Sample records for process model projection

  1. A functional-dynamic reflection on participatory processes in modeling projects.

    PubMed

    Seidl, Roman

    2015-12-01

    The participation of nonscientists in modeling projects/studies is increasingly employed to fulfill different functions. However, it is not well investigated if and how explicitly these functions and the dynamics of a participatory process are reflected by modeling projects in particular. In this review study, I explore participatory modeling projects from a functional-dynamic process perspective. The main differences among projects relate to the functions of participation-most often, more than one per project can be identified, along with the degree of explicit reflection (i.e., awareness and anticipation) on the dynamic process perspective. Moreover, two main approaches are revealed: participatory modeling covering diverse approaches and companion modeling. It becomes apparent that the degree of reflection on the participatory process itself is not always explicit and perfectly visible in the descriptions of the modeling projects. Thus, the use of common protocols or templates is discussed to facilitate project planning, as well as the publication of project results. A generic template may help, not in providing details of a project or model development, but in explicitly reflecting on the participatory process. It can serve to systematize the particular project's approach to stakeholder collaboration, and thus quality management.

  2. Risk Quantification of Systems Engineering Documents Improves Probability of DOD Project Success

    DTIC Science & Technology

    2009-09-01

    comprehensive risk model for DoD milestone review documentation as well as recommended changes to the Capability Maturity Model Integration ( CMMI ) Project...Milestone Documentation, Project Planning, Rational Frame, Political Frame, CMMI Project Planning Process Area, CMMI Risk Management Process Area...well as recommended changes to the Capability Maturity Model Integration ( CMMI ) Project Planning and Risk Management process areas. The intent is to

  3. Creating "Intelligent" Ensemble Averages Using a Process-Based Framework

    NASA Astrophysics Data System (ADS)

    Baker, Noel; Taylor, Patrick

    2014-05-01

    The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is used to add value to individual model projections and construct a consensus projection. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, individual models reproduce certain climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. The intention is to produce improved ("intelligent") unequal-weight ensemble averages. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Several climate process metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument in combination with surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing the equal-weighted ensemble average and an ensemble weighted using the process-based metric. Additionally, this study investigates the dependence of the metric weighting scheme on the climate state using a combination of model simulations including a non-forced preindustrial control experiment, historical simulations, and several radiative forcing Representative Concentration Pathway (RCP) scenarios. Ultimately, the goal of the framework is to advise better methods for ensemble averaging models and create better climate predictions.

  4. The Local Brewery: A Project for Use in Differential Equations Courses

    ERIC Educational Resources Information Center

    Starling, James K.; Povich, Timothy J.; Findlay, Michael

    2016-01-01

    We describe a modeling project designed for an ordinary differential equations (ODEs) course using first-order and systems of first-order differential equations to model the fermentation process in beer. The project aims to expose the students to the modeling process by creating and solving a mathematical model and effectively communicating their…

  5. Impact of agile methodologies on team capacity in automotive radio-navigation projects

    NASA Astrophysics Data System (ADS)

    Prostean, G.; Hutanu, A.; Volker, S.

    2017-01-01

    The development processes used in automotive radio-navigation projects are constantly under adaption pressure. While the software development models are based on automotive production processes, the integration of peripheral components into an automotive system will trigger a high number of requirement modifications. The use of traditional development models in automotive industry will bring team’s development capacity to its boundaries. The root cause lays in the inflexibility of actual processes and their adaption limits. This paper addresses a new project management approach for the development of radio-navigation projects. The understanding of weaknesses of current used models helped us in development and integration of agile methodologies in traditional development model structure. In the first part we focus on the change management methods to reduce request for change inflow. Established change management risk analysis processes enables the project management to judge the impact of a requirement change and also gives time to the project to implement some changes. However, in big automotive radio-navigation projects the saved time is not enough to implement the large amount of changes, which are submitted to the project. In the second phase of this paper we focus on increasing team capacity by integrating at critical project phases agile methodologies into the used traditional model. The overall objective of this paper is to prove the need of process adaption in order to solve project team capacity bottlenecks.

  6. Method for modeling social care processes for national information exchange.

    PubMed

    Miettinen, Aki; Mykkänen, Juha; Laaksonen, Maarit

    2012-01-01

    Finnish social services include 21 service commissions of social welfare including Adoption counselling, Income support, Child welfare, Services for immigrants and Substance abuse care. This paper describes the method used for process modeling in the National project for IT in Social Services in Finland (Tikesos). The process modeling in the project aimed to support common national target state processes from the perspective of national electronic archive, increased interoperability between systems and electronic client documents. The process steps and other aspects of the method are presented. The method was developed, used and refined during the three years of process modeling in the national project.

  7. Yield model development project implementation plan

    NASA Technical Reports Server (NTRS)

    Ambroziak, R. A.

    1982-01-01

    Tasks remaining to be completed are summarized for the following major project elements: (1) evaluation of crop yield models; (2) crop yield model research and development; (3) data acquisition processing, and storage; (4) related yield research: defining spectral and/or remote sensing data requirements; developing input for driving and testing crop growth/yield models; real time testing of wheat plant process models) and (5) project management and support.

  8. Strategic Project Management at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Lavelle, Jerome P.

    2000-01-01

    This paper describes Project Management at NASA's Kennedy Space Center (KSC) from a strategic perspective. It develops the historical context of the agency and center's strategic planning process and illustrates how now is the time for KSC to become a center which has excellence in project management. The author describes project management activities at the center and details observations on those efforts. Finally the author describes the Strategic Project Management Process Model as a conceptual model which could assist KSC in defining an appropriate project management process system at the center.

  9. Software-Engineering Process Simulation (SEPS) model

    NASA Technical Reports Server (NTRS)

    Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.

    1992-01-01

    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.

  10. A Strategy for Autogeneration of Space Shuttle Ground Processing Simulation Models for Project Makespan Estimations

    NASA Technical Reports Server (NTRS)

    Madden, Michael G.; Wyrick, Roberta; O'Neill, Dale E.

    2005-01-01

    Space Shuttle Processing is a complicated and highly variable project. The planning and scheduling problem, categorized as a Resource Constrained - Stochastic Project Scheduling Problem (RC-SPSP), has a great deal of variability in the Orbiter Processing Facility (OPF) process flow from one flight to the next. Simulation Modeling is a useful tool in estimation of the makespan of the overall process. However, simulation requires a model to be developed, which itself is a labor and time consuming effort. With such a dynamic process, often the model would potentially be out of synchronization with the actual process, limiting the applicability of the simulation answers in solving the actual estimation problem. Integration of TEAMS model enabling software with our existing schedule program software is the basis of our solution. This paper explains the approach used to develop an auto-generated simulation model from planning and schedule efforts and available data.

  11. Collaborative Project: Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Frank; Dennis, John; MacCready, Parker

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  12. Final Report Collaborative Project: Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Frank; Dennis, John; MacCready, Parker

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  13. Including hydrological self-regulating processes in peatland models: Effects on peatmoss drought projections.

    PubMed

    Nijp, Jelmer J; Metselaar, Klaas; Limpens, Juul; Teutschbein, Claudia; Peichl, Matthias; Nilsson, Mats B; Berendse, Frank; van der Zee, Sjoerd E A T M

    2017-02-15

    The water content of the topsoil is one of the key factors controlling biogeochemical processes, greenhouse gas emissions and biosphere - atmosphere interactions in many ecosystems, particularly in northern peatlands. In these wetland ecosystems, the water content of the photosynthetic active peatmoss layer is crucial for ecosystem functioning and carbon sequestration, and is sensitive to future shifts in rainfall and drought characteristics. Current peatland models differ in the degree in which hydrological feedbacks are included, but how this affects peatmoss drought projections is unknown. The aim of this paper was to systematically test whether the level of hydrological detail in models could bias projections of water content and drought stress for peatmoss in northern peatlands using downscaled projections for rainfall and potential evapotranspiration in the current (1991-2020) and future climate (2061-2090). We considered four model variants that either include or exclude moss (rain)water storage and peat volume change, as these are two central processes in the hydrological self-regulation of peatmoss carpets. Model performance was validated using field data of a peatland in northern Sweden. Including moss water storage as well as peat volume change resulted in a significant improvement of model performance, despite the extra parameters added. The best performance was achieved if both processes were included. Including moss water storage and peat volume change consistently reduced projected peatmoss drought frequency with >50%, relative to the model excluding both processes. Projected peatmoss drought frequency in the growing season was 17% smaller under future climate than current climate, but was unaffected by including the hydrological self-regulating processes. Our results suggest that ignoring these two fine-scale processes important in hydrological self-regulation of northern peatlands will have large consequences for projected climate change impact on ecosystem processes related to topsoil water content, such as greenhouse gas emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Creating "Intelligent" Climate Model Ensemble Averages Using a Process-Based Framework

    NASA Astrophysics Data System (ADS)

    Baker, N. C.; Taylor, P. C.

    2014-12-01

    The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is often used to add value to model projections: consensus projections have been shown to consistently outperform individual models. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, certain models reproduce climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument and surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing weighted and unweighted model ensembles. For example, one tested metric weights the ensemble by how well models reproduce the time-series probability distribution of the cloud forcing component of reflected shortwave radiation. The weighted ensemble for this metric indicates lower simulated precipitation (up to .7 mm/day) in tropical regions than the unweighted ensemble: since CMIP5 models have been shown to overproduce precipitation, this result could indicate that the metric is effective in identifying models which simulate more realistic precipitation. Ultimately, the goal of the framework is to identify performance metrics for advising better methods for ensemble averaging models and create better climate predictions.

  15. Climbing the ladder: capability maturity model integration level 3

    NASA Astrophysics Data System (ADS)

    Day, Bryce; Lutteroth, Christof

    2011-02-01

    This article details the attempt to form a complete workflow model for an information and communication technologies (ICT) company in order to achieve a capability maturity model integration (CMMI) maturity rating of 3. During this project, business processes across the company's core and auxiliary sectors were documented and extended using modern enterprise modelling tools and a The Open Group Architectural Framework (TOGAF) methodology. Different challenges were encountered with regard to process customisation and tool support for enterprise modelling. In particular, there were problems with the reuse of process models, the integration of different project management methodologies and the integration of the Rational Unified Process development process framework that had to be solved. We report on these challenges and the perceived effects of the project on the company. Finally, we point out research directions that could help to improve the situation in the future.

  16. A Goal Programming R&D (Research and Development) Project Funding Model of the U.S. Army Strategic Defense Command Using the Analytic Hierarchy Process.

    DTIC Science & Technology

    1987-09-01

    A187 899 A GOAL PROGRANNIN R&D (RESEARCH AND DEVELOPMENT) 1/2 PROJECT FUNDING MODEL 0 (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA S M ANDERSON SEP 87...PROGRAMMING R&D PROJECT FUNDING MODEL OF THE U.S. ARMY STRATEGIC DEFENSE COMMAND USING THE ANALYTIC HIERARCHY PROCESS by Steven M. Anderson September 1987...jACCESSION NO TITI E (Influde Securt ClauAIcatsrn) A Goal Programming R&D Project Funding Model of the U.S. Army Strategic Defense Command Using the

  17. Post-processing of multi-hydrologic model simulations for improved streamflow projections

    NASA Astrophysics Data System (ADS)

    khajehei, sepideh; Ahmadalipour, Ali; Moradkhani, Hamid

    2016-04-01

    Hydrologic model outputs are prone to bias and uncertainty due to knowledge deficiency in model and data. Uncertainty in hydroclimatic projections arises due to uncertainty in hydrologic model as well as the epistemic or aleatory uncertainties in GCM parameterization and development. This study is conducted to: 1) evaluate the recently developed multi-variate post-processing method for historical simulations and 2) assess the effect of post-processing on uncertainty and reliability of future streamflow projections in both high-flow and low-flow conditions. The first objective is performed for historical period of 1970-1999. Future streamflow projections are generated for 10 statistically downscaled GCMs from two widely used downscaling methods: Bias Corrected Statistically Downscaled (BCSD) and Multivariate Adaptive Constructed Analogs (MACA), over the period of 2010-2099 for two representative concentration pathways of RCP4.5 and RCP8.5. Three semi-distributed hydrologic models were employed and calibrated at 1/16 degree latitude-longitude resolution for over 100 points across the Columbia River Basin (CRB) in the pacific northwest USA. Streamflow outputs are post-processed through a Bayesian framework based on copula functions. The post-processing approach is relying on a transfer function developed based on bivariate joint distribution between the observation and simulation in historical period. Results show that application of post-processing technique leads to considerably higher accuracy in historical simulations and also reducing model uncertainty in future streamflow projections.

  18. Model for Simulating a Spiral Software-Development Process

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn; Curley, Charles; Nayak, Umanath

    2010-01-01

    A discrete-event simulation model, and a computer program that implements the model, have been developed as means of analyzing a spiral software-development process. This model can be tailored to specific development environments for use by software project managers in making quantitative cases for deciding among different software-development processes, courses of action, and cost estimates. A spiral process can be contrasted with a waterfall process, which is a traditional process that consists of a sequence of activities that include analysis of requirements, design, coding, testing, and support. A spiral process is an iterative process that can be regarded as a repeating modified waterfall process. Each iteration includes assessment of risk, analysis of requirements, design, coding, testing, delivery, and evaluation. A key difference between a spiral and a waterfall process is that a spiral process can accommodate changes in requirements at each iteration, whereas in a waterfall process, requirements are considered to be fixed from the beginning and, therefore, a waterfall process is not flexible enough for some projects, especially those in which requirements are not known at the beginning or may change during development. For a given project, a spiral process may cost more and take more time than does a waterfall process, but may better satisfy a customer's expectations and needs. Models for simulating various waterfall processes have been developed previously, but until now, there have been no models for simulating spiral processes. The present spiral-process-simulating model and the software that implements it were developed by extending a discrete-event simulation process model of the IEEE 12207 Software Development Process, which was built using commercially available software known as the Process Analysis Tradeoff Tool (PATT). Typical inputs to PATT models include industry-average values of product size (expressed as number of lines of code), productivity (number of lines of code per hour), and number of defects per source line of code. The user provides the number of resources, the overall percent of effort that should be allocated to each process step, and the number of desired staff members for each step. The output of PATT includes the size of the product, a measure of effort, a measure of rework effort, the duration of the entire process, and the numbers of injected, detected, and corrected defects as well as a number of other interesting features. In the development of the present model, steps were added to the IEEE 12207 waterfall process, and this model and its implementing software were made to run repeatedly through the sequence of steps, each repetition representing an iteration in a spiral process. Because the IEEE 12207 model is founded on a waterfall paradigm, it enables direct comparison of spiral and waterfall processes. The model can be used throughout a software-development project to analyze the project as more information becomes available. For instance, data from early iterations can be used as inputs to the model, and the model can be used to estimate the time and cost of carrying the project to completion.

  19. Climate Projections from the NARCliM Project: Bayesian Model Averaging of Maximum Temperature Projections

    NASA Astrophysics Data System (ADS)

    Olson, R.; Evans, J. P.; Fan, Y.

    2015-12-01

    NARCliM (NSW/ACT Regional Climate Modelling Project) is a regional climate project for Australia and the surrounding region. It dynamically downscales 4 General Circulation Models (GCMs) using three Regional Climate Models (RCMs) to provide climate projections for the CORDEX-AustralAsia region at 50 km resolution, and for south-east Australia at 10 km resolution. The project differs from previous work in the level of sophistication of model selection. Specifically, the selection process for GCMs included (i) conducting literature review to evaluate model performance, (ii) analysing model independence, and (iii) selecting models that span future temperature and precipitation change space. RCMs for downscaling the GCMs were chosen based on their performance for several precipitation events over South-East Australia, and on model independence.Bayesian Model Averaging (BMA) provides a statistically consistent framework for weighing the models based on their likelihood given the available observations. These weights are used to provide probability distribution functions (pdfs) for model projections. We develop a BMA framework for constructing probabilistic climate projections for spatially-averaged variables from the NARCliM project. The first step in the procedure is smoothing model output in order to exclude the influence of internal climate variability. Our statistical model for model-observations residuals is a homoskedastic iid process. Comparing RCMs with Australian Water Availability Project (AWAP) observations is used to determine model weights through Monte Carlo integration. Posterior pdfs of statistical parameters of model-data residuals are obtained using Markov Chain Monte Carlo. The uncertainty in the properties of the model-data residuals is fully accounted for when constructing the projections. We present the preliminary results of the BMA analysis for yearly maximum temperature for New South Wales state planning regions for the period 2060-2079.

  20. The TAME Project: Towards improvement-oriented software environments

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Rombach, H. Dieter

    1988-01-01

    Experience from a dozen years of analyzing software engineering processes and products is summarized as a set of software engineering and measurement principles that argue for software engineering process models that integrate sound planning and analysis into the construction process. In the TAME (Tailoring A Measurement Environment) project at the University of Maryland, such an improvement-oriented software engineering process model was developed that uses the goal/question/metric paradigm to integrate the constructive and analytic aspects of software development. The model provides a mechanism for formalizing the characterization and planning tasks, controlling and improving projects based on quantitative analysis, learning in a deeper and more systematic way about the software process and product, and feeding the appropriate experience back into the current and future projects. The TAME system is an instantiation of the TAME software engineering process model as an ISEE (integrated software engineering environment). The first in a series of TAME system prototypes has been developed. An assessment of experience with this first limited prototype is presented including a reassessment of its initial architecture.

  1. The maturing of the quality improvement paradigm in the SEL

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1993-01-01

    The Software Engineering Laboratory uses a paradigm for improving the software process and product, called the quality improvement paradigm. This paradigm has evolved over the past 18 years, along with our software development processes and product. Since 1976, when we first began the SEL, we have learned a great deal about improving the software process and product, making a great many mistakes along the way. Quality improvement paradigm, as it is currently defined, can be broken up into six steps: characterize the current project and its environment with respect to the appropriate models and metrics; set the quantifiable goals for successful project performance and improvement; choose the appropriate process model and supporting methods and tools for this project; execute the processes, construct the products, and collect, validate, and analyze the data to provide real-time feedback for corrective action; analyze the data to evaluate the current practices, determine problems, record findings, and make recommendations for future project improvements; and package the experience gained in the form of updated and refined models and other forms of structured knowledge gained from this and prior projects and save it in an experience base to be reused on future projects.

  2. Simulation of generation of new ideas for new product development and IT services

    NASA Astrophysics Data System (ADS)

    Nasiopoulos, Dimitrios K.; Sakas, Damianos P.; Vlachos, D. S.; Mavrogianni, Amanda

    2015-02-01

    This paper describes a dynamic model of the New Product Development (NPD) process. The model has been occurring from best practice noticed in our research conducted at a range of situations. The model contributes to determine and put an IT company's NPD activities into the frame of the overall NPD process[1]. It has been found to be a useful tool for organizing data on IT company's NPD activities without enforcement an excessively restrictive research methodology refers to the model of NPD. The framework, which strengthens the model, will help to promote a research of the methods undertaken within an IT company's NPD process, thus promoting understanding and improvement of the simulation process[2]. IT companies tested many techniques with several different practices designed to improve the validity and efficacy of their NPD process[3]. Supported by the model, this research examines how widely accepted stated tactics are and what impact these best tactics have on NPD performance. The main assumption of this study is that simulation of generation of new ideas[4] will lead to greater NPD effectiveness and more successful products in IT companies. With the model implementation, practices concern the implementation strategies of NPD (product selection, objectives, leadership, marketing strategy and customer satisfaction) are all more widely accepted than best practices related with controlling the application of NPD (process control, measurements, results). In linking simulation with impact, our results states product success depends on developing strong products and ensuring organizational emphasis, through proper project selection. Project activities strengthens both product and project success. IT products and services success also depends on monitoring the NPD procedure through project management and ensuring team consistency with group rewards. Sharing experiences between projects can positively influence the NPD process.

  3. Quantitative CMMI Assessment for Offshoring through the Analysis of Project Management Repositories

    NASA Astrophysics Data System (ADS)

    Sunetnanta, Thanwadee; Nobprapai, Ni-On; Gotel, Olly

    The nature of distributed teams and the existence of multiple sites in offshore software development projects pose a challenging setting for software process improvement. Often, the improvement and appraisal of software processes is achieved through a turnkey solution where best practices are imposed or transferred from a company’s headquarters to its offshore units. In so doing, successful project health checks and monitoring for quality on software processes requires strong project management skills, well-built onshore-offshore coordination, and often needs regular onsite visits by software process improvement consultants from the headquarters’ team. This paper focuses on software process improvement as guided by the Capability Maturity Model Integration (CMMI) and proposes a model to evaluate the status of such improvement efforts in the context of distributed multi-site projects without some of this overhead. The paper discusses the application of quantitative CMMI assessment through the collection and analysis of project data gathered directly from project repositories to facilitate CMMI implementation and reduce the cost of such implementation for offshore-outsourced software development projects. We exemplify this approach to quantitative CMMI assessment through the analysis of project management data and discuss the future directions of this work in progress.

  4. BIM integration in education: A case study of the construction technology project Bolt Tower Dolni Vitkovice

    NASA Astrophysics Data System (ADS)

    Venkrbec, Vaclav; Bittnerova, Lucie

    2017-12-01

    Building information modeling (BIM) can support effectiveness during many activities in the AEC industry. even when processing a construction-technological project. This paper presents an approach how to use building information model in higher education, especially during the work on diploma thesis and it supervision. Diploma thesis is project based work, which aims to compile a construction-technological project for a selected construction. The paper describes the use of input data, working with them and compares this process with standard input data such as printed design documentation. The effectiveness of using the building information model as a input data for construction-technological project is described in the conclusion.

  5. Modeling Research Project Risks with Fuzzy Maps

    ERIC Educational Resources Information Center

    Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana

    2009-01-01

    The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…

  6. Software Engineering Laboratory (SEL) cleanroom process model

    NASA Technical Reports Server (NTRS)

    Green, Scott; Basili, Victor; Godfrey, Sally; Mcgarry, Frank; Pajerski, Rose; Waligora, Sharon

    1991-01-01

    The Software Engineering Laboratory (SEL) cleanroom process model is described. The term 'cleanroom' originates in the integrated circuit (IC) production process, where IC's are assembled in dust free 'clean rooms' to prevent the destructive effects of dust. When applying the clean room methodology to the development of software systems, the primary focus is on software defect prevention rather than defect removal. The model is based on data and analysis from previous cleanroom efforts within the SEL and is tailored to serve as a guideline in applying the methodology to future production software efforts. The phases that are part of the process model life cycle from the delivery of requirements to the start of acceptance testing are described. For each defined phase, a set of specific activities is discussed, and the appropriate data flow is described. Pertinent managerial issues, key similarities and differences between the SEL's cleanroom process model and the standard development approach used on SEL projects, and significant lessons learned from prior cleanroom projects are presented. It is intended that the process model described here will be further tailored as additional SEL cleanroom projects are analyzed.

  7. Baseline process description for simulating plutonium oxide production for precalc project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, J. A.

    Savannah River National Laboratory (SRNL) started a multi-year project, the PreCalc Project, to develop a computational simulation of a plutonium oxide (PuO 2) production facility with the objective to study the fundamental relationships between morphological and physicochemical properties. This report provides a detailed baseline process description to be used by SRNL personnel and collaborators to facilitate the initial design and construction of the simulation. The PreCalc Project team selected the HB-Line Plutonium Finishing Facility as the basis for a nominal baseline process since the facility is operational and significant model validation data can be obtained. The process boundary as wellmore » as process and facility design details necessary for multi-scale, multi-physics models are provided.« less

  8. The materials processing research base of the Materials Processing Center. Report for FY 1982

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.

    1983-01-01

    The work described, while involving research in the broad field of materials processing, has two common features: the problems are closed related to space precessing of materials and have both practical and fundamental significance. An interesting and important feature of many of the projects is that the interdisciplinary nature of the problem mandates complementary analytical modeling/experimental approaches. An other important aspect of many of the projects is the increasing use of mathematical modeling techniques as one of the research tools. The predictive capability of these models, when tested against measurements, plays a very important role in both the planning of experimental programs and in the rational interpretation of the results. Many of the projects described have a space experiment as their ultimate objective. Mathematical models are proving to be extremely valuable in projecting the findings of ground - based experiments to microgravity conditions.

  9. How uncertain are climate model projections of water availability indicators across the Middle East?

    PubMed

    Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil

    2010-11-28

    The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.

  10. SU-C-207-04: Reconstruction Artifact Reduction in X-Ray Cone Beam CT Using a Treatment Couch Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasio, G; Hu, E; Zhou, J

    2015-06-15

    Purpose: to mitigate artifacts induced by the presence of the RT treatment couch in on-board CBCT and improve image quality Methods: a model of a Varian IGRT couch is constructed using a CBCT scan of the couch in air. The model is used to generate a set of forward projections (FP) of the treatment couch at specified gantry angles. The model couch forward projections are then used to process CBCT scan projections which contain the couch in addition to the scan object (Catphan phantom), in order to remove the attenuation component of the couch at any given gantry angle. Priormore » to pre-processing with the model FP, the Catphan projection data is normalized to an air scan with bowtie filter. The filtered Catphan projections are used to reconstruct the CBCT with an in-house FDK algorithm. The artifact reduction in the processed CBCT scan is assessed visually, and the image quality improvement is measured with the CNR over a few selected ROIs of the Catphan modules. Results: Sufficient match between the forward projected data and the x-ray projections is achieved to allow filtering in attenuation space. Visual improvement of the couch induced artifacts is achieved, with a moderate expense of CNR. Conclusion: Couch model-based correction of CBCT projection data has a potential for qualitative improvement of clinical CBCT scans, without requiring position specific correction data. The technique could be used to produce models of other artifact inducing devices, such as immobilization boards, and reduce their impact on patient CBCT images.« less

  11. Survey Design for a Statewide Multimodal Transportation Forecasting Model

    DOT National Transportation Integrated Search

    1992-02-01

    In 1990, the NMSHTD initiated an ambitious and long-term research project. The : project was to define the process for and undertake the development of a : statewide multimodal transportation forecasting model. The project commenced in : April, 1991....

  12. Nurturing the Imagination: Creativity Processes and Innovative Qualitative Research Projects

    ERIC Educational Resources Information Center

    Mulvihill, Thalia M.; Swaminathan, Raji

    2012-01-01

    This article explores the creativity processes involved in designing and analyzing innovative qualitative research projects and evaluates examples of recent models and typologies that illustrate a variety of ways to approach qualitative inquiry. Using Gardner's Five Minds (2006) typology, Boyer's Model of Scholarship (1997) and Bloom's Taxonomy of…

  13. Vehicle Modeling for use in the CAFE model: Process description and modeling assumptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moawad, Ayman; Kim, Namdoo; Rousseau, Aymeric

    2016-06-01

    The objective of this project is to develop and demonstrate a process that, at a minimum, provides more robust information that can be used to calibrate inputs applicable under the CAFE model’s existing structure. The project will be more fully successful if a process can be developed that minimizes the need for decision trees and replaces the synergy factors by inputs provided directly from a vehicle simulation tool. The report provides a description of the process that was developed by Argonne National Laboratory and implemented in Autonomie.

  14. Model-Based Verification and Validation of the SMAP Uplink Processes

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Dubos, Gregory F.; Tirona, Joseph; Standley, Shaun

    2013-01-01

    This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V&V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process.Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based V&V development efforts.

  15. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Frank; Dennis, John; MacCready, Parker

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. Tomore » develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.« less

  16. Chevron: Refinery Identifies $4.4 Million in Annual Savings by Using Process Simulation Models to Perform Energy-Efficiency Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-05-01

    In an energy-efficiency study at its refinery near Salt Lake City, Utah, Chevron focused on light hydrocarbons processing. The company found it could recover hydrocarbons from its fuel gas system and sell them. By using process simulation models of special distillation columns and associated reboilers and condensers, Chevron could predict the performance of potential equipment configuration changes and process modifications. More than 25,000 MMBtu in natural gas could be saved annually if a debutanizer upgrade project and a new saturated gas plant project were completed. Together, these projects would save $4.4 million annually.

  17. Computer-aided software development process design

    NASA Technical Reports Server (NTRS)

    Lin, Chi Y.; Levary, Reuven R.

    1989-01-01

    The authors describe an intelligent tool designed to aid managers of software development projects in planning, managing, and controlling the development process of medium- to large-scale software projects. Its purpose is to reduce uncertainties in the budget, personnel, and schedule planning of software development projects. It is based on dynamic model for the software development and maintenance life-cycle process. This dynamic process is composed of a number of time-varying, interacting developmental phases, each characterized by its intended functions and requirements. System dynamics is used as a modeling methodology. The resulting Software LIfe-Cycle Simulator (SLICS) and the hybrid expert simulation system of which it is a subsystem are described.

  18. Research a Novel Integrated and Dynamic Multi-object Trade-Off Mechanism in Software Project

    NASA Astrophysics Data System (ADS)

    Jiang, Weijin; Xu, Yuhui

    Aiming at practical requirements of present software project management and control, the paper presented to construct integrated multi-object trade-off model based on software project process management, so as to actualize integrated and dynamic trade-oil of the multi-object system of project. Based on analyzing basic principle of dynamic controlling and integrated multi-object trade-off system process, the paper integrated method of cybernetics and network technology, through monitoring on some critical reference points according to the control objects, emphatically discussed the integrated and dynamic multi- object trade-off model and corresponding rules and mechanism in order to realize integration of process management and trade-off of multi-object system.

  19. Project Tradition and Technology (Project TNT): The Hualapai Bilingual Academic Excellence Program.

    ERIC Educational Resources Information Center

    Reed, Michael D.; And Others

    Project Tradition and Technology (TNT) at Peach Springs Elementary School (Peach Springs, Arizona) is 1 of 12 programs recognized nationally as an outstanding model of bilingual education by the U.S. Department of Education. Project TNT is a process-oriented curriculum development model that identifies the community's needs and expectations for…

  20. Variances in the projections, resulting from CLIMEX, Boosted Regression Trees and Random Forests techniques

    NASA Astrophysics Data System (ADS)

    Shabani, Farzin; Kumar, Lalit; Solhjouy-fard, Samaneh

    2017-08-01

    The aim of this study was to have a comparative investigation and evaluation of the capabilities of correlative and mechanistic modeling processes, applied to the projection of future distributions of date palm in novel environments and to establish a method of minimizing uncertainty in the projections of differing techniques. The location of this study on a global scale is in Middle Eastern Countries. We compared the mechanistic model CLIMEX (CL) with the correlative models MaxEnt (MX), Boosted Regression Trees (BRT), and Random Forests (RF) to project current and future distributions of date palm ( Phoenix dactylifera L.). The Global Climate Model (GCM), the CSIRO-Mk3.0 (CS) using the A2 emissions scenario, was selected for making projections. Both indigenous and alien distribution data of the species were utilized in the modeling process. The common areas predicted by MX, BRT, RF, and CL from the CS GCM were extracted and compared to ascertain projection uncertainty levels of each individual technique. The common areas identified by all four modeling techniques were used to produce a map indicating suitable and unsuitable areas for date palm cultivation for Middle Eastern countries, for the present and the year 2100. The four different modeling approaches predict fairly different distributions. Projections from CL were more conservative than from MX. The BRT and RF were the most conservative methods in terms of projections for the current time. The combination of the final CL and MX projections for the present and 2100 provide higher certainty concerning those areas that will become highly suitable for future date palm cultivation. According to the four models, cold, hot, and wet stress, with differences on a regional basis, appears to be the major restrictions on future date palm distribution. The results demonstrate variances in the projections, resulting from different techniques. The assessment and interpretation of model projections requires reservations, especially in correlative models such as MX, BRT, and RF. Intersections between different techniques may decrease uncertainty in future distribution projections. However, readers should not miss the fact that the uncertainties are mostly because the future GHG emission scenarios are unknowable with sufficient precision. Suggestions towards methodology and processing for improving projections are included.

  1. How can model comparison help improving species distribution models?

    PubMed

    Gritti, Emmanuel Stephan; Gaucherel, Cédric; Crespo-Perez, Maria-Veronica; Chuine, Isabelle

    2013-01-01

    Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost exclusively by correlative species distribution models (correlative SDMs). However, concerns regarding the reliability of their predictive power are growing and several authors call for the development of process-based SDMs. Still, each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT) that lie in the continuum between correlative models and process-based models for the current distribution of three major European tree species, Fagussylvatica L., Quercusrobur L. and Pinussylvestris L. We compare the consistency of the model simulations using an innovative comparison map profile method, integrating local and multi-scale comparisons. The three models simulate relatively accurately the current distribution of the three species. The process-based model performs almost as well as the correlative model, although parameters of the former are not fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the European scale, by establishment and survival through processes primarily related to phenology and resistance to abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model could however be improved by integrating a more realistic representation of the species resistance to water stress for instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and variations on these processes.

  2. How Can Model Comparison Help Improving Species Distribution Models?

    PubMed Central

    Gritti, Emmanuel Stephan; Gaucherel, Cédric; Crespo-Perez, Maria-Veronica; Chuine, Isabelle

    2013-01-01

    Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost exclusively by correlative species distribution models (correlative SDMs). However, concerns regarding the reliability of their predictive power are growing and several authors call for the development of process-based SDMs. Still, each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT) that lie in the continuum between correlative models and process-based models for the current distribution of three major European tree species, Fagus sylvatica L., Quercus robur L. and Pinus sylvestris L. We compare the consistency of the model simulations using an innovative comparison map profile method, integrating local and multi-scale comparisons. The three models simulate relatively accurately the current distribution of the three species. The process-based model performs almost as well as the correlative model, although parameters of the former are not fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the European scale, by establishment and survival through processes primarily related to phenology and resistance to abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model could however be improved by integrating a more realistic representation of the species resistance to water stress for instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and variations on these processes. PMID:23874779

  3. Conceptual modeling for Prospective Health Technology Assessment.

    PubMed

    Gantner-Bär, Marion; Djanatliev, Anatoli; Prokosch, Hans-Ulrich; Sedlmayr, Martin

    2012-01-01

    Prospective Health Technology Assessment (ProHTA) is a new and innovative approach to analyze and assess new technologies, methods and procedures in health care. Simulation processes are used to model innovations before the cost-intensive design and development phase. Thus effects on patient care, the health care system as well as health economics aspects can be estimated. To generate simulation models a valid information base is necessary and therefore conceptual modeling is most suitable. Project-specifically improved methods and characteristics of simulation modeling are combined in the ProHTA Conceptual Modeling Process and initially implemented for acute ischemic stroke treatment in Germany. Additionally the project aims at simulation of other diseases and health care systems as well. ProHTA is an interdisciplinary research project within the Cluster of Excellence for Medical Technology - Medical Valley European Metropolitan Region Nuremberg (EMN), which is funded by the German Federal Ministry of Education and Research (BMBF), project grant No. 01EX1013B.

  4. The Lunar Phases Project: A Mental Model-Based Observational Project for Undergraduate Nonscience Majors

    ERIC Educational Resources Information Center

    Meyer, Angela Osterman; Mon, Manuel J.; Hibbard, Susan T.

    2011-01-01

    We present our Lunar Phases Project, an ongoing effort utilizing students' actual observations within a mental model building framework to improve student understanding of the causes and process of the lunar phases. We implement this project with a sample of undergraduate, nonscience major students enrolled in a midsized public university located…

  5. DECOVALEX Project: from 1992 to 2007

    NASA Astrophysics Data System (ADS)

    Tsang, Chin-Fu; Stephansson, Ove; Jing, Lanru; Kautsky, Fritz

    2009-05-01

    The DECOVALEX project is a unique international research collaboration, initiated in 1992, for advancing the understanding and mathematical modelling of coupled thermo-hydro-mechanical (THM) and thermo-hydro-mechanical-chemical (THMC) processes in geological systems—subjects of importance for performance assessment of radioactive waste repositories in geological formations. From 1992 up to 2007, the project has made important progress and played a key role in the development of numerical modelling of coupled processes in fractured rocks and buffer/backfill materials. The project has been conducted by research teams supported by a large number of radioactive-waste-management organizations and regulatory authorities, including those of Canada, China, Finland, France, Japan, Germany, Spain, Sweden, UK, and the USA. Through this project, in-depth knowledge has been gained of coupled THM and THMC processes associated with nuclear waste repositories, as well as numerical simulation models for their quantitative analysis. The knowledge accumulated from this project, in the form of a large number of research reports and international journal and conference papers in the open literature, has been applied effectively in the implementation and review of national radioactive-waste-management programmes in the participating countries. This paper presents an overview of the project.

  6. Network models for solving the problem of multicriterial adaptive optimization of investment projects control with several acceptable technologies

    NASA Astrophysics Data System (ADS)

    Shorikov, A. F.; Butsenko, E. V.

    2017-10-01

    This paper discusses the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. On the basis of network modeling proposed a new economic and mathematical model and a method for solving the problem of multicriterial adaptive optimization the control of investment projects in the presence of several technologies. Network economic and mathematical modeling allows you to determine the optimal time and calendar schedule for the implementation of the investment project and serves as an instrument to increase the economic potential and competitiveness of the enterprise. On a meaningful practical example, the processes of forming network models are shown, including the definition of the sequence of actions of a particular investment projecting process, the network-based work schedules are constructed. The calculation of the parameters of network models is carried out. Optimal (critical) paths have been formed and the optimal time for implementing the chosen technologies of the investment project has been calculated. It also shows the selection of the optimal technology from a set of possible technologies for project implementation, taking into account the time and cost of the work. The proposed model and method for solving the problem of managing investment projects can serve as a basis for the development, creation and application of appropriate computer information systems to support the adoption of managerial decisions by business people.

  7. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study

    NASA Astrophysics Data System (ADS)

    Wieder, William R.; Cleveland, Cory C.; Lawrence, David M.; Bonan, Gordon B.

    2015-04-01

    Uncertainties in terrestrial carbon (C) cycle projections increase uncertainty of potential climate feedbacks. Efforts to improve model performance often include increased representation of biogeochemical processes, such as coupled carbon-nitrogen (N) cycles. In doing so, models are becoming more complex, generating structural uncertainties in model form that reflect incomplete knowledge of how to represent underlying processes. Here, we explore structural uncertainties associated with biological nitrogen fixation (BNF) and quantify their effects on C cycle projections. We find that alternative plausible structures to represent BNF result in nearly equivalent terrestrial C fluxes and pools through the twentieth century, but the strength of the terrestrial C sink varies by nearly a third (50 Pg C) by the end of the twenty-first century under a business-as-usual climate change scenario representative concentration pathway 8.5. These results indicate that actual uncertainty in future C cycle projections may be larger than previously estimated, and this uncertainty will limit C cycle projections until model structures can be evaluated and refined.

  8. Almost certain escape from black holes in final state projection models.

    PubMed

    Lloyd, Seth

    2006-02-17

    Recent models of the black-hole final state suggest that quantum information can escape from a black hole by a process akin to teleportation. These models rely on a controversial process called final-state projection. This Letter discusses the self-consistency of the final-state projection hypothesis and investigates escape from black holes for arbitrary final states and for generic interactions between matter and Hawking radiation. Quantum information escapes with fidelity approximately = (8/3pi)2: only half a bit of quantum information is lost on average, independent of the number of bits that escape from the hole.

  9. 2016 International Land Model Benchmarking (ILAMB) Workshop Report

    NASA Technical Reports Server (NTRS)

    Hoffman, Forrest M.; Koven, Charles D.; Keppel-Aleks, Gretchen; Lawrence, David M.; Riley, William J.; Randerson, James T.; Ahlstrom, Anders; Abramowitz, Gabriel; Baldocchi, Dennis D.; Best, Martin J.; hide

    2016-01-01

    As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistryclimate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial uncertainties in 21st century climate change projections.

  10. 2016 International Land Model Benchmarking (ILAMB) Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forrest M.; Koven, Charles D.; Keppel-Aleks, Gretchen

    As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing uncertainties associated with projections of climate change during the remainder of the 21st century.

  11. Uncertain soil moisture feedbacks in model projections of Sahel precipitation

    NASA Astrophysics Data System (ADS)

