Sample records for process monitoring systems

  1. On the use of multi-agent systems for the monitoring of industrial systems

    NASA Astrophysics Data System (ADS)

    Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil

    2016-03-01

    The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.

  2. Towards an Ontology-Based Approach to Support Monitoring the Data of the International Monitoring System (IMS)

    NASA Astrophysics Data System (ADS)

    Laban, Shaban; El-Desouky, Ali

    2010-05-01

    The heterogeneity of the distributed processing systems, monitored data and resources is an obvious challenge in monitoring the data of International Monitoring System (IMS) of the Comprehensive Nuclear Test-Ban Treaty organization (CTBTO). Processing engineers, analysts, operators and other interested parties seek for intelligent tools and software that hide the underlying complexity of the systems, allowing them to manage the operation and monitoring the systems at a higher level, focusing on what the expected behavior and results should be instead of how to specifically achieve it. Also, it is needed to share common understanding of the structure of organization information, data, and products among staff, software agents, and policy making organs. Additionally, introducing new monitoring object or system should not complicate the overall system and should be feasible. An ontologybased approach is presented in this paper aiming to support monitoring real-time data processing and supervising the various system resources, focusing on integrating and sharing same knowledge and status information of the system among different environments. The results of a prototype framework is presented and analyzed.

  3. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    PubMed

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. © The Author(s) 2014.

  4. High-Performance Monitoring Architecture for Large-Scale Distributed Systems Using Event Filtering

    NASA Technical Reports Server (NTRS)

    Maly, K.

    1998-01-01

    Monitoring is an essential process to observe and improve the reliability and the performance of large-scale distributed (LSD) systems. In an LSD environment, a large number of events is generated by the system components during its execution or interaction with external objects (e.g. users or processes). Monitoring such events is necessary for observing the run-time behavior of LSD systems and providing status information required for debugging, tuning and managing such applications. However, correlated events are generated concurrently and could be distributed in various locations in the applications environment which complicates the management decisions process and thereby makes monitoring LSD systems an intricate task. We propose a scalable high-performance monitoring architecture for LSD systems to detect and classify interesting local and global events and disseminate the monitoring information to the corresponding end- points management applications such as debugging and reactive control tools to improve the application performance and reliability. A large volume of events may be generated due to the extensive demands of the monitoring applications and the high interaction of LSD systems. The monitoring architecture employs a high-performance event filtering mechanism to efficiently process the large volume of event traffic generated by LSD systems and minimize the intrusiveness of the monitoring process by reducing the event traffic flow in the system and distributing the monitoring computation. Our architecture also supports dynamic and flexible reconfiguration of the monitoring mechanism via its Instrumentation and subscription components. As a case study, we show how our monitoring architecture can be utilized to improve the reliability and the performance of the Interactive Remote Instruction (IRI) system which is a large-scale distributed system for collaborative distance learning. The filtering mechanism represents an Intrinsic component integrated with the monitoring architecture to reduce the volume of event traffic flow in the system, and thereby reduce the intrusiveness of the monitoring process. We are developing an event filtering architecture to efficiently process the large volume of event traffic generated by LSD systems (such as distributed interactive applications). This filtering architecture is used to monitor collaborative distance learning application for obtaining debugging and feedback information. Our architecture supports the dynamic (re)configuration and optimization of event filters in large-scale distributed systems. Our work represents a major contribution by (1) survey and evaluating existing event filtering mechanisms In supporting monitoring LSD systems and (2) devising an integrated scalable high- performance architecture of event filtering that spans several kev application domains, presenting techniques to improve the functionality, performance and scalability. This paper describes the primary characteristics and challenges of developing high-performance event filtering for monitoring LSD systems. We survey existing event filtering mechanisms and explain key characteristics for each technique. In addition, we discuss limitations with existing event filtering mechanisms and outline how our architecture will improve key aspects of event filtering.

  5. Design of an automatic production monitoring system on job shop manufacturing

    NASA Astrophysics Data System (ADS)

    Prasetyo, Hoedi; Sugiarto, Yohanes; Rosyidi, Cucuk Nur

    2018-02-01

    Every production process requires monitoring system, so the desired efficiency and productivity can be monitored at any time. This system is also needed in the job shop type of manufacturing which is mainly influenced by the manufacturing lead time. Processing time is one of the factors that affect the manufacturing lead time. In a conventional company, the recording of processing time is done manually by the operator on a sheet of paper. This method is prone to errors. This paper aims to overcome this problem by creating a system which is able to record and monitor the processing time automatically. The solution is realized by utilizing electric current sensor, barcode, RFID, wireless network and windows-based application. An automatic monitoring device is attached to the production machine. It is equipped with a touch screen-LCD so that the operator can use it easily. Operator identity is recorded through RFID which is embedded in his ID card. The workpiece data are collected from the database by scanning the barcode listed on its monitoring sheet. A sensor is mounted on the machine to measure the actual machining time. The system's outputs are actual processing time and machine's capacity information. This system is connected wirelessly to a workshop planning application belongs to the firm. Test results indicated that all functions of the system can run properly. This system successfully enables supervisors, PPIC or higher level management staffs to monitor the processing time quickly with a better accuracy.

  6. The future of remote ECG monitoring systems.

    PubMed

    Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su

    2016-09-01

    Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.

  7. Gamma ray spectroscopy monitoring method and apparatus

    DOEpatents

    Stagg, William R; Policke, Timothy A

    2017-05-16

    The present invention relates generally to the field of gamma ray spectroscopy monitoring and a system for accomplishing same to monitor one or more aspects of various isotope production processes. In one embodiment, the present invention relates to a monitoring system, and method of utilizing same, for monitoring one or more aspects of an isotope production process where the monitoring system comprises: (A) at least one sample cell; (B) at least one measuring port; (C) at least one adjustable collimator device; (D) at least one shutter; and (E) at least one high resolution gamma ray spectrometer.

  8. Wireless device monitoring systems and monitoring devices, and associated methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  9. Monitoring Satellite Data Ingest and Processing for the Atmosphere Science Investigator-led Processing Systems (SIPS)

    NASA Astrophysics Data System (ADS)

    Witt, J.; Gumley, L.; Braun, J.; Dutcher, S.; Flynn, B.

    2017-12-01

    The Atmosphere SIPS (Science Investigator-led Processing Systems) team at the Space Science and Engineering Center (SSEC), which is funded through a NASA contract, creates Level 2 cloud and aerosol products from the VIIRS instrument aboard the S-NPP satellite. In order to monitor the ingest and processing of files, we have developed an extensive monitoring system to observe every step in the process. The status grid is used for real time monitoring, and shows the current state of the system, including what files we have and whether or not we are meeting our latency requirements. Our snapshot tool displays the state of the system in the past. It displays which files were available at a given hour and is used for historical and backtracking purposes. In addition to these grid like tools we have created histograms and other statistical graphs for tracking processing and ingest metrics, such as total processing time, job queue time, and latency statistics.

  10. The participatory design of a performance oriented monitoring and evaluation system in an international development environment.

    PubMed

    Guerra-López, Ingrid; Hicks, Karen

    2015-02-01

    This article illustrates the application of the impact monitoring and evaluation process for the design and development of a performance monitoring and evaluation framework in the context of human and institutional capacity development. This participative process facilitated stakeholder ownership in several areas including the design, development, and use of a new monitoring and evaluation system, as well their targeted results and accomplishments through the use of timely performance data gathered through ongoing monitoring and evaluation. The process produced a performance indicator map, a comprehensive monitoring and evaluation framework, and data collection templates to promote the development, implementation, and sustainability of the monitoring and evaluation system of a farmer's trade union in an African country. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The development of control and monitoring system on marine current renewable energy Case study: strait of Toyapakeh - Nusa Penida, Bali

    NASA Astrophysics Data System (ADS)

    Arief, I. S.; Suherman, I. H.; Wardani, A. Y.; Baidowi, A.

    2017-05-01

    Control and monitoring system is a continuous process of securing the asset in the Marine Current Renewable Energy. A control and monitoring system is existed each critical components which is embedded in Failure Mode Effect Analysis (FMEA) method. As the result, the process in this paper developed through a matrix sensor. The matrix correlated to critical components and monitoring system which supported by sensors to conduct decision-making.

  12. Monitoring real-time navigation processes using the automated reasoning tool (ART)

    NASA Technical Reports Server (NTRS)

    Maletz, M. C.; Culbert, C. J.

    1985-01-01

    An expert system is described for monitoring and controlling navigation processes in real-time. The ART-based system features data-driven computation, accommodation of synchronous and asynchronous data, temporal modeling for individual time intervals and chains of time intervals, and hypothetical reasoning capabilities that consider alternative interpretations of the state of navigation processes. The concept is illustrated in terms of the NAVEX system for monitoring and controlling the high speed ground navigation console for Mission Control at Johnson Space Center. The reasoning processes are outlined, including techniques used to consider alternative data interpretations. Installation of the system has permitted using a single operator, instead of three, to monitor the ascent and entry phases of a Shuttle mission.

  13. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  14. Systems and methods for monitoring a solid-liquid interface

    DOEpatents

    Stoddard, Nathan G; Lewis, Monte A.; Clark, Roger F

    2013-06-11

    Systems and methods are provided for monitoring a solid-liquid interface during a casting process. The systems and methods enable determination of the location of a solid-liquid interface during the casting process.

  15. System for monitoring non-coincident, nonstationary process signals

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.

    2005-01-04

    An improved system for monitoring non-coincident, non-stationary, process signals. The mean, variance, and length of a reference signal is defined by an automated system, followed by the identification of the leading and falling edges of a monitored signal and the length of the monitored signal. The monitored signal is compared to the reference signal, and the monitored signal is resampled in accordance with the reference signal. The reference signal is then correlated with the resampled monitored signal such that the reference signal and the resampled monitored signal are coincident in time with each other. The resampled monitored signal is then compared to the reference signal to determine whether the resampled monitored signal is within a set of predesignated operating conditions.

  16. 40 CFR 65.161 - Continuous records and monitoring system data handling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Routing to a Fuel Gas System or a Process § 65.161 Continuous records and monitoring system data handling...) Monitoring system breakdowns, repairs, preventive maintenance, calibration checks, and zero (low-level) and... section unless an alternative monitoring or recordkeeping system has been requested and approved under...

  17. 40 CFR 65.161 - Continuous records and monitoring system data handling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Routing to a Fuel Gas System or a Process § 65.161 Continuous records and monitoring system data handling...) Monitoring system breakdowns, repairs, preventive maintenance, calibration checks, and zero (low-level) and... section unless an alternative monitoring or recordkeeping system has been requested and approved under...

  18. Real-time monitoring of clinical processes using complex event processing and transition systems.

    PubMed

    Meinecke, Sebastian

    2014-01-01

    Dependencies between tasks in clinical processes are often complex and error-prone. Our aim is to describe a new approach for the automatic derivation of clinical events identified via the behaviour of IT systems using Complex Event Processing. Furthermore we map these events on transition systems to monitor crucial clinical processes in real-time for preventing and detecting erroneous situations.

  19. Earth resources data acquisition sensor study

    NASA Technical Reports Server (NTRS)

    Grohse, E. W.

    1975-01-01

    The minimum data collection and data processing requirements are investigated for the development of water monitoring systems, which disregard redundant and irrelevant data and process only those data predictive of the onset of significant pollution events. Two approaches are immediately suggested: (1) adaptation of a presently available ambient air monitoring system developed by TVA, and (2) consideration of an air, water, and radiological monitoring system developed by the Georgia Tech Experiment Station. In order to apply monitoring systems, threshold values and maximum allowable rates of change of critical parameters such as dissolved oxygen and temperature are required.

  20. An MFC-Based Online Monitoring and Alert System for Activated Sludge Process

    PubMed Central

    Xu, Gui-Hua; Wang, Yun-Kun; Sheng, Guo-Ping; Mu, Yang; Yu, Han-Qing

    2014-01-01

    In this study, based on a simple, compact and submersible microbial fuel cell (MFC), a novel online monitoring and alert system with self-diagnosis function was established for the activated sludge (AS) process. Such a submersible MFC utilized organic substrates and oxygen in the AS reactor as the electron donor and acceptor respectively, and could provide an evaluation on the status of the AS reactor and thus give a reliable early warning of potential risks. In order to evaluate the reliability and sensitivity of this online monitoring and alert system, a series of tests were conducted to examine the response of this system to various shocks imposed on the AS reactor. The results indicate that this online monitoring and alert system was highly sensitive to the performance variations of the AS reactor. The stability, sensitivity and repeatability of this online system provide feasibility of being incorporated into current control systems of wastewater treatment plants to real-time monitor, diagnose, alert and control the AS process. PMID:25345502

  1. Monitoring system and methods for a distributed and recoverable digital control system

    NASA Technical Reports Server (NTRS)

    Stange, Kent (Inventor); Hess, Richard (Inventor); Kelley, Gerald B (Inventor); Rogers, Randy (Inventor)

    2010-01-01

    A monitoring system and methods are provided for a distributed and recoverable digital control system. The monitoring system generally comprises two independent monitoring planes within the control system. The first monitoring plane is internal to the computing units in the control system, and the second monitoring plane is external to the computing units. The internal first monitoring plane includes two in-line monitors. The first internal monitor is a self-checking, lock-step-processing monitor with integrated rapid recovery capability. The second internal monitor includes one or more reasonableness monitors, which compare actual effector position with commanded effector position. The external second monitor plane includes two monitors. The first external monitor includes a pre-recovery computing monitor, and the second external monitor includes a post recovery computing monitor. Various methods for implementing the monitoring functions are also disclosed.

  2. Novel online monitoring and alert system for anaerobic digestion reactors.

    PubMed

    Dong, Fang; Zhao, Quan-Bao; Li, Wen-Wei; Sheng, Guo-Ping; Zhao, Jin-Bao; Tang, Yong; Yu, Han-Qing; Kubota, Kengo; Li, Yu-You; Harada, Hideki

    2011-10-15

    Effective monitoring and diagnosis of anaerobic digestion processes is a great challenge for anaerobic digestion reactors, which limits their stable operation. In this work, an online monitoring and alert system for upflow anaerobic sludge blanket (UASB) reactors is developed on the basis of a set of novel evaluating indexes. The two indexes, i.e., stability index S and auxiliary index a, which incorporate both gas- and liquid-phase parameters for UASB, enable a quantitative and comprehensive evaluation of reactor status. A series of shock tests is conducted to evaluate the response of the monitoring and alert system to organic overloading, hydraulic, temperature, and toxicant shocks. The results show that this system enables an accurate and rapid monitoring and diagnosis of the reactor status, and offers reliable early warnings on the potential risks. As the core of this system, the evaluating indexes are demonstrated to be of high accuracy and sensitivity in process evaluation and good adaptability to the artificial intelligence and automated control apparatus. This online monitoring and alert system presents a valuable effort to promote the automated monitoring and control of anaerobic digestion process, and holds a high promise for application.

  3. Application of process monitoring to anomaly detection in nuclear material processing systems via system-centric event interpretation of data from multiple sensors of varying reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Humberto E.; Simpson, Michael F.; Lin, Wen-Chiao

    In this paper, we apply an advanced safeguards approach and associated methods for process monitoring to a hypothetical nuclear material processing system. The assessment regarding the state of the processing facility is conducted at a systemcentric level formulated in a hybrid framework. This utilizes architecture for integrating both time- and event-driven data and analysis for decision making. While the time-driven layers of the proposed architecture encompass more traditional process monitoring methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data and analysis. By integrating process- and operation-related information and methodologiesmore » within a unified framework, the task of anomaly detection is greatly improved. This is because decision-making can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. This available knowledge at both time series and discrete event layers can then be effectively used to synthesize observation solutions that optimally balance sensor and data processing requirements. The application of the proposed approach is then implemented on an illustrative monitored system based on pyroprocessing and results are discussed.« less

  4. Smart Vest: wearable multi-parameter remote physiological monitoring system.

    PubMed

    Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C

    2008-05-01

    The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.

  5. A Study about the 3S-based Great Ruins Monitoring and Early-warning System

    NASA Astrophysics Data System (ADS)

    Xuefeng, W.; Zhongyuan, H.; Gongli, L.; Li, Z.

    2015-08-01

    Large-scale urbanization construction and new countryside construction, frequent natural disasters, and natural corrosion pose severe threat to the great ruins. It is not uncommon that the cultural relics are damaged and great ruins are occupied. Now the ruins monitoring mainly adopt general monitoring data processing system which can not effectively exert management, display, excavation analysis and data sharing of the relics monitoring data. Meanwhile those general software systems require layout of large number of devices or apparatuses, but they are applied to small-scope relics monitoring only. Therefore, this paper proposes a method to make use of the stereoscopic cartographic satellite technology to improve and supplement the great ruins monitoring index system and combine GIS and GPS to establish a highly automatic, real-time and intelligent great ruins monitoring and early-warning system in order to realize collection, processing, updating, spatial visualization, analysis, distribution and sharing of the monitoring data, and provide scientific and effective data for the relics protection, scientific planning, reasonable development and sustainable utilization.

  6. Dual vs. single computer monitor in a Canadian hospital Archiving Department: a study of efficiency and satisfaction.

    PubMed

    Poder, Thomas G; Godbout, Sylvie T; Bellemare, Christian

    This paper describes a comparative study of clinical coding by Archivists (also known as Clinical Coders in some other countries) using single and dual computer monitors. In the present context, processing a record corresponds to checking the available information; searching for the missing physician information; and finally, performing clinical coding. We collected data for each Archivist during her use of the single monitor for 40 hours and during her use of the dual monitor for 20 hours. During the experimental periods, Archivists did not perform other related duties, so we were able to measure the real-time processing of records. To control for the type of records and their impact on the process time required, we categorised the cases as major or minor, based on whether acute care or day surgery was involved. Overall results show that 1,234 records were processed using a single monitor and 647 records using a dual monitor. The time required to process a record was significantly higher (p= .071) with a single monitor compared to a dual monitor (19.83 vs.18.73 minutes). However, the percentage of major cases was significantly higher (p= .000) in the single monitor group compared to the dual monitor group (78% vs. 69%). As a consequence, we adjusted our results, which reduced the difference in time required to process a record between the two systems from 1.1 to 0.61 minutes. Thus, the net real-time difference was only 37 seconds in favour of the dual monitor system. Extrapolated over a 5-year period, this would represent a time savings of 3.1% and generate a net cost savings of $7,729 CAD (Canadian dollars) for each workstation that devoted 35 hours per week to the processing of records. Finally, satisfaction questionnaire responses indicated a high level of satisfaction and support for the dual-monitor system. The implementation of a dual-monitor system in a hospital archiving department is an efficient option in the context of scarce human resources and has the strong support of Archivists.

  7. Data processing system for the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory-F (OGO-F) satellite

    NASA Technical Reports Server (NTRS)

    Cronin, A. G.; Delaney, J. R.

    1973-01-01

    The system is discussed which was developed to process digitized telemetry data from the intensity monitoring spectrometer flown on the Orbiting Geophysical Observatory (OGO-F) Satellite. Functional descriptions and operating instructions are included for each program in the system.

  8. Automated terrestrial laser scanning with near-real-time change detection - monitoring of the Séchilienne landslide

    NASA Astrophysics Data System (ADS)

    Kromer, Ryan A.; Abellán, Antonio; Hutchinson, D. Jean; Lato, Matt; Chanut, Marie-Aurelie; Dubois, Laurent; Jaboyedoff, Michel

    2017-05-01

    We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.

  9. System and Method for Monitoring Distributed Asset Data

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry (Inventor)

    2015-01-01

    A computer-based monitoring system and monitoring method implemented in computer software for detecting, estimating, and reporting the condition states, their changes, and anomalies for many assets. The assets are of same type, are operated over a period of time, and outfitted with data collection systems. The proposed monitoring method accounts for variability of working conditions for each asset by using regression model that characterizes asset performance. The assets are of the same type but not identical. The proposed monitoring method accounts for asset-to-asset variability; it also accounts for drifts and trends in the asset condition and data. The proposed monitoring system can perform distributed processing of massive amounts of historical data without discarding any useful information where moving all the asset data into one central computing system might be infeasible. The overall processing is includes distributed preprocessing data records from each asset to produce compressed data.

  10. Oil content Monitor/Control system and method

    NASA Astrophysics Data System (ADS)

    Schmitt, R. F.; Gavin, J. A.; Kempel, F. D.; Waltrick, C. N.

    1985-07-01

    This patent application discloses an oil content monitor/control unit system which is configured to automatically monitor and control processed effluent from an associated oil/water separator so that if the processed effluent exceeds predetermined in-port or at-sea oil concentration limits, it is either recirculated to an associated oil/water separator via a ship's bilge for additional processing, or diverted to a holding tank for storage. On the other hand, if the oil concentration of the processed effluent is less than determined in-port or at-sea limits, it is discharged overboard.

  11. Linear circuit analysis program for IBM 1620 Monitor 2, 1311/1443 data processing system /CIRCS/

    NASA Technical Reports Server (NTRS)

    Hatfield, J.

    1967-01-01

    CIRCS is modification of IBSNAP Circuit Analysis Program, for use on smaller systems. This data processing system retains the basic dc, transient analysis, and FORTRAN 2 formats. It can be used on the IBM 1620/1311 Monitor I Mod 5 system, and solves a linear network containing 15 nodes and 45 branches.

  12. On-line, continuous monitoring in solar cell and fuel cell manufacturing using spectral reflectance imaging

    DOEpatents

    Sopori, Bhushan; Rupnowski, Przemyslaw; Ulsh, Michael

    2016-01-12

    A monitoring system 100 comprising a material transport system 104 providing for the transportation of a substantially planar material 102, 107 through the monitoring zone 103 of the monitoring system 100. The system 100 also includes a line camera 106 positioned to obtain multiple line images across a width of the material 102, 107 as it is transported through the monitoring zone 103. The system 100 further includes an illumination source 108 providing for the illumination of the material 102, 107 transported through the monitoring zone 103 such that light reflected in a direction normal to the substantially planar surface of the material 102, 107 is detected by the line camera 106. A data processing system 110 is also provided in digital communication with the line camera 106. The data processing system 110 is configured to receive data output from the line camera 106 and further configured to calculate and provide substantially contemporaneous information relating to a quality parameter of the material 102, 107. Also disclosed are methods of monitoring a quality parameter of a material.

  13. Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.

  14. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  15. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  16. Cider fermentation process monitoring by Vis-NIR sensor system and chemometrics.

    PubMed

    Villar, Alberto; Vadillo, Julen; Santos, Jose I; Gorritxategi, Eneko; Mabe, Jon; Arnaiz, Aitor; Fernández, Luis A

    2017-04-15

    Optimization of a multivariate calibration process has been undertaken for a Visible-Near Infrared (400-1100nm) sensor system, applied in the monitoring of the fermentation process of the cider produced in the Basque Country (Spain). The main parameters that were monitored included alcoholic proof, l-lactic acid content, glucose+fructose and acetic acid content. The multivariate calibration was carried out using a combination of different variable selection techniques and the most suitable pre-processing strategies were selected based on the spectra characteristics obtained by the sensor system. The variable selection techniques studied in this work include Martens Uncertainty test, interval Partial Least Square Regression (iPLS) and Genetic Algorithm (GA). This procedure arises from the need to improve the calibration models prediction ability for cider monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A Guide for Monitoring District Implementation of Educator Evaluation Systems. REL 2015-069

    ERIC Educational Resources Information Center

    Cherasaro, Trudy; Yanoski, David; Swackhamer, Lyn

    2015-01-01

    This guide was developed to provide guidance to states or districts wishing to monitor implementation of educator evaluation systems. It describes a three-step process: develop state guidelines for educator evaluation systems; develop data collection methods; and determine adherence criteria and review data against criteria. The process was…

  18. The design of an m-Health monitoring system based on a cloud computing platform

    NASA Astrophysics Data System (ADS)

    Xu, Boyi; Xu, Lida; Cai, Hongming; Jiang, Lihong; Luo, Yang; Gu, Yizhi

    2017-01-01

    Compared to traditional medical services provided within hospitals, m-Health monitoring systems (MHMSs) face more challenges in personalised health data processing. To achieve personalised and high-quality health monitoring by means of new technologies, such as mobile network and cloud computing, in this paper, a framework of an m-Health monitoring system based on a cloud computing platform (Cloud-MHMS) is designed to implement pervasive health monitoring. Furthermore, the modules of the framework, which are Cloud Storage and Multiple Tenants Access Control Layer, Healthcare Data Annotation Layer, and Healthcare Data Analysis Layer, are discussed. In the data storage layer, a multiple tenant access method is designed to protect patient privacy. In the data annotation layer, linked open data are adopted to augment health data interoperability semantically. In the data analysis layer, the process mining algorithm and similarity calculating method are implemented to support personalised treatment plan selection. These three modules cooperate to implement the core functions in the process of health monitoring, which are data storage, data processing, and data analysis. Finally, we study the application of our architecture in the monitoring of antimicrobial drug usage to demonstrate the usability of our method in personal healthcare analysis.

  19. Simultaneous Authentication and Certification of Arms-Control Measurement Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacArthur, Duncan W.; Hauck, Danielle K.; Thron, Jonathan L.

    2012-07-09

    Most arms-control-treaty-monitoring scenarios involve a host party that makes a declaration regarding its nuclear material or items and a monitoring party that verifies that declaration. A verification system developed for such a use needs to be trusted by both parties. The first concern, primarily from the host party's point of view, is that any sensitive information that is collected must be protected without interfering in the efficient operation of the facility being monitored. This concern is addressed in what can be termed a 'certification' process. The second concern, of particular interest to the monitoring party, is that it must bemore » possible to confirm the veracity of both the measurement system and the data produced by this measurement system. The monitoring party addresses these issues during an 'authentication' process. Addressing either one of these concerns independently is relatively straightforward. However, it is more difficult to simultaneously satisfy host party certification concerns and monitoring party authentication concerns. Typically, both parties will want the final access to the measurement system. We will describe an alternative approach that allows both parties to gain confidence simultaneously. This approach starts with (1) joint development of the measurement system followed by (2) host certification of several copies of the system and (3) random selection by the inspecting party of one copy to be use during the monitoring visit and one (or more) copy(s) to be returned to the inspecting party's facilities for (4) further hardware authentication; any remaining copies are stored under joint seal for use as spares. Following this process, the parties will jointly (5) perform functional testing on the selected measurement system and then (6) use this system during the monitoring visit. Steps (1) and (2) assure the host party as to the certification of whichever system is eventually used in the monitoring visit. Steps (1), (3), (4), and (5) increase the monitoring party's confidence in the authentication of the measurement system.« less

  20. DESIGN, DEVELOPMENT, AND FIELD DEMONSTRATION OF A REMOTELY DEPLOYABLE WATER QUALITY MONITORING SYSTEM

    EPA Science Inventory

    A prototype water quality monitoring system is described which offers almost continuous in situ monitoring. The two-man portable system features: (1) a microprocessor controlled central processing unit which allows preprogrammed sampling schedules and reprogramming in situ; (2) a...

  1. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  2. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  3. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  4. 40 CFR 63.342 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... being used will be based on information available to the Administrator, which may include, but is not... techniques, or the control system and process monitoring equipment during a malfunction in a manner... the process and control system monitoring equipment, and shall include a standardized checklist to...

  5. 40 CFR 63.342 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... being used will be based on information available to the Administrator, which may include, but is not... techniques, or the control system and process monitoring equipment during a malfunction in a manner... the process and control system monitoring equipment, and shall include a standardized checklist to...

  6. Monitoring devices and systems for monitoring frequency hopping wireless communications, and related methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derr, Kurt W.; Richardson, John G.

    Monitoring devices and systems comprise a plurality of data channel modules coupled to processing circuitry. Each data channel module of the plurality of data channel modules is configured to capture wireless communications for a selected frequency channel. The processing circuitry is configured to receive captured wireless communications from the plurality of data channel modules and to organize received wireless communications according to at least one parameter. Related methods of monitoring wireless communications are also disclosed.

  7. Optimization of insect cell based protein production processes - online monitoring, expression systems, scale up.

    PubMed

    Druzinec, Damir; Salzig, Denise; Brix, Alexander; Kraume, Matthias; Vilcinskas, Andreas; Kollewe, Christian; Czermak, Peter

    2013-01-01

    Due to the increasing use of insect cell based expression systems in research and industrial recombinant protein production, the development of efficient and reproducible production processes remains a challenging task. In this context, the application of online monitoring techniques is intended to ensure high and reproducible product qualities already during the early phases of process development. In the following chapter, the most common transient and stable insect cell based expression systems are briefly introduced. Novel applications of insect cell based expression systems for the production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for insect cell culture monitoring in disposable and common bioreactor systems are outlined with respect to optical and capacitive sensor concepts. Since scale up of production processes is one of the most critical steps in process development, a conclusive overview is given about scale up aspects for industrial insect cell culture processes.

  8. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  9. Reactor Operations Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, M.M.

    1989-01-01

    The Reactor Operations Monitoring System (ROMS) is a VME based, parallel processor data acquisition and safety action system designed by the Equipment Engineering Section and Reactor Engineering Department of the Savannah River Site. The ROMS will be analyzing over 8 million signal samples per minute. Sixty-eight microprocessors are used in the ROMS in order to achieve a real-time data analysis. The ROMS is composed of multiple computer subsystems. Four redundant computer subsystems monitor 600 temperatures with 2400 thermocouples. Two computer subsystems share the monitoring of 600 reactor coolant flows. Additional computer subsystems are dedicated to monitoring 400 signals from assortedmore » process sensors. Data from these computer subsystems are transferred to two redundant process display computer subsystems which present process information to reactor operators and to reactor control computers. The ROMS is also designed to carry out safety functions based on its analysis of process data. The safety functions include initiating a reactor scram (shutdown), the injection of neutron poison, and the loadshed of selected equipment. A complete development Reactor Operations Monitoring System has been built. It is located in the Program Development Center at the Savannah River Site and is currently being used by the Reactor Engineering Department in software development. The Equipment Engineering Section is designing and fabricating the process interface hardware. Upon proof of hardware and design concept, orders will be placed for the final five systems located in the three reactor areas, the reactor training simulator, and the hardware maintenance center.« less

  10. Process control monitoring systems, industrial plants, and process control monitoring methods

    DOEpatents

    Skorpik, James R [Kennewick, WA; Gosselin, Stephen R [Richland, WA; Harris, Joe C [Kennewick, WA

    2010-09-07

    A system comprises a valve; a plurality of RFID sensor assemblies coupled to the valve to monitor a plurality of parameters associated with the valve; a control tag configured to wirelessly communicate with the respective tags that are coupled to the valve, the control tag being further configured to communicate with an RF reader; and an RF reader configured to selectively communicate with the control tag, the reader including an RF receiver. Other systems and methods are also provided.

  11. An Aspect-Oriented Framework for Business Process Improvement

    NASA Astrophysics Data System (ADS)

    Pourshahid, Alireza; Mussbacher, Gunter; Amyot, Daniel; Weiss, Michael

    Recently, many organizations invested in Business Process Management Systems (BPMSs) in order to automate and monitor their processes. Business Activity Monitoring is one of the essential modules of a BPMS as it provides the core monitoring capabilities. Although the natural step after process monitoring is process improvement, most of the existing systems do not provide the means to help users with the improvement step. In this paper, we address this issue by proposing an aspect-oriented framework that allows the impact of changes to business processes to be explored with what-if scenarios based on the most appropriate process redesign patterns among several possibilities. As the four cornerstones of a BPMS are process, goal, performance and validation views, these views need to be aligned automatically by any approach that intends to support automated improvement of business processes. Our framework therefore provides means to reflect process changes also in the other views of the business process. A health care case study presented as a proof of concept suggests that this novel approach is feasible.

  12. Microfabricated Hydrogen Sensor Technology for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Bickford, R. L.; Jansa, E. D.; Makel, D. B.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1994-01-01

    Leaks on the Space Shuttle while on the Launch Pad have generated interest in hydrogen leak monitoring technology. An effective leak monitoring system requires reliable hydrogen sensors, hardware, and software to monitor the sensors. The system should process the sensor outputs and provide real-time leak monitoring information to the operator. This paper discusses the progress in developing such a complete leak monitoring system. Advanced microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC) and Gencorp Aerojet (Aerojet). Changes in the hydrogen concentrations are detected using a PdAg on silicon Schottky diode structure. Sensor temperature control is achieved with a temperature sensor and heater fabricated onto the sensor chip. Results of the characterization of these sensors are presented. These sensors can detect low concentrations of hydrogen in inert environments with high sensitivity and quick response time. Aerojet is developing the hardware and software for a multipoint leak monitoring system designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Work has commenced on integrating the NASA LeRC-CWRU hydrogen sensors with the Aerojet designed monitoring system. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. Possible commercialization of the system will also be discussed.

  13. Operational Monitoring of GOME-2 and IASI Level 1 Product Processing at EUMETSAT

    NASA Astrophysics Data System (ADS)

    Livschitz, Yakov; Munro, Rosemary; Lang, Rüdiger; Fiedler, Lars; Dyer, Richard; Eisinger, Michael

    2010-05-01

    The growing complexity of operational level 1 radiance products from Low Earth Orbiting (LEO) platforms like EUMETSATs Metop series makes near-real-time monitoring of product quality a challenging task. The main challenge is to provide a monitoring system which is flexible and robust enough to identify and to react to anomalies which may be previously unknown to the system, as well as to provide all means and parameters necessary in order to support efficient ad-hoc analysis of the incident. The operational monitoring system developed at EUMETSAT for monitoring of GOME-2 and IASI level 1 data allows to perform near-real-time monitoring of operational products and instrument's health in a robust and flexible fashion. For effective information management, the system is based on a relational database (Oracle). An Extract, Transform, Load (ETL) process transforms products in EUMETSAT Polar System (EPS) format into relational data structures. The identification of commonalities between products and instruments allows for a database structure design in such a way that different data can be analyzed using the same business intelligence functionality. An interactive analysis software implementing modern data mining techniques is also provided for a detailed look into the data. The system is effectively used for day-to-day monitoring, long-term reporting, instrument's degradation analysis as well as for ad-hoc queries in case of an unexpected instrument or processing behaviour. Having data from different sources on a single instrument and even from different instruments, platforms or numerical weather prediction within the same database allows effective cross-comparison and looking for correlated parameters. Automatic alarms raised by checking for deviation of certain parameters, for data losses and other events significantly reduce time, necessary to monitor the processing on a day-to-day basis.

  14. Operational Monitoring of GOME-2 and IASI Level 1 Product Processing at EUMETSAT

    NASA Astrophysics Data System (ADS)

    Livschitz, Y.; Munro, R.; Lang, R.; Fiedler, L.; Dyer, R.; Eisinger, M.

    2009-12-01

    The growing complexity of operational level 1 radiance products from Low Earth Orbiting (LEO) platforms like EUMETSATs Metop series makes near-real-time monitoring of product quality a challenging task. The main challenge is to provide a monitoring system which is flexible and robust enough to identify and to react to anomalies which may be previously unknown to the system, as well as to provide all means and parameters necessary in order to support efficient ad-hoc analysis of the incident. The operational monitoring system developed at EUMETSAT for monitoring of GOME-2 and IASI level 1 data allows to perform near-real-time monitoring of operational products and instrument’s health in a robust and flexible fashion. For effective information management, the system is based on a relational database (Oracle). An Extract, Transform, Load (ETL) process transforms products in EUMETSAT Polar System (EPS) format into relational data structures. The identification of commonalities between products and instruments allows for a database structure design in such a way that different data can be analyzed using the same business intelligence functionality. An interactive analysis software implementing modern data mining techniques is also provided for a detailed look into the data. The system is effectively used for day-to-day monitoring, long-term reporting, instrument’s degradation analysis as well as for ad-hoc queries in case of an unexpected instrument or processing behaviour. Having data from different sources on a single instrument and even from different instruments, platforms or numerical weather prediction within the same database allows effective cross-comparison and looking for correlated parameters. Automatic alarms raised by checking for deviation of certain parameters, for data losses and other events significantly reduce time, necessary to monitor the processing on a day-to-day basis.

  15. New generation of meteorology cameras

    NASA Astrophysics Data System (ADS)

    Janout, Petr; Blažek, Martin; Páta, Petr

    2017-12-01

    A new generation of the WILLIAM (WIde-field aLL-sky Image Analyzing Monitoring system) camera includes new features such as monitoring of rain and storm clouds during the day observation. Development of the new generation of weather monitoring cameras responds to the demand for monitoring of sudden weather changes. However, new WILLIAM cameras are ready to process acquired image data immediately, release warning against sudden torrential rains, and send it to user's cell phone and email. Actual weather conditions are determined from image data, and results of image processing are complemented by data from sensors of temperature, humidity, and atmospheric pressure. In this paper, we present the architecture, image data processing algorithms of mentioned monitoring camera and spatially-variant model of imaging system aberrations based on Zernike polynomials.

  16. In situ process monitoring in selective laser sintering using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Gardner, Michael R.; Lewis, Adam; Park, Jongwan; McElroy, Austin B.; Estrada, Arnold D.; Fish, Scott; Beaman, Joseph J.; Milner, Thomas E.

    2018-04-01

    Selective laser sintering (SLS) is an efficient process in additive manufacturing that enables rapid part production from computer-based designs. However, SLS is limited by its notable lack of in situ process monitoring when compared with other manufacturing processes. We report the incorporation of optical coherence tomography (OCT) into an SLS system in detail and demonstrate access to surface and subsurface features. Video frame rate cross-sectional imaging reveals areas of sintering uniformity and areas of excessive heat error with high temporal resolution. We propose a set of image processing techniques for SLS process monitoring with OCT and report the limitations and obstacles for further OCT integration with SLS systems.

  17. Integrating SAR and derived products into operational volcano monitoring and decision support systems

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; McAlpin, D. B.; Gong, W.; Ajadi, O.; Arko, S.; Webley, P. W.; Dehn, J.

    2015-02-01

    Remote sensing plays a critical role in operational volcano monitoring due to the often remote locations of volcanic systems and the large spatial extent of potential eruption pre-cursor signals. Despite the all-weather capabilities of radar remote sensing and its high performance in monitoring of change, the contribution of radar data to operational monitoring activities has been limited in the past. This is largely due to: (1) the high costs associated with radar data; (2) traditionally slow data processing and delivery procedures; and (3) the limited temporal sampling provided by spaceborne radars. With this paper, we present new data processing and data integration techniques that mitigate some of these limitations and allow for a meaningful integration of radar data into operational volcano monitoring decision support systems. Specifically, we present fast data access procedures as well as new approaches to multi-track processing that improve near real-time data access and temporal sampling of volcanic systems with SAR data. We introduce phase-based (coherent) and amplitude-based (incoherent) change detection procedures that are able to extract dense time series of hazard information from these data. For a demonstration, we present an integration of our processing system with an operational volcano monitoring system that was developed for use by the Alaska Volcano Observatory (AVO). Through an application to a historic eruption, we show that the integration of SAR into systems such as AVO can significantly improve the ability of operational systems to detect eruptive precursors. Therefore, the developed technology is expected to improve operational hazard detection, alerting, and management capabilities.

  18. Recent Changes in State Special Education Part B Monitoring Systems.

    ERIC Educational Resources Information Center

    Tschantz, Jennifer

    The document reports the changes states have made in their monitoring of the provision of special education services by local education agencies from 1997 to 2001. It includes a brief background on the federal monitoring process and an outline of the federal requirements for state monitoring. Changes in state monitoring systems are discussed,…

  19. A GPS-based Real-time Road Traffic Monitoring System

    NASA Astrophysics Data System (ADS)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  20. Prognostics using Engineering and Environmental Parameters as Applied to State of Health (SOH) Radionuclide Aerosol Sampler Analyzer (RASA) Real-Time Monitoring

    NASA Astrophysics Data System (ADS)

    Hutchenson, K. D.; Hartley-McBride, S.; Saults, T.; Schmidt, D. P.

    2006-05-01

    The International Monitoring System (IMS) is composed in part of radionuclide particulate and gas monitoring systems. Monitoring the operational status of these systems is an important aspect of nuclear weapon test monitoring. Quality data, process control techniques, and predictive models are necessary to detect and predict system component failures. Predicting failures in advance provides time to mitigate these failures, thus minimizing operational downtime. The Provisional Technical Secretariat (PTS) requires IMS radionuclide systems be operational 95 percent of the time. The United States National Data Center (US NDC) offers contributing components to the IMS. This effort focuses on the initial research and process development using prognostics for monitoring and predicting failures of the RASA two (2) days into the future. The predictions, using time series methods, are input to an expert decision system, called SHADES (State of Health Airflow and Detection Expert System). The results enable personnel to make informed judgments about the health of the RASA system. Data are read from a relational database, processed, and displayed to the user in a GIS as a prototype GUI. This procedure mimics the real time application process that could be implemented as an operational system, This initial proof-of-concept effort developed predictive models focused on RASA components for a single site (USP79). Future work shall include the incorporation of other RASA systems, as well as their environmental conditions that play a significant role in performance. Similarly, SHADES currently accommodates specific component behaviors at this one site. Future work shall also include important environmental variables that play an important part of the prediction algorithms.

  1. Multiple-User, Multitasking, Virtual-Memory Computer System

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.; Stang, David B.

    1993-01-01

    Computer system designed and programmed to serve multiple users in research laboratory. Provides for computer control and monitoring of laboratory instruments, acquisition and anlaysis of data from those instruments, and interaction with users via remote terminals. System provides fast access to shared central processing units and associated large (from megabytes to gigabytes) memories. Underlying concept of system also applicable to monitoring and control of industrial processes.

