettori, M L; Bergamaschi, M; Cipolat-Gotet, C; Bittante, G; Pazzola, M
2016-09-01
Dairy goat farming is practiced worldwide, within a range of different farming systems. Here we investigated the effects of environmental factors and morphology on milk traits of the Sardinian goat population. Sardinian goats are currently reared in Sardinia (Italy) in a low-input context, similar to many goat farming systems, especially in developing countries. Milk and morphological traits from 1,050 Sardinian goats from 42 farms were recorded. We observed a high variability regarding morphological traits, such as coat color, ear length and direction, horn presence, and udder shape. Such variability derived partly from the unplanned repeated crossbreeding of the native Sardinian goats with exotic breeds, especially Maltese goats. The farms located in the mountains were characterized by the traditional farming system and the lowest percentage of crossbred goats. Explanatory factors analysis was used to summarize the interrelated measured milk variables. The explanatory factor related to fat, protein, and energy content of milk (the "Quality" latent variable) explained about 30% of the variance of the whole data set of measured milk traits followed by the "Hygiene" (19%), "Production" (19%), and "Acidity" (11%) factors. The "Quality" and "Hygiene" factors were not affected by any of the farm classification items, whereas "Production" and "Acidity" were affected only by altitude and size of herds, respectively, indicating the adaptation of the local goat population to different environmental conditions. The use of latent explanatory factor analysis allowed us to clearly explain the large variability of milk traits, revealing that the Sardinian goat population cannot be divided into subpopulations based on milk attitude The factors, properly integrated with genetic data, may be useful tools in future selection programs.
Individual Differences in Childhood Sleep Problems Predict Later Cognitive Executive Control
Friedman, Naomi P.; Corley, Robin P.; Hewitt, John K.; Wright, Kenneth P.
2009-01-01
Study Objective: To determine whether individual differences in developmental patterns of general sleep problems are associated with 3 executive function abilities—inhibiting, updating working memory, and task shifting—in late adolescence. Participants: 916 twins (465 female, 451 male) and parents from the Colorado Longitudinal Twin Study. Measurements and Results: Parents reported their children's sleep problems at ages 4 years, 5 y, 7 y, and 9–16 y based on a 7-item scale from the Child-Behavior Checklist; a subset of children (n = 568) completed laboratory assessments of executive functions at age 17. Latent variable growth curve analyses were used to model individual differences in longitudinal trajectories of childhood sleep problems. Sleep problems declined over time, with ~70% of children having ≥ 1 problem at age 4 and ~33% of children at age 16. However, significant individual differences in both the initial levels of problems (intercept) and changes across time (slope) were observed. When executive function latent variables were added to the model, the intercept did not significantly correlate with the later executive function latent variables; however, the slope variable significantly (P < 0.05) negatively correlated with inhibiting (r = −0.27) and updating (r = −0.21), but not shifting (r = −0.10) abilities. Further analyses suggested that the slope variable predicted the variance common to the 3 executive functions (r = −0.29). Conclusions: Early levels of sleep problems do not seem to have appreciable implications for later executive functioning. However, individuals whose sleep problems decrease more across time show better general executive control in late adolescence. Citation: Friedman NP; Corley RP; Hewitt JK; Wright KP. Individual differences in childhood sleep problems predict later cognitive executive control. SLEEP 2009;32(3):323-333. PMID:19294952
Donnellan, M Brent; Kenny, David A; Trzesniewski, Kali H; Lucas, Richard E; Conger, Rand D
2012-12-01
The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development.
Donnellan, M. Brent; Kenny, David A.; Trzesniewski, Kali H.; Lucas, Richard E.; Conger, Rand D.
2012-01-01
The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development. PMID:23180899
Symptom Cluster Research With Biomarkers and Genetics Using Latent Class Analysis.
Conley, Samantha
2017-12-01
The purpose of this article is to provide an overview of latent class analysis (LCA) and examples from symptom cluster research that includes biomarkers and genetics. A review of LCA with genetics and biomarkers was conducted using Medline, Embase, PubMed, and Google Scholar. LCA is a robust latent variable model used to cluster categorical data and allows for the determination of empirically determined symptom clusters. Researchers should consider using LCA to link empirically determined symptom clusters to biomarkers and genetics to better understand the underlying etiology of symptom clusters. The full potential of LCA in symptom cluster research has not yet been realized because it has been used in limited populations, and researchers have explored limited biologic pathways.
NASA Technical Reports Server (NTRS)
Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were sigmficantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-china peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and gradient, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation apd associated moisture transport and convection.
NASA Technical Reports Server (NTRS)
Wang, Yansen; Tao, W.-K.; Lau, K.-M.; Wetzel, Peter J.
2004-01-01
The onset of the southeast Asian monsoon during 1997 and 1998 was simulated by coupling a mesoscale atmospheric model (MM5) and a detailed, land surface model, PLACE (the Parameterization for Land-Atmosphere-Cloud Exchange). The rainfall results from the simulations were compared with observed satellite data from the TRMM (Tropical Rainfall Measuring Mission) TMI (TRMM Microwave Imager) and GPCP (Global Precipitation Climatology Project). The control simulation with the PLACE land surface model and variable sea surface temperature captured the basic signatures of the monsoon onset processes and associated rainfall statistics. Sensitivity tests indicated that simulations were significantly improved by including the PLACE land surface model. The mechanism by which the land surface processes affect the moisture transport and the convection during the onset of the southeast Asian monsoon were analyzed. The results indicated that land surface processes played an important role in modifying the low-level wind field over two major branches of the circulation: the southwest low-level flow over the Indo-China peninsula and the northern, cold frontal intrusion from southern China. The surface sensible and latent heat fluxes modified the low-level temperature distribution and merit, and therefore the low-level wind due to the thermal wind effect. The more realistic forcing of the sensible and latent heat fluxes from the detailed, land surface model improved the low-level wind simulation and associated moisture transport and convection.
Chiu, Ming-Chuan; Hsieh, Min-Chih
2016-05-01
The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari
2009-01-01
The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.
Research on the application of a decoupling algorithm for structure analysis
NASA Technical Reports Server (NTRS)
Denman, E. D.
1980-01-01
The mathematical theory for decoupling mth-order matrix differential equations is presented. It is shown that the decoupling precedure can be developed from the algebraic theory of matrix polynomials. The role of eigenprojectors and latent projectors in the decoupling process is discussed and the mathematical relationships between eigenvalues, eigenvectors, latent roots, and latent vectors are developed. It is shown that the eigenvectors of the companion form of a matrix contains the latent vectors as a subset. The spectral decomposition of a matrix and the application to differential equations is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov
2010-07-30
Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less
Squires, Janet E; Estabrooks, Carole A; Newburn-Cook, Christine V; Gierl, Mark
2011-05-19
There is a lack of acceptable, reliable, and valid survey instruments to measure conceptual research utilization (CRU). In this study, we investigated the psychometric properties of a newly developed scale (the CRU Scale). We used the Standards for Educational and Psychological Testing as a validation framework to assess four sources of validity evidence: content, response processes, internal structure, and relations to other variables. A panel of nine international research utilization experts performed a formal content validity assessment. To determine response process validity, we conducted a series of one-on-one scale administration sessions with 10 healthcare aides. Internal structure and relations to other variables validity was examined using CRU Scale response data from a sample of 707 healthcare aides working in 30 urban Canadian nursing homes. Principal components analysis and confirmatory factor analyses were conducted to determine internal structure. Relations to other variables were examined using: (1) bivariate correlations; (2) change in mean values of CRU with increasing levels of other kinds of research utilization; and (3) multivariate linear regression. Content validity index scores for the five items ranged from 0.55 to 1.00. The principal components analysis predicted a 5-item 1-factor model. This was inconsistent with the findings from the confirmatory factor analysis, which showed best fit for a 4-item 1-factor model. Bivariate associations between CRU and other kinds of research utilization were statistically significant (p < 0.01) for the latent CRU scale score and all five CRU items. The CRU scale score was also shown to be significant predictor of overall research utilization in multivariate linear regression. The CRU scale showed acceptable initial psychometric properties with respect to responses from healthcare aides in nursing homes. Based on our validity, reliability, and acceptability analyses, we recommend using a reduced (four-item) version of the CRU scale to yield sound assessments of CRU by healthcare aides. Refinement to the wording of one item is also needed. Planned future research will include: latent scale scoring, identification of variables that predict and are outcomes to conceptual research use, and longitudinal work to determine CRU Scale sensitivity to change.
Hu, Chuanpu; Zhou, Honghui
2016-02-01
Improving the quality of exposure-response modeling is important in clinical drug development. The general joint modeling of multiple endpoints is made possible in part by recent progress on the latent variable indirect response (IDR) modeling for ordered categorical endpoints. This manuscript aims to investigate, when modeling a continuous and a categorical clinical endpoint, the level of improvement achievable by joint modeling in the latent variable IDR modeling framework through the sharing of model parameters for the individual endpoints, guided by the appropriate representation of drug and placebo mechanism. This was illustrated with data from two phase III clinical trials of intravenously administered mAb X for the treatment of rheumatoid arthritis, with the 28-joint disease activity score (DAS28) and 20, 50, and 70% improvement in the American College of Rheumatology (ACR20, ACR50, and ACR70) disease severity criteria were used as efficacy endpoints. The joint modeling framework led to a parsimonious final model with reasonable performance, evaluated by visual predictive check. The results showed that, compared with the more common approach of separately modeling the endpoints, it is possible for the joint model to be more parsimonious and yet better describe the individual endpoints. In particular, the joint model may better describe one endpoint through subject-specific random effects that would not have been estimable from data of this endpoint alone.
NASA Astrophysics Data System (ADS)
Juesas, P.; Ramasso, E.
2016-12-01
Condition monitoring aims at ensuring system safety which is a fundamental requirement for industrial applications and that has become an inescapable social demand. This objective is attained by instrumenting the system and developing data analytics methods such as statistical models able to turn data into relevant knowledge. One difficulty is to be able to correctly estimate the parameters of those methods based on time-series data. This paper suggests the use of the Weighted Distribution Theory together with the Expectation-Maximization algorithm to improve parameter estimation in statistical models with latent variables with an application to health monotonic under uncertainty. The improvement of estimates is made possible by incorporating uncertain and possibly noisy prior knowledge on latent variables in a sound manner. The latent variables are exploited to build a degradation model of dynamical system represented as a sequence of discrete states. Examples on Gaussian Mixture Models, Hidden Markov Models (HMM) with discrete and continuous outputs are presented on both simulated data and benchmarks using the turbofan engine datasets. A focus on the application of a discrete HMM to health monitoring under uncertainty allows to emphasize the interest of the proposed approach in presence of different operating conditions and fault modes. It is shown that the proposed model depicts high robustness in presence of noisy and uncertain prior.