    Berg, Alexis; Lintner, Benjamin R.; Findell, Kirsten; Giannini, Alessandra

    2017-06-01

    Given the uncertainties in climate model projections of Sahel precipitation, at the northern edge of the West African Monsoon, understanding the factors governing projected precipitation changes in this semiarid region is crucial. This study investigates how long-term soil moisture changes projected under climate change may feedback on projected changes of Sahel rainfall, using simulations with and without soil moisture change from five climate models participating in the Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison Project phase 5 experiment. In four out of five models analyzed, soil moisture feedbacks significantly influence the projected West African precipitation response to warming; however, the sign of these feedbacks differs across the models. These results demonstrate that reducing uncertainties across model projections of the West African Monsoon requires, among other factors, improved mechanistic understanding and constraint of simulated land-atmosphere feedbacks, even at the large spatial scales considered here.Plain Language SummaryClimate model projections of Sahel rainfall remain notoriously uncertain; understanding the physical processes responsible for this uncertainty is thus crucial. Our study focuses on analyzing the feedbacks of soil moisture changes on model projections of the West African Monsoon under global warming. Soil moisture-atmosphere interactions have been shown in prior studies to play an important role in this region, but the potential feedbacks of long-term soil moisture changes on projected precipitation changes have not been investigated specifically. To isolate these feedbacks, we use targeted simulations from five climate models, with and without soil moisture change. Importantly, we find that climate models exhibit soil moisture-precipitation feedbacks of different sign in this region: in some models soil moisture changes amplify precipitation changes (positive feedback), in others they dampen them (negative feedback). The impact of those feedbacks is in some cases of comparable amplitude to the projected precipitation changes themselves. In other words, we show, over a subset of climate models, how land-atmosphere interactions may be a cause of uncertainty in model projections of precipitation; we emphasize the need to evaluate these processes carefully in current and next-generation climate model simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/41497','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/41497"><span>Geospatial application of the Water Erosion Prediction Project (WEPP) Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot</p> <p>2011-01-01</p> <p>The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1332932','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1332932"><span>Final Report: Towards an Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rai, Varun</p> <p></p> <p>This project sought to enable electric utilities in Texas to accelerate diffusion of residential solar photovoltaic (PV) by systematically identifying and targeting existing barriers to PV adoption. A core goal of the project was to develop an integrated research framework that combines survey research, econometric modeling, financial modeling, and implementation and evaluation of pilot projects to study the PV diffusion system. This project considered PV diffusion as an emergent system, with attention to the interactions between the constituent parts of the PV socio-technical system including: economics of individual decision-making; peer and social influences; behavioral responses; and information and transaction costs.more » We also conducted two pilot projects, which have yielded new insights into behavioral and informational aspects of PV adoption. Finally, this project has produced robust and generalizable results that will provide deeper insights into the technology-diffusion process that will be applicable for the design of utility programs for other technologies such as home-energy management systems and plug-in electric vehicles. When we started this project in 2013 there was little systematic research on characterizing the decision-making process of households interested in adopting PV. This project was designed to fill that research gap by analyzing the PV adoption process from the consumers' decision-making perspective and with the objective to systematically identifying and addressing the barriers that consumers face in the adoption of PV. The two key components of that decision-making process are consumers' evaluation of: (i) uncertainties and non-monetary costs associated with the technology and (ii) the direct monetary cost-benefit. This project used an integrated approach to study both the non-monetary and the monetary components of the consumer decision-making process.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.2495N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.2495N"><span>Synthesizing long-term sea level rise projections - the MAGICC sea level model v2.0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nauels, Alexander; Meinshausen, Malte; Mengel, Matthias; Lorbacher, Katja; Wigley, Tom M. L.</p> <p>2017-06-01</p> <p>Sea level rise (SLR) is one of the major impacts of global warming; it will threaten coastal populations, infrastructure, and ecosystems around the globe in coming centuries. Well-constrained sea level projections are needed to estimate future losses from SLR and benefits of climate protection and adaptation. Process-based models that are designed to resolve the underlying physics of individual sea level drivers form the basis for state-of-the-art sea level projections. However, associated computational costs allow for only a small number of simulations based on selected scenarios that often vary for different sea level components. This approach does not sufficiently support sea level impact science and climate policy analysis, which require a sea level projection methodology that is flexible with regard to the climate scenario yet comprehensive and bound by the physical constraints provided by process-based models. To fill this gap, we present a sea level model that emulates global-mean long-term process-based model projections for all major sea level components. Thermal expansion estimates are calculated with the hemispheric upwelling-diffusion ocean component of the simple carbon-cycle climate model MAGICC, which has been updated and calibrated against CMIP5 ocean temperature profiles and thermal expansion data. Global glacier contributions are estimated based on a parameterization constrained by transient and equilibrium process-based projections. Sea level contribution estimates for Greenland and Antarctic ice sheets are derived from surface mass balance and solid ice discharge parameterizations reproducing current output from ice-sheet models. The land water storage component replicates recent hydrological modeling results. For 2100, we project 0.35 to 0.56 m (66 % range) total SLR based on the RCP2.6 scenario, 0.45 to 0.67 m for RCP4.5, 0.46 to 0.71 m for RCP6.0, and 0.65 to 0.97 m for RCP8.5. These projections lie within the range of the latest IPCC SLR estimates. SLR projections for 2300 yield median responses of 1.02 m for RCP2.6, 1.76 m for RCP4.5, 2.38 m for RCP6.0, and 4.73 m for RCP8.5. The MAGICC sea level model provides a flexible and efficient platform for the analysis of major scenario, model, and climate uncertainties underlying long-term SLR projections. It can be used as a tool to directly investigate the SLR implications of different mitigation pathways and may also serve as input for regional SLR assessments via component-wise sea level pattern scaling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2427M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2427M"><span>Mapping (un)certainties in the sign of hydrological projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melsen, Lieke; Addor, Nans; Mizukami, Naoki; Newman, Andrew; Torfs, Paul; Clark, Martyn; Uijlenhoet, Remko; Teuling, Ryan</p> <p>2017-04-01</p> <p>While hydrological projections are of vital importance, particularly for water infrastructure design and food production, they are also prone to different sources of uncertainty. Using a multi-model set-up we investigated the uncertainty in hydrological projections for the period 2070-2100 associated with the parameterization of hydrological models, hydrological model structure, and General Circulation Models (GCMs) needed to force the hydrological model, for 605 basins throughout the contiguous United States. The use of such a large sample of basins gave us the opportunity to recognize spatial patterns in the results, and to attribute the uncertainty to particular hydrological processes. We investigated the sign of the projected change in mean annual runoff. The parameterization influenced the sign of change in 5 to 34% of the basins, depending on the hydrological model and GCM forcing. The hydrological model structure led to uncertainty in the sign of the change in 13 to 26% of the basins, depending on GCM forcing. This uncertainty could largely be attributed to the conceptualization of snow processes in the hydrological models. In 14% of the basins, none of the hydrological models was behavioural, which could be related to catchments with high aridity and intermittent flow behaviour. In 41 to 69% of the basins, the sign of the change was uncertain due to GCM forcing, which could be attributed to disagreement among the climate models regarding the projected change in precipitation. The results demonstrate that even the sign of change in mean annual runoff is highly uncertain in the majority of the investigated basins. If we want to use hydrological projections for water management purposes, including the design of water infrastructure, we clearly need to increase our understanding of climate and hydrological processes and their feedbacks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ait..conf...94P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ait..conf...94P"><span>A Prototype for the Support of Integrated Software Process Development and Improvement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Porrawatpreyakorn, Nalinpat; Quirchmayr, Gerald; Chutimaskul, Wichian</p> <p></p> <p>An efficient software development process is one of key success factors for quality software. Not only can the appropriate establishment but also the continuous improvement of integrated project management and of the software development process result in efficiency. This paper hence proposes a software process maintenance framework which consists of two core components: an integrated PMBOK-Scrum model describing how to establish a comprehensive set of project management and software engineering processes and a software development maturity model advocating software process improvement. Besides, a prototype tool to support the framework is introduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1004878','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1004878"><span>Software Framework for Advanced Power Plant Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>John Widmann; Sorin Munteanu; Aseem Jain</p> <p>2010-08-01</p> <p>This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. Thesemore » include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=management+AND+projects&pg=5&id=ED563557','ERIC'); return false;" href="https://eric.ed.gov/?q=management+AND+projects&pg=5&id=ED563557"><span>A Quantitative Examination of Critical Success Factors Comparing Agile and Waterfall Project Management Methodologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pedersen, Mitra</p> <p>2013-01-01</p> <p>This study investigated the rate of success for IT projects using agile and standard project management methodologies. Any successful project requires use of project methodology. Specifically, large projects require formal project management methodologies or models, which establish a blueprint of processes and project planning activities. This…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A11N0269L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A11N0269L"><span>The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucas, S. E.; Todd, J. F.</p> <p>2015-12-01</p> <p>The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=330379','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=330379"><span>Modeling streamflow in a snow-dominated forest watershed using the Water Erosion Prediction Project (WEPP) model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The Water Erosion Prediction Project (WEPP) model was originally developed for hillslope and small watershed applications. The model simulates complex interactive processes influencing erosion, such as surface runoff, soil-water changes, vegetation growth and senescence, and snow accumulation and me...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990021249','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990021249"><span>A Microsoft Project-Based Planning, Tracking, and Management Tool for the National Transonic Facility's Model Changeover Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vairo, Daniel M.</p> <p>1998-01-01</p> <p>The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AIPC.1233..572R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AIPC.1233..572R"><span>Implementation of Building Information Modeling (BIM) in Construction: A Comparative Case Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rowlinson, Steve; Collins, Ronan; Tuuli, Martin M.; Jia, Yunyan</p> <p>2010-05-01</p> <p>Building Information Modeling (BIM) approach is increasingly adopted in coordination of construction projects, with a number of parties providing BIM services and software solutions. However, the empirical impact of BIM on construction industry has yet to be investigated. This paper explores the interaction between BIM and the construction industry during its implementation, with a specific focus on the empirical impacts of BIM on the design and construction processes and professional roles during the process. Two cases were selected from recent construction projects coordinated with BIM systems: the Venetian Casino project in Macau and the Cathy Pacific Cargo Terminal project in Hong Kong. The former case illustrates how the conflicts emerged during the design process and procurement were addressed by adopting a BIM approach. The latter demonstrates how the adoption of BIM altered the roles of architect, contractor, and sub-contractors involved in the project. The impacts of BIM were critically reviewed and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/917882','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/917882"><span>Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Couch, R; Becker, R; Rhee, M</p> <p>2004-09-24</p> <p>Lawrence Livermore National Laboratory participated in a U. S. Department of Energy/Office of Industrial Technology sponsored research project 'Development of a Rolling Process Design Tool for Use in Improving Hot Roll Slab Recovery', as a Cooperative Agreement TC-02028 with the Alcoa Technical Center (ATC). The objective of the joint project with Alcoa is to develop a numerical modeling capability to optimize the hot rolling process used to produce aluminum plate. Product lost in the rolling process and subsequent recycling, wastes resources consumed in the energy-intensive steps of remelting and reprocessing the ingot. The modeling capability developed by project partners willmore » be used to produce plate more efficiently and with reduced product loss.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813984R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813984R"><span>SHynergie: Development of a virtual project laboratory for monitoring hydraulic stimulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renner, Jörg; Friederich, Wolfgang; Meschke, Günther; Müller, Thomas; Steeb, Holger</p> <p>2016-04-01</p> <p>Hydraulic stimulations are the primary means of developing subsurface reservoirs regarding the extent of fluid transport in them. The associated creation or conditioning of a system of hydraulic conduits involves a range of hydraulic and mechanical processes but also chemical reactions, such as dissolution and precipitation, may affect the stimulation result on time scales as short as hours. In the light of the extent and complexity of these processes, the steering potential for the operator of a stimulation critically depends on the ability to integrate the maximum amount of site-specific information with profound process understanding and a large spectrum of experience. We report on the development of a virtual project laboratory for monitoring hydraulic stimulations within the project SHynergie (http://www.ruhr-uni-bochum.de/shynergie/). The concept of the laboratory envisioned product that constitutes a preparing and accompanying rather than post-processing instrument ultimately accessible to persons responsible for a project over a web-repository. The virtual laboratory consists of a data base, a toolbox, and a model-building environment. Entries in the data base are of two categories. On the one hand, selected mineral and rock properties are provided from the literature. On the other hand, project-specific entries of any format can be made that are assigned attributes regarding their use in a stimulation problem at hand. The toolbox is interactive and allows the user to perform calculations of effective properties and simulations of different types (e.g., wave propagation in a reservoir, hydraulic test). The model component is also hybrid. The laboratory provides a library of models reflecting a range of scenarios but also allows the user to develop a site-specific model constituting the basis for simulations. The laboratory offers the option to use its components following the typical workflow of a stimulation project. The toolbox incorporates simulation instruments developed in the course of the SHynergie project that account for the experimental and modeling results of the various sub-projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1413397','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1413397"><span>International Land Model Benchmarking (ILAMB) Workshop Report, Technical Report DOE/SC-0186</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hoffman, Forrest M.; Koven, Charles D.; Kappel-Aleks, Gretchen</p> <p>2016-11-01</p> <p>As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing uncertainties associated with projections of climate change during the remainder of the 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/25628','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/25628"><span>Integrated urban systems model with multiple transportation supply agents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2012-10-01</p> <p>This project demonstrates the feasibility of developing quantitative models that can forecast future networks under : current and alternative transportation planning processes. The current transportation planning process is modeled : based on empiric...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1258599','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1258599"><span>Quantifying the impacts of land surface schemes and dynamic vegetation on the model dependency of projected changes in surface energy and water budgets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yu, Miao; Wang, Guiling; Chen, Haishan</p> <p></p> <p>Assessing and quantifying the uncertainties in projected future changes of energy and water budgets over land surface are important steps toward improving our confidence in climate change projections. In our study, the contribution of land surface models to the inter-GCM variation of projected future changes in land surface energy and water fluxes are assessed based on output from 19 global climate models (GCMs) and offline Community Land Model version 4 (CLM4) simulations driven by meteorological forcing from the 19 GCMs. Similar offline simulations using CLM4 with its dynamic vegetation submodel are also conducted to investigate how dynamic vegetation feedback, amore » process that is being added to more earth system models, may amplify or moderate the intermodel variations of projected future changes. Projected changes are quantified as the difference between the 2081–2100 period from the Representative Concentration Pathway 8.5 (RCP8.5) future experiment and the 1981–2000 period from the historical simulation. Under RCP8.5, projected changes in surface water and heat fluxes show a high degree of model dependency across the globe. Although precipitation is very likely to increase in the high latitudes of the Northern Hemisphere, a high degree of model-related uncertainty exists for evapotranspiration, soil water content, and surface runoff, suggesting discrepancy among land surface models (LSMs) in simulating the surface hydrological processes and snow-related processes. Large model-related uncertainties for the surface water budget also exist in the Tropics including southeastern South America and Central Africa. Moreover, these uncertainties would be reduced in the hypothetical scenario of a single near-perfect land surface model being used across all GCMs, suggesting the potential to reduce uncertainties through the use of more consistent approaches toward land surface model development. Under such a scenario, the most significant reduction is likely to be seen in the Northern Hemisphere high latitudes. Including representation of vegetation dynamics is expected to further amplify the model-related uncertainties in projected future changes in surface water and heat fluxes as well as soil moisture content. This is especially the case in the high latitudes of the Northern Hemisphere (e.g., northwestern North America and central North Asia) where the projected vegetation changes are uncertain and in the Tropics (e.g., the Amazon and Congo Basins) where dense vegetation exists. Finally, findings from this study highlight the importance of improving land surface model parameterizations related to soil and snow processes, as well as the importance of improving the accuracy of dynamic vegetation models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1258599-quantifying-impacts-land-surface-schemes-dynamic-vegetation-model-dependency-projected-changes-surface-energy-water-budgets','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1258599-quantifying-impacts-land-surface-schemes-dynamic-vegetation-model-dependency-projected-changes-surface-energy-water-budgets"><span>Quantifying the impacts of land surface schemes and dynamic vegetation on the model dependency of projected changes in surface energy and water budgets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yu, Miao; Wang, Guiling; Chen, Haishan</p> <p>2016-03-01</p> <p>Assessing and quantifying the uncertainties in projected future changes of energy and water budgets over land surface are important steps toward improving our confidence in climate change projections. In our study, the contribution of land surface models to the inter-GCM variation of projected future changes in land surface energy and water fluxes are assessed based on output from 19 global climate models (GCMs) and offline Community Land Model version 4 (CLM4) simulations driven by meteorological forcing from the 19 GCMs. Similar offline simulations using CLM4 with its dynamic vegetation submodel are also conducted to investigate how dynamic vegetation feedback, amore » process that is being added to more earth system models, may amplify or moderate the intermodel variations of projected future changes. Projected changes are quantified as the difference between the 2081–2100 period from the Representative Concentration Pathway 8.5 (RCP8.5) future experiment and the 1981–2000 period from the historical simulation. Under RCP8.5, projected changes in surface water and heat fluxes show a high degree of model dependency across the globe. Although precipitation is very likely to increase in the high latitudes of the Northern Hemisphere, a high degree of model-related uncertainty exists for evapotranspiration, soil water content, and surface runoff, suggesting discrepancy among land surface models (LSMs) in simulating the surface hydrological processes and snow-related processes. Large model-related uncertainties for the surface water budget also exist in the Tropics including southeastern South America and Central Africa. Moreover, these uncertainties would be reduced in the hypothetical scenario of a single near-perfect land surface model being used across all GCMs, suggesting the potential to reduce uncertainties through the use of more consistent approaches toward land surface model development. Under such a scenario, the most significant reduction is likely to be seen in the Northern Hemisphere high latitudes. Including representation of vegetation dynamics is expected to further amplify the model-related uncertainties in projected future changes in surface water and heat fluxes as well as soil moisture content. This is especially the case in the high latitudes of the Northern Hemisphere (e.g., northwestern North America and central North Asia) where the projected vegetation changes are uncertain and in the Tropics (e.g., the Amazon and Congo Basins) where dense vegetation exists. Finally, findings from this study highlight the importance of improving land surface model parameterizations related to soil and snow processes, as well as the importance of improving the accuracy of dynamic vegetation models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29755287','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29755287"><span>Project description and crowdfunding success: an exploratory study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Mi Jamie; Lu, Baozhou; Fan, Weiguo Patrick; Wang, G Alan</p> <p>2018-01-01</p> <p>Existing research on antecedent of funding success mainly focuses on basic project properties such as funding goal, duration, and project category. In this study, we view the process by which project owners raise funds from backers as a persuasion process through project descriptions. Guided by the unimodel theory of persuasion, this study identifies three exemplary antecedents (length, readability, and tone) from the content of project descriptions and two antecedents (past experience and past expertise) from the trustworthy cue of project descriptions. We then investigate their impacts on funding success. Using data collected from Kickstarter, a popular crowdfunding platform, we find that these antecedents are significantly associated with funding success. Empirical results show that the proposed model that incorporated these antecedents can achieve an accuracy of 73 % (70 % in F-measure). The result represents an improvement of roughly 14 percentage points over the baseline model based on informed guessing and 4 percentage points improvement over the mainstream model based on basic project properties (or 44 % improvement of mainstream's performance over informed guessing). The proposed model also has superior true positive and true negative rates. We also investigate the timeliness of project data and find that old project data is gradually becoming less relevant and losing predictive power to newly created projects. Overall, this study provides evidence that antecedents identified from project descriptions have incremental predictive power and can help project owners evaluate and improve the likelihood of funding success.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23961378','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23961378"><span>A CMMI-based approach for medical software project life cycle study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Jui-Jen; Su, Wu-Chen; Wang, Pei-Wen; Yen, Hung-Chi</p> <p>2013-01-01</p> <p>In terms of medical techniques, Taiwan has gained international recognition in recent years. However, the medical information system industry in Taiwan is still at a developing stage compared with the software industries in other nations. In addition, systematic development processes are indispensable elements of software development. They can help developers increase their productivity and efficiency and also avoid unnecessary risks arising during the development process. Thus, this paper presents an application of Light-Weight Capability Maturity Model Integration (LW-CMMI) to Chang Gung Medical Research Project (CMRP) in the Nuclear medicine field. This application was intended to integrate user requirements, system design and testing of software development processes into three layers (Domain, Concept and Instance) model. Then, expressing in structural System Modeling Language (SysML) diagrams and converts part of the manual effort necessary for project management maintenance into computational effort, for example: (semi-) automatic delivery of traceability management. In this application, it supports establishing artifacts of "requirement specification document", "project execution plan document", "system design document" and "system test document", and can deliver a prototype of lightweight project management tool on the Nuclear Medicine software project. The results of this application can be a reference for other medical institutions in developing medical information systems and support of project management to achieve the aim of patient safety.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960020731','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960020731"><span>Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tavana, Madjid</p> <p>1995-01-01</p> <p>The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950010040','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950010040"><span>Model-based software process improvement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zettervall, Brenda T.</p> <p>1994-01-01</p> <p>The activities of a field test site for the Software Engineering Institute's software process definition project are discussed. Products tested included the improvement model itself, descriptive modeling techniques, the CMM level 2 framework document, and the use of process definition guidelines and templates. The software process improvement model represents a five stage cyclic approach for organizational process improvement. The cycles consist of the initiating, diagnosing, establishing, acting, and leveraging phases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ957107.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ957107.pdf"><span>Using the Context, Input, Process, and Product Evaluation Model (CIPP) as a Comprehensive Framework to Guide the Planning, Implementation, and Assessment of Service-Learning Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zhang, Guili; Zeller, Nancy; Griffith, Robin; Metcalf, Debbie; Williams, Jennifer; Shea, Christine; Misulis, Katherine</p> <p>2011-01-01</p> <p>Planning, implementing, and assessing a service-learning project can be a complex task because service-learning projects often involve multiple constituencies and aim to meet both the needs of service providers and community partners. In this article, Stufflebeam's Context, Input, Process, and Product (CIPP) evaluation model is recommended as a…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29937508','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29937508"><span>An Environmental Management Maturity Model of Construction Programs Using the AHP-Entropy Approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bai, Libiao; Wang, Hailing; Huang, Ning; Du, Qiang; Huang, Youdan</p> <p>2018-06-23</p> <p>The accelerating process of urbanization in China has led to considerable opportunities for the development of construction projects, however, environmental issues have become an important constraint on the implementation of these projects. To quantitatively describe the environmental management capabilities of such projects, this paper proposes a 2-dimensional Environmental Management Maturity Model of Construction Program (EMMMCP) based on an analysis of existing projects, group management theory and a management maturity model. In this model, a synergetic process was included to compensate for the lack of consideration of synergies in previous studies, and it was involved in the construction of the first dimension, i.e., the environmental management index system. The second dimension, i.e., the maturity level of environment management, was then constructed by redefining the hierarchical characteristics of construction program (CP) environmental management maturity. Additionally, a mathematical solution to this proposed model was derived via the Analytic Hierarchy Process (AHP)-entropy approach. To verify the effectiveness and feasibility of this proposed model, a computational experiment was conducted, and the results show that this approach could not only measure the individual levels of different processes, but also achieve the most important objective of providing a reference for stakeholders when making decisions on the environmental management of construction program, which reflects this model is reasonable for evaluating the level of environmental management maturity in CP. To our knowledge, this paper is the first study to evaluate the environmental management maturity levels of CP, which would fill the gap between project program management and environmental management and provide a reference for relevant management personnel to enhance their environmental management capabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3946W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3946W"><span>The End-to-end Demonstrator for improved decision making in the water sector in Europe (EDgE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, Eric; Wanders, Niko; Pan, Ming; Sheffield, Justin; Samaniego, Luis; Thober, Stephan; Kumar, Rohinni; Prudhomme, Christel; Houghton-Carr, Helen</p> <p>2017-04-01</p> <p>High-resolution simulations of water resources from hydrological models are vital to supporting important climate services. Apart from a high level of detail, both spatially and temporally, it is important to provide simulations that consistently cover a range of timescales, from historical reanalysis to seasonal forecast and future projections. In the new EDgE project commissioned by the ECMWF (C3S) we try to fulfill these requirements. EDgE is a proof-of-concept project which combines climate data and state-of-the-art hydrological modelling to demonstrate a water-oriented information system implemented through a web application. EDgE is working with key European stakeholders representative of private and public sectors to jointly develop and tailor approaches and techniques. With these tools, stakeholders are assisted in using improved climate information in decision-making, and supported in the development of climate change adaptation and mitigation policies. Here, we present the first results of the EDgE modelling chain, which is divided into three main processes: 1) pre-processing and downscaling; 2) hydrological modelling; 3) post-processing. Consistent downscaling and bias corrections for historical simulations, seasonal forecasts and climate projections ensure that the results across scales are robust. The daily temporal resolution and 5km spatial resolution ensure locally relevant simulations. With the use of four hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), uncertainty between models is properly addressed, while consistency is guaranteed by using identical input data for static land surface parameterizations. The forecast results are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs) that have been created in collaboration with the end-user community of the EDgE project. The final product of this project is composed of 15 years of seasonal forecast and 10 climate change projections, all combined with four hydrological models. These unique high-resolution climate information simulations in the EDgE project provide an unprecedented information system for decision-making over Europe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080037554','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080037554"><span>Using Sensor Web Processes and Protocols to Assimilate Satellite Data into a Forecast Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, H. Michael; Conover, Helen; Zavodsky, Bradley; Maskey, Manil; Jedlovec, Gary; Regner, Kathryn; Li, Xiang; Lu, Jessica; Botts, Mike; Berthiau, Gregoire</p> <p>2008-01-01</p> <p>The goal of the Sensor Management Applied Research Technologies (SMART) On-Demand Modeling project is to develop and demonstrate the readiness of the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities to integrate both space-based Earth observations and forecast model output into new data acquisition and assimilation strategies. The project is developing sensor web-enabled processing plans to assimilate Atmospheric Infrared Sounding (AIRS) satellite temperature and moisture retrievals into a regional Weather Research and Forecast (WRF) model over the southeastern United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26391445','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26391445"><span>A contrast between DEMATEL-ANP and ANP methods for six sigma project selection: a case study in healthcare industry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ortíz, Miguel A; Felizzola, Heriberto A; Nieto Isaza, Santiago</p> <p>2015-01-01</p> <p>The project selection process is a crucial step for healthcare organizations at the moment of implementing six sigma programs in both administrative and caring processes. However, six-sigma project selection is often defined as a decision making process with interaction and feedback between criteria; so that it is necessary to explore different methods to help healthcare companies to determine the Six-sigma projects that provide the maximum benefits. This paper describes the application of both ANP (Analytic Network process) and DEMATEL (Decision Making trial and evaluation laboratory)-ANP in a public medical centre to establish the most suitable six sigma project and finally, these methods were compared to evaluate their performance in the decision making process. ANP and DEMATEL-ANP were used to evaluate 6 six sigma project alternatives under an evaluation model composed by 3 strategies, 4 criteria and 15 sub-criteria. Judgement matrixes were completed by the six sigma team whose participants worked in different departments of the medical centre. The improving of care opportunity in obstetric outpatients was elected as the most suitable six sigma project with a score of 0,117 as contribution to the organization goals. DEMATEL-ANP performed better at decision making process since it reduced the error probability due to interactions and feedback. ANP and DEMATEL-ANP effectively supported six sigma project selection processes, helping to create a complete framework that guarantees the prioritization of projects that provide maximum benefits to healthcare organizations. As DEMATEL- ANP performed better, it should be used by practitioners involved in decisions related to the implementation of six sigma programs in healthcare sector accompanied by the adequate identification of the evaluation criteria that support the decision making model. Thus, this comparative study contributes to choosing more effective approaches in this field. Suggestions of further work are also proposed so that these methods can be applied more adequate in six sigma project selection processes in healthcare.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4705502','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4705502"><span>A contrast between DEMATEL-ANP and ANP methods for six sigma project selection: a case study in healthcare industry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>Background The project selection process is a crucial step for healthcare organizations at the moment of implementing six sigma programs in both administrative and caring processes. However, six-sigma project selection is often defined as a decision making process with interaction and feedback between criteria; so that it is necessary to explore different methods to help healthcare companies to determine the Six-sigma projects that provide the maximum benefits. This paper describes the application of both ANP (Analytic Network process) and DEMATEL (Decision Making trial and evaluation laboratory)-ANP in a public medical centre to establish the most suitable six sigma project and finally, these methods were compared to evaluate their performance in the decision making process. Methods ANP and DEMATEL-ANP were used to evaluate 6 six sigma project alternatives under an evaluation model composed by 3 strategies, 4 criteria and 15 sub-criteria. Judgement matrixes were completed by the six sigma team whose participants worked in different departments of the medical centre. Results The improving of care opportunity in obstetric outpatients was elected as the most suitable six sigma project with a score of 0,117 as contribution to the organization goals. DEMATEL-ANP performed better at decision making process since it reduced the error probability due to interactions and feedback. Conclusions ANP and DEMATEL-ANP effectively supported six sigma project selection processes, helping to create a complete framework that guarantees the prioritization of projects that provide maximum benefits to healthcare organizations. As DEMATEL- ANP performed better, it should be used by practitioners involved in decisions related to the implementation of six sigma programs in healthcare sector accompanied by the adequate identification of the evaluation criteria that support the decision making model. Thus, this comparative study contributes to choosing more effective approaches in this field. Suggestions of further work are also proposed so that these methods can be applied more adequate in six sigma project selection processes in healthcare. PMID:26391445</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160007389','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160007389"><span>"Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Taylor, Patrick C.; Baker, Noel C.</p> <p>2015-01-01</p> <p>Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15550290','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15550290"><span>Changing the world: the design and implementation of comprehensive continuous integrated systems of care for individuals with co-occurring disorders.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Minkoff, Kenneth; Cline, Christie A</p> <p>2004-12-01</p> <p>This article has described the CCISC model and the process of implementation of systemic implementation of co-occurring disorder services enhancements within the context of existing resources. Four projects were described as illustrations of current implementation activities. Clearly, there is need for improved services for these individuals, and increasing recognition of the need for systemic change models that are effective and efficient. The CCISC model has been recognized by SAMHSA as a consensus best practice for system design, and initial efforts at implementation appear to be promising. The existing toolkit may permit a more formal process of data-driven evaluation of system, program, clinician, and client outcomes, to better measure the effectiveness of this approach. Some projects have begun such formal evaluation processes, but more work is needed, not only with individual projects, but also to develop opportunities for multi-system evaluation, as more projects come on line.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6548787-off-farm-applications-solar-energy-agriculture','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6548787-off-farm-applications-solar-energy-agriculture"><span>Off-farm applications of solar energy in agriculture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Berry, R.E.</p> <p>1980-01-01</p> <p>Food processing applications make up almost all present off-farm studies of solar energy in agriculture. Research, development and demonstration projects on solar food processing have shown significant progress over the past 3 years. Projects have included computer simulation and mathematical models, hardware and process development for removing moisture from horticultural or animal products, integration of energy conservation with solar energy augmentation in conventional processes, and commercial scale demonstrations. The demonstration projects include solar heated air for drying prunes and raisins, soy beans and onions/garlic; and solar generated steam for orange juice pasteurization. Several new and planned projects hold considerable promisemore » for commerical exploitation in future food processes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=interior+AND+design&pg=4&id=EJ999415','ERIC'); return false;" href="https://eric.ed.gov/?q=interior+AND+design&pg=4&id=EJ999415"><span>Creativity Processes of Students in the Design Studio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Huber, Amy Mattingly; Leigh, Katharine E.; Tremblay, Kenneth R., Jr.</p> <p>2012-01-01</p> <p>The creative process is a multifaceted and dynamic path of thinking required to execute a project in design-based disciplines. The goal of this research was to test a model outlining the creative design process by investigating student experiences in a design project assignment. The study used an exploratory design to collect data from student…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1219272','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1219272"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cort, K. A.; Hostick, D. J.; Belzer, D. B.</p> <p></p> <p>This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70044504','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70044504"><span>On the Hydrologic Adjustment of Climate-Model Projections: The Potential Pitfall of Potential Evapotranspiration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Milly, Paul C.D.; Dunne, Krista A.</p> <p>2011-01-01</p> <p>Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median -11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED249819.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED249819.pdf"><span>Evolving Jobs and Nonteaching Professional Staff in Universities: An Alternative Perspective on Career Mobility Processes. Final Project Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Estler, Suzanne E.</p> <p></p> <p>Three technical reports and abstracts of colloquium papers are presented as part of a research project concerning the specification and testing of alternative models of intraorganizational career mobility among nonteaching professionals in universities. This project phase involved: the development of a model of evolving jobs as an alternative to…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/891624','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/891624"><span>Geomechanical/Geochemical Modeling Studies Conducted within theInternational DECOVALEX Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Birkholzer, J.T.; Rutqvist, J.; Sonnenthal, E.L.</p> <p>2005-10-19</p> <p>The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/893929','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/893929"><span>Geomechanical/ Geochemical Modeling Studies onducted Within the International DECOVALEX Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>J.T. Birkholzer; J. Rutqvist; E.L. Sonnenthal</p> <p>2006-02-01</p> <p>The DECOVALEX project is an international cooperative project initiated by SKI, the Swedish Nuclear Power Inspectorate, with participation of about 10 international organizations. The general goal of this project is to encourage multidisciplinary interactive and cooperative research on modeling coupled thermo-hydro-mechanical-chemical (THMC) processes in geologic formations in support of the performance assessment for underground storage of radioactive waste. One of the research tasks, initiated in 2004 by the U.S. Department of Energy (DOE), addresses the long-term impact of geomechanical and geochemical processes on the flow conditions near waste emplacement tunnels. Within this task, four international research teams conduct predictive analysismore » of the coupled processes in two generic repositories, using multiple approaches and different computer codes. Below, we give an overview of the research task and report its current status.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1411217','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1411217"><span>Evolution in Cloud Population Statistics of the MJO: From AMIE Field Observations to Global Cloud-Permiting Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Chidong</p> <p></p> <p>Motivated by the success of the AMIE/DYNAMO field campaign, which collected unprecedented observations of cloud and precipitation from the tropical Indian Ocean in Octber 2011 – March 2012, this project explored how such observations can be applied to assist the development of global cloud-permitting models through evaluating and correcting model biases in cloud statistics. The main accomplishment of this project were made in four categories: generating observational products for model evaluation, using AMIE/DYNAMO observations to validate global model simulations, using AMIE/DYNAMO observations in numerical studies of cloud-permitting models, and providing leadership in the field. Results from this project provide valuablemore » information for building a seamless bridge between DOE ASR program’s component on process level understanding of cloud processes in the tropics and RGCM focus on global variability and regional extremes. In particular, experience gained from this project would be directly applicable to evaluation and improvements of ACME, especially as it transitions to a non-hydrostatic variable resolution model.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70169240','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70169240"><span>Toward more realistic projections of soil carbon dynamics by Earth system models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.</p> <p>2016-01-01</p> <p>Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870007001','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870007001"><span>Measuring research progress in photovoltaics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, B.; Mcguire, P.</p> <p>1986-01-01</p> <p>The role and some results of the project analysis and integration function in the Flat-plate Solar Array (FSA) Project are presented. Activities included supporting the decision-making process, preparation of plans for project direction, setting goals for project activities, measuring progress within the project, and the development and maintenance of analytical models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970024955','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970024955"><span>Physics and Process Modeling (PPM) and Other Propulsion R and T. Volume 1; Materials Processing, Characterization, and Modeling; Lifting Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p>This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150003789','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150003789"><span>Multiscale and Multiphysics Modeling of Additive Manufacturing of Advanced Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liou, Frank; Newkirk, Joseph; Fan, Zhiqiang; Sparks, Todd; Chen, Xueyang; Fletcher, Kenneth; Zhang, Jingwei; Zhang, Yunlu; Kumar, Kannan Suresh; Karnati, Sreekar</p> <p>2015-01-01</p> <p>The objective of this proposed project is to research and develop a prediction tool for advanced additive manufacturing (AAM) processes for advanced materials and develop experimental methods to provide fundamental properties and establish validation data. Aircraft structures and engines demand materials that are stronger, useable at much higher temperatures, provide less acoustic transmission, and enable more aeroelastic tailoring than those currently used. Significant improvements in properties can only be achieved by processing the materials under nonequilibrium conditions, such as AAM processes. AAM processes encompass a class of processes that use a focused heat source to create a melt pool on a substrate. Examples include Electron Beam Freeform Fabrication and Direct Metal Deposition. These types of additive processes enable fabrication of parts directly from CAD drawings. To achieve the desired material properties and geometries of the final structure, assessing the impact of process parameters and predicting optimized conditions with numerical modeling as an effective prediction tool is necessary. The targets for the processing are multiple and at different spatial scales, and the physical phenomena associated occur in multiphysics and multiscale. In this project, the research work has been developed to model AAM processes in a multiscale and multiphysics approach. A macroscale model was developed to investigate the residual stresses and distortion in AAM processes. A sequentially coupled, thermomechanical, finite element model was developed and validated experimentally. The results showed the temperature distribution, residual stress, and deformation within the formed deposits and substrates. A mesoscale model was developed to include heat transfer, phase change with mushy zone, incompressible free surface flow, solute redistribution, and surface tension. Because of excessive computing time needed, a parallel computing approach was also tested. In addition, after investigating various methods, a Smoothed Particle Hydrodynamics Model (SPH Model) was developed to model wire feeding process. Its computational efficiency and simple architecture makes it more robust and flexible than other models. More research on material properties may be needed to realistically model the AAM processes. A microscale model was developed to investigate heterogeneous nucleation, dendritic grain growth, epitaxial growth of columnar grains, columnar-to-equiaxed transition, grain transport in melt, and other properties. The orientations of the columnar grains were almost perpendicular to the laser motion's direction. Compared to the similar studies in the literature, the multiple grain morphology modeling result is in the same order of magnitude as optical morphologies in the experiment. Experimental work was conducted to validate different models. An infrared camera was incorporated as a process monitoring and validating tool to identify the solidus and mushy zones during deposition. The images were successfully processed to identify these regions. This research project has investigated multiscale and multiphysics of the complex AAM processes thus leading to advanced understanding of these processes. The project has also developed several modeling tools and experimental validation tools that will be very critical in the future of AAM process qualification and certification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49575','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49575"><span>Enhancements to the Water Erosion Prediction Project (WEPP) for modeling large snow-dominated mountainous forest watersheds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Anurag Srivastava; Joan Q. Wu; William J. Elliot; Erin S. Brooks</p> <p>2015-01-01</p> <p>The Water Erosion Prediction Project (WEPP) model, originally developed for hillslope and small watershed applications, simulates complex interactive processes influencing erosion. Recent incorporations to the model have improved the subsurface hydrology components for forest applications. Incorporation of channel routing has made the WEPP model well suited for large...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060043783&hterms=cognitive+learning&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcognitive%2Blearning','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060043783&hterms=cognitive+learning&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcognitive%2Blearning"><span>Learning from project experiences using a legacy-based approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cooper, Lynne P.; Majchrzak, Ann; Faraj, Samer</p> <p>2005-01-01</p> <p>As project teams become used more widely, the question of how to capitalize on the knowledge learned in project teams remains an open issue. Using previous research on shared cognition in groups, an approach to promoting post-project learning was developed. This Legacy Review concept was tested on four in tact project teams. The results from those test sessions were used to develop a model of team learning via group cognitive processes. The model and supporting propositions are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950024822','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950024822"><span>A process improvement model for software verification and validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Callahan, John; Sabolish, George</p> <p>1994-01-01</p> <p>We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and space station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950020394','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950020394"><span>A process improvement model for software verification and validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Callahan, John; Sabolish, George</p> <p>1994-01-01</p> <p>We describe ongoing work at the NASA Independent Verification and Validation (IV&V) Facility to establish a process improvement model for software verification and validation (V&V) organizations. This model, similar to those used by some software development organizations, uses measurement-based techniques to identify problem areas and introduce incremental improvements. We seek to replicate this model for organizations involved in V&V on large-scale software development projects such as EOS and Space Station. At the IV&V Facility, a university research group and V&V contractors are working together to collect metrics across projects in order to determine the effectiveness of V&V and improve its application. Since V&V processes are intimately tied to development processes, this paper also examines the repercussions for development organizations in large-scale efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013aero.confE.102K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013aero.confE.102K"><span>Model-based verification and validation of the SMAP uplink processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, M. O.; Dubos, G. F.; Tirona, J.; Standley, S.</p> <p></p> <p>Model-Based Systems Engineering (MBSE) is being used increasingly within the spacecraft design community because of its benefits when compared to document-based approaches. As the complexity of projects expands dramatically with continually increasing computational power and technology infusion, the time and effort needed for verification and validation (V& V) increases geometrically. Using simulation to perform design validation with system-level models earlier in the life cycle stands to bridge the gap between design of the system (based on system-level requirements) and verifying those requirements/validating the system as a whole. This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V& V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process. Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based development efforts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990064487&hterms=SPIRAL+MODEL&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSPIRAL%2BMODEL','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990064487&hterms=SPIRAL+MODEL&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSPIRAL%2BMODEL"><span>NASA's TReK Project: A Case Study in Using the Spiral Model of Software Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hendrix, T. Dean; Schneider, Michelle P.</p> <p>1998-01-01</p> <p>Software development projects face numerous challenges that threaten their successful completion. Whether it is not enough money, too little time, or a case of "requirements creep" that has turned into a full sprint, projects must meet these challenges or face possible disastrous consequences. A robust, yet flexible process model can provide a mechanism through which software development teams can meet these challenges head on and win. This article describes how the spiral model has been successfully tailored to a specific project and relates some notable results to date.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22535243-development-evaluation-models-manpower-needs-dismantling-dry-conversion-process-related-equipment-uranium-refining-conversion-plant-urcp','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22535243-development-evaluation-models-manpower-needs-dismantling-dry-conversion-process-related-equipment-uranium-refining-conversion-plant-urcp"><span>Development of evaluation models of manpower needs for dismantling the dry conversion process-related equipment in uranium refining and conversion plant (URCP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sari Izumo; Hideo Usui; Mitsuo Tachibana</p> <p></p> <p>Evaluation models for determining the manpower needs for dismantling various types of equipment in uranium refining and conversion plant (URCP) have been developed. The models are widely applicable to other uranium handling facilities. Additionally, a simplified model was developed for easily and accurately calculating the manpower needs for dismantling dry conversion process-related equipment (DP equipment). It is important to evaluate beforehand project management data such as manpower needs to prepare an optimized decommissioning plan and implement effective dismantling activity. The Japan Atomic Energy Agency (JAEA) has developed the project management data evaluation system for dismantling activities (PRODIA code), which canmore » generate project management data using evaluation models. For preparing an optimized decommissioning plan, these evaluation models should be established based on the type of nuclear facility and actual dismantling data. In URCP, the dry conversion process of reprocessed uranium and others was operated until 1999, and the equipment related to the main process was dismantled from 2008 to 2011. Actual data such as manpower for dismantling were collected during the dismantling activities, and evaluation models were developed using the collected actual data on the basis of equipment classification considering the characteristics of uranium handling facility. (authors)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/34999','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/34999"><span>Forest forming process and dynamic vegetation models under global change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>A. Shvidenko; E. Gustafson</p> <p>2009-01-01</p> <p>The paper analyzes mathematical models that are used to project the dynamics of forest ecosystems on different spatial and temporal scales. Landscape disturbance and succession models (LDSMs) are of a particular interest for studying the forest forming process in Northern Eurasia. They have a solid empirical background and are able to model ecological processes under...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130011577','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130011577"><span>A Decision Tool that Combines Discrete Event Software Process Models with System Dynamics Pieces for Software Development Cost Estimation and Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mizell, Carolyn Barrett; Malone, Linda</p> <p>2007-01-01</p> <p>The development process for a large software development project is very complex and dependent on many variables that are dynamic and interrelated. Factors such as size, productivity and defect injection rates will have substantial impact on the project in terms of cost and schedule. These factors can be affected by the intricacies of the process itself as well as human behavior because the process is very labor intensive. The complex nature of the development process can be investigated with software development process models that utilize discrete event simulation to analyze the effects of process changes. The organizational environment and its effects on the workforce can be analyzed with system dynamics that utilizes continuous simulation. Each has unique strengths and the benefits of both types can be exploited by combining a system dynamics model and a discrete event process model. This paper will demonstrate how the two types of models can be combined to investigate the impacts of human resource interactions on productivity and ultimately on cost and schedule.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003PhDT.......150D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003PhDT.......150D"><span>The Development of Students' Mental Models of Chemical Substances and Processes at the Molecular Level</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dalton, Rebecca Marie</p> <p></p> <p>The development of student's mental models of chemical substances and processes at the molecular level was studied in a three-phase project. Animations produced in the VisChem project were used as an integral part of the chemistry instruction to help students develop their mental models. Phase one of the project involved examining the effectiveness of using animations to help first-year university chemistry students develop useful mental models of chemical phenomena. Phase two explored factors affecting the development of student's mental models, analysing results in terms of a proposed model of the perceptual processes involved in interpreting an animation. Phase three involved four case studies that served to confirm and elaborate on the effects of prior knowledge and disembedding ability on student's mental model development, and support the influence of study style on learning outcomes. Recommendations for use of the VisChem animations, based on the above findings, include: considering the prior knowledge of students; focusing attention on relevant features; encouraging a deep approach to learning; using animation to teach visual concepts; presenting ideas visually, verbally and conceptually; establishing 'animation literacy'; minimising cognitive load; using animation as feedback; using student drawings; repeating animations; and discussing 'scientific modelling'.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED521035.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED521035.pdf"><span>Modelling the Cooling of Coffee: Insights from a Preliminary Study in Indonesia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Widjaja, Wanty</p> <p>2010-01-01</p> <p>This paper discusses an attempt to examine pre-service teachers' mathematical modelling skills. A modelling project investigating relationships between temperature and time in the process of cooling of coffee was chosen. The analysis was based on group written reports of the cooling of coffee project and observation of classroom discussion.…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034185','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034185"><span>On the hydrologic adjustment of climate-model projections: The potential pitfall of potential evapotranspiration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Milly, P.C.D.; Dunne, K.A.</p> <p>2011-01-01</p> <p>Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model's apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen-Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors' findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climatechange impacts on water. Copyright ?? 2011, Paper 15-001; 35,952 words, 3 Figures, 0 Animations, 1 Tables.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5480824','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5480824"><span>Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons’ outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several–but not all–types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life. PMID:28640825</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28640825','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28640825"><span>Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>MaBouDi, HaDi; Shimazaki, Hideaki; Giurfa, Martin; Chittka, Lars</p> <p>2017-06-01</p> <p>The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1267596-explicitly-representing-soil-microbial-processes-earth-system-models-soil-microbes-earth-system-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1267596-explicitly-representing-soil-microbial-processes-earth-system-models-soil-microbes-earth-system-models"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wieder, William R.; Allison, Steven D.; Davidson, Eric A.</p> <p></p> <p>Microbes influence soil organic matter (SOM) decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) may make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here, we review the diversity, advantages, and pitfalls of simulating soilmore » biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models we suggest: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=mips&pg=2&id=EJ385791','ERIC'); return false;" href="https://eric.ed.gov/?q=mips&pg=2&id=EJ385791"><span>Microcomputer Infusion Project: A Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rossberg, Stephen A.; Bitter, Gary G.</p> <p>1988-01-01</p> <p>Describes the Microcomputer Infusion Project (MIP), which was developed at Arizona State University to provide faculty with the necessary hardware, software, and training to become models of computer use in both lesson development and presentation for preservice teacher education students. Topics discussed include word processing; database…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=open+AND+source&pg=7&id=EJ1168226','ERIC'); return false;" href="https://eric.ed.gov/?q=open+AND+source&pg=7&id=EJ1168226"><span>Competition-Based Learning: A Model for the Integration of Competitions with Project-Based Learning Using Open Source LMS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Issa, Ghassan; Hussain, Shakir M.; Al-Bahadili, Hussein</p> <p>2014-01-01</p> <p>In an effort to enhance the learning process in higher education, a new model for Competition-Based Learning (CBL) is presented. The new model utilizes two well-known learning models, namely, the Project-Based Learning (PBL) and competitions. The new model is also applied in a networked environment with emphasis on collective learning as well as…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100038446','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100038446"><span>Project M: Scale Model of Lunar Landing Site of Apollo 17</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>O'Brien, Hollie; Crain, Timothy P.</p> <p>2010-01-01</p> <p>The basis of the project was creating a scale model representation of the Apollo 17 lunar landing site. Vital components included surface slope characteristics, crater sizes and locations, prominent rocks, and lighting conditions. The model was made for Project M support when evaluating approach and terminal descent as well as when planning surface operations with respect to the terrain. The project had five main mi lestones during the length of the project. The first was examining the best method to use to re-create the Apollo 17 landing site and then reviewing research fmdings with Dr. Tim Crain and EO staff which occurred on June 25, 2010 at a meeting. The second step was formulating a construction plan, budget, and schedule and then presenting the plan for authority to proceed which occurred on July 6,2010. The third part was building a prototype to test materials and building processes which were completed by July 13, 2010. Next was assembling the landing site model and presenting a mid-term construction status report on July 29, 2010. The fifth and final milestone was demonstrating the model and presenting an exit pitch which happened on August 4, 2010. The project was very technical: it needed a lot of research about moon topography, lighting conditions and angles of the sun on the moon, Apollo 17, and Autonomous Landing and Hazard Avoidance Technology (ALHAT), before starting the actual building process. This required using Spreadsheets, searching internet sources and conducting personal meetings with project representatives. This information assisted the interns in deciding the scale of the model with respect to cracks, craters and rocks and their relative sizes as the objects mentioned could interfere with any of the Lunar Landers: Apollo, Project M and future Landers. The project concluded with the completion of a three dimensional scale model of the Apollo 17 Lunar landing site. This model assists Project M members because they can now visualize approach phase, terminal descent phase, and surface phase operations on the physical model. The project had an additional requirement that was also satisfied: the granite table the model was placed on must be returnable to its original condition if needed in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18377868','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18377868"><span>Macroergonomic study of food sector company distribution centres.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García Acosta, Gabriel; Lange Morales, Karen</p> <p>2008-07-01</p> <p>This study focussed on the work system design to be used by a Colombian food sector company for distributing products. It considered the concept of participative ergonomics, where people from the commercial, logistics, operation, occupational health areas worked in conjunction with the industrial designers, ergonomists who methodologically led the project. As a whole, the project was conceived as having five phases: outline, diagnosis, modelling the process, scalability, instrumentation. The results of the project translate into procedures for selecting, projecting a new distribution centre, the operational process model, a description of ergonomic systems that will enable specific work stations to be designed, the procedure for adapting existing warehouses. Strategically, this work helped optimise the company's processes and ensure that knowledge would be transferred within it. In turn, it became a primary prevention strategy in the field of health, aimed at reducing occupational risks, improving the quality of life at work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040082391','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040082391"><span>An Exploratory Study of Cost Engineering in Axiomatic Design: Creation of the Cost Model Based on an FR-DP Map</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, Taesik; Jeziorek, Peter</p> <p>2004-01-01</p> <p>Large complex projects cost large sums of money throughout their life cycle for a variety of reasons and causes. For such large programs, the credible estimation of the project cost, a quick assessment of the cost of making changes, and the management of the project budget with effective cost reduction determine the viability of the project. Cost engineering that deals with these issues requires a rigorous method and systematic processes. This paper introduces a logical framework to a&e effective cost engineering. The framework is built upon Axiomatic Design process. The structure in the Axiomatic Design process provides a good foundation to closely tie engineering design and cost information together. The cost framework presented in this paper is a systematic link between the functional domain (FRs), physical domain (DPs), cost domain (CUs), and a task/process-based model. The FR-DP map relates a system s functional requirements to design solutions across all levels and branches of the decomposition hierarchy. DPs are mapped into CUs, which provides a means to estimate the cost of design solutions - DPs - from the cost of the physical entities in the system - CUs. The task/process model describes the iterative process ot-developing each of the CUs, and is used to estimate the cost of CUs. By linking the four domains, this framework provides a superior traceability from requirements to cost information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070032860&hterms=process+management&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dprocess%2Bmanagement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070032860&hterms=process+management&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dprocess%2Bmanagement"><span>Managing Analysis Models in the Design Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Briggs, Clark</p> <p>2006-01-01</p> <p>Design of large, complex space systems depends on significant model-based support for exploration of the design space. Integrated models predict system performance in mission-relevant terms given design descriptions and multiple physics-based numerical models. Both the design activities and the modeling activities warrant explicit process definitions and active process management to protect the project from excessive risk. Software and systems engineering processes have been formalized and similar formal process activities are under development for design engineering and integrated modeling. JPL is establishing a modeling process to define development and application of such system-level models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245f2056M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245f2056M"><span>Exploitation and Benefits of BIM in Construction Project Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mesároš, Peter; Mandičák, Tomáš</p> <p>2017-10-01</p> <p>BIM is increasingly getting into the awareness in construction industry. BIM is the process of creating and data managing of the building during its life cycle. BIM became a part of management tools in modern construction companies. Construction projects have a number of participants. It means difficulty process of construction project management and a serious requirement for processing the huge amount of information including design, construction, time and cost parameters, economic efficiency and sustainability. Progressive information and communication technologies support cost management and management of construction project. One of them is Building Information Modelling. Aim of the paper is to examine the impact of BIM exploitation and benefits on construction project management in Slovak companies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002627','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002627"><span>Parametric Modeling for Fluid Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pizarro, Yaritzmar Rosario; Martinez, Jonathan</p> <p>2013-01-01</p> <p>Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000CRASP...1.1223P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000CRASP...1.1223P"><span>Le management des projets scientifiques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perrier, Françoise</p> <p>2000-12-01</p> <p>We describe in this paper a new approach for the management of scientific projects. This approach is the result of a long reflexion carried out within the MQDP (Methodology and Quality in the Project Development) group of INSU-CNRS, and continued with Guy Serra. Our reflexion was initiated with the study of the so-called `North-American Paradigm' which was, initially considered as the only relevant management model. Through our active participation in several astrophysical projects we realized that this model could not be applied to our laboratories without major modifications. Therefore, step-by-step, we have constructed our own methodology, using to the fullest human potential resources existing in our research field, their habits and skills. We have also participated in various working groups in industrial and scientific organisms for the benefits of CNRS. The management model presented here is based on a systemic and complex approach. This approach lets us describe the multiple aspects of a scientific project specially taking into account the human dimension. The project system model includes three major interconnected systems, immersed within an influencing and influenced environment: the `System to be Realized' which defines scientific and technical tasks leading to the scientific goals, the `Realizing System' which describes procedures, processes and organization, and the `Actors' System' which implements and boosts all the processes. Each one exists only through a series of successive models, elaborated at predefined dates of the project called `key-points'. These systems evolve with time and under often-unpredictable circumstances and the models have to take it into account. At these key-points, each model is compared to reality and the difference between the predicted and realized tasks is evaluated in order to define the data for the next model. This model can be applied to any kind of projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010atcs.book..569S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010atcs.book..569S"><span>Using Decision Structures for Policy Analysis in Software Product-line Evolution - A Case Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarang, Nita; Sanglikar, Mukund A.</p> <p></p> <p>Project management decisions are the primary basis for project success (or failure). Mostly, such decisions are based on an intuitive understanding of the underlying software engineering and management process and have a likelihood of being misjudged. Our problem domain is product-line evolution. We model the dynamics of the process by incorporating feedback loops appropriate to two decision structures: staffing policy, and the forces of growth associated with long-term software evolution. The model is executable and supports project managers to assess the long-term effects of possible actions. Our work also corroborates results from earlier studies of E-type systems, in particular the FEAST project and the rules for software evolution, planning and management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/18161','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/18161"><span>Methodology and guidelines for regulating traffic flows under air quality constraints in metropolitan areas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2010-02-01</p> <p>This project developed a methodology to couple a new pollutant dispersion model with a traffic : assignment process to contain air pollution while maximizing mobility. The overall objective of the air : quality modeling part of the project is to deve...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=computer+AND+science&pg=3&id=EJ946768','ERIC'); return false;" href="https://eric.ed.gov/?q=computer+AND+science&pg=3&id=EJ946768"><span>A Survey of Computer Science Capstone Course Literature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dugan, Robert F., Jr.