  2. 40 CFR 65.156 - General monitoring requirements for control and recovery devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Closed Vent Systems, Control Devices, and Routing to a Fuel Gas System or a Process § 65.156 General monitoring requirements for... systems. (1) All monitoring equipment shall be installed, calibrated, maintained, and operated according...

  3. The SISMA Project: A pre-operative seismic hazard monitoring system.

    NASA Astrophysics Data System (ADS)

    Massimiliano Chersich, M. C.; Amodio, A. A. Angelo; Francia, A. F. Andrea; Sparpaglione, C. S. Claudio

    2009-04-01

    Galileian Plus is currently leading the development, in collaboration with several Italian Universities, of the SISMA (Seismic Information System for Monitoring and Alert) Pilot Project financed by the Italian Space Agency. The system is devoted to the continuous monitoring of the seismic risk and is addressed to support the Italian Civil Protection decisional process. Completion of the Pilot Project is planned at the beginning of 2010. Main scientific paradigm of SISMA is an innovative deterministic approach integrating geophysical models, geodesy and active tectonics. This paper will give a general overview of project along with its progress status and a particular focus will be put on the architectural design details and to the software implementation choices. SISMA is built on top of a software infrastructure developed by Galileian Plus to integrate the scientific programs devoted to the update of seismic risk maps. The main characteristics of the system may be resumed as follow: automatic download of input data; integration of scientific programs; definition and scheduling of chains of processes; monitoring and control of the system through a graphical user interface (GUI); compatibility of the products with ESRI ArcGIS, by mean of post-processing conversion. a) automatic download of input data SISMA needs input data such as GNSS observations, updated seismic catalogue, SAR satellites orbits, etc. that are periodically updated and made available from remote servers through FTP and HTTP. This task is accomplished by a dedicated user configurable component. b) integration of scientific programs SISMA integrates many scientific programs written in different languages (Fortran, C, C++, Perl and Bash) and running into different operating systems. This design requirements lead to the development of a distributed system which is platform independent and is able to run any terminal-based program following few simple predefined rules. c) definition and scheduling of chains of processes Processes are bound each other, in the sense that the output of process "A" should be passed as input to process "B". In this case the process "B" must run automatically as soon as the required input is ready. In SISMA this issue is handled with the "data-driven" activation concept allowing specifying that a process should be started as soon as the needed input datum has been made available in the archive. Moreover SISMA may run processes on a "time-driven" base. The infrastructure of SISMA provides a configurable scheduler allowing the user to define the start time and the periodicity of such processes. d) monitoring and control The operator of the system needs to monitor and control every process running in the system. The SISMA infrastructure allows, through its GUI, the user to: view log messages of running and old processes; stop running processes; monitor processes executions; monitor resource status (available ram, network reachability, and available disk space) for every machine in the system. e) compatibility with ESRI Shapefiles Nearly all the SISMA data has some geographic information, and it is useful to integrate it in a Geographic Information System (GIS). Processors output are georeferred, but they are generated as ASCII files in a proprietary format, and thus cannot directly loaded in a GIS. The infrastructures provides a simple framework for adding filters that reads the data in the proprietary format and converts it to ESRI Shapefile format.

  4. Systemic Case Formulation, Individualized Process Monitoring, and State Dynamics in a Case of Dissociative Identity Disorder.

    PubMed

    Schiepek, Günter K; Stöger-Schmidinger, Barbara; Aichhorn, Wolfgang; Schöller, Helmut; Aas, Benjamin

    2016-01-01

    Objective: The aim of this case report is to demonstrate the feasibility of a systemic procedure (synergetic process management) including modeling of the idiographic psychological system and continuous high-frequency monitoring of change dynamics in a case of dissociative identity disorder. The psychotherapy was realized in a day treatment center with a female client diagnosed with borderline personality disorder (BPD) and dissociative identity disorder. Methods: A three hour long co-creative session at the beginning of the treatment period allowed for modeling the systemic network of the client's dynamics of cognitions, emotions, and behavior. The components (variables) of this idiographic system model (ISM) were used to create items for an individualized process questionnaire for the client. The questionnaire was administered daily through an internet-based monitoring tool (Synergetic Navigation System, SNS), to capture the client's individual change process continuously throughout the therapy and after-care period. The resulting time series were reflected by therapist and client in therapeutic feedback sessions. Results: For the client it was important to see how the personality states dominating her daily life were represented by her idiographic system model and how the transitions between each state could be explained and understood by the activating and inhibiting relations between the cognitive-emotional components of that system. Continuous monitoring of her cognitions, emotions, and behavior via SNS allowed for identification of important triggers, dynamic patterns, and psychological mechanisms behind seemingly erratic state fluctuations. These insights enabled a change in management of the dynamics and an intensified trauma-focused therapy. Conclusion: By making use of the systemic case formulation technique and subsequent daily online monitoring, client and therapist continuously refer to detailed visualizations of the mental and behavioral network and its dynamics (e.g., order transitions). Effects on self-related information processing, on identity development, and toward a more pronounced autonomy in life (instead of feeling helpless against the chaoticity of state dynamics) were evident in the presented case and documented by the monitoring system.

  5. Real-Time Monitoring of Scada Based Control System for Filling Process

    NASA Astrophysics Data System (ADS)

    Soe, Aung Kyaw; Myint, Aung Naing; Latt, Maung Maung; Theingi

    2008-10-01

    This paper is a design of real-time monitoring for filling system using Supervisory Control and Data Acquisition (SCADA). The monitoring of production process is described in real-time using Visual Basic.Net programming under Visual Studio 2005 software without SCADA software. The software integrators are programmed to get the required information for the configuration screens. Simulation of components is expressed on the computer screen using parallel port between computers and filling devices. The programs of real-time simulation for the filling process from the pure drinking water industry are provided.

  6. Application research of Ganglia in Hadoop monitoring and management

    NASA Astrophysics Data System (ADS)

    Li, Gang; Ding, Jing; Zhou, Lixia; Yang, Yi; Liu, Lei; Wang, Xiaolei

    2017-03-01

    There are many applications of Hadoop System in the field of large data, cloud computing. The test bench of storage and application in seismic network at Earthquake Administration of Tianjin use with Hadoop system, which is used the open source software of Ganglia to operate and monitor. This paper reviews the function, installation and configuration process, application effect of operating and monitoring in Hadoop system of the Ganglia system. It briefly introduces the idea and effect of Nagios software monitoring Hadoop system. It is valuable for the industry in the monitoring system of cloud computing platform.

  7. [Construction of NIRS-based process analytical system for production of salvianolic acid for injection and relative discussion].

    PubMed

    Zhang, Lei; Yue, Hong-Shui; Ju, Ai-Chun; Ye, Zheng-Liang

    2016-10-01

    Currently, near infrared spectroscopy (NIRS) has been considered as an efficient tool for achieving process analytical technology(PAT) in the manufacture of traditional Chinese medicine (TCM) products. In this article, the NIRS based process analytical system for the production of salvianolic acid for injection was introduced. The design of the process analytical system was described in detail, including the selection of monitored processes and testing mode, and potential risks that should be avoided. Moreover, the development of relative technologies was also presented, which contained the establishment of the monitoring methods for the elution of polyamide resin and macroporous resin chromatography processes, as well as the rapid analysis method for finished products. Based on author's experience of research and work, several issues in the application of NIRS to the process monitoring and control in TCM production were then raised, and some potential solutions were also discussed. The issues include building the technical team for process analytical system, the design of the process analytical system in the manufacture of TCM products, standardization of the NIRS-based analytical methods, and improving the management of process analytical system. Finally, the prospect for the application of NIRS in the TCM industry was put forward. Copyright© by the Chinese Pharmaceutical Association.

  8. Open Source Based Sensor Platform for Mobile Environmental Monitoring and Data Acquisition

    NASA Astrophysics Data System (ADS)

    Schima, Robert; Goblirsch, Tobias; Misterek, René; Salbach, Christoph; Schlink, Uwe; Francyk, Bogdan; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    The impact of global change, urbanization and complex interactions between humans and the environment show different effects on different scales. However, the desire to obtain a better understanding of ecosystems and process dynamics in nature accentuates the need for observing these processes in higher temporal and spatial resolutions. Especially with regard to the process dynamics and heterogeneity of urban areas, a comprehensive monitoring of these effects remains to be a challenging issue. Open source based electronics and cost-effective sensors are offering a promising approach to explore new possibilities of mobile data acquisition and innovative strategies and thereby support a comprehensive ad-hoc monitoring and the capturing of environmental processes close to real time. Accordingly, our project aims the development of new strategies for mobile data acquisition and real-time processing of user-specific environmental data, based on a holistic and integrated process. To this end, the concept of our monitoring system covers the data collection, data processing and data integration as well as the data provision within one infrastructure. This ensures a consistent data stream and a rapid data processing. However, the overarching goal is the provision of an integrated service instead of lengthy and arduous data acquisition by hand. Therefore, the system also serves as a data acquisition assistant and gives guidance during the measurements. In technical terms, our monitoring system consists of mobile sensor devices, which can be controlled and managed by a smart phone app (Android). At the moment, the system is able to acquire temperature and humidity in space (GPS) and time (real-time clock) as a built in function. In addition, larger system functionality can be accomplished by adding further sensors for the detection of e.g. fine dust, methane or dissolved organic compounds. From the IT point of view, the system includes a smart phone app and a web service for data processing, data provision and data visualization. The smart phone app allows the configuration of the mobile sensor devices and provides some built-in functions such as simple data visualization or data transmission via e-mail whereas the web service provides the visualization of the data and tools for data processing. In an initial field experiment, a methane monitoring based on our sensor integration platform was performed in the city area of Leipzig (Germany) in late June 2015. The study has shown that an urban monitoring can be conducted based on open source components. Moreover, the system enabled the detection of hot spots and methane emission sources. In September 2015, a larger scaled city monitoring based on the mobile monitoring platform was performed by five independently driving cyclists through the city center of Leipzig (Germany). As a result we were able to instantly show a heat and humidity map of the inner city center as well as an exposure map for each cyclist. This emphasizes the feasibility and high potential of open source based monitoring approaches for future research in the field of urban area monitoring in general, citizen science or the validation of remote sensing data.

  9. Bayesian Inference for Signal-Based Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  10. 40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...

  11. 40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...

  12. 40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...

  13. 40 CFR 63.143 - Process wastewater provisions-inspections and monitoring of operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-inspections and monitoring of operations. 63.143 Section 63.143 Protection of Environment ENVIRONMENTAL..., and Wastewater § 63.143 Process wastewater provisions—inspections and monitoring of operations. (a) For each wastewater tank, surface impoundment, container, individual drain system, and oil-water...

  14. Sequence and batch language programs and alarm related C Programs for the 242-A MCS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, J.F.

    1996-04-15

    A Distributive Process Control system was purchased by Project B-534, 242-A Evaporator/Crystallizer Upgrades. This control system, called the Monitor and Control system (MCS), was installed in the 242-A evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict themore » overall process. To do this, WTSE developed a second alarm scheme.« less

  15. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  16. Combination of process and vibration data for improved condition monitoring of industrial systems working under variable operating conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Cárcel, C.; Jaramillo, V. H.; Mba, D.; Ottewill, J. R.; Cao, Y.

    2016-01-01

    The detection and diagnosis of faults in industrial processes is a very active field of research due to the reduction in maintenance costs achieved by the implementation of process monitoring algorithms such as Principal Component Analysis, Partial Least Squares or more recently Canonical Variate Analysis (CVA). Typically the condition of rotating machinery is monitored separately using vibration analysis or other specific techniques. Conventional vibration-based condition monitoring techniques are based on the tracking of key features observed in the measured signal. Typically steady-state loading conditions are required to ensure consistency between measurements. In this paper, a technique based on merging process and vibration data is proposed with the objective of improving the detection of mechanical faults in industrial systems working under variable operating conditions. The capabilities of CVA for detection and diagnosis of faults were tested using experimental data acquired from a compressor test rig where different process faults were introduced. Results suggest that the combination of process and vibration data can effectively improve the detectability of mechanical faults in systems working under variable operating conditions.

  17. Performance Monitoring of Distributed Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Ojha, Anand K.

    2000-01-01

    Test and checkout systems are essential components in ensuring safety and reliability of aircraft and related systems for space missions. A variety of systems, developed over several years, are in use at the NASA/KSC. Many of these systems are configured as distributed data processing systems with the functionality spread over several multiprocessor nodes interconnected through networks. To be cost-effective, a system should take the least amount of resource and perform a given testing task in the least amount of time. There are two aspects of performance evaluation: monitoring and benchmarking. While monitoring is valuable to system administrators in operating and maintaining, benchmarking is important in designing and upgrading computer-based systems. These two aspects of performance evaluation are the foci of this project. This paper first discusses various issues related to software, hardware, and hybrid performance monitoring as applicable to distributed systems, and specifically to the TCMS (Test Control and Monitoring System). Next, a comparison of several probing instructions are made to show that the hybrid monitoring technique developed by the NIST (National Institutes for Standards and Technology) is the least intrusive and takes only one-fourth of the time taken by software monitoring probes. In the rest of the paper, issues related to benchmarking a distributed system have been discussed and finally a prescription for developing a micro-benchmark for the TCMS has been provided.

  18. Evaluation of a video image detection system : final report.

    DOT National Transportation Integrated Search

    1994-05-01

    A video image detection system (VIDS) is an advanced wide-area traffic monitoring system : that processes input from a video camera. The Autoscope VIDS coupled with an information : management system was selected as the monitoring device because test...

  19. System for monitoring an industrial or biological process

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Vilim, Rick B.; White, Andrew M.

    1998-01-01

    A method and apparatus for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT.

  20. Data Processing And Machine Learning Methods For Multi-Modal Operator State Classification Systems

    NASA Technical Reports Server (NTRS)

    Hearn, Tristan A.

    2015-01-01

    This document is intended as an introduction to a set of common signal processing learning methods that may be used in the software portion of a functional crew state monitoring system. This includes overviews of both the theory of the methods involved, as well as examples of implementation. Practical considerations are discussed for implementing modular, flexible, and scalable processing and classification software for a multi-modal, multi-channel monitoring system. Example source code is also given for all of the discussed processing and classification methods.

  1. System for monitoring an industrial or biological process

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  2. A novel process control method for a TT-300 E-Beam/X-Ray system

    NASA Astrophysics Data System (ADS)

    Mittendorfer, Josef; Gallnböck-Wagner, Bernhard

    2018-02-01

    This paper presents some aspects of the process control method for a TT-300 E-Beam/X-Ray system at Mediscan, Austria. The novelty of the approach is the seamless integration of routine monitoring dosimetry with process data. This allows to calculate a parametric dose for each production unit and consequently a fine grain and holistic process performance monitoring. Process performance is documented in process control charts for the analysis of individual runs as well as historic trending of runs of specific process categories over a specified time range.

  3. Data processing for water monitoring system

    NASA Technical Reports Server (NTRS)

    Monford, L.; Linton, A. T.

    1978-01-01

    Water monitoring data acquisition system is structured about central computer that controls sampling and sensor operation, and analyzes and displays data in real time. Unit is essentially separated into two systems: computer system, and hard wire backup system which may function separately or with computer.

  4. DAMT - DISTRIBUTED APPLICATION MONITOR TOOL (HP9000 VERSION)

    NASA Technical Reports Server (NTRS)

    Keith, B.

    1994-01-01

    Typical network monitors measure status of host computers and data traffic among hosts. A monitor to collect statistics about individual processes must be unobtrusive and possess the ability to locate and monitor processes, locate and monitor circuits between processes, and report traffic back to the user through a single application program interface (API). DAMT, Distributed Application Monitor Tool, is a distributed application program that will collect network statistics and make them available to the user. This distributed application has one component (i.e., process) on each host the user wishes to monitor as well as a set of components at a centralized location. DAMT provides the first known implementation of a network monitor at the application layer of abstraction. Potential users only need to know the process names of the distributed application they wish to monitor. The tool locates the processes and the circuit between them, and reports any traffic between them at a user-defined rate. The tool operates without the cooperation of the processes it monitors. Application processes require no changes to be monitored by this tool. Neither does DAMT require the UNIX kernel to be recompiled. The tool obtains process and circuit information by accessing the operating system's existing process database. This database contains all information available about currently executing processes. Expanding the information monitored by the tool can be done by utilizing more information from the process database. Traffic on a circuit between processes is monitored by a low-level LAN analyzer that has access to the raw network data. The tool also provides features such as dynamic event reporting and virtual path routing. A reusable object approach was used in the design of DAMT. The tool has four main components; the Virtual Path Switcher, the Central Monitor Complex, the Remote Monitor, and the LAN Analyzer. All of DAMT's components are independent, asynchronously executing processes. The independent processes communicate with each other via UNIX sockets through a Virtual Path router, or Switcher. The Switcher maintains a routing table showing the host of each component process of the tool, eliminating the need for each process to do so. The Central Monitor Complex provides the single application program interface (API) to the user and coordinates the activities of DAMT. The Central Monitor Complex is itself divided into independent objects that perform its functions. The component objects are the Central Monitor, the Process Locator, the Circuit Locator, and the Traffic Reporter. Each of these objects is an independent, asynchronously executing process. User requests to the tool are interpreted by the Central Monitor. The Process Locator identifies whether a named process is running on a monitored host and which host that is. The circuit between any two processes in the distributed application is identified using the Circuit Locator. The Traffic Reporter handles communication with the LAN Analyzer and accumulates traffic updates until it must send a traffic report to the user. The Remote Monitor process is replicated on each monitored host. It serves the Central Monitor Complex processes with application process information. The Remote Monitor process provides access to operating systems information about currently executing processes. It allows the Process Locator to find processes and the Circuit Locator to identify circuits between processes. It also provides lifetime information about currently monitored processes. The LAN Analyzer consists of two processes. Low-level monitoring is handled by the Sniffer. The Sniffer analyzes the raw data on a single, physical LAN. It responds to commands from the Analyzer process, which maintains the interface to the Traffic Reporter and keeps track of which circuits to monitor. DAMT is written in C-language for HP-9000 series computers running HP-UX and Sun 3 and 4 series computers running SunOS. DAMT requires 1Mb of disk space and 4Mb of RAM for execution. This package requires MIT's X Window System, Version 11 Revision 4, with OSF/Motif 1.1. The HP-9000 version (GSC-13589) includes sample HP-9000/375 and HP-9000/730 executables which were compiled under HP-UX, and the Sun version (GSC-13559) includes sample Sun3 and Sun4 executables compiled under SunOS. The standard distribution medium for the HP version of DAMT is a .25 inch HP pre-formatted streaming magnetic tape cartridge in UNIX tar format. It is also available on a 4mm magnetic tape in UNIX tar format. The standard distribution medium for the Sun version of DAMT is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. DAMT was developed in 1992.

  5. Automated Status Notification System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA Lewis Research Center's Automated Status Notification System (ASNS) was born out of need. To prevent "hacker attacks," Lewis' telephone system needed to monitor communications activities 24 hr a day, 7 days a week. With decreasing staff resources, this continuous monitoring had to be automated. By utilizing existing communications hardware, a UNIX workstation, and NAWK (a pattern scanning and processing language), we implemented a continuous monitoring system.

  6. SPECTROSCOPIC ONLINE MONITORING FOR PROCESS CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Samuel A.; Levitskaia, Tatiana G.

    2013-09-29

    There is a renewed interest worldwide to promote the use of nuclear power and close the nuclear fuel cycle. The long term successful use of nuclear power is critically dependent upon adequate and safe processing and disposition of the used nuclear fuel. Liquid-liquid extraction is a separation technique commonly employed for the processing of the dissolved used nuclear fuel. The instrumentation used to monitor these processes must be robust, require little or no maintenance, and be able to withstand harsh environments such as high radiation fields and aggressive chemical matrices. This paper summarizes application of the absorption and vibrational spectroscopicmore » techniques supplemented by physicochemical measurements for radiochemical process monitoring. In this context, our team experimentally assessed the potential of Raman and spectrophotometric techniques for online real-time monitoring of the U(VI)/nitrate ion/nitric acid and Pu(IV)/Np(V)/Nd(III), respectively, in solutions relevant to spent fuel reprocessing. These techniques demonstrate robust performance in the repetitive batch measurements of each analyte in a wide concentration range using simulant and commercial dissolved spent fuel solutions. Spectroscopic measurements served as training sets for the multivariate data analysis to obtain partial least squares predictive models, which were validated using on-line centrifugal contactor extraction tests. Satisfactory prediction of the analytes concentrations in these preliminary experiments warrants further development of the spectroscopy-based methods for radiochemical process control and safeguarding. Additionally, the ability to identify material intentionally diverted from a liquid-liquid extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion and detection from a liquid-liquid extraction scheme was demonstrated using a centrifugal contactor system operating with the simulant PUREX extraction system of Nd(NO3)3/nitric acid aqueous phase and TBP/n-dodecane organic phase. During a continuous extraction experiment, a portion of the feed from a counter-current extraction system was diverted while the spectroscopic on-line process monitoring system was simultaneously measuring the feed, raffinate and organic products streams. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of sample directly taken (diverted) from system feed solution.« less

  7. NASA JSC water monitor system: City of Houston field demonstration

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Jeffers, E. L.; Fricks, D. H.

    1979-01-01

    A water quality monitoring system with on-line and real time operation similar to the function in a spacecraft was investigated. A system with the capability to determine conformance to future high effluent quality standards and to increase the potential for reclamation and reuse of water was designed. Although all system capabilities were not verified in the initial field trial, fully automated operation over a sustained period with only routine manual adjustments was accomplished. Two major points were demonstrated: (1) the water monitor system has great potential in water monitoring and/or process control applications; and (2) the water monitor system represents a vast improvement over conventional (grab sample) water monitoring techniques.

  8. Development of living body information monitoring system

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko

    2010-03-01

    The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.

  9. Development of living body information monitoring system

    NASA Astrophysics Data System (ADS)

    Sakamoto, Hidetoshi; Ohbuchi, Yoshifumi; Torigoe, Ippei; Miyagawa, Hidekazu; Murayama, Nobuki; Hayashida, Yuki; Igasaki, Tomohiko

    2009-12-01

    The easy monitoring systems of contact and non-contact living body information for preventing the the Sudden Infant Death Syndrome (SIDS) were proposed as an alternative monitoring system of the infant's vital information. As for the contact monitoring system, respiration sensor, ECG electrodes, thermistor and IC signal processor were integrated into babies' nappy holder. This contact-monitoring unit has RF transmission function and the obtained data are analyzed in real time by PC. In non-contact mortaring system, the infrared thermo camera was used. The surrounding of the infant's mouth and nose is monitored and the respiration rate is obtained by thermal image processing of its temperature change image of expired air. This proposed system of in-sleep infant's vital information monitoring system and unit are very effective as not only infant's condition monitoring but also nursing person's one.

  10. Remote Sensing Center

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The applications are reported of new remote sensing techniques for earth resources surveys and environmental monitoring. Applications discussed include: vegetation systems, environmental monitoring, and plant protection. Data processing systems are described.

  11. A Fully Redundant On-Line Mass Spectrometer System Used to Monitor Cryogenic Fuel Leaks on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Steinrock, T. (Technical Monitor)

    2001-01-01

    An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user interface is very intuitive and easy to operate. The system has successfully supported four launches to date. It is currently being permanently installed as the primary system monitoring the Space Shuttles during ground processing and launch operations. Time and cost savings will be substantial over the current systems when it is fully implemented in the field. Tests were performed to demonstrate the performance of the system. Low limits-of-detection coupled with small drift make the system a major enhancement over the current systems. Though this system is currently optimized for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.

  12. Aircraft Engine-Monitoring System And Display

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Person, Lee H., Jr.

    1992-01-01

    Proposed Engine Health Monitoring System and Display (EHMSD) provides enhanced means for pilot to control and monitor performances of engines. Processes raw sensor data into information meaningful to pilot. Provides graphical information about performance capabilities, current performance, and operational conditions in components or subsystems of engines. Provides means to control engine thrust directly and innovative means to monitor performance of engine system rapidly and reliably. Features reduce pilot workload and increase operational safety.

  13. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  14. A Mock UF6 Feed and Withdrawal System for Testing Safeguards Monitoring Systems and Strategies Intended for Nuclear Fuel Enrichment and Processing Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krichinsky, Alan M; Bates, Bruce E; Chesser, Joel B

    2009-12-01

    This report describes an engineering-scale, mock UF6 feed and withdrawal (F&W) system, its operation, and its intended uses. This system has been assembled to provide a test bed for evaluating and demonstrating new methodologies that can be used in remote, unattended, continuous monitoring of nuclear material process operations. These measures are being investigated to provide independent inspectors improved assurance that operations are being conducted within declared parameters, and to increase the overall effectiveness of safeguarding nuclear material. Testing applicable technologies on a mock F&W system, which uses water as a surrogate for UF6, enables thorough and cost-effective investigation of hardware,more » software, and operational strategies before their direct installation in an industrial nuclear material processing environment. Electronic scales used for continuous load-cell monitoring also are described as part of the basic mock F&W system description. Continuous monitoring components on the mock F&W system are linked to a data aggregation computer by a local network, which also is depicted. Data collection and storage systems are described only briefly in this report. The mock UF{sub 6} F&W system is economical to operate. It uses a simple process involving only a surge tank between feed tanks and product and withdrawal (or waste) tanks. The system uses water as the transfer fluid, thereby avoiding the use of hazardous UF{sub 6}. The system is not tethered to an operating industrial process involving nuclear materials, thereby allowing scenarios (e.g., material diversion) that cannot be conducted otherwise. These features facilitate conducting experiments that yield meaningful results with a minimum of expenditure and quick turnaround time. Technologies demonstrated on the engineering-scale system lead to field trials (described briefly in this report) for determining implementation issues and performance of the monitoring technologies under plant operating conditions. The ultimate use of technologies tested on the engineering-scale test bed is to work with safeguards agencies to install them in operating plants (e.g., enrichment and fuel processing plants), thereby promoting new safeguards measures with minimal impact to operating plants. In addition, this system is useful in identifying features for new plants that can be incorporated as part of 'safeguards by design,' in which load cells and other monitoring technologies are specified to provide outputs for automated monitoring and inspector evaluation.« less

  15. Performance of an image analysis processing system for hen tracking in an environmental preference chamber.

    PubMed

    Kashiha, Mohammad Amin; Green, Angela R; Sales, Tatiana Glogerley; Bahr, Claudia; Berckmans, Daniel; Gates, Richard S

    2014-10-01

    Image processing systems have been widely used in monitoring livestock for many applications, including identification, tracking, behavior analysis, occupancy rates, and activity calculations. The primary goal of this work was to quantify image processing performance when monitoring laying hens by comparing length of stay in each compartment as detected by the image processing system with the actual occurrences registered by human observations. In this work, an image processing system was implemented and evaluated for use in an environmental animal preference chamber to detect hen navigation between 4 compartments of the chamber. One camera was installed above each compartment to produce top-view images of the whole compartment. An ellipse-fitting model was applied to captured images to detect whether the hen was present in a compartment. During a choice-test study, mean ± SD success detection rates of 95.9 ± 2.6% were achieved when considering total duration of compartment occupancy. These results suggest that the image processing system is currently suitable for determining the response measures for assessing environmental choices. Moreover, the image processing system offered a comprehensive analysis of occupancy while substantially reducing data processing time compared with the time-intensive alternative of manual video analysis. The above technique was used to monitor ammonia aversion in the chamber. As a preliminary pilot study, different levels of ammonia were applied to different compartments while hens were allowed to navigate between compartments. Using the automated monitor tool to assess occupancy, a negative trend of compartment occupancy with ammonia level was revealed, though further examination is needed. ©2014 Poultry Science Association Inc.

  16. Conflict Monitoring in Dual Process Theories of Thinking

    ERIC Educational Resources Information Center

    De Neys, Wim; Glumicic, Tamara

    2008-01-01

    Popular dual process theories have characterized human thinking as an interplay between an intuitive-heuristic and demanding-analytic reasoning process. Although monitoring the output of the two systems for conflict is crucial to avoid decision making errors there are some widely different views on the efficiency of the process. Kahneman…

  17. Development and Evaluation of Video Systems for Performance Testing and Student Monitoring. Final Report.

    ERIC Educational Resources Information Center

    Hayes, John; Pulliam, Robert

    A video performance monitoring system was developed by the URS/Matrix Company, under contract to the USAF Human Resources Laboratory and was evaluated experimentally in three technical training settings. Using input from 1 to 8 video cameras, the system provided a flexible combination of signal processing, direct monitor, recording and replay…

  18. Process defects and in situ monitoring methods in metal powder bed fusion: a review

    NASA Astrophysics Data System (ADS)

    Grasso, Marco; Colosimo, Bianca Maria

    2017-04-01

    Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g. aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for in situ monitoring of powder bed fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems.

  19. Development of wireless brain computer interface with embedded multitask scheduling and its application on real-time driver's drowsiness detection and warning.

    PubMed

    Lin, Chin-Teng; Chen, Yu-Chieh; Huang, Teng-Yi; Chiu, Tien-Ting; Ko, Li-Wei; Liang, Sheng-Fu; Hsieh, Hung-Yi; Hsu, Shang-Hwa; Duann, Jeng-Ren

    2008-05-01

    Biomedical signal monitoring systems have been rapidly advanced with electronic and information technologies in recent years. However, most of the existing physiological signal monitoring systems can only record the signals without the capability of automatic analysis. In this paper, we proposed a novel brain-computer interface (BCI) system that can acquire and analyze electroencephalogram (EEG) signals in real-time to monitor human physiological as well as cognitive states, and, in turn, provide warning signals to the users when needed. The BCI system consists of a four-channel biosignal acquisition/amplification module, a wireless transmission module, a dual-core signal processing unit, and a host system for display and storage. The embedded dual-core processing system with multitask scheduling capability was proposed to acquire and process the input EEG signals in real time. In addition, the wireless transmission module, which eliminates the inconvenience of wiring, can be switched between radio frequency (RF) and Bluetooth according to the transmission distance. Finally, the real-time EEG-based drowsiness monitoring and warning algorithms were implemented and integrated into the system to close the loop of the BCI system. The practical online testing demonstrates the feasibility of using the proposed system with the ability of real-time processing, automatic analysis, and online warning feedback in real-world operation and living environments.

  20. Dielectric cure monitoring: Preliminary studies

    NASA Technical Reports Server (NTRS)

    Goldberg, B. E.; Semmel, M. L.

    1984-01-01

    Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet's sensitivity to water absorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing.

  1. Real-time processing of interferograms for monitoring protein crystal growth on the Space Station

    NASA Technical Reports Server (NTRS)

    Choudry, A.; Dupuis, N.

    1988-01-01

    The possibility of using microscopic interferometric techniques to monitor the growth of protein crystals on the Space Station is studied. Digital image processing techniques are used to develop a system for the real-time analysis of microscopic interferograms of nucleation sites during protein crystal growth. Features of the optical setup and the image processing system are discussed and experimental results are presented.

  2. 9 CFR 318.307 - Record review and maintenance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... temperature/time recording devices shall be identified by production date, container code, processing vessel... made available to Program employees for review. (b) Automated process monitoring and recordkeeping. Automated process monitoring and recordkeeping systems shall be designed and operated in a manner that will...

  3. 9 CFR 318.307 - Record review and maintenance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... temperature/time recording devices shall be identified by production date, container code, processing vessel... made available to Program employees for review. (b) Automated process monitoring and recordkeeping. Automated process monitoring and recordkeeping systems shall be designed and operated in a manner that will...

  4. 9 CFR 318.307 - Record review and maintenance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... temperature/time recording devices shall be identified by production date, container code, processing vessel... made available to Program employees for review. (b) Automated process monitoring and recordkeeping. Automated process monitoring and recordkeeping systems shall be designed and operated in a manner that will...

  5. 9 CFR 318.307 - Record review and maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... temperature/time recording devices shall be identified by production date, container code, processing vessel... made available to Program employees for review. (b) Automated process monitoring and recordkeeping. Automated process monitoring and recordkeeping systems shall be designed and operated in a manner that will...

  6. 9 CFR 318.307 - Record review and maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... temperature/time recording devices shall be identified by production date, container code, processing vessel... made available to Program employees for review. (b) Automated process monitoring and recordkeeping. Automated process monitoring and recordkeeping systems shall be designed and operated in a manner that will...

  7. INDUCTIVE SYSTEM HEALTH MONITORING WITH STATISTICAL METRICS

    NASA Technical Reports Server (NTRS)

    Iverson, David L.

    2005-01-01

    Model-based reasoning is a powerful method for performing system monitoring and diagnosis. Building models for model-based reasoning is often a difficult and time consuming process. The Inductive Monitoring System (IMS) software was developed to provide a technique to automatically produce health monitoring knowledge bases for systems that are either difficult to model (simulate) with a computer or which require computer models that are too complex to use for real time monitoring. IMS processes nominal data sets collected either directly from the system or from simulations to build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and data mining techniques are used to characterize typical system behavior by extracting general classes of nominal data from archived data sets. In particular, a clustering algorithm forms groups of nominal values for sets of related parameters. This establishes constraints on those parameter values that should hold during nominal operation. During monitoring, IMS provides a statistically weighted measure of the deviation of current system behavior from the established normal baseline. If the deviation increases beyond the expected level, an anomaly is suspected, prompting further investigation by an operator or automated system. IMS has shown potential to be an effective, low cost technique to produce system monitoring capability for a variety of applications. We describe the training and system health monitoring techniques of IMS. We also present the application of IMS to a data set from the Space Shuttle Columbia STS-107 flight. IMS was able to detect an anomaly in the launch telemetry shortly after a foam impact damaged Columbia's thermal protection system.

  8. Monitoring of services with non-relational databases and map-reduce framework

    NASA Astrophysics Data System (ADS)

    Babik, M.; Souto, F.

    2012-12-01

    Service Availability Monitoring (SAM) is a well-established monitoring framework that performs regular measurements of the core site services and reports the corresponding availability and reliability of the Worldwide LHC Computing Grid (WLCG) infrastructure. One of the existing extensions of SAM is Site Wide Area Testing (SWAT), which gathers monitoring information from the worker nodes via instrumented jobs. This generates quite a lot of monitoring data to process, as there are several data points for every job and several million jobs are executed every day. The recent uptake of non-relational databases opens a new paradigm in the large-scale storage and distributed processing of systems with heavy read-write workloads. For SAM this brings new possibilities to improve its model, from performing aggregation of measurements to storing raw data and subsequent re-processing. Both SAM and SWAT are currently tuned to run at top performance, reaching some of the limits in storage and processing power of their existing Oracle relational database. We investigated the usability and performance of non-relational storage together with its distributed data processing capabilities. For this, several popular systems have been compared. In this contribution we describe our investigation of the existing non-relational databases suited for monitoring systems covering Cassandra, HBase and MongoDB. Further, we present our experiences in data modeling and prototyping map-reduce algorithms focusing on the extension of the already existing availability and reliability computations. Finally, possible future directions in this area are discussed, analyzing the current deficiencies of the existing Grid monitoring systems and proposing solutions to leverage the benefits of the non-relational databases to get more scalable and flexible frameworks.

  9. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring

    PubMed Central

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-01-01

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro. PMID:26295394

  10. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.

    PubMed

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-08-19

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.

  11. Launch Processing System. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Byrne, F.; Doolittle, G. V.; Hockenberger, R. W.

    1976-01-01

    This paper presents a functional description of the Launch Processing System, which provides automatic ground checkout and control of the Space Shuttle launch site and airborne systems, with emphasis placed on the Checkout, Control, and Monitor Subsystem. Hardware and software modular design concepts for the distributed computer system are reviewed relative to performing system tests, launch operations control, and status monitoring during ground operations. The communication network design, which uses a Common Data Buffer interface to all computers to allow computer-to-computer communication, is discussed in detail.

  12. Automated monitoring of medical protocols: a secure and distributed architecture.

    PubMed

    Alsinet, T; Ansótegui, C; Béjar, R; Fernández, C; Manyà, F

    2003-03-01

    The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.

  13. Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

    NASA Astrophysics Data System (ADS)

    Warburton, Jamie Lee

    To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations. The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO3. A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration. The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining UV-Visible spectra gathered in real time, the objective is to detect the conversion from the UREX process, which does not separate Pu, to the PUREX process, which yields a purified Pu product. The change in process chemistry can be detected in the feed solution, aqueous product or in the raffinate stream by identifying the acid concentration, metal distribution and the presence or absence of AHA. A fiber optic dip probe for UV-Visible spectroscopy was integrated into a bank of three counter-current centrifugal contactors to demonstrate the online process monitoring concept. Nd, Fe and Zr were added to the uranyl nitrate system to explore spectroscopic interferences and identify additional species as candidates for online monitoring. This milestone is a demonstration of the potential of this technique, which lies in the ability to simultaneously and directly monitor the chemical process conditions in a reprocessing plant, providing inspectors with another tool to detect nuclear material diversion attempts. Lastly, dry processing of used nuclear fuel is often used as a head-end step before solvent extraction-based separations such as UREX or TRUEX. A non-aqueous process, used fuel treatment by dry processing generally includes chopping of used fuel rods followed by repeated oxidation-reduction cycles and physical separation of the used fuel from the cladding. Thus, dry processing techniques are investigated and opportunities for online monitoring are proposed for continuation of this work in future studies.

  14. Implementation of the Geological Hazard Monitoring and Early Warning System Based on Multi - source Data -A Case Study of Deqin Tibetan County, Yunnan Province

    NASA Astrophysics Data System (ADS)

    Zhao, Junsan; Chen, Guoping; Yuan, Lei

    2017-04-01

    The new technologies, such as 3D laser scanning, InSAR, GNSS, unmanned aerial vehicle and Internet of things, will provide much more data resources for the surveying and monitoring, as well as the development of Early Warning System (EWS). This paper provides the solutions of the design and implementation of a geological disaster monitoring and early warning system (GDMEWS), which includes landslides and debris flows hazard, based on the multi-sources of the date by use of technologies above mentioned. The complex and changeable characteristics of the GDMEWS are described. The architecture of the system, composition of the multi-source database, development mode and service logic, the methods and key technologies of system development are also analyzed. To elaborate the process of the implementation of the GDMEWS, Deqin Tibetan County is selected as a case study area, which has the unique terrain and diverse types of typical landslides and debris flows. Firstly, the system functional requirements, monitoring and forecasting models of the system are discussed. Secondly, the logic relationships of the whole process of disaster including pre-disaster, disaster rescue and post-disaster reconstruction are studied, and the support tool for disaster prevention, disaster reduction and geological disaster management are developed. Thirdly, the methods of the multi - source monitoring data integration and the generation of the mechanism model of Geological hazards and simulation are expressed. Finally, the construction of the GDMEWS is issued, which will be applied to management, monitoring and forecasting of whole disaster process in real-time and dynamically in Deqin Tibetan County. Keywords: multi-source spatial data; geological disaster; monitoring and warning system; Deqin Tibetan County

  15. 40 CFR 63.605 - Monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an... either the mass flow of phosphorus-bearing feed material to the dryer or calciner, or the mass flow of... total mass rate in metric ton/hour of phosphorus bearing feed using a monitoring system for measuring...

  16. 40 CFR 63.605 - Monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an... either the mass flow of phosphorus-bearing feed material to the dryer or calciner, or the mass flow of... total mass rate in metric ton/hour of phosphorus bearing feed using a monitoring system for measuring...

  17. Web Based Seismological Monitoring (wbsm)

    NASA Astrophysics Data System (ADS)

    Giudicepietro, F.; Meglio, V.; Romano, S. P.; de Cesare, W.; Ventre, G.; Martini, M.

    Over the last few decades the seismological monitoring systems have dramatically improved tanks to the technological advancements and to the scientific progresses of the seismological studies. The most modern processing systems use the network tech- nologies to realize high quality performances in data transmission and remote controls. Their architecture is designed to favor the real-time signals analysis. This is, usually, realized by adopting a modular structure that allow to easy integrate any new cal- culation algorithm, without affecting the other system functionalities. A further step in the seismic processing systems evolution is the large use of the web based appli- cations. The web technologies can be an useful support for the monitoring activities allowing to automatically publishing the results of signals processing and favoring the remote access to data, software systems and instrumentation. An application of the web technologies to the seismological monitoring has been developed at the "Os- servatorio Vesuviano" monitoring center (INGV) in collaboration with the "Diparti- mento di Informatica e Sistemistica" of the Naples University. A system named Web Based Seismological Monitoring (WBSM) has been developed. Its main objective is to automatically publish the seismic events processing results and to allow displaying, analyzing and downloading seismic data via Internet. WBSM uses the XML tech- nology for hypocentral and picking parameters representation and creates a seismic events data base containing parametric data and wave-forms. In order to give tools for the evaluation of the quality and reliability of the published locations, WBSM also supplies all the quality parameters calculated by the locating program and allow to interactively display the wave-forms and the related parameters. WBSM is a modular system in which the interface function to the data sources is performed by two spe- cific modules so that to make it working in conjunction with a generic data source it is sufficient to modify or substitute the interface modules. WBSM is running at the "Osservatorio Vesuviano" Monitoring Center since the beginning of 2001 and can be visited at http://ov.ingv.it.