Crawford, John R; Henry, Julie D
2003-06-01
To provide UK normative data for the Depression Anxiety and Stress Scale (DASS) and test its convergent, discriminant and construct validity. Cross-sectional, correlational and confirmatory factor analysis (CFA). The DASS was administered to a non-clinical sample, broadly representative of the general adult UK population (N = 1,771) in terms of demographic variables. Competing models of the latent structure of the DASS were derived from theoretical and empirical sources and evaluated using confirmatory factor analysis. Correlational analysis was used to determine the influence of demographic variables on DASS scores. The convergent and discriminant validity of the measure was examined through correlating the measure with two other measures of depression and anxiety (the HADS and the sAD), and a measure of positive and negative affectivity (the PANAS). The best fitting model (CFI =.93) of the latent structure of the DASS consisted of three correlated factors corresponding to the depression, anxiety and stress scales with correlated error permitted between items comprising the DASS subscales. Demographic variables had only very modest influences on DASS scores. The reliability of the DASS was excellent, and the measure possessed adequate convergent and discriminant validity Conclusions: The DASS is a reliable and valid measure of the constructs it was intended to assess. The utility of this measure for UK clinicians is enhanced by the provision of large sample normative data.
2017-04-30
practices in latent variable theory, it is not surprising that effective measurement programs present methodological typing and considering of experimental ...7 3.3 Methodology ...8 Revised Enterprise Modeling Methodology ................................................................ 128 9 Conclusions
A Modularized Efficient Framework for Non-Markov Time Series Estimation
NASA Astrophysics Data System (ADS)
Schamberg, Gabriel; Ba, Demba; Coleman, Todd P.
2018-06-01
We present a compartmentalized approach to finding the maximum a-posteriori (MAP) estimate of a latent time series that obeys a dynamic stochastic model and is observed through noisy measurements. We specifically consider modern signal processing problems with non-Markov signal dynamics (e.g. group sparsity) and/or non-Gaussian measurement models (e.g. point process observation models used in neuroscience). Through the use of auxiliary variables in the MAP estimation problem, we show that a consensus formulation of the alternating direction method of multipliers (ADMM) enables iteratively computing separate estimates based on the likelihood and prior and subsequently "averaging" them in an appropriate sense using a Kalman smoother. As such, this can be applied to a broad class of problem settings and only requires modular adjustments when interchanging various aspects of the statistical model. Under broad log-concavity assumptions, we show that the separate estimation problems are convex optimization problems and that the iterative algorithm converges to the MAP estimate. As such, this framework can capture non-Markov latent time series models and non-Gaussian measurement models. We provide example applications involving (i) group-sparsity priors, within the context of electrophysiologic specrotemporal estimation, and (ii) non-Gaussian measurement models, within the context of dynamic analyses of learning with neural spiking and behavioral observations.
Friedman, Naomi P; Miyake, Akira
2017-01-01
Executive functions (EFs) are high-level cognitive processes, often associated with the frontal lobes, that control lower level processes in the service of goal-directed behavior. They include abilities such as response inhibition, interference control, working memory updating, and set shifting. EFs show a general pattern of shared but distinct functions, a pattern described as "unity and diversity". We review studies of EF unity and diversity at the behavioral and genetic levels, focusing on studies of normal individual differences and what they reveal about the functional organization of these cognitive abilities. In particular, we review evidence that across multiple ages and populations, commonly studied EFs (a) are robustly correlated but separable when measured with latent variables; (b) are not the same as general intelligence or g; (c) are highly heritable at the latent level and seemingly also highly polygenic; and (d) activate both common and specific neural areas and can be linked to individual differences in neural activation, volume, and connectivity. We highlight how considering individual differences at the behavioral and neural levels can add considerable insight to the investigation of the functional organization of the brain, and conclude with some key points about individual differences to consider when interpreting neuropsychological patterns of dissociation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sleep schedules and school performance in Indigenous Australian children.
Blunden, Sarah; Magee, Chris; Attard, Kelly; Clarkson, Larissa; Caputi, Peter; Skinner, Timothy
2018-04-01
Sleep duration and sleep schedule variability have been related to negative health and well-being outcomes in children, but little is known about Australian Indigenous children. Data for children aged 7-9 years came from the Australian Longitudinal Study of Indigenous Children and the National Assessment Program-Literacy and Numeracy (NAPLAN). Latent class analysis determined sleep classes taking into account sleep duration, bedtimes, waketimes, and variability in bedtimes from weekdays to weekends. Regression models tested whether the sleep classes were cross-sectionally associated with grade 3 NAPLAN scores. Latent change score modeling then examined whether the sleep classes predicted changes in NAPLAN performance from grades 3 to 5. Five sleep schedule classes were identified: normative sleep, early risers, long sleep, variable sleep, and short sleep. Overall, long sleepers performed best, with those with reduced sleep (short sleepers and early risers) performing the worse on grammar, numeracy, and writing performance. Latent change score results also showed that long sleepers performed best in spelling and writing and short sleepers and typical sleepers performed the worst over time. In this sample of Australian Indigenous children, short sleep was associated with poorer school performance compared with long sleep, with this performance worsening over time for some performance indicators. Other sleep schedules (eg, early wake times and variable sleep) also had some relationships with school performance. As sleep scheduling is modifiable, this offers opportunity for improvement in sleep and thus performance outcomes for these and potentially all children. Copyright © 2018 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Koskela, J. J.; Croke, B. W. F.; Koivusalo, H.; Jakeman, A. J.; Kokkonen, T.
2012-11-01
Bayesian inference is used to study the effect of precipitation and model structural uncertainty on estimates of model parameters and confidence limits of predictive variables in a conceptual rainfall-runoff model in the snow-fed Rudbäck catchment (142 ha) in southern Finland. The IHACRES model is coupled with a simple degree day model to account for snow accumulation and melt. The posterior probability distribution of the model parameters is sampled by using the Differential Evolution Adaptive Metropolis (DREAM(ZS)) algorithm and the generalized likelihood function. Precipitation uncertainty is taken into account by introducing additional latent variables that were used as multipliers for individual storm events. Results suggest that occasional snow water equivalent (SWE) observations together with daily streamflow observations do not contain enough information to simultaneously identify model parameters, precipitation uncertainty and model structural uncertainty in the Rudbäck catchment. The addition of an autoregressive component to account for model structure error and latent variables having uniform priors to account for input uncertainty lead to dubious posterior distributions of model parameters. Thus our hypothesis that informative priors for latent variables could be replaced by additional SWE data could not be confirmed. The model was found to work adequately in 1-day-ahead simulation mode, but the results were poor in the simulation batch mode. This was caused by the interaction of parameters that were used to describe different sources of uncertainty. The findings may have lessons for other cases where parameterizations are similarly high in relation to available prior information.
ERIC Educational Resources Information Center
Miciak, Jeremy; Taylor, W. Pat; Stuebing, Karla K.; Fletcher, Jack M.
2018-01-01
We investigated the classification accuracy of learning disability (LD) identification methods premised on the identification of an intraindividual pattern of processing strengths and weaknesses (PSW) method using multiple indicators for all latent constructs. Known LD status was derived from latent scores; values at the observed level identified…
ERIC Educational Resources Information Center
Kaosa-ard, Chanapat; Erawan, Waraporn; Damrongpanit, Suntonrapot; Suksawang, Poonpong
2015-01-01
The researcher applied latent profile analysis to study the difference of the students' mathematical process skill. These skills are problem solving skills, reasoning skills, communication and presentation skills, connection knowledge skills, and creativity skills. Samples were 2,485 seventh-grade students obtained from Multi-stage Random…
Obtaining systematic teacher reports of disruptive behavior disorders utilizing DSM-IV.
Wolraich, M L; Feurer, I D; Hannah, J N; Baumgaertel, A; Pinnock, T Y
1998-04-01
This study examines the psychometric properties of the Vanderbilt AD/HD Diagnostic Teacher Rating Scale (VADTRS) and provides preliminary normative data from a large, geographically defined population. The VADTRS consists of the complete list of DSM-IV AD/HD symptoms, a screen for other disruptive behavior disorders, anxiety and depression, and ratings of academic and classroom behavior performance. Teachers in one suburban county completed the scale for their students during 2 consecutive years. Statistical methods included (a) exploratory and confirmatory latent variable analyses of item data, (b) evaluation of the internal consistency of the latent dimensions, (c) evaluation of latent structure concordance between school year samples, and (d) preliminary evaluation of criterion-related validity. The instrument comprises four behavioral dimensions and two performance dimensions. The behavioral dimensions were concordant between school years and were consistent with a priori DSM-IV diagnostic criteria. Correlations between latent dimensions and relevant, known disorders or problems varied from .25 to .66.
A further assessment of the Hall-Rodriguez theory of latent inhibition.
Leung, Hiu Tin; Killcross, A S; Westbrook, R Frederick
2013-04-01
The Hall-Rodriguez (G. Hall & G. Rodriguez, 2010, Associative and nonassociative processes in latent inhibition: An elaboration of the Pearce-Hall model, in R. E. Lubow & I. Weiner, Eds., Latent inhibition: Data, theories, and applications to schizophrenia, pp. 114-136, Cambridge, England: Cambridge University Press) theory of latent inhibition predicts that it will be deepened when a preexposed target stimulus is given additional preexposures in compound with (a) a novel stimulus or (b) another preexposed stimulus, and (c) that deepening will be greater when the compound contains a novel rather than another preexposed stimulus. A series of experiments studied these predictions using a fear conditioning procedure with rats. In each experiment, rats were preexposed to 3 stimuli, 1 (A) taken from 1 modality (visual or auditory) and the remaining 2 (X and Y) taken from another modality (auditory or visual). Then A was compounded with X, and Y was compounded with a novel stimulus (B) taken from the same modality as A. A previous series of experiments (H. T. Leung, A. S. Killcross, & R. F. Westbrook, 2011, Additional exposures to a compound of two preexposed stimuli deepen latent inhibition, Journal of Experimental Psychology: Animal Behavior Processes, Vol. 37, pp. 394-406) compared A with Y, finding that A was more latently inhibited than Y, the opposite of what was predicted. The present experiments confirmed that A was more latently inhibited than Y, showed that this was due to A entering the compound more latently inhibited than Y, and finally, that a comparison of X and Y confirmed the 3 predictions made by the theory.
ERIC Educational Resources Information Center
Danner, Daniel; Hagemann, Dirk; Schankin, Andrea; Hager, Marieke; Funke, Joachim
2011-01-01
The present study investigated cognitive performance measures beyond IQ. In particular, we investigated the psychometric properties of dynamic decision making variables and implicit learning variables and their relation with general intelligence and professional success. N = 173 employees from different companies and occupational groups completed…
Characterizing Student Expectations: A Small Empirical Study
ERIC Educational Resources Information Center
Warwick, Jonathan
2016-01-01
This paper describes the results of a small empirical study (n = 130), in which undergraduate students in the Business Faculty of a UK university were asked to express views and expectations relating to the study of a mathematics. Factor analysis is used to identify latent variables emerging from clusters of the measured variables and these are…
Adolescent Substance Use, Sleep, and Academic Achievement: Evidence of Harm Due to Caffeine
ERIC Educational Resources Information Center
James, Jack E.; Kristjansson, Alfgeir Logi; Sigfusdottir, Inga Dora
2011-01-01
Using academic achievement as the key outcome variable, 7377 Icelandic adolescents were surveyed for cigarette smoking, alcohol use, daytime sleepiness, caffeine use, and potential confounders. Structural equation modeling (SEM) was used to examine direct and indirect effects of measured and latent variables in two models: the first with caffeine…
Chakraborty, Sutirtha
2018-05-26
RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package 'SVAPLSseq') to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques. Copyright © 2017. Published by Elsevier Inc.