</p> <p>2011-01-01</p> <p>In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=project+AND+structural&id=EJ952393','ERIC'); return false;" href="https://eric.ed.gov/?q=project+AND+structural&id=EJ952393"><span>Characteristic Collaborative Processes in School-University Partnerships</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Gardner, Dianne C.</p> <p>2011-01-01</p> <p>This article presents findings from multiple years of evaluation of STEM-focused school-university partnerships. In addition to developing the three empirically grounded models of structural partnership configurations for project effectiveness, the CSEP team used these models to examine partnership projects for their characteristic collaborative…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PolSc..14...68N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PolSc..14...68N"><span>Selection of priority investment projects for the development of the Russian Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Novoselov, A.; Potravny, I.; Novoselova, I.; Gassiy, V.</p> <p>2017-12-01</p> <p>In the Russian Arctic, there is currently an active process of preparation and implementation of investment projects aiming to extract natural resources, with the aim of sustainable socioeconomic development of the region. These projects are associated with the development of key zones in the Arctic and involve the exploration for and production of minerals (diamonds, gold, rare-earth metals, oil, and gas) and the development of energy and infrastructure (e.g., the Northern Sea Route). Such projects, which are often carried out in territories of traditional nature management belonging to the indigenous peoples of the North, must consider their environmental and social responsibility and the preservation of the ethnic identity and culture of indigenous peoples. The extraction of mineral deposits in the Arctic and the Far North places new demands on subsoil users, related to the preservation and development of the socio-cultural environment of the indigenous peoples of the North and to the ecological rehabilitation of the area. This article presents economic and mathematical models for selecting the optimal development project options based on the pairwise comparison of investment projects and the evaluation of indigenous peoples' preferences. We investigated the investment projects' impact on traditional territories in the Arctic, including the Republic of Sakha (Yakutia), in terms of socioeconomic and ethnological development, and environmental change. The suggested system of models can be used to assess the priority of projects supporting and developing the region in the mining corporation's area of responsibility. The proposed models are based on fuzzy set theory, which provides an effective assessment of the population's preferences for projects. Data are processed using the hierarchy analysis method and multivariate optimization calculations to determine the project sets at different funding levels. The creation of information-linked processing models is innovative. Indigenous people's expert assessments of the priority of projects are processed using the hierarchy analysis method to determine the coefficients of the optimization model that enables the calculation of the choice between the analyzed projects, given the allocated financial resources. This approach can be used to address issues of support for indigenous people in areas where mining and other economic development activities are taking place, especially in the Arctic region. The proposed decision-making mechanism, which includes public hearings, sociological surveys, ethnological expertise, and compensation payments to indigenous minorities of the North, facilitates the justification of optimal strategies for maintaining and developing the region, taking into account economic, ecological, social, and ethnological factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JHyd..519..743V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JHyd..519..743V"><span>Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vansteenkiste, Thomas; Tavakoli, Mohsen; Ntegeka, Victor; De Smedt, Florimond; Batelaan, Okke; Pereira, Fernando; Willems, Patrick</p> <p>2014-11-01</p> <p>The objective of this paper is to investigate the effects of hydrological model structure and calibration on climate change impact results in hydrology. The uncertainty in the hydrological impact results is assessed by the relative change in runoff volumes and peak and low flow extremes from historical and future climate conditions. The effect of the hydrological model structure is examined through the use of five hydrological models with different spatial resolutions and process descriptions. These were applied to a medium sized catchment in Belgium. The models vary from the lumped conceptual NAM, PDM and VHM models over the intermediate detailed and distributed WetSpa model to the fully distributed MIKE SHE model. The latter model accounts for the 3D groundwater processes and interacts bi-directionally with a full hydrodynamic MIKE 11 river model. After careful and manual calibration of these models, accounting for the accuracy of the peak and low flow extremes and runoff subflows, and the changes in these extremes for changing rainfall conditions, the five models respond in a similar way to the climate scenarios over Belgium. Future projections on peak flows are highly uncertain with expected increases as well as decreases depending on the climate scenario. The projections on future low flows are more uniform; low flows decrease (up to 60%) for all models and for all climate scenarios. However, the uncertainties in the impact projections are high, mainly in the dry season. With respect to the model structural uncertainty, the PDM model simulates significantly higher runoff peak flows under future wet scenarios, which is explained by its specific model structure. For the low flow extremes, the MIKE SHE model projects significantly lower low flows in dry scenario conditions in comparison to the other models, probably due to its large difference in process descriptions for the groundwater component, the groundwater-river interactions. The effect of the model calibration was tested by comparing the manual calibration approach with automatic calibrations of the VHM model based on different objective functions. The calibration approach did not significantly alter the model results for peak flow, but the low flow projections were again highly influenced. Model choice as well as calibration strategy hence have a critical impact on low flows, more than on peak flows. These results highlight the high uncertainty in low flow modelling, especially in a climate change context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC43E1208E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC43E1208E"><span>Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.</p> <p>2016-12-01</p> <p>Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA610361','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA610361"><span>A Process Research Framework: The International Process Research Consortium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-12-01</p> <p>projects ? 52 Theme P | IPRC Framework 5 P-30 How should a process for collaborative development be formulated? The development at different companies...requires some process for the actual collaboration . How should it be handled? P-31 How do we handle change? Requirements change during development ...source projects employ a single-site development model in which there is no large community of testers but rather a single-site small group</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24872313','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24872313"><span>Open access support groups for people experiencing personality disorders: do group members' experiences reflect the theoretical foundations of the SUN project?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gillard, Steve; White, Rachel; Miller, Steve; Turner, Kati</p> <p>2015-03-01</p> <p>The SUN Project is an innovative, open access support group, based in the community, for people experiencing personality disorders, developed in response to UK Department of Health policy advocating improvements in personality disorders services. The aim of this article is to critically explore where and how the theoretically informed model underpinning the SUN Project is reflected in the view and experiences of people attending the project. This article reports an in-depth, qualitative interview-based study employing a critical realist approach. As part of a larger study about self-care and mental health, in-depth qualitative interviews were held with 38 people new to the SUN Project, and again 9 months later. Data were extracted that were relevant to core components of the project model and were subjected to thematic analysis. The critical realist approach was used to move back and forth between empirical data and theory underpinning the SUN project, providing critical insight into the model. Participant accounts were broadly concordant with core components of the SUN Project's underlying model: Open access and self-referral; group therapeutic processes; community-based support; service users as staff. There were some tensions between interviewee accounts and theoretical aspects of the model, notably around the challenges that group processes presented for some individuals. The model underlying the SUN Project is useful in informing good practice in therapeutic, community-based peer support groups for people experiencing personality disorders. Careful consideration should be given to a limited multi-modal approach, providing focused one-to-one support for vulnerable individuals who find it hard to engage in group processes. Facilitated peer support groups based in the community may act as a powerful therapeutic resource for people experiencing personality disorders. Promoting open access and self-referral to support groups may increase feelings of empowerment and engagement for people experiencing personality disorders. Some individuals experiencing personality disorders who could potentially benefit from therapeutic groups may need focused one-to-one support to do so. © 2014 The British Psychological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1054688','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1054688"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miller, Arthur; Cayan, Daniel; Pierce, David</p> <p></p> <p>This project addressed the ability of the Community Climate System Model (CCSM3 and CCSM4), the Community Earth System Model (CESM), and other models to simulate the processes involved in controlling winter storms affecting the U.S. West Coast as well as other precipitation processes in the climate system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/40457','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/40457"><span>Implementation of channel-routing routines in the Water Erosion Prediction Project (WEPP) model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Li Wang; Joan Q. Wu; William J. Elliott; Shuhui Dun; Sergey Lapin; Fritz R. Fiedler; Dennis C. Flanagan</p> <p>2010-01-01</p> <p>The Water Erosion Prediction Project (WEPP) model is a process-based, continuous-simulation, watershed hydrology and erosion model. It is an important tool for water erosion simulation owing to its unique functionality in representing diverse landuse and management conditions. Its applicability is limited to relatively small watersheds since its current version does...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750012730','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750012730"><span>Impact of remote sensing upon the planning, management and development of water resources. Summary of computers and computer growth trends for hydrologic modeling and the input of ERTS image data processing load</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Castruccio, P. A.; Loats, H. L., Jr.</p> <p>1975-01-01</p> <p>An analysis of current computer usage by major water resources users was made to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era. The analysis showns significant impact due to the utilization and processing of ERTS CCT's data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013880','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013880"><span>Integrated Modeling and Analysis of Physical Oceanographic and Acoustic Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>goal is to improve ocean physical state and acoustic state predictive capabilities. The goal fitting the scope of this project is the creation of... Project -scale objectives are to complete targeted studies of oceanographic processes in a few regimes, accompanied by studies of acoustic propagation...by the basic research efforts of this project . An additional objective is to develop improved computational tools for acoustics and for the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MeScT..26l5004G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MeScT..26l5004G"><span>Camera calibration based on the back projection process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui</p> <p>2015-12-01</p> <p>Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9347A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9347A"><span>Inter-model variability in hydrological extremes projections for Amazonian sub-basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andres Rodriguez, Daniel; Garofolo, Lucas; Lázaro de Siqueira Júnior, José; Samprogna Mohor, Guilherme; Tomasella, Javier</p> <p>2014-05-01</p> <p>Irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process drive uncertainties in Climate Change projections. Such uncertainties affect the impact studies, mainly when associated to extreme events, and difficult the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. The use of different climate model's projections allows to aboard uncertainties issues allowing the use of multiple runs to explore a wide range of potential impacts and its implications for potential vulnerabilities. Statistical approaches for analyses of extreme values are usually based on stationarity assumptions. However, nonstationarity is relevant at the time scales considered for extreme value analyses and could have great implications in dynamic complex systems, mainly under climate change transformations. Because this, it is required to consider the nonstationarity in the statistical distribution parameters. We carried out a study of the dispersion in hydrological extremes projections using climate change projections from several climate models to feed the Distributed Hydrological Model of the National Institute for Spatial Research, MHD-INPE, applied in Amazonian sub-basins. This model is a large-scale hydrological model that uses a TopModel approach to solve runoff generation processes at the grid-cell scale. MHD-INPE model was calibrated for 1970-1990 using observed meteorological data and comparing observed and simulated discharges by using several performance coeficients. Hydrological Model integrations were performed for present historical time (1970-1990) and for future period (2010-2100). Because climate models simulate the variability of the climate system in statistical terms rather than reproduce the historical behavior of climate variables, the performances of the model's runs during the historical period, when feed with climate model data, were tested using descriptors of the Flow Duration Curves. The analyses of projected extreme values were carried out considering the nonstationarity of the GEV distribution parameters and compared with extremes events in present time. Results show inter-model variability in a broad dispersion on projected extreme's values. Such dispersion implies different degrees of socio-economic impacts associated to extreme hydrological events. Despite the no existence of one optimum result, this variability allows the analyses of adaptation strategies and its potential vulnerabilities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED256899.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED256899.pdf"><span>Bureau of Labor Statistics Employment Projections: Detailed Analysis of Selected Occupations and Industries. Report to the Honorable Berkley Bedell, United States House of Representatives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>General Accounting Office, Washington, DC.</p> <p></p> <p>To compile its projections of future employment levels, the Bureau of Labor Statistics (BLS) combines the following five interlinked models in a six-step process: a labor force model, an econometric model of the U.S. economy, an industry activity model, an industry labor demand model, and an occupational labor demand model. The BLS was asked to…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..106a2017P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..106a2017P"><span>Risk analysis for renewable energy projects due to constraints arising</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prostean, G.; Vasar, C.; Prostean, O.; Vartosu, A.</p> <p>2016-02-01</p> <p>Starting from the target of the European Union (EU) to use renewable energy in the area that aims a binding target of 20% renewable energy in final energy consumption by 2020, this article illustrates the identification of risks for implementation of wind energy projects in Romania, which could lead to complex technical implications, social and administrative. In specific projects analyzed in this paper were identified critical bottlenecks in the future wind power supply chain and reasonable time periods that may arise. Renewable energy technologies have to face a number of constraints that delayed scaling-up their production process, their transport process, the equipment reliability, etc. so implementing these types of projects requiring complex specialized team, the coordination of which also involve specific risks. The research team applied an analytical risk approach to identify major risks encountered within a wind farm project developed in Romania in isolated regions with different particularities, configured for different geographical areas (hill and mountain locations in Romania). Identification of major risks was based on the conceptual model set up for the entire project implementation process. Throughout this conceptual model there were identified specific constraints of such process. Integration risks were examined by an empirical study based on the method HAZOP (Hazard and Operability). The discussion describes the analysis of our results implementation context of renewable energy projects in Romania and creates a framework for assessing energy supply to any entity from renewable sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994SPIE.2244..283H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994SPIE.2244..283H"><span>From scenarios to domain models: processes and representations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haddock, Gail; Harbison, Karan</p> <p>1994-03-01</p> <p>The domain specific software architectures (DSSA) community has defined a philosophy for the development of complex systems. This philosophy improves productivity and efficiency by increasing the user's role in the definition of requirements, increasing the systems engineer's role in the reuse of components, and decreasing the software engineer's role to the development of new components and component modifications only. The scenario-based engineering process (SEP), the first instantiation of the DSSA philosophy, has been adopted by the next generation controller project. It is also the chosen methodology of the trauma care information management system project, and the surrogate semi-autonomous vehicle project. SEP uses scenarios from the user to create domain models and define the system's requirements. Domain knowledge is obtained from a variety of sources including experts, documents, and videos. This knowledge is analyzed using three techniques: scenario analysis, task analysis, and object-oriented analysis. Scenario analysis results in formal representations of selected scenarios. Task analysis of the scenario representations results in descriptions of tasks necessary for object-oriented analysis and also subtasks necessary for functional system analysis. Object-oriented analysis of task descriptions produces domain models and system requirements. This paper examines the representations that support the DSSA philosophy, including reference requirements, reference architectures, and domain models. The processes used to create and use the representations are explained through use of the scenario-based engineering process. Selected examples are taken from the next generation controller project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ISPAn.II5a.197M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ISPAn.II5a.197M"><span>Workflows and the Role of Images for Virtual 3d Reconstruction of no Longer Extant Historic Objects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Münster, S.</p> <p>2013-07-01</p> <p>3D reconstruction technologies have gained importance as tools for the research and visualization of no longer extant historic objects during the last decade. Within such reconstruction processes, visual media assumes several important roles: as the most important sources especially for a reconstruction of no longer extant objects, as a tool for communication and cooperation within the production process, as well as for a communication and visualization of results. While there are many discourses about theoretical issues of depiction as sources and as visualization outcomes of such projects, there is no systematic research about the importance of depiction during a 3D reconstruction process and based on empirical findings. Moreover, from a methodological perspective, it would be necessary to understand which role visual media plays during the production process and how it is affected by disciplinary boundaries and challenges specific to historic topics. Research includes an analysis of published work and case studies investigating reconstruction projects. This study uses methods taken from social sciences to gain a grounded view of how production processes would take place in practice and which functions and roles images would play within them. For the investigation of these topics, a content analysis of 452 conference proceedings and journal articles related to 3D reconstruction modeling in the field of humanities has been completed. Most of the projects described in those publications dealt with data acquisition and model building for existing objects. Only a small number of projects focused on structures that no longer or never existed physically. Especially that type of project seems to be interesting for a study of the importance of pictures as sources and as tools for interdisciplinary cooperation during the production process. In the course of the examination the authors of this paper applied a qualitative content analysis for a sample of 26 previously published project reports to depict strategies and types and three case studies of 3D reconstruction projects to evaluate evolutionary processes during such projects. The research showed that reconstructions of no longer existing historic structures are most commonly used for presentation or research purposes of large buildings or city models. Additionally, they are often realized by interdisciplinary workgroups using images as the most important source for reconstruction as far as important media for communication and quality control during the reconstruction process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61154&Lab=NHEERL&keyword=oceanography&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=61154&Lab=NHEERL&keyword=oceanography&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>CHALLENGES OF PROCESSING BIOLOGICAL DATA FOR INCORPORATION INTO A LAKE EUTROPHICATION MODEL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A eutrophication model is in development as part of the Lake Michigan Mass Balance Project (LMMBP). Successful development and calibration of this model required the processing and incorporation of extensive biological data. Data were drawn from multiple sources, including nutrie...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23920743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23920743"><span>A business process modeling experience in a complex information system re-engineering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bernonville, Stéphanie; Vantourout, Corinne; Fendeler, Geneviève; Beuscart, Régis</p> <p>2013-01-01</p> <p>This article aims to share a business process modeling experience in a re-engineering project of a medical records department in a 2,965-bed hospital. It presents the modeling strategy, an extract of the results and the feedback experience.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28006743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28006743"><span>An expert panel process to evaluate habitat restoration actions in the Columbia River estuary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krueger, Kirk L; Bottom, Daniel L; Hood, W Gregory; Johnson, Gary E; Jones, Kim K; Thom, Ronald M</p> <p>2017-03-01</p> <p>We describe a process for evaluating proposed ecosystem restoration projects intended to improve survival of juvenile salmon in the Columbia River estuary (CRE). Changes in the Columbia River basin (northwestern USA), including hydropower development, have contributed to the listing of 13 salmon stocks as endangered or threatened under the U.S. Endangered Species Act. Habitat restoration in the CRE, from Bonneville Dam to the ocean, is part of a basin-wide, legally mandated effort to mitigate federal hydropower impacts on salmon survival. An Expert Regional Technical Group (ERTG) was established in 2009 to improve and implement a process for assessing and assigning "survival benefit units" (SBUs) to restoration actions. The SBU concept assumes site-specific restoration projects will increase juvenile salmon survival during migration through the 234 km CRE. Assigned SBUs are used to inform selection of restoration projects and gauge mitigation progress. The ERTG standardized the SBU assessment process to improve its scientific integrity, repeatability, and transparency. In lieu of experimental data to quantify the survival benefits of individual restoration actions, the ERTG adopted a conceptual model composed of three assessment criteria-certainty of success, fish opportunity improvements, and habitat capacity improvements-to evaluate restoration projects. Based on these criteria, an algorithm assigned SBUs by integrating potential fish density as an indicator of salmon performance. Between 2009 and 2014, the ERTG assessed SBUs for 55 proposed projects involving a total of 181 restoration actions located across 8 of 9 reaches of the CRE, largely relying on information provided in a project template based on the conceptual model, presentations, discussions with project sponsors, and site visits. Most projects restored tidal inundation to emergent wetlands, improved riparian function, and removed invasive vegetation. The scientific relationship of geomorphic and salmonid responses to restoration actions remains the foremost concern. Although not designed to establish a broad strategy for estuary restoration, the scoring process has adaptively influenced the types, designs, and locations of restoration proposals. The ERTG process may be a useful model for others who have unique ecosystem restoration goals and share some of our common challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA571762','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA571762"><span>Building Information Modeling (BIM) Primer. Report 1: Facility Life-Cycle Process and Technology Innovation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-08-01</p> <p>Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology Innovation In fo...is unlimited. ERDC/ITL TR-12-2 August 2012 Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology...and to enhance the quality of projects through the design, construction, and handover phases. Building Information Modeling ( BIM ) is a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=project+AND+management&pg=7&id=EJ901228','ERIC'); return false;" href="https://eric.ed.gov/?q=project+AND+management&pg=7&id=EJ901228"><span>Using Agile Project Management to Enhance the Performance of Instructional Design Teams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Sweeney, David S.; Cifuentes, Lauren</p> <p>2010-01-01</p> <p>Instructional design models describe in detail methodologies for designing effective instruction. Several widely adopted models include suggestions for managing instructional design projects. However, these suggestions focus on how to manage the instructional design steps rather than the instructional design and development team process. The…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=scope+AND+management+AND+systems&pg=6&id=EJ831792','ERIC'); return false;" href="https://eric.ed.gov/?q=scope+AND+management+AND+systems&pg=6&id=EJ831792"><span>Developing Instructional Technology Products Using Effective Project Management Practices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Allen, Stephanie; Hardin, Paul C.</p> <p>2008-01-01</p> <p>Delivering a successful instructional technology (IT) product depends on more than just having an extremely creative instructional solution or following an instructional systems design (ISD) model. Proper planning, direction, and execution of the project are require, as well. We present a model of management that encompasses the ISD process. Five…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=314528','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=314528"><span>WEPP model implementation project with the USDA-Natural Resources Conservation Service</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The Water Erosion Prediction Project (WEPP) is a physical process-based soil erosion model that can be used to estimate runoff, soil loss, and sediment yield from hillslope profiles, fields, and small watersheds. Initially developed from 1985-1995, WEPP has been applied and validated across a wide r...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=235584&keyword=electric&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=235584&keyword=electric&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Comparing Emission Inventories and Model-Ready Emission Datasets between Europe and North America for the AQMEII Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This paper highlights the similarities and differences in how emission inventories and datasets were developed and processed across North America and Europe for the Air Quality Model Evaluation International Initiative (AQMEII) project and then characterizes the emissions for the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=322719','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=322719"><span>Demonstration of the Water Erosion Prediction Project (WEPP) internet interface and services</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The Water Erosion Prediction Project (WEPP) model is a process-based FORTRAN computer simulation program for prediction of runoff and soil erosion by water at hillslope profile, field, and small watershed scales. To effectively run the WEPP model and interpret results additional software has been de...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.emc.ncep.noaa.gov/monsoondesk/projects.php','SCIGOVWS'); return false;" href="http://www.emc.ncep.noaa.gov/monsoondesk/projects.php"><span>National Centers for Environmental Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Statistics <em>Observational</em> Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar projects. Starting a Monsoon Mission experiment or <em>research</em> project? Let us know so we can add it to our Modeling Center NOAA Center for Weather and Climate Prediction (NCWCP) 5830 University <em>Research</em> Court</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=use+AND+force&pg=7&id=EJ903747','ERIC'); return false;" href="https://eric.ed.gov/?q=use+AND+force&pg=7&id=EJ903747"><span>Stabilizing a Bicycle: A Modeling Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pennings, Timothy J.; Williams, Blair R.</p> <p>2010-01-01</p> <p>This article is a project that takes students through the process of forming a mathematical model of bicycle dynamics. Beginning with basic ideas from Newtonian mechanics (forces and torques), students use techniques from calculus and differential equations to develop the equations of rotational motion for a bicycle-rider system as it tips from…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED124352.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED124352.pdf"><span>Title V in South Carolina -- An Update.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Jacob, Nelson L.</p> <p></p> <p>Since South Carolina's Title V Community and Resource Development (CRD) project is limited to one small rural county (Williamsburg) affording careful documentation, this paper explicates South Carolina's CRD process via a social action model. This project, then, is described in terms of the following model components: (1) community initiative…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020082874&hterms=nora&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dnora','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020082874&hterms=nora&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dnora"><span>Evaluation of Cirrus Cloud Simulations using ARM Data-Development of Case Study Data Set</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Starr, David OC.; Demoz, Belay; Wang, Yansen; Lin, Ruei-Fong; Lare, Andrew; Mace, Jay; Poellot, Michael; Sassen, Kenneth; Brown, Philip</p> <p>2002-01-01</p> <p>Cloud-resolving models (CRMs) are being increasingly used to develop parametric treatments of clouds and related processes for use in global climate models (GCMs). CRMs represent the integrated knowledge of the physical processes acting to determine cloud system lifecycle and are well matched to typical observational data in terms of physical parameters/measurables and scale-resolved physical processes. Thus, they are suitable for direct comparison to field observations for model validation and improvement. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. The objective is to compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. Progress is assessing cloud and other environmental conditions will be described. Results of preliminary simulations using a regional cloud system model (MM5) and a CRM will be discussed. Focal science questions for the model comparison are strongly based on results of the idealized GCSS WG2 cirrus cloud model comparison projects (Idealized Cirrus Cloud Model Comparison Project and Cirrus Parcel Model Comparison Project), which will also be briefly summarized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910018397','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910018397"><span>A cloud, precipitation and electrification modeling effort for COHMEX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Orville, Harold D.; Helsdon, John H.; Farley, Richard D.</p> <p>1991-01-01</p> <p>In mid-1987, the Modeling Group of the Institute of Atmospheric Sciences (IAS) began to simulate and analyze cloud runs that were made during the Cooperative Huntsville Meteorological Experiment (COHMEX) Project and later. The cloud model was run nearly every day during the summer 1986 COHMEX Project. The Modeling Group was then funded to analyze the results, make further modeling tests, and help explain the precipitation processes in the Southeastern United States. The main science objectives of COHMEX were: (1) to observe the prestorm environment and understand the physical mechanisms leading to the formation of small convective systems and processes controlling the production of precipitation; (2) to describe the structure of small convective systems producing precipitation including the large and small scale events in the environment surrounding the developing and mature convective system; (3) to understand the interrelationships between electrical activity within the convective system and the process of precipitation; and (4) to develop and test numerical models describing the boundary layer, tropospheric, and cloud scale thermodynamics and dynamics associated with small convective systems. The latter three of these objectives were addressed by the modeling activities of the IAS. A series of cloud modes were used to simulate the clouds that formed during the operational project. The primary models used to date on the project were a two dimensional bulk water model, a two dimensional electrical model, and to a lesser extent, a two dimensional detailed microphysical cloud model. All of the models are based on fully interacting microphysics, dynamics, thermodynamics, and electrical equations. Only the 20 July 1986 case was analyzed in detail, although all of the cases run during the summer were analyzed as to how well they did in predicting the characteristics of the convection for that day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009lkic.conf..217B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009lkic.conf..217B"><span>An Alignment Model for Collaborative Value Networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bremer, Carlos; Azevedo, Rodrigo Cambiaghi; Klen, Alexandra Pereira</p> <p></p> <p>This paper presents parts of the work carried out in several global organizations through the development of strategic projects with high tactical and operational complexity. By investing in long-term relationships, strongly operating in the transformation of the competitive model and focusing on the value chain management, the main aim of these projects was the alignment of multiple value chains. The projects were led by the Axia Transformation Methodology as well as by its Management Model and following the principles of Project Management. As a concrete result of the efforts made in the last years in the Brazilian market this work also introduces the Alignment Model which supports the transformation process that the companies undergo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/200194-tti-cm-aq-evaluation-model-user-guide-workshop-training-materials-interim-research-report-september-august','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/200194-tti-cm-aq-evaluation-model-user-guide-workshop-training-materials-interim-research-report-september-august"><span>TTI CM/AQ evaluation model user`s guide and workshop training materials. Interim research report, September 1993-August 1996</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>NONE</p> <p>1995-08-01</p> <p>The TTI CM/AQ Evaluation Model evaluates potential projects based on the following criteria: eligibility, travel impacts, emission impacts, and cost-effectiveness. To compare independent projects within a region during the decision process for CM/AQ funding, each project evaluated with this model is given an overall score based on the project`s effects for the criteria listed above. Training workshops were held by TTI in the first quarter of 1995 to teach metropolitan planning organization, state department of transportation, and regional air quality organization staff how to use this model. Basics of sketch-planning applications were also taught. The DRCOG and TTI CM/AQ Evaluationmore » Models represent significant steps toward the development of analytical methodologies for selecting projects for CM/AQ funding. Because the needs of nonattainment and attainment areas change over time, this model is particularly useful as key evaluation criteria can be modified to reflect the changing needs of a metropolitan area.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMIN22A..07G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMIN22A..07G"><span>The Earth System Documentation (ES-DOC) Software Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greenslade, M. A.; Murphy, S.; Treshansky, A.; DeLuca, C.; Guilyardi, E.; Denvil, S.</p> <p>2013-12-01</p> <p>Earth System Documentation (ES-DOC) is an international project supplying high-quality tools & services in support of earth system documentation creation, analysis and dissemination. It is nurturing a sustainable standards based documentation eco-system that aims to become an integral part of the next generation of exa-scale dataset archives. ES-DOC leverages open source software, and applies a software development methodology that places end-user narratives at the heart of all it does. ES-DOC has initially focused upon nurturing the Earth System Model (ESM) documentation eco-system and currently supporting the following projects: * Coupled Model Inter-comparison Project Phase 5 (CMIP5); * Dynamical Core Model Inter-comparison Project (DCMIP); * National Climate Predictions and Projections Platforms Quantitative Evaluation of Downscaling Workshop. This talk will demonstrate that ES-DOC implements a relatively mature software development process. Taking a pragmatic Agile process as inspiration, ES-DOC: * Iteratively develops and releases working software; * Captures user requirements via a narrative based approach; * Uses online collaboration tools (e.g. Earth System CoG) to manage progress; * Prototypes applications to validate their feasibility; * Leverages meta-programming techniques where appropriate; * Automates testing whenever sensibly feasible; * Streamlines complex deployments to a single command; * Extensively leverages GitHub and Pivotal Tracker; * Enforces strict separation of the UI from underlying API's; * Conducts code reviews.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1335308-toward-more-realistic-projections-soil-carbon-dynamics-earth-system-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1335308-toward-more-realistic-projections-soil-carbon-dynamics-earth-system-models"><span>Toward more realistic projections of soil carbon dynamics by Earth system models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; ...</p> <p>2016-01-21</p> <p>Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. Furthermore, we recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MmSAI..88..141B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MmSAI..88..141B"><span>System Modeling of a large FPGA project: the SKA Tile Processing Module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Belli, C.; Comoretto, G.</p> <p></p> <p>Large projects like the SKA have an intrinsic complexity due to their scale. In this context, the application of a management design system becomes fundamental. For this purpose the SysML language, a UML customization for engineering applications, has been applied. As far as our work is concerned, we focused on the SKA Low Telescope - Tile Processing Module, designing diagrams at different detail levels. We designed a conceptual model of the TPM, primarily focusing on the main interfaces and the major data flows between product items. Functionalities are derived from use cases and allocated to hardware modules in order to guarantee the project's internal consistency and features. This model has been used both as internal documentation and as job specification, to commit part of the design to external entities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950009329','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950009329"><span>Advanced Turbine Technology Applications Project (ATTAP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1994-01-01</p> <p>Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29433039','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29433039"><span>Design-based research in designing the model for educating simulation facilitators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koivisto, Jaana-Maija; Hannula, Leena; Bøje, Rikke Buus; Prescott, Stephen; Bland, Andrew; Rekola, Leena; Haho, Päivi</p> <p>2018-03-01</p> <p>The purpose of this article is to introduce the concept of design-based research, its appropriateness in creating education-based models, and to describe the process of developing such a model. The model was designed as part of the Nurse Educator Simulation based learning project, funded by the EU's Lifelong Learning program (2013-1-DK1-LEO05-07053). The project partners were VIA University College, Denmark, the University of Huddersfield, UK and Metropolia University of Applied Sciences, Finland. As an outcome of the development process, "the NESTLED model for educating simulation facilitators" (NESTLED model) was generated. This article also illustrates five design principles that could be applied to other pedagogies. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032846','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032846"><span>Evaluation of the physical process controlling beach changes adjacent to nearshore dredge pits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Benedet, L.; List, J.H.</p> <p>2008-01-01</p> <p>Numerical modeling of a beach nourishment project is conducted to enable a detailed evaluation of the processes associated with the effects of nearshore dredge pits on nourishment evolution and formation of erosion hot spots. A process-based numerical model, Delft3D, is used for this purpose. The analysis is based on the modification of existing bathymetry to simulate "what if" scenarios with/without the bathymetric features of interest. Borrow pits dredged about 30??years ago to provide sand for the nourishment project have a significant influence on project performance and formation of erosional hot spots. It was found that the main processes controlling beach response to these offshore bathymetric features were feedbacks between wave forces (roller force or alongshore component of the radiation stress), pressure gradients due to differentials in wave set-up/set-down and bed shear stress. Modeling results also indicated that backfilling of selected borrow sites showed a net positive effect within the beach fill limits and caused a reduction in the magnitude of hot spot erosion. ?? 2008 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC41B1010H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC41B1010H"><span>ISI-MIP: The Inter-Sectoral Impact Model Intercomparison Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huber, V.; Dahlemann, S.; Frieler, K.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.</p> <p>2013-12-01</p> <p>The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. The unique cross-sectoral scope of the project provides the opportunity to study cascading effects of impacts in interacting sectors and to identify regional 'hot spots' where multiple sectors experience extreme impacts. Another emphasis lies on the development of novel metrics to describe societal impacts of a warmer climate. We briefly outline the methodological framework, and then present selected results of the first, fast-tracked phase of ISI-MIP. The fast track brought together 35 global impact models internationally, spanning five sectors across human society and the natural world (agriculture, water, natural ecosystems, health and coastal infrastructure), and using the latest generation of global climate simulations (RCP projections from the CMIP5 archive) and socioeconomic drivers provided within the SSP process. We also introduce the second phase of the project, which will enlarge the scope of ISI-MIP by encompassing further impact sectors (e.g., forestry, fisheries, permafrost) and regional modeling approaches. The focus for the next round of simulations will be the validation and improvement of models based on historical observations and the analysis of variability and extreme events. Last but not least, we discuss the longer-term objective of ISI-MIP to initiate a coordinated, ongoing impact assessment process, driven by the entire impact community and in parallel with well-established climate model intercomparisons (CMIP).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512371L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512371L"><span>Changing Permafrost in the Arctic and its Global Effects in the 21st Century (PAGE21): A very large international and integrated project to measure the impact of permafrost degradation on the climate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang</p> <p>2013-04-01</p> <p>The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on climate-change mitigation. The concept of PAGE21 is to directly address these questions through a close interaction between monitoring activities, proc-ess studies and modeling on the pertinent temporal and spatial scales. Field sites have been selected to cover a wide range of environmental conditions for the validation of large scale mod-els, the development of permafrost monitoring capabilities, the study of permafrost processes, and for overlap with existing monitoring programs. PAGE21 will contribute to upgrading the project sites with the objective of providing a measurement baseline, both for process studies and for modeling programs. PAGE21 is determined to break down the traditional barriers in permafrost sciences between observational and model-supported site studies and large-scale climate modeling. Our concept for the interaction between site-scale studies and large-scale modeling is to establish and maintain a direct link be-tween these two areas for developing and evaluating, on all spatial scales, the land-surface modules of leading European global climate models taking part in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), designed to inform the IPCC process. The timing of this project is such that the main scientific results from PAGE21, and in particular the model-based assessments will build entirely on new outputs and results from the CMIP5 Climate Model Intercomparison Project designed to inform the IPCC Fifth Assessment Report. However, PAGE21 is designed to leave a legacy that will en-dure beyond the lifetime of the projections that it produces. This legacy will comprise • an improved understanding of the key processes and parameters that determine the vulnerability of arctic permafrost to climate change, • the production of a suite of major European coupled climate models including detailed and validated repre-sentations of permafrost-related processes, that will reduce uncertainties in future climate projections pro-duced well beyond the lifetime of PAGE21, and • the training of a new generation of permafrost scien-tists who will bridge the long-standing gap between permafrost field science and global climate modeling, for the long-term benefit of science and society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150008070&hterms=COMMAND&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DCOMMAND','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150008070&hterms=COMMAND&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DCOMMAND"><span>Modeling to Improve the Risk Reduction Process for Command File Errors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Meshkat, Leila; Bryant, Larry; Waggoner, Bruce</p> <p>2013-01-01</p> <p>The Jet Propulsion Laboratory has learned that even innocuous errors in the spacecraft command process can have significantly detrimental effects on a space mission. Consequently, such Command File Errors (CFE), regardless of their effect on the spacecraft, are treated as significant events for which a root cause is identified and corrected. A CFE during space mission operations is often the symptom of imbalance or inadequacy within the system that encompasses the hardware and software used for command generation as well as the human experts and processes involved in this endeavor. As we move into an era of increased collaboration with other NASA centers and commercial partners, these systems become more and more complex. Consequently, the ability to thoroughly model and analyze CFEs formally in order to reduce the risk they pose is increasingly important. In this paper, we summarize the results of applying modeling techniques previously developed to the DAWN flight project. The original models were built with the input of subject matter experts from several flight projects. We have now customized these models to address specific questions for the DAWN flight project and formulating use cases to address their unique mission needs. The goal of this effort is to enhance the project's ability to meet commanding reliability requirements for operations and to assist them in managing their Command File Errors.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1147544.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1147544.pdf"><span>Study of the 5E Instructional Model to Improve the Instructional Design Process of Novice Teachers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hu, Jiuhua; Gao, Chong; Liu, Yang</p> <p>2017-01-01</p> <p>This study investigated the effects of 5E instructional model on the teaching processes of novice teachers. First, we conducted a teaching design training project based on the 5E model for 40 novice teachers, and compared pre-texts of the teachers' teaching process from before the training with post-texts obtained immediately following the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020052428','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020052428"><span>Integrating Theory and Practice: Applying the Quality Improvement Paradigm to Product Line Engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stark, Michael; Hennessy, Joseph F. (Technical Monitor)</p> <p>2002-01-01</p> <p>My assertion is that not only are product lines a relevant research topic, but that the tools used by empirical software engineering researchers can address observed practical problems. Our experience at NASA has been there are often externally proposed solutions available, but that we have had difficulties applying them in our particular context. We have also focused on return on investment issues when evaluating product lines, and while these are important, one can not attain objective data on success or failure until several applications from a product family have been deployed. The use of the Quality Improvement Paradigm (QIP) can address these issues: (1) Planning an adoption path from an organization's current state to a product line approach; (2) Constructing a development process to fit the organization's adoption path; (3) Evaluation of product line development processes as the project is being developed. The QIP consists of the following six steps: (1) Characterize the project and its environment; (2) Set quantifiable goals for successful project performance; (3) Choose the appropriate process models, supporting methods, and tools for the project; (4) Execute the process, analyze interim results, and provide real-time feedback for corrective action; (5) Analyze the results of completed projects and recommend improvements; and (6) Package the lessons learned as updated and refined process models. A figure shows the QIP in detail. The iterative nature of the QIP supports an incremental development approach to product lines, and the project learning and feedback provide the necessary early evaluations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/office-inspector-general/notification-evaluation-epas-approval-process-air-quality-dispersion-models','PESTICIDES'); return false;" href="https://www.epa.gov/office-inspector-general/notification-evaluation-epas-approval-process-air-quality-dispersion-models"><span>Notification: Evaluation of EPA’s Approval Process for Air Quality Dispersion Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Project #OPE-FY17-0016, June 5, 2017. The EPA OIG plans to begin preliminary research to assess the effectiveness of EPA's process for reviewing and approving air quality dispersion models it recommends for use.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4606042','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4606042"><span>Predicting Defects Using Information Intelligence Process Models in the Software Technology Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Selvaraj, Manjula Gandhi; Jayabal, Devi Shree; Srinivasan, Thenmozhi; Balasubramanie, Palanisamy</p> <p>2015-01-01</p> <p>A key differentiator in a competitive market place is customer satisfaction. As per Gartner 2012 report, only 75%–80% of IT projects are successful. Customer satisfaction should be considered as a part of business strategy. The associated project parameters should be proactively managed and the project outcome needs to be predicted by a technical manager. There is lot of focus on the end state and on minimizing defect leakage as much as possible. Focus should be on proactively managing and shifting left in the software life cycle engineering model. Identify the problem upfront in the project cycle and do not wait for lessons to be learnt and take reactive steps. This paper gives the practical applicability of using predictive models and illustrates use of these models in a project to predict system testing defects thus helping to reduce residual defects. PMID:26495427</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26495427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26495427"><span>Predicting Defects Using Information Intelligence Process Models in the Software Technology Project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Selvaraj, Manjula Gandhi; Jayabal, Devi Shree; Srinivasan, Thenmozhi; Balasubramanie, Palanisamy</p> <p>2015-01-01</p> <p>A key differentiator in a competitive market place is customer satisfaction. As per Gartner 2012 report, only 75%-80% of IT projects are successful. Customer satisfaction should be considered as a part of business strategy. The associated project parameters should be proactively managed and the project outcome needs to be predicted by a technical manager. There is lot of focus on the end state and on minimizing defect leakage as much as possible. Focus should be on proactively managing and shifting left in the software life cycle engineering model. Identify the problem upfront in the project cycle and do not wait for lessons to be learnt and take reactive steps. This paper gives the practical applicability of using predictive models and illustrates use of these models in a project to predict system testing defects thus helping to reduce residual defects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5459467','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5459467"><span>When does activating diversity alleviate, when does it increase intergroup bias? An ingroup projection perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Steffens, Melanie C.; Reese, Gerhard; Ehrke, Franziska; Jonas, Kai J.</p> <p>2017-01-01</p> <p>The question how intergroup bias can be alleviated is of much theoretical and practical interest. Whereas diversity training and the multiculturalism ideology are two approaches prominent in practice, most theoretical models on reducing intergroup bias are based on social-identity theory and self-categorization theory. This social-identity perspective assumes that similar processes lead to intergroup bias in very different intergroup contexts if people identify with the respective social groups. A recent prominent model based on these theories is the ingroup-projection model. As this model assumes, an ingroup’s norms and standards are applied to outgroups included in a common superordinate category (this is called ingroup projection). Intergroup bias results because the outgroup fulfils these norms and standards less than the ingroup. Importantly, if the diversity of the superordinate category is induced as the norm, ingroup projection and thus intergroup bias should be reduced. The present research delineates and tests how general this process is. We propose that ingroup prototypicality is not only an outcome variable, as the ingroup-projection model originally assumes, but can also be an important moderator. We hypothesize that for members considering their ingroup highly prototypical (“pars pro toto”, large majorities), the superordinate group’s diversity may question their ingroup’s position and thus elicit threat and intergroup bias. In contrast, for members who consider their group as less prototypical (one among several, or “una inter pares” groups), activating diversity should, as originally assumed in the ingroup-projection model, reduce intergroup bias. Three experiments (total N = 345) supported these predictions in the contexts of groups defined by gender or nationality. Taken together, the ingroup-projection model can explain under which conditions activating superordinate-category diversity induces tolerance, and when it may backfire. We discuss in how far the ingroup-projection model can integrate conflicting findings on the multiculturalism ideology. PMID:28582443</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022396','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022396"><span>Modelling carbon responses of tundra ecosystems to historical and projected climate: A comparison of a plot- and a global-scale ecosystem model to identify process-based uncertainties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clein, Joy S.; Kwiatkowski, B.L.; McGuire, A.D.; Hobbie, J.E.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.</p> <p>2000-01-01</p> <p>We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period, the model simulations of net primary production (NPP) differed in their sensitivity to variability in climate. However, the long-term changes in C storage were similar in both simulations, because the dynamics of heterotrophic respiration (RH) were similar in both models. In contrast, the responses of C storage in the two model simulations diverged during the projected period. In the GEM simulation for this period, increases in RH tracked increases in NPP, whereas in the TEM simulation increases in RH lagged increases in NPP. We were able to make the long-term C dynamics of the two simulations agree by parameterizing TEM to the fast soil C pools of GEM. We concluded that the differences between the long-term C dynamics of the two simulations lay in modelling the role of the recalcitrant soil C. These differences, which reflect an incomplete understanding of soil processes, lead to quite different projections of the response of pan-Arctic C storage to global change. For example, the reference parameterization of TEM resulted in an estimate of cumulative C storage of 2032 g C m-2 for moist tundra north of 50??N, which was substantially higher than the 463 g C m-2 estimated for a parameterization of fast soil C dynamics. This uncertainty in the depiction of the role of recalcitrant soil C in long-term ecosystem C dynamics resulted from our incomplete understanding of controls over C and N transformations in Arctic soils. Mechanistic studies of these issues are needed to improve our ability to model the response of Arctic ecosystems to global change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP43A3550B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP43A3550B"><span>2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.</p> <p>2014-12-01</p> <p>In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is essential for successful project implementation (Conroy and Peterson, 2013). Evaluating tradeoffs and examining alternatives to improve fish habitat through optimization modeling is not just a trend but rather the scientific strategy by which management needs embrace and apply in its decision framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA258967','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA258967"><span>Process Definition and Modeling Guidebook. Version 01.00.02</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-12-01</p> <p>material (and throughout the guidebook)process defnition is considered to be the act of representing the important characteristics of a process in a...characterized by software standards and guidelines, software inspections and reviews, and more formalized testing (including test plans, test sup- port tools...paper-based approach works well for training, examples, and possibly even small pilot projects and case studies. However, large projects will benefit from</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17904636','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17904636"><span>Measuring societal effects of transdisciplinary research projects: design and application of an evaluation method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walter, Alexander I; Helgenberger, Sebastian; Wiek, Arnim; Scholz, Roland W</p> <p>2007-11-01</p> <p>Most Transdisciplinary Research (TdR) projects combine scientific research with the building of decision making capacity for the involved stakeholders. These projects usually deal with complex, societally relevant, real-world problems. This paper focuses on TdR projects, which integrate the knowledge of researchers and stakeholders in a collaborative transdisciplinary process through structured methods of mutual learning. Previous research on the evaluation of TdR has insufficiently explored the intended effects of transdisciplinary processes on the real world (societal effects). We developed an evaluation framework for assessing the societal effects of transdisciplinary processes. Outputs (measured as procedural and product-related involvement of the stakeholders), impacts (intermediate effects connecting outputs and outcomes) and outcomes (enhanced decision making capacity) are distinguished as three types of societal effects. Our model links outputs and outcomes of transdisciplinary processes via the impacts using a mediating variables approach. We applied this model in an ex post evaluation of a transdisciplinary process. 84 out of 188 agents participated in a survey. The results show significant mediation effects of the two impacts "network building" and "transformation knowledge". These results indicate an influence of a transdisciplinary process on the decision making capacity of stakeholders, especially through social network building and the generation of knowledge relevant for action.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1169419-collaborative-research-process-resolving-decomposition-global-temperature-response-modes-low-frequency-variability-changing-climate','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1169419-collaborative-research-process-resolving-decomposition-global-temperature-response-modes-low-frequency-variability-changing-climate"><span>Collaborative Research: Process-resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cai, Ming; Deng, Yi</p> <p>2015-02-06</p> <p>El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The future projection of the ENSO and AM variability, however, remains highly uncertain with the state-of-the-art coupled general circulation models. A comprehensive understanding of the factors responsible for the inter-model discrepancies in projecting future changes in the ENSO and AM variability, in terms of multiple feedback processes involved, has yet to be achieved. The proposed research aims to identify sources of such uncertainty and establish a set of process-resolving quantitative evaluations of the existing predictions ofmore » the future ENSO and AM variability. The proposed process-resolving evaluations are based on a feedback analysis method formulated in Lu and Cai (2009), which is capable of partitioning 3D temperature anomalies/perturbations into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. Taking advantage of the high-resolution, multi-model ensemble products from the Coupled Model Intercomparison Project Phase 5 (CMIP5) soon to be available at the Lawrence Livermore National Lab, we will conduct a process-resolving decomposition of the global three-dimensional (3D) temperature (including SST) response to the ENSO and AM variability in the preindustrial, historical and future climate simulated by these models. Specific research tasks include 1) identifying the model-observation discrepancies in the global temperature response to ENSO and AM variability and attributing such discrepancies to specific feedback processes, 2) delineating the influence of anthropogenic radiative forcing on the key feedback processes operating on ENSO and AM variability and quantifying their relative contributions to the changes in the temperature anomalies associated with different phases of ENSO and AMs, and 3) investigating the linkages between model feedback processes that lead to inter-model differences in time-mean temperature projection and model feedback processes that cause inter-model differences in the simulated ENSO and AM temperature response. Through a thorough model-observation and inter-model comparison of the multiple energetic processes associated with ENSO and AM variability, the proposed research serves to identify key uncertainties in model representation of ENSO and AM variability, and investigate how the model uncertainty in predicting time-mean response is related to the uncertainty in predicting response of the low-frequency modes. The proposal is thus a direct response to the first topical area of the solicitation: Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability. It ultimately supports the accomplishment of the BER climate science activity Long Term Measure (LTM): "Deliver improved scientific data and models about the potential response of the Earth's climate and terrestrial biosphere to increased greenhouse gas levels for policy makers to determine safe levels of greenhouse gases in the atmosphere."« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770026305','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770026305"><span>New model framework and structure and the commonality evaluation model. [concerning unmanned spacecraft projects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1977-01-01</p> <p>The development of a framework and structure for shuttle era unmanned spacecraft projects and the development of a commonality evaluation model is documented. The methodology developed for model utilization in performing cost trades and comparative evaluations for commonality studies is discussed. The model framework consists of categories of activities associated with the spacecraft system's development process. The model structure describes the physical elements to be treated as separate identifiable entities. Cost estimating relationships for subsystem and program-level components were calculated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/919931','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/919931"><span>Motivation, description, and summary status of geomechanical andgeochemical modeling studies in Task D of the InternationalDECOVALEX-THMC Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Birkholzer, J.T.; Barr, D.; Rutqvist, J.</p> <p>2005-11-15</p> <p>The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The general goalof this project is to encourage multidisciplinary interactive andcooperative research on modelling coupledthermo-hydro-mechanical-chemical (THMC) processes in geologic formationsin support of the performance assessment for underground storage ofradioactive waste. One of the research tasks, initiated in 2004 by theU.S. Department of Energy (DOE), addresses the long-term impact ofgeomechanical and geochemical processes on the flow conditions near wasteemplacement tunnels. Within this task, four international research teamsconduct predictive analysis of the coupled processes in two genericrepositories, using multiple approaches andmore » different computer codes.Below, we give an overview of the research task and report its currentstatus.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29726437','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29726437"><span>Clinical Knowledge Governance Framework for Nationwide Data Infrastructure Projects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wulff, Antje; Haarbrandt, Birger; Marschollek, Michael</p> <p>2018-01-01</p> <p>The availability of semantically-enriched and interoperable clinical information models is crucial for reusing once collected data across institutions like aspired in the German HiGHmed project. Funded by the Federal Ministry of Education and Research, this nationwide data infrastructure project adopts the openEHR approach for semantic modelling. Here, strong governance is required to define high-quality and reusable models. Design of a clinical knowledge governance framework for openEHR modelling in cross-institutional settings like HiGHmed. Analysis of successful practices from international projects, published ideas on archetype governance and own modelling experiences as well as modelling of BPMN processes. We designed a framework by presenting archetype variations, roles and responsibilities, IT support and modelling workflows. Our framework has great potential to make the openEHR modelling efforts manageable. Because practical experiences are rare, prospectively our work will be predestinated to evaluate the benefits of such structured governance approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=management+AND+information&pg=4&id=EJ1093965','ERIC'); return false;" href="https://eric.ed.gov/?q=management+AND+information&pg=4&id=EJ1093965"><span>Knowledge Management in Sustainability Research Projects: Concepts, Effective Models, and Examples in a Multi-Stakeholder Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kaiser, David Brian; Köhler, Thomas; Weith, Thomas</p> <p>2016-01-01</p> <p>This article aims to sketch a conceptual design for an information and knowledge management system in sustainability research projects. The suitable frameworks to implement knowledge transfer models constitute social communities, because the mutual exchange and learning processes among all stakeholders promote key sustainable developments through…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950022327','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950022327"><span>Evaluation of grid generation technologies from an applied perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hufford, Gary S.; Harrand, Vincent J.; Patel, Bhavin C.; Mitchell, Curtis R.</p> <p>1995-01-01</p> <p>An analysis of the grid generation process from the point of view of an applied CFD engineer is given. Issues addressed include geometric modeling, structured grid generation, unstructured grid generation, hybrid grid generation and use of virtual parts libraries in large parametric analysis projects. The analysis is geared towards comparing the effective turn around time for specific grid generation and CFD projects. The conclusion was made that a single grid generation methodology is not universally suited for all CFD applications due to both limitations in grid generation and flow solver technology. A new geometric modeling and grid generation tool, CFD-GEOM, is introduced to effectively integrate the geometric modeling process to the various grid generation methodologies including structured, unstructured, and hybrid procedures. The full integration of the geometric modeling and grid generation allows implementation of extremely efficient updating procedures, a necessary requirement for large parametric analysis projects. The concept of using virtual parts libraries in conjunction with hybrid grids for large parametric analysis projects is also introduced to improve the efficiency of the applied CFD engineer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B31J..05A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B31J..05A"><span>Uncertainty in Arctic hydrology projections and the permafrost-carbon feedback</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andresen, C. G.; Lawrence, D. M.; Wilson, C. J.; McGuire, D.</p> <p>2017-12-01</p> <p>Projected warming is expected to thaw permafrost soils and deepen the permafrost active layer. These changes will affect surface hydrological conditions. Since the soil hydrologic state exerts a strong influence on the rate and pathway of soil organic matter decomposition into CO2 or CH4, there is a strong need to examine and better understand model projections of hydrologic change and how differences in process representation affect projections of wetting and/or drying of changing permafrost landscapes. This study aims to advance understanding of where, when and why arctic will become wetter or drier. We assessed simulations from 8 "permafrost enabled" land models that were run in offline mode from 1960 to 2299 forced with the same projected climate for a high-emissions scenario. Climate models project increased precipitation (P) across most of the Arctic domain and the land models indicate that runoff and evapotranspiration (ET) will also both increase. In general, the water input to the soil (P-ET) also increases, but the models project a contradicting long-term drying of the surface soil. The surface drying in the models can generally be explained by filtration of moisture to deeper soil layers as the active layer deepens or by increased sub-surface drainage where permafrost in a grid cell thaws completely. Though, there is a qualitative agreement in this type of response across the models, the projections vary dramatically in magnitude. Variability among simulations is largely attributed to parameterization and structural differences across the participating models, particularly the diverse representations of evapotranspiration, water table and soil water storage and transmission. A limited set of results from single forcing experiments suggests that the warming effect in the sensitivity analysis was the principal driver of soil drying while CO2 and precipitation effects had a small wetting influence. When compared to observational data, simulations tend to underestimate discharge by a factor of 2 for the major arctic river basins. This analysis serves as a baseline to identify key process representation gaps and opportunities to improve representation of permafrost hydrology and associated projections of carbon and energy feedbacks in land models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008IJTIA.128..969H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008IJTIA.128..969H"><span>Virtual Power Electronics: Novel Software Tools for Design, Modeling and Education</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamar, Janos; Nagy, István; Funato, Hirohito; Ogasawara, Satoshi; Dranga, Octavian; Nishida, Yasuyuki</p> <p></p> <p>The current paper is dedicated to present browser-based multimedia-rich software tools and e-learning curriculum to support the design and modeling process of power electronics circuits and to explain sometimes rather sophisticated phenomena. Two projects will be discussed. The so-called Inetele project is financed by the Leonardo da Vinci program of the European Union (EU). It is a collaborative project between numerous EU universities and institutes to develop state-of-the art curriculum in Electrical Engineering. Another cooperative project with participation of Japanese, European and Australian institutes focuses especially on developing e-learning curriculum, interactive design and modeling tools, furthermore on development of a virtual laboratory. Snapshots from these two projects will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ClDy...40.2123D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ClDy...40.2123D"><span>Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; Bony, S.; Bopp, L.; Braconnot, P.; Brockmann, P.; Cadule, P.; Cheruy, F.; Codron, F.; Cozic, A.; Cugnet, D.; de Noblet, N.; Duvel, J.-P.; Ethé, C.; Fairhead, L.; Fichefet, T.; Flavoni, S.; Friedlingstein, P.; Grandpeix, J.-Y.; Guez, L.; Guilyardi, E.; Hauglustaine, D.; Hourdin, F.; Idelkadi, A.; Ghattas, J.; Joussaume, S.; Kageyama, M.; Krinner, G.; Labetoulle, S.; Lahellec, A.; Lefebvre, M.-P.; Lefevre, F.; Levy, C.; Li, Z. X.; Lloyd, J.; Lott, F.; Madec, G.; Mancip, M.; Marchand, M.; Masson, S.; Meurdesoif, Y.; Mignot, J.; Musat, I.; Parouty, S.; Polcher, J.; Rio, C.; Schulz, M.; Swingedouw, D.; Szopa, S.; Talandier, C.; Terray, P.; Viovy, N.; Vuichard, N.</p> <p>2013-05-01</p> <p>We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990025793&hterms=Fdd&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DFdd','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990025793&hterms=Fdd&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DFdd"><span>Calibration of a COTS Integration Cost Model Using Local Project Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boland, Dillard; Coon, Richard; Byers, Kathryn; Levitt, David</p> <p>1997-01-01</p> <p>The software measures and estimation techniques appropriate to a Commercial Off the Shelf (COTS) integration project differ from those commonly used for custom software development. Labor and schedule estimation tools that model COTS integration are available. Like all estimation tools, they must be calibrated with the organization's local project data. This paper describes the calibration of a commercial model using data collected by the Flight Dynamics Division (FDD) of the NASA Goddard Spaceflight Center (GSFC). The model calibrated is SLIM Release 4.0 from Quantitative Software Management (QSM). By adopting the SLIM reuse model and by treating configuration parameters as lines of code, we were able to establish a consistent calibration for COTS integration projects. The paper summarizes the metrics, the calibration process and results, and the validation of the calibration.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA34A..03N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA34A..03N"><span>Hydrological Modeling in the Bull Run Watershed in Support of a Piloting Utility Modeling Applications (PUMA) Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nijssen, B.; Chiao, T. H.; Lettenmaier, D. P.; Vano, J. A.