  18. Computer-aided video exposure monitoring.

    PubMed

    Walsh, P T; Clark, R D; Flaherty, S; Gentry, S J

    2000-01-01

    A computer-aided video exposure monitoring system was used to record exposure information. The system comprised a handheld camcorder, portable video cassette recorder, radio-telemetry transmitter/receiver, and handheld or notebook computers for remote data logging, photoionization gas/vapor detectors (PIDs), and a personal aerosol monitor. The following workplaces were surveyed using the system: dry cleaning establishments--monitoring tetrachoroethylene in the air and in breath; printing works--monitoring white spirit type solvent; tire manufacturing factory--monitoring rubber fume; and a slate quarry--monitoring respirable dust and quartz. The system based on the handheld computer, in particular, simplified the data acquisition process compared with earlier systems in use by our laboratory. The equipment is more compact and easier to operate, and allows more accurate calibration of the instrument reading on the video image. Although a variety of data display formats are possible, the best format for videos intended for educational and training purposes was the review-preview chart superimposed on the video image of the work process. Recommendations for reducing exposure by engineering or by modifying work practice were possible through use of the video exposure system in the dry cleaning and tire manufacturing applications. The slate quarry work illustrated how the technique can be used to test ventilation configurations quickly to see their effect on the worker's personal exposure.

  19. Triboelectric Nanogenerator Enabled Body Sensor Network for Self-Powered Human Heart-Rate Monitoring.

    PubMed

    Lin, Zhiming; Chen, Jun; Li, Xiaoshi; Zhou, Zhihao; Meng, Keyu; Wei, Wei; Yang, Jin; Wang, Zhong Lin

    2017-09-26

    Heart-rate monitoring plays a critical role in personal healthcare management. A low-cost, noninvasive, and user-friendly heart-rate monitoring system is highly desirable. Here, a self-powered wireless body sensor network (BSN) system is developed for heart-rate monitoring via integration of a downy-structure-based triboelectric nanogenerator (D-TENG), a power management circuit, a heart-rate sensor, a signal processing unit, and Bluetooth module for wireless data transmission. By converting the inertia energy of human walking into electric power, a maximum power of 2.28 mW with total conversion efficiency of 57.9% was delivered at low operation frequency, which is capable of immediately and sustainably driving the highly integrated BSN system. The acquired heart-rate signal by the sensor would be processed in the signal process circuit, sent to an external device via the Bluetooth module, and displayed on a personal cell phone in a real-time manner. Moreover, by combining a TENG-based generator and a TENG-based sensor, an all-TENG-based wireless BSN system was developed, realizing continuous and self-powered heart-rate monitoring. This work presents a potential method for personal heart-rate monitoring, featured as being self-powered, cost-effective, noninvasive, and user-friendly.

  20. Attitudes of Austrian Psychotherapists Towards Process and Outcome Monitoring.

    PubMed

    Kaiser, Tim; Schmutzhart, Lisa; Laireiter, Anton-Rupert

    2018-03-08

    While monitoring systems in psychotherapy have become more common, little is known about the attitudes that mental health practitioners have towards these systems. In an online survey among 111 Austrian psychotherapists and trainees, attitudes towards therapy monitoring were measured. A well-validated questionnaire measuring attitudes towards outcome monitoring, the Outcome Measurement Questionnaire, was used. Clinicians' theoretical orientations as well as previous knowledge and experience with monitoring systems were associated with positive attitudes towards monitoring. Possible factors that may have led to these findings, like the views of different theoretical orientations or obstacles in Austrian public health care, are discussed.

  1. System theory in industrial patient monitoring: an overview.

    PubMed

    Baura, G D

    2004-01-01

    Patient monitoring refers to the continuous observation of repeating events of physiologic function to guide therapy or to monitor the effectiveness of interventions, and is used primarily in the intensive care unit and operating room. Commonly processed signals are the electrocardiogram, intraarterial blood pressure, arterial saturation of oxygen, and cardiac output. To this day, the majority of physiologic waveform processing in patient monitors is conducted using heuristic curve fitting. However in the early 1990s, a few enterprising engineers and physicians began using system theory to improve their core processing. Applications included improvement of signal-to-noise ratio, either due to low signal levels or motion artifact, and improvement in feature detection. The goal of this mini-symposium is to review the early work in this emerging field, which has led to technologic breakthroughs. In this overview talk, the process of system theory algorithm research and development is discussed. Research for industrial monitors involves substantial data collection, with some data used for algorithm training and the remainder used for validation. Once the algorithms are validated, they are translated into detailed specifications. Development then translates these specifications into DSP code. The DSP code is verified and validated per the Good Manufacturing Practices mandated by FDA.

  2. Continuous emission monitoring and accounting automated systems at an HPP

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Ionkin, I. L.; Kondrateva, O. E.; Borovkova, A. M.; Seregin, V. A.; Morozov, I. V.

    2015-03-01

    Environmental and industrial emission monitoring at HPP's is a very urgent task today. Industrial monitoring assumes monitoring of emissions of harmful pollutants and optimization of fuel combustion technological processes at HPP's. Environmental monitoring is a system to assess ambient air quality with respect to a number of separate sources of harmful substances in pollution of atmospheric air of the area. Works on creating an industrial monitoring system are carried out at the National Research University Moscow Power Engineering Institute (MPEI) on the basis of the MPEI combined heat and power plant, and environmental monitoring stations are installed in Lefortovo raion, where the CHPP is located.

  3. Using a participatory evaluation design to create an online data collection and monitoring system for New Mexico's Community Health Councils.

    PubMed

    Andrews, M L; Sánchez, V; Carrillo, C; Allen-Ananins, B; Cruz, Y B

    2014-02-01

    We present the collaborative development of a web-based data collection and monitoring plan for thirty-two county councils within New Mexico's health council system. The monitoring plan, a key component in our multiyear participatory statewide evaluation process, was co-developed with the end users: representatives of the health councils. Guided by the Institute of Medicine's Community, Health Improvement Process framework, we first developed a logic model that delineated processes and intermediate systems-level outcomes in council development, planning, and community action. Through the online system, health councils reported data on intermediate outcomes, including policy changes and funds leveraged. The system captured data that were common across the health council system, yet was also flexible so that councils could report their unique accomplishments at the county level. A main benefit of the online system was that it provided the ability to assess intermediate, outcomes across the health council system. Developing the system was not without challenges, including creating processes to ensure participation across a large rural state; creating shared understanding of intermediate outcomes and indicators; and overcoming technological issues. Even through the challenges, however, the benefits of committing to using participatory processes far outweighed the challenges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Industrial implementation of spatial variability control by real-time SPC

    NASA Astrophysics Data System (ADS)

    Roule, O.; Pasqualini, F.; Borde, M.

    2016-10-01

    Advanced technology nodes require more and more information to get the wafer process well setup. The critical dimension of components decreases following Moore's law. At the same time, the intra-wafer dispersion linked to the spatial non-uniformity of tool's processes is not capable to decrease in the same proportions. APC systems (Advanced Process Control) are being developed in waferfab to automatically adjust and tune wafer processing, based on a lot of process context information. It can generate and monitor complex intrawafer process profile corrections between different process steps. It leads us to put under control the spatial variability, in real time by our SPC system (Statistical Process Control). This paper will outline the architecture of an integrated process control system for shape monitoring in 3D, implemented in waferfab.

  5. Multi-Level Modeling of Complex Socio-Technical Systems - Phase 1

    DTIC Science & Technology

    2013-06-06

    is to detect anomalous organizational outcomes, diagnose the causes of these anomalies , and decide upon appropriate compensation schemes. All of...monitor process outcomes. The purpose of this monitoring is to detect anomalous process outcomes, diagnose the causes of these anomalies , and decide upon...monitor work outcomes in terms of performance. The purpose of this monitoring is to detect anomalous work outcomes, diagnose the causes of these anomalies

  6. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    NASA Astrophysics Data System (ADS)

    Duc Nguyen, Minh

    2017-10-01

    This work describes Live Monitor, the monitoring subsystem of SDDS - an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  7. Information processing requirements for on-board monitoring of automatic landing

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Karmarkar, J. S.

    1977-01-01

    A systematic procedure is presented for determining the information processing requirements for on-board monitoring of automatic landing systems. The monitoring system detects landing anomalies through use of appropriate statistical tests. The time-to-correct aircraft perturbations is determined from covariance analyses using a sequence of suitable aircraft/autoland/pilot models. The covariance results are used to establish landing safety and a fault recovery operating envelope via an event outcome tree. This procedure is demonstrated with examples using the NASA Terminal Configured Vehicle (B-737 aircraft). The procedure can also be used to define decision height, assess monitoring implementation requirements, and evaluate alternate autoland configurations.

  8. Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang

    2016-08-01

    A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).

  9. State of the Art and Challenges of Radio Spectrum Monitoring in China

    NASA Astrophysics Data System (ADS)

    Lu, Q. N.; Yang, J. J.; Jin, Z. Y.; Chen, D. Z.; Huang, M.

    2017-10-01

    This paper provides an overview of radio spectrum monitoring in China. First, research background, the motivation is described and then train of thought, the prototype system, and the accomplishments are presented. Current radio spectrum monitoring systems are man-machine communication systems, which are unable to detect and process the radio interference automatically. In order to realize intelligent radio monitoring and spectrum management, we proposed an Internet of Things-based spectrum sensing approach using information system architecture and implemented a pilot program; then some very interesting results were obtained.

  10. Exploiting Virtual Synchrony in Distributed Systems

    DTIC Science & Technology

    1987-02-01

    for distributed systems yield the best performance relative to the level of synchronization guaranteed by the primitive . A pro- grammer could then... synchronization facility. Semaphores Replicated binary and general semaphores . Monitors Monitor lock, condition variables and signals. Deadlock detection...We describe applications of a new software abstraction called the virtually synchronous process group. Such a group consists of a set of processes

  11. A Model for Field Deployment of Wireless Sensor Networks (WSNs) within the Domain of Microclimate Habitat Monitoring

    ERIC Educational Resources Information Center

    Sanborn, Mark

    2011-01-01

    Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…

  12. Development of monitoring and control system for a mine main fan based on frequency converter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. C.; Zhang, R. W.; Kong, X. Z.; Y Gong, J.; Chen, Q. G.

    2013-12-01

    In the process of mine exploitation, the requirement of air flow rate often changes. The procedure of traditional control mode of the fan is complex and it is hard to meet the worksite requirement for air. This system is based on Principal Computer (PC) monitoring system and high performance PLC control system. In this system, the frequency converter is adapted to adjust the fan speed and the air of worksite can be regulated steplessly. The function of the monitoring and control system contains on-line monitoring and centralized control. The system can monitor the parameters of fan in real-time, control the operation of frequency converter, as well as, control the fan and its accessory equipments. At the same time, the automation level of the system is highly, the field equipments can be monitored and controlled automatically. So, the system is an important safeguard for mine production.

  13. A Web-Based Monitoring System for Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Salas, Andrea O.; Weston, Robert P.

    1998-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary computational environments, is defined as a hardware and software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, integrated with an existing framework, can improve these areas of weakness. This paper describes a Web-based system that optimizes and controls the execution sequence of design processes; and monitors the project status and results. The three-stage evolution of the system with increasingly complex problems demonstrates the feasibility of this approach.

  14. A Review of Diagnostic Techniques for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna

    2005-01-01

    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between automated and human-performed tasks is a vital concern.

  15. Intelligent Extruder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AlperEker; Mark Giammattia; Paul Houpt

    ''Intelligent Extruder'' described in this report is a software system and associated support services for monitoring and control of compounding extruders to improve material quality, reduce waste and energy use, with minimal addition of new sensors or changes to the factory floor system components. Emphasis is on process improvements to the mixing, melting and de-volatilization of base resins, fillers, pigments, fire retardants and other additives in the :finishing'' stage of high value added engineering polymer materials. While GE Plastics materials were used for experimental studies throughout the program, the concepts and principles are broadly applicable to other manufacturers materials. Themore » project involved a joint collaboration among GE Global Research, GE Industrial Systems and Coperion Werner & Pleiderer, USA, a major manufacturer of compounding equipment. Scope of the program included development of a algorithms for monitoring process material viscosity without rheological sensors or generating waste streams, a novel detection scheme for rapid detection of process upsets and an adaptive feedback control system to compensate for process upsets where at line adjustments are feasible. Software algorithms were implemented and tested on a laboratory scale extruder (50 lb/hr) at GE Global Research and data from a production scale system (2000 lb/hr) at GE Plastics was used to validate the monitoring and detection software. Although not evaluated experimentally, a new concept for extruder process monitoring through estimation of high frequency drive torque without strain gauges is developed and demonstrated in simulation. A plan to commercialize the software system is outlined, but commercialization has not been completed.« less

  16. [Implementation of Oncomelania hupensis monitoring system based on Baidu Map].

    PubMed

    Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang

    2017-10-25

    To construct the Oncomelania hupensis snail monitoring system based on the Baidu Map. The environmental basic information about historical snail environment and existing snail environment, etc. was collected with the monitoring data about different kinds of O. hupensis snails, and then the O. hupensis snail monitoring system was built. Geographic Information System (GIS) and the electronic fence technology and Application Program Interface (API) were applied to set up the electronic fence of the snail surveillance environments, and the electronic fence was connected to the database of the snail surveillance. The O. hupensis snail monitoring system based on the Baidu Map were built up, including three modules of O. hupensis Snail Monitoring Environmental Database, Dynamic Monitoring Platform and Electronic Map. The information about monitoring O. hupensis snails could be obtained through the computer and smartphone simultaneously. The O. hupensis snail monitoring system, which is based on Baidu Map, is a visible platform to follow the process of snailsearching and molluscaciding.

  17. GSM module for wireless radiation monitoring system via SMS

    NASA Astrophysics Data System (ADS)

    Rahman, Nur Aira Abd; Hisyam Ibrahim, Noor; Lombigit, Lojius; Azman, Azraf; Jaafar, Zainudin; Arymaswati Abdullah, Nor; Hadzir Patai Mohamad, Glam

    2018-01-01

    A customised Global System for Mobile communication (GSM) module is designed for wireless radiation monitoring through Short Messaging Service (SMS). This module is able to receive serial data from radiation monitoring devices such as survey meter or area monitor and transmit the data as text SMS to a host server. It provides two-way communication for data transmission, status query, and configuration setup. The module hardware consists of GSM module, voltage level shifter, SIM circuit and Atmega328P microcontroller. Microcontroller provides control for sending, receiving and AT command processing to GSM module. The firmware is responsible to handle task related to communication between device and host server. It process all incoming SMS, extract, and store new configuration from Host, transmits alert/notification SMS when the radiation data reach/exceed threshold value, and transmits SMS data at every fixed interval according to configuration. Integration of this module with radiation survey/monitoring device will create mobile and wireless radiation monitoring system with prompt emergency alert at high-level radiation.

  18. A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time.

    PubMed

    Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2015-03-01

    Blood pressure monitoring based on pulse transit or arrival time has been the focus of much research in order to design ambulatory blood pressure monitors. The accuracy of these monitors is limited by several challenges, such as acquisition and processing of physiological signals as well as changes in vascular tone and the pre-ejection period. In this work, a literature survey covering recent developments is presented in order to identify gaps in the literature. The findings of the literature are classified according to three aspects. These are the calibration of pulse transit/arrival times to blood pressure, acquisition and processing of physiological signals and finally, the design of fully integrated blood pressure measurement systems. Alternative technologies as well as locations for the measurement of the pulse wave signal should be investigated in order to improve the accuracy during calibration. Furthermore, the integration and validation of monitoring systems needs to be improved in current ambulatory blood pressure monitors.

  19. Automated Monitoring with a BSP Fault-Detection Test

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L.; Herzog, James P.

    2003-01-01

    The figure schematically illustrates a method and procedure for automated monitoring of an asset, as well as a hardware- and-software system that implements the method and procedure. As used here, asset could signify an industrial process, power plant, medical instrument, aircraft, or any of a variety of other systems that generate electronic signals (e.g., sensor outputs). In automated monitoring, the signals are digitized and then processed in order to detect faults and otherwise monitor operational status and integrity of the monitored asset. The major distinguishing feature of the present method is that the fault-detection function is implemented by use of a Bayesian sequential probability (BSP) technique. This technique is superior to other techniques for automated monitoring because it affords sensitivity, not only to disturbances in the mean values, but also to very subtle changes in the statistical characteristics (variance, skewness, and bias) of the monitored signals.

  20. Informing Drought Preparedness and Response with the South Asia Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Ghatak, D.; Matin, M. A.; Qamer, F. M.; Adhikary, B.; Bajracharya, B.; Nelson, J.; Pulla, S. T.; Ellenburg, W. L.

    2017-12-01

    Decision-relevant drought monitoring in South Asia is a challenge from both a scientific and an institutional perspective. Scientifically, climatic diversity, inconsistent in situ monitoring, complex hydrology, and incomplete knowledge of atmospheric processes mean that monitoring and prediction are fraught with uncertainty. Institutionally, drought monitoring efforts need to align with the information needs and decision-making processes of relevant agencies at national and subnational levels. Here we present first results from an emerging operational drought monitoring and forecast system developed and supported by the NASA SERVIR Hindu-Kush Himalaya hub. The system has been designed in consultation with end users from multiple sectors in South Asian countries to maximize decision-relevant information content in the monitoring and forecast products. Monitoring of meteorological, agricultural, and hydrological drought is accomplished using the South Asia Land Data Assimilation System, a platform that supports multiple land surface models and meteorological forcing datasets to characterize uncertainty, and subseasonal to seasonal hydrological forecasts are produced by driving South Asia LDAS with downscaled meteorological fields drawn from an ensemble of global dynamically-based forecast systems. Results are disseminated to end users through a Tethys online visualization platform and custom communications that provide user oriented, easily accessible, timely, and decision-relevant scientific information.

  1. Integrating SAR with Optical and Thermal Remote Sensing for Operational Near Real-Time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Webley, P.; Dehn, J.; Arko, S. A.; McAlpin, D. B.

    2013-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing techniques have become established in operational forecasting, monitoring, and managing of volcanic hazards. Monitoring organizations, like the Alaska Volcano Observatory (AVO), are nowadays heavily relying on remote sensing data from a variety of optical and thermal sensors to provide time-critical hazard information. Despite the high utilization of these remote sensing data to detect and monitor volcanic eruptions, the presence of clouds and a dependence on solar illumination often limit their impact on decision making processes. Synthetic Aperture Radar (SAR) systems are widely believed to be superior to optical sensors in operational monitoring situations, due to the weather and illumination independence of their observations and the sensitivity of SAR to surface changes and deformation. Despite these benefits, the contributions of SAR to operational volcano monitoring have been limited in the past due to (1) high SAR data costs, (2) traditionally long data processing times, and (3) the low temporal sampling frequencies inherent to most SAR systems. In this study, we present improved data access, data processing, and data integration techniques that mitigate some of the above mentioned limitations and allow, for the first time, a meaningful integration of SAR into operational volcano monitoring systems. We will introduce a new database interface that was developed in cooperation with the Alaska Satellite Facility (ASF) and allows for rapid and seamless data access to all of ASF's SAR data holdings. We will also present processing techniques that improve the temporal frequency with which hazard-related products can be produced. These techniques take advantage of modern signal processing technology as well as new radiometric normalization schemes, both enabling the combination of multiple observation geometries in change detection procedures. Additionally, it will be shown how SAR-based hazard information can be integrated with data from optical satellites, thermal sensors, webcams and models to create near-real time volcano hazard information. We will introduce a prototype monitoring system that integrates SAR-based hazard information into the near real-time volcano hazard monitoring system of the Alaska Volcano Observatory. This prototype system was applied to historic eruptions of the volcanoes Okmok and Augustine, both located in the North Pacific. We will show that for these historic eruptions, the addition of SAR data lead to a significant improvement in activity detection and eruption monitoring, and improved the accuracy and timeliness of eruption alerts.

  2. Copilot: Monitoring Embedded Systems

    NASA Technical Reports Server (NTRS)

    Pike, Lee; Wegmann, Nis; Niller, Sebastian; Goodloe, Alwyn

    2012-01-01

    Runtime verification (RV) is a natural fit for ultra-critical systems, where correctness is imperative. In ultra-critical systems, even if the software is fault-free, because of the inherent unreliability of commodity hardware and the adversity of operational environments, processing units (and their hosted software) are replicated, and fault-tolerant algorithms are used to compare the outputs. We investigate both software monitoring in distributed fault-tolerant systems, as well as implementing fault-tolerance mechanisms using RV techniques. We describe the Copilot language and compiler, specifically designed for generating monitors for distributed, hard real-time systems. We also describe two case-studies in which we generated Copilot monitors in avionics systems.

  3. In-line and Real-time Monitoring of Resonant Acoustic Mixing by Near-infrared Spectroscopy Combined with Chemometric Technology for Process Analytical Technology Applications in Pharmaceutical Powder Blending Systems.

    PubMed

    Tanaka, Ryoma; Takahashi, Naoyuki; Nakamura, Yasuaki; Hattori, Yusuke; Ashizawa, Kazuhide; Otsuka, Makoto

    2017-01-01

    Resonant acoustic ® mixing (RAM) technology is a system that performs high-speed mixing by vibration through the control of acceleration and frequency. In recent years, real-time process monitoring and prediction has become of increasing interest, and process analytical technology (PAT) systems will be increasingly introduced into actual manufacturing processes. This study examined the application of PAT with the combination of RAM, near-infrared spectroscopy, and chemometric technology as a set of PAT tools for introduction into actual pharmaceutical powder blending processes. Content uniformity was based on a robust partial least squares regression (PLSR) model constructed to manage the RAM configuration parameters and the changing concentration of the components. As a result, real-time monitoring may be possible and could be successfully demonstrated for in-line real-time prediction of active pharmaceutical ingredients and other additives using chemometric technology. This system is expected to be applicable to the RAM method for the risk management of quality.

  4. Implementation of a Portable Personal EKG Signal Monitoring System

    NASA Astrophysics Data System (ADS)

    Tan, Tan-Hsu; Chang, Ching-Su; Chen, Yung-Fu; Lee, Cheng

    This research develops a portable personal EKG signal monitoring system to help patients monitor their EKG signals instantly to avoid the occurrence of tragedies. This system is built with two main units: signal pro-cessing unit and monitoring and evaluation unit. The first unit consists of EKG signal sensor, signal amplifier, digitalization circuit, and related control circuits. The second unit is a software tool developed on an embedded Linux platform (called CSA). Experimental result indicates that the proposed system has the practical potential for users in health monitoring. It is demonstrated to be more convenient and with greater portability than the conventional PC-based EKG signal monitoring systems. Furthermore, all the application units embedded in the system are built with open source codes, no licensed fee is required for operating systems and authorized applications. Thus, the building cost is much lower than the traditional systems.

  5. A Fully Redundant On-Line Mass Spectrometer System Used to Monitor Cryogenic Fuel Leaks on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.

  6. Processing of the WLCG monitoring data using NoSQL

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Dzhunov, I.; Kadochnikov, I.; Karavakis, E.; Saiz, P.; Schovancova, J.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid (WLCG) today includes more than 150 computing centres where more than 2 million jobs are being executed daily and petabytes of data are transferred between sites. Monitoring the computing activities of the LHC experiments, over such a huge heterogeneous infrastructure, is extremely demanding in terms of computation, performance and reliability. Furthermore, the generated monitoring flow is constantly increasing, which represents another challenge for the monitoring systems. While existing solutions are traditionally based on Oracle for data storage and processing, recent developments evaluate NoSQL for processing large-scale monitoring datasets. NoSQL databases are getting increasingly popular for processing datasets at the terabyte and petabyte scale using commodity hardware. In this contribution, the integration of NoSQL data processing in the Experiment Dashboard framework is described along with first experiences of using this technology for monitoring the LHC computing activities.

  7. Hydra—The National Earthquake Information Center’s 24/7 seismic monitoring, analysis, catalog production, quality analysis, and special studies tool suite

    USGS Publications Warehouse

    Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.

    2016-08-18

    This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.

  8. 10-kW-class YAG laser application for heavy components

    NASA Astrophysics Data System (ADS)

    Ishide, Takashi; Tsubota, S.; Nayama, Michisuke; Shimokusu, Yoshiaki; Nagashima, Tadashi; Okimura, K.

    2000-02-01

    The authors have put the YAG laser of the kW class to practical use for repair welding of nuclear power plant steam generator heat exchanger tubes, all-position welding of pipings, etc. This paper describes following developed methods and systems of high power YAG laser processing. First, we apply the 6 kW to 10 kW YAG lasers for welding and cutting in heavy components. The beam guide systems we have used are optical fibers which core diameter is 0.6 mm to 0.8 mm and its length is 200 m as standard one. Using these system, we can get the 1 pass penetration of 15 mm to 20 mm and multi pass welding for more thick plates. Cutting of 100 mm thickness plate data also described for dismantling of nuclear power plants. In these systems we carried out the in-process monitoring by using CCD camera image processing and monitoring fiber which placed coaxial to the YAG optical lens system. In- process monitoring by the monitoring fiber, we measured the light intensity from welding area. Further, we have developed new hybrid welding with the TIG electrode at the center of lens for high power. The hybrid welding with TIG-YAG system aims lightening of welding groove allowances and welding of high quality. Through these techniques we have applied 7 kW class YAG laser for welding in the components of nuclear power plants.

  9. Fail-safe fire detection system

    NASA Technical Reports Server (NTRS)

    Bloam, E. T.

    1974-01-01

    Fire detection control system continually monitors its own integrity, automatically signals any malfunction, and separately signals fire in any zone being monitored. Should be of interest in fields of chemical and petroleum processing, power generation, equipment testing, and building protection.

  10. Study protocol for evaluating the implementation and effectiveness of an emergency department longitudinal patient monitoring system using a mixed-methods approach.

    PubMed

    Ward, Marie; McAuliffe, Eilish; Wakai, Abel; Geary, Una; Browne, John; Deasy, Conor; Schull, Michael; Boland, Fiona; McDaid, Fiona; Coughlan, Eoin; O'Sullivan, Ronan

    2017-01-23

    Early detection of patient deterioration is a key element of patient safety as it allows timely clinical intervention and potential rescue, thus reducing the risks of serious patient safety incidents. Longitudinal patient monitoring systems have been widely recommended for use to detect clinical deterioration. However, there is conflicting evidence on whether they improve patient outcomes. This may in part be related to variation in the rigour with which they are implemented and evaluated. This study aims to evaluate the implementation and effectiveness of a longitudinal patient monitoring system designed for adult patients in the unique environment of the Emergency Department (ED). A novel participatory action research (PAR) approach is taken where socio-technical systems (STS) theory and analysis informs the implementation through the improvement methodology of 'Plan Do Study Act' (PDSA) cycles. We hypothesise that conducting an STS analysis of the ED before beginning the PDSA cycles will provide for a much richer understanding of the current situation and possible challenges to implementing the ED-specific longitudinal patient monitoring system. This methodology will enable both a process and an outcome evaluation of implementing the ED-specific longitudinal patient monitoring system. Process evaluations can help distinguish between interventions that have inherent faults and those that are badly executed. Over 1.2 million patients attend EDs annually in Ireland; the successful implementation of an ED-specific longitudinal patient monitoring system has the potential to affect the care of a significant number of such patients. To the best of our knowledge, this is the first study combining PAR, STS and multiple PDSA cycles to evaluate the implementation of an ED-specific longitudinal patient monitoring system and to determine (through process and outcome evaluation) whether this system can significantly improve patient outcomes by early detection and appropriate intervention for patients at risk of clinical deterioration.

  11. Aircraft Alerting Systems Standardization Study. Phase IV. Accident Implications on Systems Design.

    DTIC Science & Technology

    1982-06-01

    computing and processing to assimilate and process status informa- 5 tion using...provided with capabilities in computing and processing , sensing, interfacing, and controlling and displaying. 17 o Computing and Processing - Algorithms...alerting system to perform a flight status monitor function would require additional sensinq, computing and processing , interfacing, and controlling

  12. Design of overload vehicle monitoring and response system based on DSP

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Liu, Yiheng; Zhao, Xuefeng

    2014-03-01

    The overload vehicles are making much more damage to the road surface than the regular ones. Many roads and bridges are equipped with structural health monitoring system (SHM) to provide early-warning to these damage and evaluate the safety of road and bridge. However, because of the complex nature of SHM system, it's expensive to manufacture, difficult to install and not well-suited for the regular bridges and roads. Based on this application background, this paper designs a compact structural health monitoring system based on DSP, which is highly integrated, low-power, easy to install and inexpensive to manufacture. The designed system is made up of sensor arrays, the charge amplifier module, the DSP processing unit, the alarm system for overload, and the estimate for damage of the road and bridge structure. The signals coming from sensor arrays go through the charge amplifier. DSP processing unit will receive the amplified signals, estimate whether it is an overload signal or not, and convert analog variables into digital ones so that they are compatible with the back-end digital circuit for further processing. The system will also restrict certain vehicles that are overweight, by taking image of the car brand, sending the alarm, and transferring the collected pressure data to remote data center for further monitoring analysis by rain-flow counting method.

  13. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    NASA Astrophysics Data System (ADS)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  14. Real Time Monitoring System of Pollution Waste on Musi River Using Support Vector Machine (SVM) Method

    NASA Astrophysics Data System (ADS)

    Fachrurrozi, Muhammad; Saparudin; Erwin

    2017-04-01

    Real-time Monitoring and early detection system which measures the quality standard of waste in Musi River, Palembang, Indonesia is a system for determining air and water pollution level. This system was designed in order to create an integrated monitoring system and provide real time information that can be read. It is designed to measure acidity and water turbidity polluted by industrial waste, as well as to show and provide conditional data integrated in one system. This system consists of inputting and processing the data, and giving output based on processed data. Turbidity, substances, and pH sensor is used as a detector that produce analog electrical direct current voltage (DC). Early detection system works by determining the value of the ammonia threshold, acidity, and turbidity level of water in Musi River. The results is then presented based on the level group pollution by the Support Vector Machine classification method.

  15. Real-time monitoring, prognosis, and resilient control for wind turbine systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiwei; Sheng, Shuangwen

    This special issue aims to provide a platform for academic and industrial communities to report recent results and emerging research in real-time monitoring, fault diagnosis, prognosis, and resilient control and design of wind turbine systems. After a strict peer-review process, 20 papers were selected, which represent the most recent progress of the real-time monitoring, diagnosis, prognosis, and resilient control methods/techniques in wind turbine systems.

  16. A Hydrogen Leak Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Makel, D. B.; Jansa, E. D.; Patterson, G.; Cova, P. J.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1995-01-01

    Leaks on the space shuttle while on the launch pad have generated interest in hydrogen leak monitoring technology. Microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC). These sensors have been integrated into hardware and software designed by Aerojet. This complete system allows for multipoint leak monitoring designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. This system is in operation in an automotive application which requires high sensitivity to hydrogen.

  17. Design and Deployment of Low-Cost Sensors for Monitoring the Water Quality and Fish Behavior in Aquaculture Tanks during the Feeding Process

    PubMed Central

    Parra, Lorena; García, Laura

    2018-01-01

    The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €. PMID:29494560

  18. Design and Deployment of Low-Cost Sensors for Monitoring the Water Quality and Fish Behavior in Aquaculture Tanks during the Feeding Process.

    PubMed

    Parra, Lorena; Sendra, Sandra; García, Laura; Lloret, Jaime

    2018-03-01

    The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €.

  19. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Karl A.; Candy, Jim V.; Guss, Gabe

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  20. In-situ quality monitoring during laser brazing

    NASA Astrophysics Data System (ADS)

    Ungers, Michael; Fecker, Daniel; Frank, Sascha; Donst, Dmitri; Märgner, Volker; Abels, Peter; Kaierle, Stefan

    Laser brazing of zinc coated steel is a widely established manufacturing process in the automotive sector, where high quality requirements must be fulfilled. The strength, impermeablitiy and surface appearance of the joint are particularly important for judging its quality. The development of an on-line quality control system is highly desired by the industry. This paper presents recent works on the development of such a system, which consists of two cameras operating in different spectral ranges. For the evaluation of the system, seam imperfections are created artificially during experiments. Finally image processing algorithms for monitoring process parameters based the captured images are presented.

  1. On the value of information for Industry 4.0

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr

    2018-03-01

    Industry 4.0, or the fourth industrial revolution, that blurs the boundaries between the physical and the digital, is underpinned by vast amounts of data collected by sensors that monitor processes and components of smart factories that continuously communicate amongst one another and with the network hubs via the internet of things. Yet, collection of those vast amounts of data, which are inherently imperfect and burdened with uncertainties and noise, entails costs including hardware and software, data storage, processing, interpretation and integration into the decision-making process to name just the few main expenditures. This paper discusses a framework for rationalizing the adoption of (big) data collection for Industry 4.0. The pre-posterior Bayesian decision analysis is used to that end and industrial process evolution with time is conceptualized as a stochastic observable and controllable dynamical system. The chief underlying motivation is to be able to use the collected data in such a way as to derive the most benefit from them by trading off successfully the management of risks pertinent to failure of the monitored processes and/or its components against the cost of data collection, processing and interpretation. This enables formulation of optimization problems for data collection, e.g. for selecting the monitoring system type, topology and/or time of deployment. An illustrative example utilizing monitoring of the operation of an assembly line and optimizing the topology of a monitoring system is provided to illustrate the theoretical concepts.

  2. Tomographical process monitoring of laser transmission welding with OCT

    NASA Astrophysics Data System (ADS)

    Ackermann, Philippe; Schmitt, Robert

    2017-06-01

    Process control of laser processes still encounters many obstacles. Although these processes are stable, a narrow process parameter window during the process or process deviations have led to an increase on the requirements for the process itself and on monitoring devices. Laser transmission welding as a contactless and locally limited joining technique is well-established in a variety of demanding production areas. For example, sensitive parts demand a particle-free joining technique which does not affect the inner components. Inline integrated non-destructive optical measurement systems capable of providing non-invasive tomographical images of the transparent material, the weld seam and its surrounding areas with micron resolution would improve the overall process. Obtained measurement data enable qualitative feedback into the system to adapt parameters for a more robust process. Within this paper we present the inline monitoring device based on Fourier-domain optical coherence tomography developed within the European-funded research project "Manunet Weldable". This device, after adaptation to the laser transmission welding process is optically and mechanically integrated into the existing laser system. The main target lies within the inline process control destined to extract tomographical geometrical measurement data from the weld seam forming process. Usage of this technology makes offline destructive testing of produced parts obsolete. 1,2,3,4

  3. Laser metrology in food-related systems

    NASA Astrophysics Data System (ADS)

    Mendoza-Sanchez, Patricia; Lopez, Daniel; Kongraksawech, Teepakorn; Vazquez, Pedro; Torres, J. Antonio; Ramirez, Jose A.; Huerta-Ruelas, Jorge

    2005-02-01

    An optical system was developed using a low-cost semiconductor laser and commercial optical and electronic components, to monitor food processes by measuring changes in optical rotation (OR) of chiral compounds. The OR signal as a function of processing time and sample temperature were collected and recorded using a computer data acquisition system. System has been tested during two different processes: sugar-protein interaction and, beer fermentation process. To study sugar-protein interaction, the following sugars were used: sorbitol, trehalose and sucrose, and in the place of Protein, Serum Albumin Bovine (BSA, A-7906 Sigma-Aldrich). In some food processes, different sugars are added to protect damage of proteins during their processing, storage and/or distribution. Different sugar/protein solutions were prepared and heated above critical temperature of protein denaturation. OR measurements were performed during heating process and effect of different sugars in protein denaturation was measured. Higher sensitivity of these measurements was found compared with Differential Scanning Calorimetry, which needs higher protein concentration to study these interactions. The brewing fermentation process was monitored in-situ using this OR system and validated by correlation with specific density measurements and gas chromatography. This instrument can be implemented to monitor fermentation on-line, thereby determining end of process and optimizing process conditions in an industrial setting. The high sensitivity of developed OR system has no mobile parts and is more flexible than commercial polarimeters providing the capability of implementation in harsh environments, signifying the potential of this method as an in-line technique for quality control in food processing and for experimentation with optically active solutions.

  4. Event-Driven Messaging for Offline Data Quality Monitoring at ATLAS

    NASA Astrophysics Data System (ADS)

    Onyisi, Peter

    2015-12-01

    During LHC Run 1, the information flow through the offline data quality monitoring in ATLAS relied heavily on chains of processes polling each other's outputs for handshaking purposes. This resulted in a fragile architecture with many possible points of failure and an inability to monitor the overall state of the distributed system. We report on the status of a project undertaken during the LHC shutdown to replace the ad hoc synchronization methods with a uniform message queue system. This enables the use of standard protocols to connect processes on multiple hosts; reliable transmission of messages between possibly unreliable programs; easy monitoring of the information flow; and the removal of inefficient polling-based communication.

  5. Automated system for the on-line monitoring of powder blending processes using near-infrared spectroscopy. Part I. System development and control.

    PubMed

    Hailey, P A; Doherty, P; Tapsell, P; Oliver, T; Aldridge, P K

    1996-03-01

    An automated system for the on-line monitoring of powder blending processes is described. The system employs near-infrared (NIR) spectroscopy using fibre-optics and a graphical user interface (GUI) developed in the LabVIEW environment. The complete supervisory control and data analysis (SCADA) software controls blender and spectrophotometer operation and performs statistical spectral data analysis in real time. A data analysis routine using standard deviation is described to demonstrate an approach to the real-time determination of blend homogeneity.

  6. Non-Traditional Displays for Mission Monitoring

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Schutte, Paul C.

    1999-01-01

    Advances in automation capability and reliability have changed the role of humans from operating and controlling processes to simply monitoring them for anomalies. However, humans are traditionally bad monitors of highly reliable systems over time. Thus, the human is assigned a task for which he is ill equipped. We believe that this has led to the dominance of human error in process control activities such as operating transportation systems (aircraft and trains), monitoring patient health in the medical industry, and controlling plant operations. Research has shown, though, that an automated monitor can assist humans in recognizing and dealing with failures. One possible solution to this predicament is to use a polar-star display that will show deviations from normal states based on parameters that are most indicative of mission health.

  7. Fiber optic sensor design for chemical process and environmental monitoring

    NASA Astrophysics Data System (ADS)

    Mahendran, R. S.; Harris, D.; Wang, L.; Machavaram, V. R.; Chen, R.; Kukureka, St. N.; Fernando, G. F.

    2007-07-01

    Cure monitoring is a term that is used to describe the cross-linking reactions in a thermosetting resin system. Advanced fiber reinforced composites are being used increasingly in a number of industrial sectors including aerospace, marine, sport, automotive and civil engineering. There is a general realization that the processing conditions that are used to manufacture the composites can have a major influence on its hot-wet mechanical properties. This paper is concerned with the design and demonstration of a number of sensor designs for in-situ cure monitoring of a model thermosetting resin system. Simple fixtures were constructed to enable a pair of cleaved optical fibers with a defined gap between the end-faces to be held in position. The resin system was introduced into this gap and the cure kinetics were followed by transmission infrared spectroscopy. A semi-empirical model was used to describe the cure process using the data obtained at different cure temperatures. The same sensor system was used to detect the ingress of moisture in the cured resin system.

  8. 105KE Basin Area Radiation Monitor System (ARMS) Acceptance Test Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KINKEL, C.C.

    1999-12-14

    This procedure is intended for the Area Radiation Monitoring System, ARMS, that is replacing the existing Programmable Input-Output Processing System, PIOPS, radiation monitoring system in the 105KE basin. The new system will be referred to as the 105KE ARMS, 105KE Area Radiation Monitoring System. This ATP will ensure calibration integrity of the 105KE radiation detector loops. Also, this ATP will test and document the display, printing, alarm output, alarm acknowledgement, upscale check, and security functions. This ATP test is to be performed after completion of the 105KE ARMS installation. The alarm outputs of the 105KE ARMS will be connected tomore » the basin detector alarms, basin annunciator system, and security Alarm Monitoring System, AMS, located in the 200 area Central Alarm Station (CAS).« less

  9. Statistically Qualified Neuro-Analytic system and Method for Process Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

    1998-11-04

    An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less

  10. Integrating policy-based management and SLA performance monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Tzong-Jye; Lin, Chin-Yi; Chang, Shu-Hsin; Yen, Meng-Tzu

    2001-10-01

    Policy-based management system provides the configuration capability for the system administrators to focus on the requirements of customers. The service level agreement performance monitoring mechanism helps system administrators to verify the correctness of policies. However, it is difficult for a device to process the policies directly because the policies are the management concept. This paper proposes a mechanism to decompose a policy into rules that can be efficiently processed by a device. Thus, the device may process the rule and collect the performance statistics information efficiently; and the policy-based management system may collect these performance statistics information and report the service-level agreement performance monitoring information to the system administrator. The proposed policy-based management system achieves both the policy configuration and service-level agreement performance monitoring requirements. A policy consists of a condition part and an action part. The condition part is a Boolean expression of a source host IP group, a destination host IP group, etc. The action part is the parameters of services. We say that an address group is compact if it only consists of a range of IP address that can be denoted by a pair of IP address and corresponding IP mask. If the condition part of a policy only consists of the compact address group, we say that the policy is a rule. Since a device can efficiently process a compact address and a system administrator prefers to define a range of IP address, the policy-based management system has to translate policy into rules and supplements the gaps between policy and rules. The proposed policy-based management system builds the relationships between VPN and policies, policy and rules. Since the system administrator wants to monitor the system performance information of VPNs and policies, the proposed policy-based management system downloads the relationships among VPNs, policies and rules to the SNMP agents. The SNMP agents build the management information base (MIB) of all VPNs, policies and rules according to the relationships obtained from the management server. Thus, the proposed policy-based management system may get all performance monitoring information of VPNs and policies from agents. The proposed policy-based manager achieves two goals: a) provide a management environment for the system administrator to configure their network only considering the policy requirement issues and b) let the device have only to process the packet and then collect the required performance information. These two things make the proposed management system satisfy both the user and device requirements.