Mutti-Packer, Seema; Hodgins, David C; El-Guebaly, Nady; Casey, David M; Currie, Shawn R; Williams, Robert J; Smith, Garry J; Schopflocher, Don P
2017-06-01
The objective of the current study was to examine the possible temporal associations between alcohol misuse and problem gambling symptomatology from adolescence through to young adulthood. Parallel-process latent growth curve modeling was used to examine the trajectories of alcohol misuse and symptoms of problem gambling over time. Data were from a sample of adolescents recruited for the Leisure, Lifestyle, and Lifecycle Project in Alberta, Canada (n = 436), which included 4 assessments over 5 years. There was an average decline in problem gambling symptoms followed by an accelerating upward trend as the sample reached the legal age to gamble. There was significant variation in the rate of change in problem gambling symptoms over time; not all respondents followed the same trajectory. There was an average increase in alcohol misuse over time, with significant variability in baseline levels of use and the rate of change over time. The unconditional parallel process model indicated that higher baseline levels of alcohol misuse were associated with higher baseline levels of problem gambling symptoms. In addition, higher baseline levels of alcohol misuse were associated with steeper declines in problem gambling symptoms over time. However, these between-process correlations did not retain significance when covariates were added to the model, indicating that one behavior was not a risk factor for the other. The lack of mutual influence in the problem gambling symptomatology and alcohol misuse processes suggest that there are common risk factors underlying these two behaviors, supporting the notion of a syndrome model of addiction. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.; Suwalsky, Joan T. D.
2014-01-01
This four-wave prospective longitudinal study evaluated stability of language in 324 children from early childhood to adolescence. Structural equation modeling supported loadings of multiple age-appropriate multi-source measures of child language on single-factor core language skills at 20 months and 4, 10, and 14 years. Large stability coefficients (standardized indirect effect = .46) were obtained between language latent variables from early childhood to adolescence and accounting for child nonverbal intelligence and social competence and maternal verbal intelligence, education, speech, and social desirability. Stability coefficients were similar for girls and boys. Stability of core language skill was stronger from 4 to 10 to 14 years than from 20 months to 4 years, so early intervention to improve lagging language is recommended. PMID:25165797
Long-Term Stability of Core Language Skill in Children with Contrasting Language Skills
Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.
2016-01-01
This four-wave longitudinal study evaluated stability of core language skill in 421 European American and African American children, half of whom were identified as low (n = 201) and half of whom were average-to-high (n = 220) in later language skill. Structural equation modeling supported loadings of multivariate age-appropriate multisource measures of child language on single latent variables of core language skill at 15 and 25 months and 5 and 11 years. Significant stability coefficients were obtained between language latent variables for children of low and average-to-high language skill, even accounting for child positive social interaction and nonverbal intelligence, maternal education and language, and family home environment. Prospects for children with different language skills and intervention implications are discussed. PMID:26998572
CORRECTING FOR MEASUREMENT ERROR IN LATENT VARIABLES USED AS PREDICTORS*
Schofield, Lynne Steuerle
2015-01-01
This paper represents a methodological-substantive synergy. A new model, the Mixed Effects Structural Equations (MESE) model which combines structural equations modeling and item response theory is introduced to attend to measurement error bias when using several latent variables as predictors in generalized linear models. The paper investigates racial and gender disparities in STEM retention in higher education. Using the MESE model with 1997 National Longitudinal Survey of Youth data, I find prior mathematics proficiency and personality have been previously underestimated in the STEM retention literature. Pre-college mathematics proficiency and personality explain large portions of the racial and gender gaps. The findings have implications for those who design interventions aimed at increasing the rates of STEM persistence among women and under-represented minorities. PMID:26977218
Thomas, Jennifer J; Eddy, Kamryn T; Ruscio, John; Ng, King Lam; Casale, Kristen E; Becker, Anne E; Lee, Sing
2015-05-01
We examined whether empirically derived eating disorder (ED) categories in Hong Kong Chinese patients (N = 454) would be consistent with recognizable lifetime ED phenotypes derived from latent structure models of European and American samples. We performed latent profile analysis (LPA) using indicator variables from data collected during routine assessment, and then applied taxometric analysis to determine whether latent classes were qualitatively versus quantitatively distinct. Latent profile analysis identified four classes: (i) binge/purge (47%); (ii) non-fat-phobic low-weight (34%); (iii) fat-phobic low-weight (12%); and (iv) overweight disordered eating (6%). Taxometric analysis identified qualitative (categorical) distinctions between the binge/purge and non-fat-phobic low-weight classes, and also between the fat-phobic and non-fat-phobic low-weight classes. Distinctions between the fat-phobic low-weight and binge/purge classes were indeterminate. Empirically derived categories in Hong Kong showed recognizable correspondence with recognizable lifetime ED phenotypes. Although taxometric findings support two distinct classes of low weight EDs, LPA findings also support heterogeneity among non-fat-phobic individuals. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.
Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Yang, Chan; Cui, Xianglong; Shi, Xinyuan; Qiao, Yanjiang
2016-01-01
The quality of Chinese herbal medicine tablets suffers from batch-to-batch variability due to a lack of manufacturing process understanding. In this paper, the Panax notoginseng saponins (PNS) immediate release tablet was taken as the research subject. By defining the dissolution of five active pharmaceutical ingredients and the tablet tensile strength as critical quality attributes (CQAs), influences of both the manipulated process parameters introduced by an orthogonal experiment design and the intermediate granules’ properties on the CQAs were fully investigated by different chemometric methods, such as the partial least squares, the orthogonal projection to latent structures, and the multiblock partial least squares (MBPLS). By analyzing the loadings plots and variable importance in the projection indexes, the granule particle sizes and the minimal punch tip separation distance in tableting were identified as critical process parameters. Additionally, the MBPLS model suggested that the lubrication time in the final blending was also important in predicting tablet quality attributes. From the calculated block importance in the projection indexes, the tableting unit was confirmed to be the critical process unit of the manufacturing line. The results demonstrated that the combinatorial use of different multivariate modeling methods could help in understanding the complex process relationships as a whole. The output of this study can then be used to define a control strategy to improve the quality of the PNS immediate release tablet. PMID:27932865
Barnwell-Ménard, Jean-Louis; Li, Qing; Cohen, Alan A
2015-03-15
The loss of signal associated with categorizing a continuous variable is well known, and previous studies have demonstrated that this can lead to an inflation of Type-I error when the categorized variable is a confounder in a regression analysis estimating the effect of an exposure on an outcome. However, it is not known how the Type-I error may vary under different circumstances, including logistic versus linear regression, different distributions of the confounder, and different categorization methods. Here, we analytically quantified the effect of categorization and then performed a series of 9600 Monte Carlo simulations to estimate the Type-I error inflation associated with categorization of a confounder under different regression scenarios. We show that Type-I error is unacceptably high (>10% in most scenarios and often 100%). The only exception was when the variable categorized was a continuous mixture proxy for a genuinely dichotomous latent variable, where both the continuous proxy and the categorized variable are error-ridden proxies for the dichotomous latent variable. As expected, error inflation was also higher with larger sample size, fewer categories, and stronger associations between the confounder and the exposure or outcome. We provide online tools that can help researchers estimate the potential error inflation and understand how serious a problem this is. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan
2015-04-01
Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the photosynthesis process owing to a better estimation of the Rubisco enzyme kinematics. Finally, to evaluate the effects of the crop-specific parameterizations on the ABL dynamics, we perform a series of semi-idealized land-atmosphere coupled simulations by hypothesizing three cropland configurations. These numerical experiments reveal different heat and moisture budgets of the ABL that clearly impact the evolution of the boundary layer when using the crop-specific physiological properties.
How important are the descriptions of vegetation in distributed hydrologic models?
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Thober, Stephan; Zink, Matthias; Rakovec, Oldrich; Samaniego, Luis
2016-04-01
The land surface transforms incoming, absorbed radiation into other energy forms and radiation with longer wavelengths. The land surface emits long-wave radiation, stores energy in the soil, the biomass and the air in the boundary layer, and exchanges sensible and latent heat with the atmosphere. The latter, latent heat consists of evaporation from the soil and canopy and transpiration by plants. Plants enhance in this picture the absorption of incoming radiation and decrease the resistance for evaporation of deeper soil water. Transpiration by plants is therefore either energy-limited by low incoming radiation or water-limited by small soil moisture. In the extreme cases, all available energy will be used for evapotranspiration in cold regions and all available water will be used for evapotranspiration in arid regions. Very simple formulations of latent heat, which include plant processes only very indirectly, work well in hydrologic models for these limiting cases. These simple formulations seem to work also surprisingly well in temperate regions. Hydrologic models have, however, considerable problems in semi-arid regions where the vegetation influence on latent heat should be largest. But the models have to deal with much more problems in these regions. For example data scarcity in the Mediterranean leads to very large model uncertainty due to the forcing data. Water supply is also often very regulated in semi-arid regions. Variability in river discharge can hence be largely driven by the anthropogenic influence rather than natural meteorological variations in these regions. Here we will show for Europe the areas and times when the descriptions of plant processes are important for hydrologic models. We will compare differences in model uncertainties that come from 1. different formulations of evapotranspiration, 2. different descriptions of soil-plant interactions, and 3. uncertainty in the model's input data. It can be seen that model uncertainty stemming from uncertain input data is similar or larger in magnitude than the uncertainty coming from the descriptions of the vegetation in the models. Acquisition of better input data should thus go hand in hand with more sophisticated descriptions of the land surface.
Dual process interaction model of HIV-risk behaviors among drug offenders.
Ames, Susan L; Grenard, Jerry L; Stacy, Alan W
2013-03-01
This study evaluated dual process interaction models of HIV-risk behavior among drug offenders. A dual process approach suggests that decisions to engage in appetitive behaviors result from a dynamic interplay between a relatively automatic associative system and an executive control system. One synergistic type of interplay suggests that executive functions may dampen or block effects of spontaneously activated associations. Consistent with this model, latent variable interaction analyses revealed that drug offenders scoring higher in affective decision making were relatively protected from predictive effects of spontaneous sex associations promoting risky sex. Among drug offenders with lower levels of affective decision making ability, spontaneous sexually-related associations more strongly predicted risky sex (lack of condom use and greater number of sex partners). These findings help elucidate associative and control process effects on appetitive behaviors and are important for explaining why some individuals engage in risky sex, while others are relatively protected.
Dual Process Interaction Model of HIV-Risk Behaviors Among Drug Offenders
Grenard, Jerry L.; Stacy, Alan W.
2012-01-01
This study evaluated dual process interaction models of HIV-risk behavior among drug offenders. A dual process approach suggests that decisions to engage in appetitive behaviors result from a dynamic interplay between a relatively automatic associative system and an executive control system. One synergistic type of interplay suggests that executive functions may dampen or block effects of spontaneously activated associations. Consistent with this model, latent variable interaction analyses revealed that drug offenders scoring higher in affective decision making were relatively protected from predictive effects of spontaneous sex associations promoting risky sex. Among drug offenders with lower levels of affective decision making ability, spontaneous sexually-related associations more strongly predicted risky sex (lack of condom use and greater number of sex partners). These findings help elucidate associative and control process effects on appetitive behaviors and are important for explaining why some individuals engage in risky sex, while others are relatively protected. PMID:22331391
Using Latent Sleepiness to Evaluate an Important Effect of Promethazine
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Hayat, Matthew; Vksman, Zalman; Putcha, Laksmi
2007-01-01
Astronauts often use promethazine (PMZ) to counteract space motion sickness; however PMZ may cause drowsiness, which might impair cognitive function. In a NASA ground study, subjects received PMZ and their cognitive performance was then monitored over time. Subjects also reported sleepiness using the Karolinska Sleepiness Score (KSS), which ranges from 1 - 9. A problem arises when using KSS to establish an association between true sleepiness and performance because KSS scores tend to overly concentrate on the values 3 (fairly awake) and 7 (moderately tired). Therefore, we defined a latent sleepiness measure as a continuous random variable describing a subject s actual, but unobserved true state of sleepiness through time. The latent sleepiness and observed KSS are associated through a conditional probability model, which when coupled with demographic factors, predicts performance.