</p> <p>2016-12-01</p> <p>Hydrologic models with varying complexities and structures are commonly used to evaluate the impact of climate change on future hydrology. While the uncertainties in future climate projections are well documented, uncertainties in streamflow projections associated with hydrologic model structure and parameter estimation have received less attention. In this study, we implemented and calibrated three hydrologic models (the Distributed Hydrology Soil Vegetation Model (DHSVM), the Precipitation-Runoff Modeling System (PRMS), and the Variable Infiltration Capacity model (VIC)) for the Bull Run watershed in northern Oregon using consistent data sources and best practice calibration protocols. The project was part of a Piloting Utility Modeling Applications (PUMA) project with the Portland Water Bureau (PWB) under the umbrella of the Water Utility Climate Alliance (WUCA). Ultimately PWB would use the model evaluation to select a model to perform in-house climate change analysis for Bull Run Watershed. This presentation focuses on the experimental design of the comparison project, project findings and the collaboration between the team at the University of Washington and at PWB. After calibration, the three models showed similar capability to reproduce seasonal and inter-annual variations in streamflow, but differed in their ability to capture extreme events. Furthermore, the annual and seasonal hydrologic sensitivities to changes in climate forcings differed among models, potentially attributable to different model representations of snow and vegetation processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70147686','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70147686"><span>Progress report for project modeling Arctic barrier island-lagoon system response to projected Arctic warming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Erikson, Li H.; Gibbs, Ann E.; Richmond, Bruce M.; Storlazzi, Curt; B.M. Jones,</p> <p>2012-01-01</p> <p>Changes in Arctic coastal ecosystems in response to global warming may be some of the most severe on the planet. A better understanding and analysis of the rates at which these changes are expected to occur over the coming decades is crucial in order to delineate high-priority areas that are likely to be affected by climate changes. In this study we investigate the likelihood of changes to habitat-supporting barrier island – lagoon systems in response to projected changes in atmospheric and oceanographic forcing associated with Arctic warming. To better understand the relative importance of processes responsible for the current and future coastal landscape, key parameters related to increasing arctic temperatures are investigated and used to establish boundary conditions for models that simulate barrier island migration and inundation of deltaic deposits and low-lying tundra. The modeling effort investigates the dominance and relative importance of physical processes shaping the modern Arctic coastline as well as decadal responses due to projected conditions out to the year 2100.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175467','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175467"><span>Divergent projections of future land use in the United States arising from different models and scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sohl, Terry L.; Wimberly, Michael; Radeloff, Volker C.; Theobald, David M.; Sleeter, Benjamin M.</p> <p>2016-01-01</p> <p>A variety of land-use and land-cover (LULC) models operating at scales from local to global have been developed in recent years, including a number of models that provide spatially explicit, multi-class LULC projections for the conterminous United States. This diversity of modeling approaches raises the question: how consistent are their projections of future land use? We compared projections from six LULC modeling applications for the United States and assessed quantitative, spatial, and conceptual inconsistencies. Each set of projections provided multiple scenarios covering a period from roughly 2000 to 2050. Given the unique spatial, thematic, and temporal characteristics of each set of projections, individual projections were aggregated to a common set of basic, generalized LULC classes (i.e., cropland, pasture, forest, range, and urban) and summarized at the county level across the conterminous United States. We found very little agreement in projected future LULC trends and patterns among the different models. Variability among scenarios for a given model was generally lower than variability among different models, in terms of both trends in the amounts of basic LULC classes and their projected spatial patterns. Even when different models assessed the same purported scenario, model projections varied substantially. Projections of agricultural trends were often far above the maximum historical amounts, raising concerns about the realism of the projections. Comparisons among models were hindered by major discrepancies in categorical definitions, and suggest a need for standardization of historical LULC data sources. To capture a broader range of uncertainties, ensemble modeling approaches are also recommended. However, the vast inconsistencies among LULC models raise questions about the theoretical and conceptual underpinnings of current modeling approaches. Given the substantial effects that land-use change can have on ecological and societal processes, there is a need for improvement in LULC theory and modeling capabilities to improve acceptance and use of regional- to national-scale LULC projections for the United States and elsewhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9682L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9682L"><span>The Social Process of Analyzing Real Water Resource Systems Plans and Management Policies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loucks, Daniel</p> <p>2016-04-01</p> <p>Developing and applying systems analysis methods for improving the development and management of real world water resource systems, I have learned, is primarily a social process. This talk is a call for more recognition of this reality in the modeling approaches we propose in the papers and books we publish. The mathematical models designed to inform planners and managers of water systems that we see in many of our journals often seem more complex than they need be. They also often seem not as connected to reality as they could be. While it may be easier to publish descriptions of complex models than simpler ones, and while adding complexity to models might make them better able to mimic or resemble the actual complexity of the real physical and/or social systems or processes being analyzed, the usefulness of such models often can be an illusion. Sometimes the important features of reality that are of concern or interest to those who make decisions can be adequately captured using relatively simple models. Finding the right balance for the particular issues being addressed or the particular decisions that need to be made is an art. When applied to real world problems or issues in specific basins or regions, systems modeling projects often involve more attention to the social aspects than the mathematical ones. Mathematical models addressing connected interacting interdependent components of complex water systems are in fact some of the most useful methods we have to study and better understand the systems we manage around us. They can help us identify and evaluate possible alternative solutions to problems facing humanity today. The study of real world systems of interacting components using mathematical models is commonly called applied systems analyses. Performing such analyses with decision makers rather than of decision makers is critical if the needed trust between project personnel and their clients is to be developed. Using examples from recent and ongoing modeling projects in different parts of the world, this talk will attempt to show the dependency on the degree of project success with the degree of attention given to the communication between project personnel, the stakeholders and decision making institutions. It will also highlight how initial project terms-of-reference and expected outcomes can change, sometimes in surprising ways, during the course of such projects. Changing project objectives often result from changing stakeholder values, emphasizing the need for analyses that can adapt to this uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10322E..2HM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10322E..2HM"><span>The performance evaluation model of mining project founded on the weight optimization entropy value method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mao, Chao; Chen, Shou</p> <p>2017-01-01</p> <p>According to the traditional entropy value method still have low evaluation accuracy when evaluating the performance of mining projects, a performance evaluation model of mineral project founded on improved entropy is proposed. First establish a new weight assignment model founded on compatible matrix analysis of analytic hierarchy process (AHP) and entropy value method, when the compatibility matrix analysis to achieve consistency requirements, if it has differences between subjective weights and objective weights, moderately adjust both proportions, then on this basis, the fuzzy evaluation matrix for performance evaluation. The simulation experiments show that, compared with traditional entropy and compatible matrix analysis method, the proposed performance evaluation model of mining project based on improved entropy value method has higher accuracy assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24523303','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24523303"><span>Implementation of quality management in early stages of research and development projects at a university.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fiehe, Sandra; Wagner, Georg; Schlanstein, Peter; Rosefort, Christiane; Kopp, Rüdger; Bensberg, Ralf; Knipp, Peter; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Arens, Jutta</p> <p>2014-04-01</p> <p>The ultimate objective of university research and development projects is usually to create knowledge, but also to successfully transfer results to industry for subsequent marketing. We hypothesized that the university technology transfer requires efficient measures to improve this important step. Besides good scientific practice, foresighted and industry-specific adapted documentation of research processes in terms of a quality management system might improve the technology transfer. In order to bridge the gap between research institute and cooperating industry, a model project has been accompanied by a project specific amount of quality management. However, such a system had to remain manageable and must not constrain the researchers' creativity. Moreover, topics and research team are strongly interdisciplinary, which entails difficulties regarding communication because of different perspectives and terminology. In parallel to the technical work of the model project, an adaptable quality management system with a quality manual, defined procedures, and forms and documents accompanying the research, development and validation was implemented. After process acquisition and analysis the appropriate amount of management for the model project was identified by a self-developed rating system considering project characteristics like size, innovation, stakeholders, interdisciplinarity, etc. Employees were trained according to their needs. The management was supported and the technical documentation was optimized. Finally, the quality management system has been transferred successfully to further projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970025574','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970025574"><span>Coupling Processes Between Atmospheric Chemistry and Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Li; Sze, N. D.</p> <p>1997-01-01</p> <p>This is the first semi-annual report for NAS5-97039 summarizing work performed for January 1997 through June 1997. Work in this project is related to NAS1-20666, also funded by NASA ACMAP. The work funded in this project also benefits from work at AER associated with the AER three-dimensional isentropic transport model funded by NASA AEAP and the AER two-dimensional climate-chemistry model (co-funded by Department of Energy). The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/16775','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/16775"><span>Utility accommodation and conflict tracker (UACT) : user manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2009-02-01</p> <p>Project 0-5475 performed a comprehensive analysis of utility conflict data/information flows between utility : accommodation stakeholders in the Texas Department of Transportation project development process, : developed data models to accommodate wo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850012854','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850012854"><span>Combustion research for gas turbine engines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mularz, E. J.; Claus, R. W.</p> <p>1985-01-01</p> <p>Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.3011C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.3011C"><span>Timeslice experiments for understanding regional climate projections: applications to the tropical hydrological cycle and European winter circulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chadwick, Robin; Douville, Hervé; Skinner, Christopher B.</p> <p>2017-11-01</p> <p>A set of atmosphere-only timeslice experiments are described, designed to examine the processes that cause regional climate change and inter-model uncertainty in coupled climate model responses to CO_2 forcing. The timeslice experiments are able to reproduce the pattern of regional climate change in the coupled models, and are applied here to two cases where inter-model uncertainty in future projections is large: the tropical hydrological cycle, and European winter circulation. In tropical forest regions, the plant physiological effect is the largest cause of hydrological cycle change in the two models that represent this process. This suggests that the CMIP5 ensemble mean may be underestimating the magnitude of water cycle change in these regions, due to the inclusion of models without the plant effect. SST pattern change is the dominant cause of precipitation and circulation change over the tropical oceans, and also appears to contribute to inter-model uncertainty in precipitation change over tropical land regions. Over Europe and the North Atlantic, uniform SST increases drive a poleward shift of the storm-track. However this does not consistently translate into an overall polewards storm-track shift, due to large circulation responses to SST pattern change, which varies across the models. Coupled model SST biases influence regional rainfall projections in regions such as the Maritime Continent, and so projections in these regions should be treated with caution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=autocad&id=EJ854213','ERIC'); return false;" href="https://eric.ed.gov/?q=autocad&id=EJ854213"><span>Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ding, Suining</p> <p>2008-01-01</p> <p>This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Human+AND+ethics+AND+research&pg=6&id=EJ889670','ERIC'); return false;" href="https://eric.ed.gov/?q=Human+AND+ethics+AND+research&pg=6&id=EJ889670"><span>Integrating the Complete Research Project into a Large Qualitative Methods Course</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Raddon, Mary-Beth; Nault, Caleb; Scott, Alexis</p> <p>2008-01-01</p> <p>Participatory exercises are standard practice in qualitative methods courses; less common are projects that engage students in the entire research process, from research design to write-up. Although the teaching literature provides several models of complete research projects, their feasibility, and appropriateness for large, compulsory,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/24644','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/24644"><span>Chapter 4 - The LANDFIRE Prototype Project reference database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John F. Caratti</p> <p>2006-01-01</p> <p>This chapter describes the data compilation process for the Landscape Fire and Resource Management Planning Tools Prototype Project (LANDFIRE Prototype Project) reference database (LFRDB) and explains the reference data applications for LANDFIRE Prototype maps and models. The reference database formed the foundation for all LANDFIRE tasks. All products generated by the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=management+AND+maintenance&pg=2&id=EJ864593','ERIC'); return false;" href="https://eric.ed.gov/?q=management+AND+maintenance&pg=2&id=EJ864593"><span>An Entrepreneurial Approach to Project-Based Courses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pilskalns, Orest</p> <p>2009-01-01</p> <p>A senior project course is often employed to expose students to industrial problems and teamwork. Students are expected to use industrial strength tools to deal with issues such as requirements, design, process models, collaboration, management, testing, maintenance and more. In addition, the senior project often plays a large role in satisfying…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=intranet+AND+implementation&pg=2&id=ED477971','ERIC'); return false;" href="https://eric.ed.gov/?q=intranet+AND+implementation&pg=2&id=ED477971"><span>Interagency Planning and Support Project. Final Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Salisbury, Christine</p> <p></p> <p>This final report describes the activities and outcomes of a federally funded project designed to develop, implement, and evaluate a systemically oriented process model for improving the coordination of education and human services for young children with identified disabilities and their families at the local level. The project developed and used…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6342A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6342A"><span>Uncertainties in hydrological extremes projections and its effects on decision-making processes in an Amazonian sub-basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andres Rodriguez, Daniel; Garofolo, Lucas; Lazaro Siqueira Junior, Jose</p> <p>2013-04-01</p> <p>Uncertainties in Climate Change projections are affected by irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process. Such uncertainties affect the impact studies, complicating the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. Through these kinds of analyses it is possible to identify critical issues, which must be deeper studied. For this study we used several future's projections from General Circulation Models to feed a Hydrological Model, applied to the Amazonian sub-basin of Ji-Paraná. Hydrological Model integrations are performed for present historical time (1970-1990) and for future period (2010-2100). Extreme values analyses are performed to each simulated time series and results are compared with extremes events in present time. A simple approach to identify potential vulnerabilities consists of evaluating the hydrologic system response to climate variability and extreme events observed in the past, comparing them with the conditions projected for the future. Thus it is possible to identify critical issues that need attention and more detailed studies. For the goal of this work, we used socio-economic data from Brazilian Institute of Geography and Statistics, the Operator of the National Electric System, the Brazilian National Water Agency and scientific and press published information. This information is used to characterize impacts associated to extremes hydrological events in the basin during the present historical time and to evaluate potential impacts in the future face to the different hydrological projections. Results show inter-model variability results in a broad dispersion on projected extreme's values. The impact of such dispersion is differentiated for different aspects of socio-economic and natural systems and must be carefully addressed in order to help in decision-making processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1025591-advanced-hydrogen-liquefaction-process','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1025591-advanced-hydrogen-liquefaction-process"><span>Advanced Hydrogen Liquefaction Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schwartz, Joseph; Kromer, Brian; Neu, Ben</p> <p>2011-09-28</p> <p>The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased themore » understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..549..534C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..549..534C"><span>Impacts of weighting climate models for hydro-meteorological climate change studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel</p> <p>2017-06-01</p> <p>Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020064916','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020064916"><span>Software Smarts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1998-01-01</p> <p>Under an SBIR (Small Business Innovative Research) contract with Johnson Space Center, Knowledge Based Systems Inc. (KBSI) developed an intelligent software environment for modeling and analyzing mission planning activities, simulating behavior, and, using a unique constraint propagation mechanism, updating plans with each change in mission planning activities. KBSI developed this technology into a commercial product, PROJECTLINK, a two-way bridge between PROSIm, KBSI's process modeling and simulation software and leading project management software like Microsoft Project and Primavera's SureTrak Project Manager.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/377','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/377"><span>Simulation of Plant Physiological Process Using Fuzzy Variables</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Daniel L. Schmoldt</p> <p>1991-01-01</p> <p>Qualitative modelling can help us understand and project effects of multiple stresses on trees. It is not practical to collect and correlate empirical data for all combinations of plant/environments and human/climate stresses, especially for mature trees in natural settings. Therefore, a mechanistic model was developed to describe ecophysiological processes. This model...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23920879','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23920879"><span>ICT and mobile health to improve clinical process delivery. a research project for therapy management process innovation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Locatelli, Paolo; Montefusco, Vittorio; Sini, Elena; Restifo, Nicola; Facchini, Roberta; Torresani, Michele</p> <p>2013-01-01</p> <p>The volume and the complexity of clinical and administrative information make Information and Communication Technologies (ICTs) essential for running and innovating healthcare. This paper tells about a project aimed to design, develop and implement a set of organizational models, acknowledged procedures and ICT tools (Mobile & Wireless solutions and Automatic Identification and Data Capture technologies) to improve actual support, safety, reliability and traceability of a specific therapy management (stem cells). The value of the project is to design a solution based on mobile and identification technology in tight collaboration with physicians and actors involved in the process to ensure usability and effectivenes in process management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23129709','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23129709"><span>Changing currents: a strategy for understanding and predicting the changing ocean circulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bryden, Harry L; Robinson, Carol; Griffiths, Gwyn</p> <p>2012-12-13</p> <p>Within the context of UK marine science, we project a strategy for ocean circulation research over the next 20 years. We recommend a focus on three types of research: (i) sustained observations of the varying and evolving ocean circulation, (ii) careful analysis and interpretation of the observed climate changes for comparison with climate model projections, and (iii) the design and execution of focused field experiments to understand ocean processes that are not resolved in coupled climate models so as to be able to embed these processes realistically in the models. Within UK-sustained observations, we emphasize smart, cost-effective design of the observational network to extract maximum information from limited field resources. We encourage the incorporation of new sensors and new energy sources within the operational environment of UK-sustained observational programmes to bridge the gap that normally separates laboratory prototype from operational instrument. For interpreting the climate-change records obtained through a variety of national and international sustained observational programmes, creative and dedicated UK scientists should lead efforts to extract the meaningful signals and patterns of climate change and to interpret them so as to project future changes. For the process studies, individual scientists will need to work together in team environments to combine observational and process modelling results into effective improvements in the coupled climate models that will lead to more accurate climate predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/16777','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/16777"><span>Utility accommodation and conflict tracker (UACT) installation and configuration manual.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2009-02-01</p> <p>Project 0-5475 performed a comprehensive analysis of utility conflict data/information flows between utility : accommodation stakeholders in the Texas Department of Transportation project development process, : developed data models to accommodate wo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29409960','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29409960"><span>The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Makropoulos, Antonios; Robinson, Emma C; Schuh, Andreas; Wright, Robert; Fitzgibbon, Sean; Bozek, Jelena; Counsell, Serena J; Steinweg, Johannes; Vecchiato, Katy; Passerat-Palmbach, Jonathan; Lenz, Gregor; Mortari, Filippo; Tenev, Tencho; Duff, Eugene P; Bastiani, Matteo; Cordero-Grande, Lucilio; Hughes, Emer; Tusor, Nora; Tournier, Jacques-Donald; Hutter, Jana; Price, Anthony N; Teixeira, Rui Pedro A G; Murgasova, Maria; Victor, Suresh; Kelly, Christopher; Rutherford, Mary A; Smith, Stephen M; Edwards, A David; Hajnal, Joseph V; Jenkinson, Mark; Rueckert, Daniel</p> <p>2018-06-01</p> <p>The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA194725','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA194725"><span>Design and Development of a User Interface for the Dynamic Model of Software Project Management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-03-01</p> <p>rectory of the user’s choice for future...the last choice selected. Let us assume for the sake of this tour that the user has selected all eight choices . ESTIMATED ACTUAL PROJECT SIZE DEFINITION...manipulation of varaibles in the * •. TJin~ca model "h ... ser Inter ace for the Dynamica model was designed b in iterative process of prototyping</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47453','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47453"><span>Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Eric J. Gustafson; Arjan M.G. De Bruijn; Robert E. Pangle; Jean-Marc Limousin; Nate G. McDowell; William T. Pockman; Brian R. Sturtevant; Jordan D. Muss; Mark E. Kubiske</p> <p>2015-01-01</p> <p>Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308654&keyword=temperature+AND+classes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308654&keyword=temperature+AND+classes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Analysis of the Emission Inventories and Model-Ready Emission Datasets of Europe and North America for Phase 2 of the AQMEII Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This paper highlights the development of the emission inventories and emission processing for Europe (EU) and North America (NA) in the second phase of the Air Quality Model Evaluation International Initiative (AQMEII) project. The main purpose of the second phase of the AQMEII...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=software+AND+defined&pg=3&id=EJ826626','ERIC'); return false;" href="https://eric.ed.gov/?q=software+AND+defined&pg=3&id=EJ826626"><span>Challenges in Mentoring Software Development Projects in the High School: Analysis According to Shulman's Teacher Knowledge Base Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Meerbaum-Salant, Orni; Hazzan, Orit</p> <p>2009-01-01</p> <p>This paper focuses on challenges in mentoring software development projects in the high school and analyzes difficulties encountered by Computer Science teachers in the mentoring process according to Shulman's Teacher Knowledge Base Model. The main difficulties that emerged from the data analysis belong to the following knowledge sources of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3303003A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3303003A"><span>Model and Algorithm for Substantiating Solutions for Organization of High-Rise Construction Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Anisimov, Vladimir; Anisimov, Evgeniy; Chernysh, Anatoliy</p> <p>2018-03-01</p> <p>In the paper the models and the algorithm for the optimal plan formation for the organization of the material and logistical processes of the high-rise construction project and their financial support are developed. The model is based on the representation of the optimization procedure in the form of a non-linear problem of discrete programming, which consists in minimizing the execution time of a set of interrelated works by a limited number of partially interchangeable performers while limiting the total cost of performing the work. The proposed model and algorithm are the basis for creating specific organization management methodologies for the high-rise construction project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035940','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035940"><span>Geochemical Modeling of Carbon Sequestration, MMV, and EOR in the Illinois Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Berger, P.M.; Roy, W.R.; Mehnert, E.</p> <p>2009-01-01</p> <p>The Illinois State Geologic Survey is conducting several ongoing CO2 sequestration projects that require geochemical models to gain an understanding of the processes occurring in the subsurface. The ISGS has collected brine and freshwater samples associated with an enhanced oil recovery project in the Loudon oil field. Geochemical modeling allows us to understand reactions with carbonate and silicate minerals in the reservoir, and the effects they have had on brine composition. For the Illinois Basin Decatur project, geochemical models should allow predictions of the reactions that will take place before CO2 injection begins. ?? 2009 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...47.2235G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...47.2235G"><span>Evaluating synoptic systems in the CMIP5 climate models over the Australian region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.</p> <p>2016-10-01</p> <p>Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.2274F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.2274F"><span>The TOPOMOD-ITN project: unravel the origin of Earth's topography from modelling deep-surface processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Faccenna, C.; Funiciello, F.</p> <p>2012-04-01</p> <p>EC-Marie Curie Initial Training Networks (ITN) projects aim to improve the career perspectives of young generations of researchers. Institutions from both academic and industry sectors form a collaborative network to recruit research fellows and provide them with opportunities to undertake research in the context of a joint research training program. In this frame, TOPOMOD - one of the training activities of EPOS, the new-born European Research Infrastructure for Geosciences - is a funded ITN project designed to investigate and model how surface processes interact with crustal tectonics and mantle convection to originate and develop topography of the continents over a wide range of spatial and temporal scales. The multi-disciplinary approach combines geophysics, geochemistry, tectonics and structural geology with advanced geodynamic numerical/analog modelling. TOPOMOD involves 8 European research teams internationally recognized for their excellence in complementary fields of Earth Sciences (Roma TRE, Utrecht, GFZ, ETH, Cambridge, Durham, Rennes, Barcelona), to which are associated 5 research institutions (CNR-Italy, Univ. Parma, Univ. Lausanne, Univ. Montpellier, Univ. Mainz) , 3 high-technology enterprises (Malvern Instruments, TNO, G.O. Logical Consulting) and 1 large multinational oil and gas company (ENI). This unique network places emphasis in experience-based training increasing the impact and international visibility of European research in modeling. Long-term collaboration and synergy are established among the overmentioned research teams through 15 cross-disciplinary research projects that combine case studies in well-chosen target areas from the Mediterranean, the Middle and Far East, west Africa, and South America, with new developments in structural geology, geomorphology, seismology, geochemistry, InSAR, laboratory and numerical modelling of geological processes from the deep mantle to the surface. These multidisciplinary projects altogether aim to answer a key question in earth Sciences: how do deep and surface processes interact to shape and control the topographic evolution of our planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10452E..6NH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10452E..6NH"><span>Study on process evaluation model of students' learning in practical course</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Jie; Liang, Pei; Shen, Wei-min; Ye, Youxiang</p> <p>2017-08-01</p> <p>In practical course teaching based on project object method, the traditional evaluation methods include class attendance, assignments and exams fails to give incentives to undergraduate students to learn innovatively and autonomously. In this paper, the element such as creative innovation, teamwork, document and reporting were put into process evaluation methods, and a process evaluation model was set up. Educational practice shows that the evaluation model makes process evaluation of students' learning more comprehensive, accurate, and fairly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16803933','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16803933"><span>The evolution of an evaluation: a case study using the tribal participatory research model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richmond, Lucinda S; Peterson, Donna J; Betts, Sherry C</p> <p>2008-10-01</p> <p>This article presents a case study of how the evaluation design for a dating violence prevention and/or youth development program for American Indian youth in Arizona evolved throughout the project. Particular attention is given to how the evaluation design was guided by the tribal participatory research model. A brief rationale for the project is presented along with literature on culturally competent evaluation and research with American Indians. A description of the project and the unique communities in which it was implemented is provided. The focus of the article is the process of how the evaluation plan changed and how various factors influenced this process (e.g., feedback from community stakeholders, conversations with funder, results of process evaluation, suggestions from literature, the authors' experience working in American Indian communities). The authors conclude with lessons learned for others to consider as they develop working relationships and evaluation plans in similar communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920003101','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920003101"><span>Sensory processing and world modeling for an active ranging device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hong, Tsai-Hong; Wu, Angela Y.</p> <p>1991-01-01</p> <p>In this project, we studied world modeling and sensory processing for laser range data. World Model data representation and operation were defined. Sensory processing algorithms for point processing and linear feature detection were designed and implemented. The interface between world modeling and sensory processing in the Servo and Primitive levels was investigated and implemented. In the primitive level, linear features detectors for edges were also implemented, analyzed and compared. The existing world model representations is surveyed. Also presented is the design and implementation of the Y-frame model, a hierarchical world model. The interfaces between the world model module and the sensory processing module are discussed as well as the linear feature detectors that were designed and implemented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=creator&pg=7&id=EJ1029495','ERIC'); return false;" href="https://eric.ed.gov/?q=creator&pg=7&id=EJ1029495"><span>Performers Creators and Audience: Co-Participants in an Interconnected Model of Performance and Creative Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Brooks, Pauline</p> <p>2014-01-01</p> <p>This article reflects upon the process of creating dance in an intermedial telematic dance setting with university students. Some contextualisation is made of five telematic dance projects (the "Phillypool Projects 2007-2012") that have taken place between two universities, one in the UK and one in the US. It will explore some of the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1421T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1421T"><span>A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tittensor, Derek P.; Eddy, Tyler D.; Lotze, Heike K.; Galbraith, Eric D.; Cheung, William; Barange, Manuel; Blanchard, Julia L.; Bopp, Laurent; Bryndum-Buchholz, Andrea; Büchner, Matthias; Bulman, Catherine; Carozza, David A.; Christensen, Villy; Coll, Marta; Dunne, John P.; Fernandes, Jose A.; Fulton, Elizabeth A.; Hobday, Alistair J.; Huber, Veronika; Jennings, Simon; Jones, Miranda; Lehodey, Patrick; Link, Jason S.; Mackinson, Steve; Maury, Olivier; Niiranen, Susa; Oliveros-Ramos, Ricardo; Roy, Tilla; Schewe, Jacob; Shin, Yunne-Jai; Silva, Tiago; Stock, Charles A.; Steenbeek, Jeroen; Underwood, Philip J.; Volkholz, Jan; Watson, James R.; Walker, Nicola D.</p> <p>2018-04-01</p> <p>Model intercomparison studies in the climate and Earth sciences communities have been crucial to building credibility and coherence for future projections. They have quantified variability among models, spurred model development, contrasted within- and among-model uncertainty, assessed model fits to historical data, and provided ensemble projections of future change under specified scenarios. Given the speed and magnitude of anthropogenic change in the marine environment and the consequent effects on food security, biodiversity, marine industries, and society, the time is ripe for similar comparisons among models of fisheries and marine ecosystems. Here, we describe the Fisheries and Marine Ecosystem Model Intercomparison Project protocol version 1.0 (Fish-MIP v1.0), part of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is a cross-sectoral network of climate impact modellers. Given the complexity of the marine ecosystem, this class of models has substantial heterogeneity of purpose, scope, theoretical underpinning, processes considered, parameterizations, resolution (grain size), and spatial extent. This heterogeneity reflects the lack of a unified understanding of the marine ecosystem and implies that the assemblage of all models is more likely to include a greater number of relevant processes than any single model. The current Fish-MIP protocol is designed to allow these heterogeneous models to be forced with common Earth System Model (ESM) Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs under prescribed scenarios for historic (from the 1950s) and future (to 2100) time periods; it will be adapted to CMIP phase 6 (CMIP6) in future iterations. It also describes a standardized set of outputs for each participating Fish-MIP model to produce. This enables the broad characterization of differences between and uncertainties within models and projections when assessing climate and fisheries impacts on marine ecosystems and the services they provide. The systematic generation, collation, and comparison of results from Fish-MIP will inform an understanding of the range of plausible changes in marine ecosystems and improve our capacity to define and convey the strengths and weaknesses of model-based advice on future states of marine ecosystems and fisheries. Ultimately, Fish-MIP represents a step towards bringing together the marine ecosystem modelling community to produce consistent ensemble medium- and long-term projections of marine ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B22A..05R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B22A..05R"><span>Improving the representation of photosynthesis in Earth system models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rogers, A.; Medlyn, B. E.; Dukes, J.; Bonan, G. B.; von Caemmerer, S.; Dietze, M.; Kattge, J.; Leakey, A. D.; Mercado, L. M.; Niinemets, U.; Prentice, I. C. C.; Serbin, S.; Sitch, S.; Way, D. A.; Zaehle, S.</p> <p>2015-12-01</p> <p>Continued use of fossil fuel drives an accelerating increase in atmospheric CO2 concentration ([CO2]) and is the principal cause of global climate change. Many of the observed and projected impacts of rising [CO2] portend increasing environmental and economic risk, yet the uncertainty surrounding the projection of our future climate by Earth System Models (ESMs) is unacceptably high. Improving confidence in our estimation of future [CO2] is essential if we seek to project global change with greater confidence. There are critical uncertainties over the long term response of terrestrial CO2 uptake to global change, more specifically, over the size of the terrestrial carbon sink and over its sensitivity to rising [CO2] and temperature. Reducing the uncertainty associated with model representation of the largest CO2 flux on the planet is therefore an essential part of improving confidence in projections of global change. Here we have examined model representation of photosynthesis in seven process models including several global models that underlie the representation of photosynthesis in the land surface model component of ESMs that were part of the recent Fifth Assessment Report from the IPCC. Our approach was to focus on how physiological responses are represented by these models, and to better understand how structural and parametric differences drive variation in model responses to light, CO2, nutrients, temperature, vapor pressure deficit and soil moisture. We challenged each model to produce leaf and canopy responses to these factors to help us identify areas in which current process knowledge and emerging data sets could be used to improve model skill, and also identify knowledge gaps in current understanding that directly impact model outputs. We hope this work will provide a roadmap for the scientific activity that is necessary to advance process representation, parameterization and scaling of photosynthesis in the next generation of Earth System Models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1255385-toward-more-realistic-projections-soil-carbon-dynamics-earth-system-models-soil-carbon-modeling','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1255385-toward-more-realistic-projections-soil-carbon-dynamics-earth-system-models-soil-carbon-modeling"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Luo, Yiqi; Ahlström, Anders; Allison, Steven D.</p> <p></p> <p>Soil carbon (C) is a critical component of Earth system models (ESMs) and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the 3rd to 5th assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. Firstly, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by 1st-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic SOC dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Secondly, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based datasets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Thirdly, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable datasets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/10134','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/10134"><span>The user's guide to STEMS (Stand and Tree Evaluation and Modeling System).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David M. Belcher</p> <p>1981-01-01</p> <p>Presents the structure of STEMS, a computer program for projecting growth of individual trees within the Lake States Region, and discusses its input, processing, major subsystems, and output. Includes an example projection.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED224608.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED224608.pdf"><span>Project Developmental Continuity Evaluation: Final Report. Volume II: The Process of Program Implementation in PDC.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wacker, Sally; And Others</p> <p></p> <p>The second of two volumes, this document continues the final evaluation report of Project Developmental Continuity (PDC), a Head Start demonstration project initiated in 1974 to develop program models which enhance children's social competence by fostering developmental continuity from preschool through the early elementary grades. In particular,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=volatility&pg=4&id=ED561614','ERIC'); return false;" href="https://eric.ed.gov/?q=volatility&pg=4&id=ED561614"><span>GEAR UP Aspirations Project Evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Trimble, Brad A.</p> <p>2013-01-01</p> <p>The purpose of this study was to conduct a formative evaluation of the first two years of the Gaining Early Awareness and Readiness for Undergraduate Programs (GEAR UP) Aspirations Project (Aspirations) using a Context, Input, Process, and Product (CIPP) model so as to gain an in-depth understanding of the project during the middle school…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EnMan..56..549D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EnMan..56..549D"><span>Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeVries, Paul; Aldrich, Robert</p> <p>2015-08-01</p> <p>A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m3/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25910870','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25910870"><span>Assessment Approach for Identifying Compatibility of Restoration Projects with Geomorphic and Flooding Processes in Gravel Bed Rivers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>DeVries, Paul; Aldrich, Robert</p> <p>2015-08-01</p> <p>A critical requirement for a successful river restoration project in a dynamic gravel bed river is that it be compatible with natural hydraulic and sediment transport processes operating at the reach scale. The potential for failure is greater at locations where the influence of natural processes is inconsistent with intended project function and performance. We present an approach using practical GIS, hydrologic, hydraulic, and sediment transport analyses to identify locations where specific restoration project types have the greatest likelihood of working as intended because their function and design are matched with flooding and morphologic processes. The key premise is to identify whether a specific river analysis segment (length ~1-10 bankfull widths) within a longer reach is geomorphically active or inactive in the context of vertical and lateral stabilities, and hydrologically active for floodplain connectivity. Analyses involve empirical channel geometry relations, aerial photographic time series, LiDAR data, HEC-RAS hydraulic modeling, and a time-integrated sediment transport budget to evaluate trapping efficiency within each segment. The analysis segments are defined by HEC-RAS model cross sections. The results have been used effectively to identify feasible projects in a variety of alluvial gravel bed river reaches with lengths between 11 and 80 km and 2-year flood magnitudes between ~350 and 1330 m(3)/s. Projects constructed based on the results have all performed as planned. In addition, the results provide key criteria for formulating erosion and flood management plans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1429337','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1429337"><span>Biogeochemical Responses and Feedbacks to Climate Change: Synthetic Meta-Analyses Relevant to Earth System Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>van Gestel, Natasja; Jan van Groenigen, Kees; Osenberg, Craig</p> <p></p> <p>This project examined the sensitivity of carbon in land ecosystems to environmental change, focusing on carbon contained in soil, and the role of carbon-nitrogen interactions in regulating ecosystem carbon storage. The project used a combination of empirical measurements, mathematical models, and statistics to partition effects of climate change on soil into processes enhancing soil carbon and processes through which it decomposes. By synthesizing results from experiments around the world, the work provided novel insight on ecological controls and responses across broad spatial and temporal scales. The project developed new approaches in meta-analysis using principles of element mass balance and largemore » datasets to derive metrics of ecosystem responses to environmental change. The project used meta-analysis to test how nutrients regulate responses of ecosystems to elevated CO2 and warming, in particular responses of nitrogen fixation, critical for regulating long-term C balance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA568102','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA568102"><span>Potential Natural Vegetation of the Mississippi Alluvial Valley: Boeuf-Tensas Basin, Arkansas, Field Atlas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-01</p> <p>under the auspices of federal and state research programs or in conjunction with Corps of Engineers project planning efforts. In the process , a...in the field effort and assembled and processed the original project GIS data. Malcolm Williamson (Center for Advanced Spatial Technologies...further improve drainage. ERDC/EL TR-12-28 5 3 Using the PNV map as a model for restoration The PNV mapping process was conceived as a way to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27893902','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27893902"><span>A Project Team Analysis Using Tuckman's Model of Small-Group Development.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Natvig, Deborah; Stark, Nancy L</p> <p>2016-12-01</p> <p>Concerns about equitable workloads for nursing faculty have been well documented, yet a standardized system for workload management does not exist. A project team was challenged to establish an academic workload management system when two dissimilar universities were consolidated. Tuckman's model of small-group development was used as the framework for the analysis of processes and effectiveness of a workload project team. Agendas, notes, and meeting minutes were used as the primary sources of information. Analysis revealed the challenges the team encountered. Utilization of a team charter was an effective tool in guiding the team to become a highly productive group. Lessons learned from the analysis are discussed. Guiding a diverse group into a highly productive team is complex. The use of Tuckman's model of small-group development provided a systematic mechanism to review and understand group processes and tasks. [J Nurs Educ. 2016;55(12):675-681.]. Copyright 2016, SLACK Incorporated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1177234','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1177234"><span>Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mattson, Earl; Smith, Robert; Fujita, Yoshiko</p> <p>2015-03-01</p> <p>The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoirmore » temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940019903','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940019903"><span>GEWEX Continental-scale International Project (GCIP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Try, Paul</p> <p>1993-01-01</p> <p>The Global Energy and Water Cycle Experiment (GEWEX) represents the World Climate Research Program activities on clouds, radiation, and land-surface processes. The goal of the program is to reproduce and predict, by means of suitable models, the variations of the global hydrological regime and its impact on atmospheric and oceanic dynamics. However, GEWEX is also concerned with variations in regional hydrological processes and water resources and their response to changes in the environment such as increasing greenhouse gases. In fact, GEWEX contains a major new international project called the GEWEX Continental-scale International Project (GCIP), which is designed to bridge the gap between the small scales represented by hydrological models and those scales that are practical for predicting the regional impacts of climate change. The development and use of coupled mesoscale-hydrological models for this purpose is a high priority in GCIP. The objectives of GCIP are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11147189','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11147189"><span>Methodologic support in habilitation and rehabilitation: communicative action between practice and science.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Iwarsson, S; Jernryd, E; Rutström, C; Boqvist, A</p> <p>2000-01-01</p> <p>This study evaluated the early phase of development of a model for quality improvement of habilitation and rehabilitation project processes. The focus of the methodologic support in habilitation and rehabilitation model was on cooperation between practice contexts and science. Habermas' theory about communicative action was a theoretical frame of reference. Three project coordinators and ten project leaders were interviewed. The results revealed different attitudes towards methodologic support activities, demonstrating the importance of acknowledging cognitive and social functions, the process of legitimization, different approaches of practice versus science, and problems regarding information and communication. The model was shown to be important in bridging the gap between practice and science. To support reflective and emancipatory cognitive learning, more efforts to foster communicative action are called for, and more attention must be paid to the importance different missions and organizational structures have for the development of the dialog between practitioners and researchers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997SPIE.2913..304H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997SPIE.2913..304H"><span>Advanced process control framework initiative</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, Tom; Nettles, Steve</p> <p>1997-01-01</p> <p>The semiconductor industry, one the world's most fiercely competitive industries, is driven by increasingly complex process technologies and global competition to improve cycle time, quality, and process flexibility. Due to the complexity of these problems, current process control techniques are generally nonautomated, time-consuming, reactive, nonadaptive, and focused on individual fabrication tools and processes. As the semiconductor industry moves into higher density processes, radical new approaches are required. To address the need for advanced factory-level process control in this environment, Honeywell, Advanced Micro Devices (AMD), and SEMATECH formed the Advanced Process Control Framework Initiative (APCFI) joint research project. The project defines and demonstrates an Advanced Process Control (APC) approach based on SEMATECH's Computer Integrated Manufacturing (CIM) Framework. Its scope includes the coordination of Manufacturing Execution Systems, process control tools, and wafer fabrication equipment to provide necessary process control capabilities. Moreover, it takes advantage of the CIM Framework to integrate and coordinate applications from other suppliers that provide services necessary for the overall system to function. This presentation discusses the key concept of model-based process control that differentiates the APC Framework. This major improvement over current methods enables new systematic process control by linking the knowledge of key process settings to desired product characteristics that reside in models created with commercial model development tools The unique framework-based approach facilitates integration of commercial tools and reuse of their data by tying them together in an object-based structure. The presentation also explores the perspective of each organization's involvement in the APCFI project. Each has complementary goals and expertise to contribute; Honeywell represents the supplier viewpoint, AMD represents the user with 'real customer requirements', and SEMATECH provides a consensus-building organization that widely disseminates technology to suppliers and users in the semiconductor industry that face similar equipment and factory control systems challenges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.B33B0489M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.B33B0489M"><span>Sensitivity Analysis Tailored to Constrain 21st Century Terrestrial Carbon-Uptake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muller, S. J.; Gerber, S.</p> <p>2013-12-01</p> <p>The long-term fate of terrestrial carbon (C) in response to climate change remains a dominant source of uncertainty in Earth-system model projections. Increasing atmospheric CO2 could be mitigated by long-term net uptake of C, through processes such as increased plant productivity due to "CO2-fertilization". Conversely, atmospheric conditions could be exacerbated by long-term net release of C, through processes such as increased decomposition due to higher temperatures. This balance is an important area of study, and a major source of uncertainty in long-term (>year 2050) projections of planetary response to climate change. We present results from an innovative application of sensitivity analysis to LM3V, a dynamic global vegetation model (DGVM), intended to identify observed/observable variables that are useful for constraining long-term projections of C-uptake. We analyzed the sensitivity of cumulative C-uptake by 2100, as modeled by LM3V in response to IPCC AR4 scenario climate data (1860-2100), to perturbations in over 50 model parameters. We concurrently analyzed the sensitivity of over 100 observable model variables, during the extant record period (1970-2010), to the same parameter changes. By correlating the sensitivities of observable variables with the sensitivity of long-term C-uptake we identified model calibration variables that would also constrain long-term C-uptake projections. LM3V employs a coupled carbon-nitrogen cycle to account for N-limitation, and we find that N-related variables have an important role to play in constraining long-term C-uptake. This work has implications for prioritizing field campaigns to collect global data that can help reduce uncertainties in the long-term land-atmosphere C-balance. Though results of this study are specific to LM3V, the processes that characterize this model are not completely divorced from other DGVMs (or reality), and our approach provides valuable insights into how data can be leveraged to be better constrain projections for the land carbon sink.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1062654','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1062654"><span>Southern Regional Center for Lightweight Innovative Design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Paul T.</p> <p></p> <p>The Southern Regional Center for Lightweight Innovative Design (SRCLID) has developed an experimentally validated cradle-to-grave modeling and simulation effort to optimize automotive components in order to decrease weight and cost, yet increase performance and safety in crash scenarios. In summary, the three major objectives of this project are accomplished: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantifymore » microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios. In this final report, we divided the content into two parts: the first part contains the development of building blocks for the project, including materials and process models, process-structure-property (PSP) relationship, and experimental validation capabilities; the second part presents the demonstration task for Mg front-end work associated with USAMP projects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28714956','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28714956"><span>The uncertainty of crop yield projections is reduced by improved temperature response functions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P; Kimball, Bruce A; Ottman, Michael J; Wall, Gerard W; White, Jeffrey W; Reynolds, Matthew P; Alderman, Phillip D; Aggarwal, Pramod K; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J; De Sanctis, Giacomo; Doltra, Jordi; Fereres, Elias; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A; Izaurralde, Roberto C; Jabloun, Mohamed; Jones, Curtis D; Kersebaum, Kurt C; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Naresh Kumar, Soora; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E; Palosuo, Taru; Priesack, Eckart; Eyshi Rezaei, Ehsan; Ripoche, Dominique; Ruane, Alex C; Semenov, Mikhail A; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold</p> <p>2017-07-17</p> <p>Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007221&hterms=climate+change+temperature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dclimate%2Bchange%2Btemperature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007221&hterms=climate+change+temperature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dclimate%2Bchange%2Btemperature"><span>The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170007221'); toggleEditAbsImage('author_20170007221_show'); toggleEditAbsImage('author_20170007221_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170007221_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170007221_hide"></p> <p>2017-01-01</p> <p>Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Music+AND+Cognition&pg=4&id=EJ1069737','ERIC'); return false;" href="https://eric.ed.gov/?q=Music+AND+Cognition&pg=4&id=EJ1069737"><span>Prisons and Primary Schools: Using CHAT to Analyse the Relationship between Developing Identity, Developing Musicianship and Transformative Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Henley, Jennie</p> <p>2015-01-01</p> <p>This paper draws on three different research projects to demonstrate the use of an expanded model of Cultural Historical Activity Theory (CHAT), developed as part of a doctoral research study. The first project is an evaluation of the impacts of a Music Partnership Project within Primary and Secondary schools. The second project is an evaluation…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3303029D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3303029D"><span>Working capital management in the process of financial support of investment and construction projects and of the construction material industry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danilochkina, Nadezhda; Lukmanova, Inessa; Roshchina, Olga; Voytolovskiy, Nikolay</p> <p>2018-03-01</p> <p>The article presents the analysis of working capital in the process of financial support of high-rise construction investment projects. The factors influencing the choice of the working capital management model were analyzed, the reasons of the change in the requirement for the values of current assets in the process of construction of high-rise facilities were determined. The author has developed the scheme of interrelation between production, operational and financial activity cycles of enterprises implementing investment projects of unique buildings and structures and made a comparative description of their financing sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960014813','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960014813"><span>Earth Sciences Data and Information System (ESDIS) program planning and evaluation methodology development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dickinson, William B.</p> <p>1995-01-01</p> <p>An Earth Sciences Data and Information System (ESDIS) Project Management Plan (PMP) is prepared. An ESDIS Project Systems Engineering Management Plan (SEMP) consistent with the developed PMP is also prepared. ESDIS and related EOS program requirements developments, management and analysis processes are evaluated. Opportunities to improve the effectiveness of these processes and program/project responsiveness to requirements are identified. Overall ESDIS cost estimation processes are evaluated, and recommendations to improve cost estimating and modeling techniques are developed. ESDIS schedules and scheduling tools are evaluated. Risk assessment, risk mitigation strategies and approaches, and use of risk information in management decision-making are addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ias+AND+4&pg=5&id=EJ167205','ERIC'); return false;" href="https://eric.ed.gov/?q=ias+AND+4&pg=5&id=EJ167205"><span>Improvement Guides for I.A. Curriculum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ritz, John M.; Wright, Lawrence S.</p> <p>1977-01-01</p> <p>Describes a project to revise "The Wisconsin Guide to Local Curriculum Improvement in Industrial Education, K-12", originally prepared in 1973. Four figures from the guide are included: (1) model of a field objective, (2) curriculum planning model, (3) instructional development process, and (4) process for developing objectives. (MF)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27932865','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27932865"><span>Statistical modeling methods to analyze the impacts of multiunit process variability on critical quality attributes of Chinese herbal medicine tablets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Yang, Chan; Cui, Xianglong; Shi, Xinyuan; Qiao, Yanjiang</p> <p>2016-01-01</p> <p>The quality of Chinese herbal medicine tablets suffers from batch-to-batch variability due to a lack of manufacturing process understanding. In this paper, the Panax notoginseng saponins (PNS) immediate release tablet was taken as the research subject. By defining the dissolution of five active pharmaceutical ingredients and the tablet tensile strength as critical quality attributes (CQAs), influences of both the manipulated process parameters introduced by an orthogonal experiment design and the intermediate granules' properties on the CQAs were fully investigated by different chemometric methods, such as the partial least squares, the orthogonal projection to latent structures, and the multiblock partial least squares (MBPLS). By analyzing the loadings plots and variable importance in the projection indexes, the granule particle sizes and the minimal punch tip separation distance in tableting were identified as critical process parameters. Additionally, the MBPLS model suggested that the lubrication time in the final blending was also important in predicting tablet quality attributes. From the calculated block importance in the projection indexes, the tableting unit was confirmed to be the critical process unit of the manufacturing line. The results demonstrated that the combinatorial use of different multivariate modeling methods could help in understanding the complex process relationships as a whole. The output of this study can then be used to define a control strategy to improve the quality of the PNS immediate release tablet.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CEAS....9..351F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CEAS....9..351F"><span>Implementing model-based system engineering for the whole lifecycle of a spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, P. M.; Lüdtke, D.; Lange, C.; Roshani, F.-C.; Dannemann, F.; Gerndt, A.</p> <p>2017-09-01</p> <p>Design information of a spacecraft is collected over all phases in the lifecycle of a project. A lot of this information is exchanged between different engineering tasks and business processes. In some lifecycle phases, model-based system engineering (MBSE) has introduced system models and databases that help to organize such information and to keep it consistent for everyone. Nevertheless, none of the existing databases approached the whole lifecycle yet. Virtual Satellite is the MBSE database developed at DLR. It has been used for quite some time in Phase A studies and is currently extended for implementing it in the whole lifecycle of spacecraft projects. Since it is unforeseeable which future use cases such a database needs to support in all these different projects, the underlying data model has to provide tailoring and extension mechanisms to its conceptual data model (CDM). This paper explains the mechanisms as they are implemented in Virtual Satellite, which enables extending the CDM along the project without corrupting already stored information. As an upcoming major use case, Virtual Satellite will be implemented as MBSE tool in the S2TEP project. This project provides a new satellite bus for internal research and several different payload missions in the future. This paper explains how Virtual Satellite will be used to manage configuration control problems associated with such a multi-mission platform. It discusses how the S2TEP project starts using the software for collecting the first design information from concurrent engineering studies, then making use of the extension mechanisms of the CDM to introduce further information artefacts such as functional electrical architecture, thus linking more and more processes into an integrated MBSE approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA616719','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA616719"><span>The Influence of Atmosphere-Ocean Interaction on MJO Development and Propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>evaluate modeling results and process studies. The field phase of this project is associated with DYNAMO , which is the US contribution to the...influence on ocean temperature 4. Extended run for DYNAMO with high vertical resolution NCOM RESULTS Summary of project results The work funded...model experiments of the November 2011 MJO – the strongest MJO episode observed during the DYNAMO . The previous conceptual model that was based on TOGA</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.8285E..2OY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.8285E..2OY"><span>Risk evaluation of highway engineering project based on the fuzzy-AHP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Qian; Wei, Yajun</p> <p>2011-10-01</p> <p>Engineering projects are social activities, which integrate with technology, economy, management and organization. There are uncertainties in each respect of engineering projects, and it needs to strengthen risk management urgently. Based on the analysis of the characteristics of highway engineering, and the study of the basic theory on risk evaluation, the paper built an index system of highway project risk evaluation. Besides based on fuzzy mathematics principle, analytical hierarchy process was used and as a result, the model of the comprehensive appraisal method of fuzzy and AHP was set up for the risk evaluation of express way concessionary project. The validity and the practicability of the risk evaluation of expressway concessionary project were verified after the model was applied to the practice of a project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27292581','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27292581"><span>Development and validation of a building design waste reduction model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Llatas, C; Osmani, M</p> <p>2016-10-01</p> <p>Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/962844','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/962844"><span>The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fix, N. J.</p> <p></p> <p>Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; themore » importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/50802','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/50802"><span>Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Erin S. Brooks; Mariana Dobre; William J. Elliot; Joan Q. Wu; Jan Boll</p> <p>2016-01-01</p> <p>Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1152255.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1152255.pdf"><span>An Analysis of Collaborative Problem-Solving Mechanisms in Sponsored Projects: Applying the 5-Day Sprint Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Raubenolt, Amy</p> <p>2016-01-01</p> <p>In May 2016, the office of Finance and Sponsored Projects at The Research Institute at Nationwide Children's Hospital conducted a 5-day design sprint session to re-evaluate and redesign a flawed final reporting process within the department. The department sprint was modeled after the design sprint sessions that occur routinely in software…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1375108','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1375108"><span>Smart-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Krishnan, Venkat K; Palmintier, Bryan S; Hodge, Brian S</p> <p></p> <p>The National Renewable Energy Laboratory (NREL) in collaboration with Massachusetts Institute of Technology (MIT), Universidad Pontificia Comillas (Comillas-IIT, Spain) and GE Grid Solutions, is working on an ARPA-E GRID DATA project, titled Smart-DS, to create: 1) High-quality, realistic, synthetic distribution network models, and 2) Advanced tools for automated scenario generation based on high-resolution weather data and generation growth projections. Through these advancements, the Smart-DS project is envisioned to accelerate the development, testing, and adoption of advanced algorithms, approaches, and technologies for sustainable and resilient electric power systems, especially in the realm of U.S. distribution systems. This talk will present themore » goals and overall approach of the Smart-DS project, including the process of creating the synthetic distribution datasets using reference network model (RNM) and the comprehensive validation process to ensure network realism, feasibility, and applicability to advanced use cases. The talk will provide demonstrations of early versions of synthetic models, along with the lessons learnt from expert engagements to enhance future iterations. Finally, the scenario generation framework, its development plans, and co-ordination with GRID DATA repository teams to house these datasets for public access will also be discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711484J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711484J"><span>A framework for process-based assessment of regional climate model experiments: applied to projections of southern African precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>James, Rachel; Washington, Richard; Jones, Richard</p> <p>2015-04-01</p> <p>There is a demand from adaptation planners for regional climate change projections, particularly the finer resolution data delivered by regional models. However, climate models are subject to important uncertainties, and their projections diverge substantially, particularly for precipitation. So how should decision makers know which futures to consider and which to disregard? Model evaluation is clearly a priority. The majority of studies seeking to assess the validity of projections are based on comparison of the models' twentieth century climatologies with observations or reanalysis. Whilst this work is very important, examination of the modelled mean state it is not sufficient to assess the credibility of modelled changes. Direct investigation of the mechanisms for change is also vital. In this study, a framework for process-based analysis of projections is presented, whereby circulation changes accompanying future responses are examined, and then compared to atmospheric dynamics during historical years in models and reanalyses. This framework has previously been applied to investigate a drying signal in West Africa, and will here be used to examine projected precipitation change in southern Africa. An ensemble of five global and regional model experiments will be employed, consisting of five perturbed versions of HadCM3 and five corresponding runs of HadRM3P (PRECIS), run over the CORDEX Africa domain. The global and regional model runs show contrasting future responses: there is a strong drying in the global models over southern Africa during the rainy season, but the regional models show drying over Madagascar and the south west Indian Ocean. Circulation changes associated with these projections will be presented as a first step towards understanding the mechanisms for change and the reasons for difference between the global and regional models. The interannual variability will also be examined and compared to reanalysis to explore how well the models represent the dipole between southern Africa and Madagascar in the twentieth century simulations. This analysis could shed light on the credibility of the projected changes, and the relative trustworthiness of the global and regional models. This research makes a valuable contribution to the understanding of mechanisms for change in southern Africa. It also has wider relevance for regional climate model studies, in highlighting the need to evaluate models on a case by case basis, and providing a framework for assessment which could be applied to other models and other regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011WRR....47.0G02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011WRR....47.0G02S"><span>Hydroclimatic projections for the Murray-Darling Basin based on an ensemble derived from Intergovernmental Panel on Climate Change AR4 climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Fubao; Roderick, Michael L.; Lim, Wee Ho; Farquhar, Graham D.</p> <p>2011-12-01</p> <p>We assess hydroclimatic projections for the Murray-Darling Basin (MDB) using an ensemble of 39 Intergovernmental Panel on Climate Change AR4 climate model runs based on the A1B emissions scenario. The raw model output for precipitation, P, was adjusted using a quantile-based bias correction approach. We found that the projected change, ΔP, between two 30 year periods (2070-2099 less 1970-1999) was little affected by bias correction. The range for ΔP among models was large (˜±150 mm yr-1) with all-model run and all-model ensemble averages (4.9 and -8.1 mm yr-1) near zero, against a background climatological P of ˜500 mm yr-1. We found that the time series of actually observed annual P over the MDB was indistinguishable from that generated by a purely random process. Importantly, nearly all the model runs showed similar behavior. We used these facts to develop a new approach to understanding variability in projections of ΔP. By plotting ΔP versus the variance of the time series, we could easily identify model runs with projections for ΔP that were beyond the bounds expected from purely random variations. For the MDB, we anticipate that a purely random process could lead to differences of ±57 mm yr-1 (95% confidence) between successive 30 year periods. This is equivalent to ±11% of the climatological P and translates into variations in runoff of around ±29%. This sets a baseline for gauging modeled and/or observed changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/49656','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/49656"><span>Comparison of a species distribution model and a process model from a hierarchical perspective to quantify effects of projected climate change on tree species</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jeffrey E. Schneiderman; Hong S. He; Frank R. Thompson; William D. Dijak; Jacob S. Fraser</p> <p>2015-01-01</p> <p>Tree species distribution and abundance are affected by forces operating across a hierarchy of ecological scales. Process and species distribution models have been developed emphasizing forces at different scales. Understanding model agreement across hierarchical scales provides perspective on prediction uncertainty and ultimately enables policy makers and managers to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1514034C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1514034C"><span>Aquapath-Soil: Supporting farmers with hydrologic models and EO data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chambel-Leitao, Pedro; Almeida, Carina; Jauch, Eduardo; Rosado, Hugo; Rocha, António; Leitão, José; Neves, Ramiro</p> <p>2013-04-01</p> <p>The AquaPath-Soil service (support to agricultural production) aims to provide support services for irrigation, based on the use of satellite images, hydrological models and meteorological data. Users can observe the project results through the website page (http://www.agro-evapo.eu) maps of Leaf Area Index (LAI), and animated maps of Actual Evapotranspiration (ETA) or receive SMS throughout the period with meteorological information and actual evapotranspiration. The service has been tested for a period of 3 years, and presently has about 80 pivot being covered by the service. The farmers evaluated positively the service and the service will continue in 2013. ETA maps are generated by MOHID LAND model and represent the evapotranspiration accumulated weekly throughout the growing period of maize between May and September, using LAI as input. Both this models (SWAT and MOHID LAND) calculate plant growth, actual evapotranspiration and soil moisture by explicitly calculating water balance of the system soil-plant-atmosphere. The information provided in the SMS is obtained through SWAT model running in forecast mode using meteorological data from the previous week and forecasts for the next week. The weather data is from the closest station of each field (precipitation, temperature, relative humidity, wind speed and solar radiation). The weather forecasts are obtained from the MM5 model (http://meteo.ist.utl.pt). Models and satellite images have been validated during this last three years using field measurements and farmers support. Main challenge of Aquapath-Soil service is the reduction of operational costs, mainly related with satellite acquisition and processing. The recently approved SenSyF FP7 project will implement a framework to obtain this aim. The SenSyF project proposes a complete system for fully automated data acquisition and processing. The SenSyF project provides a specialized Sandbox Service with tools and development/validation platforms where developers are able to implement and test their applications, and then tap into a distributed pool of cloud resources when ready for the exploitation phase. This project will allow for the development and testing of new processing chains and methods for Sentinel and GMES contributing mission data on a continuous basis, and the delivery of higher-level products and services complementing the information provided by the (pre-)operational services. This system will be based on a dynamic parallel processing infrastructure, where the capabilities of grid computing applied to Sentinel data processing can be exploited and demonstrated. The sandbox model furnishes a test environment very similar to the space agencies operational environments, where the applications are ran against large EO series of datasets, and where the "time- to-market" understood as the applications maturity and readiness for production can be streamlined. The distributed processing services are bridging the exploitation gap by offering access to EO data and processing power, and bringing the processors and applications closer to the data. By using the same model behind the European Space Agency (ESA) Grid Processing on-Demand environment, the SenSyF project will enable the collaborative sharing of data and processing power from commercial or/and private clouds. The SenSyF project will provide an infrastructure where SME and scientists can develop and deploy Earth Science application with a lower overall cost of data and infrastructure setup and maintenance. On top of the Synergy Framework being proposed, a selected set of demonstrative services were selected, which will 1) demonstrate the system's potential, 2) provide valuable development feedback for the framework improvement, and 3) prove the overall concept by addressing specific services needs within the European and global setting. Aquapath-Soil is one of the services to be included in SenSyF Framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..106a2008B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..106a2008B"><span>Methods for cost estimation in software project management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Briciu, C. V.; Filip, I.; Indries, I. I.