  11. A prototype of an automated high resolution InSAR volcano-monitoring system in the MED-SUV project

    NASA Astrophysics Data System (ADS)

    Chowdhury, Tanvir A.; Minet, Christian; Fritz, Thomas

    2016-04-01

    Volcanic processes which produce a variety of geological and hydrological hazards are difficult to predict and capable of triggering natural disasters on regional to global scales. Therefore it is important to monitor volcano continuously and with a high spatial and temporal sampling rate. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities and it helps for the better understanding and modelling of the involved geophysical processes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide a powerful tool for observing the eruptive activities and measuring the surface changes of millimetre accuracy. All the mentioned techniques with deformation time series extraction address the challenges by exploiting medium to large SAR image stacks. The process of selecting, ordering, downloading, storing, logging, extracting and preparing the data for processing is very time consuming has to be done manually for every single data-stack. In many cases it is even an iterative process which has to be done regularly and continuously. Therefore, data processing becomes slow which causes significant delays in data delivery. The SAR Satellite based High Resolution Data Acquisition System, which will be developed at DLR, will automate this entire time consuming tasks and allows an operational volcano monitoring system. Every 24 hours the system runs for searching new acquired scene over the volcanoes and keeps track of the data orders, log the status and download the provided data via ftp-transfer including E-Mail alert. Furthermore, the system will deliver specified reports and maps to a database for review and use by specialists. The user interaction will be minimized and iterative processes will be totally avoided. In this presentation, a prototype of SAR Satellite based High Resolution Data Acquisition System, which is developed and operated by DLR, will be described in detail. The workflow of the developed system is described which allow a meaningful contribution of SAR for monitoring volcanic eruptive activities. A more robust and efficient InSAR data processing in IWAP processor will be introduced in the framework of a remote sensing task of MED-SUV project. An application of the developed prototype system to a historic eruption of Mount Etna and Piton de la Fournaise will be depicted in the last part of the presentation.

  12. A digital signal processing system for coherent laser radar

    NASA Technical Reports Server (NTRS)

    Hampton, Diana M.; Jones, William D.; Rothermel, Jeffry

    1991-01-01

    A data processing system for use with continuous-wave lidar is described in terms of its configuration and performance during the second survey mission of NASA'a Global Backscatter Experiment. The system is designed to estimate a complete lidar spectrum in real time, record the data from two lidars, and monitor variables related to the lidar operating environment. The PC-based system includes a transient capture board, a digital-signal processing (DSP) board, and a low-speed data-acquisition board. Both unprocessed and processed lidar spectrum data are monitored in real time, and the results are compared to those of a previous non-DSP-based system. Because the DSP-based system is digital it is slower than the surface-acoustic-wave signal processor and collects 2500 spectra/s. However, the DSP-based system provides complete data sets at two wavelengths from the continuous-wave lidars.

  13. Real-time process monitoring in a semi-continuous fluid-bed dryer - microwave resonance technology versus near-infrared spectroscopy.

    PubMed

    Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2018-02-15

    The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Passive Fetal Heart Monitoring System

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Mowrey, Dennis L. (Inventor)

    2003-01-01

    A fetal heart monitoring system and method for detecting and processing acoustic fetal heart signals transmitted by different signal transmission modes. One signal transmission mode, the direct contact mode, occurs in a first frequency band when the fetus is in direct contact with the maternal abdominal wall. Another signal transmission mode, the fluid propagation mode, occurs in a second frequency band when the fetus is in a recessed position with no direct contact with the maternal abdominal wall. The second frequency band is relatively higher than the first frequency band. The fetal heart monitoring system and method detect and process acoustic fetal heart signals that are in the first frequency band and in the second frequency band.

  15. Capacity building for health inequality monitoring in Indonesia: enhancing the equity orientation of country health information system.

    PubMed

    Hosseinpoor, Ahmad Reza; Nambiar, Devaki; Tawilah, Jihane; Schlotheuber, Anne; Briot, Benedicte; Bateman, Massee; Davey, Tamzyn; Kusumawardani, Nunik; Myint, Theingi; Nuryetty, Mariet Tetty; Prasetyo, Sabarinah; Suparmi; Floranita, Rustini

    Inequalities in health represent a major problem in many countries, including Indonesia. Addressing health inequality is a central component of the Sustainable Development Goals and a priority of the World Health Organization (WHO). WHO provides technical support for health inequality monitoring among its member states. Following a capacity-building workshop in the WHO South-East Asia Region in 2014, Indonesia expressed interest in incorporating health-inequality monitoring into its national health information system. This article details the capacity-building process for national health inequality monitoring in Indonesia, discusses successes and challenges, and how this process may be adapted and implemented in other countries/settings. We outline key capacity-building activities undertaken between April 2016 and December 2017 in Indonesia and present the four key outcomes of this process. The capacity-building process entailed a series of workshops, meetings, activities, and processes undertaken between April 2016 and December 2017. At each stage, a range of stakeholders with access to the relevant data and capacity for data analysis, interpretation and reporting was engaged with, under the stewardship of state agencies. Key steps to strengthening health inequality monitoring included capacity building in (1) identification of the health topics/areas of interest, (2) mapping data sources and identifying gaps, (3) conducting equity analyses using raw datasets, and (4) interpreting and reporting inequality results. As a result, Indonesia developed its first national report on the state of health inequality. A number of peer-reviewed manuscripts on various aspects of health inequality in Indonesia have also been developed. The capacity-building process undertaken in Indonesia is designed to be adaptable to other contexts. Capacity building for health inequality monitoring among countries is a critical step for strengthening equity-oriented national health information systems and eventually tackling health inequities.

  16. An instrument system for long-term sediment transport studies on the continental shelf

    USGS Publications Warehouse

    Butman, Bradford; Folger, David W.

    1979-01-01

    A bottom-mounted instrument system has been designed and built to monitor processes of bottom sediment movement on the continental shelf. The system measures bottom current speed and direction, pressure, temperature, and light transmission and photographs the bottom. The system can be deployed for periods of 2–6 months to monitor intermitent processes of sediment movement such as storms and to assess seasonal variability. Deployments of the system on the U.S. east coast continental shelf show sediment resuspension and changes in bottom microtopography due to surface waves, tidal currents, and storms.

  17. Power Terminal Communication Access Network Monitoring System Scheme Based on Design Patterns

    NASA Astrophysics Data System (ADS)

    Yan, Shengchao; Wu, Desheng; Zhu, Jiang

    2018-01-01

    In order to realize patterns design for terminal communication monitoring system, this paper introduces manager-workers, tasks-workers design patterns, based on common design patterns such as factory method, chain of responsibility, facade. Using these patterns, the communication monitoring system which combines module-groups like networking communication, business data processing and the peripheral support has been designed successfully. Using these patterns makes this system have great flexibility and scalability and improves the degree of systematic pattern design structure.

  18. An Internet of Things based physiological signal monitoring and receiving system for virtual enhanced health care network.

    PubMed

    Rajan, J Pandia; Rajan, S Edward

    2018-01-01

    Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.

  19. Remote Monitoring of Near-Surface Soil Moisture Dynamics In Unstable Slopes Using a Low-Power Autonomous Resistivity Imaging System

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Meldrum, P.; Gunn, D.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Kuras, O.; Inauen, C.; Hutchinson, D.; Butler, S.

    2016-12-01

    ERT monitoring has been demonstrated in numerous studies as an effective means of imaging near surface processes for applications as diverse as permafrost studies and contaminated land assessment. A limiting factor in applying time-lapse ERT for long-term studies in remote locations has been the availability of cost-effective ERT measurement systems designed specifically for monitoring applications. Typically, monitoring is undertaken using repeated manual data collection, or by building conventional survey instruments into a monitoring setup. The latter often requires high power and is therefore difficult to operate remotely without access to mains electricity. We describe the development of a low-power resistivity imaging system designed specifically for remote monitoring, taking advantage of, e.g., solar power and data telemetry. Here, we present the results of two field deployments. The system has been installed on an active railway cutting to provide insights into the effect of vegetation on the moisture dynamics in unstable infrastructure slopes and to gather subsurface information for pro-active remediation measures. The system, comprising 255 electrodes, acquires 4596 reciprocal measurement pairs twice daily during standard operation. In case of severe weather events, the measurement schedule is reactively changed, to gather high temporal resolution data to image rainfall infiltration processes. The system has also been installed along a leaking and marginally stable canal embankment; a less favourable location for remote monitoring, with limited solar power and poor mobile reception. Nevertheless, the acquired data indicated the effectiveness of remedial actions on the canal. The ERT results showed that one leak was caused by the canal and fixed during remediation, while two other "leaks" were shown to be effects of groundwater dynamics. The availability of cost-effective, low-power ERT monitoring instrumentation, combined with an automated workflow of data processing and visualisation, has the potential to contribute to a step-change in the management and early warning of slope instability.

  20. Approach to in-process tool wear monitoring in drilling: Application of Kalman filter theory

    NASA Astrophysics Data System (ADS)

    He, Ning; Zhang, Youzhen; Pan, Liangxian

    1993-05-01

    The two parameters often used in adaptive control, tool wear and wear rate, are the important factors affecting machinability. In this paper, it is attempted to use the modern cybernetics to solve the in-process tool wear monitoring problem by applying the Kalman filter theory to monitor drill wear quantitatively. Based on the experimental results, a dynamic model, a measuring model and a measurement conversion model suitable for Kalman filter are established. It is proved that the monitoring system possesses complete observability but does not possess complete controllability. A discriminant for selecting the characteristic parameters is put forward. The thrust force Fz is selected as the characteristic parameter in monitoring the tool wear by this discriminant. The in-process Kalman filter drill wear monitoring system composed of force sensor microphotography and microcomputer is well established. The results obtained by the Kalman filter, the common indirect measuring method and the real drill wear measured by the aid of microphotography are compared. The result shows that the Kalman filter has high precision of measurement and the real time requirement can be satisfied.

  1. Contract Monitoring in Agent-Based Systems: Case Study

    NASA Astrophysics Data System (ADS)

    Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal

    Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.

  2. System and process for pulsed multiple reaction monitoring

    DOEpatents

    Belov, Mikhail E

    2013-05-17

    A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.

  3. Design and implementation of the monitoring system for underground coal fires in Xinjiang region, China

    NASA Astrophysics Data System (ADS)

    Li-bo, Dang; Jia-chun, Wu; Yue-xing, Liu; Yuan, Chang; Bin, Peng

    2017-04-01

    Underground coal fire (UCF) is serious in Xinjiang region of China. In order to deal with this problem efficiently, a UCF monitoring System, which is based on the use of wireless communication technology and remote sensing images, was designed and implemented by Xinjiang Coal Fire Fighting Bureau. This system consists of three parts, i.e., the data collecting unit, the data processing unit and the data output unit. For the data collecting unit, temperature sensors and gas sensors were put together on the sites with depth of 1.5 meter from the surface of coal fire zone. Information on these sites' temperature and gas was transferred immediately to the data processing unit. The processing unit was developed by coding based on GIS software. Generally, the processed datum were saved in the computer by table format, which can be displayed on the screen as the curve. Remote sensing image for each coal fire was saved in this system as the background for each monitoring site. From the monitoring data, the changes of the coal fires were displayed directly. And it provides a solid basis for analyzing the status of coal combustion of coal fire, the gas emission and possible dominant direction of coal fire propagation, which is helpful for making-decision of coal fire extinction.

  4. Software design of a remote real-time ECG monitoring system

    NASA Astrophysics Data System (ADS)

    Yu, Chengbo; Tao, Hongyan

    2005-12-01

    Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.

  5. Intelligent sensor-model automated control of PMR-15 autoclave processing

    NASA Technical Reports Server (NTRS)

    Hart, S.; Kranbuehl, D.; Loos, A.; Hinds, B.; Koury, J.

    1992-01-01

    An intelligent sensor model system has been built and used for automated control of the PMR-15 cure process in the autoclave. The system uses frequency-dependent FM sensing (FDEMS), the Loos processing model, and the Air Force QPAL intelligent software shell. The Loos model is used to predict and optimize the cure process including the time-temperature dependence of the extent of reaction, flow, and part consolidation. The FDEMS sensing system in turn monitors, in situ, the removal of solvent, changes in the viscosity, reaction advancement and cure completion in the mold continuously throughout the processing cycle. The sensor information is compared with the optimum processing conditions from the model. The QPAL composite cure control system allows comparison of the sensor monitoring with the model predictions to be broken down into a series of discrete steps and provides a language for making decisions on what to do next regarding time-temperature and pressure.

  6. 40 CFR 63.781 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... with hand-held, nonrefillable, aerosol containers or to unsaturated polyester resin (i.e., fiberglass... monitoring equipment, process equipment or a process to operate in a normal or usual manner; and (B) Could... (vi) All emissions monitoring and control systems were kept in operation if at all possible...

  7. Coma Patient Monitoring System Using Image Processing

    NASA Astrophysics Data System (ADS)

    Sankalp, Meenu

    2011-12-01

    COMA PATIENT MONITORING SYSTEM provides high quality healthcare services in the near future. To provide more convenient and comprehensive medical monitoring in big hospitals since it is tough job for medical personnel to monitor each patient for 24 hours.. The latest development in patient monitoring system can be used in Intensive Care Unit (ICU), Critical Care Unit (CCU), and Emergency Rooms of hospital. During treatment, the patient monitor is continuously monitoring the coma patient to transmit the important information. Also in the emergency cases, doctor are able to monitor patient condition efficiently to reduce time consumption, thus it provides more effective healthcare system. So due to importance of patient monitoring system, the continuous monitoring of the coma patient can be simplified. This paper investigates about the effects seen in the patient using "Coma Patient Monitoring System" which is a very advanced product related to physical changes in body movement of the patient and gives Warning in form of alarm and display on the LCD in less than one second time. It also passes a sms to a person sitting at the distant place if there exists any movement in any body part of the patient. The model for the system uses Keil software for the software implementation of the developed system.

  8. Development of a Fully Automated Guided Wave System for In-Process Cure Monitoring of CFRP Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo

    2016-01-01

    A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.

  9. Initial Evaluation of Signal-Based Bayesian Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.; Russell, S.

    2016-12-01

    We present SIGVISA (Signal-based Vertically Integrated Seismic Analysis), a next-generation system for global seismic monitoring through Bayesian inference on seismic signals. Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a network of stations. We report results from an evaluation of SIGVISA monitoring the western United States for a two-week period following the magnitude 6.0 event in Wells, NV in February 2008. During this period, SIGVISA detects more than twice as many events as NETVISA, and three times as many as SEL3, while operating at the same precision; at lower precisions it detects up to five times as many events as SEL3. At the same time, signal-based monitoring reduces mean location errors by a factor of four relative to detection-based systems. We provide evidence that, given only IMS data, SIGVISA detects events that are missed by regional monitoring networks, indicating that our evaluations may even underestimate its performance. Finally, SIGVISA matches or exceeds the detection rates of existing systems for de novo events - events with no nearby historical seismicity - and detects through automated processing a number of such events missed even by the human analysts generating the LEB.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J; Walt Kubilius, W; Thomas Kmetz, T

    Resource Conservation and Recovery Act (RCRA) requirements for hazardous waste facilities include 30 years of post-closure monitoring. The use of an objective-based monitoring strategy allows for a significant reduction in the amount of groundwater monitoring required, as the groundwater remediation transitions from an active biosparging system to monitored natural attenuation. The lifecycle of groundwater activities at the landfill has progressed from detection monitoring and plume characterization, to active groundwater remediation, and now to monitored natural attenuation and postclosure monitoring. Thus, the objectives of the groundwater monitoring have changed accordingly. Characterization monitoring evaluated what biogeochemical natural attenuation processes were occurring andmore » determined that elevated levels of radium were naturally occurring. Process monitoring of the biosparging system required comprehensive sampling network up- and down-gradient of the horizontal wells to verify its effectiveness. Currently, the scope of monitoring and reporting can be significantly reduced as the objective is to demonstrate that the alternate concentration limits (ACL) are being met at the point of compliance wells and the maximum contaminant level (MCL) is being met at the surface water point of exposure. The proposed reduction is estimated to save about $2M over the course of the remaining 25 years of postclosure monitoring.« less

  11. Shortcomings of low-cost imaging systems for viewing computed radiographs.

    PubMed

    Ricke, J; Hänninen, E L; Zielinski, C; Amthauer, H; Stroszczynski, C; Liebig, T; Wolf, M; Hosten, N

    2000-01-01

    To assess potential advantages of a new PC-based viewing tool featuring image post-processing for viewing computed radiographs on low-cost hardware (PC) with a common display card and color monitor, and to evaluate the effect of using color versus monochrome monitors. Computed radiographs of a statistical phantom were viewed on a PC, with and without post-processing (spatial frequency and contrast processing), employing a monochrome or a color monitor. Findings were compared with the viewing on a radiological Workstation and evaluated with ROC analysis. Image post-processing improved the perception of low-contrast details significantly irrespective of the monitor used. No significant difference in perception was observed between monochrome and color monitors. The review at the radiological Workstation was superior to the review done using the PC with image processing. Lower quality hardware (graphic card and monitor) used in low cost PCs negatively affects perception of low-contrast details in computed radiographs. In this situation, it is highly recommended to use spatial frequency and contrast processing. No significant quality gain has been observed for the high-end monochrome monitor compared to the color display. However, the color monitor was affected stronger by high ambient illumination.

  12. Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan

    2014-05-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.

  13. IDCDACS: IDC's Distributed Application Control System

    NASA Astrophysics Data System (ADS)

    Ertl, Martin; Boresch, Alexander; Kianička, Ján; Sudakov, Alexander; Tomuta, Elena

    2015-04-01

    The Preparatory Commission for the CTBTO is an international organization based in Vienna, Austria. Its mission is to establish a global verification regime to monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), which bans all nuclear explosions. For this purpose time series data from a global network of seismic, hydro-acoustic and infrasound (SHI) sensors are transmitted to the International Data Centre (IDC) in Vienna in near-real-time, where it is processed to locate events that may be nuclear explosions. We newly designed the distributed application control system that glues together the various components of the automatic waveform data processing system at the IDC (IDCDACS). Our highly-scalable solution preserves the existing architecture of the IDC processing system that proved successful over many years of operational use, but replaces proprietary components with open-source solutions and custom developed software. Existing code was refactored and extended to obtain a reusable software framework that is flexibly adaptable to different types of processing workflows. Automatic data processing is organized in series of self-contained processing steps, each series being referred to as a processing pipeline. Pipelines process data by time intervals, i.e. the time-series data received from monitoring stations is organized in segments based on the time when the data was recorded. So-called data monitor applications queue the data for processing in each pipeline based on specific conditions, e.g. data availability, elapsed time or completion states of preceding processing pipelines. IDCDACS consists of a configurable number of distributed monitoring and controlling processes, a message broker and a relational database. All processes communicate through message queues hosted on the message broker. Persistent state information is stored in the database. A configurable processing controller instantiates and monitors all data processing applications. Due to decoupling by message queues the system is highly versatile and failure tolerant. The implementation utilizes the RabbitMQ open-source messaging platform that is based upon the Advanced Message Queuing Protocol (AMQP), an on-the-wire protocol (like HTML) and open industry standard. IDCDACS uses high availability capabilities provided by RabbitMQ and is equipped with failure recovery features to survive network and server outages. It is implemented in C and Python and is operated in a Linux environment at the IDC. Although IDCDACS was specifically designed for the existing IDC processing system its architecture is generic and reusable for different automatic processing workflows, e.g. similar to those described in (Olivieri et al. 2012, Kværna et al. 2012). Major advantages are its independence of the specific data processing applications used and the possibility to reconfigure IDCDACS for different types of processing, data and trigger logic. A possible future development would be to use the IDCDACS framework for different scientific domains, e.g. for processing of Earth observation satellite data extending the one-dimensional time-series intervals to spatio-temporal data cubes. REFERENCES Olivieri M., J. Clinton (2012) An almost fair comparison between Earthworm and SeisComp3, Seismological Research Letters, 83(4), 720-727. Kværna, T., S. J. Gibbons, D. B. Harris, D. A. Dodge (2012) Adapting pipeline architectures to track developing aftershock sequences and recurrent explosions, Proceedings of the 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, 776-785.

  14. Geological hazard monitoring system in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  15. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments

    PubMed Central

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-01-01

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377

  16. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.

    PubMed

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-06-07

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.

  17. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  18. Socioeconomic Impact Assessment of the Los Angeles Automatic Vehicle Monitoring (AVM) Demonstration

    DOT National Transportation Integrated Search

    1982-09-01

    This report presents a socioeconomic impact assessment of the Automatic Vehicle Monitoring (AVM) Demonstration in Los Angeles. An AVM system uses location, communication, and data processing subsystems to monitor the locations of appropriately equipp...

  19. A hybrid system identification methodology for wireless structural health monitoring systems based on dynamic substructuring

    NASA Astrophysics Data System (ADS)

    Dragos, Kosmas; Smarsly, Kay

    2016-04-01

    System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.

  20. The SARVIEWS Project: Automated SAR Processing in Support of Operational Near Real-time Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Webley, P. W.; Dehn, J.; Arko, S. A.; McAlpin, D. B.; Gong, W.

    2016-12-01

    Volcanic eruptions are among the most significant hazards to human society, capable of triggering natural disasters on regional to global scales. In the last decade, remote sensing has become established in operational volcano monitoring. Centers like the Alaska Volcano Observatory rely heavily on remote sensing data from optical and thermal sensors to provide time-critical hazard information. Despite this high use of remote sensing data, the presence of clouds and a dependence on solar illumination often limit their impact on decision making. Synthetic Aperture Radar (SAR) systems are widely considered superior to optical sensors in operational monitoring situations, due to their weather and illumination independence. Still, the contribution of SAR to operational volcano monitoring has been limited in the past due to high data costs, long processing times, and low temporal sampling rates of most SAR systems. In this study, we introduce the automatic SAR processing system SARVIEWS, whose advanced data analysis and data integration techniques allow, for the first time, a meaningful integration of SAR into operational monitoring systems. We will introduce the SARVIEWS database interface that allows for automatic, rapid, and seamless access to the data holdings of the Alaska Satellite Facility. We will also present a set of processing techniques designed to automatically generate a set of SAR-based hazard products (e.g. change detection maps, interferograms, geocoded images). The techniques take advantage of modern signal processing and radiometric normalization schemes, enabling the combination of data from different geometries. Finally, we will show how SAR-based hazard information is integrated in existing multi-sensor decision support tools to enable joint hazard analysis with data from optical and thermal sensors. We will showcase the SAR processing system using a set of recent natural disasters (both earthquakes and volcanic eruptions) to demonstrate its robustness. We will also show the benefit of integrating SAR with data from other sensors to support volcano monitoring. For historic eruptions at Okmok and Augustine volcano, both located in the North Pacific, we will demonstrate that the addition of SAR can lead to a significant improvement in activity detection and eruption forecasting.

  1. Spectrally encoded optical fibre sensor systems and their application in process control, environmental and structural monitoring

    NASA Astrophysics Data System (ADS)

    Willsch, Reinhardt; Ecke, Wolfgang; Schwotzer, Gunter

    2005-09-01

    Different types of advanced optical fibre sensor systems using similar spectral interrogation principles and potential low-cost polychromator optoelectronic signal processing instrumentation will be presented, and examples of their industrial application are demonstrated. These are such sensors as multimode fibre based humidity, temperature, and pressure sensors with extrinsic microoptical Fabry-Perot transducers for process control in gas industry, UV absorption evanescent field sensors for organic pollution monitoring in groundwater, and single mode fibre Bragg grating (FBG) multiplexed strain & vibration and temperature sensor networks for structural health monitoring applications in electric power facilities, aerospace, railways, geotechnical and civil engineering. Recent results of current investigations applying FBGs and microstructured fibres for chemical sensing will be discussed.

  2. Non-Contact Conductivity Measurement for Automated Sample Processing Systems

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kirby, James P.

    2012-01-01

    A new method has been developed for monitoring and control of automated sample processing and preparation especially focusing on desalting of samples before analytical analysis (described in more detail in Automated Desalting Apparatus, (NPO-45428), NASA Tech Briefs, Vol. 34, No. 8 (August 2010), page 44). The use of non-contact conductivity probes, one at the inlet and one at the outlet of the solid phase sample preparation media, allows monitoring of the process, and acts as a trigger for the start of the next step in the sequence (see figure). At each step of the muti-step process, the system is flushed with low-conductivity water, which sets the system back to an overall low-conductivity state. This measurement then triggers the next stage of sample processing protocols, and greatly minimizes use of consumables. In the case of amino acid sample preparation for desalting, the conductivity measurement will define three key conditions for the sample preparation process. First, when the system is neutralized (low conductivity, by washing with excess de-ionized water); second, when the system is acidified, by washing with a strong acid (high conductivity); and third, when the system is at a basic condition of high pH (high conductivity). Taken together, this non-contact conductivity measurement for monitoring sample preparation will not only facilitate automation of the sample preparation and processing, but will also act as a way to optimize the operational time and use of consumables

  3. On the Measurement and Visualization of Analysis Activity: A Study of Successful Strategies for Web-Based Information Analysis

    ERIC Educational Resources Information Center

    Zelik, Daniel J.

    2012-01-01

    Cognitive Systems Engineering (CSE) has a history built, in part, on leveraging representational design to improve system performance. Traditionally, however, CSE has focused on visual representation of "monitored" processes--active, ongoing, and interconnected activities occurring in a system of interest and monitored by human…

  4. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    NASA Astrophysics Data System (ADS)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an architecture to represent how integrate air quality sensor data stream into geospatial data infrastructure to present an interoperable air quality monitoring system for supporting disaster management systems by real time information. Developed system tested on Tehran air pollution sensors for calculating Air Quality Index (AQI) for CO pollutant and subsequently notifying registered users in emergency cases by sending warning E-mails. Air quality monitoring portal used to retrieving and visualize sensor observation through interoperable framework. This system provides capabilities to retrieve SOS observation using WPS in a cascaded service chaining pattern for monitoring trend of timely sensor observation.

  5. Accuracy Evaluation of a CE-Marked Glucometer System for Self-Monitoring of Blood Glucose With Three Reagent Lots Following ISO 15197:2013.

    PubMed

    Hehmke, Bernd; Berg, Sabine; Salzsieder, Eckhard

    2017-05-01

    Continuous standardized verification of the accuracy of blood glucose meter systems for self-monitoring after their introduction into the market is an important clinically tool to assure reliable performance of subsequently released lots of strips. Moreover, such published verification studies permit comparison of different blood glucose monitoring systems and, thus, are increasingly involved in the process of evidence-based purchase decision making.

  6. Integrated monitoring technologies for the management of a Soil-Aquifer-Treatment (SAT) system.

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Alexandros; Kallioras, Andreas; Kofakis, Petros; Bumberger, Jan; Schmidt, Felix; Athanasiou, Georgios; Uzunoglou, Nikolaos; Amditis, Angelos; Dietrich, Peter

    2016-04-01

    Artificial recharge of groundwater has an important role to play in water reuse as treated wastewater effluent can be infiltrated into the ground for aquifer recharge. As the effluent moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. The pilot site of Lavrion Technological & Cultural Park (LTCP) of the National Technical University of Athens (NTUA), involves the employment of plot infiltration basins at experimental scale, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. Τhe LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved by the development and installation of an integrated system of prototype sensing technologies, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time and Frequency Domain Reflectometry (TDR & FDR) sensors is developed and will be installed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. Additionally, the system contains two different radar-based sensing systems that will be offering (i) identification of preferential flow effects of the TDR/FDR sensors and (ii) monitoring of the water table within the shallow karst aquifer layer. The above technique will offer continuous monitoring of infiltration rates and identify possible mechanical or biological clogging effects. The monitoring system will be connected to an ad-hoc wireless network for continuous data transfer within the SAT facilities. It is envisaged that the development and combined application of all the above technologies will provide an integrated monitoring platform for the evaluation of SAT system performance.

  7. Research on public participant urban infrastructure safety monitoring system using smartphone

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Wang, Niannian; Ou, Jinping; Yu, Yan; Li, Mingchu

    2017-04-01

    Currently more and more people concerned about the safety of major public security. Public participant urban infrastructure safety monitoring and investigation has become a trend in the era of big data. In this paper, public participant urban infrastructure safety protection system based on smart phones is proposed. The system makes it possible to public participant disaster data collection, monitoring and emergency evaluation in the field of disaster prevention and mitigation. Function of the system is to monitor the structural acceleration, angle and other vibration information, and extract structural deformation and implement disaster emergency communications based on smartphone without network. The monitoring data is uploaded to the website to create urban safety information database. Then the system supports big data analysis processing, the structure safety assessment and city safety early warning.

  8. Study of weld quality real-time monitoring system for auto-body assembly

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Li, Yong-Bing; Chen, Guan-Long

    2005-12-01

    Resistance spot welding (RSW) is widely used for the auto-body assembly in automotive industry. But RSW suffers from a major problem of inconsistent quality from weld to weld. The major problem is the complexity of the basic process that may involve material coatings, electrode force, electrode wear, fit up, etc. Therefore weld quality assurance is still a big challenge and goal. Electrode displacement has proved to be a particularly useful signal which correlates well with weld quality. This paper introduces a novel auto-body spot weld quality monitoring system which uses electrode displacement as the quality parameter. This system chooses the latest laser displacement sensor with high resolution to measure the real-time electrode displacement. It solves the interference problem of sensor mounting by designing special fixture, and can be successfully applied on the portable welding machine. It is capable of evaluating weld quality and making diagnosis of process variations such as surface asperities, shunting, worn electrode and weld expansion with real-time electrode displacement. As proved by application in the workshop, the monitoring system has good stability and reliability, and is qualified for monitoring weld quality in process.

  9. Blood monitoring systems and methods thereof

    NASA Technical Reports Server (NTRS)

    Zander, Dennis (Inventor); Mir, Jose (Inventor)

    2012-01-01

    A blood monitoring system is capable of monitoring the blood of a subject in vivo. The blood monitoring system comprises: 1) an array of movable microneedle micromachined within associated wells; 2) array of motion actuators able to move each needle in and out of their associated wells; 3) array of microvalves associated with each microneedle able to control the flow of air around the microneedle; 4) an array of chemical sensors inserted into patient by movable microneedles; 5) an array of inductors able to measure chemical concentration in the vicinity of inserted chemical sensors; 6) conducting vias that provide timed actuating signal signals from a control system to each motion actuator; 7) conducting vias that transmit signal produced by array of chemical sensors to the control system for processing, although the blood monitoring system can comprise other numbers and types of elements in other configurations.

  10. Design of cold chain logistics remote monitoring system based on ZigBee and GPS location

    NASA Astrophysics Data System (ADS)

    Zong, Xiaoping; Shao, Heling

    2017-03-01

    This paper designed a remote monitoring system based on Bee Zig wireless sensor network and GPS positioning, according to the characteristics of cold chain logistics. The system consisted of the ZigBee network, gateway and monitoring center. ZigBee network temperature acquisition modules and GPS positioning acquisition module were responsible for data collection, and then send the data to the host computer through the GPRS network and Internet to realize remote monitoring of vehicle with functions of login permissions, temperature display, latitude and longitude display, historical data, real-time alarm and so on. Experiments showed that the system is stable, reliable and effective to realize the real-time remote monitoring of the vehicle in the process of cold chain transport.

  11. Dynamic Computation Offloading for Low-Power Wearable Health Monitoring Systems.

    PubMed

    Kalantarian, Haik; Sideris, Costas; Mortazavi, Bobak; Alshurafa, Nabil; Sarrafzadeh, Majid

    2017-03-01

    The objective of this paper is to describe and evaluate an algorithm to reduce power usage and increase battery lifetime for wearable health-monitoring devices. We describe a novel dynamic computation offloading scheme for real-time wearable health monitoring devices that adjusts the partitioning of data processing between the wearable device and mobile application as a function of desired classification accuracy. By making the correct offloading decision based on current system parameters, we show that we are able to reduce system power by as much as 20%. We demonstrate that computation offloading can be applied to real-time monitoring systems, and yields significant power savings. Making correct offloading decisions for health monitoring devices can extend battery life and improve adherence.

  12. Grounding explanations in evolving, diagnostic situations

    NASA Technical Reports Server (NTRS)

    Johannesen, Leila J.; Cook, Richard I.; Woods, David D.

    1994-01-01

    Certain fields of practice involve the management and control of complex dynamic systems. These include flight deck operations in commercial aviation, control of space systems, anesthetic management during surgery or chemical or nuclear process control. Fault diagnosis of these dynamic systems generally must occur with the monitored process on-line and in conjunction with maintaining system integrity.This research seeks to understand in more detail what it means for an intelligent system to function cooperatively, or as a 'team player' in complex, dynamic environments. The approach taken was to study human practitioners engaged in the management of a complex, dynamic process: anesthesiologists during neurosurgical operations. The investigation focused on understanding how team members cooperate in management and fault diagnosis and comparing this interaction to the situation with an Artificial Intelligence(AI) system that provides diagnoses and explanations. Of particular concern was to study the ways in which practitioners support one another in keeping aware of relevant information concerning the state of the monitored process and of the problem solving process.

  13. Tank Monitoring and Document control System (TMACS) As Built Software Design Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GLASSCOCK, J.A.

    This document describes the software design for the Tank Monitor and Control System (TMACS). This document captures the existing as-built design of TMACS as of November 1999. It will be used as a reference document to the system maintainers who will be maintaining and modifying the TMACS functions as necessary. The heart of the TMACS system is the ''point-processing'' functionality where a sample value is received from the field sensors and the value is analyzed, logged, or alarmed as required. This Software Design Document focuses on the point-processing functions.

  14. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musyurka, A. V., E-mail: musyurkaav@burges.rushydro.ru

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  15. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., valuesmore » and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.« less

  16. Linear friction weld process monitoring of fixture cassette deformations using empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Bakker, O. J.; Gibson, C.; Wilson, P.; Lohse, N.; Popov, A. A.

    2015-10-01

    Due to its inherent advantages, linear friction welding is a solid-state joining process of increasing importance to the aerospace, automotive, medical and power generation equipment industries. Tangential oscillations and forge stroke during the burn-off phase of the joining process introduce essential dynamic forces, which can also be detrimental to the welding process. Since burn-off is a critical phase in the manufacturing stage, process monitoring is fundamental for quality and stability control purposes. This study aims to improve workholding stability through the analysis of fixture cassette deformations. Methods and procedures for process monitoring are developed and implemented in a fail-or-pass assessment system for fixture cassette deformations during the burn-off phase. Additionally, the de-noised signals are compared to results from previous production runs. The observed deformations as a consequence of the forces acting on the fixture cassette are measured directly during the welding process. Data on the linear friction-welding machine are acquired and de-noised using empirical mode decomposition, before the burn-off phase is extracted. This approach enables a direct, objective comparison of the signal features with trends from previous successful welds. The capacity of the whole process monitoring system is validated and demonstrated through the analysis of a large number of signals obtained from welding experiments.

  17. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less

  18. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  19. Laser beam welding quality monitoring system based in high-speed (10 kHz) uncooled MWIR imaging sensors

    NASA Astrophysics Data System (ADS)

    Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo

    2015-05-01

    The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self-learning strategies were implemented with very promising results, demonstrating the feasibility of using low-cost high-speed infrared imagers in advancing towards a real-time / in-line zero-defect production systems.

  20. Online monitoring of fermentation processes via non-invasive low-field NMR.

    PubMed

    Kreyenschulte, Dirk; Paciok, Eva; Regestein, Lars; Blümich, Bernhard; Büchs, Jochen

    2015-09-01

    For the development of biotechnological processes in academia as well as in industry new techniques are required which enable online monitoring for process characterization and control. Nuclear magnetic resonance (NMR) spectroscopy is a promising analytical tool, which has already found broad applications in offline process analysis. The use of online monitoring, however, is oftentimes constrained by high complexity of custom-made NMR bioreactors and considerable costs for high-field NMR instruments (>US$200,000). Therefore, low-field (1) H NMR was investigated in this study in a bypass system for real-time observation of fermentation processes. The new technique was validated with two microbial systems. For the yeast Hansenula polymorpha glycerol consumption could accurately be assessed in spite of the presence of high amounts of complex constituents in the medium. During cultivation of the fungal strain Ustilago maydis, which is accompanied by the formation of several by-products, the concentrations of glucose, itaconic acid, and the relative amount of glycolipids could be quantified. While low-field spectra are characterized by reduced spectral resolution compared to high-field NMR, the compact design combined with the high temporal resolution (15 s-8 min) of spectra acquisition allowed online monitoring of the respective processes. Both applications clearly demonstrate that the investigated technique is well suited for reaction monitoring in opaque media while at the same time it is highly robust and chemically specific. It can thus be concluded that low-field NMR spectroscopy has a great potential for non-invasive online monitoring of biotechnological processes at the research and practical industrial scales. © 2015 Wiley Periodicals, Inc.

  1. A Low-Cost System Based on Image Analysis for Monitoring the Crystal Growth Process.

    PubMed

    Venâncio, Fabrício; Rosário, Francisca F do; Cajaiba, João

    2017-05-31

    Many techniques are used to monitor one or more of the phenomena involved in the crystallization process. One of the challenges in crystal growth monitoring is finding techniques that allow direct interpretation of the data. The present study used a low-cost system, composed of a commercial webcam and a simple white LED (Light Emitting Diode) illuminator, to follow the calcium carbonate crystal growth process. The experiments were followed with focused beam reflectance measurement (FBRM), a common technique for obtaining information about the formation and growth of crystals. The images obtained in real time were treated with the red, blue, and green (RGB) system. The results showed a qualitative response of the system to crystal formation and growth processes, as there was an observed decrease in the signal as the growth process occurred. Control of the crystal growth was managed by increasing the viscosity of the test solution with the addition of monoethylene glycol (MEG) at 30% and 70% in a mass to mass relationship, providing different profiles of the RGB average curves. The decrease in the average RGB value became slower as the concentration of MEG was increased; this reflected a lag in the growth process that was proven by the FBRM.

  2. How conduit models can be used to interpret volcano monitoring data

    NASA Astrophysics Data System (ADS)

    Thomas, M. E.; Neuberg, J. W.; Karl, S.; Collinson, A.; Pascal, K.

    2012-04-01

    During the last decade there have been major advances in the field of volcano monitoring, but to be able to take full advantage of these advances it is vital to link the monitoring data with the physical processes that give rise to the recorded signals. To obtain a better understanding of these physical processes it is necessary to understand the conditions of the system at depth. This can be achieved through numerical modelling. We present the results of conduit models representative of a silicic volcanic system and demonstrate how processes identified and interpreted from these models may manifest in the recorded monitoring data. Links are drawn to seismicity, deformation, and gas emissions. A key point is how these data compliment each other, and through utilising conduit models we are able to interpret how these different data may be recorded in response to a particular process. This is an invaluable tool as it is far easier to draw firm conclusions on what is happening at a volcano if there are several different data sets that suggest the same processes are occurring. Some of these interpretations appear useful in forecasting potentially catastrophic changes in eruptive behaviour, such as a dome collapse leading to violent explosive behaviour, and the role of monitoring data in this capacity will also be addressed.

  3. Control and monitoring method and system for electromagnetic forming process

    DOEpatents

    Kunerth, Dennis C.; Lassahn, Gordon D.

    1990-01-01

    A process, system, and improvement for a process for electromagnetic forming of a workpiece in which characteristics of the workpiece such as its geometry, electrical conductivity, quality, and magnetic permeability can be determined by monitoring the current and voltage in the workcoil. In an electromagnet forming process in which a power supply provides current to a workcoil and the electromagnetic field produced by the workcoil acts to form the workpiece, the dynamic interaction of the electromagnetic fields produced by the workcoil with the geometry, electrical conductivity, and magnetic permeability of the workpiece, provides information pertinent to the physical condition of the workpiece that is available for determination of quality and process control. This information can be obtained by deriving in real time the first several time derivatives of the current and voltage in the workcoil. In addition, the process can be extended by injecting test signals into the workcoil during the electromagnetic forming and monitoring the response to the test signals in the workcoil.

  4. Systems and Sensors for Debris-flow Monitoring and Warning

    PubMed Central

    Arattano, Massimo; Marchi, Lorenzo

    2008-01-01

    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells, trip wires etc. Event warning systems for debris flows have a strong linkage with debris-flow monitoring that is carried out for research purposes: the same sensors are often used for both monitoring and warning, although warning systems have higher requirements of robustness than monitoring systems. The paper presents a description of the sensors employed for debris-flow monitoring and event warning systems, with attention given to advantages and drawbacks of different types of sensors. PMID:27879828

  5. Wireless pilot monitoring system for extreme race conditions.

    PubMed

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.