2011-01-01
Background Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. Methods We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Results Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. Conclusions We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting. PMID:22023778
Kennedy, Curtis E; Turley, James P
2011-10-24
Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting.
Prediction of hemoglobin in blood donors using a latent class mixed-effects transition model.
Nasserinejad, Kazem; van Rosmalen, Joost; de Kort, Wim; Rizopoulos, Dimitris; Lesaffre, Emmanuel
2016-02-20
Blood donors experience a temporary reduction in their hemoglobin (Hb) value after donation. At each visit, the Hb value is measured, and a too low Hb value leads to a deferral for donation. Because of the recovery process after each donation as well as state dependence and unobserved heterogeneity, longitudinal data of Hb values of blood donors provide unique statistical challenges. To estimate the shape and duration of the recovery process and to predict future Hb values, we employed three models for the Hb value: (i) a mixed-effects models; (ii) a latent-class mixed-effects model; and (iii) a latent-class mixed-effects transition model. In each model, a flexible function was used to model the recovery process after donation. The latent classes identify groups of donors with fast or slow recovery times and donors whose recovery time increases with the number of donations. The transition effect accounts for possible state dependence in the observed data. All models were estimated in a Bayesian way, using data of new entrant donors from the Donor InSight study. Informative priors were used for parameters of the recovery process that were not identified using the observed data, based on results from the clinical literature. The results show that the latent-class mixed-effects transition model fits the data best, which illustrates the importance of modeling state dependence, unobserved heterogeneity, and the recovery process after donation. The estimated recovery time is much longer than the current minimum interval between donations, suggesting that an increase of this interval may be warranted. Copyright © 2015 John Wiley & Sons, Ltd.
Disrupted latent inhibition in individuals at ultra high-risk for developing psychosis.
Kraus, Michael; Rapisarda, Attilio; Lam, Max; Thong, Jamie Y J; Lee, Jimmy; Subramaniam, Mythily; Collinson, Simon L; Chong, Siow Ann; Keefe, Richard S E
2016-12-01
The addition of off-the-shelf cognitive measures to established prodromal criteria has resulted in limited improvement in the prediction of conversion to psychosis. Tests that assess cognitive processes central to schizophrenia might better identify those at highest risk. The latent inhibition paradigm assesses a subject's tendency to ignore irrelevant stimuli, a process integral to healthy perceptual and cognitive function that has been hypothesized to be a key deficit underlying the development of schizophrenia. In this study, 142 young people at ultra high-risk for developing psychosis and 105 controls were tested on a within-subject latent inhibition paradigm. Additionally, we later inquired about the strategy that each subject employed to complete the test, and further investigated the relationship between reported strategy and the extent of latent inhibition exhibited. Unlike controls, ultra high-risk subjects did not demonstrate a significant latent inhibition effect. This difference between groups became greater when controlling for strategy. The lack of latent inhibition effect in our ultra high-risk sample suggests that individuals at ultra high-risk for psychosis are impaired in their allocation of attentional resources based on past predictive value of repeated stimuli. This fundamental deficit in the allocation of attention may contribute to the broader array of cognitive impairments and clinical symptoms displayed by individuals at ultra high-risk for psychosis.
ERIC Educational Resources Information Center
Moustaki, Irini; Joreskog, Karl G.; Mavridis, Dimitris
2004-01-01
We consider a general type of model for analyzing ordinal variables with covariate effects and 2 approaches for analyzing data for such models, the item response theory (IRT) approach and the PRELIS-LISREL (PLA) approach. We compare these 2 approaches on the basis of 2 examples, 1 involving only covariate effects directly on the ordinal variables…
The construct of sexual openness for females in steady intimate relationships.
Rausch, Diana; Dekker, Arne; Rettenberger, Martin
2017-01-01
The analysis of open-minded attitudes towards sexuality in general requires a construct based on attitudinal dimensions. Although several existing studies involve sexual attitudes, they differ substantially and standardized conceptual work is missing. Thus, the authors introduce the latent variable sexual openness to develop a construct based on self-oriented attitudes towards different sexual topics. Available survey data of female German students in a steady relationship allowed providing a first empirical test for the applicability of this construct. Five subdimensions are acknowledged central for sexual openness: sexual practices, masturbation, bisexuality, permissiveness, and pornography consumption. Confirmatory factor analysis and correlations confirmed the idea of an underlying mechanism with an impact on all five variables. Though further validation of the construct of sexual openness is required, the findings strongly support the notion of an overarching latent attitude variable, which influences the individual relation to everything sexual. The results were compared to other studies and potential approaches for future analyses were proposed.
Estimating Causal Effects with Ancestral Graph Markov Models
Malinsky, Daniel; Spirtes, Peter
2017-01-01
We present an algorithm for estimating bounds on causal effects from observational data which combines graphical model search with simple linear regression. We assume that the underlying system can be represented by a linear structural equation model with no feedback, and we allow for the possibility of latent variables. Under assumptions standard in the causal search literature, we use conditional independence constraints to search for an equivalence class of ancestral graphs. Then, for each model in the equivalence class, we perform the appropriate regression (using causal structure information to determine which covariates to include in the regression) to estimate a set of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009), which assumes that all relevant variables have been measured (i.e., no unmeasured confounders). We generalize their work by relaxing this assumption, which is often violated in applied contexts. We validate the performance of our algorithm on simulated data and demonstrate improved precision over IDA when latent variables are present. PMID:28217244
The construct of sexual openness for females in steady intimate relationships
Rausch, Diana; Dekker, Arne; Rettenberger, Martin
2017-01-01
The analysis of open-minded attitudes towards sexuality in general requires a construct based on attitudinal dimensions. Although several existing studies involve sexual attitudes, they differ substantially and standardized conceptual work is missing. Thus, the authors introduce the latent variable sexual openness to develop a construct based on self-oriented attitudes towards different sexual topics. Available survey data of female German students in a steady relationship allowed providing a first empirical test for the applicability of this construct. Five subdimensions are acknowledged central for sexual openness: sexual practices, masturbation, bisexuality, permissiveness, and pornography consumption. Confirmatory factor analysis and correlations confirmed the idea of an underlying mechanism with an impact on all five variables. Though further validation of the construct of sexual openness is required, the findings strongly support the notion of an overarching latent attitude variable, which influences the individual relation to everything sexual. The results were compared to other studies and potential approaches for future analyses were proposed. PMID:28636608
Measurement of psychological disorders using cognitive diagnosis models.
Templin, Jonathan L; Henson, Robert A
2006-09-01
Cognitive diagnosis models are constrained (multiple classification) latent class models that characterize the relationship of questionnaire responses to a set of dichotomous latent variables. Having emanated from educational measurement, several aspects of such models seem well suited to use in psychological assessment and diagnosis. This article presents the development of a new cognitive diagnosis model for use in psychological assessment--the DINO (deterministic input; noisy "or" gate) model--which, as an illustrative example, is applied to evaluate and diagnose pathological gamblers. As part of this example, a demonstration of the estimates obtained by cognitive diagnosis models is provided. Such estimates include the probability an individual meets each of a set of dichotomous Diagnostic and Statistical Manual of Mental Disorders (text revision [DSM-IV-TR]; American Psychiatric Association, 2000) criteria, resulting in an estimate of the probability an individual meets the DSM-IV-TR definition for being a pathological gambler. Furthermore, a demonstration of how the hypothesized underlying factors contributing to pathological gambling can be measured with the DINO model is presented, through use of a covariance structure model for the tetrachoric correlation matrix of the dichotomous latent variables representing DSM-IV-TR criteria. Copyright 2006 APA
Multilevel structural equation models for assessing moderation within and across levels of analysis.
Preacher, Kristopher J; Zhang, Zhen; Zyphur, Michael J
2016-06-01
Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., "random intercepts") to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Human Life History Strategies.
Chua, Kristine J; Lukaszewski, Aaron W; Grant, DeMond M; Sng, Oliver
2017-01-01
Human life history (LH) strategies are theoretically regulated by developmental exposure to environmental cues that ancestrally predicted LH-relevant world states (e.g., risk of morbidity-mortality). Recent modeling work has raised the question of whether the association of childhood family factors with adult LH variation arises via (i) direct sampling of external environmental cues during development and/or (ii) calibration of LH strategies to internal somatic condition (i.e., health), which itself reflects exposure to variably favorable environments. The present research tested between these possibilities through three online surveys involving a total of over 26,000 participants. Participants completed questionnaires assessing components of self-reported environmental harshness (i.e., socioeconomic status, family neglect, and neighborhood crime), health status, and various LH-related psychological and behavioral phenotypes (e.g., mating strategies, paranoia, and anxiety), modeled as a unidimensional latent variable. Structural equation models suggested that exposure to harsh ecologies had direct effects on latent LH strategy as well as indirect effects on latent LH strategy mediated via health status. These findings suggest that human LH strategies may be calibrated to both external and internal cues and that such calibrational effects manifest in a wide range of psychological and behavioral phenotypes.
Guenole, Nigel; Brown, Anna
2014-01-01
We report a Monte Carlo study examining the effects of two strategies for handling measurement non-invariance – modeling and ignoring non-invariant items – on structural regression coefficients between latent variables measured with item response theory models for categorical indicators. These strategies were examined across four levels and three types of non-invariance – non-invariant loadings, non-invariant thresholds, and combined non-invariance on loadings and thresholds – in simple, partial, mediated and moderated regression models where the non-invariant latent variable occupied predictor, mediator, and criterion positions in the structural regression models. When non-invariance is ignored in the latent predictor, the focal group regression parameters are biased in the opposite direction to the difference in loadings and thresholds relative to the referent group (i.e., lower loadings and thresholds for the focal group lead to overestimated regression parameters). With criterion non-invariance, the focal group regression parameters are biased in the same direction as the difference in loadings and thresholds relative to the referent group. While unacceptable levels of parameter bias were confined to the focal group, bias occurred at considerably lower levels of ignored non-invariance than was previously recognized in referent and focal groups. PMID:25278911
Why aren’t they happy? An analysis of end-user satisfaction with Electronic health records
Unni, Prasad; Staes, Catherine; Weeks, Howard; Kramer, Heidi; Borbolla, Damion; Slager, Stacey; Taft, Teresa; Chidambaram, Valliammai; Weir, Charlene
2016-01-01
Introduction. Implementations of electronic health records (EHR) have been met with mixed outcome reviews. Complaints about these systems have led to many attempts to have useful measures of end-user satisfaction. However, most user satisfaction assessments do not focus on high-level reasoning, despite the complaints of many physicians. Our study attempts to identify some of these determinants. Method. We developed a user satisfaction survey instrument, based on pre-identified and important clinical and non-clinical clinician tasks. We surveyed a sample of in-patient physicians and focused on using exploratory factor analyses to identify underlying high-level cognitive tasks. We used the results to create unique, orthogonal variables representative of latent structure predictive of user satisfaction. Results. Our findings identified 3 latent high-level tasks that were associated with end-user satisfaction: a) High- level clinical reasoning b) Communicate/coordinate care and c) Follow the rules/compliance. Conclusion: We were able to successfully identify latent variables associated with satisfaction. Identification of communicability and high-level clinical reasoning as important factors determining user satisfaction can lead to development and design of more usable electronic health records with higher user satisfaction. PMID:28269962
Causal mediation analysis with a latent mediator.