</p> <p>2016-02-01</p> <p>The speed in which the processes used in software development field have changed makes it very difficult the task of forecasting the overall costs for a software project. By many researchers, this task has been considered unachievable, but there is a group of scientist for which this task can be solved using the already known mathematical methods (e.g. multiple linear regressions) and the new techniques as genetic programming and neural networks. The paper presents a solution for building a model for the cost estimation models in the software project management using genetic algorithms starting from the PROMISE datasets related COCOMO 81 model. In the first part of the paper, a summary of the major achievements in the research area of finding a model for estimating the overall project costs is presented together with the description of the existing software development process models. In the last part, a basic proposal of a mathematical model of a genetic programming is proposed including here the description of the chosen fitness function and chromosome representation. The perspective of model described it linked with the current reality of the software development considering as basis the software product life cycle and the current challenges and innovations in the software development area. Based on the author's experiences and the analysis of the existing models and product lifecycle it was concluded that estimation models should be adapted with the new technologies and emerging systems and they depend largely by the chosen software development method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160007388','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160007388"><span>Improving Climate Projections Using "Intelligent" Ensembles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baker, Noel C.; Taylor, Patrick C.</p> <p>2015-01-01</p> <p>Recent changes in the climate system have led to growing concern, especially in communities which are highly vulnerable to resource shortages and weather extremes. There is an urgent need for better climate information to develop solutions and strategies for adapting to a changing climate. Climate models provide excellent tools for studying the current state of climate and making future projections. However, these models are subject to biases created by structural uncertainties. Performance metrics-or the systematic determination of model biases-succinctly quantify aspects of climate model behavior. Efforts to standardize climate model experiments and collect simulation data-such as the Coupled Model Intercomparison Project (CMIP)-provide the means to directly compare and assess model performance. Performance metrics have been used to show that some models reproduce present-day climate better than others. Simulation data from multiple models are often used to add value to projections by creating a consensus projection from the model ensemble, in which each model is given an equal weight. It has been shown that the ensemble mean generally outperforms any single model. It is possible to use unequal weights to produce ensemble means, in which models are weighted based on performance (called "intelligent" ensembles). Can performance metrics be used to improve climate projections? Previous work introduced a framework for comparing the utility of model performance metrics, showing that the best metrics are related to the variance of top-of-atmosphere outgoing longwave radiation. These metrics improve present-day climate simulations of Earth's energy budget using the "intelligent" ensemble method. The current project identifies several approaches for testing whether performance metrics can be applied to future simulations to create "intelligent" ensemble-mean climate projections. It is shown that certain performance metrics test key climate processes in the models, and that these metrics can be used to evaluate model quality in both current and future climate states. This information will be used to produce new consensus projections and provide communities with improved climate projections for urgent decision-making.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1347212','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1347212"><span>Electrondriven processes in polyatomic molecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McKoy, Vincent</p> <p>2017-03-20</p> <p>This project developed and applied scalable computational methods to obtain information about low-energy electron collisions with larger polyatomic molecules. Such collisions are important in modeling radiation damage to living systems, in spark ignition and combustion, and in plasma processing of materials. The focus of the project was to develop efficient methods that could be used to obtain both fundamental scientific insights and data of practical value to applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA588124','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA588124"><span>Advanced Metalworking Solutions for Naval Systems That Go In Harm’s Way</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-01-01</p> <p>quarter century of projects, including early research and development of technologies such as semi-solid metalworking; powder metallurgy; and process...modeling and simulation. More recent projects have focused on friction stir welding, hybrid laser -arc welded metallic sandwich panels, and improved...Metalworking Center has optimized a wide variety of manufacturing technologies throughout its 25-year history, including powder metallurgy processing, semi</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AIPC.1181..731L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AIPC.1181..731L"><span>The Bologna Process Implementation and its Consequent Changes in the Teaching/Learning Model—the Industrial Management and Engineering Degree Case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luísa Soares, Ana; Costa, Elga; Ferreira, Luís Pinto</p> <p>2009-11-01</p> <p>The present paper aims to present a Project included in a diversified programme and consequent implementation of a new Teaching/Learning model adapted to the Industrial Management and Engineering Degree (IMED) of the Management and Industrial Studies School (O'Porto Polytechnic Institute). Owning particular and specific characteristics, this model is based on the graduates' professional profile as well as on the work market dynamics, placing the student in the centre of the Learning Process, in opposition to the `teacher centred' method (as conceived by the Bologna Treat). Diverse in the approach, the model includes differentiating factors when compared to the project based traditional model. Through the development and conception of practical Interdisciplinary Projects, centring knowledges and techniques from the different Industrial Management and Engineering areas, we seek a new way of implementing the `Project Led Education' (PLE) bases, according to the Active Learning paradigm. This teaching/learning model aims to contribute to the Industrial Management and Engineering graduates' formation focused on a high level of performance and professional rectitude, to induce students' enthusiasm and motivation for acquiring scientific and technical knowledge, as well as to satisfy the diverse interest groups' expectations and promote the regional development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100028142','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100028142"><span>Re-Engineering Complex Legacy Systems at NASA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruszkowski, James; Meshkat, Leila</p> <p>2010-01-01</p> <p>The Flight Production Process (FPP) Re-engineering project has established a Model-Based Systems Engineering (MBSE) methodology and the technological infrastructure for the design and development of a reference, product-line architecture as well as an integrated workflow model for the Mission Operations System (MOS) for human space exploration missions at NASA Johnson Space Center. The design and architectural artifacts have been developed based on the expertise and knowledge of numerous Subject Matter Experts (SMEs). The technological infrastructure developed by the FPP Re-engineering project has enabled the structured collection and integration of this knowledge and further provides simulation and analysis capabilities for optimization purposes. A key strength of this strategy has been the judicious combination of COTS products with custom coding. The lean management approach that has led to the success of this project is based on having a strong vision for the whole lifecycle of the project and its progress over time, a goal-based design and development approach, a small team of highly specialized people in areas that are critical to the project, and an interactive approach for infusing new technologies into existing processes. This project, which has had a relatively small amount of funding, is on the cutting edge with respect to the utilization of model-based design and systems engineering. An overarching challenge that was overcome by this project was to convince upper management of the needs and merits of giving up more conventional design methodologies (such as paper-based documents and unwieldy and unstructured flow diagrams and schedules) in favor of advanced model-based systems engineering approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1230063','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1230063"><span>Collaborative Project. Understanding the effects of tides and eddies on the ocean dynamics, sea ice cover and decadal/centennial climate prediction using the Regional Arctic Climate Model (RACM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hutchings, Jennifer; Joseph, Renu</p> <p>2013-09-14</p> <p>The goal of this project is to develop an eddy resolving ocean model (POP) with tides coupled to a sea ice model (CICE) within the Regional Arctic System Model (RASM) to investigate the importance of ocean tides and mesoscale eddies in arctic climate simulations and quantify biases associated with these processes and how their relative contribution may improve decadal to centennial arctic climate predictions. Ocean, sea ice and coupled arctic climate response to these small scale processes will be evaluated with regard to their influence on mass, momentum and property exchange between oceans, shelf-basin, ice-ocean, and ocean-atmosphere. The project willmore » facilitate the future routine inclusion of polar tides and eddies in Earth System Models when computing power allows. As such, the proposed research addresses the science in support of the BER’s Climate and Environmental Sciences Division Long Term Measure as it will improve the ocean and sea ice model components as well as the fully coupled RASM and Community Earth System Model (CESM) and it will make them more accurate and computationally efficient.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5198S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5198S"><span>Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.</p> <p>2012-04-01</p> <p>Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems in modelling and possible solution strategies and finally, we address open questions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/654056','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/654056"><span>Application of the Ecosystem Diagnosis and Treatment Method to the Grande Ronde Model Watershed project : Final Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mobrand, Lars Erik; Lestelle, Lawrence C.</p> <p></p> <p>In the spring of 1994 a technical planning support project was initiated by the Grande Ronde Model Watershed Board of Directors (Board) with funding from the Bonneville Power Administration. The project was motivated by a need for a science based method for prioritizing restoration actions in the basin that would promote effectiveness and accountability. In this section the authors recall the premises for the project. The authors also present a set of recommendations for implementing a watershed planning process that incorporates a science-based framework to help guide decision making. This process is intended to assist the Grande Ronde Model Watershedmore » Board in its effort to plan and implement watershed improvement measures. The process would also assist the Board in coordinating its efforts with other entities in the region. The planning process is based on an approach for developing an ecosystem management strategy referred to as the Ecosystem Diagnosis and Treatment (EDT) method (Lichatowich et al. 1995, Lestelle et al. 1996). The process consists of an on-going planning cycle. Included in this cycle is an assessment of the ability of the watershed to support and sustain natural resources and other economic and societal values. This step in the process, which the authors refer to as the diagnosis, helps guide the development of actions (also referred to as treatments) aimed at improving the conditions of the watershed to achieve long-term objectives. The planning cycle calls for routinely reviewing and updating, as necessary, the basis for the diagnosis and other analyses used by the Board in adopting actions for implementation. The recommendations offered here address this critical need to habitually update the information used in setting priorities for action.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950007321&hterms=aviation+issues&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Daviation%2Bissues','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950007321&hterms=aviation+issues&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Daviation%2Bissues"><span>NASA atmospheric effects of aviation projects: Status and plans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wesoky, Howard L.; Thompson, Anne M.; Stolarski, Richard S.</p> <p>1994-01-01</p> <p>NASA's Atmospheric Effects of Aviation Project is developing a scientific basis for assessment of the atmospheric impact of subsonic and supersonic aviation. Issues addressed include predicted ozone changes and climatic impact, and related uncertainties. A primary goal is to assist assessments of United Nations scientific organizations and, hence, consideration of emission standards by the International Civil Aviation Organization. Project focus is on simulation of atmospheric processes by computer models, but studies of aircraft operations, laboratory studies, and remote and in situ observations of chemical, dynamic, and radiative processes are also included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22225128-risk-based-prioritization-facility-decommissioning-environmental-restoration-projects-national-nuclear-legacy-liabilities-program-chalk-river-laboratory','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22225128-risk-based-prioritization-facility-decommissioning-environmental-restoration-projects-national-nuclear-legacy-liabilities-program-chalk-river-laboratory"><span>Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos</p> <p>2013-07-01</p> <p>Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing ofmore » facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA275398','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA275398"><span>Process Engineering with the Evolutionary Spiral Process Model. Version 01.00.06</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-01-01</p> <p>program . Process Definition and SPC-92041-CMC Provides methods for defining and Modeling Guidebook documenting processes so they can be analyzed, modified...and Program Evaluation and Review Technique (PERT) support the activity of developing a project schedule. A variety of automated tools, such as...keep the organiza- tion from becoming disoriented during the improvement program (Curtis, Kellner, and Over 1992). Analyzing and documenting how</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PCE....30..347B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PCE....30..347B"><span>From local hydrological process analysis to regional hydrological model application in Benin: Concept, results and perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bormann, H.; Faß, T.; Giertz, S.; Junge, B.; Diekkrüger, B.; Reichert, B.; Skowronek, A.</p> <p></p> <p>This paper presents the concept, first results and perspectives of the hydrological sub-project of the IMPETUS-Benin project which is part of the GLOWA program funded by the German ministry of education and research. In addition to the research concept, first results on field hydrology, pedology, hydrogeology and hydrological modelling are presented, focusing on the understanding of the actual hydrological processes. For analysing the processes a 30 km 2 catchment acting as a super test site was chosen which is assumed to be representative for the entire catchment of about 15,000 km 2. First results of the field investigations show that infiltration, runoff generation and soil erosion strongly depend on land cover and land use which again influence the soil properties significantly. A conceptual hydrogeological model has been developed summarising the process knowledge on runoff generation and subsurface hydrological processes. This concept model shows a dominance of fast runoff components (surface runoff and interflow), a groundwater recharge along preferential flow paths, temporary interaction between surface and groundwater and separate groundwater systems on different scales (shallow, temporary groundwater on local scale and permanent, deep groundwater on regional scale). The findings of intensive measurement campaigns on soil hydrology, groundwater dynamics and soil erosion have been integrated into different, scale-dependent hydrological modelling concepts applied at different scales in the target region (upper Ouémé catchment in Benin, about 15,000 km 2). The models have been applied and successfully validated. They will be used for integrated scenario analyses in the forthcoming project phase to assess the impacts of global change on the regional water cycle and on typical problem complexes such as food security in West African countries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/926112','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/926112"><span>The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fix, N. J.</p> <p></p> <p>Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23919727','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23919727"><span>Tailoring a response to youth binge drinking in an Aboriginal Australian community: a grounded theory study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCalman, Janya; Tsey, Komla; Bainbridge, Roxanne; Shakeshaft, Anthony; Singleton, Michele; Doran, Christopher</p> <p>2013-08-07</p> <p>While Aboriginal Australian health providers prioritise identification of local community health needs and strategies, they do not always have the opportunity to access or interpret evidence-based literature to inform health improvement innovations. Research partnerships are therefore important when designing or modifying Aboriginal Australian health improvement initiatives and their evaluation. However, there are few models that outline the pragmatic steps by which research partners negotiate to develop, implement and evaluate community-based initiatives. The objective of this paper is to provide a theoretical model of the tailoring of health improvement initiatives by Aboriginal community-based service providers and partner university researchers. It draws from the case of the Beat da Binge community-initiated youth binge drinking harm reduction project in Yarrabah. A theoretical model was developed using the constructivist grounded theory methods of concurrent sampling, data collection and analysis. Data was obtained from the recordings of reflective Community-Based Participatory Research (CBPR) processes with Aboriginal community partners and young people, and university researchers. CBPR data was supplemented with interviews with theoretically sampled project participants. The transcripts of CBPR recordings and interviews were imported into NVIVO and coded to identify categories and theoretical constructs. The identified categories were then developed into higher order concepts and the relationships between concepts identified until the central purpose of those involved in the project and the core process that facilitated that purpose were identified. The tailored alcohol harm reduction project resulted in clarification of the underlying local determinants of binge drinking, and a shift in the project design from a social marketing awareness campaign (based on short-term events) to a more robust advocacy for youth mentoring into education, employment and training. The community-based process undertaken by the research partnership to tailor the design, implementation and evaluation of the project was theorised as a model incorporating four overlapping stages of negotiating knowledges and meanings to tailor a community response. The theoretical model can be applied in spaces where local Aboriginal and scientific knowledges meet to support the tailored design, implementation and evaluation of other health improvement projects, particularly those that originate from Aboriginal communities themselves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ795208.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ795208.pdf"><span>Authenticating Children's Literature: Raising Cultural Awareness with an Inquiry-Based Project in a Teacher Education Course</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Smith, Jane; Wiese, Patricia</p> <p>2006-01-01</p> <p>This article discusses the importance of authentic picture-storybook adaptations of multicultural folktales and describes an action research project through which a children's picture-book adaptation of a traditional tale can be authenticated using an inquiry-based process. In addition to modeling an actual authentication project using "The Golden…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=elder+AND+abuse&pg=7&id=ED366874','ERIC'); return false;" href="https://eric.ed.gov/?q=elder+AND+abuse&pg=7&id=ED366874"><span>The Elder Abuse Prevention Project, Phase Two, Three and Four. Final Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Regina Univ. (Saskatchewan). Univ. Extension. Seniors Education Centre.</p> <p></p> <p>This document presents the final report from an educational and community development program designed to raise awareness about the abuse and neglect of the elderly. The Elder Abuse Prevention Project is briefly described in terms of project goals, objectives, the model used, the target groups served, and the evaluation processes employed. It is…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3303074T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3303074T"><span>Project risk management in the construction of high-rise buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Titarenko, Boris; Hasnaoui, Amir; Titarenko, Roman; Buzuk, Liliya</p> <p>2018-03-01</p> <p>This paper shows the project risk management methods, which allow to better identify risks in the construction of high-rise buildings and to manage them throughout the life cycle of the project. One of the project risk management processes is a quantitative analysis of risks. The quantitative analysis usually includes the assessment of the potential impact of project risks and their probabilities. This paper shows the most popular methods of risk probability assessment and tries to indicate the advantages of the robust approach over the traditional methods. Within the framework of the project risk management model a robust approach of P. Huber is applied and expanded for the tasks of regression analysis of project data. The suggested algorithms used to assess the parameters in statistical models allow to obtain reliable estimates. A review of the theoretical problems of the development of robust models built on the methodology of the minimax estimates was done and the algorithm for the situation of asymmetric "contamination" was developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015482','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015482"><span>Integrating Efficiency of Industry Processes and Practices Alongside Technology Effectiveness in Space Transportation Cost Modeling and Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zapata, Edgar</p> <p>2012-01-01</p> <p>This paper presents past and current work in dealing with indirect industry and NASA costs when providing cost estimation or analysis for NASA projects and programs. Indirect costs, when defined as those costs in a project removed from the actual hardware or software hands-on labor; makes up most of the costs of today's complex large scale NASA space/industry projects. This appears to be the case across phases from research into development into production and into the operation of the system. Space transportation is the case of interest here. Modeling and cost estimation as a process rather than a product will be emphasized. Analysis as a series of belief systems in play among decision makers and decision factors will also be emphasized to provide context.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1079074.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1079074.pdf"><span>Videogame Construction by Engineering Students for Understanding Modelling Processes: The Case of Simulating Water Behaviour</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pretelín-Ricárdez, Angel; Sacristán, Ana Isabel</p> <p>2015-01-01</p> <p>We present some results of an ongoing research project where university engineering students were asked to construct videogames involving the use of physical systems models. The objective is to help them identify and understand the elements and concepts involved in the modelling process. That is, we use game design as a constructionist approach…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28621698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28621698"><span>From the past to the future: Integrating work experience into the design process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bittencourt, João Marcos; Duarte, Francisco; Béguin, Pascal</p> <p>2017-01-01</p> <p>Integrating work activity issues into design process is a broadly discussed theme in ergonomics. Participation is presented as the main means for such integration. However, a late participation can limit the development of both project solutions and future work activity. This article presents the concept of construction of experience aiming at the articulated development of future activities and project solutions. It is a non-teleological approach where the initial concepts will be transformed by the experience built up throughout the design process. The method applied was a case study of an ergonomic participation during the design of a new laboratory complex for biotechnology research. Data was obtained through analysis of records in a simulation process using a Lego scale model and interviews with project participants. The simulation process allowed for developing new ways of working and generating changes in the initial design solutions, which enable workers to adopt their own developed strategies for conducting work more safely and efficiently in the future work system. Each project decision either opens or closes a window of opportunities for developing a future activity. Construction of experience in a non-teleological design process allows for understanding the consequences of project solutions for future work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26958179','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26958179"><span>Using Workflow Modeling to Identify Areas to Improve Genetic Test Processes in the University of Maryland Translational Pharmacogenomics Project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cutting, Elizabeth M; Overby, Casey L; Banchero, Meghan; Pollin, Toni; Kelemen, Mark; Shuldiner, Alan R; Beitelshees, Amber L</p> <p></p> <p>Delivering genetic test results to clinicians is a complex process. It involves many actors and multiple steps, requiring all of these to work together in order to create an optimal course of treatment for the patient. We used information gained from focus groups in order to illustrate the current process of delivering genetic test results to clinicians. We propose a business process model and notation (BPMN) representation of this process for a Translational Pharmacogenomics Project being implemented at the University of Maryland Medical Center, so that personalized medicine program implementers can identify areas to improve genetic testing processes. We found that the current process could be improved to reduce input errors, better inform and notify clinicians about the implications of certain genetic tests, and make results more easily understood. We demonstrate our use of BPMN to improve this important clinical process for CYP2C19 genetic testing in patients undergoing invasive treatment of coronary heart disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4765659','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4765659"><span>Using Workflow Modeling to Identify Areas to Improve Genetic Test Processes in the University of Maryland Translational Pharmacogenomics Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cutting, Elizabeth M.; Overby, Casey L.; Banchero, Meghan; Pollin, Toni; Kelemen, Mark; Shuldiner, Alan R.; Beitelshees, Amber L.</p> <p>2015-01-01</p> <p>Delivering genetic test results to clinicians is a complex process. It involves many actors and multiple steps, requiring all of these to work together in order to create an optimal course of treatment for the patient. We used information gained from focus groups in order to illustrate the current process of delivering genetic test results to clinicians. We propose a business process model and notation (BPMN) representation of this process for a Translational Pharmacogenomics Project being implemented at the University of Maryland Medical Center, so that personalized medicine program implementers can identify areas to improve genetic testing processes. We found that the current process could be improved to reduce input errors, better inform and notify clinicians about the implications of certain genetic tests, and make results more easily understood. We demonstrate our use of BPMN to improve this important clinical process for CYP2C19 genetic testing in patients undergoing invasive treatment of coronary heart disease. PMID:26958179</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA410331','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA410331"><span>Signal Detection Theory-Based Information Processing for the Detection of Breast Cancer at Microwave Frequencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2002-08-01</p> <p>the measurement noise, as well as the physical model of the forward scattered electric field. The Bayesian algorithms for the Uncertain Permittivity...received at multiple sensors. In this research project a tissue- model -based signal-detection theory approach for the detection of mammary tumors in the...oriented information processors. In this research project a tissue- model - based signal detection theory approach for the detection of mammary tumors in the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......246B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......246B"><span>A game-based decision support methodology for competitive systems design</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Briceno, Simon Ignacio</p> <p></p> <p>This dissertation describes the development of a game-based methodology that facilitates the exploration and selection of research and development (R&D) projects under uncertain competitive scenarios. The proposed method provides an approach that analyzes competitor positioning and formulates response strategies to forecast the impact of technical design choices on a project's market performance. A critical decision in the conceptual design phase of propulsion systems is the selection of the best architecture, centerline, core size, and technology portfolio. This selection can be challenging when considering evolving requirements from both the airframe manufacturing company and the airlines in the market. Furthermore, the exceedingly high cost of core architecture development and its associated risk makes this strategic architecture decision the most important one for an engine company. Traditional conceptual design processes emphasize performance and affordability as their main objectives. These areas alone however, do not provide decision-makers with enough information as to how successful their engine will be in a competitive market. A key objective of this research is to examine how firm characteristics such as their relative differences in completing R&D projects, differences in the degree of substitutability between different project types, and first/second-mover advantages affect their product development strategies. Several quantitative methods are investigated that analyze business and engineering strategies concurrently. In particular, formulations based on the well-established mathematical field of game theory are introduced to obtain insights into the project selection problem. The use of game theory is explored in this research as a method to assist the selection process of R&D projects in the presence of imperfect market information. The proposed methodology focuses on two influential factors: the schedule uncertainty of project completion times and the uncertainty associated with competitive reactions. A normal-form matrix is created to enumerate players, their moves and payoffs, and to formulate a process by which an optimal decision can be achieved. The non-cooperative model is tested using the concept of a Nash equilibrium to identify potential strategies that are robust to uncertain market fluctuations (e.g: uncertainty in airline demand, airframe requirements and competitor positioning). A first/second-mover advantage parameter is used as a scenario dial to adjust market rewards and firms' payoffs. The methodology is applied to a commercial aircraft engine selection study where engine firms must select an optimal engine project for development. An engine modeling and simulation framework is developed to generate a broad engine project portfolio. The creation of a customer value model enables designers to incorporate airline operation characteristics into the engine modeling and simulation process to improve the accuracy of engine/customer matching. Summary. Several key findings are made that provide recommendations on project selection strategies for firms uncertain as to when they will enter the market. The proposed study demonstrates that within a technical design environment, a rational and analytical means of modeling project development strategies is beneficial in high market risk situations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1324396-openstudio-platform-ex-ante-incentive-programs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1324396-openstudio-platform-ex-ante-incentive-programs"><span>OpenStudio: A Platform for Ex Ante Incentive Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roth, Amir; Brackney, Larry; Parker, Andrew</p> <p></p> <p>Many utilities operate programs that provide ex ante (up front) incentives for building energy conservation measures (ECMs). A typical incentive program covers two kinds of ECMs. ECMs that deliver similar savings in different contexts are associated with pre-calculated 'deemed' savings values. ECMs that deliver different savings in different contexts are evaluated on a 'custom' per-project basis. Incentive programs often operate at less than peak efficiency because both deemed ECMs and custom projects have lengthy and effort-intensive review processes--deemed ECMs to gain confidence that they are sufficiently context insensitive, custom projects to ensure that savings are claimed appropriately. DOE's OpenStudio platformmore » can be used to automate ex ante processes and help utilities operate programs more efficiently, consistently, and transparently, resulting in greater project throughput and energy savings. A key concept of the platform is the OpenStudio Measure, a script that queries and transforms building energy models. Measures can be simple or surgical, e.g., applying different transformations based on space-type, orientation, etc. Measures represent ECMs explicitly and are easier to review than ECMs that are represented implicitly as the difference between a with-ECM and without-ECM models. Measures can be automatically applied to large numbers of prototype models--and instantiated from uncertainty distributions--facilitating the large scale analysis required to develop deemed savings values. For custom projects, Measures can also be used to calibrate existing building models, to automatically create code baseline models, and to perform quality assurance screening.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H32G..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H32G..02B"><span>Model Comparison in Subsurface Science: The DECOVALEX and Sim-SEQ Initiatives (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Birkholzer, J. T.; Mukhopadhyay, S.; Rutqvist, J.; Tsang, C.</p> <p>2013-12-01</p> <p>Building predictive model for flow and transport processes in the subsurface is a challenging task, even more so if these processes are coupled to geomechanical and/or geochemical effects. Modelers must take into consideration a multiplicity of length scales, a wide range of time scales, the coupling between processes, different model components, and the spatial variability in the value of most model input parameters (and often limited knowledge about them). Consequently, modelers have to make choices while developing their conceptual models. Such model choices may cause a wide range in the predictions made by different models and different modeling groups, even if each of the underlying simulators has been perfectly verified against appropriate benchmarks. In other words, the modeling activity itself is prone to uncertainty and bias. This uncertainty, referred to here as model selection uncertainty, forms one of the greatest sources of uncertainty for predictive modeling. In this paper, we discuss two examples of model intercomparison exercises that are currently undertaken to better understand model selection uncertainty, elucidate system behavior, inform needs for data collection and better physics parameterizations, and enhance community understanding of capabilities. The first example is the international DECOVALEX project, which was launched in 1992 by a group of countries dealing with modeling issues related to geologic disposal of radioactive waste. DECOVALEX is an acronym for DEvelopment of COupled THM models and their VALidation against Experiments. To date, the project has progressed successfully through five stages, each of which featuring a small number of test cases for model comparison related to coupled thermo-hydro-mechanical (THM) processes in geologic systems. The test cases are proposed and developed by the organizations participating in DECOVALEX; they typically involve results from major field and laboratory experiments. Over the past decades, the DECOVALEX project has played a major role in improving our understanding of coupled THM processes in fractured rock and buffer/backfill materials, a subject of importance to performance assessment of a radioactive waste geologic repository. The second example is the Sim-SEQ project, a relatively recent model comparison initiative addressing multi-phase processes relevant in geologic carbon sequestration. Like DECOVALEX, Sim-SEQ is not about benchmarking, but rather about evaluating model building efforts in a broad and comprehensive sense. In Sim-SEQ, sixteen international modeling teams are building their own models for a specific carbon sequestration site referred to as the Sim-SEQ Study site (the S-3 site). The S-3 site is patterned after the ongoing SECARB Phase III Early Test site in southwestern Mississippi, where CO2 is injected into a fluvial sandstone unit with high vertical and lateral heterogeneity. The complex geology of the S-3 site, its location in the water leg of a CO2-EOR field with a strong water drive, and the presence of methane in the reservoir brine make this a challenging task, requiring the modelers to use their best judgment in making a large number of choices about how to model various processes and properties of the system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC43C1076V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC43C1076V"><span>Multi-scale, multi-model assessment of projected land allocation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vernon, C. R.; Huang, M.; Chen, M.; Calvin, K. V.; Le Page, Y.; Kraucunas, I.</p> <p>2017-12-01</p> <p>Effects of land use and land cover change (LULCC) on climate are generally classified into two scale-dependent processes: biophysical and biogeochemical. An extensive amount of research has been conducted related to the impact of each process under alternative climate change futures. However, these studies are generally focused on the impacts of a single process and fail to bridge the gap between sector-driven scale dependencies and any associated dynamics. Studies have been conducted to better understand the relationship of these processes but their respective scale has not adequately captured overall interdependencies between land surface changes and changes in other human-earth systems (e.g., energy, water, economic, etc.). There has also been considerable uncertainty surrounding land use land cover downscaling approaches due to scale dependencies. Demeter, a land use land cover downscaling and change detection model, was created to address this science gap. Demeter is an open-source model written in Python that downscales zonal land allocation projections to the gridded resolution of a user-selected spatial base layer (e.g., MODIS, NLCD, EIA CCI, etc.). Demeter was designed to be fully extensible to allow for module inheritance and replacement for custom research needs, such as flexible IO design to facilitate the coupling of Earth system models (e.g., the Accelerated Climate Modeling for Energy (ACME) and the Community Earth System Model (CESM)) to integrated assessment models (e.g., the Global Change Assessment Model (GCAM)). In this study, we first assessed the sensitivity of downscaled LULCC scenarios at multiple resolutions from Demeter to its parameters by comparing them to historical LULC change data. "Optimal" values of key parameters for each region were identified and used to downscale GCAM-based future scenarios consistent with those in the Land Use Model Intercomparison Project (LUMIP). Demeter-downscaled land use scenarios were then compared to the default LUMIP scenarios to illustrate the uncertainties in projected LULC as a result of difference in downscaling algorithms. Our results show that such uncertainties could propagate to other components in ACME and CESM and lead to significant differences in simulated water and biogeochemical cycles.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=sift&pg=3&id=EJ929818','ERIC'); return false;" href="https://eric.ed.gov/?q=sift&pg=3&id=EJ929818"><span>Development of an Identification Procedure for a Large Urban School Corporation: "Identifying Culturally Diverse and Academically Gifted Elementary Students"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pierce, Rebecca L.; Adams, Cheryll M.; Neumeister, Kristie L. Speirs; Cassady, Jerrell C.; Dixon, Felicia A.; Cross, Tracy L.</p> <p>2006-01-01</p> <p>This paper describes the identification process of a Priority One Jacob K. Javits grant, Clustering Learners Unlocks Equity (Project CLUE), a university-school partnership. Project CLUE uses a "sift-down model" to cast the net widely as the talent pool of gifted second-grade students is formed. The model is based on standardized test scores, a…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED091192.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED091192.pdf"><span>Information Memory Processing and Retrieval: Relationships of Concrete Learning and Concrete and Abstract Cognitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Dean, Bonnie L.</p> <p></p> <p>Reported is a study related to the Project on an Information Memory Model and designed to encompass the claims of Piaget and Inhelder on differences of kinds of cognition and recall done on figural sorting task cognition at the Project on an Information Memory Model. The work of Piaget and Inhelder has defined learning information flow and related…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19618808','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19618808"><span>Using logic models in a community-based agricultural injury prevention project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Helitzer, Deborah; Willging, Cathleen; Hathorn, Gary; Benally, Jeannie</p> <p>2009-01-01</p> <p>The National Institute for Occupational Safety and Health has long promoted the logic model as a useful tool in an evaluator's portfolio. Because a logic model supports a systematic approach to designing interventions, it is equally useful for program planners. Undertaken with community stakeholders, a logic model process articulates the underlying foundations of a particular programmatic effort and enhances program design and evaluation. Most often presented as sequenced diagrams or flow charts, logic models demonstrate relationships among the following components: statement of a problem, various causal and mitigating factors related to that problem, available resources to address the problem, theoretical foundations of the selected intervention, intervention goals and planned activities, and anticipated short- and long-term outcomes. This article describes a case example of how a logic model process was used to help community stakeholders on the Navajo Nation conceive, design, implement, and evaluate agricultural injury prevention projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009pfsp.book..332L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009pfsp.book..332L"><span>A Decision Model for Supporting Task Allocation Processes in Global Software Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lamersdorf, Ansgar; Münch, Jürgen; Rombach, Dieter</p> <p></p> <p>Today, software-intensive systems are increasingly being developed in a globally distributed way. However, besides its benefit, global development also bears a set of risks and problems. One critical factor for successful project management of distributed software development is the allocation of tasks to sites, as this is assumed to have a major influence on the benefits and risks. We introduce a model that aims at improving management processes in globally distributed projects by giving decision support for task allocation that systematically regards multiple criteria. The criteria and causal relationships were identified in a literature study and refined in a qualitative interview study. The model uses existing approaches from distributed systems and statistical modeling. The article gives an overview of the problem and related work, introduces the empirical and theoretical foundations of the model, and shows the use of the model in an example scenario.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA43D..08J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA43D..08J"><span>Scientist-Practitioner Engagement to Inform Regional Hydroclimate Model Evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, A. D.; Jagannathan, K. A.; Ullrich, P. A.</p> <p>2017-12-01</p> <p>Water mangers face significant challenges in planning for the coming decades as previously stationary aspects of the regional hydroclimate shift in response to global climate change. Providing scientific insights that enable appropriate use of regional hydroclimate projections for planning is a non-trivial problem. The system of data, models, and methods used to produce regional hydroclimate projections is subject to multiple interacting uncertainties and biases, including uncertainties that arise from general circulation models, re-analysis data products, regional climate models, hydrologic models, and statistical downscaling methods. Moreover, many components of this system were not designed with the information needs of water managers in mind. To address this problem and provide actionable insights into the sources of uncertainty present in regional hydroclimate data products, Project Hyperion has undertaken a stakeholder engagement process in four case study water basins across the US. Teams of water managers and scientists are interacting in a structured manner to identify decision-relevant metrics of model performance. These metrics are in turn being used to drive scientific investigations to uncover the sources of uncertainty in these quantities. Thus far, we have found that identification of climate phenomena of interest to stakeholders is relatively easy, but translating these into specific quantifiable metrics and prioritizing metrics is more challenging. Iterative feedback among scientists and stakeholders has proven critical in resolving these challenges, as has the roles played by boundary spanners who understand and can speak to the perspectives of multiple professional communities. Here we describe the structured format of our engagement process and the lessons learned so far, as we aim to improve the decision-relevance of hydroclimate projections through a collaborative process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10176468','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10176468"><span>In situ treatment of VOCs by recirculation technologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Siegrist, R.L.; Webb, O.F.; Ally, M.R.</p> <p>1993-06-01</p> <p>The project described herein was conducted by Oak Ridge National Laboratory (ORNL) to identify processes and technologies developed in Germany that appeared to have near-term potential for enhancing the cleanup of volatile organic compound (VOC) contaminated soil and groundwater at DOE sites. Members of the ORNL research team identified and evaluated selected German technologies developed at or in association with the University of Karlsruhe (UoK) for in situ treatment of VOC contaminated soils and groundwater. Project activities included contacts with researchers within three departments of the UoK (i.e., Applied Geology, Hydromechanics, and Soil and Foundation Engineering) during fall 1991 andmore » subsequent visits to UoK and private industry collaborators during February 1992. Subsequent analyses consisted of engineering computations, groundwater flow modeling, and treatment process modeling. As a result of these project efforts, two processes were identified as having near-term potential for DOE: (1) the vacuum vaporizer well/groundwater recirculation well and (2) the porous pipe/horizontal well. This document was prepared to summarize the methods and results of the assessment activities completed during the initial year of the project. The project is still ongoing, so not all facets of the effort are completely described in this document. Recommendations for laboratory and field experiments are provided.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4529C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4529C"><span>Decomposing the uncertainty in climate impact projections of Dynamic Vegetation Models: a test with the forest models LANDCLIM and FORCLIM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cailleret, Maxime; Snell, Rebecca; von Waldow, Harald; Kotlarski, Sven; Bugmann, Harald</p> <p>2015-04-01</p> <p>Different levels of uncertainty should be considered in climate impact projections by Dynamic Vegetation Models (DVMs), particularly when it comes to managing climate risks. Such information is useful to detect the key processes and uncertainties in the climate model - impact model chain and may be used to support recommendations for future improvements in the simulation of both climate and biological systems. In addition, determining which uncertainty source is dominant is an important aspect to recognize the limitations of climate impact projections by a multi-model ensemble mean approach. However, to date, few studies have clarified how each uncertainty source (baseline climate data, greenhouse gas emission scenario, climate model, and DVM) affects the projection of ecosystem properties. Focusing on one greenhouse gas emission scenario, we assessed the uncertainty in the projections of a forest landscape model (LANDCLIM) and a stand-scale forest gap model (FORCLIM) that is caused by linking climate data with an impact model. LANDCLIM was used to assess the uncertainty in future landscape properties of the Visp valley in Switzerland that is due to (i) the use of different 'baseline' climate data (gridded data vs. data from weather stations), and (ii) differences in climate projections among 10 GCM-RCM chains. This latter point was also considered for the projections of future forest properties by FORCLIM at several sites along an environmental gradient in Switzerland (14 GCM-RCM chains), for which we also quantified the uncertainty caused by (iii) the model chain specific statistical properties of the climate time-series, and (iv) the stochasticity of the demographic processes included in the model, e.g., the annual number of saplings that establish, or tree mortality. Using methods of variance decomposition analysis, we found that (i) The use of different baseline climate data strongly impacts the prediction of forest properties at the lowest and highest, but not so much at medium elevations. (ii) Considering climate change, the variability that is due to the GCM-RCM chains is much greater than the variability induced by the uncertainty in the initial climatic conditions. (iii) The uncertainties caused by the intrinsic stochasticity in the DVMs and by the random generation of the climate time-series are negligible. Overall, our results indicate that DVMs are quite sensitive to the climate data, highlighting particularly (1) the limitations of using one single multi-model average climate change scenario in climate impact studies and (2) the need to better consider the uncertainty in climate model outputs for projecting future vegetation changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2363Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2363Y"><span>Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian</p> <p>2018-05-01</p> <p>An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4193C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4193C"><span>The Cloud2SM Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barosso, Guillermo; Simonin, Matthieu</p> <p>2015-04-01</p> <p>From the past decades the monitoring of civil engineering structure became a major field of research and development process in the domains of modelling and integrated instrumentation. This increasing of interest can be attributed in part to the need of controlling the aging of such structures and on the other hand to the need to optimize maintenance costs. From this standpoint the project Cloud2SM (Cloud architecture design for Structural Monitoring with in-line Sensors and Models tasking), has been launched to develop a robust information system able to assess the long term monitoring of civil engineering structures as well as interfacing various sensors and data. The specificity of such architecture is to be based on the notion of data processing through physical or statistical models. Thus the data processing, whether material or mathematical, can be seen here as a resource of the main architecture. The project can be divided in various items: -The sensors and their measurement process: Those items provide data to the main architecture and can embed storage or computational resources. Dependent of onboard capacity and the amount of data generated it can be distinguished heavy and light sensors. - The storage resources: Based on the cloud concept this resource can store at least two types of data, raw data and processed ones. - The computational resources: This item includes embedded "pseudo real time" resources as the dedicated computer cluster or computational resources. - The models: Used for the conversion of raw data to meaningful data. Those types of resources inform the system of their needs they can be seen as independents blocks of the system. - The user interface: This item can be divided in various HMI to assess maintaining operation on the sensors or pop-up some information to the user. - The demonstrators: The structures themselves. This project follows previous research works initiated in the European project ISTIMES [1]. It includes the infrared thermal monitoring of civil engineering structures [2-3] and/or the vibration monitoring of such structures [4-5]. The chosen architecture is based on the OGC standard in order to ensure the interoperability between the various measurement systems. This concept is extended to the notion of physical models. The last but not the least main objective of this project is to explore the feasibility and the reliability to deploy mathematical models and process a large amount of data using the GPGPU capacity of a dedicated computational cluster, while studying OGC standardization to those technical concepts. References [1] M. Proto et al., « Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing: the ISTIMES project », Journal Sensors, Sensors 2010, 10(12), 10620-10639; doi:10.3390/s101210620, December 2010. [2] J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, 17 pages ,November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [3] J Dumoulin and V Boucher; "Infrared thermography system for transport infrastructures survey with inline local atmospheric parameter measurements and offline model for radiation attenuation evaluations," J. Appl. Remote Sens., 8(1), 084978 (2014). doi:10.1117/1.JRS.8.084978. [4] V. Le Cam, M. Doehler, M. Le Pen, L. Mevel. "Embedded modal analysis algorithms on the smart wireless sensor platform PEGASE", In Proc. 9th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 2013. [5] M. Zghal, L. Mevel, P. Del Moral, "Modal parameter estimation using interacting Kalman filter", Mechanical Systems and Signal Processing, 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930022549','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930022549"><span>Development of a case tool to support decision based software development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wild, Christian J.</p> <p>1993-01-01</p> <p>A summary of the accomplishments of the research over the past year are presented. Achievements include: made demonstrations with DHC, a prototype supporting decision based software development (DBSD) methodology, for Paramax personnel at ODU; met with Paramax personnel to discuss DBSD issues, the process of integrating DBSD and Refinery and the porting process model; completed and submitted a paper describing DBSD paradigm to IFIP '92; completed and presented a paper describing the approach for software reuse at the Software Reuse Workshop in April 1993; continued to extend DHC with a project agenda, facility necessary for a better project management; completed a primary draft of the re-engineering process model for porting; created a logging form to trace all the activities involved in the process of solving the reengineering problem, and developed a primary chart with the problems involved by the reengineering process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040086542','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040086542"><span>Supporting the Future Air Traffic Control Projection Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Davison, Hayley J.; Hansman, R. John, Jr.</p> <p>2002-01-01</p> <p>In air traffic control, projecting what the air traffic situation will be over the next 30 seconds to 30 minutes is a key process in identifying conflicts that may arise so that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New York terminal radar approach control (TRACON) facilities and in the oceanic air traffic control facilities in New York and Reykjavik, Iceland were conducted to investigate the projection process in two different ATC domains. The results from the site visits suggest that two types of projection are currently used in ATC tasks, depending on the type of separation minima and/or traffic restriction and information display used by the controller. As technologies improve and procedures change, care should be taken by designers to support projection through displays, automation, and procedures. It is critical to prevent time/space mismatches between interfaces and restrictions. Existing structure in traffic dynamics could be utilized to provide controllers with useful behavioral models on which to build projections. Subtle structure that the controllers are unable to internalize could be incorporated into an ATC projection aid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B21F2010N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B21F2010N"><span>Modeling of larch forest dynamics under a changing climate in eastern Siberia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakai, T.; Kumagai, T.; Iijima, Y.; Ohta, T.; Kotani, A.; Maximov, T. C.; Hiyama, T.</p> <p>2017-12-01</p> <p>According to the projection by an earth system model under RCP8.5 scenario, boreal forest in eastern Siberia (near Yakutsk) is predicted to experience significant changes in climate, in which the mean annual air temperature is projected to be positive and the annual precipitation will be doubled by the end of 21st century. Since the forest in this region is underlain by continuous permafrost, both increasing temperature and precipitation can affect the dynamics of forest through the soil water processes. To investigate such effects, we adopted a newly developed terrestrial ecosystem dynamics model named S-TEDy (SEIB-DGVM-originated Terrestrial Ecosystem Dynamics model), which mechanistically simulates "the way of life" of each individual tree and resulting tree mortality under the future climate conditions. This model was first developed for the simulation of the dynamics of a tropical rainforest in the Borneo Island, and successfully reproduced higher mortality of large trees due to a prolonged drought induced by ENSO event of 1997-1998. To apply this model to a larch forest in eastern Siberia, we are developing a soil submodel to consider the effect of thawing-freezing processes. We will present a simulation results using the future climate projection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22154283','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22154283"><span>Multisite EPR oximetry from multiple quadrature harmonics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmad, R; Som, S; Johnson, D H; Zweier, J L; Kuppusamy, P; Potter, L C</p> <p>2012-01-01</p> <p>Multisite continuous wave (CW) electron paramagnetic resonance (EPR) oximetry using multiple quadrature field modulation harmonics is presented. First, a recently developed digital receiver is used to extract multiple harmonics of field modulated projection data. Second, a forward model is presented that relates the projection data to unknown parameters, including linewidth at each site. Third, a maximum likelihood estimator of unknown parameters is reported using an iterative algorithm capable of jointly processing multiple quadrature harmonics. The data modeling and processing are applicable for parametric lineshapes under nonsaturating conditions. Joint processing of multiple harmonics leads to 2-3-fold acceleration of EPR data acquisition. For demonstration in two spatial dimensions, both simulations and phantom studies on an L-band system are reported. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21444083','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21444083"><span>Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Anzehaee, Mohammad Mousavi; Haeri, Mohammad</p> <p>2011-07-01</p> <p>New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1216573','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1216573"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cort, K. A.; Hostick, D. J.; Belzer, D. B.</p> <p></p> <p>The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC23A1209H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC23A1209H"><span>Toward Evaluating the Predictability of Arctic-related Climate Variations: Initial Results from ArCS Project Theme 5</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasumi, H.</p> <p>2016-12-01</p> <p>We present initial results from the theme 5 of the project ArCS, which is a national flagship project for Arctic research in Japan. The goal of theme 5 is to evaluate the predictability of Arctic-related climate variations, wherein we aim to: (1) establish the scientific basis of climate predictability; and (2) develop a method for predicting/projecting medium- and long-term climate variations. Variability in the Arctic environment remotely influences middle and low latitudes. Since some of the processes specific to the Arctic environment function as a long memory of the state of the climate, understanding of the process of remote connections would lead to higher-precision and longer-term prediction of global climate variations. Conventional climate models have large uncertainty in the Arctic region. By making Arctic processes in climate models more sophisticated, we aim to clarify the role of multi-sphere interaction in the Arctic environment. In this regard, our newly developed high resolution ice-ocean model has revealed the relationship between the oceanic heat transport into the Arctic Ocean and the synoptic scale atmospheric variability. We also aim to reveal the mechanism of remote connections by conducting climate simulations and analyzing various types of climate datasets. Our atmospheric model experiments under possible future situations of Arctic sea ice cover indicate that reduction of sea ice qualitatively alters the basic mechanism of remote connection. Also, our analyses of climate data have identified the cause of recent more frequent heat waves at Eurasian mid-to-high latitudes and clarified the dynamical process which forms the West Pacific pattern, a dominant mode of the atmospheric anomalous circulation in the West Pacific region which also exhibits a significant signal in the Arctic stratosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22246924-predicting-site-environmental-impacts-municipal-engineering-works','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22246924-predicting-site-environmental-impacts-municipal-engineering-works"><span>Predicting on-site environmental impacts of municipal engineering works</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gangolells, Marta, E-mail: marta.gangolells@upc.edu; Casals, Miquel, E-mail: miquel.casals@upc.edu; Forcada, Núria, E-mail: nuria.forcada@upc.edu</p> <p>2014-01-15</p> <p>The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering projectmore » documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also help contractors to implement environmental management systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1164294','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1164294"><span>Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Deng, Yi</p> <p>2014-11-24</p> <p>DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observationsmore » and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include: 1) the distinctly different roles played by atmospheric dynamical processes in establishing surface temperature response to ENSO at tropics and extratropics (i.e., atmospheric dynamics disperses energy out of tropics during ENSO warm events and modulate surface temperature at mid-, high-latitudes through controlling downward longwave radiation); 2) the representations of ENSO-related temperature response in climate models fail to converge at the process-level particularly over extratropics (i.e., models produce the right temperature responses to ENSO but with wrong reasons); 3) water vapor feedback contributes substantially to the temperature anomalies found over U.S. during different phases of the Northern Annular Mode (NAM), which adds new insight to the traditional picture that cold/warm advective processes are the main drivers of local temperature responses to the NAM; 4) the overall land surface temperature biases in the latest NCAR model (CESM1) are caused by biases in surface albedo while the surface temperature biases over ocean are related to multiple factors including biases in model albedo, cloud and oceanic dynamics, and the temperature biases over different ocean basins are also induced by different process biases. These results provide a detailed guidance for process-level model turning and improvement, and thus contribute directly to the overall goal of reducing model uncertainty in projecting future changes in the Earth’s climate system, especially in the ENSO and AM variability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910016622','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910016622"><span>Development of a funding, cost, and spending model for satellite projects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Jesse P.</p> <p>1989-01-01</p> <p>The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900005670','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900005670"><span>Developing integrated parametric planning models for budgeting and managing complex projects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Etnyre, Vance A.; Black, Ken U.</p> <p>1988-01-01</p> <p>The applicability of integrated parametric models for the budgeting and management of complex projects is investigated. Methods for building a very flexible, interactive prototype for a project planning system, and software resources available for this purpose, are discussed and evaluated. The prototype is required to be sensitive to changing objectives, changing target dates, changing costs relationships, and changing budget constraints. To achieve the integration of costs and project and task durations, parametric cost functions are defined by a process of trapezoidal segmentation, where the total cost for the project is the sum of the various project cost segments, and each project cost segment is the integral of a linearly segmented cost loading function over a specific interval. The cost can thus be expressed algebraically. The prototype was designed using Lotus-123 as the primary software tool. This prototype implements a methodology for interactive project scheduling that provides a model of a system that meets most of the goals for the first phase of the study and some of the goals for the second phase.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/40461','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/40461"><span>WEPP Model applications for evaluations of best management practices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>D. C. Flanagan; W. J. Elliott; J. R. Frankenberger; C. Huang</p> <p>2010-01-01</p> <p>The Water Erosion Prediction Project (WEPP) model is a process-based erosion prediction technology for application to small watersheds and hillslope profiles, under agricultural, forested, rangeland, and other land management conditions. Developed by the United States Department of Agriculture (USDA) over the past 25 years, WEPP simulates many of the physical processes...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19592925','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19592925"><span>Capturing business requirements for the Swedish national information structure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kajbjer, Karin; Johansson, Catharina</p> <p>2009-01-01</p> <p>As a subproject for the National Information Structure project of the National Board of Health and Welfare, four different stakeholder groups were used to capture business requirements. These were: Subjects of care, Health professionals, Managers/Research and Industry. The process is described with formulating goal models, concept, process and information models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007136','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007136"><span>Model Transformation for a System of Systems Dependability Safety Case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murphy, Judy; Driskell, Steve</p> <p>2011-01-01</p> <p>The presentation reviews the dependability and safety effort of NASA's Independent Verification and Validation Facility. Topics include: safety engineering process, applications to non-space environment, Phase I overview, process creation, sample SRM artifact, Phase I end result, Phase II model transformation, fault management, and applying Phase II to individual projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21865030','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21865030"><span>Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tao, Ling; Aden, Andy; Elander, Richard T; Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Hames, Bonnie; Thomas, Steve; Warner, Ryan E</p> <p>2011-12-01</p> <p>Six biomass pretreatment processes to convert switchgrass to fermentable sugars and ultimately to cellulosic ethanol are compared on a consistent basis in this technoeconomic analysis. The six pretreatment processes are ammonia fiber expansion (AFEX), dilute acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam explosion (SO(2)). Each pretreatment process is modeled in the framework of an existing biochemical design model so that systematic variations of process-related changes are consistently captured. The pretreatment area process design and simulation are based on the research data generated within the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) 3 project. Overall ethanol production, total capital investment, and minimum ethanol selling price (MESP) are reported along with selected sensitivity analysis. The results show limited differentiation between the projected economic performances of the pretreatment options, except for processes that exhibit significantly lower monomer sugar and resulting ethanol yields. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22570106-we-ab-rapid-projection-computations-board-digital-tomosynthesis-radiation-therapy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22570106-we-ab-rapid-projection-computations-board-digital-tomosynthesis-radiation-therapy"><span>WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Iliopoulos, AS; Sun, X; Pitsianis, N</p> <p>2015-06-15</p> <p>Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digitalmore » projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub-kernels. Conclusion: Composable projection operators constitute a versatile research tool which can greatly accelerate iterative registration algorithms and may be conducive to the clinical applicability of LIVE. National Institutes of Health Grant No. R01-CA184173; GPU donation by NVIDIA Corporation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1279497','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1279497"><span>An Initial Evaluation of Siting Considerations on Current and Future Wind Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tegen, Suzanne; Lantz, Eric; Mai, Trieu</p> <p></p> <p>This report provides a deeper understanding of the wind project development process, from desktop studies to a successful project in the ground. It examines three siting consideration categories that wind project sponsors must include in the development process: wildlife (species that live in, near, or migrate through the area where wind development is possible), radar (wind turbines can cause interference with radar signals), and public engagement (representing communities and stakeholders who live near wind power projects). The research shows that although this country's abundant wind resource provides numerous options for addressing siting considerations, actually siting individual projects is becoming moremore » difficult because of regulatory and other uncertainties. Model results are based on the premise that developers will be able to site, permit, and build successful projects, which is not always the case in reality.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008190','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008190"><span>NASA Satellite Data for Seagrass Health Modeling and Monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spiering, Bruce A.; Underwood, Lauren; Ross, Kenton</p> <p>2011-01-01</p> <p>Time series derived information for coastal waters will be used to provide input data for the Fong and Harwell model. The current MODIS land mask limits where the model can be applied; this project will: a) Apply MODIS data with resolution higher than the standard products (250-m vs. 1-km). b) Seek to refine the land mask. c) Explore nearby areas to use as proxies for time series directly over the beds. Novel processing approaches will be leveraged from other NASA projects and customized as inputs for seagrass productivity modeling</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990054670&hterms=SOFTWARE+QUALITY+MODEL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DSOFTWARE%2BQUALITY%2BMODEL','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990054670&hterms=SOFTWARE+QUALITY+MODEL&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DSOFTWARE%2BQUALITY%2BMODEL"><span>Model Checking Verification and Validation at JPL and the NASA Fairmont IV and V Facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schneider, Frank; Easterbrook, Steve; Callahan, Jack; Montgomery, Todd</p> <p>1999-01-01</p> <p>We show how a technology transfer effort was carried out. The successful use of model checking on a pilot JPL flight project demonstrates the usefulness and the efficacy of the approach. The pilot project was used to model a complex spacecraft controller. Software design and implementation validation were carried out successfully. To suggest future applications we also show how the implementation validation step can be automated. The effort was followed by the formal introduction of the modeling technique as a part of the JPL Quality Assurance process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160001313&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160001313&hterms=climate+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dclimate%2Bchange"><span>Influences of Regional Climate Change on Air Quality Across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations. Chapter 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew</p> <p>2013-01-01</p> <p>Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1389565','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1389565"><span>Bench-Scale Development of a Non-Aqueous Solvent (NAS) CO2 Capture Process for Coal-Fired Power Plants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lail, Marty</p> <p></p> <p>The project aimed to advance RTI’s non-aqueous amine solvent technology by improving the solvent to reduce volatility, demonstrating long-term continuous operation at lab- (0.5 liters solvent) and bench-scale (~120 liters solvent), showing low reboiler heat duty measured during bench-scale testing, evaluating degradation products, building a rate-based process model, and evaluating the techno-economic performance of the process. The project team (RTI, SINTEF, Linde Engineering) and the technology performed well in each area of advancement. The modifications incorporated throughout the project enabled the attainment of target absorber and regenerator conditions for the process. Reboiler duties below 2,000 kJt/kg CO2 were observed inmore » a bench-scale test unit operated at RTI.