  6. Applications of optical sensing for laser cutting and drilling.

    PubMed

    Fox, Mahlen D T; French, Paul; Peters, Chris; Hand, Duncan P; Jones, Julian D C

    2002-08-20

    Any reliable automated production system must include process control and monitoring techniques. Two laser processing techniques potentially lending themselves to automation are percussion drilling and cutting. For drilling we investigate the performance of a modification of a nonintrusive optical focus control system we previously developed for laser welding, which exploits the chromatic aberrations of the processing optics to determine focal error. We further developed this focus control system for closed-loop control of laser cutting. We show that an extension of the technique can detect deterioration in cut quality, and we describe practical trials carried out on different materials using both oxygen and nitrogen assist gas. We base our techniques on monitoring the light generated by the process, captured nonintrusively by the effector optics and processed remotely from the workpiece. We describe the relationship between the temporal and the chromatic modulation of the detected light and process quality and show how the information can be used as the basis of a process control system.

  7. Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near-infrared spectroscopy.

    PubMed

    Sarraguça, Mafalda C; Paulo, Ana; Alves, Madalena M; Dias, Ana M A; Lopes, João A; Ferreira, Eugénio C

    2009-10-01

    The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO(3)(-)), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of approximately 25% and correlation coefficients of approximately 0.82 for COD and TSS and 0.87 for N-NO(3)(-) . The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.

  8. Development of Field Information Monitoring System Based on the Internet of Things

    NASA Astrophysics Data System (ADS)

    Cai, Ken; Liang, Xiaoying; Wang, Keqiang

    With the rapid development and wide application of electronics, communication and embedded system technologies, the global agriculture is changing from traditional agriculture that is to improve the production relying on the increase of labor, agricultural inputs to the new stage of modern agriculture with low yields, high efficiency, real-time and accuracy. On the other hand the research and development of the Internet of Things, which is an information network to connect objects, with the full capacity to perceive objects, and having the capabilities of reliable transmission and intelligence processing for information, allows us to obtain real-time information of anything. The application of the Internet of Things in field information online monitoring is an effective solution for present wired sensor monitoring system, which has much more disadvantages, such as high cost, the problems of laying lines and so on. In this paper, a novel field information monitoring system based on the Internet of Things is proposed. It can satisfy the requirements of multi-point measurement, mobility, convenience in the field information monitoring process. The whole structure of system is given and the key designs of system design are described in the hardware and software aspect. The studies have expanded current field information measurement methods and strengthen the application of the Internet of Things.

  9. Design of conveyor utilization monitoring system: a case study of powder coating line in sheet metal fabrication

    NASA Astrophysics Data System (ADS)

    Prasetyo, Hoedi; Sugiarto, Yohanes; Nur Rosyidi, Cucuk

    2018-03-01

    Conveyor is a very useful equipment to replace manpower in transporting the goods. It highly influences the productivity, production capacity utilization and eventually the production cost. This paper proposes a system to monitor the utilization of conveyor at a low cost through a case study at powder coating process line in a sheet metal fabrication. Preliminary observation was conducted to identify the problems. The monitoring system was then built and executed. The system consists of two sub systems. First is sub system for collecting and transmitting the required data and the second is sub system for displaying the data. The system utilizes sensors, wireless data transfer and windows-based application. The test results showed that the whole system works properly. By this system, the productivity and status of the conveyor can be monitored in real time. This research enriches the development of conveyor monitoring system especially for implementation in small and medium enterprises.

  10. Automated process control for plasma etching

    NASA Astrophysics Data System (ADS)

    McGeown, Margaret; Arshak, Khalil I.; Murphy, Eamonn

    1992-06-01

    This paper discusses the development and implementation of a rule-based system which assists in providing automated process control for plasma etching. The heart of the system is to establish a correspondence between a particular data pattern -- sensor or data signals -- and one or more modes of failure, i.e., a data-driven monitoring approach. The objective of this rule based system, PLETCHSY, is to create a program combining statistical process control (SPC) and fault diagnosis to help control a manufacturing process which varies over time. This can be achieved by building a process control system (PCS) with the following characteristics. A facility to monitor the performance of the process by obtaining and analyzing the data relating to the appropriate process variables. Process sensor/status signals are input into an SPC module. If trends are present, the SPC module outputs the last seven control points, a pattern which is represented by either regression or scoring. The pattern is passed to the rule-based module. When the rule-based system recognizes a pattern, it starts the diagnostic process using the pattern. If the process is considered to be going out of control, advice is provided about actions which should be taken to bring the process back into control.

  11. Introduction to the Space Weather Monitoring System at KASI

    NASA Astrophysics Data System (ADS)

    Baek, J.; Choi, S.; Kim, Y.; Cho, K.; Bong, S.; Lee, J.; Kwak, Y.; Hwang, J.; Park, Y.; Hwang, E.

    2014-05-01

    We have developed the Space Weather Monitoring System (SWMS) at the Korea Astronomy and Space Science Institute (KASI). Since 2007, the system has continuously evolved into a better system. The SWMS consists of several subsystems: applications which acquire and process observational data, servers which run the applications, data storage, and display facilities which show the space weather information. The applications collect solar and space weather data from domestic and oversea sites. The collected data are converted to other format and/or visualized in real time as graphs and illustrations. We manage 3 data acquisition and processing servers, a file service server, a web server, and 3 sets of storage systems. We have developed 30 applications for a variety of data, and the volume of data is about 5.5 GB per day. We provide our customers with space weather contents displayed at the Space Weather Monitoring Lab (SWML) using web services.

  12. Implementation of in-line infrared monitor in full-scale anaerobic digestion process.

    PubMed

    Spanjers, H; Bouvier, J C; Steenweg, P; Bisschops, I; van Gils, W; Versprille, B

    2006-01-01

    During start up but also during normal operation, anaerobic reactor systems should be run and monitored carefully to secure trouble-free operation, because the process is vulnerable to disturbances such as temporary overloading, biomass wash out and influent toxicity. The present method of monitoring is usually by manual sampling and subsequent laboratory analysis. Data collection, processing and feedback to system operation is manual and ad hoc, and involves high-level operator skills and attention. As a result, systems tend to be designed at relatively conservative design loading rates resulting in significant over-sizing of reactors and thus increased systems cost. It is therefore desirable to have on-line and continuous access to performance data on influent and effluent quality. Relevant variables to indicate process performance include VFA, COD, alkalinity, sulphate, and, if aerobic post-treatment is considered, total nitrogen, ammonia and nitrate. Recently, mid-IR spectrometry was demonstrated on a pilot scale to be suitable for in-line simultaneous measurement of these variables. This paper describes a full-scale application of the technique to test its ability to monitor continuously and without human intervention the above variables simultaneously in two process streams. For VFA, COD, sulphate, ammonium and TKN good agreement was obtained between in-line and manual measurements. During a period of six months the in-line measurements had to be interrupted several times because of clogging. It appeared that the sample pre-treatment unit was not able to cope with high solids concentrations all the time.

  13. Hardware-software and algorithmic provision of multipoint systems for long-term monitoring of dynamic processes

    NASA Astrophysics Data System (ADS)

    Yakunin, A. G.; Hussein, H. M.

    2017-08-01

    An example of information-measuring systems for climate monitoring and operational control of energy resources consumption of the university campus that is functioning in the Altai State Technical University since 2009. The advantages of using such systems for studying various physical processes are discussed. General principles of construction of similar systems, their software, hardware and algorithmic support are considered. It is shown that their fundamental difference from traditional SCADA - systems is the use of databases for storing the results of the observation with a specialized data structure, and by preprocessing of the input signal for its compression. Another difference is the absence of clear criteria for detecting the anomalies in the time series of the observed process. The examples of algorithms that solve this problem are given.

  14. Automated plasma control with optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, P. P.

    Plasma etching and desmear processes for printed wiring board (PWB) manufacture are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. These techniques are not real-time methods however, and do not allow for immediate diagnosis and process correction. These tests often require scrapping some fraction of a batch to insure the integrity of the rest. Since these tests verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. These tests are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process anomalies should be detected and corrected before the parts being treated are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored along with applications of this technique to for process control, failure analysis and endpoint determination in PWB manufacture.

  15. Silicon Carbide Temperature Monitor Processing Improvements. Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, Troy Casey; Daw, Joshua Earl; Ahamad Al Rashdan

    2016-01-29

    Silicon carbide (SiC) temperature monitors are used as temperature sensors in Advanced Test Reactor (ATR) irradiations at the Idaho National Laboratory (INL). Although thermocouples are typically used to provide real-time temperature indication in instrumented lead tests, other indicators, such as melt wires, are also often included in such tests as an independent technique of detecting peak temperatures incurred during irradiation. In addition, less expensive static capsule tests, which have no leads attached for real-time data transmission, often rely on melt wires as a post-irradiation technique for peak temperature indication. Melt wires are limited in that they can only detect whethermore » a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that occurred during irradiation. As part of the process initiated to make SiC temperature monitors available at the ATR, post-irradiation evaluations of these monitors have been previously completed at the High Temperature Test Laboratory (HTTL). INL selected the resistance measurement approach for determining irradiation temperature from SiC temperature monitors because it is considered to be the most accurate measurement. The current process involves the repeated annealing of the SiC monitors at incrementally increasing temperature, with resistivity measurements made between annealing steps. The process is time consuming and requires the nearly constant attention of a trained staff member. In addition to the expensive and lengthy post analysis required, the current process adds many potential sources of error in the measurement, as the sensor must be repeatedly moved from furnace to test fixture. This time-consuming post irradiation analysis is a significant portion of the total cost of using these otherwise inexpensive sensors. An additional consideration of this research is that, if the SiC post processing can be automated, it could be performed in an MFC hot cell, further reducing the time and expense of lengthy decontaminations prior to processing. Sections of this report provide a general description of resistivity techniques currently used to infer peak irradiation temperature from silicon carbide temperature monitors along with some representative data, the proposed concepts to improve the process of analyzing irradiated SiC temperature monitors, the completed efforts to prove the proposed concepts, and future activities. The efforts detailed here succeeded in designing and developing a real-time automated SiC resistivity measurement system, and performed two initial test runs. Activities carried out include the assembly and integration of the system hardware; the design and development of a preliminary monitor fixture; the design of a technique to automate the data analysis and processing; the development of the communication, coordination, and user software; and the execution and troubleshooting of test run experiments using the box furnace. Although the automation system performed as required, the designed fixture did not succeed in establishing the needed electrical contacts with the SiC monitor.« less

  16. Riverbed clogging associated with a California riverbank filtration system: An assessment of mechanisms and monitoring approaches

    USGS Publications Warehouse

    Ulrich, Craig; Hubbard, Susan S.; Florsheim, Joan; Rosenberry, Donald O.; Borglin, Sharon; Trotta, Marcus; Seymour, Donald

    2015-01-01

    An experimental field study was performed to investigate riverbed clogging processes and associated monitoring approaches near a dam-controlled riverbank filtration facility in Northern California. Motivated by previous studies at the site that indicated riverbed clogging plays an important role in the performance of the riverbank filtration system, we investigated the spatiotemporal variability and nature of the clogging. In particular, we investigated whether the clogging was due to abiotic or biotic mechanisms. A secondary aspect of the study was the testing of different methods to monitor riverbed clogging and related processes, such as seepage. Monitoring was conducted using both point-based approaches and spatially extensive geophysical approaches, including: grain-size analysis, temperature sensing, electrical resistivity tomography, seepage meters, microbial analysis, and cryocoring, along two transects. The point monitoring measurements suggested a substantial increase in riverbed biomass (2 orders of magnitude) after the dam was raised compared to the small increase (∼2%) in fine-grained sediment. These changes were concomitant with decreased seepage. The decreased seepage eventually led to the development of an unsaturated zone beneath the riverbed, which further decreased infiltration capacity. Comparison of our time-lapse grain-size and biomass datasets suggested that biotic processes played a greater role in clogging than did abiotic processes. Cryocoring and autonomous temperature loggers were most useful for locally monitoring clogging agents, while electrical resistivity data were useful for interpreting the spatial extent of a pumping-induced unsaturated zone that developed beneath the riverbed after riverbed clogging was initiated. The improved understanding of spatiotemporally variable riverbed clogging and monitoring approaches is expected to be useful for optimizing the riverbank filtration system operations.

  17. The difference of delay time in monitoring system of facial acupressure learning media using bluetooth, wireless and ethernet

    NASA Astrophysics Data System (ADS)

    Agustin, Eny Widhia; Hangga, Arimaz; Fahrian, Muhammad Iqbal; Azhari, Anis Fikri

    2018-03-01

    The implementation of monitoring system in the facial acupressure learning media could increase the students' proficiency. However the common learning media still has not implemented a monitoring system in their learning process. This research was conducted to implement monitoring system in the mannequin head prototype as a learning media of facial acupressure using Bluetooth, wireless and Ethernet. The results of the implementation of monitoring system in the prototype showed that there were differences in the delay time between Bluetooth and wireless or Ethernet. The results data showed no difference in the average delay time between the use of Bluetooth with wireless and the use of Bluetooth with Ethernet in monitoring system of facial acupressure learning media. From all the facial acupressure points, the forehead facial acupressure point has the longest delay time of 11.93 seconds. The average delay time in all 3 class rooms was 1.96 seconds therefore the use of Bluetooth, wireless and Ethernet is highly recommended in the monitoring system of facial acupressure.

  18. [Development of automatic urine monitoring system].

    PubMed

    Wei, Liang; Li, Yongqin; Chen, Bihua

    2014-03-01

    An automatic urine monitoring system is presented to replace manual operation. The system is composed of the flow sensor, MSP430f149 single chip microcomputer, human-computer interaction module, LCD module, clock module and memory module. The signal of urine volume is captured when the urine flows through the flow sensor and then displayed on the LCD after data processing. The experiment results suggest that the design of the monitor provides a high stability, accurate measurement and good real-time, and meets the demand of the clinical application.

  19. Integrating wireless sensor network for monitoring subsidence phenomena

    NASA Astrophysics Data System (ADS)

    Marturià, Jordi; Lopez, Ferran; Gigli, Giovanni; Intrieri, Emanuele; Mucchi, Lorenzo; Fornaciai, Alessandro

    2016-04-01

    An innovative wireless sensor network (WSN) for the 3D superficial monitoring of deformations (such as landslides and subsidence) is being developed in the frame of the Wi-GIM project (Wireless sensor network for Ground Instability Monitoring - LIFE12 ENV/IT/001033). The surface movement is detected acquiring the position (x, y and z) by integrating large bandwidth technology able to detect the 3D coordinates of the sensor with a sub-meter error, with continuous wave radar, which allows decreasing the error down to sub-cm. The Estació neighborhood in Sallent is located over the old potassium mine Enrique. This zone has been affected by a subsidence process over more than twenty years. The implementation of a wide network for ground auscultation has allowed monitoring the process of subsidence since 1997. This network consists of: i) a high-precision topographic leveling network to control the subsidence in surface; ii) a rod extensometers network to monitor subsurface deformation; iii) an automatic Leica TCA Total Station to monitor building movements; iv) an inclinometers network to measure the horizontal displacements on subsurface and v) a piezometer to measure the water level. Those networks were implemented within an alert system for an organized an efficient response of the civil protection authorities in case of an emergency. On 23rd December 2008, an acceleration of subsoil movements (of approx. 12-18 cm/year) provoked the activation of the emergency plan by the Catalan Civil Protection. This implied the preventive and scheduled evacuation of the neighbours (January 2009) located in the area with a higher risk of collapse: around 120 residents of 43 homes. As a consequence, the administration implemented a compensation plan for the evacuation of the whole neighbourhood residents and the demolition of 405 properties. In this work, the adaptation and integration process of Wi-GIM system with those conventional monitoring network are presented for its testing and evaluation. The knowledge gained in the subsidence process, complemented by the huge availability of data from existing networks constitutes a solid foundation for achieving those objectives. New monitoring points have been identified, constructed, prepared to integrate the conventional monitoring system with Wi-GIM system to build a robust system compatible with WI-GIM requirements.

  20. Crack identification for rigid pavements using unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker

    2017-09-01

    Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.

  1. A multiprocessing architecture for real-time monitoring

    NASA Technical Reports Server (NTRS)

    Schmidt, James L.; Kao, Simon M.; Read, Jackson Y.; Weitzenkamp, Scott M.; Laffey, Thomas J.

    1988-01-01

    A multitasking architecture for performing real-time monitoring and analysis using knowledge-based problem solving techniques is described. To handle asynchronous inputs and perform in real time, the system consists of three or more distributed processes which run concurrently and communicate via a message passing scheme. The Data Management Process acquires, compresses, and routes the incoming sensor data to other processes. The Inference Process consists of a high performance inference engine that performs a real-time analysis on the state and health of the physical system. The I/O Process receives sensor data from the Data Management Process and status messages and recommendations from the Inference Process, updates its graphical displays in real time, and acts as the interface to the console operator. The distributed architecture has been interfaced to an actual spacecraft (NASA's Hubble Space Telescope) and is able to process the incoming telemetry in real-time (i.e., several hundred data changes per second). The system is being used in two locations for different purposes: (1) in Sunnyville, California at the Space Telescope Test Control Center it is used in the preflight testing of the vehicle; and (2) in Greenbelt, Maryland at NASA/Goddard it is being used on an experimental basis in flight operations for health and safety monitoring.

  2. Signal processing methodologies for an acoustic fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  3. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    PubMed

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers.

  4. A Web-Based System for Monitoring and Controlling Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Salas, Andrea O.; Rogers, James L.

    1997-01-01

    In today's competitive environment, both industry and government agencies are under enormous pressure to reduce the time and cost of multidisciplinary design projects. A number of frameworks have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. An examination of current frameworks reveals weaknesses in various areas such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, in conjunction with an existing framework, can improve these areas of weakness. This paper describes a system that executes a sequence of programs, monitors and controls the design process through a Web-based interface, and visualizes intermediate and final results through the use of Java(Tm) applets. A small sample problem, which includes nine processes with two analysis programs that are coupled to an optimizer, is used to demonstrate the feasibility of this approach.

  5. Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system.

    PubMed

    Hannan, M A; Arebey, Maher; Begum, R A; Basri, Hassan

    2011-12-01

    This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  7. Chemical Stockpile Disposal Program. Monitoring Concept Plan

    DTIC Science & Technology

    1987-09-10

    Government Owned Contractor Operated GPL General Population Limit H Bis (2-chloroethyl) sulfide or Levinstein Mustard (75% purity) P HCI Hydrogen Chloride... government agencies, will provide technical expertise and equipment necessary to monitor affected areas and resources. 2-25 SECTIO 3 PROCESS CONTROL AND...conditions and to issue correct emergency response notifications, if required. The process sensors work in conjunction with the process control system and

  8. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    NASA Technical Reports Server (NTRS)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  9. Shared performance monitor in a multiprocessor system

    DOEpatents

    Chiu, George; Gara, Alan G.; Salapura, Valentina

    2012-07-24

    A performance monitoring unit (PMU) and method for monitoring performance of events occurring in a multiprocessor system. The multiprocessor system comprises a plurality of processor devices units, each processor device for generating signals representing occurrences of events in the processor device, and, a single shared counter resource for performance monitoring. The performance monitor unit is shared by all processor cores in the multiprocessor system. The PMU comprises: a plurality of performance counters each for counting signals representing occurrences of events from one or more the plurality of processor units in the multiprocessor system; and, a plurality of input devices for receiving the event signals from one or more processor devices of the plurality of processor units, the plurality of input devices programmable to select event signals for receipt by one or more of the plurality of performance counters for counting, wherein the PMU is shared between multiple processing units, or within a group of processors in the multiprocessing system. The PMU is further programmed to monitor event signals issued from non-processor devices.

  10. A civil structural monitoring system based on fiber grating sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Cai, Haiwen; Pastore, Robert; Ju, Jing; Zeng, Debing; Yin, Zhifan; Cui, Hong-Liang

    2003-08-01

    Optical fiber sensors based on Fiber Bragg Grating (FBG) technology have found many applications in the area of civil structural monitoring systems, such as in bridge monitoring and maintenance. FBG sensors can measure the deformation, overload and cracks on bridge with a high sensitivity. In this paper we report on our recent work a structural monitoring system using FBG sensors. Basic theoretical background and design of the system is described here, including the light source, FBG sensors, demodulator sensors, signal detection and processing schemes. The system will be installed on a major arch bridge currently under construction in Shanghai, China for long-term in situ health monitoring. The system schematic arrangement on the bridge is introduced in brief. Simulation experiments in the laboratory were carried out to test the performance of FBG strain sensors. The sensor response shows excellent linearity against the strain imposed on it. Traffic and overload monitoring on bridge using FBG sensors is also discussed and planned for the near future.

  11. In situ monitoring of biomolecular processes in living systems using surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa

    2015-12-01

    Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.

  12. Automatic visual monitoring of welding procedure in stainless steel kegs

    NASA Astrophysics Data System (ADS)

    Leo, Marco; Del Coco, Marco; Carcagnì, Pierluigi; Spagnolo, Paolo; Mazzeo, Pier Luigi; Distante, Cosimo; Zecca, Raffaele

    2018-05-01

    In this paper a system for automatic visual monitoring of welding process, in dry stainless steel kegs for food storage, is proposed. In the considered manufacturing process the upper and lower skirts are welded to the vessel by means of Tungsten Inert Gas (TIG) welding. During the process several problems can arise: 1) residuals on the bottom 2) darker weld 3) excessive/poor penetration and 4) outgrowths. The proposed system deals with all the four aforementioned problems and its inspection performances have been evaluated by using a large set of kegs demonstrating both the reliability in terms of defect detection and the suitability to be introduced in the manufacturing system in terms of computational costs.

  13. Winter wheat quality monitoring and forecasting system based on remote sensing and environmental factors

    NASA Astrophysics Data System (ADS)

    Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie

    2014-03-01

    To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.

  14. [Microinjection Monitoring System Design Applied to MRI Scanning].

    PubMed

    Xu, Yongfeng

    2017-09-30

    A microinjection monitoring system applied to the MRI scanning was introduced. The micro camera probe was used to stretch into the main magnet for real-time video injection monitoring of injection tube terminal. The programming based on LabVIEW was created to analysis and process the real-time video information. The feedback signal was used for intelligent controlling of the modified injection pump. The real-time monitoring system can make the best use of injection under the condition that the injection device was away from the sample which inside the magnetic room and unvisible. 9.4 T MRI scanning experiment showed that the system in ultra-high field can work stability and doesn't affect the MRI scans.

  15. Controls for Burning Solid Wastes

    ERIC Educational Resources Information Center

    Toro, Richard F.; Weinstein, Norman J.

    1975-01-01

    Modern thermal solid waste processing systems are becoming more complex, incorporating features that require instrumentation and control systems to a degree greater than that previously required just for proper combustion control. With the advent of complex, sophisticated, thermal processing systems, TV monitoring and computer control should…

  16. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  17. Improved head-controlled TV system produces high-quality remote image

    NASA Technical Reports Server (NTRS)

    Goertz, R.; Lindberg, J.; Mingesz, D.; Potts, C.

    1967-01-01

    Manipulator operator uses an improved resolution tv camera/monitor positioning system to view the remote handling and processing of reactive, flammable, explosive, or contaminated materials. The pan and tilt motions of the camera and monitor are slaved to follow the corresponding motions of the operators head.

  18. The Development of a Portable ECG Monitor Based on DSP

    NASA Astrophysics Data System (ADS)

    Nan, CHI Jian; Tao, YAN Yan; Meng Chen, LIU; Li, YANG

    With the advent of global information, researches of Smart Home system are in the ascendant, the ECG real-time detection, and wireless transmission of ECG become more useful. In order to achieve the purpose we developed a portable ECG monitor which achieves the purpose of cardiac disease remote monitoring, and will be used in the physical and psychological disease surveillance in smart home system, we developed this portable ECG Monitor, based on the analysis of existing ECG Monitor, using TMS320F2812 as the core controller, which complete the signal collection, storage, processing, waveform display and transmission.

  19. Technology development for lunar base water recycling

    NASA Technical Reports Server (NTRS)

    Schultz, John R.; Sauer, Richard L.

    1992-01-01

    This paper will review previous and ongoing work in aerospace water recycling and identify research activities required to support development of a lunar base. The development of a water recycle system for use in the life support systems envisioned for a lunar base will require considerable research work. A review of previous work on aerospace water recycle systems indicates that more efficient physical and chemical processes are needed to reduce expendable and power requirements. Development work on biological processes that can be applied to microgravity and lunar environments also needs to be initiated. Biological processes are inherently more efficient than physical and chemical processes and may be used to minimize resupply and waste disposal requirements. Processes for recovering and recycling nutrients such as nitrogen, phosphorus, and sulfur also need to be developed to support plant growth units. The development of efficient water quality monitors to be used for process control and environmental monitoring also needs to be initiated.

  20. Organizing Schools to Address Early Warning Indicators (EWIs): Common Practices and Challenges

    ERIC Educational Resources Information Center

    Davis, Marcia; Herzog, Liza; Legters, Nettie

    2013-01-01

    An early warning system is an intentional process whereby school personnel collectively analyze student data to monitor students at risk of falling off track for graduation and to provide the interventions and resources to intervene. We studied the process of monitoring the early warning indicators and implementing interventions to ascertain…

  1. SymptomCare@Home: Developing an Integrated Symptom Monitoring and Management System for Outpatients Receiving Chemotherapy.

    PubMed

    Beck, Susan L; Eaton, Linda H; Echeverria, Christina; Mooney, Kathi H

    2017-10-01

    SymptomCare@Home, an integrated symptom monitoring and management system, was designed as part of randomized clinical trials to help patients with cancer who receive chemotherapy in ambulatory clinics and often experience significant symptoms at home. An iterative design process was informed by chronic disease management theory and features of assessment and clinical decision support systems used in other diseases. Key stakeholders participated in the design process: nurse scientists, clinical experts, bioinformatics experts, and computer programmers. Especially important was input from end users, patients, and nurse practitioners participating in a series of studies testing the system. The system includes both a patient and clinician interface and fully integrates two electronic subsystems: a telephone computer-linked interactive voice response system and a Web-based Decision Support-Symptom Management System. Key features include (1) daily symptom monitoring, (2) self-management coaching, (3) alerting, and (4) nurse practitioner follow-up. The nurse practitioner is distinctively positioned to provide assessment, education, support, and pharmacologic and nonpharmacologic interventions to intensify management of poorly controlled symptoms at home. SymptomCare@Home is a model for providing telehealth. The system facilitates using evidence-based guidelines as part of a comprehensive symptom management approach. The design process and system features can be applied to other diseases and conditions.

  2. Research of real-time video processing system based on 6678 multi-core DSP

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhen; Xie, Xiaodan; Yin, Xiaoqiang

    2017-10-01

    In the information age, the rapid development in the direction of intelligent video processing, complex algorithm proposed the powerful challenge on the performance of the processor. In this article, through the FPGA + TMS320C6678 frame structure, the image to fog, merge into an organic whole, to stabilize the image enhancement, its good real-time, superior performance, break through the traditional function of video processing system is simple, the product defects such as single, solved the video application in security monitoring, video, etc. Can give full play to the video monitoring effectiveness, improve enterprise economic benefits.

  3. Internet based ECG medical information system.

    PubMed

    James, D A; Rowlands, D; Mahnovetski, R; Channells, J; Cutmore, T

    2003-03-01

    Physiological monitoring of humans for medical applications is well established and ready to be adapted to the Internet. This paper describes the implementation of a Medical Information System (MIS-ECG system) incorporating an Internet based ECG acquisition device. Traditionally clinical monitoring of ECG is largely a labour intensive process with data being typically stored on paper. Until recently, ECG monitoring applications have also been constrained somewhat by the size of the equipment required. Today's technology enables large and fixed hospital monitoring systems to be replaced by small portable devices. With an increasing emphasis on health management a truly integrated information system for the acquisition, analysis, patient particulars and archiving is now a realistic possibility. This paper describes recent Internet and technological advances and presents the design and testing of the MIS-ECG system that utilises those advances.

  4. Potential of plant genetic systems for monitoring and screening mutagens

    PubMed Central

    Nilan, R. A.

    1978-01-01

    Plants have too long been ignored as useful screening and monitoring systems of environmental mutagens. However, there are about a dozen reliable, some even unique, plant genetic systems that can increase the scope and effectiveness of chemical and physical mutagen screening and monitoring procedures. Some of these should be included in the Tier II tests. Moreover, plants are the only systems now in use as monitors of genetic effects caused by polluted atmosphere and water and by pesticides. There are several major advantages of the plant test systems which relate to their reproductive nature, easy culture and growth habits that should be considered in mutagen screening and monitoring. In addition to these advantages, the major plant test systems exhibit numerous genetic and chromosome changes for determining the effects of mutagens. Some of these have not yet been detected in other nonmammalian and mammalian test systems, but probably occur in the human organism. Plants have played major roles in various aspects of mutagenesis research, primarily in mutagen screening (detection and verification of mutagenic activity), mutagen monitoring, and determining mutagen effects and mechanisms of mutagen action. They have played lesser roles in quantification of mutagenic activity and understanding the nature of induced mutations. Mutagen monitoring with plants, especially in situ on land or in water, will help determine potential genetic hazards of air and water pollutants and protect the genetic purity of crop plants and the purity of the food supply. The Tradescantia stamen-hair system is used in a mobile laboratory for determining the genetic effects of industrial and automobile pollution in a number of sites in the U.S.A. The fern is employed for monitoring genetic effects of water pollution in the Eastern states. The maize pollen system and certain weeds have monitored genetic effects of pesticides. Several other systems that have considerable value and should be developed and more widely used in mutagen monitoring and screening, especially for in situ monitoring, are discussed. Emphasis is placed on pollen systems in which changes in pollen structure, chemistry, and chromosomes can be scored for monitoring; and screening systems which can record low levels of genetic effects as well as provide information on the nature of induced mutations. The value of plant systems for monitoring and screening mutagens can be improved by: greater knowledge of plant cell processes at the molecular and ultrastructural levels; relating these processes to mutagen effects and plant cell responses; improving current systems for increased sensitivity, ease of detecting genetic and chromosome changes, recording of data (including automation), and for extending the range of genetic and chromosome end points; and designing and developing new systems with the aid of previous and current botanical and genetic knowledge. PMID:367768

  5. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.

    PubMed

    Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa

    2018-04-01

    Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.

  6. TOPICAL REVIEW: Monitoring of polymer melt processing

    NASA Astrophysics Data System (ADS)

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk

    2010-06-01

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored.

  7. [Establishment of model of traditional Chinese medicine injections post-marketing safety monitoring].

    PubMed

    Guo, Xin-E; Zhao, Yu-Bin; Xie, Yan-Ming; Zhao, Li-Cai; Li, Yan-Feng; Hao, Zhe

    2013-09-01

    To establish a nurse based post-marketing safety surveillance model for traditional Chinese medicine injections (TCMIs). A TCMIs safety monitoring team and a research hospital team engaged in the research, monitoring processes, and quality control processes were established, in order to achieve comprehensive, timely, accurate and real-time access to research data, to eliminate errors in data collection. A triage system involving a study nurse, as the first point of contact, clinicians and clinical pharmacists was set up in a TCM hospital. Following the specified workflow involving labeling of TCM injections and using improved monitoring forms it was found that there were no missing reports at the ratio of error was zero. A research nurse as the first and main point of contact in post-marketing safety monitoring of TCM as part of a triage model, ensures that research data collected has the characteristics of authenticity, accuracy, timeliness, integrity, and eliminate errors during the process of data collection. Hospital based monitoring is a robust and operable process.

  8. Development of a wireless sensor network for individual monitoring of panels in a photovoltaic plant.

    PubMed

    Prieto, Miguel J; Pernía, Alberto M; Nuño, Fernando; Díaz, Juan; Villegas, Pedro J

    2014-01-30

    With photovoltaic (PV) systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN) that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs.

  9. Capacity building for health inequality monitoring in Indonesia: enhancing the equity orientation of country health information systems

    PubMed Central

    Tawilah, Jihane; Schlotheuber, Anne; Bateman, Massee; Davey, Tamzyn; Kusumawardani, Nunik; Myint, Theingi; Nuryetty, Mariet Tetty; Prasetyo, Sabarinah; Suparmi; Floranita, Rustini

    2018-01-01

    ABSTRACT Background: Inequalities in health represent a major problem in many countries, including Indonesia. Addressing health inequality is a central component of the Sustainable Development Goals and a priority of the World Health Organization (WHO). WHO provides technical support for health inequality monitoring among its member states. Following a capacity-building workshop in the WHO South-East Asia Region in 2014, Indonesia expressed interest in incorporating health-inequality monitoring into its national health information system. Objectives: This article details the capacity-building process for national health inequality monitoring in Indonesia, discusses successes and challenges, and how this process may be adapted and implemented in other countries/settings. Methods: We outline key capacity-building activities undertaken between April 2016 and December 2017 in Indonesia and present the four key outcomes of this process. Results: The capacity-building process entailed a series of workshops, meetings, activities, and processes undertaken between April 2016 and December 2017. At each stage, a range of stakeholders with access to the relevant data and capacity for data analysis, interpretation and reporting was engaged with, under the stewardship of state agencies. Key steps to strengthening health inequality monitoring included capacity building in (1) identification of the health topics/areas of interest, (2) mapping data sources and identifying gaps, (3) conducting equity analyses using raw datasets, and (4) interpreting and reporting inequality results. As a result, Indonesia developed its first national report on the state of health inequality. A number of peer-reviewed manuscripts on various aspects of health inequality in Indonesia have also been developed. Conclusions: The capacity-building process undertaken in Indonesia is designed to be adaptable to other contexts. Capacity building for health inequality monitoring among countries is a critical step for strengthening equity-oriented national health information systems and eventually tackling health inequities. PMID:29569528

  10. Telecommunications end-to-end systems monitoring on TOPEX/Poseidon: Tools and techniques

    NASA Technical Reports Server (NTRS)

    Calanche, Bruno J.

    1994-01-01

    The TOPEX/Poseidon Project Satellite Performance Analysis Team's (SPAT) roles and responsibilities have grown to include functions that are typically performed by other teams on JPL Flight Projects. In particular, SPAT Telecommunication's role has expanded beyond the nominal function of monitoring, assessing, characterizing, and trending the spacecraft (S/C) RF/Telecom subsystem to one of End-to-End Information Systems (EEIS) monitoring. This has been accomplished by taking advantage of the spacecraft and ground data system structures and protocols. By processing both the received spacecraft telemetry minor frame ground generated CRC flags and NASCOM block poly error flags, bit error rates (BER) for each link segment can be determined. This provides the capability to characterize the separate link segments, determine science data recovery, and perform fault/anomaly detection and isolation. By monitoring and managing the links, TOPEX has successfully recovered approximately 99.9 percent of the science data with an integrity (BER) of better than 1 x 10(exp 8). This paper presents the algorithms used to process the above flags and the techniques used for EEIS monitoring.

  11. Guidelines and standard procedures for continuous water-quality monitors: Station operation, record computation, and data reporting

    USGS Publications Warehouse

    Wagner, Richard J.; Boulger, Robert W.; Oblinger, Carolyn J.; Smith, Brett A.

    2006-01-01

    The U.S. Geological Survey uses continuous water-quality monitors to assess the quality of the Nation's surface water. A common monitoring-system configuration for water-quality data collection is the four-parameter monitoring system, which collects temperature, specific conductance, dissolved oxygen, and pH data. Such systems also can be configured to measure other properties, such as turbidity or fluorescence. Data from sensors can be used in conjunction with chemical analyses of samples to estimate chemical loads. The sensors that are used to measure water-quality field parameters require careful field observation, cleaning, and calibration procedures, as well as thorough procedures for the computation and publication of final records. This report provides guidelines for site- and monitor-selection considerations; sensor inspection and calibration methods; field procedures; data evaluation, correction, and computation; and record-review and data-reporting processes, which supersede the guidelines presented previously in U.S. Geological Survey Water-Resources Investigations Report WRIR 00-4252. These procedures have evolved over the past three decades, and the process continues to evolve with newer technologies.

  12. [Portable Epileptic Seizure Monitoring Intelligent System Based on Android System].

    PubMed

    Liang, Zhenhu; Wu, Shufeng; Yang, Chunlin; Jiang, Zhenzhou; Yu, Tao; Lu, Chengbiao; Li, Xiaoli

    2016-02-01

    The clinical electroencephalogram (EEG) monitoring systems based on personal computer system can not meet the requirements of portability and home usage. The epilepsy patients have to be monitored in hospital for an extended period of time, which imposes a heavy burden on hospitals. In the present study, we designed a portable 16-lead networked monitoring system based on the Android smart phone. The system uses some technologies including the active electrode, the WiFi wireless transmission, the multi-scale permutation entropy (MPE) algorithm, the back-propagation (BP) neural network algorithm, etc. Moreover, the software of Android mobile application can realize the processing and analysis of EEG data, the display of EEG waveform and the alarm of epileptic seizure. The system has been tested on the mobile phones with Android 2. 3 operating system or higher version and the results showed that this software ran accurately and steadily in the detection of epileptic seizure. In conclusion, this paper provides a portable and reliable solution for epileptic seizure monitoring in clinical and home applications.

  13. A real-time multi-channel monitoring system for stem cell culture process.

    PubMed

    Xicai Yue; Drakakis, E M; Lim, M; Radomska, A; Hua Ye; Mantalaris, A; Panoskaltsis, N; Cass, A

    2008-06-01

    A novel, up to 128 channels, multi-parametric physiological measurement system suitable for monitoring hematopoietic stem cell culture processes and cell cultures in general is presented in this paper. The system aims to measure in real-time the most important physical and chemical culture parameters of hematopoietic stem cells, including physicochemical parameters, nutrients, and metabolites, in a long-term culture process. The overarching scope of this research effort is to control and optimize the whole bioprocess by means of the acquisition of real-time quantitative physiological information from the culture. The system is designed in a modular manner. Each hardware module can operate as an independent gain programmable, level shift adjustable, 16 channel data acquisition system specific to a sensor type. Up to eight such data acquisition modules can be combined and connected to the host PC to realize the whole system hardware. The control of data acquisition and the subsequent management of data is performed by the system's software which is coded in LabVIEW. Preliminary experimental results presented here show that the system not only has the ability to interface to various types of sensors allowing the monitoring of different types of culture parameters. Moreover, it can capture dynamic variations of culture parameters by means of real-time multi-channel measurements thus providing additional information on both temporal and spatial profiles of these parameters within a bioreactor. The system is by no means constrained in the hematopoietic stem cell culture field only. It is suitable for cell growth monitoring applications in general.

  14. What's to Be Done About Laboratory Quality? Process Indicators, Laboratory Stewardship, the Outcomes Problem, Risk Assessment, and Economic Value: Responding to Contemporary Global Challenges.

    PubMed

    Meier, Frederick A; Badrick, Tony C; Sikaris, Kenneth A

    2018-02-17

    For 50 years, structure, process, and outcomes measures have assessed health care quality. For clinical laboratories, structural quality has generally been assessed by inspection. For assessing process, quality indicators (QIs), statistical monitors of steps in the clinical laboratory total testing, have proliferated across the globe. Connections between structural and process laboratory measures and patient outcomes, however, have rarely been demonstrated. To inform further development of clinical laboratory quality systems, we conducted a selective but worldwide review of publications on clinical laboratory quality assessment. Some QIs, like seven generic College of American Pathologists Q-Tracks monitors, have demonstrated significant process improvement; other measures have uncovered critical opportunities to improve test selection and result management. The College of Pathologists of Australasia Key Indicator Monitoring and Management System has deployed risk calculations, introduced from failure mode effects analysis, as surrogate measures for outcomes. Showing economic value from clinical laboratory testing quality is a challenge. Clinical laboratories should converge on fewer (7-14) rather than more (21-35) process monitors; monitors should cover all steps of the testing process under laboratory control and include especially high-risk specimen-quality QIs. Clinical laboratory stewardship, the combination of education interventions among clinician test orderers and report consumers with revision of test order formats and result reporting schemes, improves test ordering, but improving result reception is more difficult. Risk calculation reorders the importance of quality monitors by balancing three probabilities: defect frequency, weight of potential harm, and detection difficulty. The triple approach of (1) a more focused suite of generic consensus quality indicators, (2) more active clinical laboratory testing stewardship, and (3) integration of formal risk assessment, rather than competing with economic value, enhances it.

  15. Real-Time Deflection Monitoring for Milling of a Thin-Walled Workpiece by Using PVDF Thin-Film Sensors with a Cantilevered Beam as a Case Study

    PubMed Central

    Luo, Ming; Liu, Dongsheng; Luo, Huan

    2016-01-01

    Thin-walled workpieces, such as aero-engine blisks and casings, are usually made of hard-to-cut materials. The wall thickness is very small and it is easy to deflect during milling process under dynamic cutting forces, leading to inaccurate workpiece dimensions and poor surface integrity. To understand the workpiece deflection behavior in a machining process, a new real-time nonintrusive method for deflection monitoring is presented, and a detailed analysis of workpiece deflection for different machining stages of the whole machining process is discussed. The thin-film polyvinylidene fluoride (PVDF) sensor is attached to the non-machining surface of the workpiece to copy the deflection excited by the dynamic cutting force. The relationship between the input deflection and the output voltage of the monitoring system is calibrated by testing. Monitored workpiece deflection results show that the workpiece experiences obvious vibration during the cutter entering the workpiece stage, and vibration during the machining process can be easily tracked by monitoring the deflection of the workpiece. During the cutter exiting the workpiece stage, the workpiece experiences forced vibration firstly, and free vibration exists until the amplitude reduces to zero after the cutter exits the workpiece. Machining results confirmed the suitability of the deflection monitoring system for machining thin-walled workpieces with the application of PVDF sensors. PMID:27626424

  16. mHealthMon: toward energy-efficient and distributed mobile health monitoring using parallel offloading.