Albert, Jeffrey M; Geng, Cuiyu; Nelson, Suchitra
2016-05-01
Health researchers are often interested in assessing the direct effect of a treatment or exposure on an outcome variable, as well as its indirect (or mediation) effect through an intermediate variable (or mediator). For an outcome following a nonlinear model, the mediation formula may be used to estimate causally interpretable mediation effects. This method, like others, assumes that the mediator is observed. However, as is common in structural equations modeling, we may wish to consider a latent (unobserved) mediator. We follow a potential outcomes framework and assume a generalized structural equations model (GSEM). We provide maximum-likelihood estimation of GSEM parameters using an approximate Monte Carlo EM algorithm, coupled with a mediation formula approach to estimate natural direct and indirect effects. The method relies on an untestable sequential ignorability assumption; we assess robustness to this assumption by adapting a recently proposed method for sensitivity analysis. Simulation studies show good properties of the proposed estimators in plausible scenarios. Our method is applied to a study of the effect of mother education on occurrence of adolescent dental caries, in which we examine possible mediation through latent oral health behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Goldweber, Asha; Bradshaw, Catherine P.; Goodman, Kimberly; Monahan, Kathryn; Cooley-Strickland, Michele
2011-01-01
There is compelling evidence for the role of social information processing (SIP) in aggressive behavior. However, less is known about factors that influence stability versus instability in patterns of SIP over time. Latent transition analysis was used to identify SIP patterns over one year and examine how community violence exposure, aggressive…
Shankle, William R; Pooley, James P; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D
2013-01-01
Determining how cognition affects functional abilities is important in Alzheimer disease and related disorders. A total of 280 patients (normal or Alzheimer disease and related disorders) received a total of 1514 assessments using the functional assessment staging test (FAST) procedure and the MCI Screen. A hierarchical Bayesian cognitive processing model was created by embedding a signal detection theory model of the MCI Screen-delayed recognition memory task into a hierarchical Bayesian framework. The signal detection theory model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the 6 FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. Hierarchical Bayesian cognitive processing models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition into a continuous measure of functional severity for both individuals and FAST groups. Such a translation links 2 levels of brain information processing and may enable more accurate correlations with other levels, such as those characterized by biomarkers.
Buettner, Florian; Moignard, Victoria; Göttgens, Berthold; Theis, Fabian J
2014-07-01
High-throughput single-cell quantitative real-time polymerase chain reaction (qPCR) is a promising technique allowing for new insights in complex cellular processes. However, the PCR reaction can be detected only up to a certain detection limit, whereas failed reactions could be due to low or absent expression, and the true expression level is unknown. Because this censoring can occur for high proportions of the data, it is one of the main challenges when dealing with single-cell qPCR data. Principal component analysis (PCA) is an important tool for visualizing the structure of high-dimensional data as well as for identifying subpopulations of cells. However, to date it is not clear how to perform a PCA of censored data. We present a probabilistic approach that accounts for the censoring and evaluate it for two typical datasets containing single-cell qPCR data. We use the Gaussian process latent variable model framework to account for censoring by introducing an appropriate noise model and allowing a different kernel for each dimension. We evaluate this new approach for two typical qPCR datasets (of mouse embryonic stem cells and blood stem/progenitor cells, respectively) by performing linear and non-linear probabilistic PCA. Taking the censoring into account results in a 2D representation of the data, which better reflects its known structure: in both datasets, our new approach results in a better separation of known cell types and is able to reveal subpopulations in one dataset that could not be resolved using standard PCA. The implementation was based on the existing Gaussian process latent variable model toolbox (https://github.com/SheffieldML/GPmat); extensions for noise models and kernels accounting for censoring are available at http://icb.helmholtz-muenchen.de/censgplvm. © The Author 2014. Published by Oxford University Press. All rights reserved.
Buettner, Florian; Moignard, Victoria; Göttgens, Berthold; Theis, Fabian J.
2014-01-01
Motivation: High-throughput single-cell quantitative real-time polymerase chain reaction (qPCR) is a promising technique allowing for new insights in complex cellular processes. However, the PCR reaction can be detected only up to a certain detection limit, whereas failed reactions could be due to low or absent expression, and the true expression level is unknown. Because this censoring can occur for high proportions of the data, it is one of the main challenges when dealing with single-cell qPCR data. Principal component analysis (PCA) is an important tool for visualizing the structure of high-dimensional data as well as for identifying subpopulations of cells. However, to date it is not clear how to perform a PCA of censored data. We present a probabilistic approach that accounts for the censoring and evaluate it for two typical datasets containing single-cell qPCR data. Results: We use the Gaussian process latent variable model framework to account for censoring by introducing an appropriate noise model and allowing a different kernel for each dimension. We evaluate this new approach for two typical qPCR datasets (of mouse embryonic stem cells and blood stem/progenitor cells, respectively) by performing linear and non-linear probabilistic PCA. Taking the censoring into account results in a 2D representation of the data, which better reflects its known structure: in both datasets, our new approach results in a better separation of known cell types and is able to reveal subpopulations in one dataset that could not be resolved using standard PCA. Availability and implementation: The implementation was based on the existing Gaussian process latent variable model toolbox (https://github.com/SheffieldML/GPmat); extensions for noise models and kernels accounting for censoring are available at http://icb.helmholtz-muenchen.de/censgplvm. Contact: fbuettner.phys@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24618470
BOYSAN, Murat
2014-01-01
Introduction There has been a burgeoning literature considering the significant associations between obsessive-compulsive symptoms and dissociative experiences. In this study, the relationsips between dissociative symtomotology and dimensions of obsessive-compulsive symptoms were examined in homogeneous sub-groups obtained with latent class algorithm in an undergraduate Turkish sample. Method Latent profile analysis, a recently developed classification method based on latent class analysis, was applied to the Dissociative Experiences Scale (DES) item-response data from 2976 undergraduates. Differences in severity of obsessive-compulsive symptoms, anxiety and depression across groups were evaluated by running multinomial logistic regression analyses. Associations between latent class probabilities and psychological variables in terms of obsessive-compulsive sub-types, anxiety, and depression were assessed by computing Pearson’s product-moment correlation coefficients. Results The findings of the latent profile analysis supported further evidence for discontinuity model of dissociative experiences. The analysis empirically justified the distinction among three sub-groups based on the DES items. A marked proportion of the sample (42%) was assigned to the high dissociative class. In the further analyses, all sub-types of obsessive-compulsive symptoms significantly differed across latent classes. Regarding the relationships between obsessive-compulsive symptoms and dissociative symptomatology, low dissociation appeared to be a buffering factor dealing with obsessive-compulsive symptoms; whereas high dissociation appeared to be significantly associated with high levels of obsessive-compulsive symptoms. Conclusion It is concluded that the concept of dissociation can be best understood in a typological approach that dissociative symptomatology not only exacerbates obsessive-compulsive symptoms but also serves as an adaptive coping mechanism. PMID:28360635
Boysan, Murat
2014-09-01
There has been a burgeoning literature considering the significant associations between obsessive-compulsive symptoms and dissociative experiences. In this study, the relationsips between dissociative symtomotology and dimensions of obsessive-compulsive symptoms were examined in homogeneous sub-groups obtained with latent class algorithm in an undergraduate Turkish sample. Latent profile analysis, a recently developed classification method based on latent class analysis, was applied to the Dissociative Experiences Scale (DES) item-response data from 2976 undergraduates. Differences in severity of obsessive-compulsive symptoms, anxiety and depression across groups were evaluated by running multinomial logistic regression analyses. Associations between latent class probabilities and psychological variables in terms of obsessive-compulsive sub-types, anxiety, and depression were assessed by computing Pearson's product-moment correlation coefficients. The findings of the latent profile analysis supported further evidence for discontinuity model of dissociative experiences. The analysis empirically justified the distinction among three sub-groups based on the DES items. A marked proportion of the sample (42%) was assigned to the high dissociative class. In the further analyses, all sub-types of obsessive-compulsive symptoms significantly differed across latent classes. Regarding the relationships between obsessive-compulsive symptoms and dissociative symptomatology, low dissociation appeared to be a buffering factor dealing with obsessive-compulsive symptoms; whereas high dissociation appeared to be significantly associated with high levels of obsessive-compulsive symptoms. It is concluded that the concept of dissociation can be best understood in a typological approach that dissociative symptomatology not only exacerbates obsessive-compulsive symptoms but also serves as an adaptive coping mechanism.
The Rasch Rating Model and the Disordered Threshold Controversy
ERIC Educational Resources Information Center
Adams, Raymond J.; Wu, Margaret L.; Wilson, Mark
2012-01-01
The Rasch rating (or partial credit) model is a widely applied item response model that is used to model ordinal observed variables that are assumed to collectively reflect a common latent variable. In the application of the model there is considerable controversy surrounding the assessment of fit. This controversy is most notable when the set of…
Testing for Two-Way Interactions in the Multigroup Common Factor Model
ERIC Educational Resources Information Center
van Smeden, Maarten; Hessen, David J.
2013-01-01
In this article, a 2-way multigroup common factor model (MG-CFM) is presented. The MG-CFM can be used to estimate interaction effects between 2 grouping variables on 1 or more hypothesized latent variables. For testing the significance of such interactions, a likelihood ratio test is presented. In a simulation study, the robustness of the…
ERIC Educational Resources Information Center
Can, Seda; van de Schoot, Rens; Hox, Joop
2015-01-01
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
ERIC Educational Resources Information Center
Bazan-Ramirez, Aldo; Castellanos-Simons, Doris; Lopez-Valenzuela, Mercedes
2010-01-01
This paper aims at analysing the structural relationships among some latent and observed variables related to the assessment of written language performance in 139 fourth grade students of Elementary School selected from nine public schools of the northwest of Mexico. Questionnaires were also applied to the children's parents and teachers. The…
ERIC Educational Resources Information Center
de la Torre, Jimmy
2009-01-01
For one reason or another, various sources of information, namely, ancillary variables and correlational structure of the latent abilities, which are usually available in most testing situations, are ignored in ability estimation. A general model that incorporates these sources of information is proposed in this article. The model has a general…
Measuring Student Variables Useful in the Study of Performance in an Online Learning Environment.
ERIC Educational Resources Information Center
Kennedy, Cathleen A.
This paper discusses the measurement of unobservable or latent variables of students and how they contribute to learning in an online environment. It also examines the construct validity of two questionnaires: the College Experience Survey and the Computer Experience Study, which both measure different aspects of student attitudes and behavior…
NASA Technical Reports Server (NTRS)
Smith, P. J.