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28081273','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28081273"><span>Assessing the Impact of Retreat Mechanisms in a Simple Antarctic Ice Sheet Model Using Bayesian Calibration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ruckert, Kelsey L; Shaffer, Gary; Pollard, David; Guan, Yawen; Wong, Tony E; Forest, Chris E; Keller, Klaus</p> <p>2017-01-01</p> <p>The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate change may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question of how this approximation impacts hindcasts and projections. Here, we calibrate a previously published and relatively simple AIS model, which neglects the effects of MICI and regional characteristics, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing our results to those from expert assessments with more realistic models and quantify the bias during the last interglacial when MICI may have been triggered. Our results suggest that the model can approximate the process of MISI and reproduce the projected median melt from some previous expert assessments in the year 2100. Yet, our mean hindcast is roughly 3/4 of the observed data during the last interglacial period and our mean projection is roughly 1/6 and 1/10 of the mean from a model accounting for MICI in the year 2100. These results suggest that missing MICI and/or regional characteristics can lead to a low-bias during warming period AIS melting and hence a potential low-bias in projected sea levels and flood risks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/494119','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/494119"><span>Process simulation for advanced composites production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Allendorf, M.D.; Ferko, S.M.; Griffiths, S.</p> <p>1997-04-01</p> <p>The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coatingmore » techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ1146947.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ1146947.pdf"><span>A Generalized Thurstonian Paired Comparison Multicriteria Heuristic Model for Peer Evaluation of Individual Performance on IS Team Projects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Scher, Julian M.</p> <p>2010-01-01</p> <p>Information Systems instructors are generally encouraged to introduce team projects into their pedagogy, with a consequential issue of objectively evaluating the performance of each individual team member. The concept of "freeloading" is well-known for team projects, and for this, and other reasons, a peer review process of team members,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8002357','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8002357"><span>Participatory health development in rural Nepal: clarifying the process of community empowerment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Purdey, A F; Adhikari, G B; Robinson, S A; Cox, P W</p> <p>1994-01-01</p> <p>Community-based participatory development empowers villagers to develop community cohesion and confidence, increase their ability to identify, analyze, and priorize their own needs, and organize the resources to meet these needs. An important first step in the process involves establishing a cohesive and functional community group. The authors believe that this is best accomplished through villagers' critical examination of their experiences with development including their understanding of reasons for success or failure, and the gradual emergence of a model of working together that acknowledges and builds on participation and collective expertise. This approach to development is demonstrating encouraging results in a rural area of western Nepal in a university affiliated Canadian/Nepali Health Development Project. This paper describes two mini-projects to illustrate the evolution of group formation through reflection, analysis, and action, and identifies outcomes that could serve as indicators of community empowerment. The paper also presents a generic model of empowerment, and offers lessons learned by the project through the application of the empowerment process to sustainable health development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005EJASP2005..252C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005EJASP2005..252C"><span>Managing Algorithmic Skeleton Nesting Requirements in Realistic Image Processing Applications: The Case of the SKiPPER-II Parallel Programming Environment's Operating Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coudarcher, Rémi; Duculty, Florent; Serot, Jocelyn; Jurie, Frédéric; Derutin, Jean-Pierre; Dhome, Michel</p> <p>2005-12-01</p> <p>SKiPPER is a SKeleton-based Parallel Programming EnviRonment being developed since 1996 and running at LASMEA Laboratory, the Blaise-Pascal University, France. The main goal of the project was to demonstrate the applicability of skeleton-based parallel programming techniques to the fast prototyping of reactive vision applications. This paper deals with the special features embedded in the latest version of the project: algorithmic skeleton nesting capabilities and a fully dynamic operating model. Throughout the case study of a complete and realistic image processing application, in which we have pointed out the requirement for skeleton nesting, we are presenting the operating model of this feature. The work described here is one of the few reported experiments showing the application of skeleton nesting facilities for the parallelisation of a realistic application, especially in the area of image processing. The image processing application we have chosen is a 3D face-tracking algorithm from appearance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5135065','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5135065"><span>Statistical modeling methods to analyze the impacts of multiunit process variability on critical quality attributes of Chinese herbal medicine tablets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Yang, Chan; Cui, Xianglong; Shi, Xinyuan; Qiao, Yanjiang</p> <p>2016-01-01</p> <p>The quality of Chinese herbal medicine tablets suffers from batch-to-batch variability due to a lack of manufacturing process understanding. In this paper, the Panax notoginseng saponins (PNS) immediate release tablet was taken as the research subject. By defining the dissolution of five active pharmaceutical ingredients and the tablet tensile strength as critical quality attributes (CQAs), influences of both the manipulated process parameters introduced by an orthogonal experiment design and the intermediate granules’ properties on the CQAs were fully investigated by different chemometric methods, such as the partial least squares, the orthogonal projection to latent structures, and the multiblock partial least squares (MBPLS). By analyzing the loadings plots and variable importance in the projection indexes, the granule particle sizes and the minimal punch tip separation distance in tableting were identified as critical process parameters. Additionally, the MBPLS model suggested that the lubrication time in the final blending was also important in predicting tablet quality attributes. From the calculated block importance in the projection indexes, the tableting unit was confirmed to be the critical process unit of the manufacturing line. The results demonstrated that the combinatorial use of different multivariate modeling methods could help in understanding the complex process relationships as a whole. The output of this study can then be used to define a control strategy to improve the quality of the PNS immediate release tablet. PMID:27932865</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ESASP.722E.178K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ESASP.722E.178K"><span>Monitoring Soil Infiltration In Semi-Arid Regions With Meteosat And A Coupled Model Approach Using PROMET And SLC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klug, P.; Bach, H.; Migdall, S.</p> <p>2013-12-01</p> <p>In arid regions the infiltration of sparse rainfalls and resulting ground water recharge is a critical quantity for the water cycle. With the PROMET model the infiltration process can be simulated in detail, since 4 soil layers together with the hourly calculation time step allow simulating the vertical water transport. Wet soils are darker than dry soils. Using the SLC reflectance model this effect can be simulated and compared to temporal high resolution time series of measured reflectances from Meteosat in order to monitor the drying process. This study demonstrates how MSG can be used to better parameterize the simulation of the infiltration process and reduce uncertainties in ground water recharge estimation. The study is carried out in the frame of the EU FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). According to climate projections, Mediterranean countries are at risk of changes in the hydrological budget, the agricultural productivity and drinking water supply in the future. The CLIMB FP-7 project coordinated by the University of Munich (LMU) aims at employing integrated hydrological modelling in a new framework to reduce existing uncertainties in climate change impact analysis of the Mediterranean region [1, 2].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25404913','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25404913"><span>OpenWorm: an open-science approach to modeling Caenorhabditis elegans.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Szigeti, Balázs; Gleeson, Padraig; Vella, Michael; Khayrulin, Sergey; Palyanov, Andrey; Hokanson, Jim; Currie, Michael; Cantarelli, Matteo; Idili, Giovanni; Larson, Stephen</p> <p>2014-01-01</p> <p>OpenWorm is an international collaboration with the aim of understanding how the behavior of Caenorhabditis elegans (C. elegans) emerges from its underlying physiological processes. The project has developed a modular simulation engine to create computational models of the worm. The modularity of the engine makes it possible to easily modify the model, incorporate new experimental data and test hypotheses. The modeling framework incorporates both biophysical neuronal simulations and a novel fluid-dynamics-based soft-tissue simulation for physical environment-body interactions. The project's open-science approach is aimed at overcoming the difficulties of integrative modeling within a traditional academic environment. In this article the rationale is presented for creating the OpenWorm collaboration, the tools and resources developed thus far are outlined and the unique challenges associated with the project are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750017191','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750017191"><span>Impact of remote sensing upon the planning, management, and development of water resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Castruccio, P. A.; Loats, H. L.; Fowler, T. R.; Frech, S. L.</p> <p>1975-01-01</p> <p>Principal water resources users were surveyed to determine the impact of remote data streams on hydrologic computer models. Analysis of responses demonstrated that: most water resources effort suitable to remote sensing inputs is conducted through federal agencies or through federally stimulated research; and, most hydrologic models suitable to remote sensing data are federally developed. Computer usage by major water resources users was analyzed to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000073847','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000073847"><span>Application of Rapid Prototyping to the Investment Casting of Test Hardware (MSFC Center Director's Discretionary Fund Final Report, Project No. 98-08)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cooper, K. G.; Wells, D.</p> <p>2000-01-01</p> <p>Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15899310','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15899310"><span>NONMEMory: a run management tool for NONMEM.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilkins, Justin J</p> <p>2005-06-01</p> <p>NONMEM is an extremely powerful tool for nonlinear mixed-effect modelling and simulation of pharmacokinetic and pharmacodynamic data. However, it is a console-based application whose output does not lend itself to rapid interpretation or efficient management. NONMEMory has been created to be a comprehensive project manager for NONMEM, providing detailed summary, comparison and overview of the runs comprising a given project, including the display of output data, simple post-run processing, fast diagnostic plots and run output management, complementary to other available modelling aids. Analysis time ought not to be spent on trivial tasks, and NONMEMory's role is to eliminate these as far as possible by increasing the efficiency of the modelling process. NONMEMory is freely available from http://www.uct.ac.za/depts/pha/nonmemory.php.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr62W5..687T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr62W5..687T"><span>High-Quality 3d Models and Their Use in a Cultural Heritage Conservation Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tucci, G.; Bonora, V.; Conti, A.; Fiorini, L.</p> <p>2017-08-01</p> <p>Cultural heritage digitization and 3D modelling processes are mainly based on laser scanning and digital photogrammetry techniques to produce complete, detailed and photorealistic three-dimensional surveys: geometric as well as chromatic aspects, in turn testimony of materials, work techniques, state of preservation, etc., are documented using digitization processes. The paper explores the topic of 3D documentation for conservation purposes; it analyses how geomatics contributes in different steps of a restoration process and it presents an overview of different uses of 3D models for the conservation and enhancement of the cultural heritage. The paper reports on the project to digitize the earthenware frieze of the Ospedale del Ceppo in Pistoia (Italy) for 3D documentation, restoration work support, and digital and physical reconstruction and integration purposes. The intent to design an exhibition area suggests new ways to take advantage of 3D data originally acquired for documentation and scientific purposes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020050549','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020050549"><span>Guidelines for Project Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ben-Arieh, David</p> <p>2001-01-01</p> <p>Project management is an important part of the professional activities at Kennedy Space Center (KSC). Project management is the means by which many of the operations at KSC take shape. Moreover, projects at KSC are implemented in a variety of ways in different organizations. The official guidelines for project management are provided by NASA headquarters and are quite general. The project reported herein deals with developing practical and detailed project management guidelines in support of the project managers. This report summarizes the current project management effort in the Process Management Division and presents a new modeling approach of project management developed by the author. The report also presents the Project Management Guidelines developed during the summer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMGC41A0753M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMGC41A0753M"><span>Determing Credibility of Regional Simulations of Future Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mearns, L. O.</p> <p>2009-12-01</p> <p>Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6291198','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6291198"><span>Solid waste projection model: Model version 1. 0 technical reference manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wilkins, M.L.; Crow, V.L.; Buska, D.E.</p> <p>1990-11-01</p> <p>The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software utilized in developing Version 1.0 of the modeling unit of SWPM. This document is intended for use by experienced software engineers and supports programming, code maintenance, and model enhancement. Those interested in using SWPM should refer to the SWPM Modelmore » User's Guide. This document is available from either the PNL project manager (D. L. Stiles, 509-376-4154) or the WHC program monitor (B. C. Anderson, 509-373-2796). 8 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920015896','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920015896"><span>Spiral model pilot project information model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009LNCS.5829..458I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009LNCS.5829..458I"><span>Business Process Modeling: Perceived Benefits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Indulska, Marta; Green, Peter; Recker, Jan; Rosemann, Michael</p> <p></p> <p>The process-centered design of organizations and information systems is globally seen as an appropriate response to the increased economic pressure on organizations. At the methodological core of process-centered management is process modeling. However, business process modeling in large initiatives can be a time-consuming and costly exercise, making it potentially difficult to convince executive management of its benefits. To date, and despite substantial interest and research in the area of process modeling, the understanding of the actual benefits of process modeling in academia and practice is limited. To address this gap, this paper explores the perception of benefits derived from process modeling initiatives, as reported through a global Delphi study. The study incorporates the views of three groups of stakeholders - academics, practitioners and vendors. Our findings lead to the first identification and ranking of 19 unique benefits associated with process modeling. The study in particular found that process modeling benefits vary significantly between practitioners and academics. We argue that the variations may point to a disconnect between research projects and practical demands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Teacher+AND+empowerment+AND+commitment+AND+research&pg=2&id=EJ899429','ERIC'); return false;" href="https://eric.ed.gov/?q=Teacher+AND+empowerment+AND+commitment+AND+research&pg=2&id=EJ899429"><span>The Reflective Dispositional Coaching Process: An Action Research Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Bell, Edwin D.; Grant, Kathy; Fisk-Moody, Patricia</p> <p>2007-01-01</p> <p>The authors implemented an action research project to help teacher education candidates to reflect upon, assess, and ultimately strengthen teacher candidate dispositions through the Reflective Dispositional Coaching Model. The teacher education faculty agreed that candidate dispositions should address four areas: (a) professionalism, (b)…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840008574','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840008574"><span>ECUT: Energy Conversion and Utilization Technologies program. Chemical Processes project report, FY 1982</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilcox, R. E. (Compiler)</p> <p>1983-01-01</p> <p>Planned research efforts and reorganization of the Project as the Biocatalysis Research Activity are described, including the following topics: electrocatalysts, fluid extraction, ammonia synthesis, biocatalysis, membrane fouling, energy and economic analysis, decarboxylation, microscopic reaction models, plasmid monitoring, and reaction kinetics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910010415','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910010415"><span>Empirical studies of software design: Implications for SSEs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krasner, Herb</p> <p>1988-01-01</p> <p>Implications for Software Engineering Environments (SEEs) are presented in viewgraph format for characteristics of projects studied; significant problems and crucial problem areas in software design for large systems; layered behavioral model of software processes; implications of field study results; software project as an ecological system; results of the LIFT study; information model of design exploration; software design strategies; results of the team design study; and a list of publications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1027788','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1027788"><span>Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Spentzouris, Panagiotis; /Fermilab; Cary, John</p> <p></p> <p>The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5710124-modeling-skeletal-members-using-polyurethane-foam','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5710124-modeling-skeletal-members-using-polyurethane-foam"><span>Modeling of skeletal members using polyurethane foam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sena, J.M.F.; Weaver, R.W.</p> <p>1983-11-01</p> <p>At the request of the University of New Mexico's Maxwell Museum of Anthropology, members of the Plastic Section in the Process Development Division at SNLA undertook the special project of the Chaco Lady. The project consisted of polyurethane foam casting of a disinterred female skull considered to be approximately 1000 years old. Rubber latex molds, supplied by the UNM Anthropology Department, were used to produce the polymeric skull requested. The authors developed for the project a modified foaming process which will be used in future polyurethane castings of archaeological artifacts and contemporary skeletal members at the University.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A51A0002J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A51A0002J"><span>Process-oriented Observational Metrics for CMIP6 Climate Model Assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, J. H.; Su, H.</p> <p>2016-12-01</p> <p>Observational metrics based on satellite observations have been developed and effectively applied during post-CMIP5 model evaluation and improvement projects. As new physics and parameterizations continue to be included in models for the upcoming CMIP6, it is important to continue objective comparisons between observations and model results. This talk will summarize the process-oriented observational metrics and methodologies for constraining climate models with A-Train satellite observations and support CMIP6 model assessments. We target parameters and processes related to atmospheric clouds and water vapor, which are critically important for Earth's radiative budget, climate feedbacks, and water and energy cycles, and thus reduce uncertainties in climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC31C1011H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC31C1011H"><span>Evaluating impacts of climate change on future water scarcity in an intensively managed semi-arid region using a coupled model of biophysical processes and water rights</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, B.; Flores, A. N.; Benner, S. G.</p> <p>2017-12-01</p> <p>In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of changes in precipitation versus temperature as a driver of scarcity, and potential shortcomings of the current water management framework in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29287095','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29287095"><span>Probabilistic inversion of expert assessments to inform projections about Antarctic ice sheet responses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fuller, Robert William; Wong, Tony E; Keller, Klaus</p> <p>2017-01-01</p> <p>The response of the Antarctic ice sheet (AIS) to changing global temperatures is a key component of sea-level projections. Current projections of the AIS contribution to sea-level changes are deeply uncertain. This deep uncertainty stems, in part, from (i) the inability of current models to fully resolve key processes and scales, (ii) the relatively sparse available data, and (iii) divergent expert assessments. One promising approach to characterizing the deep uncertainty stemming from divergent expert assessments is to combine expert assessments, observations, and simple models by coupling probabilistic inversion and Bayesian inversion. Here, we present a proof-of-concept study that uses probabilistic inversion to fuse a simple AIS model and diverse expert assessments. We demonstrate the ability of probabilistic inversion to infer joint prior probability distributions of model parameters that are consistent with expert assessments. We then confront these inferred expert priors with instrumental and paleoclimatic observational data in a Bayesian inversion. These additional constraints yield tighter hindcasts and projections. We use this approach to quantify how the deep uncertainty surrounding expert assessments affects the joint probability distributions of model parameters and future projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=product+AND+process+AND+design&pg=2&id=EJ1137891','ERIC'); return false;" href="https://eric.ed.gov/?q=product+AND+process+AND+design&pg=2&id=EJ1137891"><span>Compatibility of Common Instructional Models with the DACUM Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Wyrostek, Warren; Downey, Steven</p> <p>2017-01-01</p> <p>Practitioners use an expansive array of instructional design models. Although many of these models acknowledge the need for analyzing occupational roles, they do not define steps for conducting these analyses. This article reviews prominent models and provides prescriptive guidance for selecting appropriate models given a project's (a) Product…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5777135','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5777135"><span>Hypothalamic Projections to the Optic Tectum in Larval Zebrafish</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.</p> <p>2018-01-01</p> <p>The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29403362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29403362"><span>Hypothalamic Projections to the Optic Tectum in Larval Zebrafish.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heap, Lucy A; Vanwalleghem, Gilles C; Thompson, Andrew W; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K</p> <p>2017-01-01</p> <p>The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ClDy...43.1483K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ClDy...43.1483K"><span>What spatial scales are believable for climate model projections of sea surface temperature?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.</p> <p>2014-09-01</p> <p>Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (<8°). Our findings suggest that output from current generation ESMs is not yet suitable for making sub-regional projections of change in coral bleaching frequency and other marine processes linked to SST warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21935942','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21935942"><span>Descending projections from the dysgranular zone of rat primary somatosensory cortex processing deep somatic input.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Taehee; Kim, Uhnoh</p> <p>2012-04-01</p> <p>In the mammalian somatic system, peripheral inputs from cutaneous and deep receptors ascend via different subcortical channels and terminate in largely separate regions of the primary somatosensory cortex (SI). How these inputs are processed in SI and then projected back to the subcortical relay centers is critical for understanding how SI may regulate somatic information processing in the subcortex. Although it is now relatively well understood how SI cutaneous areas project to the subcortical structures, little is known about the descending projections from SI areas processing deep somatic input. We examined this issue by using the rodent somatic system as a model. In rat SI, deep somatic input is processed mainly in the dysgranular zone (DSZ) enclosed by the cutaneous barrel subfields. By using biotinylated dextran amine (BDA) as anterograde tracer, we characterized the topography of corticostriatal and corticofugal projections arising in the DSZ. The DSZ projections terminate mainly in the lateral subregions of the striatum that are also known as the target of certain SI cutaneous areas. This suggests that SI processing of deep and cutaneous information may be integrated, to a certain degree, in this striatal region. By contrast, at both thalamic and prethalamic levels as far as the spinal cord, descending projections from DSZ terminate in areas largely distinguishable from those that receive input from SI cutaneous areas. These subcortical targets of DSZ include not only the sensory but also motor-related structures, suggesting that SI processing of deep input may engage in regulating somatic and motor information flow between the cortex and periphery. Copyright © 2011 Wiley-Liss, Inc.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920003264','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920003264"><span>A general software reliability process simulation technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tausworthe, Robert C.</p> <p>1991-01-01</p> <p>The structure and rationale of the generalized software reliability process, together with the design and implementation of a computer program that simulates this process are described. Given assumed parameters of a particular project, the users of this program are able to generate simulated status timelines of work products, numbers of injected anomalies, and the progress of testing, fault isolation, repair, validation, and retest. Such timelines are useful in comparison with actual timeline data, for validating the project input parameters, and for providing data for researchers in reliability prediction modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=icms&pg=3&id=EJ519822','ERIC'); return false;" href="https://eric.ed.gov/?q=icms&pg=3&id=EJ519822"><span>The Development of Talent through Curriculum.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Van Tassel-Baska, Joyce</p> <p>1995-01-01</p> <p>An integrated curriculum model (ICM) is applied to the talent development process. Discussion focuses on a rationale for such a model, model features, applications in two federally funded curriculum projects, and relationship of the ICM to curriculum reform variables and implementation considerations. (DB)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=227121&keyword=semantic+AND+web&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=227121&keyword=semantic+AND+web&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>The Virtual Liver: Modeling Chemical-Induced Liver Toxicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The US EPA Virtual Liver (v-Liver) project is aimed at modeling chemical-induced processes in hepatotoxicity and simulating their dose-dependent perturbations. The v-Liver embodies an emerging field of research in computational tissue modeling that integrates molecular and cellul...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/1005','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/1005"><span>Surrogate safety measures from traffic simulation models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2003-01-01</p> <p>This project investigates the potential for deriving surrogate measures of safety from existing microscopic traffic simulation models for intersections. The process of computing the measures in the simulation, extracting the required data, and summar...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1209205-using-ecosystem-experiments-improve-vegetation-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1209205-using-ecosystem-experiments-improve-vegetation-models"><span>Using Ecosystem Experiments to Improve Vegetation Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; ...</p> <p>2015-05-21</p> <p>Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced amore » clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4972146','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4972146"><span>Benchmarking novel approaches for modelling species range dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.</p> <p>2016-01-01</p> <p>Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. PMID:26872305</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26872305','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26872305"><span>Benchmarking novel approaches for modelling species range dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E</p> <p>2016-08-01</p> <p>Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5636C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5636C"><span>Pursuing the method of multiple working hypotheses to understand differences in process-based snow models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clark, Martyn; Essery, Richard</p> <p>2017-04-01</p> <p>When faced with the complex and interdisciplinary challenge of building process-based land models, different modelers make different decisions at different points in the model development process. These modeling decisions are generally based on several considerations, including fidelity (e.g., what approaches faithfully simulate observed processes), complexity (e.g., which processes should be represented explicitly), practicality (e.g., what is the computational cost of the model simulations; are there sufficient resources to implement the desired modeling concepts), and data availability (e.g., is there sufficient data to force and evaluate models). Consequently the research community, comprising modelers of diverse background, experience, and modeling philosophy, has amassed a wide range of models, which differ in almost every aspect of their conceptualization and implementation. Model comparison studies have been undertaken to explore model differences, but have not been able to meaningfully attribute inter-model differences in predictive ability to individual model components because there are often too many structural and implementation differences among the different models considered. As a consequence, model comparison studies to date have provided limited insight into the causes of differences in model behavior, and model development has often relied on the inspiration and experience of individual modelers rather than on a systematic analysis of model shortcomings. This presentation will summarize the use of "multiple-hypothesis" modeling frameworks to understand differences in process-based snow models. Multiple-hypothesis frameworks define a master modeling template, and include a a wide variety of process parameterizations and spatial configurations that are used in existing models. Such frameworks provide the capability to decompose complex models into the individual decisions that are made as part of model development, and evaluate each decision in isolation. It is hence possible to attribute differences in system-scale model predictions to individual modeling decisions, providing scope to mimic the behavior of existing models, understand why models differ, characterize model uncertainty, and identify productive pathways to model improvement. Results will be presented applying multiple hypothesis frameworks to snow model comparison projects, including PILPS, SnowMIP, and the upcoming ESM-SnowMIP project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/926939','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/926939"><span>The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fix, N. J.</p> <p></p> <p>The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC53A1184D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC53A1184D"><span>Practical Tips and Techniques on the Process of Transdisciplinary Sea Level Rise Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeLorme, D.; Hagen, S. C.; Kidwell, D.; Stephens, S. H.</p> <p>2015-12-01</p> <p>There is increasing awareness of the need for transdisciplinary science to address complex climate change issues, yet practical guidance is lacking. This presentation describes the iterative planning, implementation, and evaluation process of an ongoing transdisciplinary sea level rise (SLR) research project. Observations, reflections, and recommendations from firsthand experience are shared, illustrated with examples, and placed within a transdisciplinary research framework. The NOAA-sponsored project, Ecological Effects of Sea Level Rise in the Northern Gulf of Mexico (EESLR-NGOM) is a six-year regional study involving a team of biology, ecology, civil/coastal engineering, and communication scholars working with government agency personnel and industry professionals; supervising students and post-doctoral researchers; and engaging a group of non-academic stakeholders (i.e., coastal resource managers). EESLR-NGOM's focus is on detailed assessment and process-based modeling to project SLR impacts on northern Gulf of Mexico coastal wetland habitats and flood plains. This presentation highlights collaboration, communication, and project management considerations, and explains knowledge co-production from a dynamic combination of natural and social scientific methods (secondary data analysis, computer modeling, field observations, field and laboratory experiments, focus group interviews, surveys) and interrelated stakeholder engagement mechanisms (advisory committee, project flow chart, workshops, focus groups, webinars) infused throughout the EESLR-NGOM project to improve accessibility and utility of the scientific results and products. Attention is also given to project evaluation including monitoring, multiple quantitative and qualitative measures, and recognition of challenges and limitations. This presentation should generate productive dialogue and direction for similar endeavors to find transformative solutions to pressing problems of climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17670777','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17670777"><span>Retrospective: lessons learned from the Santa Barbara project and their implications for health information exchange.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frohlich, Jonah; Karp, Sam; Smith, Mark D; Sujansky, Walter</p> <p>2007-01-01</p> <p>Despite its closure in December 2006, the Santa Barbara County Care Data Exchange helped focus national attention on the value of health information exchange (HIE). This in turn led to the federal government's plan to establish regional health information organizations (RHIOs). During its existence, the project pioneered innovative approaches, including certification of health information technology vendors, a community-wide governance model, and deployment of a peer-to-peer technical model now in wider use. RHIO efforts will benefit from the project's lessons about the need for an incremental development approach, rigorous implementation processes, early attention to privacy and liability concerns, and planning for a sustainable business model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22688003-life-cycle-assessment-based-environmental-impact-estimation-model-pre-stressed-concrete-beam-bridge-early-design-phase','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22688003-life-cycle-assessment-based-environmental-impact-estimation-model-pre-stressed-concrete-beam-bridge-early-design-phase"><span>Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, Kyong Ju, E-mail: kjkim@cau.ac.kr; Yun, Won Gun, E-mail: ogun78@naver.com; Cho, Namho, E-mail: nhc51@cau.ac.kr</p> <p></p> <p>The late rise in global concern for environmental issues such as global warming and air pollution is accentuating the need for environmental assessments in the construction industry. Promptly evaluating the environmental loads of the various design alternatives during the early stages of a construction project and adopting the most environmentally sustainable candidate is therefore of large importance. Yet, research on the early evaluation of a construction project's environmental load in order to aid the decision making process is hitherto lacking. In light of this dilemma, this study proposes a model for estimating the environmental load by employing only the mostmore » basic information accessible during the early design phases of a project for the pre-stressed concrete (PSC) beam bridge, the most common bridge structure. Firstly, a life cycle assessment (LCA) was conducted on the data from 99 bridges by integrating the bills of quantities (BOQ) with a life cycle inventory (LCI) database. The processed data was then utilized to construct a case based reasoning (CBR) model for estimating the environmental load. The accuracy of the estimation model was then validated using five test cases; the model's mean absolute error rates (MAER) for the total environmental load was calculated as 7.09%. Such test results were shown to be superior compared to those obtained from a multiple-regression based model and a slab area base-unit analysis model. Henceforth application of this model during the early stages of a project is expected to highly complement environmentally friendly designs and construction by facilitating the swift evaluation of the environmental load from multiple standpoints. - Highlights: • This study is to develop the model of assessing the environmental impacts on LCA. • Bills of quantity from completed designs of PSC Beam were linked with the LCI DB. • Previous cases were used to estimate the environmental load of new case by CBR model. • CBR model produces more accurate estimations (7.09%) than other conventional models. • This study supports decision making process in the early stage of a new construction case.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=berkowitz&pg=3&id=EJ664881','ERIC'); return false;" href="https://eric.ed.gov/?q=berkowitz&pg=3&id=EJ664881"><span>Michael Eisenberg and Robert Berkowitz's Big6[TM] Information Problem-Solving Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carey, James O.</p> <p>2003-01-01</p> <p>Reviews the Big6 information problem-solving model. Highlights include benefits and dangers of the simplicity of the model; theories of instruction; testing of the model; the model as a process for completing research projects; and advice for school library media specialists considering use of the model. (LRW)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1121088','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1121088"><span>A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Agrawal, Rakesh; Delgass, W. N.; Ribeiro, F.</p> <p>2013-08-31</p> <p>The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H 2Bioil) using supplementary hydrogen (H 2) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H 2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitivemore » for the cases when supplementary H 2 is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H 2Bioilprocess for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H 2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GMD.....9.4185H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GMD.....9.4185H"><span>High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song</p> <p>2016-11-01</p> <p>Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1016802','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1016802"><span>Materials Testing and Cost Modeling for Composite Parts Through Additive Manufacturing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-04-30</p> <p>FDM include plastic jet printing (PJP), fused filament modeling ( FFM ), and fused filament fabrication (FFF). FFF was coined by the RepRap project to...additive manufacturing processes? • Fused deposition modeling (FDM) trademarked by Stratasys • Fused filament modeling ( FFM ) and fused filament</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED340943.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED340943.pdf"><span>Technical Update for Vocational Agriculture Teachers in Secondary Schools. Final Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Iowa State Univ. of Science and Technology, Ames. Dept. of Agricultural Education.</p> <p></p> <p>A project provided ongoing opportunities for teachers in Iowa to upgrade their expertise in agribusiness management using new technology; production, processing, and marketing agricultural products; biotechnology in agriculture; and conservation of natural resources. The project also modeled effective teaching methods and strategies. Project…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=134287&keyword=kinetic+AND+energy&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=134287&keyword=kinetic+AND+energy&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>FIRST ORDER KINETIC GAS GENERATION MODEL PARAMETERS FOR WET LANDFILLS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Landfill gas is produced as a result of a sequence of physical, chemical, and biological processes occurring within an anaerobic landfill. Landfill operators, energy recovery project owners, regulators, and energy users need to be able to project the volume of gas produced and re...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=test+AND+projective&pg=3&id=EJ296192','ERIC'); return false;" href="https://eric.ed.gov/?q=test+AND+projective&pg=3&id=EJ296192"><span>Personality Assessment in the Schools: Issues and Procedures for School Psychologists.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Knoff, Howard M.</p> <p>1983-01-01</p> <p>A conceptual model for school-based personality assessment, methods to integrate behavioral and projective assessment procedures, and issues surrounding the use of projective tests are presented. Ways to maximize the personality assessment process for use in placement and programing decisions are suggested. (Author/DWH)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10458E..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10458E..04G"><span>Method of surface error visualization using laser 3D projection technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Lili; Li, Lijuan; Lin, Xuezhu</p> <p>2017-10-01</p> <p>In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1346149','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1346149"><span>Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard</p> <p>2016-12-29</p> <p>The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.energy.ca.gov/2015publications/CEC-500-2015-062/','USGSPUBS'); return false;" href="http://www.energy.ca.gov/2015publications/CEC-500-2015-062/"><span>Cumulative biological impacts framework for solar energy projects in the California Desert</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John</p> <p>2013-01-01</p> <p>This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1097100','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1097100"><span>Report on all ARRA Funded Technical Work</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None, None</p> <p>2013-10-05</p> <p>The main focus of this American Recovery and Reinvestment Act of 2009 (ARRA) funded project was to design an energy efficient carbon capture and storage (CCS) process using the Recipients membrane system for H{sub 2} separation and CO{sub 2} capture. In the ARRA-funded project, the Recipient accelerated development and scale-up of ongoing hydrogen membrane technology research and development (R&D). Specifically, this project focused on accelerating the current R&D work scope of the base program-funded project, involving lab scale tests, detail design of a 250 lb/day H{sub 2} process development unit (PDU), and scale-up of membrane tube and coating manufacturing. Thismore » project scope included the site selection and a Front End Engineering Design (FEED) study of a nominally 4 to 10 ton-per-day (TPD) Pre-Commercial Module (PCM) hydrogen separation membrane system. Process models and techno-economic analysis were updated to include studies on integration of this technology into an Integrated Gasification Combined Cycle (IGCC) power generation system with CCS.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/9273','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/9273"><span>User's guide to the Parallel Processing Extension of the Prognosis Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Nicholas L. Crookston; Albert R. Stage</p> <p>1991-01-01</p> <p>The Parallel Processing Extension (PPE) of the Prognosis Model was designed to analyze responses of numerous stands to coordinated management and pest impacts that operate at the landscape level of forests. Vegetation-related resource supply analysis can be readily performed for a thousand or more sample stands for projections 400 years into the future. Capabilities...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/56223','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/56223"><span>Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Wen J. Wang; Hong S. He; Frank R. Thompson; Martin A. Spetich; Jacob S. Fraser</p> <p>2018-01-01</p> <p>Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are notwell represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts.We investigate how species biological...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/26544','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/26544"><span>Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown</p> <p>2006-01-01</p> <p>Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A24D..07J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A24D..07J"><span>Composite Study Of Aerosol Long-Range Transport Events From East Asia And North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, X.; Waliser, D. E.; Guan, B.; Xavier, P.; Petch, J.; Klingaman, N. P.; Woolnough, S.</p> <p>2011-12-01</p> <p>While the Madden-Julian Oscillation (MJO) exerts pronounced influences on global climate and weather systems, current general circulation models (GCMs) exhibit rather limited capability in representing this prominent tropical variability mode. Meanwhile, the fundamental physics of the MJO are still elusive. Given the central role of the diabatic heating for prevailing MJO theories and demands for reducing the model deficiencies in simulating the MJO, a global model inter-comparison project on diabatic processes and vertical heating structure associated with the MJO has been coordinated through a joint effort by the WCRP-WWRP/THORPEX YOTC MJO Task Force and GEWEX GASS Program. In this presentation, progress of this model inter-comparison project will be reported, with main focus on climate simulations from about 27 atmosphere-only and coupled GCMs. Vertical structures of heating and diabatic processes associated with the MJO based on multi-model simulations will be presented along with their reanalysis and satellite estimate counterparts. Key processes possibly responsible for a realistic simulation of the MJO, including moisture-convection interaction, gross moist stability, ocean coupling, and surface heat flux, will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMIN21A1323B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMIN21A1323B"><span>The GeoDataPortal: A Standards-based Environmental Modeling Data Access and Manipulation Toolkit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blodgett, D. L.; Kunicki, T.; Booth, N.; Suftin, I.; Zoerb, R.; Walker, J.</p> <p>2010-12-01</p> <p>Environmental modelers from fields of study such as climatology, hydrology, geology, and ecology rely on many data sources and processing methods that are common across these disciplines. Interest in inter-disciplinary, loosely coupled modeling and data sharing is increasing among scientists from the USGS, other agencies, and academia. For example, hydrologic modelers need downscaled climate change scenarios and land cover data summarized for the watersheds they are modeling. Subsequently, ecological modelers are interested in soil moisture information for a particular habitat type as predicted by the hydrologic modeler. The USGS Center for Integrated Data Analytics Geo Data Portal (GDP) project seeks to facilitate this loose model coupling data sharing through broadly applicable open-source web processing services. These services simplify and streamline the time consuming and resource intensive tasks that are barriers to inter-disciplinary collaboration. The GDP framework includes a catalog describing projects, models, data, processes, and how they relate. Using newly introduced data, or sources already known to the catalog, the GDP facilitates access to sub-sets and common derivatives of data in numerous formats on disparate web servers. The GDP performs many of the critical functions needed to summarize data sources into modeling units regardless of scale or volume. A user can specify their analysis zones or modeling units as an Open Geospatial Consortium (OGC) standard Web Feature Service (WFS). Utilities to cache Shapefiles and other common GIS input formats have been developed to aid in making the geometry available for processing via WFS. Dataset access in the GDP relies primarily on the Unidata NetCDF-Java library’s common data model. Data transfer relies on methods provided by Unidata’s Thematic Real-time Environmental Data Distribution System Data Server (TDS). TDS services of interest include the Open-source Project for a Network Data Access Protocol (OPeNDAP) standard for gridded time series, the OGC’s Web Coverage Service for high-density static gridded data, and Unidata’s CDM-remote for point time series. OGC WFS and Sensor Observation Service (SOS) are being explored as mechanisms to serve and access static or time series data attributed to vector geometry. A set of standardized XML-based output formats allows easy transformation into a wide variety of “model-ready” formats. Interested users will have the option of submitting custom transformations to the GDP or transforming the XML output as a post-process. The GDP project aims to support simple, rapid development of thin user interfaces (like web portals) to commonly needed environmental modeling-related data access and manipulation tools. Standalone, service-oriented components of the GDP framework provide the metadata cataloging, data subset access, and spatial-statistics calculations needed to support interdisciplinary environmental modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22433068','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22433068"><span>Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cheaib, Alissar; Badeau, Vincent; Boe, Julien; Chuine, Isabelle; Delire, Christine; Dufrêne, Eric; François, Christophe; Gritti, Emmanuel S; Legay, Myriam; Pagé, Christian; Thuiller, Wilfried; Viovy, Nicolas; Leadley, Paul</p> <p>2012-06-01</p> <p>Model-based projections of shifts in tree species range due to climate change are becoming an important decision support tool for forest management. However, poorly evaluated sources of uncertainty require more scrutiny before relying heavily on models for decision-making. We evaluated uncertainty arising from differences in model formulations of tree response to climate change based on a rigorous intercomparison of projections of tree distributions in France. We compared eight models ranging from niche-based to process-based models. On average, models project large range contractions of temperate tree species in lowlands due to climate change. There was substantial disagreement between models for temperate broadleaf deciduous tree species, but differences in the capacity of models to account for rising CO(2) impacts explained much of the disagreement. There was good quantitative agreement among models concerning the range contractions for Scots pine. For the dominant Mediterranean tree species, Holm oak, all models foresee substantial range expansion. © 2012 Blackwell Publishing Ltd/CNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009LNCS.5692...96F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009LNCS.5692...96F"><span>Towards Semantic Modelling of Business Processes for Networked Enterprises</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Furdík, Karol; Mach, Marián; Sabol, Tomáš</p> <p></p> <p>The paper presents an approach to the semantic modelling and annotation of business processes and information resources, as it was designed within the FP7 ICT EU project SPIKE to support creation and maintenance of short-term business alliances and networked enterprises. A methodology for the development of the resource ontology, as a shareable knowledge model for semantic description of business processes, is proposed. Systematically collected user requirements, conceptual models implied by the selected implementation platform as well as available ontology resources and standards are employed in the ontology creation. The process of semantic annotation is described and illustrated using an example taken from a real application case.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1337015','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1337015"><span>Optimizing the Costs of Solid Sorbent-Based CO 2 Capture Process Through Heat Integration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sjostrom, Sharon</p> <p>2016-03-18</p> <p>The focus of this project was the ADAsorb™ CO 2 Capture Process, a temperature-swing adsorption process that incorporates a three-stage fluidized bed as the adsorber and a single-stage fluidized bed as the regenerator. ADAsorb™ system was designed, fabricated, and tested under DOE award DEFE0004343. Two amine-based sorbents were evaluated in conjunction with the ADAsorb™ process: “BN”, an ion-exchange resin; and “OJ”, a metal organic framework (MOF) sorbent. Two cross heat exchanger designs were evaluated for use between the adsorber and regenerator: moving bed and fluidized bed. The fluidized bed approach was rejected fairly early in the project because the additionalmore » electrical load to power blowers or fans to overcome the pressure drop required for fluidization was estimated to be nominally three times the electrical power that could be generated from the steam saved through the use of the cross heat exchanger. The Energy Research Center at Lehigh University built and utilized a process model of the ADAsorb™ capture process and integrated this model into an existing model of a supercritical PC power plant. The Lehigh models verified that, for the ADAsorb™ system, the largest contributor to parasitic power was lost electrical generation, which was primarily electric power which the host plant could not generate due to the extraction of low pressure (LP) steam for sorbent heating, followed by power for the CO 2 compressor and the blower or fan power required to fluidize the adsorber and regenerator. Sorbent characteristics such as the impacts of moisture uptake, optimized adsorption and regeneration temperature, and sensitivity to changes in pressure were also included in the modeling study. Results indicate that sorbents which adsorb more than 1-2% moisture by weight are unlikely to be cost competitive unless they have an extremely high CO 2 working capacity that well exceeds 15% by weight. Modeling also revealed that reductions in adsorber pressure drop could negatively affect the CO 2 adsorption characteristics for sorbents with certain isobar adsorption characteristics like sorbent BN. Thus, reductions in pressure drop do not provide the efficiency benefits expected. A techno-economic assessment conducted during the project revealed that without heat integration, the a metal organic framework (MOF) sorbent used in conjunction with the ADAsorb™ process provided the opportunity for improved performance over the benchmark MEA process. While the addition of a cross heat exchanger and heat integration was found to significantly improve net unit heat rate, the additional equipment costs required to realize these improvements almost always outweighed the improvement in performance. The exception to this was for a supported amine sorbent and the addition of a moving bed cross heat exchanger alone or in conjunction with waste heat from the compressor used for supplemental regenerator heating. Perhaps one of the most important points to be drawn from the work conducted during this project is the significant influence of sorbent characteristics alone on the projected COE and LCOE associated with the ADAsorb™ process, and the implications associated with future improvements to solid sorbent CO 2 capture. The results from this project suggest that solid sorbent CO 2 capture will continue to see performance gains and lower system costs as further sorbent improvements are realized.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9150E..0MC','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9150E..0MC"><span>Systems engineering in the Large Synoptic Survey Telescope project: an application of model based systems engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Claver, C. F.; Selvy, Brian M.; Angeli, George; Delgado, Francisco; Dubois-Felsmann, Gregory; Hascall, Patrick; Lotz, Paul; Marshall, Stuart; Schumacher, German; Sebag, Jacques</p> <p>2014-08-01</p> <p>The Large Synoptic Survey Telescope project was an early adopter of SysML and Model Based Systems Engineering practices. The LSST project began using MBSE for requirements engineering beginning in 2006 shortly after the initial release of the first SysML standard. Out of this early work the LSST's MBSE effort has grown to include system requirements, operational use cases, physical system definition, interfaces, and system states along with behavior sequences and activities. In this paper we describe our approach and methodology for cross-linking these system elements over the three classical systems engineering domains - requirement, functional and physical - into the LSST System Architecture model. We also show how this model is used as the central element to the overall project systems engineering effort. More recently we have begun to use the cross-linked modeled system architecture to develop and plan the system verification and test process. In presenting this work we also describe "lessons learned" from several missteps the project has had with MBSE. Lastly, we conclude by summarizing the overall status of the LSST's System Architecture model and our plans for the future as the LSST heads toward construction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33A1635D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33A1635D"><span>Intelligent monitoring system for real-time geologic CO2 storage, optimization and reservoir managemen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dou, S.; Commer, M.; Ajo Franklin, J. B.; Freifeld, B. M.; Robertson, M.; Wood, T.; McDonald, S.</p> <p>2017-12-01</p> <p>Archer Daniels Midland Company's (ADM) world-scale agricultural processing and biofuels production complex located in Decatur, Illinois, is host to two industrial-scale carbon capture and storage projects. The first operation within the Illinois Basin-Decatur Project (IBDP) is a large-scale pilot that injected 1,000,000 metric tons of CO2 over a three year period (2011-2014) in order to validate the Illinois Basin's capacity to permanently store CO2. Injection for the second operation, the Illinois Industrial Carbon Capture and Storage Project (ICCS), started in April 2017, with the purpose of demonstrating the integration of carbon capture and storage (CCS) technology at an ethanol plant. The capacity to store over 1,000,000 metric tons of CO2 per year is anticipated. The latter project is accompanied by the development of an intelligent monitoring system (IMS) that will, among other tasks, perform hydrogeophysical joint analysis of pressure, temperature and seismic reflection data. Using a preliminary radial model assumption, we carry out synthetic joint inversion studies of these data combinations. We validate the history-matching process to be applied to field data once CO2-breakthrough at observation wells occurs. This process will aid the estimation of permeability and porosity for a reservoir model that best matches monitoring observations. The reservoir model will further be used for forecasting studies in order to evaluate different leakage scenarios and develop appropriate early-warning mechanisms. Both the inversion and forecasting studies aim at building an IMS that will use the seismic and pressure-temperature data feeds for providing continuous model calibration and reservoir status updates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1147164','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1147164"><span>Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..</p> <p></p> <p>The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA578937','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA578937"><span>A Complex Approach to UXO Discrimination: Combining Advanced EMI Forward Models and Statistical Signal Processing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-01-01</p> <p>discrimination at live-UXO sites. Namely, under this project first we developed and implemented advanced, physically complete forward EMI models such as, the...detection and discrimination at live-UXO sites. Namely, under this project first we developed and implemented advanced, physically complete forward EMI...Shubitidze of Sky Research and Dartmouth College, conceived, implemented , and tested most of the approaches presented in this report. He developed</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA418695','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA418695"><span>Technology for Evolutionary Software Development (Technologies pour le developpement de logiciels evolutifs)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-06-01</p> <p>greater detail in the next section, is to achieve these principles. Besides the fact, that these principles illustrate the essence of agile software...like e.g. ADLER, JASMIN , SAMOC or HEROS. In all of these projects the framework for the process model was the Vorgehensmodell (V-Model) of the...practical essence of the solutions to manage projects within the constraints of cost, schedule, functionality and quality and ways to get the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....5811B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....5811B"><span>The Saale-Project -A multidisciplinary approach towards sustainable integrative catchment management -</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bongartz, K.; Flügel, W. A.</p> <p>2003-04-01</p> <p>In the joint research project “Development of an integrated methodology for the sustainable management of river basins The Saale River Basin example”, coordinated by the Centre of Environmental Research (UFZ), concepts and tools for an integrated management of large river basins are developed and applied for the Saale river basin. The ultimate objective of the project is to contribute to the holistic assessment and benchmarking approaches in water resource planning, as required by the European Water Framework Directive. The study presented here deals (1) with the development of a river basin information and modelling system, (2) with the refinement of a regionalisation approach adapted for integrated basin modelling. The approach combines a user friendly basin disaggregation method preserving the catchment’s physiographic heterogeneity with a process oriented hydrological basin assessment for scale bridging integrated modelling. The well tested regional distribution concept of Response Units (RUs) will be enhanced by landscape metrics and decision support tools for objective, scale independent and problem oriented RU delineation to provide the spatial modelling entities for process oriented and distributed simulation of vertical and lateral hydrological transport processes. On basis of this RUs suitable hydrological modelling approaches will be further developed with strong respect to a more detailed simulation of the lateral surface and subsurface flows as well as the channel flow. This methodical enhancement of the well recognised RU-concept will be applied to the river basin of the Saale (Ac: 23 179 km2) and validated by a nested catchment approach, which allows multi-response-validation and estimation of uncertainties of the modelling results. Integrated modelling of such a complex basin strongly influenced by manifold human activities (reservoirs, agriculture, urban areas and industry) can only be achieved by coupling the various modelling approaches within a well defined model framework system. The latter is interactively linked with a sophisticated geo-relational database (DB) serving all research teams involved in the project. This interactive linkage is a core element comprising an object-oriented, internet-based modelling framework system (MFS) for building interdisciplinary modelling applications and offering different analysis and visualisation tools.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2017/1071/ofr20171071.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2017/1071/ofr20171071.pdf"><span>A projection of lesser prairie chicken (Tympanuchus pallidicinctus) populations range-wide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cummings, Jonathan W.; Converse, Sarah J.; Moore, Clinton T.; Smith, David R.; Nichols, Clay T.; Allan, Nathan L.; O'Meilia, Chris M.</p> <p>2017-08-09</p> <p>We built a population viability analysis (PVA) model to predict future population status of the lesser prairie-chicken (Tympanuchus pallidicinctus, LEPC) in four ecoregions across the species’ range. The model results will be used in the U.S. Fish and Wildlife Service's (FWS) Species Status Assessment (SSA) for the LEPC. Our stochastic projection model combined demographic rate estimates from previously published literature with demographic rate estimates that integrate the influence of climate conditions. This LEPC PVA projects declining populations with estimated population growth rates well below 1 in each ecoregion regardless of habitat or climate change. These results are consistent with estimates of LEPC population growth rates derived from other demographic process models. Although the absolute magnitude of the decline is unlikely to be as low as modeling tools indicate, several different lines of evidence suggest LEPC populations are declining.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3803017L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3803017L"><span>Research on Green Construction Technology Applied at Guangzhou Hongding Building Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lou, Yong Zhong</p> <p>2018-06-01</p> <p>The green construction technology is the embodiment of sustainable development strategy in the construction industry, and it is a new construction mode which requires a higher environmental protection. Based on the Hongding building project, this paper describes the application and innovation of technical in the process of implementing green construction in the project, as well as the difficulties and characteristics in the specific practice; .The economic and social benefits of green construction are compared to the traditional construction model; .The achievements and experience of the green construction technology are summarized in the project; The ideas and methods in the process of implementing green construction are abstracted; some suggestions are put forward for the development of green construction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/895198','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/895198"><span>Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Brown, Michael R.</p> <p>2006-11-16</p> <p>Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=56324&Lab=NCEA&keyword=physiology+AND+aging&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=56324&Lab=NCEA&keyword=physiology+AND+aging&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>EVALUATION OF PHYSIOLOGY COMPUTER MODELS, AND THE FEASIBILITY OF THEIR USE IN RISK ASSESSMENT.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This project will evaluate the current state of quantitative models that simulate physiological processes, and the how these models might be used in conjunction with the current use of PBPK and BBDR models in risk assessment. The work will include a literature search to identify...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=model+AND+business+AND+concept&pg=5&id=EJ875623','ERIC'); return false;" href="https://eric.ed.gov/?q=model+AND+business+AND+concept&pg=5&id=EJ875623"><span>Business Models for Training and Performance Improvement Departments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Carliner, Saul</p> <p>2004-01-01</p> <p>Although typically applied to entire enterprises, the concept of business models applies to training and performance improvement groups. Business models are "the method by which firm[s] build and use [their] resources to offer.. value." Business models affect the types of projects, services offered, skills required, business processes, and type of…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21474198','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21474198"><span>Improving assessment and modelling of climate change impacts on global terrestrial biodiversity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McMahon, Sean M; Harrison, Sandy P; Armbruster, W Scott; Bartlein, Patrick J; Beale, Colin M; Edwards, Mary E; Kattge, Jens; Midgley, Guy; Morin, Xavier; Prentice, I Colin</p> <p>2011-05-01</p> <p>Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=322694','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=322694"><span>The uncertainty of crop yield projections is reduced by improved temperature response functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Increasing the accuracy of crop productivity estimates is a key Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on cr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=bangladesh+AND+economic&pg=5&id=EJ571329','ERIC'); return false;" href="https://eric.ed.gov/?q=bangladesh+AND+economic&pg=5&id=EJ571329"><span>Interagency Partnerships in Aid-Recipient Countries: Lessons from an Aquaculture Project in Bangladesh.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lewis, David J.</p> <p>1998-01-01</p> <p>An action research investigation of an aquaculture project in Bangladesh resulted in a process model of interagency partnerships between nongovernmental organizations and government. Findings showed partnerships are diverse and highly vulnerable to external forces such as economics, politics, culture, and support of those in power. (SK)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=231743&Lab=NCCT&keyword=computer+AND+technology+AND+project&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=231743&Lab=NCCT&keyword=computer+AND+technology+AND+project&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Simulating Limb Formation in the U.S. EPA Virtual Embryo - Risk Assessment Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The U.S. EPA’s Virtual Embryo project (v-Embryo™) is a computer model simulation of morphogenesis that integrates cell and molecular level data from mechanistic and in vitro assays with knowledge about normal development processes to assess in silico the effects of chemicals on d...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Service+AND+Club&pg=6&id=EJ839106','ERIC'); return false;" href="https://eric.ed.gov/?q=Service+AND+Club&pg=6&id=EJ839106"><span>Usability: A Teaching and School Service Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Snyder, Johnny</p> <p>2009-01-01</p> <p>Your next usability project could be waiting for you in the college library, registration office, or online admissions process that your college or university utilizes in their daily transactions. As an added bonus, these exercises supplement the IS2002 curriculum model, benefit the instructor's institution, build inter-departmental collaboration,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED224229.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED224229.pdf"><span>The Development of a Needs Assessment Process. Occasional Paper Number 3.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Black, Talbot; And Others</p> <p></p> <p>The paper considers the concept of needs assessment in terms of the activities of TADS (Technical Assistance Development System), a project to provide support services to model demonstration projects and state education agency grantees of the Handicapped Children's Early Education Program. Section 1 defines needs assessment, describes approaches…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1393630','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1393630"><span>Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock: FY17 Progress. Predecisional Draft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zheng, Liange; Rutqvist, Jonny; Xu, Hao</p> <p></p> <p>The focus of research within the Spent Fuel and Waste Science and Technology (SFWST) (formerly called Used Fuel Disposal) Campaign is on repository-induced interactions that may affect the key safety characteristics of EBS bentonite and an argillaceous rock. These include thermal-hydrologicalmechanical- chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer materials and petrophysical characteristics, particularly the impacts of temperature rise caused by waste heat.more » This report documents the following research activities. Section 2 presents THM model developments and validation, including modeling of underground heater experiments at Mont Terri and Bure underground research laboratories (URLs). The heater experiments modeled are the Mont Terri FE (Full-scale Emplacement) Experiment, conducted as part of the Mont Terri Project, and the TED in heater test conducted in Callovo-Oxfordian claystone (COx) at the Meuse/Haute-Marne (MHM) underground research laboratory in France. The modeling of the TED heater test is one of the Tasks of the DEvelopment of COupled Models and their VAlidation against EXperiments (DECOVALEX)-2019 project. Section 3 presents the development and application of thermal-hydrological-mechanical-chemical (THMC) modeling to evaluate EBS bentonite and argillite rock responses under different temperatures (100 °C and 200 °C). Model results are presented to help to understand the impact of high temperatures on the properties and behavior of bentonite and argillite rock. Eventually the process model will support a robust GDSA model for repository performance assessments. Section 4 presents coupled THMC modeling for an in situ test conducted at Grimsel underground laboratory in Switzerland in the Full-Scale Engineered Barrier Experiment Dismantling Project (FEBEX-DP). The data collected in the test after almost two decades of heating and two dismantling events provide a unique opportunity of validating coupled THMC models and enhancing our understanding of coupled THMC process in EBS bentonite. Section 5 presents a planned large in-situ test, “HotBENT,” at Grimsel Test Site, Switzerland. In this test, bentonite backfilled EBS in granite will be heated up to 200 °C, where the most relevant features of future emplacement conditions can be adequately reproduced. Lawrence Berkeley National Laboratory (LBNL) has very actively participated in the project since the very beginning and have conducted scoping calculations in FY17 to facilitate the final design of the experiment. Section 6 presents present LBNL’s activities for modeling gas migration in clay related to Task A of the international DECOVALEX-2019 project. This is an international collaborative activity in which DOE and LBNL gain access to unique laboratory and field data of gas migration that are studied with numerical modeling to better understand the processes, to improve numerical models that could eventually be applied in the performance assessment for nuclear waste disposal in clay host rocks and bentonite backfill. Section 7 summarizes the main research accomplishments for FY17 and proposes future work activities.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25350360','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25350360"><span>Application of a plume model for decision makers' situation awareness during an outdoor airborne HAZMAT release.