    PubMed

    Ahnn, Jong Hoon; Potkonjak, Miodrag

    2013-10-01

    Although mobile health monitoring where mobile sensors continuously gather, process, and update sensor readings (e.g. vital signals) from patient's sensors is emerging, little effort has been investigated in an energy-efficient management of sensor information gathering and processing. Mobile health monitoring with the focus of energy consumption may instead be holistically analyzed and systematically designed as a global solution to optimization subproblems. This paper presents an attempt to decompose the very complex mobile health monitoring system whose layer in the system corresponds to decomposed subproblems, and interfaces between them are quantified as functions of the optimization variables in order to orchestrate the subproblems. We propose a distributed and energy-saving mobile health platform, called mHealthMon where mobile users publish/access sensor data via a cloud computing-based distributed P2P overlay network. The key objective is to satisfy the mobile health monitoring application's quality of service requirements by modeling each subsystem: mobile clients with medical sensors, wireless network medium, and distributed cloud services. By simulations based on experimental data, we present the proposed system can achieve up to 10.1 times more energy-efficient and 20.2 times faster compared to a standalone mobile health monitoring application, in various mobile health monitoring scenarios applying a realistic mobility model.

  17. A Study on the Data Compression Technology-Based Intelligent Data Acquisition (IDAQ) System for Structural Health Monitoring of Civil Structures

    PubMed Central

    Jeon, Joonryong

    2017-01-01

    In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size. PMID:28704945

  18. A Study on the Data Compression Technology-Based Intelligent Data Acquisition (IDAQ) System for Structural Health Monitoring of Civil Structures.

    PubMed

    Heo, Gwanghee; Jeon, Joonryong

    2017-07-12

    In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size.

  19. Development of ship structure health monitoring system based on IOT technology

    NASA Astrophysics Data System (ADS)

    Yang, Sujun; Shi, Lei; Chen, Demin; Dong, Yuqing; Hu, Zhenyi

    2017-06-01

    It is very important to monitor the ship structure, because ships are affected by all kinds of wind wave and current environment factor. At the same time, internet of things (IOT) technology plays more and more important role of in the development of industrial process. In the paper, real-time online monitoring of the ship can be realized by means of IOT technology. Ship stress, vibration and dynamic parameters are measured. Meanwhile, data is transmitted to remote monitoring system through intelligent data gateway. Timely remote support can be realized for dangerous stage of ship. Safe navigation of ships is guaranteed through application of the system.

  20. Secure VM for Monitoring Industrial Process Controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K

    2011-01-01

    In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicatedmore » host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.« less

  1. Fiber Bragg grating sensors for real-time monitoring of evacuation process

    NASA Astrophysics Data System (ADS)

    Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.

    2010-03-01

    Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

  2. Portable system for temperature monitoring in all phases of wine production.

    PubMed

    Boquete, Luciano; Cambralla, Rafael; Rodríguez-Ascariz, J M; Miguel-Jiménez, J M; Cantos-Frontela, J J; Dongil, J

    2010-07-01

    This paper presents a low-cost and highly versatile temperature-monitoring system applicable to all phases of wine production, from grape cultivation through to delivery of bottled wine to the end customer. Monitoring is performed by a purpose-built electronic system comprising a digital memory that stores temperature data and a ZigBee communication system that transmits it to a Control Centre for processing and display. The system has been tested under laboratory conditions and in real-world operational applications. One of the system's advantages is that it can be applied to every phase of wine production. Moreover, with minimum modification, other variables of interest (pH, humidity, etc.) could also be monitored and the system could be applied to other similar sectors, such as olive-oil production. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Engineering research, development and technology FY99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langland, R T

    The growth of computer power and connectivity, together with advances in wireless sensing and communication technologies, is transforming the field of complex distributed systems. The ability to deploy large numbers of sensors with a rapid, broadband communication system will enable high-fidelity, near real-time monitoring of complex systems. These technological developments will provide unprecedented insight into the actual performance of engineered and natural environment systems, enable the evolution of many new types of engineered systems for monitoring and detection, and enhance our ability to perform improved and validated large-scale simulations of complex systems. One of the challenges facing engineering is tomore » develop methodologies to exploit the emerging information technologies. Particularly important will be the ability to assimilate measured data into the simulation process in a way which is much more sophisticated than current, primarily ad hoc procedures. The reports contained in this section on the Center for Complex Distributed Systems describe activities related to the integrated engineering of large complex systems. The first three papers describe recent developments for each link of the integrated engineering process for large structural systems. These include (1) the development of model-based signal processing algorithms which will formalize the process of coupling measurements and simulation and provide a rigorous methodology for validation and update of computational models; (2) collaborative efforts with faculty at the University of California at Berkeley on the development of massive simulation models for the earth and large bridge structures; and (3) the development of wireless data acquisition systems which provide a practical means of monitoring large systems like the National Ignition Facility (NIF) optical support structures. These successful developments are coming to a confluence in the next year with applications to NIF structural characterizations and analysis of large bridge structures for the State of California. Initial feasibility investigations into the development of monitoring and detection systems are described in the papers on imaging of underground structures with ground-penetrating radar, and the use of live insects as sensor platforms. These efforts are establishing the basic performance characteristics essential to the decision process for future development of sensor arrays for information gathering related to national security.« less

  4. Automated Power Systems Management (APSM)

    NASA Technical Reports Server (NTRS)

    Bridgeforth, A. O.

    1981-01-01

    A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.

  5. Integrating conflict detection and attentional control mechanisms.

    PubMed

    Walsh, Bong J; Buonocore, Michael H; Carter, Cameron S; Mangun, George R

    2011-09-01

    Human behavior involves monitoring and adjusting performance to meet established goals. Performance-monitoring systems that act by detecting conflict in stimulus and response processing have been hypothesized to influence cortical control systems to adjust and improve performance. Here we used fMRI to investigate the neural mechanisms of conflict monitoring and resolution during voluntary spatial attention. We tested the hypothesis that the ACC would be sensitive to conflict during attentional orienting and influence activity in the frontoparietal attentional control network that selectively modulates visual information processing. We found that activity in ACC increased monotonically with increasing attentional conflict. This increased conflict detection activity was correlated with both increased activity in the attentional control network and improved speed and accuracy from one trial to the next. These results establish a long hypothesized interaction between conflict detection systems and neural systems supporting voluntary control of visual attention.

  6. Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology

    USGS Publications Warehouse

    Smith, Kirk P.; Granato, Gregory E.

    1998-01-01

    Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.

  7. Sequence and batch language programs and alarm-related ``C`` programs for the 242-A MCS. Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, J.F.

    1995-03-01

    A Distributive Process Control system was purchased by Project B-534, ``242-A Evaporator/Crystallizer Upgrades``. This control system, called the Monitor and Control System (MCS), was installed in the 242-A Evaporator located in the 200 East Area. The purpose of the MCS is to monitor and control the Evaporator and monitor a number of alarms and other signals from various Tank Farm facilities. Applications software for the MCS was developed by the Waste Treatment Systems Engineering (WTSE) group of Westinghouse. The standard displays and alarm scheme provide for control and monitoring, but do not directly indicate the signal location or depict themore » overall process. To do this, WTSE developed a second alarm scheme which uses special programs, annunciator keys, and process graphics. The special programs are written in two languages; Sequence and Batch Language (SABL), and ``C`` language. The WTSE-developed alarm scheme works as described below: SABL relates signals and alarms to the annunciator keys, called SKID keys. When an alarm occurs, a SABL program causes a SKID key to flash, and if the alarm is of yellow or white priority then a ``C`` program turns on an audible horn (the D/3 system uses a different audible horn for the red priority alarms). The horn and flashing key draws the attention of the operator.« less

  8. Historical data recording for process computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, J.C.; Sellars, H.L.

    1981-11-01

    Computers have been used to monitor and control chemical and refining processes for more than 15 years. During this time, there has been a steady growth in the variety and sophistication of the functions performed by these process computers. Early systems were limited to maintaining only current operating measurements, available through crude operator's consoles or noisy teletypes. The value of retaining a process history, that is, a collection of measurements over time, became apparent, and early efforts produced shift and daily summary reports. The need for improved process historians which record, retrieve and display process information has grown as processmore » computers assume larger responsibilities in plant operations. This paper describes newly developed process historian functions that have been used on several of its in-house process monitoring and control systems in Du Pont factories. 3 refs.« less

  9. Monitoring Space Weather Hazards caused by geomagnetic disturbances with Space Hazard Monitor (SHM) systems

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Gannon, J. L.; Peek, T. A.; Lin, D.

    2017-12-01

    One space weather hazard is the Geomagnetically Induced Currents (GICs) in the electric power transmission systems, which is naturally induced geoelectric field during the geomagnetic disturbances (GMDs). GICs are a potentially catastrophic threat to bulk power systems. For instance, the Blackout in Quebec in March 1989 was caused by GMDs during a significant magnetic storm. To monitor the GMDs, the autonomous Space Hazard Monitor (SHM) system is developed recently. The system includes magnetic field measurement from magnetometers and geomagnetic field measurement from electrodes. In this presentation, we introduce the six sites of SHMs which have been deployed in the US continental regions. The data from the magnetometers are processed with the Multiple Observatory Geomagnetic Data Analysis Software (MOGDAS). And the statistical results are presented here. It reveals not only the impacts of space weather over US continental region but also the potential of improving instrumentation development to provide better space weather monitor.

  10. Polysilicon planarization and plug recess etching in a decoupled plasma source chamber using two endpoint techniques

    NASA Astrophysics Data System (ADS)

    Kaplita, George A.; Schmitz, Stefan; Ranade, Rajiv; Mathad, Gangadhara S.

    1999-09-01

    The planarization and recessing of polysilicon to form a plug are processes of increasing importance in silicon IC fabrication. While this technology has been developed and applied to DRAM technology using Trench Storage Capacitors, the need for such processes in other IC applications (i.e. polysilicon studs) has increased. Both planarization and recess processes usually have stringent requirements on etch rate, recess uniformity, and selectivity to underlying films. Additionally, both processes generally must be isotropic, yet must not expand any seams that might be present in the polysilicon fill. These processes should also be insensitive to changes in exposed silicon area (pattern factor) on the wafer. A SF6 plasma process in a polysilicon DPS (Decoupled Plasma Source) reactor has demonstrated the capability of achieving the above process requirements for both planarization and recess etch. The SF6 process in the decoupled plasma source reactor exhibited less sensitivity to pattern factor than in other types of reactors. Control of these planarization and recess processes requires two endpoint systems to work sequentially in the same recipe: one for monitoring the endpoint when blanket polysilicon (100% Si loading) is being planarized and one for monitoring the recess depth while the plug is being recessed (less than 10% Si loading). The planarization process employs an optical emission endpoint system (OES). An interferometric endpoint system (IEP), capable of monitoring lateral interference, is used for determining the recess depth. The ability of using either or both systems is required to make these plug processes manufacturable. Measuring the recess depth resulting from the recess process can be difficult, costly and time- consuming. An Atomic Force Microscope (AFM) can greatly alleviate these problems and can serve as a critical tool in the development of recess processes.

  11. A knowledge-based flight status monitor for real-time application in digital avionics systems

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Disbrow, J. D.; Butler, G. F.

    1989-01-01

    The Dryden Flight Research Facility of the National Aeronautics and Space Administration (NASA) Ames Research Center (Ames-Dryden) is the principal NASA facility for the flight testing and evaluation of new and complex avionics systems. To aid in the interpretation of system health and status data, a knowledge-based flight status monitor was designed. The monitor was designed to use fault indicators from the onboard system which are telemetered to the ground and processed by a rule-based model of the aircraft failure management system to give timely advice and recommendations in the mission control room. One of the important constraints on the flight status monitor is the need to operate in real time, and to pursue this aspect, a joint research activity between NASA Ames-Dryden and the Royal Aerospace Establishment (RAE) on real-time knowledge-based systems was established. Under this agreement, the original LISP knowledge base for the flight status monitor was reimplemented using the intelligent knowledge-based system toolkit, MUSE, which was developed under RAE sponsorship. Details of the flight status monitor and the MUSE implementation are presented.

  12. Monitoring system for the quality assessment in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Carl, Volker

    2015-03-01

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality and insurance of material security of the complex structure being manufactured. Both, our poster and our oral presentation will explain the data flow between the above mentioned parties involved. A suitable monitoring system for Additive Manufacturing will be introduced, along with a presentation of the respective high resolution data acquisition, as well as the image processing and the data analysis allowing for a precise control of the 3dim growth-process.

  13. Monitoring system for the quality assessment in additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl, Volker, E-mail: carl@t-zfp.de

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respectmore » to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality and insurance of material security of the complex structure being manufactured. Both, our poster and our oral presentation will explain the data flow between the above mentioned parties involved. A suitable monitoring system for Additive Manufacturing will be introduced, along with a presentation of the respective high resolution data acquisition, as well as the image processing and the data analysis allowing for a precise control of the 3dim growth-process.« less

  14. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  15. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  16. The new DMT SAFEGUARD low-cost GNSS measuring system and its application in the field of geotechnical deformation and movement monitoring

    NASA Astrophysics Data System (ADS)

    Schröder, Daniel

    2017-04-01

    In the recent years an increasing awareness of geodetic measurement systems and their application for monitoring projects is clearly visible. With geodetic sensors it is possible to detect safety-related changes at monitoring objects with high temporal density, high accuracy and in a very reliable manner. Quality acquisitions, processing and storage of monitoring data as well as a professional on-site implementation are the most important requirements and challenges to contemporary systems in civil engineering, mining as well as oil and gas production. Monitoring measures provide important input for early warning, alarm, protection and verification of potential hazardous environments and therefore the risk management applied to projects have a significant influence. The implementation has to follow an optimization process incorporating necessary accuracy, reliability and economic efficiency. From the economical point of view the costs per observation point are crucial for most monitoring projects. Keeping in mind that the costs of classical high-end GNSS stations with a geodetic dual-frequency receiver is within the range of several 10,000 euro. Large monitoring networks with a high number of simultaneously observed points are very expensive and therefore eventually have to be cut back, substituted by compromising methods or totally withdrawn. A further development in the area of GNSS receivers could reduce this disadvantage. Within the last few years single-frequency receivers that record L1-signals of GPS/GLONASS and offer sub-centimeter positioning accuracies are increasingly offered on the market. The accuracy of GNSS measurements depends on many factors as the hardware itself as well as on external influences related to the measurement principals. The external influences can be strongly reduced or eliminated by appropriate measuring and processing methods. For a reliable monitoring system it is necessary that the results are comparable and consistent for each epoch. Based on these requirements DMT has developed the new DMT SAFEGUARD GNSS. In this article the latest developments in the field of low-cost GNSS are shown by different examples from industry and authorities. By means of a detailed accuracy study the DMT SAFEGUARD GNSS system applicability will be demonstrated. The study shows possibilities to detect coordinate shifts on sub centimeter level by using suitable data processing approaches and permanent network solutions. In addition to the DMT SAFEGUARD GNSS system this article illustrates the combination with further relevant sensors to integrated multisensorial networks. Such networks include geodetic data, geophysical data, geotechnical data, video, audio etc. For the central integration of all sensor types DMT has developed a web-based monitoring system - DMT SAFEGUARD which offers individual customizing, sophisticated analysis tools as well as comprehensive reporting options.

  17. 77 FR 47692 - Notice of Transportation Services' Transition From Paper to Electronic Fare Media Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... limited to, system activity monitoring, data mining, anomaly reporting, etc. In order to reduce or... situations. Comment: Commenters asked about transaction monitoring, the restriction process developed for monitoring compliance, and how the TRANServe card would be protected to reduce fraudulent use. Response: The...

  18. Solar Wind Monitor--A School Geophysics Project

    ERIC Educational Resources Information Center

    Robinson, Ian

    2018-01-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…

  19. On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology.

    PubMed

    Genner, Andreas; Gasser, Christoph; Moser, Harald; Ofner, Johannes; Schreiber, Josef; Lendl, Bernhard

    2017-01-01

    On-line monitoring of key chemicals in an industrial production plant ensures economic operation, guarantees the desired product quality, and provides additional in-depth information on the involved chemical processes. For that purpose, rapid, rugged, and flexible measurement systems at reasonable cost are required. Here, we present the application of a flexible mid-IR filtometer for industrial gas sensing. The developed prototype consists of a modulated thermal infrared source, a temperature-controlled gas cell for absorption measurement and an integrated device consisting of a Fabry-Pérot interferometer and a pyroelectric mid-IR detector. The prototype was calibrated in the research laboratory at TU Wien for measuring methanol and methyl formate in the concentration ranges from 660 to 4390 and 747 to 4610 ppmV. Subsequently, the prototype was transferred and installed at the project partner Metadynea Austria GmbH and linked to their Process Control System via a dedicated micro-controller and used for on-line monitoring of the process off-gas. Up to five process streams were sequentially monitored in a fully automated manner. The obtained readings for methanol and methyl formate concentrations provided useful information on the efficiency and correct functioning of the process plant. Of special interest for industry is the now added capability to monitor the start-up phase and process irregularities with high time resolution (5 s).

  20. Communication Security for Control Systems in Smart Grid

    NASA Astrophysics Data System (ADS)

    Robles, Rosslin John; Kim, Tai-Hoon

    As an example of Control System, Supervisory Control and Data Acquisition systems can be relatively simple, such as one that monitors environmental conditions of a small office building, or incredibly complex, such as a system that monitors all the activity in a nuclear power plant or the activity of a municipal water system. SCADA systems are basically Process Control Systems, designed to automate systems such as traffic control, power grid management, waste processing etc. Connecting SCADA to the Internet can provide a lot of advantages in terms of control, data viewing and generation. SCADA infrastructures like electricity can also be a part of a Smart Grid. Connecting SCADA to a public network can bring a lot of security issues. To answer the security issues, a SCADA communication security solution is proposed.

  1. Flow cytometer jet monitor system

    DOEpatents

    Van den Engh, Ger

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  2. Landslide monitoring and early warning systems in Lower Austria - current situation and new developments

    NASA Astrophysics Data System (ADS)

    Thiebes, Benni; Glade, Thomas; Schweigl, Joachim; Jäger, Stefan; Canli, Ekrem

    2014-05-01

    Landslides represent significant hazards in the mountainous areas of Austria. The Regional Geological Surveys are responsible to inform and protect the population, and to mitigate damage to infrastructure. Efforts of the Regional Geological Survey of Lower Austria include detailed site investigations, the planning and installation of protective structures (e.g. rock fall nets) as well as preventive measures such as regional scale landslide susceptibility assessments. For potentially endangered areas, where protection works are not feasible or would simply be too costly, monitoring systems have been installed. However, these systems are dominantly not automatic and require regular field visits to take measurements. Therefore, it is difficult to establish any relation between initiating and controlling factors, thus to fully understand the underlying process mechanism which is essential for any early warning system. Consequently, the implementation of new state-of-the-art monitoring and early warning systems has been started. In this presentation, the design of four landslide monitoring and early warning systems is introduced. The investigated landslide process types include a deep-seated landslide, a rock fall site, a complex earth flow, and a debris flow catchment. The monitoring equipment was chosen depending on the landslide processes and their activity. It aims to allow for a detailed investigation of process mechanisms in relation to its triggers and for reliable prediction of future landslide activities. The deep-seated landslide will be investigated by manual and automatic inclinometers to get detailed insights into subsurface displacements. In addition, TDR sensors and a weather station will be employed to get a better understanding on the influence of rainfall on sub-surface hydrology. For the rockfall site, a wireless sensor network will be installed to get real-time information on acceleration and inclination of potentially unstable blocks. The movement of the earth flow site will be monitored by differential GPS to get high precision information on displacements of marked points. Photogrammtetry based on octocopter surveys will provide spatial information on movement patterns. A similar approach will be followed for the debris flow catchment. Here, the focus lies on a monitoring of the landslide failures in the source area which prepares the material for subsequent debris flow transport. In addition to the methods already mentioned, repeated terrestrial laserscanning campaigns will be used to monitor geomorphological changes at all sites. All important data, which can be single measurements, episodic or continuous monitoring data for a given point (e.g. rainfall, inclination) or of spatial character (e.g. LiDAR measurements), are collected and analysed on an external server. Automatic data analysis methods, such as progressive failure analysis, are carried out automatically based on field measurements. The data and results from all monitoring sites are visualised on a web-based platform which enables registered users to analyse the respective information in near-real-time. Moreover, thresholds can be determined which trigger automated warning messages to the involved scientists if thresholds are exceeded by field measurements. The described system will enable scientists and decision-makers to access the latest data from the monitoring systems. Automatic alarms are raised when thresholds are exceeded to inform them about potentially hazardous changes. Thereby, a more efficient hazard management and early warning can be achieved. Keywords: landslide, rockfall, debris flow, earth flow, monitoring, early warning system.

  3. New seismic array solution for earthquake observations and hydropower plant health monitoring

    NASA Astrophysics Data System (ADS)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  4. Design and performance test of NIRS-based spinal cord lesion detector

    NASA Astrophysics Data System (ADS)

    Li, Nanxi; Li, Ting

    2018-02-01

    Spinal cord lesions can cause a series of severe complications, which can even lead to paralysis with high mortality. However, the traditional diagnosis of spinal cord lesion relies on complicated imaging modalities and other invasive and dangerous methods. Here, we have designed a small monitor based on NIRS technology for noninvasive monitoring for spinal cord lesions. The development of the instrument system includes the design of hardware circuits and the program of software. In terms of hardware, OPT1011 is selected as the light detector, and the appropriate probe distribution structure is selected according to the simulation result of Monte Carlo Simulation. At the same time, the powerful controller is selected as our system's central processing chip for the circuit design, and the data is transmitted by serial port to the host computer for post processing. Finally, we verify the stability and feasibility of the instrument system. It is found that the spinal signal could be obviously detected in the system, which indicates that our monitor based on NIRS technology has the potential to monitor the spinal lesion.

  5. Real-time Cure Monitoring of Composites Using a Guided wave-based System with High Temperature Piezoelectric Transducers, Fiber Bragg Gratings, and Phase-shifted Fiber Bragg Gratings

    NASA Astrophysics Data System (ADS)

    Hudson, Tyler Blake

    An in-process, in-situ cure monitoring technique utilizing a guided wave-based concept for carbon fiber reinforced polymer (CFRP) composites was investigated. Two automated cure monitoring systems using guided-wave ultrasonics were developed for characterizing the state of the cure. In the first system, surface mounted high-temperature piezoelectric transducer arrays were employed for actuation and sensing. The second system motivated by the success of the first system includes a single piezoelectric disc, bonded onto the surface of the composite for excitation; fiber Bragg gratings (FBGs) and/or phase-shifted fiber Bragg gratings (PSFBGs) were embedded in the composite for distributed cure sensing. Composite material properties (viscosity and degree of cure) evolved during cure of the panels fabricated from HexcelRTM IM7/8552 prepreg correlated well to the amplitude, time of arrival, and group velocity of the guided wave-based measurements during the cure cycle. In addition, key phase transitions (gelation and vitrification) were clearly identified from the experimental data during the same cure cycle. The material properties and phase transitions were validated using cure process modeling software (e.g., RAVENRTM). The high-temperature piezoelectric transducer array system demonstrated the feasibility of a guided wave-based, in-process, cure monitoring and provided the framework for defect detection during cure. Ultimately, this system could provide a traceable data stream for non-compliance investigations during serial production and perform closed-loop process control to maximize composite panel quality and consistency. In addition, this system could be deployed as a "smart" caul/tool plate to existing production lines without changing the design of the aircraft/structure. With the second system, strain in low frequency (quasi-static) and the guided wavebased signals in several hundred kilohertz range were measured almost simultaneously using the same FBG or PS-FBG throughout the cure cycle. Also, the residual strain can be readily determined at the end of the cure. This system demonstrated a real-time, in-situ, cure monitoring system using embedded multiplexed FBG/PS-FBG sensors to record both guided wave-based signals and strain. The distinct advantages of a fiber optic-based system include multiplexing, small size, embedding, utilization in harsh environments, electrically passive operation, and electromagnetic interference (EMI) immunity. The embedded multiplexed FBG/PS-FBG fiber optic sensor can monitor the entire life-cycle of the composite structure from curing, post-cure/assembly, and in-service for creating "smart structures".

  6. Development of a use estimation process at a metropolitan park district

    Treesearch

    Andrew J. Mowen

    2001-01-01

    The need for a committed system to monitor and track visitation over time is increasingly recognized by agencies and organizations that must be responsive to staffing, budgeting, and relations with external stakeholders. This paper highlights a process that one metropolitan park agency uses to monitor visitation, discusses the role of validity and reliability in the...

  7. Decoupled tracking and thermal monitoring of non-stationary targets.

    PubMed

    Tan, Kok Kiong; Zhang, Yi; Huang, Sunan; Wong, Yoke San; Lee, Tong Heng

    2009-10-01

    Fault diagnosis and predictive maintenance address pertinent economic issues relating to production systems as an efficient technique can continuously monitor key health parameters and trigger alerts when critical changes in these variables are detected, before they lead to system failures and production shutdowns. In this paper, we present a decoupled tracking and thermal monitoring system which can be used on non-stationary targets of closed systems such as machine tools. There are three main contributions from the paper. First, a vision component is developed to track moving targets under a monitor. Image processing techniques are used to resolve the target location to be tracked. Thus, the system is decoupled and applicable to closed systems without the need for a physical integration. Second, an infrared temperature sensor with a built-in laser for locating the measurement spot is deployed for non-contact temperature measurement of the moving target. Third, a predictive motion control system holds the thermal sensor and follows the moving target efficiently to enable continuous temperature measurement and monitoring.

  8. 40 CFR 63.1363 - Standards for equipment leaks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... heating and cooling systems which do not combine their materials with those in the processes they serve..., magnetic sensor, motion detector on the pressure relief valve stem, flow monitor, or pressure monitor. (B...

  9. An Advanced NSSS Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4

    NASA Astrophysics Data System (ADS)

    Oh, Yang Gyun; Galin, Scott R.; Lee, Sang Jeong

    2010-12-01

    The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling.

  10. Plasma process control with optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, P. P.

    Plasma processes for cleaning, etching and desmear of electronic components and printed wiring boards (PWB) are difficult to predict and control. Non-uniformity of most plasma processes and sensitivity to environmental changes make it difficult to maintain process stability from day to day. To assure plasma process performance, weight loss coupons or post-plasma destructive testing must be used. The problem with these techniques is that they are not real-time methods and do not allow for immediate diagnosis and process correction. These methods often require scrapping some fraction of a batch to insure the integrity of the rest. Since these methods verify a successful cycle with post-plasma diagnostics, poor test results often determine that a batch is substandard and the resulting parts unusable. Both of these methods are a costly part of the overall fabrication cost. A more efficient method of testing would allow for constant monitoring of plasma conditions and process control. Process failures should be detected before the parts being treated. are damaged. Real time monitoring would allow for instantaneous corrections. Multiple site monitoring would allow for process mapping within one system or simultaneous monitoring of multiple systems. Optical emission spectroscopy conducted external to the plasma apparatus would allow for this sort of multifunctional analysis without perturbing the glow discharge. In this paper, optical emission spectroscopy for non-intrusive, in situ process control will be explored. A discussion of this technique as it applies towards process control, failure analysis and endpoint determination will be conducted. Methods for identifying process failures, progress and end of etch back and desmear processes will be discussed.

  11. Nekton Interaction Monitoring System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-03-15

    The software provides a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) extracts and archives tracking and backscatter statistics data from a real-time stream of data from a sonar device. NIMS also sends real-time tracking messages over the network that can be used by other systems to generate other metrics or to trigger instruments such as an optical video camera. A web-based user interface provides remote monitoring and control. NIMS currently supports three popular sonarmore » devices: M3 multi-beam sonar (Kongsberg), EK60 split-beam echo-sounder (Simrad) and BlueView acoustic camera (Teledyne).« less

  12. Resilient Monitoring Systems: Architecture, Design, and Application to Boiler/Turbine Plant

    DOE PAGES

    Garcia, Humberto E.; Lin, Wen-Chiao; Meerkov, Semyon M.; ...

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this work is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliencymore » is quantified using Kullback-Leibler divergence, and is shown to be sufficiently high in all scenarios considered.« less

  13. Resilient monitoring systems: architecture, design, and application to boiler/turbine plant.

    PubMed

    Garcia, Humberto E; Lin, Wen-Chiao; Meerkov, Semyon M; Ravichandran, Maruthi T

    2014-11-01

    Resilient monitoring systems, considered in this paper, are sensor networks that degrade gracefully under malicious attacks on their sensors, causing them to project misleading information. The goal of this paper is to design, analyze, and evaluate the performance of a resilient monitoring system intended to monitor plant conditions (normal or anomalous). The architecture developed consists of four layers: data quality assessment, process variable assessment, plant condition assessment, and sensor network adaptation. Each of these layers is analyzed by either analytical or numerical tools. The performance of the overall system is evaluated using a simplified boiler/turbine plant. The measure of resiliency is quantified based on the Kullback-Leibler divergence and shown to be sufficiently high in all scenarios considered.

  14. An Oil/Water disperser device for use in an oil content Monitor/Control system

    NASA Astrophysics Data System (ADS)

    Kempel, F. D.

    1985-07-01

    This patent application discloses an oil content monitor/control unit system, including an oil/water disperser device, which is configured to automatically monitor and control processed effluent from an associated oil/water separator so that if the processed effluent exceeds predetermine in-port or at-sea oil concentration lmits, it is either recirculated to an associated oil/water separator via a ship's bilge for additional processing, or diverted to a holding tank for storage. On the other hand, if the oil concentration of the processed effluent is less than predetermine in-port or at-sea limits, it is discharged overboard. The oil/water disperser device is configured to break up any oil present in the processed effluent into uniform droplets for more accurate sensing of the oil present in the processed effluent into uniform droplets for more accurate sensing of the oil-in-water concentration level thereof. The oil/water disperser device has a flow-actuated variable orifice configured into a spring-loaded polyethylene plunger which provides the uniform distribution of oil droplets.

  15. Particle monitoring and control in vacuum processing equipment

    NASA Astrophysics Data System (ADS)

    Borden, Peter G., Dr.; Gregg, John

    1989-10-01

    Particle contamination during vacuum processes has emerged as the largest single source of yield loss in VLSI manufacturing. While a number of tools have been available to help understand the sources and nature of this contamination, only recently has it been possible to monitor free particle levels within vacuum equipment in real-time. As a result, a better picture is available of how particle contamination can affect a variety of processes. This paper reviews some of the work that has been done to monitor particles in vacuum loadlocks and in processes such as etching, sputtering and ion implantation. The aim has been to make free particles in vacuum equipment a measurable process parameter. Achieving this allows particles to be controlled using statistical process control. It will be shown that free particle levels in load locks correlate to wafer surface counts, device yield and process conditions, but that these levels are considerable higher during production than when dummy wafers are run to qualify a system. It will also be shown how real-time free particle monitoring can be used to monitor and control cleaning cycles, how major episodic events can be detected, and how data can be gathered in a format suitable for statistical process control.

  16. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1995-10-17

    A method and system for monitoring an industrial process and a sensor are disclosed. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  17. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1997-05-13

    A method and system are disclosed for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  18. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.

    1995-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  19. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.

    1997-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  20. Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System

    NASA Technical Reports Server (NTRS)

    Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)

    2000-01-01

    The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.

  1. Methodology for Designing Operational Banking Risks Monitoring System

    NASA Astrophysics Data System (ADS)

    Kostjunina, T. N.

    2018-05-01

    The research looks at principles of designing an information system for monitoring operational banking risks. A proposed design methodology enables one to automate processes of collecting data on information security incidents in the banking network, serving as the basis for an integrated approach to the creation of an operational risk management system. The system can operate remotely ensuring tracking and forecasting of various operational events in the bank network. A structure of a content management system is described.

  2. An online condition monitoring system implemented an internet connectivity and FTP for low speed slew bearing

    NASA Astrophysics Data System (ADS)

    Caesarendra, W.; Kosasih, B.; Tjahjowidodo, T.; Ariyanto, M.; Daryl, LWQ; Pamungkas, D.

    2018-04-01

    Rapid and reliable information in slew bearing maintenance is not trivial issue. This paper presents the online monitoring system to assist maintenance engineer in order to monitor the bearing condition of low speed slew bearing in sheet metal company. The system is able to pass the vibration information from the place where the bearing and accelerometer sensors are attached to the data center; and from the data center it can be access by opening the online monitoring website from any place and by any person. The online monitoring system is built using some programming languages such as C language, MATLAB, PHP, HTML and CSS. Generally, the flow process is start with the automatic vibration data acquisition; then features are calculated from the acquired vibration data. These features are then sent to the data center; and form the data center, the vibration features can be seen through the online monitoring website. This online monitoring system has been successfully applied in School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong.

  3. A wireless smart sensor network for automated monitoring of cable tension

    NASA Astrophysics Data System (ADS)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  4. Big Data Analysis of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-11-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.

  5. Process spectroscopy in microemulsions—setup and multi-spectral approach for reaction monitoring of a homogeneous hydroformylation process

    NASA Astrophysics Data System (ADS)

    Meyer, K.; Ruiken, J.-P.; Illner, M.; Paul, A.; Müller, D.; Esche, E.; Wozny, G.; Maiwald, M.

    2017-03-01

    Reaction monitoring in disperse systems, such as emulsions, is of significant technical importance in various disciplines like biotechnological engineering, chemical industry, food science, and a growing number other technical fields. These systems pose several challenges when it comes to process analytics, such as heterogeneity of mixtures, changes in optical behavior, and low optical activity. Concerning this, online nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for process monitoring in complex reaction mixtures due to its unique direct comparison abilities, while at the same time being non-invasive and independent of optical properties of the sample. In this study the applicability of online-spectroscopic methods on the homogeneously catalyzed hydroformylation system of 1-dodecene to tridecanal is investigated, which is operated in a mini-plant scale at Technische Universität Berlin. The design of a laboratory setup for process-like calibration experiments is presented, including a 500 MHz online NMR spectrometer, a benchtop NMR device with 43 MHz proton frequency as well as two Raman probes and a flow cell assembly for an ultraviolet and visible light (UV/VIS) spectrometer. Results of high-resolution online NMR spectroscopy are shown and technical as well as process-specific problems observed during the measurements are discussed.

  6. U.S. Tsunami Information technology (TIM) Modernization: Performance Assessment of Tsunamigenic Earthquake Discrimination System

    NASA Astrophysics Data System (ADS)

    Hagerty, M. T.; Lomax, A.; Hellman, S. B.; Whitmore, P.; Weinstein, S.; Hirshorn, B. F.; Knight, W. R.

    2015-12-01

    Tsunami warning centers must rapidly decide whether an earthquake is likely to generate a destructive tsunami in order to issue a tsunami warning quickly after a large event. For very large events (Mw > 8 or so), magnitude and location alone are sufficient to warrant an alert. However, for events of smaller magnitude (e.g., Mw ~ 7.5), particularly for so-called "tsunami earthquakes", magnitude alone is insufficient to issue an alert and other measurements must be rapidly made and used to assess tsunamigenic potential. The Tsunami Information technology Modernization (TIM) is a National Oceanic and Atmospheric Administration (NOAA) project to update and standardize the earthquake and tsunami monitoring systems currently employed at the U.S. Tsunami Warning Centers in Ewa Beach, Hawaii (PTWC) and Palmer, Alaska (NTWC). We (ISTI) are responsible for implementing the seismic monitoring components in this new system, including real-time seismic data collection and seismic processing. The seismic data processor includes a variety of methods aimed at real-time discrimination of tsunamigenic events, including: Mwp, Me, slowness (Theta), W-phase, mantle magnitude (Mm), array processing and finite-fault inversion. In addition, it contains the ability to designate earthquake scenarios and play the resulting synthetic seismograms through the processing system. Thus, it is also a convenient tool that integrates research and monitoring and may be used to calibrate and tune the real-time monitoring system. Here we show results of the automated processing system for a large dataset of subduction zone earthquakes containing recent tsunami earthquakes and we examine the accuracy of the various discrimation methods and discuss issues related to their successful real-time application.

  7. Dynamic measurement of fluorescent proteins spectral distribution on virus infected cells

    NASA Astrophysics Data System (ADS)

    Lee, Ja-Yun; Wu, Ming-Xiu; Kao, Chia-Yun; Wu, Tzong-Yuan; Hsu, I.-Jen

    2006-09-01

    We constructed a dynamic spectroscopy system that can simultaneously measure the intensity and spectral distributions of samples with multi-fluorophores in a single scan. The system was used to monitor the fluorescence distribution of cells infected by the virus, which is constructed by a recombinant baculoviruses, vAcD-Rhir-E, containing the red and green fluorescent protein gene that can simultaneously produce dual fluorescence in recombinant virus-infected Spodoptera frugiperda 21 cells (Sf21) under the control of a polyhedrin promoter. The system was composed of an excitation light source, a scanning system and a spectrometer. We also developed an algorithm and fitting process to analyze the pattern of fluorescence distribution of the dual fluorescence produced in the recombinant virus-infected cells. All the algorithm and calculation are automatically processed in a visualized scanning program and can monitor the specific region of sample by calculating its intensity distribution. The spectral measurement of each pixel was performed at millisecond range and the two dimensional distribution of full spectrum was recorded within several seconds. We have constructed a dynamic spectroscopy system to monitor the process of virus-infection of cells. The distributions of the dual fluorescence were simultaneously measured at micrometer resolution.

  8. Real-time monitoring and control of the plasma hearth process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, M.A.; Carney, K.P.; Peters, G.G.

    1996-05-01

    A distributed monitoring and control system is proposed for a plasma hearth, which will be used to decompose hazardous organic materials, encapsulate actinide waste in an obsidian-like slag, and reduce storage volume of actinide waste. The plasma hearth will be installed at ANL-West with the assistance of SAIC. Real-time monitoring of the off-gas system is accomplished using a Sun Workstation and embedded PCs. LabWindows/CVI software serves as the graphical user interface.

  9. Bar-Chart-Monitor System For Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Jung, Oscar

    1993-01-01

    Real-time monitor system provides bar-chart displays of significant operating parameters developed for National Full-Scale Aerodynamic Complex at Ames Research Center. Designed to gather and process sensory data on operating conditions of wind tunnels and models, and displays data for test engineers and technicians concerned with safety and validation of operating conditions. Bar-chart video monitor displays data in as many as 50 channels at maximum update rate of 2 Hz in format facilitating quick interpretation.

  10. User-centered development and testing of a monitoring system that provides feedback regarding physical functioning to elderly people

    PubMed Central

    Vermeulen, Joan; Neyens, Jacques CL; Spreeuwenberg, Marieke D; van Rossum, Erik; Sipers, Walther; Habets, Herbert; Hewson, David J; de Witte, Luc P

    2013-01-01

    Purpose To involve elderly people during the development of a mobile interface of a monitoring system that provides feedback to them regarding changes in physical functioning and to test the system in a pilot study. Methods and participants The iterative user-centered development process consisted of the following phases: (1) selection of user representatives; (2) analysis of users and their context; (3) identification of user requirements; (4) development of the interface; and (5) evaluation of the interface in the lab. Subsequently, the monitoring and feedback system was tested in a pilot study by five patients who were recruited via a geriatric outpatient clinic. Participants used a bathroom scale to monitor weight and balance, and a mobile phone to monitor physical activity on a daily basis for six weeks. Personalized feedback was provided via the interface of the mobile phone. Usability was evaluated on a scale from 1 to 7 using a modified version of the Post-Study System Usability Questionnaire (PSSUQ); higher scores indicated better usability. Interviews were conducted to gain insight into the experiences of the participants with the system. Results The developed interface uses colors, emoticons, and written and/or spoken text messages to provide daily feedback regarding (changes in) weight, balance, and physical activity. The participants rated the usability of the monitoring and feedback system with a mean score of 5.2 (standard deviation 0.90) on the modified PSSUQ. The interviews revealed that most participants liked using the system and appreciated that it signaled changes in their physical functioning. However, usability was negatively influenced by a few technical errors. Conclusion Involvement of elderly users during the development process resulted in an interface with good usability. However, the technical functioning of the monitoring system needs to be optimized before it can be used to support elderly people in their self-management. PMID:24039407

  11. MINERVA: An INSAR Monitoring Service for Volcanic Hazard

    NASA Astrophysics Data System (ADS)

    Tampellini, M. L.; Sansosti, E.; Usai, S.; Lanari, R.; Borgstrom, S.; van Persie, M.; Ricciardi, G. P.; Maddalena, V.; Cicero, L.; Pepe, A.

    2004-06-01

    MINERVA (Monitoring by Interferometric SAR of Environmental Risk in Volcanic Areas) is a small scale service demonstration project financed by ESA in the Data User Programme framework. The objective of the project is the design, development and assessment of a demonstrative information service based on the interferometric processing of images acquired from either the ASAR instrument on board ENVISAT-I or SAR instruments on board ERS1/2. The system is based on a new approach for the processing of INSAR data, which allows to optimize the quality of interferograms spanning from 35 days up to several years, and to merge them to generate a single solution describing the temporal evolution of the ground deformations in the examined risk area. The system allows to update this solution each time a new SAR image is available, and constitutes therefore an innovative tool for monitoring of the ground displacements in risk areas. The system has been implemented and demonstrated at Osservatorio Vesuviano (Naples, Italy), which is the institution responsible for monitoring the volcanic phenomena in the Neapolitan volcanic district, and for alerting the Italian civil authorities (''Protezione Civile'') in case such monitoring activity reveals signals of imminent eruptions. In particular, the MINERVA system has been used to monitor the ground deformations at the Phlegrean Fields, a densely populated, high-hazard zone which is subject to alternate phases of uplift and subsidence, accompanied often by seismic activity.