1985-01-01
An important component of the research was a continuing investigation of the impact of latent release on extratropical cyclone development. Previous efforts to accomplish this task have focused on the energy balance and the vertical motion field of an intense winter extratropical cyclone over the United States. During this fiscal year researchers turned their attention to a more fundamental diagnostic variable, the height tendency. Central to this effort is the use of a modified form of the quasi-geostrophic height tendency equation, in which geostrophic wind components have been replaced by observed winds and a latent heat release term has been added. This methodology was adopted to produce a simple diagnostic model which retains the essential mechanisms of quasi-geostrophic theory but more faithfully describes observed wave development when the Rossby Number approaches and exceeds 0.5. Results to date indicate that the new model yields height tendencies that are superior to those obtained from the quasi-geostrophic formulation and are sufficiently close to the observed tendencies to be a useful tool for diagnosing the principle large-scale forcing mechanisms in th e700-300 mb layer. Of the three forcing terms included in the new model, vortity advection is in general dominant. The most persistent challenge to this dominance is made by the thermal advection. On the whole, latent heat release plays a secondary role. Finally, during the rapid intensification observed for this cyclone, all three processes complement each other in forcing height falls.
Social activity, cognitive decline and dementia risk: a 20-year prospective cohort study.
Marioni, Riccardo E; Proust-Lima, Cecile; Amieva, Helene; Brayne, Carol; Matthews, Fiona E; Dartigues, Jean-Francois; Jacqmin-Gadda, Helene
2015-10-24
Identifying modifiable lifestyle correlates of cognitive decline and risk of dementia is complex, particularly as few population-based longitudinal studies jointly model these interlinked processes. Recent methodological developments allow us to examine statistically defined sub-populations with separate cognitive trajectories and dementia risks. Engagement in social, physical, or intellectual pursuits, social network size, self-perception of feeling well understood, and degree of satisfaction with social relationships were assessed in 2854 participants from the Paquid cohort (mean baseline age 77 years) and related to incident dementia and cognitive change over 20-years of follow-up. Multivariate repeated cognitive information was exploited by defining the global cognitive functioning as the latent common factor underlying the tests. In addition, three latent homogeneous sub-populations of cognitive change and dementia were identified and contrasted according to social environment variables. In the whole population, we found associations between increased engagement in social, physical, or intellectual pursuits and increased cognitive ability (but not decline) and decreased risk of incident dementia, and between feeling understood and slower cognitive decline. There was evidence for three sub-populations of cognitive aging: fast, medium, and no cognitive decline. The social-environment measures at baseline did not help explain the heterogeneity of cognitive decline and incident dementia diagnosis between these sub-populations. We observed a complex series of relationships between social-environment variables and cognitive decline and dementia. In the whole population, factors such as increased engagement in social, physical, or intellectual pursuits were related to a decreased risk of dementia. However, in a sub-population analysis, the social-environment variables were not linked to the heterogeneous patterns of cognitive decline and dementia risk that defined the sub-groups.
The assignment of scores procedure for ordinal categorical data.
Chen, Han-Ching; Wang, Nae-Sheng
2014-01-01
Ordinal data are the most frequently encountered type of data in the social sciences. Many statistical methods can be used to process such data. One common method is to assign scores to the data, convert them into interval data, and further perform statistical analysis. There are several authors who have recently developed assigning score methods to assign scores to ordered categorical data. This paper proposes an approach that defines an assigning score system for an ordinal categorical variable based on underlying continuous latent distribution with interpretation by using three case study examples. The results show that the proposed score system is well for skewed ordinal categorical data.
ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.
Hromadka, T.V.
1987-01-01
Besides providing an exact solution for steady-state heat conduction processes (Laplace-Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil-water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximate boundary generation.
CLUSTERING SOUTH AFRICAN HOUSEHOLDS BASED ON THEIR ASSET STATUS USING LATENT VARIABLE MODELS
McParland, Damien; Gormley, Isobel Claire; McCormick, Tyler H.; Clark, Samuel J.; Kabudula, Chodziwadziwa Whiteson; Collinson, Mark A.
2014-01-01
The Agincourt Health and Demographic Surveillance System has since 2001 conducted a biannual household asset survey in order to quantify household socio-economic status (SES) in a rural population living in northeast South Africa. The survey contains binary, ordinal and nominal items. In the absence of income or expenditure data, the SES landscape in the study population is explored and described by clustering the households into homogeneous groups based on their asset status. A model-based approach to clustering the Agincourt households, based on latent variable models, is proposed. In the case of modeling binary or ordinal items, item response theory models are employed. For nominal survey items, a factor analysis model, similar in nature to a multinomial probit model, is used. Both model types have an underlying latent variable structure—this similarity is exploited and the models are combined to produce a hybrid model capable of handling mixed data types. Further, a mixture of the hybrid models is considered to provide clustering capabilities within the context of mixed binary, ordinal and nominal response data. The proposed model is termed a mixture of factor analyzers for mixed data (MFA-MD). The MFA-MD model is applied to the survey data to cluster the Agincourt households into homogeneous groups. The model is estimated within the Bayesian paradigm, using a Markov chain Monte Carlo algorithm. Intuitive groupings result, providing insight to the different socio-economic strata within the Agincourt region. PMID:25485026
Roelstraete, Bjorn; Rosseel, Yves
2012-04-30
Partial Granger causality was introduced by Guo et al. (2008) who showed that it could better eliminate the influence of latent variables and exogenous inputs than conditional G-causality. In the recent literature we can find some reviews and applications of this type of Granger causality (e.g. Smith et al., 2011; Bressler and Seth, 2010; Barrett et al., 2010). These articles apparently do not take into account a serious flaw in the original work on partial G-causality, being the negative F values that were reported and even proven to be plausible. In our opinion, this undermines the credibility of the obtained results and thus the validity of the approach. Our study is aimed to further validate partial G-causality and to find an answer why negative partial Granger causality estimates were reported. Time series were simulated from the same toy model as used in the original paper and partial and conditional causal measures were compared in the presence of confounding variables. Inference was done parametrically and using non-parametric block bootstrapping. We counter the proof that partial Granger F values can be negative, but the main conclusion of the original article remains. In the presence of unknown latent and exogenous influences, it appears that partial G-causality will better eliminate their influence than conditional G-causality, at least when non-parametric inference is used. Copyright © 2012 Elsevier B.V. All rights reserved.
Semiparametric Time-to-Event Modeling in the Presence of a Latent Progression Event
Rice, John D.; Tsodikov, Alex
2017-01-01
Summary In cancer research, interest frequently centers on factors influencing a latent event that must precede a terminal event. In practice it is often impossible to observe the latent event precisely, making inference about this process difficult. To address this problem, we propose a joint model for the unobserved time to the latent and terminal events, with the two events linked by the baseline hazard. Covariates enter the model parametrically as linear combinations that multiply, respectively, the hazard for the latent event and the hazard for the terminal event conditional on the latent one. We derive the partial likelihood estimators for this problem assuming the latent event is observed, and propose a profile likelihood–based method for estimation when the latent event is unobserved. The baseline hazard in this case is estimated nonparametrically using the EM algorithm, which allows for closed-form Breslow-type estimators at each iteration, bringing improved computational efficiency and stability compared with maximizing the marginal likelihood directly. We present simulation studies to illustrate the finite-sample properties of the method; its use in practice is demonstrated in the analysis of a prostate cancer data set. PMID:27556886
Semiparametric time-to-event modeling in the presence of a latent progression event.
Rice, John D; Tsodikov, Alex
2017-06-01
In cancer research, interest frequently centers on factors influencing a latent event that must precede a terminal event. In practice it is often impossible to observe the latent event precisely, making inference about this process difficult. To address this problem, we propose a joint model for the unobserved time to the latent and terminal events, with the two events linked by the baseline hazard. Covariates enter the model parametrically as linear combinations that multiply, respectively, the hazard for the latent event and the hazard for the terminal event conditional on the latent one. We derive the partial likelihood estimators for this problem assuming the latent event is observed, and propose a profile likelihood-based method for estimation when the latent event is unobserved. The baseline hazard in this case is estimated nonparametrically using the EM algorithm, which allows for closed-form Breslow-type estimators at each iteration, bringing improved computational efficiency and stability compared with maximizing the marginal likelihood directly. We present simulation studies to illustrate the finite-sample properties of the method; its use in practice is demonstrated in the analysis of a prostate cancer data set. © 2016, The International Biometric Society.
Nielsen, Simon; Wilms, L Inge
2014-01-01
We examined the effects of normal aging on visual cognition in a sample of 112 healthy adults aged 60-75. A testbattery was designed to capture high-level measures of visual working memory and low-level measures of visuospatial attention and memory. To answer questions of how cognitive aging affects specific aspects of visual processing capacity, we used confirmatory factor analyses in Structural Equation Modeling (SEM; Model 2), informed by functional structures that were modeled with path analyses in SEM (Model 1). The results show that aging effects were selective to measures of visual processing speed compared to visual short-term memory (VSTM) capacity (Model 2). These results are consistent with some studies reporting selective aging effects on processing speed, and inconsistent with other studies reporting aging effects on both processing speed and VSTM capacity. In the discussion we argue that this discrepancy may be mediated by differences in age ranges, and variables of demography. The study demonstrates that SEM is a sensitive method to detect cognitive aging effects even within a narrow age-range, and a useful approach to structure the relationships between measured variables, and the cognitive functional foundation they supposedly represent.
Austin, Erica Weintraub; Chen, Meng-Jinn; Grube, Joel W
2006-04-01
To investigate, using an information processing model, how persuasive media messages for alcohol use lead to concurring beliefs and behaviors among youths. Data were collected in 2000-2001 using computer-assisted, self-administered interviews with youths aged 9-17 years (n = 652). Latent variable structural equations models showed that skepticism was negatively associated with positive affect toward alcohol portrayals and positively with the desire to emulate characters portrayed in alcohol advertisements. These, in turn, predicted expectancies and liking of/desire for beer toys and brands, which predicted alcohol use. Parental guidance decreased alcohol use directly and indirectly by lessening influences of positive affect toward advertising. Media alcohol portrayals influence children's drinking through a progressive decision-making process, with its influence underestimated by typical exposure-and-effects analyses.
A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.
2003-01-01
To improve our understanding of global energy and water cycle variability, and to improve model simulations of climate variations, it is vital to have accurate latent heat fluxes (LHF) over global oceans. Monthly LHF, 10-m wind speed (U10m), 10-m specific humidity (Q10h), and sea-air humidity difference (Qs-Q10m) of GSSTF2 (version 2 Goddard Satellite-based Surface Turbulent Fluxes) over global Oceans during 1992-93 are compared with those of HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP (NCEP/NCAR reanalysis). The mean differences, standard deviations of differences, and temporal correlation of these monthly variables over global Oceans during 1992-93 between GSSTF2 and each of the three datasets are analyzed. The large-scale patterns of the 2yr-mean fields for these variables are similar among these four datasets, but significant quantitative differences are found. The temporal correlation is higher in the northern extratropics than in the south for all variables, with the contrast being especially large for da Silva as a result of more missing ship data in the south. The da Silva has extremely low temporal correlation and large differences with GSSTF2 for all variables in the southern extratropics, indicating that da Silva hardly produces a realistic variability in these variables. The NCEP has extremely low temporal correlation (0.27) and large spatial variations of differences with GSSTF2 for Qs-Q10m in the tropics, which causes the low correlation for LHF. Over the tropics, the HOAPS LHF is significantly smaller than GSSTF2 by approx. 31% (37 W/sq m), whereas the other two datasets are comparable to GSSTF2. This is because the HOAPS has systematically smaller LHF than GSSTF2 in space, while the other two datasets have very large spatial variations of large positive and negative LHF differences with GSSTF2 to cancel and to produce smaller regional-mean differences. Our analyses suggest that the GSSTF2 latent heat flux, surface air humidity, and winds are likely to be more realistic than the other three flux datasets examined, although those of GSSTF2 are still subject to regional biases.