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meris, Ronald G; Barbera, Joseph A</p> <p>2014-01-01</p> <p>In a large-scale outdoor, airborne, hazardous materials (HAZMAT) incident, such as ruptured chlorine rail cars during a train derailment, the local Incident Commanders and HAZMAT emergency responders must obtain accurate information quickly to assess the situation and act promptly and appropriately. HAZMAT responders must have a clear understanding of key information and how to integrate it into timely and effective decisions for action planning. This study examined the use of HAZMAT plume modeling as a decision support tool during incident action planning in this type of extreme HAZMAT incident. The concept of situation awareness as presented by Endsley's dynamic situation awareness model contains three levels: perception, comprehension, and projection. It was used to examine the actions of incident managers related to adequate data acquisition, current situational understanding, and accurate situation projection. Scientists and engineers have created software to simulate and predict HAZMAT plume behavior, the projected hazard impact areas, and the associated health effects. Incorporating the use of HAZMAT plume projection modeling into an incident action plan may be a complex process. The present analysis used a mixed qualitative and quantitative methodological approach and examined the use and limitations of a "HAZMAT Plume Modeling Cycle" process that can be integrated into the incident action planning cycle. HAZMAT response experts were interviewed using a computer-based simulation. One of the research conclusions indicated the "HAZMAT Plume Modeling Cycle" is a critical function so that an individual/team can be tasked with continually updating the hazard plume model with evolving data, promoting more accurate situation awareness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23679011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23679011"><span>A road map for integrating eco-evolutionary processes into biodiversity models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thuiller, Wilfried; Münkemüller, Tamara; Lavergne, Sébastien; Mouillot, David; Mouquet, Nicolas; Schiffers, Katja; Gravel, Dominique</p> <p>2013-05-01</p> <p>The demand for projections of the future distribution of biodiversity has triggered an upsurge in modelling at the crossroads between ecology and evolution. Despite the enthusiasm around these so-called biodiversity models, most approaches are still criticised for not integrating key processes known to shape species ranges and community structure. Developing an integrative modelling framework for biodiversity distribution promises to improve the reliability of predictions and to give a better understanding of the eco-evolutionary dynamics of species and communities under changing environments. In this article, we briefly review some eco-evolutionary processes and interplays among them, which are essential to provide reliable projections of species distributions and community structure. We identify gaps in theory, quantitative knowledge and data availability hampering the development of an integrated modelling framework. We argue that model development relying on a strong theoretical foundation is essential to inspire new models, manage complexity and maintain tractability. We support our argument with an example of a novel integrated model for species distribution modelling, derived from metapopulation theory, which accounts for abiotic constraints, dispersal, biotic interactions and evolution under changing environmental conditions. We hope such a perspective will motivate exciting and novel research, and challenge others to improve on our proposed approach. © 2013 John Wiley & Sons Ltd/CNRS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1417132','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1417132"><span>Resource Aware Intelligent Network Services (RAINS) Final Technical Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lehman, Tom; Yang, Xi</p> <p></p> <p>The Resource Aware Intelligent Network Services (RAINS) project conducted research and developed technologies in the area of cyber infrastructure resource modeling and computation. The goal of this work was to provide a foundation to enable intelligent, software defined services which spanned the network AND the resources which connect to the network. A Multi-Resource Service Plane (MRSP) was defined, which allows resource owners/managers to locate and place themselves from a topology and service availability perspective within the dynamic networked cyberinfrastructure ecosystem. The MRSP enables the presentation of integrated topology views and computation results which can include resources across the spectrum ofmore » compute, storage, and networks. The RAINS project developed MSRP includes the following key components: i) Multi-Resource Service (MRS) Ontology/Multi-Resource Markup Language (MRML), ii) Resource Computation Engine (RCE), iii) Modular Driver Framework (to allow integration of a variety of external resources). The MRS/MRML is a general and extensible modeling framework that allows for resource owners to model, or describe, a wide variety of resource types. All resources are described using three categories of elements: Resources, Services, and Relationships between the elements. This modeling framework defines a common method for the transformation of cyber infrastructure resources into data in the form of MRML models. In order to realize this infrastructure datification, the RAINS project developed a model based computation system, i.e. “RAINS Computation Engine (RCE)”. The RCE has the ability to ingest, process, integrate, and compute based on automatically generated MRML models. The RCE interacts with the resources thru system drivers which are specific to the type of external network or resource controller. The RAINS project developed a modular and pluggable driver system which facilities a variety of resource controllers to automatically generate, maintain, and distribute MRML based resource descriptions. Once all of the resource topologies are absorbed by the RCE, a connected graph of the full distributed system topology is constructed, which forms the basis for computation and workflow processing. The RCE includes a Modular Computation Element (MCE) framework which allows for tailoring of the computation process to the specific set of resources under control, and the services desired. The input and output of an MCE are both model data based on MRS/MRML ontology and schema. Some of the RAINS project accomplishments include: Development of general and extensible multi-resource modeling framework; Design of a Resource Computation Engine (RCE) system which includes the following key capabilities; Absorb a variety of multi-resource model types and build integrated models; Novel architecture which uses model based communications across the full stack for all Flexible provision of abstract or intent based user facing interfaces; Workflow processing based on model descriptions; Release of the RCE as an open source software; Deployment of RCE in the University of Maryland/Mid-Atlantic Crossroad ScienceDMZ in prototype mode with a plan under way to transition to production; Deployment at the Argonne National Laboratory DTN Facility in prototype mode; Selection of RCE by the DOE SENSE (SDN for End-to-end Networked Science at the Exascale) project as the basis for their orchestration service.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950024818','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950024818"><span>Process maturity progress at Motorola Cellular Systems Division</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Borgstahl, Ron; Criscione, Mark; Dobson, Kim; Willey, Allan</p> <p>1994-01-01</p> <p>We believe that the key success elements are related to our recognition that Software Process Improvement (SPI) can and should be organized, planned, managed, and measured as if it were a project to develop a new process, analogous to a software product. We believe that our process improvements have come as the result of these key elements: use of a rigorous, detailed requirements set (Capability Maturity Model, CMM); use of a robust, yet flexible architecture (IEEE 1074); use of a SPI project, resourced and managed like other work, to produce the specifications and implement them; and development of both internal and external goals, with metrics to support them.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800018899','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800018899"><span>Space construction system analysis study: Project systems and missions descriptions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1979-01-01</p> <p>Three project systems are defined and summarized. The systems are: (1) a Solar Power Satellite (SPS) Development Flight Test Vehicle configured for fabrication and compatible with solar electric propulsion orbit transfer; (2) an Advanced Communications Platform configured for space fabrication and compatible with low thrust chemical orbit transfer propulsion; and (3) the same Platform, configured to be space erectable but still compatible with low thrust chemical orbit transfer propulsion. These project systems are intended to serve as configuration models for use in detailed analyses of space construction techniques and processes. They represent feasible concepts for real projects; real in the sense that they are realistic contenders on the list of candidate missions currently projected for the national space program. Thus, they represent reasonable configurations upon which to base early studies of alternative space construction processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011isd..book..111V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011isd..book..111V"><span>Replacement of the Project Manager Reflected Through Activity Theory and Work-System Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vartiainen, Tero; Aramo-Immonen, Heli; Jussila, Jari; Pirhonen, Maritta; Liikamaa, Kirsi</p> <p></p> <p>Replacement of the project manager (RPM) is a known phenomenon in information systems (IS) projects, but scant attention is given to it in the project management or IS literature. Given its critical effects on the project business, the organization, the project team, and the project manager, it should be studied in more depth. We identified factors which make RPM occurrences inherently different and we show that work-system theory and activity theory give comprehensive lenses to advance research on RPM. For the future research on RPM we identified three objectives: experiences on RPM, process model for RPM, and organizational culture's influence on RPM occurrences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990116975&hterms=biome+bgc&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbiome%2Bbgc','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990116975&hterms=biome+bgc&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dbiome%2Bbgc"><span>Assessment of Anthropogenic and Climatic Impacts on the Global Carbon Cycle Using a 3-D Model Constrained by Isotopic Carbon Measurements and Remote Sensing of Vegetation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keeling, Charles D.; Piper, S. C.</p> <p>1998-01-01</p> <p>Our original proposal called for improved modeling of the terrestrial biospheric carbon cycle, specifically using biome-specific process models to account for both the energy and water budgets of plant growth, to facilitate investigations into recent changes in global atmospheric CO2 abundance and regional distribution. The carbon fluxes predicted by these models were to be incorporated into a global model of CO2 transport to establish large-scale regional fluxes of CO2 to and from the terrestrial biosphere subject to constraints imposed by direct measurements of atmospheric CO2 and its 13C/12C isotopic ratio. Our work was coordinated with a NASA project (NASA NAGW-3151) at the University of Montana under the direction of Steven Running, and was partially funded by the Electric Power Research Institute. The primary objective of this project was to develop and test the Biome-BGC model, a global biological process model with a daily time step which simulates the water, energy and carbon budgets of plant growth. The primary product, the unique global gridded daily land temperature, and the precipitation data set which was used to drive the process model is described. The Biome-BGC model was tested by comparison with a simpler biological model driven by satellite-derived (NDVI) Normalized Difference Vegetation Index and (PAR) Photosynthetically Active Radiation data and by comparison with atmospheric CO2 observations. The simple NDVI model is also described. To facilitate the comparison with atmospheric CO2 observations, a three-dimensional atmospheric transport model was used to produce predictions of atmospheric CO2 variations given CO2 fluxes owing to (NPP) Net Primary Productivity and heterotrophic respiration that were produced by the Biome-BGC model and by the NDVI model. The transport model that we used in this project, and errors associated with transport simulations, were characterized by a comparison of 12 transport models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/785184','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/785184"><span>PROGRESS REPORT: COFIRING PROJECTS FOR WILLOW ISLAND AND ALBRIGHT GENERATING STATIONS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>K. Payette; D. Tillman</p> <p></p> <p>During the period April 1, 2001--June 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) accelerated construction of the Willow Island cofiring project, completed the installation of foundations for the fuel storage facility, the fuel receiving facility, and the processing building. Allegheny received all processing equipment to be installed at Willow Island. Allegheny completed the combustion modeling for the Willow Island project. During this time period construction of the Albright Generating Station cofiring facility was completed, with few items left for final action. The facility was dedicated at a ceremony on June 29. Initial testing of cofiring at the facility commenced.more » This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990005993','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990005993"><span>Atmospheric, Climatic, and Environmental Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Broecker, Wallace S.; Gornitz, Vivien M.</p> <p>1994-01-01</p> <p>The climate and atmospheric modeling project involves analysis of basic climate processes, with special emphasis on studies of the atmospheric CO2 and H2O source/sink budgets and studies of the climatic role Of CO2, trace gases and aerosols. These studies are carried out, based in part on use of simplified climate models and climate process models developed at GISS. The principal models currently employed are a variable resolution 3-D general circulation model (GCM), and an associated "tracer" model which simulates the advection of trace constituents using the winds generated by the GCM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1158992-what-importance-climate-model-bias-when-projecting-impacts-climate-change-land-surface-processes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1158992-what-importance-climate-model-bias-when-projecting-impacts-climate-change-land-surface-processes"><span>What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, M. L.; Rajagopalan, K.; Chung, S. H.</p> <p>2014-05-16</p> <p>Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables(evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW)more » Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These im20 pact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However, significant differences rise from projected SWE, crop yield from dry lands, and HJ Andrews’s ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at region scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies vs. direct modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; e.g., BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality (where VOCs are a primary indicator).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25569762','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25569762"><span>The "5Rs of Reorganization": A Case Report on Service Delivery Reorganization within a Pediatric Rehabilitation Organization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Phoenix, Michelle; Rosenbaum, Peter; Watson, Denise; Camden, Chantal</p> <p>2016-01-01</p> <p>Pediatric rehabilitation centers constantly reorganize services to accommodate changes in funding, client needs, evidence-based practices, accountability requirements, theoretical models, and values. However, there are few service delivery models or descriptions of how organizations plan for change to guide organizations through this complex task. This case report presents the "5Rs of Reorganization," a novel process for planning service delivery reorganization projects in pediatric rehabilitation centers. The 5Rs include: 1. Recognize the need for change, 2. Reallocate resources for project management, 3. Review the reality of clients, service delivery, and the community, 4. Reconstruct reality, and 5. Report results. The implementation and outcomes of the "5Rs of Reorganization" process are described for one pediatric rehabilitation center to illustrate how use of this process led to effective service delivery reorganization planning. The resulting multi-component customized service delivery plan reflects high levels of stakeholder involvement. Principles of project management can be applied to support service delivery reorganization planning within pediatric rehabilitation centers using the "5Rs of Reorganization." Strong communication throughout the planning phase is key to developing and sharing a plan for service delivery reorganization. Communication can be supported through use of the 5R process.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120017461','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120017461"><span>NASA Integrated Model Centric Architecture (NIMA) Model Use and Re-Use</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Conroy, Mike; Mazzone, Rebecca; Lin, Wei</p> <p>2012-01-01</p> <p>This whitepaper accepts the goals, needs and objectives of NASA's Integrated Model-centric Architecture (NIMA); adds experience and expertise from the Constellation program as well as NASA's architecture development efforts; and provides suggested concepts, practices and norms that nurture and enable model use and re-use across programs, projects and other complex endeavors. Key components include the ability to effectively move relevant information through a large community, process patterns that support model reuse and the identification of the necessary meta-information (ex. history, credibility, and provenance) to safely use and re-use that information. In order to successfully Use and Re-Use Models and Simulations we must define and meet key organizational and structural needs: 1. We must understand and acknowledge all the roles and players involved from the initial need identification through to the final product, as well as how they change across the lifecycle. 2. We must create the necessary structural elements to store and share NIMA-enabled information throughout the Program or Project lifecycle. 3. We must create the necessary organizational processes to stand up and execute a NIMA-enabled Program or Project throughout its lifecycle. NASA must meet all three of these needs to successfully use and re-use models. The ability to Reuse Models a key component of NIMA and the capabilities inherent in NIMA are key to accomplishing NASA's space exploration goals. 11</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=281296','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=281296"><span>A fluidized bed technique for estimating soil critical shear stress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Soil erosion models, depending on how they are formulated, always have erodibilitiy parameters in the erosion equations. For a process-based model like the Water Erosion Prediction Project (WEPP) model, the erodibility parameters include rill and interrill erodibility and critical shear stress. Thes...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3778559','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3778559"><span>The evaluation of Mothers’ participation project in children's growth and development process: Using the CIPP evaluation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shams, Behzad; Golshiri, Parasto; Najimi, Arash</p> <p>2013-01-01</p> <p>Background: Assessment of national children's growth indicated a high prevalence of growth failure among them. Many previous projects have studied the children's growth and nutrition status; but most of them leave it without evaluation. The aim of this study was to evaluate Mothers’ Participation Project that carried out in Isfahan after passing two years. Materials and Methods: In this descriptive and summative evaluation study, 90 mother and child pairs were enrolled. They were studied in two case and control groups. We used CIPP Evaluation Model (Context, Input, Process, Product). Data collected using children growth chart and questionnaire was used in the project. Obtained data were analyzed by nonparametric statistical tests. Results: The results showed significant differences between the two groups in following items; mean of maternal self-esteem (P < 0.001), maternal performance in training others (P = 0.006), weekly study time (P = 0.004), frequency of mothers participation in education programs (P = 0.002), their knowledge about the growth monitoring card (P = 0.03), their ability in drawing growth curves (P < 0.001), mothers knowledge about types of growth curves (P = 0.001) and the objectives of growth monitoring (P < 0.001). Conclusion: Considering the sustained improvement of maternal knowledge and function regarding children's growth and development after two years of participation in the project, the performance of CIPP model was confirmed in this field. PMID:24083271</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28554611','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28554611"><span>A mathematical model of embodied consciousness.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rudrauf, David; Bennequin, Daniel; Granic, Isabela; Landini, Gregory; Friston, Karl; Williford, Kenneth</p> <p>2017-09-07</p> <p>We introduce a mathematical model of embodied consciousness, the Projective Consciousness Model (PCM), which is based on the hypothesis that the spatial field of consciousness (FoC) is structured by a projective geometry and under the control of a process of active inference. The FoC in the PCM combines multisensory evidence with prior beliefs in memory and frames them by selecting points of view and perspectives according to preferences. The choice of projective frames governs how expectations are transformed by consciousness. Violations of expectation are encoded as free energy. Free energy minimization drives perspective taking, and controls the switch between perception, imagination and action. In the PCM, consciousness functions as an algorithm for the maximization of resilience, using projective perspective taking and imagination in order to escape local minima of free energy. The PCM can account for a variety of psychological phenomena: the characteristic spatial phenomenology of subjective experience, the distinctions and integral relationships between perception, imagination and action, the role of affective processes in intentionality, but also perceptual phenomena such as the dynamics of bistable figures and body swap illusions in virtual reality. It relates phenomenology to function, showing the computational advantages of consciousness. It suggests that changes of brain states from unconscious to conscious reflect the action of projective transformations and suggests specific neurophenomenological hypotheses about the brain, guidelines for designing artificial systems, and formal principles for psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24083271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24083271"><span>The evaluation of Mothers' participation project in children's growth and development process: Using the CIPP evaluation model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shams, Behzad; Golshiri, Parasto; Najimi, Arash</p> <p>2013-01-01</p> <p>Assessment of national children's growth indicated a high prevalence of growth failure among them. Many previous projects have studied the children's growth and nutrition status; but most of them leave it without evaluation. The aim of this study was to evaluate Mothers' Participation Project that carried out in Isfahan after passing two years. In this descriptive and summative evaluation study, 90 mother and child pairs were enrolled. They were studied in two case and control groups. We used CIPP Evaluation Model (Context, Input, Process, Product). Data collected using children growth chart and questionnaire was used in the project. Obtained data were analyzed by nonparametric statistical tests. The results showed significant differences between the two groups in following items; mean of maternal self-esteem (P < 0.001), maternal performance in training others (P = 0.006), weekly study time (P = 0.004), frequency of mothers participation in education programs (P = 0.002), their knowledge about the growth monitoring card (P = 0.03), their ability in drawing growth curves (P < 0.001), mothers knowledge about types of growth curves (P = 0.001) and the objectives of growth monitoring (P < 0.001). Considering the sustained improvement of maternal knowledge and function regarding children's growth and development after two years of participation in the project, the performance of CIPP model was confirmed in this field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23943068','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23943068"><span>A new model for graduate education and innovation in medical technology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yazdi, Youseph; Acharya, Soumyadipta</p> <p>2013-09-01</p> <p>We describe a new model of graduate education in bioengineering innovation and design- a year long Master's degree program that educates engineers in the process of healthcare technology innovation for both advanced and low-resource global markets. Students are trained in an iterative "Spiral Innovation" approach that ensures early, staged, and repeated examination of all key elements of a successful medical device. This includes clinical immersion based problem identification and assessment (at Johns Hopkins Medicine and abroad), team based concept and business model development, and project planning based on iterative technical and business plan de-risking. The experiential, project based learning process is closely supported by several core courses in business, design, and engineering. Students in the program work on two team based projects, one focused on addressing healthcare needs in advanced markets and a second focused on low-resource settings. The program recently completed its fourth year of existence, and has graduated 61 students, who have continued on to industry or startups (one half), additional graduate education, or medical school (one third), or our own Global Health Innovation Fellowships. Over the 4 years, the program has sponsored 10 global health teams and 14 domestic/advanced market medtech teams, and launched 5 startups, of which 4 are still active. Projects have attracted over US$2.5M in follow-on awards and grants, that are supporting the continued development of over a dozen projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1023618','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1023618"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Peeler, D.; Edwards, T.</p> <p></p> <p>High-level waste (HLW) throughput (i.e., the amount of waste processed per unit of time) is primarily a function of two critical parameters: waste loading (WL) and melt rate. For the Defense Waste Processing Facility (DWPF), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). Significant increases in waste throughput have been achieved at DWPF since initial radioactive operations began in 1996. Key technical and operational initiatives that supported increased waste throughput included improvements in facility attainment, the Chemical Processing Cell (CPC) flowsheet, process control models and frit formulations. As a resultmore » of these key initiatives, DWPF increased WLs from a nominal 28% for Sludge Batch 2 (SB2) to {approx}34 to 38% for SB3 through SB6 while maintaining or slightly improving canister fill times. Although considerable improvements in waste throughput have been obtained, future contractual waste loading targets are nominally 40%, while canister production rates are also expected to increase (to a rate of 325 to 400 canisters per year). Although implementation of bubblers have made a positive impact on increasing melt rate for recent sludge batches targeting WLs in the mid30s, higher WLs will ultimately make the feeds to DWPF more challenging to process. Savannah River Remediation (SRR) recently requested the Savannah River National Laboratory (SRNL) to perform a paper study assessment using future sludge projections to evaluate whether the current Process Composition Control System (PCCS) algorithms would provide projected operating windows to allow future contractual WL targets to be met. More specifically, the objective of this study was to evaluate future sludge batch projections (based on Revision 16 of the HLW Systems Plan) with respect to projected operating windows using current PCCS models and associated constraints. Based on the assessments, the waste loading interval over which a glass system (i.e., a projected sludge composition with a candidate frit) is predicted to be acceptable can be defined (i.e., the projected operating window) which will provide insight into the ability to meet future contractual WL obligations. In this study, future contractual WL obligations are assumed to be 40%, which is the goal after all flowsheet enhancements have been implemented to support DWPF operations. For a system to be considered acceptable, candidate frits must be identified that provide access to at least 40% WL while accounting for potential variation in the sludge resulting from differences in batch-to-batch transfers into the Sludge Receipt and Adjustment Tank (SRAT) and/or analytical uncertainties. In more general terms, this study will assess whether or not the current glass formulation strategy (based on the use of the Nominal and Variation Stage assessments) and current PCCS models will allow access to compositional regions required to targeted higher WLs for future operations. Some of the key questions to be considered in this study include: (1) If higher WLs are attainable with current process control models, are the models valid in these compositional regions? If the higher WL glass regions are outside current model development or validation ranges, is there existing data that could be used to demonstrate model applicability (or lack thereof)? If not, experimental data may be required to revise current models or serve as validation data with the existing models. (2) Are there compositional trends in frit space that are required by the PCCS models to obtain access to these higher WLs? If so, are there potential issues with the compositions of the associated frits (e.g., limitations on the B{sub 2}O{sub 3} and/or Li{sub 2}O concentrations) as they are compared to model development/validation ranges or to the term 'borosilicate' glass? If limitations on the frit compositional range are realized, what is the impact of these restrictions on other glass properties such as the ability to suppress nepheline formation or influence melt rate? The model based assessments being performed make the assumption that the process control models are applicable over the glass compositional regions being evaluated. Although the glass compositional region of interest is ultimately defined by the specific frit, sludge, and WL interval used, there is no prescreening of these compositional regions with respect to the model development or validation ranges which is consistent with current DWPF operations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..308a2001G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..308a2001G"><span>Identifying strengths and weaknesses of Quality Management Unit University of Sumatera Utara software using SCAMPI C</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gunawan, D.; Amalia, A.; Rahmat, R. F.; Muchtar, M. A.; Siregar, I.</p> <p>2018-02-01</p> <p>Identification of software maturity level is a technique to determine the quality of the software. By identifying the software maturity level, the weaknesses of the software can be observed. As a result, the recommendations might be a reference for future software maintenance and development. This paper discusses the software Capability Level (CL) with case studies on Quality Management Unit (Unit Manajemen Mutu) University of Sumatera Utara (UMM-USU). This research utilized Standard CMMI Appraisal Method for Process Improvement class C (SCAMPI C) model with continuous representation. This model focuses on activities for developing quality products and services. The observation is done in three process areas, such as Project Planning (PP), Project Monitoring and Control (PMC), and Requirements Management (REQM). According to the measurement of software capability level for UMM-USU software, turns out that the capability level for the observed process area is in the range of CL1 and CL2. Planning Project (PP) is the only process area which reaches capability level 2, meanwhile, PMC and REQM are still in CL 1 or in performed level. This research reveals several weaknesses of existing UMM-USU software. Therefore, this study proposes several recommendations for UMM-USU to improve capability level for observed process areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22965695','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22965695"><span>Planning a multi-site, complex intervention for homeless people with mental illness: the relationships between the national team and local sites in Canada's At Home/Chez Soi project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nelson, Geoffrey; Macnaughton, Eric; Goering, Paula; Dudley, Michael; O'Campo, Patricia; Patterson, Michelle; Piat, Myra; Prévost, Natasha; Strehlau, Verena; Vallée, Catherine</p> <p>2013-06-01</p> <p>This research focused on the relationships between a national team and five project sites across Canada in planning a complex, community intervention for homeless people with mental illness called At Home/Chez Soi, which is based on the Housing First model. The research addressed two questions: (a) what are the challenges in planning? and (b) what factors that helped or hindered moving project planning forward? Using qualitative methods, 149 national, provincial, and local stakeholders participated in key informant or focus group interviews. We found that planning entails not only intervention and research tasks, but also relational processes that occur within an ecology of time, local context, and values. More specifically, the relationships between the national team and the project sites can be conceptualized as a collaborative process in which national and local partners bring different agendas to the planning process and must therefore listen to, negotiate, discuss, and compromise with one another. A collaborative process that involves power-sharing and having project coordinators at each site helped to bridge the differences between these two stakeholder groups, to find common ground, and to accomplish planning tasks within a compressed time frame. While local context and culture pushed towards unique adaptations of Housing First, the principles of the Housing First model provided a foundation for a common approach across sites and interventions. The implications of the findings for future planning and research of multi-site, complex, community interventions are noted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25031393','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25031393"><span>Estimates of projection overlap and zones of convergence within frontal-striatal circuits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Averbeck, Bruno B; Lehman, Julia; Jacobson, Moriah; Haber, Suzanne N</p> <p>2014-07-16</p> <p>Frontal-striatal circuits underlie important decision processes, and pathology in these circuits is implicated in many psychiatric disorders. Studies have shown a topographic organization of cortical projections into the striatum. However, work has also shown that there is considerable overlap in the striatal projection zones of nearby cortical regions. To characterize this in detail, we quantified the complete striatal projection zones from 34 cortical injection locations in rhesus monkeys. We first fit a statistical model that showed that the projection zone of a cortical injection site could be predicted with considerable accuracy using a cross-validated model estimated on only the other injection sites. We then examined the fraction of overlap in striatal projection zones as a function of distance between cortical injection sites, and found that there was a highly regular relationship. Specifically, nearby cortical locations had as much as 80% overlap, and the amount of overlap decayed exponentially as a function of distance between the cortical injection sites. Finally, we found that some portions of the striatum received inputs from all the prefrontal regions, making these striatal zones candidates as information-processing hubs. Thus, the striatum is a site of convergence that allows integration of information spread across diverse prefrontal cortical areas. Copyright © 2014 the authors 0270-6474/14/339497-09$15.00/0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..128a2037Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..128a2037Y"><span>Studies on combined model based on functional objectives of large scale complex engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuting, Wang; Jingchun, Feng; Jiabao, Sun</p> <p>2018-03-01</p> <p>As various functions were included in large scale complex engineering, and each function would be conducted with completion of one or more projects, combined projects affecting their functions should be located. Based on the types of project portfolio, the relationship of projects and their functional objectives were analyzed. On that premise, portfolio projects-technics based on their functional objectives were introduced, then we studied and raised the principles of portfolio projects-technics based on the functional objectives of projects. In addition, The processes of combined projects were also constructed. With the help of portfolio projects-technics based on the functional objectives of projects, our research findings laid a good foundation for management of large scale complex engineering portfolio management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060040001&hterms=simulation+processes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsimulation%2Bprocesses','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060040001&hterms=simulation+processes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsimulation%2Bprocesses"><span>Numerical simulations for active tectonic processes: increasing interoperability and performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Donnellan, A.; Fox, G.; Rundle, J.; McLeod, D.; Tullis, T.; Grant, L.</p> <p>2002-01-01</p> <p>The objective of this project is to produce a system to fully model earthquake-related data. This task develops simulation and analysis tools to study the physics of earthquakes using state-of-the-art modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=22390&keyword=chlorpyrifos&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=22390&keyword=chlorpyrifos&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>QUANTITATIVE PROCEDURES FOR NEUROTOXICOLOGY RISK ASSESSMENT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>In this project, previously published information on biologically based dose-response model for brain development was used to quantitatively evaluate critical neurodevelopmental processes, and to assess potential chemical impacts on early brain development. This model has been ex...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.3762K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.3762K"><span>The Desert Storms Project - Towards an Improved Representation of Meteorological Processes in Models of Mineral Dust Emission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knippertz, P.; Marsham, J. H.; Schepanski, K.; Heinold, B.; Cowie, S.; Fiedler, S.; Roberts, A. J.</p> <p>2012-04-01</p> <p>Dust significantly affects weather and climate through its influences on radiation, cloud microphysics, atmospheric chemistry and the carbon cycle via the fertilization of ecosystems. It also has important impacts on air quality and human health. To date, quantitative estimates of dust emission and deposition are highly uncertain. This is largely due to the strongly nonlinear dependence of emissions on peak winds, which are often underestimated in models and analysis data. This contribution serves to introduce the general motivation and approach of the recently started "Desert Storms" project at the University of Leeds. It is funded by the European Research Council (ERC) and runs until 2015. The core objective of this project is to explore ways of better representing crucial meteorological processes in numerical dust models. These include daytime downward mixing of momentum from nocturnal low-level jets, convective cold pools (sometimes referred to as "haboobs") and small-scale dust devils and plumes in the daytime convective boundary layer. To achieve this, the following steps are currently undertaken: (A) a detailed analysis of observations including station data, measurements from recent and future field campaigns, analysis data and novel satellite products, (B) a comprehensive comparison between output from a wide range of global and regional dust models, and (C) extensive sensitivity studies with regional and large-eddy simulation models in realistic and idealized set-ups to explore effects of resolution and model physics. The ultimate goal of the project is to develop novel parameterizations that link gridscale quantities with probabilities of winds exceeding a given threshold within the gridbox. Liaising with the regional and global aerosol and dust modelling community right from the outset of the project helps to ensure that results are targeted towards operational and Earth system modelling needs. First detailed results from "Desert Storms" will be presented in several accompanying contributions in the same session.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT.......232C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT.......232C"><span>The evaluator as technical assistant: A model for systemic reform support</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Century, Jeanne Rose</p> <p></p> <p>This study explored evaluation of systemic reform. Specifically, it focused on the evaluation of a systemic effort to improve K-8 science, mathematics and technology education. The evaluation was of particular interest because it used both technical assistance and evaluation strategies. Through studying the combination of these roles, this investigation set out to increase understanding of potentially new evaluator roles, distinguish important characteristics of the evaluator/project participant relationship, and identify how these roles and characteristics contribute to effective evaluation of systemic science education reform. This qualitative study used interview, document analysis, and participant observation as methods of data collection. Interviews were conducted with project leaders, project participants, and evaluators and focused on the evaluation strategies and process, the use of the evaluation, and technical assistance. Documents analyzed included transcripts of evaluation team meetings and reports, memoranda and other print materials generated by the project leaders and the evaluators. Data analysis consisted of analytic and interpretive procedures consistent with the qualitative data collected and entailed a combined process of coding transcripts of interviews and meetings, field notes, and other documents; analyzing and organizing findings; writing of reflective and analytic memos; and designing and diagramming conceptual relationships. The data analysis resulted in the development of the Multi-Function Model for Systemic Reform Support. This model organizes systemic reform support into three functions: evaluation, technical assistance, and a third, named here as "systemic perspective." These functions work together to support the project's educational goals as well as a larger goal--building capacity in project participants. This model can now serve as an informed starting point or "blueprint" for strategically supporting systemic reform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5172504','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5172504"><span>Latent variable modeling to analyze the effects of process parameters on the dissolution of paracetamol tablet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Shi, Xinyuan; Qiao, Yanjiang</p> <p>2017-01-01</p> <p>ABSTRACT The dissolution is one of the critical quality attributes (CQAs) of oral solid dosage forms because it relates to the absorption of drug. In this paper, the influence of raw materials, granules and process parameters on the dissolution of paracetamol tablet was analyzed using latent variable modeling methods. The variability in raw materials and granules was understood based on the principle component analysis (PCA), respectively. A multi-block partial least squares (MBPLS) model was used to determine the critical factors affecting the dissolution. The results showed that the binder amount, the post granulation time, the API content in granule, the fill depth and the punch tip separation distance were the critical factors with variable importance in the projection (VIP) values larger than 1. The importance of each unit of the whole process was also ranked using the block importance in the projection (BIP) index. It was concluded that latent variable models (LVMs) were very useful tools to extract information from the available data and improve the understanding on dissolution behavior of paracetamol tablet. The obtained LVMs were also helpful to propose the process design space and to design control strategies in the further research. PMID:27689242</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AAS...22210402W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AAS...22210402W"><span>Research Projects and Undergraduate Retention at the University of Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker-LaFollette, Amanda; Hardegree-Ullman, K.; Towner, A. P.; McGraw, A. M.; Biddle, L. I.; Robertson, A.; Turner, J.; Smith, C.</p> <p>2013-06-01</p> <p>The University of Arizona’s Astronomy Club utilizes its access to the many telescopes in and around Tucson, Arizona, to allow students to fully participate in a variety of research projects. Three current projects - the exoplanet project, the radio astronomy project, and the Kepler project - all work to give undergraduates who are interested in astronomy the opportunity to explore practical astronomy outside the classroom and in a peer-supported environment. The exoplanet project strives to teach students about the research process, including observing exoplanet transits on the Steward Observatory 61” Kuiper telescope on Mt. Bigelow in Tucson, AZ, reducing the data into lightcurves with the Image Reduction and Analysis Facility (IRAF), modeling the lightcurves using the Interactive Data Language (IDL), and writing and publishing a professional paper, and does it all with no faculty involvement. The radio astronomy project is designed to provide students with an opportunity to work with a professor on a radio astronomy research project, and to learn about the research process, including observing molecules in molecular clouds using the Arizona Radio Observatory 12-meter radio telescope on Kitt Peak in Arizona. The Kepler project is a new project designed in part to facilitate graduate-undergraduate interaction in the Astronomy Department, and in part to allow students (both graduate and undergraduate) to participate in star-spot cycle research using data from the Kepler Mission. All of these research projects and structures provide students with unique access to telescopes, peer mentoring, networking, and understanding the entire process of astronomical research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930002755','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930002755"><span>The development and technology transfer of software engineering technology at NASA. Johnson Space Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.</p> <p>1992-01-01</p> <p>The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ksce.book..177N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ksce.book..177N"><span>Method and Tool for Design Process Navigation and Automatic Generation of Simulation Models for Manufacturing Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji</p> <p></p> <p>Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21879390','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21879390"><span>Students' learning as the focus for shared involvement between universities and clinical practice: a didactic model for postgraduate degree projects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Öhlén, J; Berg, L; Björk Brämberg, E; Engström, Å; German Millberg, L; Höglund, I; Jacobsson, C; Lepp, M; Lidén, E; Lindström, I; Petzäll, K; Söderberg, S; Wijk, H</p> <p>2012-10-01</p> <p>In an academic programme, completion of a postgraduate degree project could be a significant means of promoting student learning in evidence- and experience-based practice. In specialist nursing education, which through the European Bologna process would be raised to the master's level, there is no tradition of including a postgraduate degree project. The aim was to develop a didactic model for specialist nursing students' postgraduate degree projects within the second cycle of higher education (master's level) and with a specific focus on nurturing shared involvement between universities and healthcare settings. This study embodies a participatory action research and theory-generating design founded on empirically practical try-outs. The 3-year project included five Swedish universities and related healthcare settings. A series of activities was performed and a number of data sources secured. Constant comparative analysis was applied. A didactic model is proposed for postgraduate degree projects in specialist nursing education aimed at nurturing shared involvement between universities and healthcare settings. The focus of the model is student learning in order to prepare the students for participation as specialist nurses in clinical knowledge development. The model is developed for the specialist nursing education, but it is general and could be applicable to various education programmes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/891420-direct-retrieval-exterior-orientation-parameters-using-projective-transformation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/891420-direct-retrieval-exterior-orientation-parameters-using-projective-transformation"><span>Direct Retrieval of Exterior Orientation Parameters Using A 2-D Projective Transformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Seedahmed, Gamal H.</p> <p>2006-09-01</p> <p>Direct solutions are very attractive because they obviate the need for initial approximations associated with non-linear solutions. The Direct Linear Transformation (DLT) establishes itself as a method of choice for direct solutions in photogrammetry and other fields. The use of the DLT with coplanar object space points leads to a rank deficient model. This rank deficient model leaves the DLT defined up to a 2-D projective transformation, which makes the direct retrieval of the exterior orientation parameters (EOPs) a non-trivial task. This paper presents a novel direct algorithm to retrieve the EOPs from the 2-D projective transformation. It is basedmore » on a direct relationship between the 2-D projective transformation and the collinearity model using homogeneous coordinates representation. This representation offers a direct matrix correspondence between the 2-D projective transformation parameters and the collinearity model parameters. This correspondence lends itself to a direct matrix factorization to retrieve the EOPs. An important step in the proposed algorithm is a normalization process that provides the actual link between the 2-D projective transformation and the collinearity model. This paper explains the theoretical basis of the proposed algorithm as well as the necessary steps for its practical implementation. In addition, numerical examples are provided to demonstrate its validity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3947800','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3947800"><span>SEM-PLS Analysis of Inhibiting Factors of Cost Performance for Large Construction Projects in Malaysia: Perspective of Clients and Consultants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Memon, Aftab Hameed; Rahman, Ismail Abdul</p> <p>2014-01-01</p> <p>This study uncovered inhibiting factors to cost performance in large construction projects of Malaysia. Questionnaire survey was conducted among clients and consultants involved in large construction projects. In the questionnaire, a total of 35 inhibiting factors grouped in 7 categories were presented to the respondents for rating significant level of each factor. A total of 300 questionnaire forms were distributed. Only 144 completed sets were received and analysed using advanced multivariate statistical software of Structural Equation Modelling (SmartPLS v2). The analysis involved three iteration processes where several of the factors were deleted in order to make the model acceptable. The result of the analysis found that R 2 value of the model is 0.422 which indicates that the developed model has a substantial impact on cost performance. Based on the final form of the model, contractor's site management category is the most prominent in exhibiting effect on cost performance of large construction projects. This finding is validated using advanced techniques of power analysis. This vigorous multivariate analysis has explicitly found the significant category which consists of several causative factors to poor cost performance in large construction projects. This will benefit all parties involved in construction projects for controlling cost overrun. PMID:24693227</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24693227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24693227"><span>SEM-PLS analysis of inhibiting factors of cost performance for large construction projects in Malaysia: perspective of clients and consultants.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Memon, Aftab Hameed; Rahman, Ismail Abdul</p> <p>2014-01-01</p> <p>This study uncovered inhibiting factors to cost performance in large construction projects of Malaysia. Questionnaire survey was conducted among clients and consultants involved in large construction projects. In the questionnaire, a total of 35 inhibiting factors grouped in 7 categories were presented to the respondents for rating significant level of each factor. A total of 300 questionnaire forms were distributed. Only 144 completed sets were received and analysed using advanced multivariate statistical software of Structural Equation Modelling (SmartPLS v2). The analysis involved three iteration processes where several of the factors were deleted in order to make the model acceptable. The result of the analysis found that R(2) value of the model is 0.422 which indicates that the developed model has a substantial impact on cost performance. Based on the final form of the model, contractor's site management category is the most prominent in exhibiting effect on cost performance of large construction projects. This finding is validated using advanced techniques of power analysis. This vigorous multivariate analysis has explicitly found the significant category which consists of several causative factors to poor cost performance in large construction projects. This will benefit all parties involved in construction projects for controlling cost overrun.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..163a2012P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..163a2012P"><span>Change management methodologies trained for automotive infotainment projects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prostean, G.; Volker, S.; Hutanu, A.</p> <p>2017-01-01</p> <p>An Automotive Electronic Control Units (ECU) development project embedded within a car Environment is constantly under attack of a continuous flow of modifications of specifications throughout the life cycle. Root causes for those modifications are for instance simply software or hardware implementation errors or requirement changes to satisfy the forthcoming demands of the market to ensure the later commercial success. It is unavoidable that from the very beginning until the end of the project “requirement changes” will “expose” the agreed objectives defined by contract specifications, which are product features, budget, schedule and quality. The key discussions will focus upon an automotive radio-navigation (infotainment) unit, which challenges aftermarket devises such as smart phones. This competition stresses especially current used automotive development processes, which are fit into a 4 Year car development (introduction) cycle against a one-year update cycle of a smart phone. The research will focus the investigation of possible impacts of changes during all phases of the project: the Concept-Validation, Development and Debugging-Phase. Building a thorough understanding of prospective threats is of paramount importance in order to establish the adequate project management process to handle requirement changes. Personal automotive development experiences and Literature review of change- and configuration management software development methodologies led the authors to new conceptual models, which integrates into the structure of traditional development models used in automotive projects, more concretely of radio-navigation projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27600512','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27600512"><span>Developing, delivering and evaluating primary mental health care: the co-production of a new complex intervention.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reeve, Joanne; Cooper, Lucy; Harrington, Sean; Rosbottom, Peter; Watkins, Jane</p> <p>2016-09-06</p> <p>Health services face the challenges created by complex problems, and so need complex intervention solutions. However they also experience ongoing difficulties in translating findings from research in this area in to quality improvement changes on the ground. BounceBack was a service development innovation project which sought to examine this issue through the implementation and evaluation in a primary care setting of a novel complex intervention. The project was a collaboration between a local mental health charity, an academic unit, and GP practices. The aim was to translate the charity's model of care into practice-based evidence describing delivery and impact. Normalisation Process Theory (NPT) was used to support the implementation of the new model of primary mental health care into six GP practices. An integrated process evaluation evaluated the process and impact of care. Implementation quickly stalled as we identified problems with the described model of care when applied in a changing and variable primary care context. The team therefore switched to using the NPT framework to support the systematic identification and modification of the components of the complex intervention: including the core components that made it distinct (the consultation approach) and the variable components (organisational issues) that made it work in practice. The extra work significantly reduced the time available for outcome evaluation. However findings demonstrated moderately successful implementation of the model and a suggestion of hypothesised changes in outcomes. The BounceBack project demonstrates the development of a complex intervention from practice. It highlights the use of Normalisation Process Theory to support development, and not just implementation, of a complex intervention; and describes the use of the research process in the generation of practice-based evidence. Implications for future translational complex intervention research supporting practice change through scholarship are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040086055&hterms=land+use+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dland%2Buse%2Bchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040086055&hterms=land+use+change&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dland%2Buse%2Bchange"><span>Land Use and Change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Irwin, Daniel E.</p> <p>2004-01-01</p> <p>The overall purpose of this training session is to familiarize Central American project cooperators with the remote sensing and image processing research that is being conducted by the NASA research team and to acquaint them with the data products being produced in the areas of Land Cover and Land Use Change and carbon modeling under the NASA SERVIR project. The training session, therefore, will be both informative and practical in nature. Specifically, the course will focus on the physics of remote sensing, various satellite and airborne sensors (Landsat, MODIS, IKONOS, Star-3i), processing techniques, and commercial off the shelf image processing software.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4252231','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4252231"><span>Mathematical Modeling to Reduce Waste of Compounded Sterile Products in Hospital Pharmacies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dobson, Gregory; Haas, Curtis E.; Tilson, David</p> <p>2014-01-01</p> <p>Abstract In recent years, many US hospitals embarked on “lean” projects to reduce waste. One advantage of the lean operational improvement methodology is that it relies on process observation by those engaged in the work and requires relatively little data. However, the thoughtful analysis of the data captured by operational systems allows the modeling of many potential process options. Such models permit the evaluation of likely waste reductions and financial savings before actual process changes are made. Thus the most promising options can be identified prospectively, change efforts targeted accordingly, and realistic targets set. This article provides one example of such a datadriven process redesign project focusing on waste reduction in an in-hospital pharmacy. A mathematical model of the medication prepared and delivered by the pharmacy is used to estimate the savings from several potential redesign options (rescheduling the start of production, scheduling multiple batches, or reordering production within a batch) as well as the impact of information system enhancements. The key finding is that mathematical modeling can indeed be a useful tool. In one hospital setting, it estimated that waste could be realistically reduced by around 50% by using several process changes and that the greatest benefit would be gained by rescheduling the start of production (for a single batch) away from the period when most order cancellations are made. PMID:25477580</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.A43D..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.A43D..02H"><span>Developing quantitative criteria to evaluate AOGCMs for application to regional climate assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayhoe, K.; Wake, C.; Bradbury, J.; Degaetano, A.; Hertel, A.</p> <p>2006-12-01</p> <p>Climate projections are the foundation for regional assessments of potential climate impacts. However, the soundness of regional assessments depends on the ability of global climate models to reproduce key processes responsible for regional climate trends. Here, we develop a systematic method to compare observed climate with historical atmosphere-ocean general circulation model (AOGCM) simulations, to assess the degree to which AOGCMs are able to reproduce regional circulation patterns. Applying this methodology to the U.S. Northeast (NE), we find that nearly all AOGCMs simulate a reasonable winter NAO pattern and seasonal positions of the Jet Stream and the East Coast Trough. However, not all models capture observed correlations between these circulation patterns and seasonal climate anomalies in the NE. Using only those AOGCMs that meet the criteria in each of these areas, we then develop projections of future climate change in the NE. The primary changes projected to occur over the next century - slightly greater temperature increases in summer than winter, and increases in winter precipitation - are consistent with projected trends in regional climate processes and are relatively independent of model or scale. These suggest confidence in the direction and potential range of the most notable regional climate trends, with the absolute magnitude of change depending on both the sensitivity of the climate system to human forcing as well as on human emissions over coming decades.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1121250','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1121250"><span>GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Wei; Minnick, Matthew; Geza, Mengistu</p> <p>2012-09-30</p> <p>The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings frommore » the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and visualization techniques of the Piceance Basin structure spatial distribution of the oil shale resources. The sur- face water/groundwater models quantify the water shortage and better understanding the spatial distribution of the available water resources. The energy resource development systems model reveals the phase shift of water usage and the oil shale production, which will facilitate better planning for oil shale development. Detailed descriptions about the key findings from the project activity, major accomplishments, and expected impacts of the research will be given in the sec- tion of “ACCOMPLISHMENTS, RESULTS, AND DISCUSSION” of this report.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2525S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2525S"><span>A Synoptic Weather Typing Approach and Its application to Assess Climate Change Impacts on Extreme Weather Events at Local Scale in South-Central Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shouquan Cheng, Chad; Li, Qian; Li, Guilong</p> <p>2010-05-01</p> <p>The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/902797','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/902797"><span>DECOVALEX-THMC Task D: Long-Term Permeability/Porosity Changes inthe EDZ and Near Field due to THM and THC Processes in Volcanic andCrystaline-Bentonite Systems, Status Report October 2005</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Birkholzer, J.; Rutqvist, J.; Sonnenthal, E.</p> <p></p> <p>The DECOVALEX project is an international cooperativeproject initiated by SKI, the Swedish Nuclear Power Inspectorate, withparticipation of about 10 international organizations. The name DECOVALEXstands for DEvelopment of COupled models and their VALidation againstExperiments. The general goal of this project is to encouragemultidisciplinary interactive and cooperative research on modelingcoupled processes in geologic formations in support of the performanceassessment for underground storage of radioactive waste. Three multi-yearproject stages of DECOVALEX have been completed in the past decade,mainly focusing on coupled thermal-hydrological-mechanicalprocesses.Currently, a fourth three-year project stage of DECOVALEX isunder way, referred to as DECOVALEX-THMC. THMC stands for Thermal,Hydrological, Mechanical, and Chemical processes.more » The new project stageaims at expanding the traditional geomechanical scope of the previousDECOVALEX project stages by incorporating geochemical processes importantfor repository performance. The U.S. Department of Energy (DOE) leadsTask D of the new DECOVALEX phase, entitled "Long-termPermeability/Porosity Changes in the EDZ and Near Field due to THC andTHM Processes for Volcanic and Crystalline-Bentonite Systems." In itsleadership role for Task D, DOE coordinates and sets the direction forthe cooperative research activities of the international research teamsengaged in Task D.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25155807','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25155807"><span>Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gustafson, Eric J; De Bruijn, Arjan M G; Pangle, Robert E; Limousin, Jean-Marc; McDowell, Nate G; Pockman, William T; Sturtevant, Brian R; Muss, Jordan D; Kubiske, Mark E</p> <p>2015-02-01</p> <p>Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and projected responses are weak and indirect, limiting their reliability for projecting the impacts of climate change. We developed and tested a relatively mechanistic method to simulate the effects of changing precipitation on species competition within the LANDIS-II FLM. Using data from a field precipitation manipulation experiment in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) ecosystem in New Mexico (USA), we calibrated our model to measurements from ambient control plots and tested predictions under the drought and irrigation treatments against empirical measurements. The model successfully predicted behavior of physiological variables under the treatments. Discrepancies between model output and empirical data occurred when the monthly time step of the model failed to capture the short-term dynamics of the ecosystem as recorded by instantaneous field measurements. We applied the model to heuristically assess the effect of alternative climate scenarios on the piñon-juniper ecosystem and found that warmer and drier climate reduced productivity and increased the risk of drought-induced mortality, especially for piñon. We concluded that the direct links between fundamental drivers and growth rates in our model hold great promise to improve our understanding of ecosystem processes under climate change and improve management decisions because of its greater reliance on first principles. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180000052','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180000052"><span>Application of Ensemble Detection and Analysis to Modeling Uncertainty in Non Stationary Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Racette, Paul</p> <p>2010-01-01</p> <p>Characterization of non stationary and nonlinear processes is a challenge in many engineering and scientific disciplines. Climate change modeling and projection, retrieving information from Doppler measurements of hydrometeors, and modeling calibration architectures and algorithms in microwave radiometers are example applications that can benefit from improvements in the modeling and analysis of non stationary processes. Analyses of measured signals have traditionally been limited to a single measurement series. Ensemble Detection is a technique whereby mixing calibrated noise produces an ensemble measurement set. The collection of ensemble data sets enables new methods for analyzing random signals and offers powerful new approaches to studying and analyzing non stationary processes. Derived information contained in the dynamic stochastic moments of a process will enable many novel applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5747452','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5747452"><span>Probabilistic inversion of expert assessments to inform projections about Antarctic ice sheet responses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wong, Tony E.; Keller, Klaus</p> <p>2017-01-01</p> <p>The response of the Antarctic ice sheet (AIS) to changing global temperatures is a key component of sea-level projections. Current projections of the AIS contribution to sea-level changes are deeply uncertain. This deep uncertainty stems, in part, from (i) the inability of current models to fully resolve key processes and scales, (ii) the relatively sparse available data, and (iii) divergent expert assessments. One promising approach to characterizing the deep uncertainty stemming from divergent expert assessments is to combine expert assessments, observations, and simple models by coupling probabilistic inversion and Bayesian inversion. Here, we present a proof-of-concept study that uses probabilistic inversion to fuse a simple AIS model and diverse expert assessments. We demonstrate the ability of probabilistic inversion to infer joint prior probability distributions of model parameters that are consistent with expert assessments. We then confront these inferred expert priors with instrumental and paleoclimatic observational data in a Bayesian inversion. These additional constraints yield tighter hindcasts and projections. We use this approach to quantify how the deep uncertainty surrounding expert assessments affects the joint probability distributions of model parameters and future projections. PMID:29287095</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395576','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395576"><span>Measurements and modeling of CO 2 concentration and isotopes to improve process-level understanding of Arctic and boreal carbon cycling. Final Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Keeling, Ralph F.</p> <p></p> <p>The major goal of this project was to improve understanding of processes that control the exchanges of CO 2 between the atmosphere and the land biosphere on decadal and longer time scales. The approach involves measuring the changes in atmospheric CO 2 concentration and the isotopes of CO 2 ( 13C/ 12C and 18O/ 16O) at background stations and uses these and other datasets to challenge and improve numerical models of the earth system. The project particularly emphasized the use of these data to improve understanding of changes occurring in boreal and arctic ecosystems over the past 50 years andmore » to seek from these data improved understanding of large-scale processes impacting carbon cycling, such as the responses to warming, CO 2 fertilization, and disturbance. The project also led to advances in the understanding of changes in water-use efficiency of land ecosystems globally based on trends in 13C/ 12C. The core element of this project was providing partial support for continuing measurements of CO 2 concentrations and isotopes from the Scripps CO 2 program, initiated by C. D. Keeling in the 1960s. The measurements included analysis of flasks collected at an array of ten stations distributed from the Arctic to the Antarctic. The project also supported modeling studies and interpretive work to help understand the origins of the large ~50% increase in the amplitude of the atmospheric CO 2 cycle detected at high northern latitudes between 1960 and present and to understand the long-term trend in carbon 13C/ 12C of CO 2. The seasonal cycle work was advanced through collaborations with colleagues at MPI Jena and Imperial College« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=product+AND+reviews+AND+sales&pg=3&id=ED330902','ERIC'); return false;" href="https://eric.ed.gov/?q=product+AND+reviews+AND+sales&pg=3&id=ED330902"><span>Business Marketing Information Systems Skills. Voc-Ed Project. Marketing Management Career Area. Report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Milwaukee Area Technical Coll., WI.</p> <p></p> <p>A study was conducted to develop a curriculum to meet the information processing/management training needs of persons entering or continuing careers in the information marketing area. The process used for the study was based on Stufflebeam's Context, Input, Process, Product (CIPP) model of evaluation. The information gathering process included a…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=76654&keyword=pub+AND+med&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=76654&keyword=pub+AND+med&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>THE LAKE MICHIGAN MASS BALANCE PROJECT: QUALITY ASSURANCE PLAN FOR MATHEMATICAL MODELLING</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This report documents the quality assurance process for the development and application of the Lake Michigan Mass Balance Models. The scope includes the overall modeling framework as well as the specific submodels that are linked to form a comprehensive synthesis of physical, che...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17070620','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17070620"><span>Harnessing collaboration to build nursing research capacity: a research team journey.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Priest, Helena; Segrott, Jeremy; Green, Barbara; Rout, Amelia</p> <p>2007-08-01</p> <p>This paper discusses a qualitative evaluation study, designed to explore nursing lecturers' research capability development through their engagement as co-researchers in a larger case study project (referred to as the 'main project'). It explores the justification for supporting research capacity development using this collaborative approach, the process and experience of undertaking collaborative research, and the effectiveness of this model of collaboration in developing new researchers. The paper also makes connections between the process of undertaking the research (designed to offer opportunities for inexperienced researchers to be involved) and the main project findings (which explored the ways in which academic schools develop research capacity). We first set the main project in its wider context and map key issues relating to research capacity development and collaboration in the literature, before outlining how we involved neophyte and 'midiphyte' researchers. The evaluative study, which is the focus of this paper, discusses the experiences of the neophyte researchers, and explores the synergies between the main project's key findings and the process of undertaking it. We conclude with some principles for using collaboration to build research capacity, visualised through a conceptual model. While this project was located within two universities in the UK, the development of research skills amongst nurses is likely to have broad international relevance. NB1 References to 'nursing', 'nursing research', and 'nursing education' are taken throughout to apply equally to midwifery, midwifery research, and midwifery education. NB2 For the purpose of this project, neophyte researchers are defined as staff needing formal training in research and involvement in others' research, and 'midiphyte' researchers as those with some training but needing support to develop research ideas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2011/1157/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2011/1157/"><span>Description and testing of the Geo Data Portal: Data integration framework and Web processing services for environmental science collaboration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Blodgett, David L.; Booth, Nathaniel L.; Kunicki, Thomas C.; Walker, Jordan I.; Viger, Roland J.</p> <p>2011-01-01</p> <p>Interest in sharing interdisciplinary environmental modeling results and related data is increasing among scientists. The U.S. Geological Survey Geo Data Portal project enables data sharing by assembling open-standard Web services into an integrated data retrieval and analysis Web application design methodology that streamlines time-consuming and resource-intensive data management tasks. Data-serving Web services allow Web-based processing services to access Internet-available data sources. The Web processing services developed for the project create commonly needed derivatives of data in numerous formats. Coordinate reference system manipulation and spatial statistics calculation components implemented for the Web processing services were confirmed using ArcGIS 9.3.1, a geographic information science software package. Outcomes of the Geo Data Portal project support the rapid development of user interfaces for accessing and manipulating environmental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011105','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011105"><span>Integrating Engineering Data Systems for NASA Spaceflight Projects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carvalho, Robert E.; Tollinger, Irene; Bell, David G.; Berrios, Daniel C.</p> <p>2012-01-01</p> <p>NASA has a large range of custom-built and commercial data systems to support spaceflight programs. Some of the systems are re-used by many programs and projects over time. Management and systems engineering processes require integration of data across many of these systems, a difficult problem given the widely diverse nature of system interfaces and data models. This paper describes an ongoing project to use a central data model with a web services architecture to support the integration and access of linked data across engineering functions for multiple NASA programs. The work involves the implementation of a web service-based middleware system called Data Aggregator to bring together data from a variety of systems to support space exploration. Data Aggregator includes a central data model registry for storing and managing links between the data in disparate systems. Initially developed for NASA's Constellation Program needs, Data Aggregator is currently being repurposed to support the International Space Station Program and new NASA projects with processes that involve significant aggregating and linking of data. This change in user needs led to development of a more streamlined data model registry for Data Aggregator in order to simplify adding new project application data as well as standardization of the Data Aggregator query syntax to facilitate cross-application querying by client applications. This paper documents the approach from a set of stand-alone engineering systems from which data are manually retrieved and integrated, to a web of engineering data systems from which the latest data are automatically retrieved and more quickly and accurately integrated. This paper includes the lessons learned through these efforts, including the design and development of a service-oriented architecture and the evolution of the data model registry approaches as the effort continues to evolve and adapt to support multiple NASA programs and priorities.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..322e2060J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..322e2060J"><span>Study of Collaborative Management for Transportation Construction Project Based on BIM Technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jianhua, Liu; Genchuan, Luo; Daiquan, Liu; Wenlei, Li; Bowen, Feng</p> <p>2018-03-01</p> <p>Abstract. Building Information Modeling(BIM) is a building modeling technology based on the relevant information data of the construction project. It is an advanced technology and management concept, which is widely used in the whole life cycle process of planning, design, construction and operation. Based on BIM technology, transportation construction project collaborative management can have better communication through authenticity simulation and architectural visualization and can obtain the basic and real-time information such as project schedule, engineering quality, cost and environmental impact etc. The main services of highway construction management are integrated on the unified BIM platform for collaborative management to realize information intercommunication and exchange, to change the isolated situation of information in the past, and improve the level of information management. The final BIM model is integrated not only for the information management of project and the integration of preliminary documents and design drawings, but also for the automatic generation of completion data and final accounts, which covers the whole life cycle of traffic construction projects and lays a good foundation for smart highway construction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140001446','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140001446"><span>Integrated Main Propulsion System Performance Reconstruction Process/Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael</p> <p>2013-01-01</p> <p>The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1169922','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1169922"><span>Viscosity Meaurement Technique for Metal Fuels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ban, Heng; Kennedy, Rory</p> <p>2015-02-09</p> <p>Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, themore » most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27006757','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27006757"><span>The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Papanicolaou, Alexie</p> <p>2016-01-01</p> <p>Many research programs on non-model species biology have been empowered by genomics. In turn, genomics is underpinned by a reference sequence and ancillary information created by so-called "genome projects". The most reliable genome projects are the ones created as part of an active research program and designed to address specific questions but their life extends past publication. In this opinion paper I outline four key insights that have facilitated maintaining genomic communities: the key role of computational capability, the iterative process of building genomic resources, the value of community participation and the importance of manual curation. Taken together, these ideas can and do ensure the longevity of genome projects and the growing non-model species community can use them to focus a discussion with regards to its future genomic infrastructure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18025725','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18025725"><span>Operationalising uncertainty in data and models for integrated water resources management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blind, M W; Refsgaard, J C</p> <p>2007-01-01</p> <p>Key sources of uncertainty of importance for water resources management are (1) uncertainty in data; (2) uncertainty related to hydrological models (parameter values, model technique, model structure); and (3) uncertainty related to the context and the framing of the decision-making process. The European funded project 'Harmonised techniques and representative river basin data for assessment and use of uncertainty information in integrated water management (HarmoniRiB)' has resulted in a range of tools and methods to assess such uncertainties, focusing on items (1) and (2). The project also engaged in a number of discussions surrounding uncertainty and risk assessment in support of decision-making in water management. Based on the project's results and experiences, and on the subsequent discussions a number of conclusions can be drawn on the future needs for successful adoption of uncertainty analysis in decision support. These conclusions range from additional scientific research on specific uncertainties, dedicated guidelines for operational use to capacity building at all levels. The purpose of this paper is to elaborate on these conclusions and anchoring them in the broad objective of making uncertainty and risk assessment an essential and natural part in future decision-making processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ISPAr41B5..293K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ISPAr41B5..293K"><span>a Semi-Automated Point Cloud Processing Methodology for 3d Cultural Heritage Documentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kıvılcım, C. Ö.; Duran, Z.