  12. Sensor-model prediction, monitoring and in-situ control of liquid RTM advanced fiber architecture composite processing

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D.; Kingsley, P.; Hart, S.; Loos, A.; Hasko, G.; Dexter, B.

    1992-01-01

    In-situ frequency dependent electromagnetic sensors (FDEMS) and the Loos resin transfer model have been used to select and control the processing properties of an epoxy resin during liquid pressure RTM impregnation and cure. Once correlated with viscosity and degree of cure the FDEMS sensor monitors and the RTM processing model predicts the reaction advancement of the resin, viscosity and the impregnation of the fabric. This provides a direct means for predicting, monitoring, and controlling the liquid RTM process in-situ in the mold throughout the fabrication process and the effects of time, temperature, vacuum and pressure. Most importantly, the FDEMS-sensor model system has been developed to make intelligent decisions, thereby automating the liquid RTM process and removing the need for operator direction.

  13. Monitoring tools of COMPASS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Bodlak, M.; Frolov, V.; Huber, S.; Jary, V.; Konorov, I.; Levit, D.; Novy, J.; Salac, R.; Tomsa, J.; Virius, M.

    2015-12-01

    This paper briefly introduces the data acquisition system of the COMPASS experiment and is mainly focused on the part that is responsible for the monitoring of the nodes in the whole newly developed data acquisition system of this experiment. The COMPASS is a high energy particle experiment with a fixed target located at the SPS of the CERN laboratory in Geneva, Switzerland. The hardware of the data acquisition system has been upgraded to use FPGA cards that are responsible for data multiplexing and event building. The software counterpart of the system includes several processes deployed in heterogenous network environment. There are two processes, namely Message Logger and Message Browser, taking care of monitoring. These tools handle messages generated by nodes in the system. While Message Logger collects and saves messages to the database, the Message Browser serves as a graphical interface over the database containing these messages. For better performance, certain database optimizations have been used. Lastly, results of performance tests are presented.

  14. Apparatus for monitoring crystal growth

    DOEpatents

    Sachs, Emanual M.

    1981-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  15. Method of monitoring crystal growth

    DOEpatents

    Sachs, Emanual M.

    1982-01-01

    A system and method are disclosed for monitoring the growth of a crystalline body from a liquid meniscus in a furnace. The system provides an improved human/machine interface so as to reduce operator stress, strain and fatigue while improving the conditions for observation and control of the growing process. The system comprises suitable optics for forming an image of the meniscus and body wherein the image is anamorphic so that the entire meniscus can be viewed with good resolution in both the width and height dimensions. The system also comprises a video display for displaying the anamorphic image. The video display includes means for enhancing the contrast between any two contrasting points in the image. The video display also comprises a signal averager for averaging the intensity of at least one preselected portions of the image. The value of the average intensity, can in turn be utilized to control the growth of the body. The system and method are also capable of observing and monitoring multiple processes.

  16. Data acquisition for a real time fault monitoring and diagnosis knowledge-based system for space power system

    NASA Technical Reports Server (NTRS)

    Wilhite, Larry D.; Lee, S. C.; Lollar, Louis F.

    1989-01-01

    The design and implementation of the real-time data acquisition and processing system employed in the AMPERES project is described, including effective data structures for efficient storage and flexible manipulation of the data by the knowledge-based system (KBS), the interprocess communication mechanism required between the data acquisition system and the KBS, and the appropriate data acquisition protocols for collecting data from the sensors. Sensor data are categorized as critical or noncritical data on the basis of the inherent frequencies of the signals and the diagnostic requirements reflected in their values. The critical data set contains 30 analog values and 42 digital values and is collected every 10 ms. The noncritical data set contains 240 analog values and is collected every second. The collected critical and noncritical data are stored in separate circular buffers. Buffers are created in shared memory to enable other processes, i.e., the fault monitoring and diagnosis process and the user interface process, to freely access the data sets.

  17. An Interactive Graphics Program for Investigating Digital Signal Processing.

    ERIC Educational Resources Information Center

    Miller, Billy K.; And Others

    1983-01-01

    Describes development of an interactive computer graphics program for use in teaching digital signal processing. The program allows students to interactively configure digital systems on a monitor display and observe their system's performance by means of digital plots on the system's outputs. A sample program run is included. (JN)

  18. DOE Program on Seismic Characterization for Regions of Interest to CTBT Monitoring,

    DTIC Science & Technology

    1995-08-14

    processing of the monitoring network data). While developing and testing the corrections and other parameters needed by the automated processing systems...the secondary network. Parameters tabulated in the knowledge base must be appropriate for routine automated processing of network data, and must also...operation of the PNDC, as well as to results of investigations of "special events" (i.e., those events that fail to locate or discriminate during automated

  19. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheat, Jr., Robert Mitchell; Dalmas, Dale A.; Dale, Gregory E.

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have beenmore » identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.« less

  20. 40 CFR 63.7188 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Semiconductor Manufacturing Compliance Requirements § 63.7188 What are my monitoring installation, operation... emissions of your semiconductor process vent through a closed vent system to a control device, you must...

  1. 40 CFR 63.7188 - What are my monitoring installation, operation, and maintenance requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Semiconductor Manufacturing Compliance Requirements § 63.7188 What are my monitoring installation, operation... emissions of your semiconductor process vent through a closed vent system to a control device, you must...

  2. Standardizing Interfaces for External Access to Data and Processing for the NASA Ozone Product Evaluation and Test Element (PEATE)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt A.; Fleig, Albert J.

    2008-01-01

    NASA's traditional science data processing systems have focused on specific missions, and providing data access, processing and services to the funded science teams of those specific missions. Recently NASA has been modifying this stance, changing the focus from Missions to Measurements. Where a specific Mission has a discrete beginning and end, the Measurement considers long term data continuity across multiple missions. Total Column Ozone, a critical measurement of atmospheric composition, has been monitored for'decades on a series of Total Ozone Mapping Spectrometer (TOMS) instruments. Some important European missions also monitor ozone, including the Global Ozone Monitoring Experiment (GOME) and SCIAMACHY. With the U.S.IEuropean cooperative launch of the Dutch Ozone Monitoring Instrument (OMI) on NASA Aura satellite, and the GOME-2 instrumental on MetOp, the ozone monitoring record has been further extended. In conjunction with the U.S. Department of Defense (DoD) and the National Oceanic and Atmospheric Administration (NOAA), NASA is now preparing to evaluate data and algorithms for the next generation Ozone Mapping and Profiler Suite (OMPS) which will launch on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP) in 2010. NASA is constructing the Science Data Segment (SDS) which is comprised of several elements to evaluate the various NPP data products and algorithms. The NPP SDS Ozone Product Evaluation and Test Element (PEATE) will build on the heritage of the TOMS and OM1 mission based processing systems. The overall measurement based system that will encompass these efforts is the Atmospheric Composition Processing System (ACPS). We have extended the system to include access to publically available data sets from other instruments where feasible, including non-NASA missions as appropriate. The heritage system was largely monolithic providing a very controlled processing flow from data.ingest of satellite data to the ultimate archive of specific operational data products. The ACPS allows more open access with standard protocols including HTTP, SOAPIXML, RSS and various REST incarnations. External entities can be granted access to various modules within the system, including an extended data archive, metadata searching, production planning and processing. Data access is provided with very fine grained access control. It is possible to easily designate certain datasets as being available to the public, or restricted to groups of researchers, or limited strictly to the originator. This can be used, for example, to release one's best validated data to the public, but restrict the "new version" of data processed with a new, unproven algorithm until it is ready. Similarly, the system can provide access to algorithms, both as modifiable source code (where possible) and fully integrated executable Algorithm Plugin Packages (APPs). This enables researchers to download publically released versions of the processing algorithms and easily reproduce the processing remotely, while interacting with the ACPS. The algorithms can be modified allowing better experimentation and rapid improvement. The modified algorithms can be easily integrated back into the production system for large scale bulk processing to evaluate improvements. The system includes complete provenance tracking of algorithms, data and the entire processing environment. The origin of any data or algorithms is recorded and the entire history of the processing chains are stored such that a researcher can understand the entire data flow. Provenance is captured in a form suitable for the system to guarantee scientific reproducability of any data product it distributes even in cases where the physical data products themselves have been deleted due to space constraints. We are currently working on Semantic Web ontologies for representing the various provenance information. A new web site focusing on consolidating informaon about the measurement, processing system, and data access has been established to encourage interaction with the overall scientific community. We will describe the system, its data processing capabilities, and the methods the community can use to interact with the standard interfaces of the system.

  3. Reward contingencies and the recalibration of task monitoring and reward systems: a high-density electrical mapping study.

    PubMed

    Morie, K P; De Sanctis, P; Foxe, J J

    2014-07-25

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task-monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward-seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density electroencephalography (EEG) recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task-preparatory and task-monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task-preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task-monitoring processes are clearly dissociable, but interact across very fast timescales to update reward predictions as information about task success or failure is accrued. Careful delineation of these processes will be useful in future investigations in clinical groups where such processes are suspected of having gone awry. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Reward Contingencies and the Recalibration of Task Monitoring and Reward Systems: A high-density electrical mapping study

    PubMed Central

    Morie, Kristen P.; De Sanctis, Pierfilippo; Foxe, John J.

    2014-01-01

    Task execution almost always occurs in the context of reward-seeking or punishment-avoiding behavior. As such, ongoing task monitoring systems are influenced by reward anticipation systems. In turn, when a task has been executed either successfully or unsuccessfully, future iterations of that task will be re-titrated on the basis of the task outcome. Here, we examined the neural underpinnings of the task-monitoring and reward-evaluation systems to better understand how they govern reward seeking behavior. Twenty-three healthy adult participants performed a task where they accrued points that equated to real world value (gift cards) by responding as rapidly as possible within an allotted timeframe, while success rate was titrated online by changing the duration of the timeframe dependent on participant performance. Informative cues initiated each trial, indicating the probability of potential reward or loss (four levels from very low to very high). We manipulated feedback by first informing participants of task success/failure, after which a second feedback signal indicated actual magnitude of reward/loss. High-density EEG recordings allowed for examination of event-related potentials (ERPs) to the informative cues and in turn, to both feedback signals. Distinct ERP components associated with reward cues, task preparatory and task monitoring processes, and reward feedback processes were identified. Unsurprisingly, participants displayed increased ERP amplitudes associated with task preparatory processes following cues that predicted higher chances of reward. They also rapidly updated reward and loss prediction information dependent on task performance after the first feedback signal. Finally, upon reward receipt, initial reward probability was no longer taken into account. Rather, ERP measures suggested that only the magnitude of actual reward or loss was now processed. Reward and task monitoring processes are clearly dissociable, but interact across very fast timescales to update reward predictions as information about task success or failure is accrued. Careful delineation of these processes will be useful in future investigations in clinical groups where such processes are suspected of having gone awry. PMID:24836852

  5. Monitoring technologies for the evaluation of a Soil-Aquifer-Treatment system in coastal aquifer environments.

    NASA Astrophysics Data System (ADS)

    Kallioras, Andreas; Tsertou, Athanasia; Foglia, Laura; Bumberger, Jan; Vienken, Thomas; Dietrich, Peter; Schüth, Christoph

    2014-05-01

    Artificial recharge of groundwater has an important role to play in water reuse. Treated sewage effluent can be infiltrated into the ground for recharge of aquifers. As the effluent water moves through the soil and the aquifer, it undergoes significant quality improvements through physical, chemical, and biological processes in the underground environment. Collectively, these processes and the water quality improvement obtained are called soil-aquifer-treatment (SAT) or geopurification. Recharge systems for SAT can be designed as infiltration-recovery systems, where all effluent water is recovered as such from the aquifer, or after blending with native groundwater. SAT typically removes essentially all suspended solids, biochemical oxygen demand (BOD), and pathogens (viruses, bacteria, protozoa, and helminthic eggs). Concentrations of synthetic organic carbon, phosphorous, and heavy metals are greatly reduced. The pilot site of LTCP will involve the employment of infiltration basins, which will be using waters of impaired quality as a recharge source, and hence acting as a Soil-Aquifer-Treatment, SAT, system. T he LTCP site will be employed as a pilot SAT system complemented by new technological developments, which will be providing continuous monitoring of the quantitative and qualitative characteristics of infiltrating groundwater through all hydrologic zones (i.e. surface, unsaturated and saturated zone). This will be achieved through the development and installation of an integrated system of prototype sensors, installed on-site, and offering a continuous evaluation of the performance of the SAT system. An integrated approach of the performance evaluation of any operating SAT system should aim at parallel monitoring of all hydrologic zones, proving the sustainability of all involved water quality treatment processes within unsaturated and saturated zone. Hence a prototype system of Time Domain Reflectometry (TDR) sensors will be developed, in order to achieve continuous quantitative monitoring of the unsaturated zone through the entire soil column down to significant depths below the SAT basin. The above technique will offer continuous monitoring of infiltration rates and possible mechanical clogging effects. The qualitative monitoring of the unsaturated zone will be achieved through the installation of appropriate pore-water samplers within a multi-level basis, ensuring repeatability of sampling of infiltrating water of impaired quality. This study also involves the qualitative and quantitative assessment of the Lavrion multi-aquifer system through continuous monitoring of the performance of (i) the alluvial aquifer and its potential for additional water treatment as well as (ii) the effects of the SAT system for countermeasuring seawater intrusion in the area of Lavrion. Additionally, setup and calibration of numerical flow and transport models for evaluating and optimizing different operational modes of the SAT system within both saturated and unsaturated zones will be conducted. The monitoring system will be connected to an ad-hoc wireless network for continuous data transfer within the SAT facilities. It is envisaged that the development and combined application of all the above technologies will provide an integrated monitoring platform for the evaluation of SAT system performance.

  6. Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis

    NASA Astrophysics Data System (ADS)

    Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.

    2000-03-01

    The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.

  7. Unattended reaction monitoring using an automated microfluidic sampler and on-line liquid chromatography.

    PubMed

    Patel, Darshan C; Lyu, Yaqi Fara; Gandarilla, Jorge; Doherty, Steve

    2018-04-03

    In-process sampling and analysis is an important aspect of monitoring kinetic profiles and impurity formation or rejection, both in development and during commercial manufacturing. In pharmaceutical process development, the technology of choice for a substantial portion of this analysis is high-performance liquid chromatography (HPLC). Traditionally, the sample extraction and preparation for reaction characterization have been performed manually. This can be time consuming, laborious, and impractical for long processes. Depending on the complexity of the sample preparation, there can be variability introduced by different analysts, and in some cases, the integrity of the sample can be compromised during handling. While there are commercial instruments available for on-line monitoring with HPLC, they lack capabilities in many key areas. Some do not provide integration of the sampling and analysis, while others afford limited flexibility in sample preparation. The current offerings provide a limited number of unit operations available for sample processing and no option for workflow customizability. This work describes development of a microfluidic automated program (MAP) which fully automates the sample extraction, manipulation, and on-line LC analysis. The flexible system is controlled using an intuitive Microsoft Excel based user interface. The autonomous system is capable of unattended reaction monitoring that allows flexible unit operations and workflow customization to enable complex operations and on-line sample preparation. The automated system is shown to offer advantages over manual approaches in key areas while providing consistent and reproducible in-process data. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Energy efficient wireless sensor network for structural health monitoring using distributed embedded piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Li, Peng; Olmi, Claudio; Song, Gangbing

    2010-04-01

    Piezoceramic based transducers are widely researched and used for structural health monitoring (SHM) systems due to the piezoceramic material's inherent advantage of dual sensing and actuation. Wireless sensor network (WSN) technology benefits from advances made in piezoceramic based structural health monitoring systems, allowing easy and flexible installation, low system cost, and increased robustness over wired system. However, piezoceramic wireless SHM systems still faces some drawbacks, one of these is that the piezoceramic based SHM systems require relatively high computational capabilities to calculate damage information, however, battery powered WSN sensor nodes have strict power consumption limitation and hence limited computational power. On the other hand, commonly used centralized processing networks require wireless sensors to transmit all data back to the network coordinator for analysis. This signal processing procedure can be problematic for piezoceramic based SHM applications as it is neither energy efficient nor robust. In this paper, we aim to solve these problems with a distributed wireless sensor network for piezoceramic base structural health monitoring systems. Three important issues: power system, waking up from sleep impact detection, and local data processing, are addressed to reach optimized energy efficiency. Instead of sweep sine excitation that was used in the early research, several sine frequencies were used in sequence to excite the concrete structure. The wireless sensors record the sine excitations and compute the time domain energy for each sine frequency locally to detect the energy change. By comparing the data of the damaged concrete frame with the healthy data, we are able to find out the damage information of the concrete frame. A relative powerful wireless microcontroller was used to carry out the sampling and distributed data processing in real-time. The distributed wireless network dramatically reduced the data transmission between wireless sensor and the wireless coordinator, which in turn reduced the power consumption of the overall system.

  9. Data-driven monitoring for stochastic systems and its application on batch process

    NASA Astrophysics Data System (ADS)

    Yin, Shen; Ding, Steven X.; Haghani Abandan Sari, Adel; Hao, Haiyang

    2013-07-01

    Batch processes are characterised by a prescribed processing of raw materials into final products for a finite duration and play an important role in many industrial sectors due to the low-volume and high-value products. Process dynamics and stochastic disturbances are inherent characteristics of batch processes, which cause monitoring of batch processes a challenging problem in practice. To solve this problem, a subspace-aided data-driven approach is presented in this article for batch process monitoring. The advantages of the proposed approach lie in its simple form and its abilities to deal with stochastic disturbances and process dynamics existing in the process. The kernel density estimation, which serves as a non-parametric way of estimating the probability density function, is utilised for threshold calculation. An industrial benchmark of fed-batch penicillin production is finally utilised to verify the effectiveness of the proposed approach.

  10. Conceptual design of a monitoring system for the Charters of Freedom

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.

    1984-01-01

    A conceptual design of a monitoring system for the Charters of Freedom was developed for the National Archives and Records Service. The monitoring system would be installed at the National Archives and used to document the condition of the Charters as part of a regular inspection program. The results of an experimental measurements program that led to the definition of analysis system requirements are presented, a conceptual design of the monitoring system is described and the alternative approaches to implementing this design were discussed. The monitoring system is required to optically detect and measure deterioration in documents that are permanently encapsulated in glass cases. An electronic imaging system with the capability for precise photometric measurements of the contrast of the script on the documents can perform this task. Two general types of imaging systems are considered (line and area array), and their suitability for performing these required measurements are compared. A digital processing capability for analyzing the electronic imaging data is also required, and several optional levels of complexity for this digital analysis system are evaluated.

  11. FPGA-based firmware model for extended measurement systems with data quality monitoring

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Pozniak, K. T.; Mazon, D.; Chernyshova, M.

    2017-08-01

    Modern physics experiments requires construction of advanced, modular measurement systems for data processing and registration purposes. Components are often designed in one of the common mechanical and electrical standards, e.g. VME or uTCA. The paper is focused on measurement systems using FPGAs as data processing blocks, especially for plasma diagnostics using GEM detectors with data quality monitoring aspects. In the article is proposed standardized model of HDL FPGA firmware implementation, for use in a wide range of different measurement system. The effort was made in term of flexible implementation of data quality monitoring along with source data dynamic selection. In the paper is discussed standard measurement system model followed by detailed model of FPGA firmware for modular measurement systems. Considered are both: functional blocks and data buses. In the summary, necessary blocks and signal lines are described. Implementation of firmware following the presented rules should provide modular design, with ease of change different parts of it. The key benefit is construction of universal, modular HDL design, that can be applied in different measurement system with simple adjustments.

  12. Mobile devices for community-based REDD+ monitoring: a case study for Central Vietnam.

    PubMed

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M; Ribbe, Lars

    2012-12-20

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery.

  13. Mobile Devices for Community-Based REDD+ Monitoring: A Case Study for Central Vietnam

    PubMed Central

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M.; Ribbe, Lars

    2013-01-01

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery. PMID:23344371

  14. Implementation of a process analytical technology system in a freeze-drying process using Raman spectroscopy for in-line process monitoring.

    PubMed

    De Beer, T R M; Allesø, M; Goethals, F; Coppens, A; Heyden, Y Vander; De Diego, H Lopez; Rantanen, J; Verpoort, F; Vervaet, C; Remon, J P; Baeyens, W R G

    2007-11-01

    The aim of the present study was to propose a strategy for the implementation of a Process Analytical Technology system in freeze-drying processes. Mannitol solutions, some of them supplied with NaCl, were used as models to freeze-dry. Noninvasive and in-line Raman measurements were continuously performed during lyophilization of the solutions to monitor real time the mannitol solid state, the end points of the different process steps (freezing, primary drying, secondary drying), and physical phenomena occurring during the process. At-line near-infrared (NIR) and X-ray powder diffractometry (XRPD) measurements were done to confirm the Raman conclusions and to find out additional information. The collected spectra during the processes were analyzed using principal component analysis and multivariate curve resolution. A two-level full factorial design was used to study the significant influence of process (freezing rate) and formulation variables (concentration of mannitol, concentration of NaCl, volume of freeze-dried sample) upon freeze-drying. Raman spectroscopy was able to monitor (i) the mannitol solid state (amorphous, alpha, beta, delta, and hemihydrate), (ii) several process step end points (end of mannitol crystallization during freezing, primary drying), and (iii) physical phenomena occurring during freeze-drying (onset of ice nucleation, onset of mannitol crystallization during the freezing step, onset of ice sublimation). NIR proved to be a more sensitive tool to monitor sublimation than Raman spectroscopy, while XRPD helped to unravel the mannitol hemihydrate in the samples. The experimental design results showed that several process and formulation variables significantly influence different aspects of lyophilization and that both are interrelated. Raman spectroscopy (in-line) and NIR spectroscopy and XRPD (at-line) not only allowed the real-time monitoring of mannitol freeze-drying processes but also helped (in combination with experimental design) us to understand the process.

  15. Implementing an electronic hand hygiene monitoring system: Lessons learned from community hospitals.

    PubMed

    Edmisten, Catherine; Hall, Charles; Kernizan, Lorna; Korwek, Kimberly; Preston, Aaron; Rhoades, Evan; Shah, Shalin; Spight, Lori; Stradi, Silvia; Wellman, Sonia; Zygadlo, Scott

    2017-08-01

    Measuring and providing feedback about hand hygiene (HH) compliance is a complicated process. Electronic HH monitoring systems have been proposed as a possible solution; however, there is little information available about how to successfully implement and maintain these systems for maximum benefit in community hospitals. An electronic HH monitoring system was implemented in 3 community hospitals by teams at each facility with support from the system vendor. Compliance rates were measured by the electronic monitoring system. The implementation challenges, solutions, and drivers of success were monitored within each facility. The electronic HH monitoring systems tracked on average more than 220,000 compliant HH events per facility per month, with an average monthly compliance rate >85%. The sharing of best practices between facilities was valuable in addressing challenges encountered during implementation and maintaining a high rate of use. Drivers of success included a collaborative environment, leadership commitment, using data to drive improvement, consistent and constant messaging, staff empowerment, and patient involvement. Realizing the full benefit of investments in electronic HH monitoring systems requires careful consideration of implementation strategies, planning for ongoing support and maintenance, and presenting data in a meaningful way to empower and inspire staff. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Monitoring SLAC High Performance UNIX Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia.more » Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.« less

  17. A Wearable Real-Time and Non-Invasive Thoracic Cavity Monitoring System

    NASA Astrophysics Data System (ADS)

    Salman, Safa

    A surgery-free on-body monitoring system is proposed to evaluate the dielectric constant of internal body tissues (especially lung and heart) and effectively determine irregularities in real-time. The proposed surgery-free on-body monitoring system includes a sensor, a post-processing technique, and an automated data collection circuit. Data are automatically collected from the sensor electrodes and then post processed to extract the electrical properties of the underlying biological tissue(s). To demonstrate the imaging concept, planar and wrap-around sensors are devised. These sensors are designed to detect changes in the dielectric constant of inner tissues (lung and heart). The planar sensor focuses on a single organ while the wrap-around sensors allows for imaging of the thoracic cavity's cross section. Moreover, post-processing techniques are proposed to complement sensors for a more complete on-body monitoring system. The idea behind the post-processing technique is to suppress interference from the outer layers (skin, fat, muscle, and bone). The sensors and post-processing techniques yield high signal (from the inner layers) to noise (from the outer layers) ratio. Additionally, data collection circuits are proposed for a more robust and stand-alone system. The circuit design aims to sequentially activate each port of the sensor and portions of the propagating signal are to be received at all passive ports in the form of a voltage at the probes. The voltages are converted to scattering parameters which are then used in the post-processing technique to obtain epsilonr. The concept of wearability is also considered through the use of electrically conductive fibers (E-fibers). These fibers show matching performance to that of copper, especially at low frequencies making them a viable substitute. For the cases considered, the proposed sensors show promising results in recovering the permittivity of deep tissues with a maximum error of 13.5%. These sensors provide a way for a new class of medical sensors through accuracy improvements and avoidance of inverse scattering techniques.

  18. Development of an Open Source Based Sensor Platform for an Advanced and Comprehensive in-situ DOC Monitoring

    NASA Astrophysics Data System (ADS)

    Schima, Robert; Goblirsch, Tobias; Paschen, Mathias; Rinke, Karsten; Schelwat, Heinz; Dietrich, Peter; Bumberger, Jan

    2016-04-01

    The impact of global change, intensive agriculture and complex interactions between humans and the environment show different effects on different scales. However, the desire to obtain a better understanding of ecosystems and process dynamics in nature accentuates the need for observing these processes in higher temporal and spatial resolutions. Especially with regard to the process dynamics and heterogeneity of water catchment areas, a comprehensive monitoring of the ongoing processes and effects remains to be a challenging issue in the field of applied environmental research. Moreover, harsh conditions and a variety of influencing process parameters are representing a particular challenge due to an adaptive in-situ monitoring of vast areas. Today, open source based electronics and cost-effective sensors and sensor components are offering a promising approach to investigate new possibilities of smart phone based mobile data acquisition and comprehensive ad-hoc monitoring of environmental processes. Accordingly, our project aims the development of new strategies for mobile data acquisition and real-time processing of user-specific environmental data, based on a holistic and integrated process. To this end, the concept of our monitoring system covers the data collection, data processing and data integration as well as the data provision within one infrastructure. The whole monitoring system consists of several mobile sensor devices, a smart phone app (Android) and a web service for data processing, data provision and data visualization. The smart phone app allows the configuration of the mobile sensor device and provides some built-in functions such as data visualization or data transmission via e-mail. Besides the measurement of temperature and humidity in air, the mobile sensor device is able to acquire sensor readings for the content of dissolved organic compounds (λ = 254 nm) and turbidity (λ = 860 nm) of surface water based on the developed optical in-situ sensor probe. Here, the miniaturized optical sensor probe allows the monitoring of even shallow water bodies with a depth of less than 5 cm. Compared to common techniques, the inexpensive sensor parts and robust emitting LEDs allow an improved widespread and comprehensive monitoring due to a higher amount of sensor devices. Furthermore, the system consists of a GPS module, a real-time clock and a GSM unit which allow space and time resolved measurements. On October 6th, 2015 an initial experiment was started at the Bode catchment in the Harz region (Germany). Here, the developed DOC and turbidity sensor probes were installed directly at the riverside next to existing sampling points of a large-scaled long-term observation project. The results show a good correspondence between our sensor development and the installed and established instruments. This represents a decisive and cost-effective contribution in the area of environmental research and the monitoring of vast catchment areas.

  19. Adaptation of in-situ microscopy for crystallization processes

    NASA Astrophysics Data System (ADS)

    Bluma, A.; Höpfner, T.; Rudolph, G.; Lindner, P.; Beutel, S.; Hitzmann, B.; Scheper, T.

    2009-08-01

    In biotechnological and pharmaceutical engineering, the study of crystallization processes gains importance. An efficient analytical inline sensor could help to improve the knowledge about these processes in order to increase efficiency and yields. The in-situ microscope (ISM) is an optical sensor developed for the monitoring of bioprocesses. A new application for this sensor is the monitoring in downstream processes, e.g. the crystallization of proteins and other organic compounds. This contribution shows new aspects of using in-situ microscopy to monitor crystallization processes. Crystals of different chemical compounds were precipitated from supersaturated solutions and the crystal growth was monitored. Exemplified morphological properties and different forms of crystals could be distinguished on the basis of offline experiments. For inline monitoring of crystallization processes, a special 0.5 L stirred tank reactor was developed and equipped with the in-situ microscope. This reactor was utilized to carry out batch experiments for crystallizations of O-acetylsalicyclic acid (ASS) and hen egg white lysozyme (HEWL). During the whole crystallization process, the in-situ microscope system acquired images directly from the crystallization broth. For the data evaluation, an image analysis algorithm was developed and implemented in the microscope analysis software.

  20. Observing Ocean Ecosystems with Sonar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Maxwell, Adam R.; Ham, Kenneth D.

    2016-12-01

    We present a real-time processing system for sonar to detect and track animals, and to extract water column biomass statistics in order to facilitate continuous monitoring of an underwater environment. The Nekton Interaction Monitoring System (NIMS) is built to connect to an instrumentation network, where it consumes a real-time stream of sonar data and archives tracking and biomass data.

  1. Forest Service National Visitor Use Monitoring Process: Research Method Documentation

    Treesearch

    Donald B.K. English; Susan M. Kocis; Stanley J. Zarnoch; J. Ross Arnold

    2002-01-01

    In response to the need for improved information on recreational use of National Forest System lands, the authors have developed a nationwide, systematic monitoring process. This report documents the methods they used in estimating recreational use on an annual basis. The basic unit of measure is exiting volume of visitors from a recreation site on a given day. Sites...

  2. Information integration and diagnosis analysis of equipment status and production quality for machining process

    NASA Astrophysics Data System (ADS)

    Zan, Tao; Wang, Min; Hu, Jianzhong

    2010-12-01

    Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.

  3. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.

  4. ENERGY SYSTEM DEVELOPMENT AND LOAD MANAGEMENT THROUGH THE REHABILITATION AND RETURN TO PLAY PROCESS.

    PubMed

    Morrison, Scot; Ward, Patrick; duManoir, Gregory R

    2017-08-01

    Return-to-play from injury is a complex process involving many factors including the balancing of tissue healing rates with the development of biomotor abilities. This process requires interprofessional cooperation to ensure success. An often-overlooked aspect of return-to-play is the development and maintenance of sports specific conditioning while monitoring training load to ensure that the athlete's training stimulus over the rehabilitation period is appropriate to facilitate a successful return to play. The purpose of this clinical commentary is to address the role of energy systems training as part of the return-to-play process. Additionally the aim is to provide practitioners with an overview of practical sports conditioning training methods and monitoring strategies to allow them to direct and quantify the return-to-play process. 5.

  5. An integrated multispectral video and environmental monitoring system for the study of coastal processes and the support of beach management operations

    NASA Astrophysics Data System (ADS)

    Ghionis, George; Trygonis, Vassilis; Karydis, Antonis; Vousdoukas, Michalis; Alexandrakis, George; Drakopoulos, Panos; Amdreadis, Olympos; Psarros, Fotis; Velegrakis, Antonis; Poulos, Serafim

    2016-04-01

    Effective beach management requires environmental assessments that are based on sound science, are cost-effective and are available to beach users and managers in an accessible, timely and transparent manner. The most common problems are: 1) The available field data are scarce and of sub-optimal spatio-temporal resolution and coverage, 2) our understanding of local beach processes needs to be improved in order to accurately model/forecast beach dynamics under a changing climate, and 3) the information provided by coastal scientists/engineers in the form of data, models and scientific interpretation is often too complicated to be of direct use by coastal managers/decision makers. A multispectral video system has been developed, consisting of one or more video cameras operating in the visible part of the spectrum, a passive near-infrared (NIR) camera, an active NIR camera system, a thermal infrared camera and a spherical video camera, coupled with innovative image processing algorithms and a telemetric system for the monitoring of coastal environmental parameters. The complete system has the capability to record, process and communicate (in quasi-real time) high frequency information on shoreline position, wave breaking zones, wave run-up, erosion hot spots along the shoreline, nearshore wave height, turbidity, underwater visibility, wind speed and direction, air and sea temperature, solar radiation, UV radiation, relative humidity, barometric pressure and rainfall. An innovative, remotely-controlled interactive visual monitoring system, based on the spherical video camera (with 360°field of view), combines the video streams from all cameras and can be used by beach managers to monitor (in real time) beach user numbers, flow activities and safety at beaches of high touristic value. The high resolution near infrared cameras permit 24-hour monitoring of beach processes, while the thermal camera provides information on beach sediment temperature and moisture, can detect upwelling in the nearshore zone, and enhances the safety of beach users. All data can be presented in real- or quasi-real time and are stored for future analysis and training/validation of coastal processes models. Acknowledgements: This work was supported by the project BEACHTOUR (11SYN-8-1466) of the Operational Program "Cooperation 2011, Competitiveness and Entrepreneurship", co-funded by the European Regional Development Fund and the Greek Ministry of Education and Religious Affairs.

  6. Information system for diagnosis of respiratory system diseases

    NASA Astrophysics Data System (ADS)

    Abramov, G. V.; Korobova, L. A.; Ivashin, A. L.; Matytsina, I. A.

    2018-05-01

    An information system is for the diagnosis of patients with lung diseases. The main problem solved by this system is the definition of the parameters of cough fragments in the monitoring recordings using a voice recorder. The authors give the recognition criteria of recorded cough moments, audio records analysis. The results of the research are systematized. The cough recognition system can be used by the medical specialists to diagnose the condition of the patients and to monitor the process of their treatment.

  7. Development and Sensing Properties Study of Underwater Assembled Water Depth-Inclination Sensors for a Multi-Component Mooring System, Using a Self-Contained Technique

    PubMed Central

    Wu, Wenhua; Feng, Jiaguo; Xie, Bin; Tang, Da; Yue, Qianjin; Xie, Ribin

    2016-01-01

    Prototype monitoring techniques play an important role in the safety guarantee of mooring systems in marine engineering. In general, the complexities of harsh ocean environmental conditions bring difficulties to the traditional monitoring methods of application, implementation and maintenance. Large amounts of existing mooring systems still lack valid monitoring strategies. In this paper, an underwater monitoring method which may be used to achieve the mechanical responses of a multi-point catenary mooring system, is present. A novel self-contained assembled water depth-inclination (D-I) sensor is designed and manufactured. Several advanced technologies, such as standalone, low power consumption and synchronism, are considered to satisfy the long-term implementation requirements with low cost during the design process. The design scheme of the water resistance barrel and installation clamp, which satisfies the diver installation, are also provided in the paper. An on-site test has previously been carried out on a production semisubmersible platform in the South China Sea. The prototype data analyses, including the D-I value in the time domain (including the data recorded during the mooring retraction and release process) and spectral characteristics, are presented to reveal the accuracy, feasibility and stability of the sensor in terms of fitting for the prototype monitoring of catenary mooring systems, especially for in-service aging platforms. PMID:27854357

  8. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-06-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a Wireless Sensor Network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  9. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-11-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  10. Development of a Wireless Sensor Network for Individual Monitoring of Panels in a Photovoltaic Plant

    PubMed Central

    Prieto, Miguel J.; Pernía, Alberto M.; Nuño, Fernando; Díaz, Juan; Villegas, Pedro J.

    2014-01-01

    With photovoltaic (PV) systems proliferating in the last few years due to the high prices of fossil fuels and pollution issues, among others, it is extremely important to monitor the efficiency of these plants and optimize the energy production process. This will also result in improvements related to the maintenance and security of the installation. In order to do so, the main parameters in the plant must be continuously monitored so that the appropriate actions can be carried out. This monitoring should not only be carried out at a global level, but also at panel-level, so that a better understanding of what is actually happening in the PV plant can be obtained. This paper presents a system based on a wireless sensor network (WSN) that includes all the components required for such monitoring as well as a power supply obtaining the energy required by the sensors from the photovoltaic panels. The system proposed succeeds in identifying all the nodes in the network and provides real-time monitoring while tracking efficiency, features, failures and weaknesses from a single cell up to the whole infrastructure. Thus, the decision-making process is simplified, which contributes to reducing failures, wastes and, consequently, costs. PMID:24487622

  11. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle

    PubMed Central

    Atallah, Vincent; Escarmant, Patrick; Vinh‐Hung, Vincent

    2016-01-01

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in‐house‐made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real‐time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high‐contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep‐breathing patterns. This low‐cost, computer‐vision system for real‐time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion. PACS number(s): 87.55.km PMID:27685116

  12. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    PubMed

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-08

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v. © 2016 The Authors.

  13. Monitoring endemic livestock diseases using laboratory diagnostic data: A simulation study to evaluate the performance of univariate process monitoring control algorithms.

    PubMed

    Lopes Antunes, Ana Carolina; Dórea, Fernanda; Halasa, Tariq; Toft, Nils

    2016-05-01

    Surveillance systems are critical for accurate, timely monitoring and effective disease control. In this study, we investigated the performance of univariate process monitoring control algorithms in detecting changes in seroprevalence for endemic diseases. We also assessed the effect of sample size (number of sentinel herds tested in the surveillance system) on the performance of the algorithms. Three univariate process monitoring control algorithms were compared: Shewart p Chart(1) (PSHEW), Cumulative Sum(2) (CUSUM) and Exponentially Weighted Moving Average(3) (EWMA). Increases in seroprevalence were simulated from 0.10 to 0.15 and 0.20 over 4, 8, 24, 52 and 104 weeks. Each epidemic scenario was run with 2000 iterations. The cumulative sensitivity(4) (CumSe) and timeliness were used to evaluate the algorithms' performance with a 1% false alarm rate. Using these performance evaluation criteria, it was possible to assess the accuracy and timeliness of the surveillance system working in real-time. The results showed that EWMA and PSHEW had higher CumSe (when compared with the CUSUM) from week 1 until the end of the period for all simulated scenarios. Changes in seroprevalence from 0.10 to 0.20 were more easily detected (higher CumSe) than changes from 0.10 to 0.15 for all three algorithms. Similar results were found with EWMA and PSHEW, based on the median time to detection. Changes in the seroprevalence were detected later with CUSUM, compared to EWMA and PSHEW for the different scenarios. Increasing the sample size 10 fold halved the time to detection (CumSe=1), whereas increasing the sample size 100 fold reduced the time to detection by a factor of 6. This study investigated the performance of three univariate process monitoring control algorithms in monitoring endemic diseases. It was shown that automated systems based on these detection methods identified changes in seroprevalence at different times. Increasing the number of tested herds would lead to faster detection. However, the practical implications of increasing the sample size (such as the costs associated with the disease) should also be taken into account. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Reliability of Beam Loss Monitor Systems for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2005-06-01

    The increase of beam energy and beam intensity, together with the use of super conducting magnets, opens new failure scenarios and brings new criticalities for the whole accelerator protection system. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system, and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses at 7 TeV and assisted by the Fast Beam Current Decay Monitors at 450 GeV. At medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data has been processed by reliability software (Isograph). The analysis spaces from the components data to the system configuration.

  15. [Construction and analysis of a monitoring system with remote real-time multiple physiological parameters based on cloud computing].

    PubMed

    Zhu, Lingyun; Li, Lianjie; Meng, Chunyan

    2014-12-01

    There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.

  16. Adopting Industry Standards for Control Systems Within Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Young, James Scott; Boulanger, Richard

    2002-01-01

    This paper gives a description of OPC (Object Linking and Embedding for Process Control) standards for process control and outlines the experiences at JSC with using these standards to interface with I/O hardware from three independent vendors. The I/O hardware was integrated with a commercially available SCADA/HMI software package to make up the control and monitoring system for the Environmental Systems Test Stand (ESTS). OPC standards were utilized for communicating with I/O hardware and the software was used for implementing monitoring, PC-based distributed control, and redundant data storage over an Ethernet physical layer using an embedded din-rail mounted PC.

  17. Information technologies in optimization process of monitoring of software and hardware status

    NASA Astrophysics Data System (ADS)

    Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Ryabov, I. V.

    2018-05-01

    The article describes a model of a hardware and software monitoring system for a large company that provides customers with software as a service (SaaS solution) using information technology. The main functions of the monitoring system are: provision of up-todate data for analyzing the state of the IT infrastructure, rapid detection of the fault and its effective elimination. The main risks associated with the provision of these services are described; the comparative characteristics of the software are given; author's methods of monitoring the status of software and hardware are proposed.

  18. Development of a battery status monitor

    NASA Technical Reports Server (NTRS)

    Zimmerman, R. I.

    1974-01-01

    A prototype battery status monitor system has been developed. The functions of the system are: (1) to provide the energy status of the battery, (2) to measure and transmit basic battery parameters, (3) to process these measurements required to determine abnormal functioning of the battery, and (4) to transmit warning signals of the abnormal condition along with a go/no go signal. The system was developed for use with the space shuttle.

  19. Annual Forest Monitoring as part of Indonesia's National Carbon Accounting System

    NASA Astrophysics Data System (ADS)

    Kustiyo, K.; Roswintiarti, O.; Tjahjaningsih, A.; Dewanti, R.; Furby, S.; Wallace, J.