Porter, Kristen E; Brennan-Ing, Mark; Burr, Jeffrey A; Dugan, Elizabeth; Karpiak, Stephen E
2017-04-01
The National Institutes of Health calls for research that explores what it means to age optimally with HIV/AIDS as half of the U.S. people with HIV are aged 50 or older. This study applied the stress process model to examine the association between HIV stigma and psychological well-being and mediating resources (i.e., spirituality and complementary and integrative health [CIH]) approaches) in older adults with HIV. Using data from the Research on Older Adults with HIV (ROAH) study, structural equation modeling was used to estimate these relationships within a latent variable model. Namely, a direct negative association between HIV stigma and psychological well-being was hypothesized that would be mediated by spirituality and/or CIH use. The analyses showed that the model fits the data well [χ2 (137, N = 914) = 561.44, p = .000; comparative fit index = .964; root mean square error of approximation = .058, 95% confidence interval = .053 to .063]. All observed variables significantly loaded on their latent factor, and all paths were significant. Results indicated that spirituality and CIH use significantly mediated the negative association between HIV stigma and psychological well-being. Findings highlight the importance of spiritual and CIH interventions for older adults with HIV/AIDS. Practice recommendations are provided at the micro- and mesolevel. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Symptom Dimensions of the Psychotic Symptom Rating Scales in Psychosis: A Multisite Study
Woodward, Todd S.; Jung, Kwanghee; Hwang, Heungsun; Yin, John; Taylor, Laura; Menon, Mahesh; Peters, Emmanuelle; Kuipers, Elizabeth; Waters, Flavie; Lecomte, Tania; Sommer, Iris E.; Daalman, Kirstin; van Lutterveld, Remko; Hubl, Daniela; Kindler, Jochen; Homan, Philipp; Badcock, Johanna C.; Chhabra, Saruchi; Cella, Matteo; Keedy, Sarah; Allen, Paul; Mechelli, Andrea; Preti, Antonio; Siddi, Sara; Erickson, David
2014-01-01
The Psychotic Symptom Rating Scales (PSYRATS) is an instrument designed to quantify the severity of delusions and hallucinations and is typically used in research studies and clinical settings focusing on people with psychosis and schizophrenia. It is comprised of the auditory hallucinations (AHS) and delusions subscales (DS), but these subscales do not necessarily reflect the psychological constructs causing intercorrelation between clusters of scale items. Identification of these constructs is important in some clinical and research contexts because item clustering may be caused by underlying etiological processes of interest. Previous attempts to identify these constructs have produced conflicting results. In this study, we compiled PSYRATS data from 12 sites in 7 countries, comprising 711 participants for AHS and 520 for DS. We compared previously proposed and novel models of underlying constructs using structural equation modeling. For the AHS, a novel 4-dimensional model provided the best fit, with latent variables labeled Distress (negative content, distress, and control), Frequency (frequency, duration, and disruption), Attribution (location and origin of voices), and Loudness (loudness item only). For the DS, a 2-dimensional solution was confirmed, with latent variables labeled Distress (amount/intensity) and Frequency (preoccupation, conviction, and disruption). The within-AHS and within-DS dimension intercorrelations were higher than those between subscales, with the exception of the AHS and DS Distress dimensions, which produced a correlation that approached the range of the within-scale correlations. Recommendations are provided for integrating these underlying constructs into research and clinical applications of the PSYRATS. PMID:24936086
The intergenerational transmission of conduct problems.
Raudino, Alessandra; Fergusson, David M; Woodward, Lianne J; Horwood, L John
2013-03-01
Drawing on prospective longitudinal data, this paper examines the intergenerational transmission of childhood conduct problems in a sample of 209 parents and their 331 biological offspring studied as part of the Christchurch Health and Developmental Study. The aims were to estimate the association between parental and offspring conduct problems and to examine the extent to which this association could be explained by (a) confounding social/family factors from the parent's childhood and (b) intervening factors reflecting parental behaviours and family functioning. The same item set was used to assess childhood conduct problems in parents and offspring. Two approaches to data analysis (generalised estimating equation regression methods and latent variable structural equation modelling) were used to examine possible explanations of the intergenerational continuity in behaviour. Regression analysis suggested that there was moderate intergenerational continuity (r = 0.23, p < 0.001) between parental and offspring conduct problems. This continuity was not explained by confounding factors but was partially mediated by parenting behaviours, particularly parental over-reactivity. Latent variable modelling designed to take account of non-observed common genetic and environmental factors underlying the continuities in problem behaviours across generations also suggested that parenting behaviour played a role in mediating the intergenerational transmission of conduct problems. There is clear evidence of intergenerational continuity in conduct problems. In part this association reflects a causal chain process in which parental conduct problems are associated (directly or indirectly) with impaired parenting behaviours that in turn influence risks of conduct problems in offspring.
Modeling and impacts of the latent heat of phase change and specific heat for phase change materials
NASA Astrophysics Data System (ADS)
Scoggin, J.; Khan, R. S.; Silva, H.; Gokirmak, A.
2018-05-01
We model the latent heats of crystallization and fusion in phase change materials with a unified latent heat of phase change, ensuring energy conservation by coupling the heat of phase change with amorphous and crystalline specific heats. We demonstrate the model with 2-D finite element simulations of Ge2Sb2Te5 and find that the heat of phase change increases local temperature up to 180 K in 300 nm × 300 nm structures during crystallization, significantly impacting grain distributions. We also show in electrothermal simulations of 45 nm confined and 10 nm mushroom cells that the higher amorphous specific heat predicted by this model increases nucleation probability at the end of reset operations. These nuclei can decrease set time, leading to variability, as demonstrated for the mushroom cell.
Sensible and latent heat forced divergent circulations in the West African Monsoon System
NASA Astrophysics Data System (ADS)
Hagos, S.; Zhang, C.
2008-12-01
Field properties of divergent circulation are utilized to identify the roles of various diabatic processes in forcing moisture transport in the dynamics of the West African Monsoon and its seasonal cycle. In this analysis, the divergence field is treated as a set of point sources and is partitioned into two sub-sets corresponding to latent heat release and surface sensible heat flux at each respective point. The divergent circulation associated with each set is then calculated from the Poisson's equation using Gauss-Seidel iteration. Moisture transport by each set of divergent circulation is subsequently estimated. The results show different roles of the divergent circulations forced by surface sensible and latent heating in the monsoon dynamics. Surface sensible heating drives a shallow meridional circulation, which transports moisture deep into the continent at the polar side of the monsoon rain band and thereby promotes the seasonal northward migration of monsoon precipitation during the monsoon onset season. In contrast, the circulation directly associated with latent heating is deep and the corresponding moisture convergence is within the region of precipitation. Latent heating also induces dry air advection from the north. Neither effect promotes the seasonal northward migration of precipitation. The relative contributions of the processes associated with latent and sensible heating to the net moisture convergence, and hence the seasonal evolution of monsoon precipitation, depend on the background moisture.
Measuring the environmental awareness of young farmers
NASA Astrophysics Data System (ADS)
Kountios, G.; Ragkos, A.; Padadavid, G.; Hadjimitsis, D.
2017-09-01
Young farmers in Europe, especially the beneficiaries of Common Agricultural Policy (CAP) funding schemes, are considered as the ones who could ensure the sustainability of the European Model of Agriculture. Economic efficiency and competitiveness, aversion of depopulation of rural areas and environmental protection constitute some of the key objectives of the CAP and young farmers are expected to play a role to all of them. This study proposes a way of measuring the potential of young farmers to contribute to the latter objectives of the CAP by estimating their environmental attitudes. Data from a questionnaire survey of 492 Greek young farmers were used to design a latent construct measuring their environmental attitudes. The latent construct was designed by means of an Explanatory Factor Analysis (EFA) using the responses to a set of 12 Likert-scale items. The results the EFA yielded a latent construct with three factors related to "Environmental pollution and policies (EPP)", "Environmental factors and food quality (EFF)" and "Farming practices and the environment". These results were validated through a CFA where 8 items in total were categorized in the three factors (latent variables). The utilization of the latent construct for the effective implementation of CAP measures could ameliorate the relationships of agriculture and environment in general.
Systematic identification of latent disease-gene associations from PubMed articles.
Zhang, Yuji; Shen, Feichen; Mojarad, Majid Rastegar; Li, Dingcheng; Liu, Sijia; Tao, Cui; Yu, Yue; Liu, Hongfang
2018-01-01
Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research.
Systematic identification of latent disease-gene associations from PubMed articles
Mojarad, Majid Rastegar; Li, Dingcheng; Liu, Sijia; Tao, Cui; Yu, Yue; Liu, Hongfang
2018-01-01
Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research. PMID:29373609
Higgs, Megan D.; Link, William; White, Gary C.; Haroldson, Mark A.; Bjornlie, Daniel D.
2013-01-01
Mark-resight designs for estimation of population abundance are common and attractive to researchers. However, inference from such designs is very limited when faced with sparse data, either from a low number of marked animals, a low probability of detection, or both. In the Greater Yellowstone Ecosystem, yearly mark-resight data are collected for female grizzly bears with cubs-of-the-year (FCOY), and inference suffers from both limitations. To overcome difficulties due to sparseness, we assume homogeneity in sighting probabilities over 16 years of bi-annual aerial surveys. We model counts of marked and unmarked animals as multinomial random variables, using the capture frequencies of marked animals for inference about the latent multinomial frequencies for unmarked animals. We discuss undesirable behavior of the commonly used discrete uniform prior distribution on the population size parameter and provide OpenBUGS code for fitting such models. The application provides valuable insights into subtleties of implementing Bayesian inference for latent multinomial models. We tie the discussion to our application, though the insights are broadly useful for applications of the latent multinomial model.
Predicting Viral Infection From High-Dimensional Biomarker Trajectories
Chen, Minhua; Zaas, Aimee; Woods, Christopher; Ginsburg, Geoffrey S.; Lucas, Joseph; Dunson, David; Carin, Lawrence
2013-01-01
There is often interest in predicting an individual’s latent health status based on high-dimensional biomarkers that vary over time. Motivated by time-course gene expression array data that we have collected in two influenza challenge studies performed with healthy human volunteers, we develop a novel time-aligned Bayesian dynamic factor analysis methodology. The time course trajectories in the gene expressions are related to a relatively low-dimensional vector of latent factors, which vary dynamically starting at the latent initiation time of infection. Using a nonparametric cure rate model for the latent initiation times, we allow selection of the genes in the viral response pathway, variability among individuals in infection times, and a subset of individuals who are not infected. As we demonstrate using held-out data, this statistical framework allows accurate predictions of infected individuals in advance of the development of clinical symptoms, without labeled data and even when the number of biomarkers vastly exceeds the number of individuals under study. Biological interpretation of several of the inferred pathways (factors) is provided. PMID:23704802
Phenotypic factor analysis of psychopathology reveals a new body-related transdiagnostic factor.