</p> <p>2016-06-01</p> <p>The preliminary phase in any architectural heritage project is to obtain metric measurements and documentation of the building and its individual elements. On the other hand, conventional measurement techniques require tremendous resources and lengthy project completion times for architectural surveys and 3D model production. Over the past two decades, the widespread use of laser scanning and digital photogrammetry have significantly altered the heritage documentation process. Furthermore, advances in these technologies have enabled robust data collection and reduced user workload for generating various levels of products, from single buildings to expansive cityscapes. More recently, the use of procedural modelling methods and BIM relevant applications for historic building documentation purposes has become an active area of research, however fully automated systems in cultural heritage documentation still remains open. In this paper, we present a semi-automated methodology, for 3D façade modelling of cultural heritage assets based on parametric and procedural modelling techniques and using airborne and terrestrial laser scanning data. We present the contribution of our methodology, which we implemented in an open source software environment using the example project of a 16th century early classical era Ottoman structure, Sinan the Architect's Şehzade Mosque in Istanbul, Turkey.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992EOSTr..73..195H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992EOSTr..73..195H"><span>Intercomparison of land-surface parameterizations launched</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henderson-Sellers, A.; Dickinson, R. E.</p> <p></p> <p>One of the crucial tasks for climatic and hydrological scientists over the next several years will be validating land surface process parameterizations used in climate models. There is not, necessarily, a unique set of parameters to be used. Different scientists will want to attempt to capture processes through various methods “for example, Avissar and Verstraete, 1990”. Validation of some aspects of the available (and proposed) schemes' performance is clearly required. It would also be valuable to compare the behavior of the existing schemes [for example, Dickinson et al., 1991; Henderson-Sellers, 1992a].The WMO-CAS Working Group on Numerical Experimentation (WGNE) and the Science Panel of the GEWEX Continental-Scale International Project (GCIP) [for example, Chahine, 1992] have agreed to launch the joint WGNE/GCIP Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS). The principal goal of this project is to achieve greater understanding of the capabilities and potential applications of existing and new land-surface schemes in atmospheric models. It is not anticipated that a single “best” scheme will emerge. Rather, the aim is to explore alternative models in ways compatible with their authors' or exploiters' goals and to increase understanding of the characteristics of these models in the scientific community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004SPIE.5429..468P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004SPIE.5429..468P"><span>Information fusion via isocortex-based Area 37 modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peterson, James K.</p> <p>2004-08-01</p> <p>A simplified model of information processing in the brain can be constructed using primary sensory input from two modalities (auditory and visual) and recurrent connections to the limbic subsystem. Information fusion would then occur in Area 37 of the temporal cortex. The creation of meta concepts from the low order primary inputs is managed by models of isocortex processing. Isocortex algorithms are used to model parietal (auditory), occipital (visual), temporal (polymodal fusion) cortex and the limbic system. Each of these four modules is constructed out of five cortical stacks in which each stack consists of three vertically oriented six layer isocortex models. The input to output training of each cortical model uses the OCOS (on center - off surround) and FFP (folded feedback pathway) circuitry of (Grossberg, 1) which is inherently a recurrent network type of learning characterized by the identification of perceptual groups. Models of this sort are thus closely related to cognitive models as it is difficult to divorce the sensory processing subsystems from the higher level processing in the associative cortex. The overall software architecture presented is biologically based and is presented as a potential architectural prototype for the development of novel sensory fusion strategies. The algorithms are motivated to some degree by specific data from projects on musical composition and autonomous fine art painting programs, but only in the sense that these projects use two specific types of auditory and visual cortex data. Hence, the architectures are presented for an artificial information processing system which utilizes two disparate sensory sources. The exact nature of the two primary sensory input streams is irrelevant.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..992G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..992G"><span>Dynamical and Thermodynamic Elements of Modeled Climate Change at the East African Margin of Convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giannini, Alessandra; Lyon, Bradfield; Seager, Richard; Vigaud, Nicolas</p> <p>2018-01-01</p> <p>We propose a dynamical interpretation of model projections for an end-of-century wetting in equatorial East Africa. In the current generation of global climate models, increased atmospheric moisture content associated with warming is not the dominant process explaining the increase in rainfall, as the regional circulation is only weakly convergent even during the rainy seasons. Instead, projected wetter future conditions are generally consistent with the El Niño-like trend in tropical Pacific sea surface temperatures in climate models. In addition, a weakening in moisture convergence over the adjacent Congo Basin and Maritime Continent cores of convection results in the weakening of near-surface winds, which increases moisture advection from the Congo Basin core toward the East African margin. Overall confidence in the projections is limited by the significant biases in simulation of the regional climatology and disagreement between observed and modeled tropical Pacific sea surface temperature trends to date.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED21B0280P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED21B0280P"><span>Learning topography with Tangible Landscape games</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrasova, A.; Tabrizian, P.; Harmon, B. A.; Petras, V.; Millar, G.; Mitasova, H.; Meentemeyer, R. K.</p> <p>2017-12-01</p> <p>Understanding topography and its representations is crucial for correct interpretation and modeling of surface processes. However, novice earth science and landscape architecture students often find reading topographic maps challenging. As a result, many students struggle to comprehend more complex spatial concepts and processes such as flow accumulation or sediment transport.We developed and tested a new method for teaching hydrology, geomorphology, and grading using Tangible Landscape—a tangible interface for geospatial modeling. Tangible Landscape couples a physical and digital model of a landscape through a real-time cycle of hands-on modeling, 3D scanning, geospatial computation, and projection. With Tangible Landscape students can sculpt a projection-augmented topographic model of a landscape with their hands and use a variety of tangible objects to immediately see how they are changing geospatial analytics such as contours, profiles, water flow, or landform types. By feeling and manipulating the shape of the topography, while seeing projected geospatial analytics, students can intuitively learn about 3D topographic form, its representations, and how topography controls physical processes. Tangible Landscape is powered by GRASS GIS, an open source geospatial platform with extensive libraries for geospatial modeling and analysis. As such, Tangible Landscape can be used to design a wide range of learning experiences across a large number of geoscience disciplines.As part of a graduate level course that teaches grading, 16 students participated in a series of workshops, which were developed as serious games to encourage learning through structured play. These serious games included 1) diverting rain water to a specified location with minimal changes to landscape, 2) building different combinations of landforms, and 3) reconstructing landscapes based on projected contour information with feedback.In this poster, we will introduce Tangible Landscape, and describe the games and their implementation. We will then present preliminary results of a user experience survey we conducted as part of the workshops. All developed materials and software are open source and available online.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/EJ907759.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/EJ907759.pdf"><span>Teachers as Managers of the Modelling Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lingefjard, Thomas; Meier, Stephanie</p> <p>2010-01-01</p> <p>The work in the Comenius Network project Developing Quality in Mathematics Education II (DQME II) has a main focus on development and evaluation of modelling tasks. One reason is the gap between what mathematical modelling is and what is taught in mathematical classrooms. This article deals with one modelling task and focuses on how two teachers…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993STIN...9511798M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993STIN...9511798M"><span>TKKMOD: A computer simulation program for an integrated wind diesel system. Version 1.0: Document and user guide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manninen, L. M.</p> <p>1993-12-01</p> <p>The document describes TKKMOD, a simulation model developed at Helsinki University of Technology for a specific wind-diesel system layout, with special emphasis on the battery submodel and its use in simulation. The model has been included into the European wind-diesel modeling software package WDLTOOLS under the CEC JOULE project 'Engineering Design Tools for Wind-Diesel Systems' (JOUR-0078). WDLTOOLS serves as the user interface and processes the input and output data of different logistic simulation models developed by the project participants. TKKMOD cannot be run without this shell. The report only describes the simulation principles and model specific parameters of TKKMOD and gives model specific user instructions. The input and output data processing performed outside this model is described in the documentation of the shell. The simulation model is utilized for calculation of long-term performance of the reference system configuration for given wind and load conditions. The main results are energy flows, losses in the system components, diesel fuel consumption, and the number of diesel engine starts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003150','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003150"><span>An Intensive Observation of Calving at Helheim Glacier, East Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Holland, David M.; Voytenko, Denis; Christianson, Knut; Dixon, Timothy H.; Mei, M. Jeffrey; Parizek, Byron R.; Vankova, Irena; Walker, Ryan T.; Walter, Jacob I.; Nicholls, Keith; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003150'); toggleEditAbsImage('author_20170003150_show'); toggleEditAbsImage('author_20170003150_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003150_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003150_hide"></p> <p>2016-01-01</p> <p>Calving of glacial ice into the ocean from the Greenland Ice Sheet is an important component of global sea-level rise. The calving process itself is relatively poorly observed, understood, and modeled; as such, it represents a bottleneck in improving future global sea-level estimates in climate models. We organized a pilot project to observe the calving process at Helheim Glacier in east Greenland in an effort to better understand it. During an intensive one-week survey, we deployed a suite of instrumentation, including a terrestrial radar interferometer, global positioning system (GPS) receivers, seismometers, tsunameters, and an automated weather station. We were fortunate to capture a calving process and to measure various glaciological, oceanographic, and atmospheric parameters before, during, and after the event. One outcome of our observations is evidence that the calving process actually consists of a number of discrete events, spread out over time, in this instance over at least two days. This time span has implications for models of the process. Realistic projections of future global sea level will depend on an accurate parametrization of calving, and we argue that more sustained observations will be required to reach this objective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/53110','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/53110"><span>On the dangers of model complexity without ecological justification in species distribution modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>David M. Bell; Daniel R. Schlaepfer</p> <p>2016-01-01</p> <p>Although biogeographic patterns are the product of complex ecological processes, the increasing com-plexity of correlative species distribution models (SDMs) is not always motivated by ecological theory,but by model fit. The validity of model projections, such as shifts in a species’ climatic niche, becomesquestionable particularly during extrapolations, such as for...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ratio+AND+analysis+AND+evaluation&pg=6&id=ED556680','ERIC'); return false;" href="https://eric.ed.gov/?q=ratio+AND+analysis+AND+evaluation&pg=6&id=ED556680"><span>Multi-Purpose Enrollment Projections: A Comparative Analysis of Four Approaches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Allen, Debra Mary</p> <p>2013-01-01</p> <p>Providing support for institutional planning is central to the function of institutional research. Necessary for the planning process are accurate enrollment projections. The purpose of the present study was to develop a short-term enrollment model simple enough to be understood by those who rely on it, yet sufficiently complex to serve varying…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=intervention+AND+mapping&pg=6&id=ED545882','ERIC'); return false;" href="https://eric.ed.gov/?q=intervention+AND+mapping&pg=6&id=ED545882"><span>From "At Risk" to "At Promise": An Evaluation of an Early Reading First Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zoll, Susan Marie</p> <p>2012-01-01</p> <p>This study demonstrates the impact of an Early Reading First intervention on preschool children's language and literacy development using an ex post facto, causal-comparative research design. The project's professional development model was evaluated to produce a process and outcome evaluation to answer two overarching research questions: (1) What…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED126383.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED126383.pdf"><span>"US": Primary Prevention, Para-Counseling, Research Project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lynch, Mallory B.</p> <p></p> <p>This report provides both a focal (part) and a subsidiary (whole) description of the process and results of a primary prevention, paracounseling, research project, funded for two years by the National Institute on Drug Abuse to create and research a "model" program which could be used nation-wide to help prevent drug abuse. Adolescents,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=process+AND+improvement&pg=2&id=EJ831392','ERIC'); return false;" href="https://eric.ed.gov/?q=process+AND+improvement&pg=2&id=EJ831392"><span>Controlling Curriculum Redesign with a Process Improvement Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Drinka, Dennis; Yen, Minnie Yi-Miin</p> <p>2008-01-01</p> <p>A portion of the curriculum for a Management Information Systems degree was redesigned to enhance the experiential learning of students by focusing it on a three-semester community-based system development project. The entire curriculum was then redesigned to have a project-centric focus with each course in the curriculum contributing to the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JIEI....9...17Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JIEI....9...17Y"><span>A heuristic method for consumable resource allocation in multi-class dynamic PERT networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yaghoubi, Saeed; Noori, Siamak; Mazdeh, Mohammad Mahdavi</p> <p>2013-06-01</p> <p>This investigation presents a heuristic method for consumable resource allocation problem in multi-class dynamic Project Evaluation and Review Technique (PERT) networks, where new projects from different classes (types) arrive to system according to independent Poisson processes with different arrival rates. Each activity of any project is operated at a devoted service station located in a node of the network with exponential distribution according to its class. Indeed, each project arrives to the first service station and continues its routing according to precedence network of its class. Such system can be represented as a queuing network, while the discipline of queues is first come, first served. On the basis of presented method, a multi-class system is decomposed into several single-class dynamic PERT networks, whereas each class is considered separately as a minisystem. In modeling of single-class dynamic PERT network, we use Markov process and a multi-objective model investigated by Azaron and Tavakkoli-Moghaddam in 2007. Then, after obtaining the resources allocated to service stations in every minisystem, the final resources allocated to activities are calculated by the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6477B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6477B"><span>Efficient Geological Modelling of Large AEM Surveys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bach, Torben; Martlev Pallesen, Tom; Jørgensen, Flemming; Lundh Gulbrandsen, Mats; Mejer Hansen, Thomas</p> <p>2014-05-01</p> <p>Combining geological expert knowledge with geophysical observations into a final 3D geological model is, in most cases, not a straight forward process. It typically involves many types of data and requires both an understanding of the data and the geological target. When dealing with very large areas, such as modelling of large AEM surveys, the manual task for the geologist to correctly evaluate and properly utilise all the data available in the survey area, becomes overwhelming. In the ERGO project (Efficient High-Resolution Geological Modelling) we address these issues and propose a new modelling methodology enabling fast and consistent modelling of very large areas. The vision of the project is to build a user friendly expert system that enables the combination of very large amounts of geological and geophysical data with geological expert knowledge. This is done in an "auto-pilot" type functionality, named Smart Interpretation, designed to aid the geologist in the interpretation process. The core of the expert system is a statistical model that describes the relation between data and geological interpretation made by a geological expert. This facilitates fast and consistent modelling of very large areas. It will enable the construction of models with high resolution as the system will "learn" the geology of an area directly from interpretations made by a geological expert, and instantly apply it to all hard data in the survey area, ensuring the utilisation of all the data available in the geological model. Another feature is that the statistical model the system creates for one area can be used in another area with similar data and geology. This feature can be useful as an aid to an untrained geologist to build a geological model, guided by the experienced geologist way of interpretation, as quantified by the expert system in the core statistical model. In this project presentation we provide some examples of the problems we are aiming to address in the project, and show some preliminary results.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.3425N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.3425N"><span>The GIIDA (Management of the CNR Environmental Data for Interoperability) project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nativi, S.</p> <p>2009-04-01</p> <p>This work presents the GIIDA (Gestione Integrata e Interoperativa dei Dati Ambientali del CNR) inter-departimental project of the Italian National Research Council (CNR). The project is an initiative of the Earth and Environment Department (Dipartimento Terra e Ambiente) of the CNR. GIIDA mission is "To implement the Spatial Information Infrastructure (SII) of CNR for Environmental and Earth Observation data". The project aims to design and develop a multidisciplinary cyber-infrastructure for the management, processing and evaluation of Earth and environmental data. This infrastructure will contribute to the Italian presence in international projects and initiatives, such as: INSPIRE, GMES, GEOSS and SEIS. The main GIIDA goals are: • Networking: To create a network of CNR Institutes for implementing a common information space and sharing spatial resources. • Observation: Re-engineering the environmental observation system of CNR • Modeling: Re-engineering the environmental modeling system del CNR • Processing: Re-engineering the environmental processing system del CNR • Mediation: To define mediation methods and instruments for implementing the international interoperability standards. The project started in July 2008 releasing a specification document of the GIIDA architecture for interoperability and security. Based on these documents, a Call for Proposals was issued in September 2008. GIIDA received 23 proposed pilots from 16 different Institutes belonging to five CNR Departments and from 15 non-CNR Institutions (e.g. three Italian regional administrations, three national research centers, four universities, some SMEs). These pilot were divided into thematic areas. In fact, GIIDA considers seven main thematic areas/domains: • Biodiversity; • Climate Changes; • Air Quality; • Soil and Water Quality; • Risks; • Infrastructures for Research and Public Administrations; • Sea and Marine resources Each of these thematic areas is covered by a Working Group which coordinates the activities and the achievements of the respective pilots. Working Groups are called to develop for each area: 1) a specific Web Portal; 2) a thematic catalog service; 3) a thematic thesaurus service; 4) a thematic Wiki; 5) standard access and view services for thematic resources -such as: datasets, models, and processing services; 6) a couple of significant use scenarios to be demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H52B..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H52B..03G"><span>Yielding physically-interpretable emulators - A Sparse PCA approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Galelli, S.; Alsahaf, A.; Giuliani, M.; Castelletti, A.</p> <p>2015-12-01</p> <p>Projection-based techniques, such as Principal Orthogonal Decomposition (POD), are a common approach to surrogate high-fidelity process-based models by lower order dynamic emulators. With POD, the dimensionality reduction is achieved by using observations, or 'snapshots' - generated with the high-fidelity model -, to project the entire set of input and state variables of this model onto a smaller set of basis functions that account for most of the variability in the data. While reduction efficiency and variance control of POD techniques are usually very high, the resulting emulators are structurally highly complex and can hardly be given a physically meaningful interpretation as each basis is a projection of the entire set of inputs and states. In this work, we propose a novel approach based on Sparse Principal Component Analysis (SPCA) that combines the several assets of POD methods with the potential for ex-post interpretation of the emulator structure. SPCA reduces the number of non-zero coefficients in the basis functions by identifying a sparse matrix of coefficients. While the resulting set of basis functions may retain less variance of the snapshots, the presence of a few non-zero coefficients assists in the interpretation of the underlying physical processes. The SPCA approach is tested on the reduction of a 1D hydro-ecological model (DYRESM-CAEDYM) used to describe the main ecological and hydrodynamic processes in Tono Dam, Japan. An experimental comparison against a standard POD approach shows that SPCA achieves the same accuracy in emulating a given output variable - for the same level of dimensionality reduction - while yielding better insights of the main process dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860023405','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860023405"><span>ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1986-01-01</p> <p>Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4441006','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4441006"><span>Interdisciplinarity as cognitive integration: auditory verbal hallucinations as a case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bernini, Marco; Woods, Angela</p> <p>2015-01-01</p> <p>In this article, we advocate a bottom-up direction for the methodological modeling of interdisciplinary research based on concrete interactions among individuals within interdisciplinary projects. Drawing on our experience in Hearing the Voice (a cross-disciplinary project on auditory verbal hallucinations running at Durham University), we focus on the dynamic if also problematic integration of cognitive science (neuroscience, cognitive psychology, and of mind), phenomenology, and humanistic disciplines (literature, narratology, history, and theology). We propose a new model for disciplinary integration which brings to the fore an under-investigated dynamic of interdisciplinary projects, namely their being processes of distributed cognition and cognitive integration. PMID:26005512</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10023E..0KM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10023E..0KM"><span>Fast in-situ tool inspection based on inverse fringe projection and compact sensor heads</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthias, Steffen; Kästner, Markus; Reithmeier, Eduard</p> <p>2016-11-01</p> <p>Inspection of machine elements is an important task in production processes in order to ensure the quality of produced parts and to gather feedback for the continuous improvement process. A new measuring system is presented, which is capable of performing the inspection of critical tool geometries, such as gearing elements, inside the forming machine. To meet the constraints on sensor head size and inspection time imposed by the limited space inside the machine and the cycle time of the process, the measuring device employs a combination of endoscopy techniques with the fringe projection principle. Compact gradient index lenses enable a compact design of the sensor head, which is connected to a CMOS camera and a flexible micro-mirror based projector via flexible fiber bundles. Using common fringe projection patterns, the system achieves measuring times of less than five seconds. To further reduce the time required for inspection, the generation of inverse fringe projection patterns has been implemented for the system. Inverse fringe projection speeds up the inspection process by employing object-adapted patterns, which enable the detection of geometry deviations in a single image. Two different approaches to generate object adapted patterns are presented. The first approach uses a reference measurement of a manufactured tool master to generate the inverse pattern. The second approach is based on a virtual master geometry in the form of a CAD file and a ray-tracing model of the measuring system. Virtual modeling of the measuring device and inspection setup allows for geometric tolerancing for free-form surfaces by the tool designer in the CAD-file. A new approach is presented, which uses virtual tolerance specifications and additional simulation steps to enable fast checking of metric tolerances. Following the description of the pattern generation process, the image processing steps required for inspection are demonstrated on captures of gearing geometries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910016133','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910016133"><span>NASA 1990 Multisensor Airborne Campaigns (MACs) for ecosystem and watershed studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wickland, Diane E.; Asrar, Ghassem; Murphy, Robert E.</p> <p>1991-01-01</p> <p>The Multisensor Airborne Campaign (MAC) focus within NASA's former Land Processes research program was conceived to achieve the following objectives: to acquire relatively complete, multisensor data sets for well-studied field sites, to add a strong remote sensing science component to ecology-, hydrology-, and geology-oriented field projects, to create a research environment that promotes strong interactions among scientists within the program, and to more efficiently utilize and compete for the NASA fleet of remote sensing aircraft. Four new MAC's were conducted in 1990: the Oregon Transect Ecosystem Research (OTTER) project along an east-west transect through central Oregon, the Forest Ecosystem Dynamics (FED) project at the Northern Experimental Forest in Howland, Maine, the MACHYDRO project in the Mahantango Creek watershed in central Pennsylvania, and the Walnut Gulch project near Tombstone, Arizona. The OTTER project is testing a model that estimates the major fluxes of carbon, nitrogen, and water through temperate coniferous forest ecosystems. The focus in the project is on short time-scale (days-year) variations in ecosystem function. The FED project is concerned with modeling vegetation changes of forest ecosystems using remotely sensed observations to extract biophysical properties of forest canopies. The focus in this project is on long time-scale (decades to millenia) changes in ecosystem structure. The MACHYDRO project is studying the role of soil moisture and its regulating effects on hydrologic processes. The focus of the study is to delineate soil moisture differences within a basin and their changes with respect to evapotranspiration, rainfall, and streamflow. The Walnut Gulch project is focused on the effects of soil moisture in the energy and water balance of arid and semiarid ecosystems and their feedbacks to the atmosphere via thermal forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130011580','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130011580"><span>A Project Management Approach to Using Simulation for Cost Estimation on Large, Complex Software Development Projects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mizell, Carolyn; Malone, Linda</p> <p>2007-01-01</p> <p>It is very difficult for project managers to develop accurate cost and schedule estimates for large, complex software development projects. None of the approaches or tools available today can estimate the true cost of software with any high degree of accuracy early in a project. This paper provides an approach that utilizes a software development process simulation model that considers and conveys the level of uncertainty that exists when developing an initial estimate. A NASA project will be analyzed using simulation and data from the Software Engineering Laboratory to show the benefits of such an approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC41B0909L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC41B0909L"><span>A Regional Climate Model Evaluation System based on Satellite and other Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lean, P.; Kim, J.; Waliser, D. E.; Hall, A. D.; Mattmann, C. A.; Granger, S. L.; Case, K.; Goodale, C.; Hart, A.; Zimdars, P.; Guan, B.; Molotch, N. P.; Kaki, S.</p> <p>2010-12-01</p> <p>Regional climate models are a fundamental tool needed for downscaling global climate simulations and projections, such as those contributing to the Coupled Model Intercomparison Projects (CMIPs) that form the basis of the IPCC Assessment Reports. The regional modeling process provides the means to accommodate higher resolution and a greater complexity of Earth System processes. Evaluation of both the global and regional climate models against observations is essential to identify model weaknesses and to direct future model development efforts focused on reducing the uncertainty associated with climate projections. However, the lack of reliable observational data and the lack of formal tools are among the serious limitations to addressing these objectives. Recent satellite observations are particularly useful as they provide a wealth of information on many different aspects of the climate system, but due to their large volume and the difficulties associated with accessing and using the data, these datasets have been generally underutilized in model evaluation studies. Recognizing this problem, NASA JPL / UCLA is developing a model evaluation system to help make satellite observations, in conjunction with in-situ, assimilated, and reanalysis datasets, more readily accessible to the modeling community. The system includes a central database to store multiple datasets in a common format and codes for calculating predefined statistical metrics to assess model performance. This allows the time taken to compare model simulations with satellite observations to be reduced from weeks to days. Early results from the use this new model evaluation system for evaluating regional climate simulations over California/western US regions will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMPA31A2153C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMPA31A2153C"><span>Building Capacity to Use Earth Observations in Decision Making: A Case Study of NASA's DEVELOP National Program Methods and Best Practices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Miller, T. N.; Favors, J. E.; Rogers, L.; Allsbrook, K. N.; Bender, M. R.; Ruiz, M. L.</p> <p>2015-12-01</p> <p>NASA's DEVELOP National Program fosters an immersive research environment for dual capacity building. Through rapid feasibility Earth science projects, the future workforce and current decision makers are engaged in research projects to build skills and capabilities to use Earth observation in environmental management and policy making. DEVELOP conducts over 80 projects annually, successfully building skills through partnerships with over 150 organizations and providing over 350 opportunities for project participants each year. Filling a void between short-term training courses and long-term research projects, the DEVELOP model has been successful in supporting state, local, federal and international government organizations to adopt methodologies and enhance decision making processes. This presentation will highlight programmatic best practices, feedback from participants and partner organizations, and three sample case studies of successful adoption of methods in the decision making process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED332155.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED332155.pdf"><span>A School-College Consultation Model for Integration of Technology and Whole Language in Elementary Science Instruction. Field Study Report No. 1991.A.BAL, Christopher Columbus Consortium Project.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Balajthy, Ernest</p> <p></p> <p>A study examined a new collaborative consultation process to enhance the classroom implementation of whole language science units that make use of computers and multimedia resources. The overall program was divided into three projects, two at the fifth-grade level and one at the third grade level. Each project was staffed by a team of one…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......152S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......152S"><span>Analysis and logical modeling of biological signaling transduction networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Zhongyao</p> <p></p> <p>The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9508P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9508P"><span>Advances in Geoscience Modeling: Smart Modeling Frameworks, Self-Describing Models and the Role of Standardized Metadata</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peckham, Scott</p> <p>2016-04-01</p> <p>Over the last decade, model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System) and ESMF (Earth System Modeling Framework) have developed mechanisms that make it much easier for modelers to connect heterogeneous sets of process models in a plug-and-play manner to create composite "system models". These mechanisms greatly simplify code reuse, but must simultaneously satisfy many different design criteria. They must be able to mediate or compensate for differences between the process models, such as their different programming languages, computational grids, time-stepping schemes, variable names and variable units. However, they must achieve this interoperability in a way that: (1) is noninvasive, requiring only relatively small and isolated changes to the original source code, (2) does not significantly reduce performance, (3) is not time-consuming or confusing for a model developer to implement, (4) can very easily be updated to accommodate new versions of a given process model and (5) does not shift the burden of providing model interoperability to the model developers. In tackling these design challenges, model framework developers have learned that the best solution is to provide each model with a simple, standardized interface, i.e. a set of standardized functions that make the model: (1) fully-controllable by a caller (e.g. a model framework) and (2) self-describing with standardized metadata. Model control functions are separate functions that allow a caller to initialize the model, advance the model's state variables in time and finalize the model. Model description functions allow a caller to retrieve detailed information on the model's input and output variables, its computational grid and its timestepping scheme. If the caller is a modeling framework, it can use the self description functions to learn about each process model in a collection to be coupled and then automatically call framework service components (e.g. regridders, time interpolators and unit converters) as necessary to mediate the differences between them so they can work together. This talk will first review two key products of the CSDMS project, namely a standardized model interface called the Basic Model Interface (BMI) and the CSDMS Standard Names. The standard names are used in conjunction with BMI to provide a semantic matching mechanism that allows output variables from one process model or data set to be reliably used as input variables to other process models in a collection. They include not just a standardized naming scheme for model variables, but also a standardized set of terms for describing the attributes and assumptions of a given model. Recent efforts to bring powerful uncertainty analysis and inverse modeling toolkits such as DAKOTA into modeling frameworks will also be described. This talk will conclude with an overview of several related modeling projects that have been funded by NSF's EarthCube initiative, namely the Earth System Bridge, OntoSoft and GeoSemantics projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA586625','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA586625"><span>Assessment of Life Cycle Information Exchanges (LCie): Understanding the Value-Added Benefit of a COBie Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-10-01</p> <p>exchange (COBie), Building Information Modeling ( BIM ), value-added analysis, business processes, project management 16. SECURITY CLASSIFICATION OF: 17...equipment. The innovative aspect of Building In- formation Modeling ( BIM ) is that it creates a computable building descrip- tion. The ability to use a...interoperability. In order for the building information to be interoperable, it must also con- form to a common data model , or schema, that defines the class</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170010187','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170010187"><span>Characterizing DebriSat Fragments: So Many Fragments, So Much Data, and So Little Time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shiotani, B.; Rivero, M.; Carrasquilla, M.; Allen, S.; Fitz-Coy, N.; Liou, J.-C.; Huynh, T.; Sorge, M.; Cowardin, H.; Opiela, J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170010187'); toggleEditAbsImage('author_20170010187_show'); toggleEditAbsImage('author_20170010187_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170010187_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170010187_hide"></p> <p>2017-01-01</p> <p>To improve prediction accuracy, the DebriSat project was conceived by NASA and DoD to update existing standard break-up models. Updating standard break-up models require detailed fragment characteristics such as physical size, material properties, bulk density, and ballistic coefficient. For the DebriSat project, a representative modern LEO spacecraft was developed and subjected to a laboratory hypervelocity impact test and all generated fragments with at least one dimension greater than 2 mm are collected, characterized and archived. Since the beginning of the characterization phase of the DebriSat project, over 130,000 fragments have been collected and approximately 250,000 fragments are expected to be collected in total, a three-fold increase over the 85,000 fragments predicted by the current break-up model. The challenge throughout the project has been to ensure the integrity and accuracy of the characteristics of each fragment. To this end, the post hypervelocity-impact test activities, which include fragment collection, extraction, and characterization, have been designed to minimize handling of the fragments. The procedures for fragment collection, extraction, and characterization were painstakingly designed and implemented to maintain the post-impact state of the fragments, thus ensuring the integrity and accuracy of the characterization data. Each process is designed to expedite the accumulation of data, however, the need for speed is restrained by the need to protect the fragments. Methods to expedite the process such as parallel processing have been explored and implemented while continuing to maintain the highest integrity and value of the data. To minimize fragment handling, automated systems have been developed and implemented. Errors due to human inputs are also minimized by the use of these automated systems. This paper discusses the processes and challenges involved in the collection, extraction, and characterization of the fragments as well as the time required to complete the processes. The objective is to provide the orbital debris community an understanding of the scale of the effort required to generate and archive high quality data and metadata for each debris fragment 2 mm or larger generated by the DebriSat project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H11C1186M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H11C1186M"><span>Supporting the operational use of process based hydrological models and NASA Earth Observations for use in land management and post-fire remediation through a Rapid Response Erosion Database (RRED).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, M. E.; Elliot, W.; Billmire, M.; Robichaud, P. R.; Banach, D. M.</p> <p>2017-12-01</p> <p>We have built a Rapid Response Erosion Database (RRED, http://rred.mtri.org/rred/) for the continental United States to allow land managers to access properly formatted spatial model inputs for the Water Erosion Prediction Project (WEPP). Spatially-explicit process-based models like WEPP require spatial inputs that include digital elevation models (DEMs), soil, climate and land cover. The online database delivers either a 10m or 30m USGS DEM, land cover derived from the Landfire project, and soil data derived from SSURGO and STATSGO datasets. The spatial layers are projected into UTM coordinates and pre-registered for modeling. WEPP soil parameter files are also created along with linkage files to match both spatial land cover and soils data with the appropriate WEPP parameter files. Our goal is to make process-based models more accessible by preparing spatial inputs ahead of time allowing modelers to focus on addressing scenarios of concern. The database provides comprehensive support for post-fire hydrological modeling by allowing users to upload spatial soil burn severity maps, and within moments returns spatial model inputs. Rapid response is critical following natural disasters. After moderate and high severity wildfires, flooding, erosion, and debris flows are a major threat to life, property and municipal water supplies. Mitigation measures must be rapidly implemented if they are to be effective, but they are expensive and cannot be applied everywhere. Fire, runoff, and erosion risks also are highly heterogeneous in space, creating an urgent need for rapid, spatially-explicit assessment. The database has been used to help assess and plan remediation on over a dozen wildfires in the Western US. Future plans include expanding spatial coverage, improving model input data and supporting additional models. Our goal is to facilitate the use of the best possible datasets and models to support the conservation of soil and water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25825257','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25825257"><span>Being reflexive in qualitative grounded theory: discussion and application of a model of reflexivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Engward, Hilary; Davis, Geraldine</p> <p>2015-07-01</p> <p>A discussion of the meaning of reflexivity in research with the presentation of examples of how a model of reflexivity was used in a grounded theory research project. Reflexivity requires the researcher to make transparent the decisions they make in the research process and is therefore important in developing quality in nursing research. The importance of being reflexive is highlighted in the literature in relation to nursing research, however, practical guidance as to how to go about doing research reflexively is not always clearly articulated. This is a discussion paper. The concept of reflexivity in research is explored using the Alvesson and Skoldberg model of reflexivity and practical examples of how a researcher developed reflexivity in a grounded theory project are presented. Nurse researchers are encouraged to explore and apply the concept of reflexivity in their research practices to develop transparency in the research process and to increase robustness in their research. The Alvesson and Skoldberg model is of value in applying reflexivity in qualitative nursing research, particularly in grounded theory research. Being reflexive requires the researcher to be completely open about decisions that are made in the research process. The Alvesson and Skolberg model of reflexivity is a useful model that can enhance reflexivity in the research process. It can be a useful practical tool to develop reflexivity in grounded theory research. © 2015 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120009839','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120009839"><span>Integrated Modeling of Aerosol, Cloud, Precipitation and Land Processes at Satellite-Resolved Scales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peters-Lidard, Christa; Tao, Wei-Kuo; Chin, Mian; Braun, Scott; Case, Jonathan; Hou, Arthur; Kumar, Anil; Kumar, Sujay; Lau, William; Matsui, Toshihisa; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20120009839'); toggleEditAbsImage('author_20120009839_show'); toggleEditAbsImage('author_20120009839_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20120009839_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20120009839_hide"></p> <p>2012-01-01</p> <p>In this talk, I will present recent results from a project led at NASA/GSFC, in collaboration with NASA/MSFC and JHU, focused on the development and application of an observation-driven integrated modeling system that represents aerosol, cloud, precipitation and land processes at satellite-resolved scales. The project, known as the NASA Unified WRF (NU-WRF), is funded by NASA's Modeling and Analysis Program, and leverages prior investments from the Air Force Weather Agency and NASA's Earth Science Technology Office (ESTO). We define "satellite-resolved" scales as being within a typical mesoscale atmospheric modeling grid (roughly 1-25 km), although this work is designed to bridge the continuum between local (microscale), regional (mesoscale) and global (synoptic) processes. NU-WRF is a superset of the standard NCAR Advanced Research WRF model, achieved by fully integrating the GSFC Land Information System (LIS, already coupled to WRF), the WRF/Chem enabled version of the Goddard Chemistry Aerosols Radiation Transport (GOCART) model, the Goddard Satellite Data Simulation Unit (SDSU), and boundary/initial condition preprocessors for MERRA and GEOS-5 into a single software release (with source code available by agreement with NASA/GSFC). I will show examples where the full coupling between aerosol, cloud, precipitation and land processes is critical for predicting local, regional, and global water and energy cycles, including some high-impact phenomena such as floods, hurricanes, mesoscale convective systems, droughts, and monsoons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC43A1046F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC43A1046F"><span>One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.</p> <p>2013-12-01</p> <p>Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of future climate mitigation strategies. We find substantial effects on key integrated assessment projections including the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, future land-use patterns, food prices and energy technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=29217&Lab=NERL&keyword=comparative+AND+design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=29217&Lab=NERL&keyword=comparative+AND+design&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>MODELS AND MODELING METHODS FOR ASSESSING HUMAN EXPOSURE AND DOSE TO TOXIC CHEMICALS AND POLLUTANTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This project aims to strengthen the general scientific foundation of EPA's exposure and risk assessment, management, and policy processes by developing state-of-the-art exposure to dose mathematical models and solution methods. The results of this research will be to produce a mo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750022878','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750022878"><span>Urban development applications project. Urban technology transfer study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1975-01-01</p> <p>Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/24412','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/24412"><span>Characterizing land use change in multidisciplinary landscape-level analyses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jeffrey D. Kline</p> <p>2003-01-01</p> <p>Economists increasingly face opportunities to collaborate with ecologists on landscape-level analyses of socioeconomic and ecological processes. This often calls for developing empirical models to project land use change as input into ecological models. Providing ecologists with the land use information they desire can present many challenges regarding data, modeling,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=189029&keyword=national+AND+parks&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=189029&keyword=national+AND+parks&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Data for Environmental Modeling (D4EM): Background and Applications of Data Automation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The Data for Environmental Modeling (D4EM) project demonstrates the development of a comprehensive set of open source software tools that overcome obstacles to accessing data needed by automating the process of populating model input data sets with environmental data available fr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A23C0185O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A23C0185O"><span>Regional Climate Change across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otte, T. L.; Nolte, C. G.; Otte, M. J.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.</p> <p>2011-12-01</p> <p>Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. Preliminary results from downscaling NASA/GISS ModelE simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model will be used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA209728','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA209728"><span>United States Air Force Research Initiation Program for 1987. Volume 3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1989-04-01</p> <p>Influence of Microstructural Variations Dr. Ravinder Diwan on the Thermomechanical Processing in Dynamic Material Modeling of Titanium Aluminides , 760,7MG...7MG-077 INFLUENCE OF MICROSTRUCTURAL VARIATIONS ON THE THERMOMECHANICAL PROCESSING IN DYNAMIC MATERIAL MODELING OF TITANIUM ALUMINIDES MARCH 15, 1989...provided on this project. Final Report Submitted: March 15, 1989. 75-1 ABSTRACT Titanium aluminides with strong thermodynamically stable intermetallic phases</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA473002','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA473002"><span>Process Improvement Should Link to Security: SEPG 2007 Security Track Recap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-09-01</p> <p>the Systems Security Engineering Capability Maturity Model (SSE- CMM / ISO 21827) and its use in system software developments ...software development life cycle ( SDLC )? 6. In what ways should process improvement support security in the SDLC ? 1.2 10BPANEL RESOURCES For each... project management, and support practices through the use of the capability maturity models including the CMMI and the Systems Security</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191919','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191919"><span>State-and-transition simulation models: a framework for forecasting landscape change</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée</p> <p>2016-01-01</p> <p>SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of landscape dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29426721','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29426721"><span>Waste-efficient materials procurement for construction projects: A structural equation modelling of critical success factors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ajayi, Saheed O; Oyedele, Lukumon O</p> <p>2018-05-01</p> <p>Albeit the understanding that construction waste is caused by activities ranging from all stages of project delivery process, research efforts have been concentrated on design and construction stages, while the possibility of reducing waste through materials procurement process is widely neglected. This study aims at exploring and confirming strategies for achieving waste-efficient materials procurement in construction activities. The study employs sequential exploratory mixed method approach as its methodological framework, using focus group discussion, statistical analysis and structural equation modelling. The study suggests that for materials procurement to enhance waste minimisation in construction projects, the procurement process would be characterised by four features. These include suppliers' commitment to low waste measures, low waste purchase management, effective materials delivery management and waste-efficient Bill of Quantity, all of which have significant impacts on waste minimisation. This implies that commitment of materials suppliers to such measures as take back scheme and flexibility in supplying small materials quantity, among others, are expected of materials procurement. While low waste purchase management stipulates the need for such measures as reduced packaging and consideration of pre-assembled/pre-cut materials, efficient delivery management entails effective delivery and storage system as well as adequate protection of materials during the delivery process, among others. Waste-efficient specification and bill of quantity, on the other hand, requires accurate materials take-off and ordering of materials based on accurately prepared design documents and bill of quantity. Findings of this study could assist in understanding a set of measures that should be taken during materials procurement process, thereby corroborating waste management practices at other stages of project delivery process. Copyright © 2018. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29505486','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29505486"><span>Adapting the Consolidated Framework for Implementation Research to Create Organizational Readiness and Implementation Tools for Project ECHO.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Serhal, Eva; Arena, Amanda; Sockalingam, Sanjeev; Mohri, Linda; Crawford, Allison</p> <p>2018-03-01</p> <p>The Project Extension for Community Healthcare Outcomes (ECHO) model expands primary care provider (PCP) capacity to manage complex diseases by sharing knowledge, disseminating best practices, and building a community of practice. The model has expanded rapidly, with over 140 ECHO projects currently established globally. We have used validated implementation frameworks, such as Damschroder's (2009) Consolidated Framework for Implementation Research (CFIR) and Proctor's (2011) taxonomy of implementation outcomes, combined with implementation experience to (1) create a set of questions to assess organizational readiness and suitability of the ECHO model and (2) provide those who have determined ECHO is the correct model with a checklist to support successful implementation. A set of considerations was created, which adapted and consolidated CFIR constructs to create ECHO-specific organizational readiness questions, as well as a process guide for implementation. Each consideration was mapped onto Proctor's (2011) implementation outcomes, and questions relating to the constructs were developed and reviewed for clarity. The Preimplementation list included 20 questions; most questions fall within Proctor's (2001) implementation outcome domains of "Appropriateness" and "Acceptability." The Process Checklist is a 26-item checklist to help launch an ECHO project; items map onto the constructs of Planning, Engaging, Executing, Reflecting, and Evaluating. Given that fidelity to the ECHO model is associated with robust outcomes, effective implementation is critical. These tools will enable programs to work through key considerations to implement a successful Project ECHO. Next steps will include validation with a diverse sample of ECHO projects.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMEP54A..06M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMEP54A..06M"><span>The use of multi-dimensional flow and morphodynamic models for restoration design analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McDonald, R.; Nelson, J. M.</p> <p>2013-12-01</p> <p>River restoration projects with the goal of restoring a wide range of morphologic and ecologic channel processes and functions have become common. The complex interactions between flow and sediment-transport make it challenging to design river channels that are both self-sustaining and improve ecosystem function. The relative immaturity of the field of river restoration and shortcomings in existing methodologies for evaluating channel designs contribute to this problem, often leading to project failures. The call for increased monitoring of constructed channels to evaluate which restoration techniques do and do not work is ubiquitous and may lead to improved channel restoration projects. However, an alternative approach is to detect project flaws before the channels are built by using numerical models to simulate hydraulic and sediment-transport processes and habitat in the proposed channel (Restoration Design Analysis). Multi-dimensional models provide spatially distributed quantities throughout the project domain that may be used to quantitatively evaluate restoration designs for such important metrics as (1) the change in water-surface elevation which can affect the extent and duration of floodplain reconnection, (2) sediment-transport and morphologic change which can affect the channel stability and long-term maintenance of the design; and (3) habitat changes. These models also provide an efficient way to evaluate such quantities over a range of appropriate discharges including low-probability events which often prove the greatest risk to the long-term stability of restored channels. Currently there are many free and open-source modeling frameworks available for such analysis including iRIC, Delft3D, and TELEMAC. In this presentation we give examples of Restoration Design Analysis for each of the metrics above from projects on the Russian River, CA and the Kootenai River, ID. These examples demonstrate how detailed Restoration Design Analysis can be used to guide design elements and how this method can point out potential stability problems or other risks before designs proceed to the construction phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=intelligence+AND+autism&pg=3&id=ED550565','ERIC'); return false;" href="https://eric.ed.gov/?q=intelligence+AND+autism&pg=3&id=ED550565"><span>Relationships between Lexical Processing Speed, Language Skills, and Autistic Traits in Children</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Abrigo, Erin</p> <p>2012-01-01</p> <p>According to current models of spoken word recognition listeners understand speech as it unfolds over time. Eye tracking provides a non-invasive, on-line method to monitor attention, providing insight into the processing of spoken language. In the current project a spoken lexical processing assessment (LPA) confirmed current theories of spoken…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3667989','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3667989"><span>Fast, Accurate and Shift-Varying Line Projections for Iterative Reconstruction Using the GPU</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pratx, Guillem; Chinn, Garry; Olcott, Peter D.; Levin, Craig S.</p> <p>2013-01-01</p> <p>List-mode processing provides an efficient way to deal with sparse projections in iterative image reconstruction for emission tomography. An issue often reported is the tremendous amount of computation required by such algorithm. Each recorded event requires several back- and forward line projections. We investigated the use of the programmable graphics processing unit (GPU) to accelerate the line-projection operations and implement fully-3D list-mode ordered-subsets expectation-maximization for positron emission tomography (PET). We designed a reconstruction approach that incorporates resolution kernels, which model the spatially-varying physical processes associated with photon emission, transport and detection. Our development is particularly suitable for applications where the projection data is sparse, such as high-resolution, dynamic, and time-of-flight PET reconstruction. The GPU approach runs more than 50 times faster than an equivalent CPU implementation while image quality and accuracy are virtually identical. This paper describes in details how the GPU can be used to accelerate the line projection operations, even when the lines-of-response have arbitrary endpoint locations and shift-varying resolution kernels are used. A quantitative evaluation is included to validate the correctness of this new approach. PMID:19244015</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15264594','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15264594"><span>The Swedish Regional Climate Modelling Programme, SWECLIM: a review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael</p> <p>2004-06-01</p> <p>The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25998912','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25998912"><span>The policy process for health promotion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Söderberg, Erik; Wikström, Ewa</p> <p>2015-08-01</p> <p>The paper aims to contribute to our understanding of the policy process in health promotion by addressing the following questions: What are the characteristics of the policy process in health promotion? How do policy entrepreneurs influence project implementation? This is a qualitative study with an explorative case study design that uses three different data sources: qualitative interviews, written documents and observations. The paper examines several factors (determinants) that influence the policy process and that, to a lesser extent, are addressed by current models in health policy research. Legitimacy, financial capacity, available structure and political timing are all important determinants that influence the policy process. Policy entrepreneurs, with established networks and knowledge of the environment and its procedures, create legitimacy and provide opportunities for action; however, indistinct organizational boundaries among roles and poorly defined individual responsibilities create policy process uncertainty. As a result, there are lengthy discussions and few decisions, both of which delay the progress of a project. This paper's theoretical contribution is its analysis of the relationship of policy-making to linear models, via a discussion of policy entrepreneurs, and their importance in the policy process. The paper concludes that we need to consider the influence of policy entrepreneurs, whom build legitimacy and seize action opportunities by coupling the three streams in the policy process, as they help bring projects to fruition. Furthermore, the study points to the importance of policy entrepreneurs throughout the policy process. The paper has practical implications for practitioners whom work with the implementation of community policies. © 2015 the Nordic Societies of Public Health.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29655365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29655365"><span>Facilitators of community participation in an Aboriginal sexual health promotion initiative.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hulme Chambers, Alana; Tomnay, Jane; Stephens, Kylie; Crouch, Alan; Whiteside, Mary; Love, Pettina; McIntosh, Leonie; Waples Crowe, Peter</p> <p>2018-04-01</p> <p>Community participation is a collaborative process aimed at achieving community-identified outcomes. However, approaches to community participation within Aboriginal health promotion initiatives have been inconsistent and not well documented. Smart and Deadly was a community-led initiative to develop sexual health promotion resources with young Aboriginal people in regional Victoria, Australia. The principles of community-centred practice, authentic participatory processes and respect for the local cultural context guided the initiative. The aim of this article is to report factors that facilitated community participation undertaken in the Smart and Deadly initiative to inform future projects and provide further evidence in demonstrating the value of such approaches. A summative evaluation of the Smart and Deadly initiative was undertaken approximately 2 years after the initiative ended. Five focus groups and 13 interviews were conducted with a purposive sample of 32 participants who were involved with Smart and Deadly in one of the following ways: project participant, stakeholder or project partner, or project developer or designer. A deductive content analysis was undertaken and themes were compared to the YARN model, which was specifically created for planning and evaluating community participation strategies relating to Aboriginal sexual health promotion. A number of factors that facilitated community participation approaches used in Smart and Deadly were identified. The overarching theme was that trust was the foundation upon which the facilitators of community participation ensued. These facilitators were cultural safety and cultural literacy, community control, and legacy and sustainability. Whilst the YARN model was highly productive in identifying these facilitators of community participation, the model did not have provision for the element of trust between workers and community. Given the importance of trust between the project team and the Aboriginal community in the Smart and Deadly initiative, a suggested revision to the YARN model is that trust is included as the basis upon which YARN model factors are predicated. Adding trust to the YARN model as a basis upon which YARN model factors are grounded assists future Aboriginal health promotion projects in ensuring community participation approaches are more likely to be acceptable to the Aboriginal community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN33D..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN33D..03P"><span>Reflecting on the challenges of building a rich interconnected metadata database to describe the experiments of phase six of the coupled climate model intercomparison project (CMIP6) for the Earth System Documentation Project (ES-DOC) and anticipating the opportunities that tooling and services based on rich metadata can provide.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pascoe, C. L.</p> <p>2017-12-01</p> <p>The Coupled Model Intercomparison Project (CMIP) has coordinated climate model experiments involving multiple international modelling teams since 1995. This has led to a better understanding of past, present, and future climate. The 2017 sixth phase of the CMIP process (CMIP6) consists of a suite of common experiments, and 21 separate CMIP-Endorsed Model Intercomparison Projects (MIPs) making a total of 244 separate experiments. Precise descriptions of the suite of CMIP6 experiments have been captured in a Common Information Model (CIM) database by the Earth System Documentation Project (ES-DOC). The database contains descriptions of forcings, model configuration requirements, ensemble information and citation links, as well as text descriptions and information about the rationale for each experiment. The database was built from statements about the experiments found in the academic literature, the MIP submissions to the World Climate Research Programme (WCRP), WCRP summary tables and correspondence with the principle investigators for each MIP. The database was collated using spreadsheets which are archived in the ES-DOC Github repository and then rendered on the ES-DOC website. A diagramatic view of the workflow of building the database of experiment metadata for CMIP6 is shown in the attached figure.The CIM provides the formalism to collect detailed information from diverse sources in a standard way across all the CMIP6 MIPs. The ES-DOC documentation acts as a unified reference for CMIP6 information to be used both by data producers and consumers. This is especially important given the federated nature of the CMIP6 project. Because the CIM allows forcing constraints and other experiment attributes to be referred to by more than one experiment, we can streamline the process of collecting information from modelling groups about how they set up their models for each experiment. End users of the climate model archive will be able to ask questions enabled by the interconnectedness of the metadata such as "Which MIPs make use of experiment A?" and "Which experiments use forcing constraint B?".</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1395344','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1395344"><span>A Multi-scale, Multi-Model, Machine-Learning Solar Forecasting Technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hamann, Hendrik F.</p> <p></p> <p>The goal of the project was the development and demonstration of a significantly improved solar forecasting technology (short: Watt-sun), which leverages new big data processing technologies and machine-learnt blending between different models and forecast systems. The technology aimed demonstrating major advances in accuracy as measured by existing and new metrics which themselves were developed as part of this project. Finally, the team worked with Independent System Operators (ISOs) and utilities to integrate the forecasts into their operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23504901','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23504901"><span>Simulating the effects of climate change on the distribution of an invasive plant, using a high resolution, local scale, mechanistic approach: challenges and insights.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fennell, Mark; Murphy, James E; Gallagher, Tommy; Osborne, Bruce</p> <p>2013-04-01</p> <p>The growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate. This paper discusses some key requirements for mechanistic models and utilises a newly developed model (PSS[gt]) that incorporates the influence of habitat type and related features (e.g., roads and rivers), as well as demographic processes and propagule dispersal dynamics, to model climate induced changes in the distribution of an invasive plant (Gunnera tinctoria) at a local scale. A new methodology is introduced, dynamic baseline benchmarking, which distinguishes climate-induced alterations in species distributions from other potential drivers of change. Using this approach, it was concluded that climate change, based on IPCC and C4i projections, has the potential to increase the spread-rate and intensity of G. tinctoria invasions. Increases in the number of individuals were primarily due to intensification of invasion in areas already invaded or in areas projected to be invaded in the dynamic baseline scenario. Temperature had the largest influence on changes in plant distributions. Water availability also had a large influence and introduced the most uncertainty in the projections. Additionally, due to the difficulties of parameterising models such as this, the process has been streamlined by utilising methods for estimating unknown variables and selecting only essential parameters. © 2012 Blackwell Publishing Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612369D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612369D"><span>Convergence in France facing Big Data era and Exascale challenges for Climate Sciences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denvil, Sébastien; Dufresne, Jean-Louis; Salas, David; Meurdesoif, Yann; Valcke, Sophie; Caubel, Arnaud; Foujols, Marie-Alice; Servonnat, Jérôme; Sénési, Stéphane; Derouillat, Julien; Voury, Pascal</p> <p>2014-05-01</p> <p>The presentation will introduce a french national project : CONVERGENCE that has been funded for four years. This project will tackle big data and computational challenges faced by climate modeling community in HPC context. Model simulations are central to the study of complex mechanisms and feedbacks in the climate system and to provide estimates of future and past climate changes. Recent trends in climate modelling are to add more physical components in the modelled system, increasing the resolution of each individual component and the more systematic use of large suites of simulations to address many scientific questions. Climate simulations may therefore differ in their initial state, parameter values, representation of physical processes, spatial resolution, model complexity, and degree of realism or degree of idealisation. In addition, there is a strong need for evaluating, improving and monitoring the performance of climate models using a large ensemble of diagnostics and better integration of model outputs and observational data. High performance computing is currently reaching the exascale and has the potential to produce this exponential increase of size and numbers of simulations. However, post-processing, analysis, and exploration of the generated data have stalled and there is a strong need for new tools to cope with the growing size and complexity of the underlying simulations and datasets. Exascale simulations require new scalable software tools to generate, manage and mine those simulations ,and data to extract the relevant information and to take the correct decision. The primary purpose of this project is to develop a platform capable of running large ensembles of simulations with a suite of models, to handle the complex and voluminous datasets generated, to facilitate the evaluation and validation of the models and the use of higher resolution models. We propose to gather interdisciplinary skills to design, using a component-based approach, a specific programming environment for scalable scientific simulations and analytics, integrating new and efficient ways of deploying and analysing the applications on High Performance Computing (HPC) system. CONVERGENCE, gathering HPC and informatics expertise that cuts across the individual partners and the broader HPC community, will allow the national climate community to leverage information technology (IT) innovations to address its specific needs. Our methodology consists in developing an ensemble of generic elements needed to run the French climate models with different grids and different resolution, ensuring efficient and reliable execution of these models, managing large volume and number of data and allowing analysis of the results and precise evaluation of the models. These elements include data structure definition and input-output (IO), code coupling and interpolation, as well as runtime and pre/post-processing environments. A common data and metadata structure will allow transferring consistent information between the various elements. All these generic elements will be open source and publicly available. The IPSL-CM and CNRM-CM climate models will make use of these elements that will constitute a national platform for climate modelling. This platform will be used, in its entirety, to optimise and tune the next version of the IPSL-CM model and to develop a global coupled climate model with a regional grid refinement. It will also be used, at least partially, to run ensembles of the CNRM-CM model at relatively high resolution and to run a very-high resolution prototype of this model. The climate models we developed are already involved in many international projects. For instance we participate to the CMIP (Coupled Model Intercomparison Project) project that is very demanding but has a high visibility: its results are widely used and are in particular synthesised in the IPCC (Intergovernmental Panel on Climate Change) assessment reports. The CONVERGENCE project will constitute an invaluable step for the French climate community to prepare and better contribute to the next phase of the CMIP project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1052921','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1052921"><span>Counter Unmanned Aerial System Decision-Aid Logic Process (C-UAS DALP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>decision -aid or logic process that bridges the middle elements of the kill... of use, location, general logic process , and reference mission. This is the framework for the IDEF0 functional architecture diagrams, decision -aid diagrams, logic process , and modeling and simulation....chain between detection to countermeasure response. This capstone project creates the logic for a decision process that transitions from the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31265','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31265"><span>Gulf Coast megaregion evacuation traffic simulation modeling and analysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2015-12-01</p> <p>This paper describes a project to develop a micro-level traffic simulation for a megaregion. To : accomplish this, a mass evacuation event was modeled using a traffic demand generation process that : created a spatial and temporal distribution of dep...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>