Pezzoli, Patrizia; Antfolk, Jan; Santtila, Pekka
2017-01-01
Comorbidity challenges the notion of mental disorders as discrete categories. An increasing body of literature shows that symptoms cut across traditional diagnostic boundaries and interact in shaping the latent structure of psychopathology. Using exploratory and confirmatory factor analysis, we reveal the latent sources of covariation among nine measures of psychopathological functioning in a population-based sample of 13024 Finnish twins and their siblings. By implementing unidimensional, multidimensional, second-order, and bifactor models, we illustrate the relationships between observed variables, specific, and general latent factors. We also provide the first investigation to date of measurement invariance of the bifactor model of psychopathology across gender and age groups. Our main result is the identification of a distinct "Body" factor, alongside the previously identified Internalizing and Externalizing factors. We also report relevant cross-disorder associations, especially between body-related psychopathology and trait anger, as well as substantial sex and age differences in observed and latent means. The findings expand the meta-structure of psychopathology, with implications for empirical and clinical practice, and demonstrate shared mechanisms underlying attitudes towards nutrition, self-image, sexuality and anger, with gender- and age-specific features.
Quantum learning of classical stochastic processes: The completely positive realization problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monràs, Alex; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543; Winter, Andreas
2016-01-15
Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece inmore » the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print http://arxiv.org/abs/1303.3771 (2013)].« less
Validity test and its consistency in the construction of patient loyalty model
NASA Astrophysics Data System (ADS)
Yanuar, Ferra
2016-04-01
The main objective of this present study is to demonstrate the estimation of validity values and its consistency based on structural equation model. The method of estimation was then implemented to an empirical data in case of the construction the patient loyalty model. In the hypothesis model, service quality, patient satisfaction and patient loyalty were determined simultaneously, each factor were measured by any indicator variables. The respondents involved in this study were the patients who ever got healthcare at Puskesmas in Padang, West Sumatera. All 394 respondents who had complete information were included in the analysis. This study found that each construct; service quality, patient satisfaction and patient loyalty were valid. It means that all hypothesized indicator variables were significant to measure their corresponding latent variable. Service quality is the most measured by tangible, patient satisfaction is the most mesured by satisfied on service and patient loyalty is the most measured by good service quality. Meanwhile in structural equation, this study found that patient loyalty was affected by patient satisfaction positively and directly. Service quality affected patient loyalty indirectly with patient satisfaction as mediator variable between both latent variables. Both structural equations were also valid. This study also proved that validity values which obtained here were also consistence based on simulation study using bootstrap approach.
ERIC Educational Resources Information Center
Lee, HwaYoung; Beretvas, S. Natasha
2014-01-01
Conventional differential item functioning (DIF) detection methods (e.g., the Mantel-Haenszel test) can be used to detect DIF only across observed groups, such as gender or ethnicity. However, research has found that DIF is not typically fully explained by an observed variable. True sources of DIF may include unobserved, latent variables, such as…
Traumatic Brain Injury and PTSD Screening Efforts Evaluated Using Latent Class Analysis
2014-01-01
Pastorek, & Thornton, 2009; Breslau, Reboussin, Anthony, & Storr, 2005; Naifeh, Richardson, Del Ben, & Elhai, 2010; Shevlin, Armour , Murphy, Houston...about a wide range of demographic characteristics, environmental exposures, and com- bat experiences. The Post-Deployment Health Reassessment (PDHRA...treatment, responses from the PDHRA were used. Demographic variables. Demographic variables included age, military pay grade, and branch of service. All
ERIC Educational Resources Information Center
Lavee, Yoav; And Others
1985-01-01
Examined relationships among major variables of the Double ABCX model of family stress and adaptation using data on Army families' adaptation to the crisis of relocation overseas. Results support the notion of pile-up of demands. Family system resources and social support are both found to facilitate adaptation. (Author/BL)
ERIC Educational Resources Information Center
Sinharay, Sandip; Almond, Russell; Yan, Duanli
2004-01-01
Model checking is a crucial part of any statistical analysis. As educators tie models for testing to cognitive theory of the domains, there is a natural tendency to represent participant proficiencies with latent variables representing the presence or absence of the knowledge, skills, and proficiencies to be tested (Mislevy, Almond, Yan, &…
ERIC Educational Resources Information Center
Gottfried, Adele Eskeles; Preston, Kathleen Suzanne Johnson; Gottfried, Allen W.; Oliver, Pamella H.; Delany, Danielle E.; Ibrahim, Sirena M.
2016-01-01
Curiosity is fundamental to scientific inquiry and pursuance. Parents are important in encouraging children's involvement in science. This longitudinal study examined pathways from parental stimulation of children's curiosity per se to their science acquisition (SA). A latent variable of SA was indicated by the inter-related variables of high…
Zipf’s Law Arises Naturally When There Are Underlying, Unobserved Variables
Corradi, Nicola
2016-01-01
Zipf’s law, which states that the probability of an observation is inversely proportional to its rank, has been observed in many domains. While there are models that explain Zipf’s law in each of them, those explanations are typically domain specific. Recently, methods from statistical physics were used to show that a fairly broad class of models does provide a general explanation of Zipf’s law. This explanation rests on the observation that real world data is often generated from underlying causes, known as latent variables. Those latent variables mix together multiple models that do not obey Zipf’s law, giving a model that does. Here we extend that work both theoretically and empirically. Theoretically, we provide a far simpler and more intuitive explanation of Zipf’s law, which at the same time considerably extends the class of models to which this explanation can apply. Furthermore, we also give methods for verifying whether this explanation applies to a particular dataset. Empirically, these advances allowed us extend this explanation to important classes of data, including word frequencies (the first domain in which Zipf’s law was discovered), data with variable sequence length, and multi-neuron spiking activity. PMID:27997544
Shankle, William R.; Pooley, James P.; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D.
2012-01-01
Determining how cognition affects functional abilities is important in Alzheimer’s disease and related disorders (ADRD). 280 patients (normal or ADRD) received a total of 1,514 assessments using the Functional Assessment Staging Test (FAST) procedure and the MCI Screen (MCIS). A hierarchical Bayesian cognitive processing (HBCP) model was created by embedding a signal detection theory (SDT) model of the MCIS delayed recognition memory task into a hierarchical Bayesian framework. The SDT model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the six FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. HBCP models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition to a continuous measure of functional severity for both individuals and FAST groups. Such a translation links two levels of brain information processing, and may enable more accurate correlations with other levels, such as those characterized by biomarkers. PMID:22407225
NASA Astrophysics Data System (ADS)
Yamamura, Sombo; Ohnuki, Maromi; Nagaoka, Hiroshi
Recently increased number of elementary school pupils brings drinks from home for their hydration at school and this phenomenon indicates the change of the role of water supply at schools. In order to investigate the potential causes and the structure of the problem, an online survey targeting mothers of grade-schoolers was carried out, taking account of psychological factors of mothers as well as their decision making process. In the questionnaire preparation, latent variables and observable variables were assumed. The identified results include: difference exists on people's choice of drinking water; more parents in western Japan wish pupils bring drinks and some parents in eastern Japan wish the same. Covariance structure analysis identified a causalmodel; in which parents' frustration to schools associated with decreased reliability to tap water cause parents' advice to pupils take drink from home. Policy makers are expected to make the most of the result of analysis.
Fields, Dail; Roman, Paul M; Blum, Terry C
2012-06-01
To examine the relationships among general management systems, patient-focused quality management/continuous process improvement (TQM/CPI) processes, resource availability, and multiple dimensions of substance use disorder (SUD) treatment. Data are from a nationally representative sample of 221 SUD treatment centers through the National Treatment Center Study (NTCS). The design was a cross-sectional field study using latent variable structural equation models. The key variables are management practices, TQM/continuous quality improvement (CQI) practices, resource availability, and treatment center performance. Interviews and questionnaires provided data from treatment center administrative directors and clinical directors in 2007-2008. Patient-focused TQM/CQI practices fully mediated the relationship between internal management practices and performance. The effects of TQM/CQI on performance are significantly larger for treatment centers with higher levels of staff per patient. Internal management practices may create a setting that supports implementation of specific patient-focused practices and protocols inherent to TQM/CQI processes. However, the positive effects of internal management practices on treatment center performance occur through use of specific patient-focused TQM/CPI practices and have more impact when greater amounts of supporting resources are present. © Health Research and Educational Trust.
Fields, Dail; Roman, Paul M; Blum, Terry C
2012-01-01
Objective To examine the relationships among general management systems, patient-focused quality management/continuous process improvement (TQM/CPI) processes, resource availability, and multiple dimensions of substance use disorder (SUD) treatment. Data Sources/Study Setting Data are from a nationally representative sample of 221 SUD treatment centers through the National Treatment Center Study (NTCS). Study Design The design was a cross-sectional field study using latent variable structural equation models. The key variables are management practices, TQM/continuous quality improvement (CQI) practices, resource availability, and treatment center performance. Data Collection Interviews and questionnaires provided data from treatment center administrative directors and clinical directors in 2007–2008. Principal Findings Patient-focused TQM/CQI practices fully mediated the relationship between internal management practices and performance. The effects of TQM/CQI on performance are significantly larger for treatment centers with higher levels of staff per patient. Conclusions Internal management practices may create a setting that supports implementation of specific patient-focused practices and protocols inherent to TQM/CQI processes. However, the positive effects of internal management practices on treatment center performance occur through use of specific patient-focused TQM/CPI practices and have more impact when greater amounts of supporting resources are present. PMID:22098342
LQTA-QSAR: a new 4D-QSAR methodology.
Martins, João Paulo A; Barbosa, Euzébio G; Pasqualoto, Kerly F M; Ferreira, Márcia M C
2009-06-01
A novel 4D-QSAR approach which makes use of the molecular dynamics (MD) trajectories and topology information retrieved from the GROMACS package is presented in this study. This new methodology, named LQTA-QSAR (LQTA, Laboratório de Quimiometria Teórica e Aplicada), has a module (LQTAgrid) that calculates intermolecular interaction energies at each grid point considering probes and all aligned conformations resulting from MD simulations. These interaction energies are the independent variables or descriptors employed in a QSAR analysis. The comparison of the proposed methodology to other 4D-QSAR and CoMFA formalisms was performed using a set of forty-seven glycogen phosphorylase b inhibitors (data set 1) and a set of forty-four MAP p38 kinase inhibitors (data set 2). The QSAR models for both data sets were built using the ordered predictor selection (OPS) algorithm for variable selection. Model validation was carried out applying y-randomization and leave-N-out cross-validation in addition to the external validation. PLS models for data set 1 and 2 provided the following statistics: q(2) = 0.72, r(2) = 0.81 for 12 variables selected and 2 latent variables and q(2) = 0.82, r(2) = 0.90 for 10 variables selected and 5 latent variables, respectively. Visualization of the descriptors in 3D space was successfully interpreted from the chemical point of view, supporting the applicability of this new approach in rational drug design.