    2015-04-01

    Land use and forest change, in particular deforestation, have contributed the largest proportion of Indonesia's estimated greenhouse gas emissions. Indonesia's remaining forests store globally significant carbon stocks, as well as biodiversity values. In 2010, the Government of Indonesia entered into a REDD+ partnership. A spatially detailed monitoring and reporting system for forest change which is national and operating in Indonesia is required for participation in such programs, as well as for national policy reasons including Monitoring, Reporting, and Verification (MRV), carbon accounting, and land-use and policy information. Indonesia's National Carbon Accounting System (INCAS) has been designed to meet national and international policy requirements. The INCAS remote sensing program is producing spatially-detailed annual wall-to-wall monitoring of forest cover changes from time-series Landsat imagery for the whole of Indonesia from 2000 to the present day. Work on the program commenced in 2009, under the Indonesia-Australia Forest Carbon Partnership. A principal objective was to build an operational system in Indonesia through transfer of knowledge and experience, from Australia's National Carbon Accounting System, and adaptation of this experience to Indonesia's requirements and conditions. A semi-automated system of image pre-processing (ortho-rectification, calibration, cloud masking and mosaicing) and forest extent and change mapping (supervised classification of a 'base' year, semi-automated single-year classifications and classification within a multi-temporal probabilistic framework) was developed for Landsat 5 TM and Landsat 7 ETM+. Particular attention is paid to the accuracy of each step in the processing. With the advent of Landsat 8 data and parallel development of processing capability, capacity and international collaborations within the LAPAN Data Centre this processing is being increasingly automated. Research is continuing into improved processing methodology and integration of information from other data sources. This paper presents technical elements of the INCAS remote sensing program and some results of the 2000 - 2012 mapping.

  20. Phase-I monitoring of standard deviations in multistage linear profiles

    NASA Astrophysics Data System (ADS)

    Kalaei, Mahdiyeh; Soleimani, Paria; Niaki, Seyed Taghi Akhavan; Atashgar, Karim

    2018-03-01

    In most modern manufacturing systems, products are often the output of some multistage processes. In these processes, the stages are dependent on each other, where the output quality of each stage depends also on the output quality of the previous stages. This property is called the cascade property. Although there are many studies in multistage process monitoring, there are fewer works on profile monitoring in multistage processes, especially on the variability monitoring of a multistage profile in Phase-I for which no research is found in the literature. In this paper, a new methodology is proposed to monitor the standard deviation involved in a simple linear profile designed in Phase I to monitor multistage processes with the cascade property. To this aim, an autoregressive correlation model between the stages is considered first. Then, the effect of the cascade property on the performances of three types of T 2 control charts in Phase I with shifts in standard deviation is investigated. As we show that this effect is significant, a U statistic is next used to remove the cascade effect, based on which the investigated control charts are modified. Simulation studies reveal good performances of the modified control charts.

  1. RBC aggregation based system for long-term photoplethysmography (PPG): new prospects for PPG applications

    NASA Astrophysics Data System (ADS)

    Shvartsman, Leonid D.; Tverskoy, Boris

    2015-03-01

    We present system for long-term continuous PPG monitoring, and physical model for PPG analysis. The system is based on ideology of light scattering modulated by the process of RBC aggregation. OXIRATE's system works in reflection geometry. The sensor is tiny, completely mobile phone compatible, it can be placed nearly everywhere on the body surface. These technical features allow all-night comfortable PPG monitoring that was performed and analyzed. We can define various sleep stages on the basis of different reproducible time-behavior of PPG signal. Our system of PPG monitoring was used also for reflection pulse oximetry and for extreme PPG studies, such as diving.

  2. Computer systems for automatic earthquake detection

    USGS Publications Warehouse

    Stewart, S.W.

    1974-01-01

    U.S Geological Survey seismologists in Menlo park, California, are utilizing the speed, reliability, and efficiency of minicomputers to monitor seismograph stations and to automatically detect earthquakes. An earthquake detection computer system, believed to be the only one of its kind in operation, automatically reports about 90 percent of all local earthquakes recorded by a network of over 100 central California seismograph stations. The system also monitors the stations for signs of malfunction or abnormal operation. Before the automatic system was put in operation, all of the earthquakes recorded had to be detected by manually searching the records, a time-consuming process. With the automatic detection system, the stations are efficiently monitored continuously. 

  3. Monitoring system of multiple fire fighting based on computer vision

    NASA Astrophysics Data System (ADS)

    Li, Jinlong; Wang, Li; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2010-10-01

    With the high demand of fire control in spacious buildings, computer vision is playing a more and more important role. This paper presents a new monitoring system of multiple fire fighting based on computer vision and color detection. This system can adjust to the fire position and then extinguish the fire by itself. In this paper, the system structure, working principle, fire orientation, hydrant's angle adjusting and system calibration are described in detail; also the design of relevant hardware and software is introduced. At the same time, the principle and process of color detection and image processing are given as well. The system runs well in the test, and it has high reliability, low cost, and easy nodeexpanding, which has a bright prospect of application and popularization.

  4. ATLAS Eventlndex monitoring system using the Kibana analytics and visualization platform

    NASA Astrophysics Data System (ADS)

    Barberis, D.; Cárdenas Zárate, S. E.; Favareto, A.; Fernandez Casani, A.; Gallas, E. J.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Hrivnac, J.; Malon, D.; Prokoshin, F.; Salt, J.; Sanchez, J.; Toebbicke, R.; Yuan, R.; ATLAS Collaboration

    2016-10-01

    The ATLAS EventIndex is a data catalogue system that stores event-related metadata for all (real and simulated) ATLAS events, on all processing stages. As it consists of different components that depend on other applications (such as distributed storage, and different sources of information) we need to monitor the conditions of many heterogeneous subsystems, to make sure everything is working correctly. This paper describes how we gather information about the EventIndex components and related subsystems: the Producer-Consumer architecture for data collection, health parameters from the servers that run EventIndex components, EventIndex web interface status, and the Hadoop infrastructure that stores EventIndex data. This information is collected, processed, and then displayed using CERN service monitoring software based on the Kibana analytic and visualization package, provided by CERN IT Department. EventIndex monitoring is used both by the EventIndex team and ATLAS Distributed Computing shifts crew.

  5. Application of ubiquitous computing in personal health monitoring systems.

    PubMed

    Kunze, C; Grossmann, U; Stork, W; Müller-Glaser, K D

    2002-01-01

    A possibility to significantly reduce the costs of public health systems is to increasingly use information technology. The Laboratory for Information Processing Technology (ITIV) at the University of Karlsruhe is developing a personal health monitoring system, which should improve health care and at the same time reduce costs by combining micro-technological smart sensors with personalized, mobile computing systems. In this paper we present how ubiquitous computing theory can be applied in the health-care domain.

  6. A Hybrid-Cloud Science Data System Enabling Advanced Rapid Imaging & Analysis for Monitoring Hazards

    NASA Astrophysics Data System (ADS)

    Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Moore, A. W.; Fielding, E. J.; Radulescu, C.; Sacco, G.; Stough, T. M.; Mattmann, C. A.; Cervelli, P. F.; Poland, M. P.; Cruz, J.

    2012-12-01

    Volcanic eruptions, landslides, and levee failures are some examples of hazards that can be more accurately forecasted with sufficient monitoring of precursory ground deformation, such as the high-resolution measurements from GPS and InSAR. In addition, coherence and reflectivity change maps can be used to detect surface change due to lava flows, mudslides, tornadoes, floods, and other natural and man-made disasters. However, it is difficult for many volcano observatories and other monitoring agencies to process GPS and InSAR products in an automated scenario needed for continual monitoring of events. Additionally, numerous interoperability barriers exist in multi-sensor observation data access, preparation, and fusion to create actionable products. Combining high spatial resolution InSAR products with high temporal resolution GPS products--and automating this data preparation & processing across global-scale areas of interests--present an untapped science and monitoring opportunity. The global coverage offered by satellite-based SAR observations, and the rapidly expanding GPS networks, can provide orders of magnitude more data on these hazardous events if we have a data system that can efficiently and effectively analyze the voluminous raw data, and provide users the tools to access data from their regions of interest. Currently, combined GPS & InSAR time series are primarily generated for specific research applications, and are not implemented to run on large-scale continuous data sets and delivered to decision-making communities. We are developing an advanced service-oriented architecture for hazard monitoring leveraging NASA-funded algorithms and data management to enable both science and decision-making communities to monitor areas of interests via seamless data preparation, processing, and distribution. Our objectives: * Enable high-volume and low-latency automatic generation of NASA Solid Earth science data products (InSAR and GPS) to support hazards monitoring. * Facilitate NASA-USGS collaborations to share NASA InSAR and GPS data products, which are difficult to process in high-volume and low-latency, for decision-support. * Enable interoperable discovery, access, and sharing of NASA observations and derived actionable products, and between the observation and decision-making communities. * Enable their improved understanding through visualization, mining, and cross-agency sharing. Existing InSAR & GPS processing packages and other software are integrated for generating geodetic decision support monitoring products. We employ semantic and cloud-based data management and processing techniques for handling large data volumes, reducing end product latency, codifying data system information with semantics, and deploying interoperable services for actionable products to decision-making communities.

  7. Lab-on-a-chip based total-phosphorus analysis device utilizing a photocatalytic reaction

    NASA Astrophysics Data System (ADS)

    Jung, Dong Geon; Jung, Daewoong; Kong, Seong Ho

    2018-02-01

    A lab-on-a-chip (LOC) device for total phosphorus (TP) analysis was fabricated for water quality monitoring. Many commercially available TP analysis systems used to estimate water quality have good sensitivity and accuracy. However, these systems also have many disadvantages such as bulky size, complex pretreatment processes, and high cost, which limit their application. In particular, conventional TP analysis systems require an indispensable pretreatment step, in which the fluidic analyte is heated to 120 °C for 30 min to release the dissolved phosphate, because many phosphates are soluble in water at a standard temperature and pressure. In addition, this pretreatment process requires elevated pressures of up to 1.1 kg cm-2 in order to prevent the evaporation of the heated analyte. Because of these limiting conditions required by the pretreatment processes used in conventional systems, it is difficult to miniaturize TP analysis systems. In this study, we employed a photocatalytic reaction in the pretreatment process. The reaction was carried out by illuminating a photocatalytic titanium dioxide (TiO2) surface formed in a microfluidic channel with ultraviolet (UV) light. This pretreatment process does not require elevated temperatures and pressures. By applying this simplified, photocatalytic-reaction-based pretreatment process to a TP analysis system, greater degrees of freedom are conferred to the design and fabrication of LOC devices for TP monitoring. The fabricated LOC device presented in this paper was characterized by measuring the TP concentration of an unknown sample, and comparing the results with those measured by a conventional TP analysis system. The TP concentrations of the unknown sample measured by the proposed LOC device and the conventional TP analysis system were 0.018 mgP/25 mL and 0.019 mgP/25 mL, respectively. The experimental results revealed that the proposed LOC device had a performance comparable to the conventional bulky TP analysis system. Therefore, our device could be directly employed in water quality monitoring as an alternative to conventional TP analysis systems.

  8. Chemical sensors for space applications

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1992-01-01

    The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.

  9. Earth physicist describes US nuclear test monitoring system

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The U. S. capabilities to monitor underground nuclear weapons tests in the USSR was examined. American methods used in monitoring the underground nuclear tests are enumerated. The U. S. technical means of monitoring Solviet nuclear weapons testing, and whether it is possible to conduct tests that could not be detected by these means are examined. The worldwide seismic station network in 55 countries available to the U. S. for seismic detection and measurement of underground nuclear explosions, and also the systems of seismic research observatories in 15 countries and seismic grouping stations in 12 countries are outlined including the advanced computerized data processing capabilities of these facilities. The level of capability of the U. S. seismic system for monitoring nuclear tests, other, nonseismic means of monitoring, such as hydroacoustic and recording of effects in the atmosphere, ionosphere, and the Earth's magnetic field, are discussed.

  10. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System

    PubMed Central

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-01-01

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user’s ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user’s high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user’s daily smartphone use. PMID:26978364

  11. Sinabro: A Smartphone-Integrated Opportunistic Electrocardiogram Monitoring System.

    PubMed

    Kwon, Sungjun; Lee, Dongseok; Kim, Jeehoon; Lee, Youngki; Kang, Seungwoo; Seo, Sangwon; Park, Kwangsuk

    2016-03-11

    In our preliminary study, we proposed a smartphone-integrated, unobtrusive electrocardiogram (ECG) monitoring system, Sinabro, which monitors a user's ECG opportunistically during daily smartphone use without explicit user intervention. The proposed system also monitors ECG-derived features, such as heart rate (HR) and heart rate variability (HRV), to support the pervasive healthcare apps for smartphones based on the user's high-level contexts, such as stress and affective state levels. In this study, we have extended the Sinabro system by: (1) upgrading the sensor device; (2) improving the feature extraction process; and (3) evaluating extensions of the system. We evaluated these extensions with a good set of algorithm parameters that were suggested based on empirical analyses. The results showed that the system could capture ECG reliably and extract highly accurate ECG-derived features with a reasonable rate of data drop during the user's daily smartphone use.

  12. Non-invasive heart rate monitoring system using giant magneto resistance sensor.

    PubMed

    Kalyan, Kubera; Chugh, Vinit Kumar; Anoop, C S

    2016-08-01

    A simple heart rate (HR) monitoring system designed and developed using the Giant Magneto-Resistance (GMR) sensor is presented in this paper. The GMR sensor is placed on the wrist of the human and it provides the magneto-plethysmographic signal. This signal is processed by the simple analog and digital instrumentation stages to render the heart rate indication. A prototype of the system has been built and test results on 26 volunteers have been reported. The error in HR estimation of the system is merely 1 beat per minute. The performance of the system when layer of cloth is present between the sensor and the human body is investigated. The capability of the system as a HR variability estimator has also been established through experimentation. The proposed technique can be used as an efficient alternative to conventional HR monitors and is well suited for remote and continuous monitoring of HR.

  13. Performance monitor system functional simulator, environmental data, orbiter 101(HFT)

    NASA Technical Reports Server (NTRS)

    Parker, F. W.

    1974-01-01

    Information concerning the environment component of the space shuttle performance monitor system simulator (PMSS) and those subsystems operational on the shuttle orbiter 101 used for horizontal flight test (HFT) is provided, along with detailed data for the shuttle performance monitor system (PMS) whose software requirements evolve from three basic PMS functions: (1) fault detection and annunciation; (2) subsystem measurement management; and (3) subsystem configuration management. Information relative to the design and operation of Orbiter systems for HFT is also presented, and the functional paths are identified to the lowest level at which the crew can control the system functions. Measurement requirements are given which are necessary to adequately monitor the health status of the system. PMS process requirements, relative to the measurements which are necessary for fault detection and annunciation of a failed functional path, consist of measurement characteristics, tolerance limits, precondition tests, and correlation measurements.

  14. An empirical, integrated forest biomass monitoring system

    NASA Astrophysics Data System (ADS)

    Kennedy, Robert E.; Ohmann, Janet; Gregory, Matt; Roberts, Heather; Yang, Zhiqiang; Bell, David M.; Kane, Van; Hughes, M. Joseph; Cohen, Warren B.; Powell, Scott; Neeti, Neeti; Larrue, Tara; Hooper, Sam; Kane, Jonathan; Miller, David L.; Perkins, James; Braaten, Justin; Seidl, Rupert

    2018-02-01

    The fate of live forest biomass is largely controlled by growth and disturbance processes, both natural and anthropogenic. Thus, biomass monitoring strategies must characterize both the biomass of the forests at a given point in time and the dynamic processes that change it. Here, we describe and test an empirical monitoring system designed to meet those needs. Our system uses a mix of field data, statistical modeling, remotely-sensed time-series imagery, and small-footprint lidar data to build and evaluate maps of forest biomass. It ascribes biomass change to specific change agents, and attempts to capture the impact of uncertainty in methodology. We find that: • A common image framework for biomass estimation and for change detection allows for consistent comparison of both state and change processes controlling biomass dynamics. • Regional estimates of total biomass agree well with those from plot data alone. • The system tracks biomass densities up to 450-500 Mg ha-1 with little bias, but begins underestimating true biomass as densities increase further. • Scale considerations are important. Estimates at the 30 m grain size are noisy, but agreement at broad scales is good. Further investigation to determine the appropriate scales is underway. • Uncertainty from methodological choices is evident, but much smaller than uncertainty based on choice of allometric equation used to estimate biomass from tree data. • In this forest-dominated study area, growth and loss processes largely balance in most years, with loss processes dominated by human removal through harvest. In years with substantial fire activity, however, overall biomass loss greatly outpaces growth. Taken together, our methods represent a unique combination of elements foundational to an operational landscape-scale forest biomass monitoring program.

  15. Smart pillow for heart-rate monitoring using a fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Chen, Zhihao; Teo, Ju Teng; Ng, Soon Huat; Yim, Huiqing

    2011-03-01

    In this paper, we propose and demonstrate a new method to monitor heart rate using fiber optic microbending based sensor for in-bed non-intrusive monitoring. The sensing system consists of transmitter, receiver, sensor mat, National Instrument (NI) data acquisition (DAQ) card and a computer for signal processing. The sensor mat is embedded inside a commercial pillow. The heart rate measurement system shows an accuracy of +/-2 beats, which has been successfully demonstrated in a field trial. The key technological advantage of our system is its ability to measure heart rate with no preparation and minimal compliance by the patient.

  16. On-line condition monitoring applications in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastiemian, H. M.; Feltus, M. A.

    2006-07-01

    Existing signals from process instruments in nuclear power plants can be sampled while the plant is operating and analyzed to verify the static and dynamic performance of process sensors, identify process-to-sensor problems, detect instrument anomalies such as venturi fouling, measure the vibration of the reactor vessel and its internals, or detect thermal hydraulic anomalies within the reactor coolant system. These applications are important in nuclear plants to satisfy a variety of objectives such as: 1) meeting the plant technical specification requirements; 2) complying with regulatory regulations; 3) guarding against equipment and process degradation; 4) providing a means for incipient failuremore » detection and predictive maintenance; or 5) identifying the root cause of anomalies in equipment and plant processes. The technologies that are used to achieve these objectives are collectively referred to as 'on-line condition monitoring.' This paper presents a review of key elements of these technologies, provides examples of their use in nuclear power plants, and illustrates how they can be integrated into an on-line condition monitoring system for nuclear power plants. (authors)« less

  17. Sensors and systems for space applications: a methodology for developing fault detection, diagnosis, and recovery

    NASA Astrophysics Data System (ADS)

    Edwards, John L.; Beekman, Randy M.; Buchanan, David B.; Farner, Scott; Gershzohn, Gary R.; Khuzadi, Mbuyi; Mikula, D. F.; Nissen, Gerry; Peck, James; Taylor, Shaun

    2007-04-01

    Human space travel is inherently dangerous. Hazardous conditions will exist. Real time health monitoring of critical subsystems is essential for providing a safe abort timeline in the event of a catastrophic subsystem failure. In this paper, we discuss a practical and cost effective process for developing critical subsystem failure detection, diagnosis and response (FDDR). We also present the results of a real time health monitoring simulation of a propellant ullage pressurization subsystem failure. The health monitoring development process identifies hazards, isolates hazard causes, defines software partitioning requirements and quantifies software algorithm development. The process provides a means to establish the number and placement of sensors necessary to provide real time health monitoring. We discuss how health monitoring software tracks subsystem control commands, interprets off-nominal operational sensor data, predicts failure propagation timelines, corroborate failures predictions and formats failure protocol.

  18. 77 FR 25710 - Agency Information Collection Extension

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Accident/Incident Reporting System (CAIRS); Occurrence Reporting and Processing System (ORPS); Noncompliance Tracking System (NTS); Radiation Exposure Monitoring System (REMS); Annual Fire Protection Summary... following additional authorities: Computerized Accident/Incident Reporting System (CAIRS): DOE Order 231.1B...

  19. Real-Time and Post-Processed Orbit Determination and Positioning

    NASA Technical Reports Server (NTRS)

    Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Mark A. (Inventor); Bar-Sever, Yoaz E. (Inventor); Miller, Kevin J. (Inventor); Romans, Larry J. (Inventor); Dorsey, Angela R. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); Bertiger, William I. (Inventor); hide

    2015-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  20. Real-Time and Post-Processed Orbit Determination and Positioning

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz E. (Inventor); Romans, Larry J. (Inventor); Weiss, Jan P. (Inventor); Gross, Jason (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Dorsey, Angela R. (Inventor); Miller, Mark A. (Inventor); Sibthorpe, Anthony J. (Inventor); Bertiger, William I. (Inventor); hide

    2016-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  1. Overview of the Smart Network Element Architecture and Recent Innovations

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Mata, Carlos T.; Oostdyk, Rebecca L.

    2008-01-01

    In industrial environments, system operators rely on the availability and accuracy of sensors to monitor processes and detect failures of components and/or processes. The sensors must be networked in such a way that their data is reported to a central human interface, where operators are tasked with making real-time decisions based on the state of the sensors and the components that are being monitored. Incorporating health management functions at this central location aids the operator by automating the decision-making process to suggest, and sometimes perform, the action required by current operating conditions. Integrated Systems Health Management (ISHM) aims to incorporate data from many sources, including real-time and historical data and user input, and extract information and knowledge from that data to diagnose failures and predict future failures of the system. By distributing health management processing to lower levels of the architecture, there is less bandwidth required for ISHM, enhanced data fusion, make systems and processes more robust, and improved resolution for the detection and isolation of failures in a system, subsystem, component, or process. The Smart Network Element (SNE) has been developed at NASA Kennedy Space Center to perform intelligent functions at sensors and actuators' level in support of ISHM.

  2. The Doubting System 1: Evidence for automatic substitution sensitivity.

    PubMed

    Johnson, Eric D; Tubau, Elisabet; De Neys, Wim

    2016-02-01

    A long prevailing view of human reasoning suggests severe limits on our ability to adhere to simple logical or mathematical prescriptions. A key position assumes these failures arise from insufficient monitoring of rapidly produced intuitions. These faulty intuitions are thought to arise from a proposed substitution process, by which reasoners unknowingly interpret more difficult questions as easier ones. Recent work, however, suggests that reasoners are not blind to this substitution process, but in fact detect that their erroneous responses are not warranted. Using the popular bat-and-ball problem, we investigated whether this substitution sensitivity arises out of an automatic System 1 process or whether it depends on the operation of an executive resource demanding System 2 process. Results showed that accuracy on the bat-and-ball problem clearly declined under cognitive load. However, both reduced response confidence and increased response latencies indicated that biased reasoners remained sensitive to their faulty responses under load. Results suggest that a crucial substitution monitoring process is not only successfully engaged, but that it automatically operates as an autonomous System 1 process. By signaling its doubt along with a biased intuition, it appears System 1 is "smarter" than traditionally assumed.

  3. Towards a geophysical decision-support system for monitoring and managing unstable slopes

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.; Meldrum, P.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Inauen, C.; Gunn, D.; Kuras, O.; Whiteley, J.; Kendall, J. M.

    2017-12-01

    Conventional approaches for condition monitoring, such as walk over surveys, remote sensing or intrusive sampling, are often inadequate for predicting instabilities in natural and engineered slopes. Surface observations cannot detect the subsurface precursors to failure events; instead they can only identify failure once it has begun. On the other hand, intrusive investigations using boreholes only sample a very small volume of ground and hence small scale deterioration process in heterogeneous ground conditions can easily be missed. It is increasingly being recognised that geophysical techniques can complement conventional approaches by providing spatial subsurface information. Here we describe the development and testing of a new geophysical slope monitoring system. It is built around low-cost electrical resistivity tomography instrumentation, combined with integrated geotechnical logging capability, and coupled with data telemetry. An automated data processing and analysis workflow is being developed to streamline information delivery. The development of this approach has provided the basis of a decision-support tool for monitoring and managing unstable slopes. The hardware component of the system has been operational at a number of field sites associated with a range of natural and engineered slopes for up to two years. We report on the monitoring results from these sites, discuss the practicalities of installing and maintaining long-term geophysical monitoring infrastructure, and consider the requirements of a fully automated data processing and analysis workflow. We propose that the result of this development work is a practical decision-support tool that can provide near-real-time information relating to the internal condition of problematic slopes.

  4. Using Knowledge Base for Event-Driven Scheduling of Web Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Kim, Yang Sok; Kang, Sung Won; Kang, Byeong Ho; Compton, Paul

    Web monitoring systems report any changes to their target web pages by revisiting them frequently. As they operate under significant resource constraints, it is essential to minimize revisits while ensuring minimal delay and maximum coverage. Various statistical scheduling methods have been proposed to resolve this problem; however, they are static and cannot easily cope with events in the real world. This paper proposes a new scheduling method that manages unpredictable events. An MCRDR (Multiple Classification Ripple-Down Rules) document classification knowledge base was reused to detect events and to initiate a prompt web monitoring process independent of a static monitoring schedule. Our experiment demonstrates that the approach improves monitoring efficiency significantly.

  5. A Spike Cocktail Approach to Improve Microbial Performance Monitoring for Water Reuse.

    PubMed

    Zimmerman, Brian D; Korajkic, Asja; Brinkman, Nichole E; Grimm, Ann C; Ashbolt, Nicholas J; Garland, Jay L

      Water reuse, via either centralized treatment of traditional wastewater or decentralized treatment and on-site reuse, is becoming an increasingly important element of sustainable water management. Despite advances in waterborne pathogen detection methods, low and highly variable pathogen levels limit their utility for routine evaluation of health risks in water reuse systems. Therefore, there is a need to improve our understanding of the linkage between pathogens and more readily measured process indicators during treatment. This paper describes an approach for constructing spiking experiments to relate the behavior of viral, bacterial, and protozoan pathogens with relevant process indicators. General issues are reviewed, and the spiking protocol is applied as a case study example to improve microbial performance monitoring and health risk evaluation in a water reuse system. This approach provides a foundation for the development of novel approaches to improve real or near-real time performance monitoring of water recycling systems.

  6. Custom FPGA processing for real-time fetal ECG extraction and identification.

    PubMed

    Torti, E; Koliopoulos, D; Matraxia, M; Danese, G; Leporati, F

    2017-01-01

    Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, to the best of our knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Low power sensor network for wireless condition monitoring

    NASA Astrophysics Data System (ADS)

    Richter, Ch.; Frankenstein, B.; Schubert, L.; Weihnacht, B.; Friedmann, H.; Ebert, C.

    2009-03-01

    For comprehensive fatigue tests and surveillance of large scale structures, a vibration monitoring system working in the Hz and sub Hz frequency range was realized and tested. The system is based on a wireless sensor network and focuses especially on the realization of a low power measurement, signal processing and communication. Regarding the development, we met the challenge of synchronizing the wireless connected sensor nodes with sufficient accuracy. The sensor nodes ware realized by compact, sensor near signal processing structures containing components for analog preprocessing of acoustic signals, their digitization, algorithms for data reduction and network communication. The core component is a digital micro controller which performs the basic algorithms necessary for the data acquisition synchronization and the filtering. As a first application, the system was installed in a rotor blade of a wind power turbine in order to monitor the Eigen modes over a longer period of time. Currently the sensor nodes are battery powered.

  8. Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters.

    PubMed

    Tyler, Andrew N; Hunter, Peter D; Spyrakos, Evangelos; Groom, Steve; Constantinescu, Adriana Maria; Kitchen, Jonathan

    2016-12-01

    The Earth's surface waters are a fundamental resource and encompass a broad range of ecosystems that are core to global biogeochemical cycling and food and energy production. Despite this, the Earth's surface waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Here we explore the opportunities that Earth observation (EO) has to offer to basin-scale monitoring of water quality over the surface water continuum comprising inland, transition and coastal water bodies, with a particular focus on the Danube and Black Sea region. This review summarises the technological advances in EO and the opportunities that the next generation satellites offer for water quality monitoring. We provide an overview of algorithms for the retrieval of water quality parameters and demonstrate how such models have been used for the assessment and monitoring of inland, transitional, coastal and shelf-sea systems. Further, we argue that very few studies have investigated the connectivity between these systems especially in large river-sea systems such as the Danube-Black Sea. Subsequently, we describe current capability in operational processing of archive and near real-time satellite data. We conclude that while the operational use of satellites for the assessment and monitoring of surface waters is still developing for inland and coastal waters and more work is required on the development and validation of remote sensing algorithms for these optically complex waters, the potential that these data streams offer for developing an improved, potentially paradigm-shifting understanding of physical and biogeochemical processes across large scale river-sea systems including the Danube-Black Sea is considerable. Copyright © 2016. Published by Elsevier B.V.

  9. [Methodology for construction of a panel of indicators for monitoring and evaluation of unified health system (SUS) management].

    PubMed

    Tamaki, Edson Mamoru; Tanaka, Oswaldo Yoshimi; Felisberto, Eronildo; Alves, Cinthia Kalyne de Almeida; Drumond Junior, Marcos; Bezerra, Luciana Caroline de Albuquerque; Calvo, Maria Cristina Marino; Miranda, Alcides Silva de

    2012-04-01

    This study sought to develop methodology for the construction of a Panel for the Monitoring and Evaluation of Management of the Unified Health System (SUS). The participative process used in addition to the systematization conducted made it possible to identify an effective strategy for building management tools in partnership with researchers, academic institutions and managers of the SUS. The final systematization of the Panel selected indicators for the management of the SUS in terms of Demand, Inputs, Processes, Outputs and Outcomes in order to provide a simple, versatile and useful tool for evaluation at any level of management and more transparent and easier communication with all stakeholders in decision-making. Taking the management of the SUS as the scope of these processes and practices in all normative aspects enabled dialog between systemic theories and those which consider the centrality of the social actor in the decision-making process.

  10. Wearable sensors for human health monitoring

    NASA Astrophysics Data System (ADS)

    Asada, H. Harry; Reisner, Andrew

    2006-03-01

    Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.

  11. A component-based system for agricultural drought monitoring by remote sensing.

    PubMed

    Dong, Heng; Li, Jun; Yuan, Yanbin; You, Lin; Chen, Chao

    2017-01-01

    In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China's Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring.

  12. A component-based system for agricultural drought monitoring by remote sensing

    PubMed Central

    Yuan, Yanbin; You, Lin; Chen, Chao

    2017-01-01

    In recent decades, various kinds of remote sensing-based drought indexes have been proposed and widely used in the field of drought monitoring. However, the drought-related software and platform development lag behind the theoretical research. The current drought monitoring systems focus mainly on information management and publishing, and cannot implement professional drought monitoring or parameter inversion modelling, especially the models based on multi-dimensional feature space. In view of the above problems, this paper aims at fixing this gap with a component-based system named RSDMS to facilitate the application of drought monitoring by remote sensing. The system is designed and developed based on Component Object Model (COM) to ensure the flexibility and extendibility of modules. RSDMS realizes general image-related functions such as data management, image display, spatial reference management, image processing and analysis, and further provides drought monitoring and evaluation functions based on internal and external models. Finally, China’s Ningxia region is selected as the study area to validate the performance of RSDMS. The experimental results show that RSDMS provide an efficient and scalable support to agricultural drought monitoring. PMID:29236700

  13. On-line tool breakage monitoring of vibration tapping using spindle motor current

    NASA Astrophysics Data System (ADS)

    Li, Guangjun; Lu, Huimin; Liu, Gang

    2008-10-01

    Input current of driving motor has been employed successfully as monitoring the cutting state in manufacturing processes for more than a decade. In vibration tapping, however, the method of on-line monitoring motor electric current has not been reported. In this paper, a tap failure prediction method is proposed to monitor the vibration tapping process using the electrical current signal of the spindle motor. The process of vibration tapping is firstly described. Then the relationship between the torque of vibration tapping and the electric current of motor is investigated by theoretic deducing and experimental measurement. According to those results, a monitoring method of tool's breakage is proposed through monitoring the ratio of the current amplitudes during adjacent vibration tapping periods. Finally, a low frequency vibration tapping system with motor current monitoring is built up using a servo motor B-106B and its driver CR06. The proposed method has been demonstrated with experiment data of vibration tapping in titanic alloys. The result of experiments shows that the method, which can avoid the tool breakage and giving a few error alarms when the threshold of amplitude ratio is 1.2 and there is at least 2 times overrun among 50 adjacent periods, is feasible for tool breakage monitoring in the process of vibration tapping small thread holes.

  14. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  15. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  16. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  17. Simultaneous acoustic and dielectric real time curing monitoring of epoxy systems

    NASA Astrophysics Data System (ADS)

    Gkikas, G.; Saganas, Ch.; Grammatikos, S. A.; Aggelis, D. G.; Paipetis, A. S.

    2012-04-01

    The attainment of structural integrity of the reinforcing matrix in composite materials is of primary importance for the final properties of the composite structure. The detailed monitoring of the curing process on the other hand is paramount (i) in defining the optimal conditions for the impregnation of the reinforcement by the matrix (ii) in limiting the effects of the exotherm produced by the polymerization reaction which create unwanted thermal stresses and (iii) in securing optimal behavior in matrix controlled properties, such as off axis or shear properties and in general the durability of the composite. Dielectric curing monitoring is a well known technique for distinguishing between the different stages of the polymerization of a typical epoxy system. The technique successfully predicts the gelation and the vitrification of the epoxy and has been extended for the monitoring of prepregs. Recent work has shown that distinct changes in the properties of the propagated sound in the epoxy which undergoes polymerization is as well directly related to the gelation and vitrification of the resin, as well as to the attainment of the final properties of the resin system. In this work, a typical epoxy is simultaneously monitored using acoustic and dielectric methods. The system is isothermally cured in an oven to avoid effects from the polymerization exotherm. Typical broadband sensors are employed for the acoustic monitoring, while flat interdigital sensors are employed for the dielectric scans. All stages of the polymerization process were successfully monitored and the validity of both methods was cross checked and verified.

  18. Electric terminal performance and characterization of solid oxide fuel cells and systems

    NASA Astrophysics Data System (ADS)

    Lindahl, Peter Allan

    Solid Oxide Fuel Cells (SOFCs) are electrochemical devices which can effect efficient, clean, and quiet conversion of chemical to electrical energy. In contrast to conventional electricity generation systems which feature multiple discrete energy conversion processes, SOFCs are direct energy conversion devices. That is, they feature a fully integrated chemical to electrical energy conversion process where the electric load demanded of the cell intrinsically drives the electrochemical reactions and associated processes internal to the cell. As a result, the cell's electric terminals provide a path for interaction between load side electric demand and the conversion side processes. The implication of this is twofold. First, the magnitude and dynamic characteristics of the electric load demanded of the cell can directly impact the long-term efficacy of the cell's chemical to electrical energy conversion. Second, the electric terminal response to dynamic loads can be exploited for monitoring the cell's conversion side processes and used in diagnostic analysis and degradation-mitigating control schemes. This dissertation presents a multi-tier investigation into this electric terminal based performance characterization of SOFCs through the development of novel test systems, analysis techniques and control schemes. First, a reference-based simulation system is introduced. This system scales up the electric terminal performance of a prototype SOFC system, e.g. a single fuel cell, to that of a full power-level stack. This allows realistic stack/load interaction studies while maintaining explicit ability for post-test analysis of the prototype system. Next, a time-domain least squares fitting method for electrochemical impedance spectroscopy (EIS) is developed for reduced-time monitoring of the electrochemical and physicochemical mechanics of the fuel cell through its electric terminals. The utility of the reference-based simulator and the EIS technique are demonstrated through their combined use in the performance testing of a hybrid-source power management (HSPM) system designed to allow in-situ EIS monitoring of a stack under dynamic loading conditions. The results from the latter study suggest that an HSPM controller allows an opportunity for in-situ electric terminal monitoring and control-based mitigation of SOFC degradation. As such, an exploration of control-based SOFC degradation mitigation is presented and ideas for further work are suggested.

  19. Demonstrating the Value of Near Real-time Satellite-based Earth Observations in a Research and Education Framework

    NASA Astrophysics Data System (ADS)

    Chiu, L.; Hao, X.; Kinter, J. L.; Stearn, G.; Aliani, M.

    2017-12-01

    The launch of GOES-16 series provides an opportunity to advance near real-time applications in natural hazard detection, monitoring and warning. This study demonstrates the capability and values of receiving real-time satellite-based Earth observations over a fast terrestrial networks and processing high-resolution remote sensing data in a university environment. The demonstration system includes 4 components: 1) Near real-time data receiving and processing; 2) data analysis and visualization; 3) event detection and monitoring; and 4) information dissemination. Various tools are developed and integrated to receive and process GRB data in near real-time, produce images and value-added data products, and detect and monitor extreme weather events such as hurricane, fire, flooding, fog, lightning, etc. A web-based application system is developed to disseminate near-real satellite images and data products. The images are generated with GIS-compatible format (GeoTIFF) to enable convenient use and integration in various GIS platforms. This study enhances the capacities for undergraduate and graduate education in Earth system and climate sciences, and related applications to understand the basic principles and technology in real-time applications with remote sensing measurements. It also provides an integrated platform for near real-time monitoring of extreme weather events, which are helpful for various user communities.

  20. Case Study on the Maintenance of a Construction Monitoring Using USN-Based Data Acquisition

    PubMed Central

    Kim, Sangyong; Shin, Yoonseok; Kim, Gwang-Hee

    2014-01-01

    In recent years, there has been an increasing interest in the adoption of emerging ubiquitous sensor network (USN) technologies for instrumentation within a variety of sustainability systems. USN is emerging as a sensing paradigm that is being newly considered by the sustainability management field as an alternative to traditional tethered monitoring systems. Researchers have been discovering that USN is an exciting technology that should not be viewed simply as a substitute for traditional tethered monitoring systems. In this study, we investigate how a movement monitoring measurement system of a complex building is developed as a research environment for USN and related decision-supportive technologies. To address the apparent danger of building movement, agent-mediated communication concepts have been designed to autonomously manage large volumes of exchanged information. In this study, we additionally detail the design of the proposed system, including its principles, data processing algorithms, system architecture, and user interface specifics. Results of the test and case study demonstrate the effectiveness of the USN-based data acquisition system for real-time monitoring of movement operations. PMID:25097890

  1. Case study on the maintenance of a construction monitoring using USN-based data acquisition.

    PubMed

    Kim, Sangyong; Shin, Yoonseok; Kim, Gwang-Hee

    2014-01-01

    In recent years, there has been an increasing interest in the adoption of emerging ubiquitous sensor network (USN) technologies for instrumentation within a variety of sustainability systems. USN is emerging as a sensing paradigm that is being newly considered by the sustainability management field as an alternative to traditional tethered monitoring systems. Researchers have been discovering that USN is an exciting technology that should not be viewed simply as a substitute for traditional tethered monitoring systems. In this study, we investigate how a movement monitoring measurement system of a complex building is developed as a research environment for USN and related decision-supportive technologies. To address the apparent danger of building movement, agent-mediated communication concepts have been designed to autonomously manage large volumes of exchanged information. In this study, we additionally detail the design of the proposed system, including its principles, data processing algorithms, system architecture, and user interface specifics. Results of the test and case study demonstrate the effectiveness of the USN-based data acquisition system for real-time monitoring of movement operations.

  2. Next Generation Parallelization Systems for Processing and Control of PDS Image Node Assets

    NASA Astrophysics Data System (ADS)

    Verma, R.

    2017-06-01

    We present next-generation parallelization tools to help Planetary Data System (PDS) Imaging Node (IMG) better monitor, process, and control changes to nearly 650 million file assets and over a dozen machines on which they are referenced or stored.

  3. Karst aquifer characterization using geophysical remote sensing of dynamic recharge events

    NASA Astrophysics Data System (ADS)

    Grapenthin, R.; Bilek, S. L.; Luhmann, A. J.

    2017-12-01

    Geophysical monitoring techniques, long used to make significant advances in a wide range of deeper Earth science disciplines, are now being employed to track surficial processes such as landslide, glacier, and river flow. Karst aquifers are another important hydrologic resource that can benefit from geophysical remote sensing, as this monitoring allows for safe, noninvasive karst conduit measurements. Conduit networks are typically poorly constrained, let alone the processes that occur within them. Geophysical monitoring can also provide a regionally integrated analysis to characterize subsurface architecture and to understand the dynamics of flow and recharge processes in karst aquifers. Geophysical signals are likely produced by several processes during recharge events in karst aquifers. For example, pressure pulses occur when water enters conduits that are full of water, and experiments suggest seismic signals result from this process. Furthermore, increasing water pressure in conduits during recharge events increases the load applied to conduit walls, which deforms the surrounding rock to yield measureable surface displacements. Measureable deformation should also occur with mass loading, with subsidence and rebound signals associated with increases and decreases of water mass stored in the aquifer, respectively. Additionally, geophysical signals will likely arise with turbulent flow and pore pressure change in the rock surrounding conduits. Here we present seismic data collected during a pilot study of controlled and natural recharge events in a karst aquifer system near Bear Spring, near Eyota, MN, USA as well as preliminary model results regarding the processes described above. In addition, we will discuss an upcoming field campaign where we will use seismometers, tiltmeters, and GPS instruments to monitor for recharge-induced responses in a FL, USA karst system with existing cave maps, coupling these geophysical observations with hydrologic and meteorologic data to map and characterize conduits and other features of the larger karst system and to monitor subsurface flow dynamics during recharge events.

  4. An open-source and low-cost monitoring system for precision enology.

    PubMed

    Di Gennaro, Salvatore Filippo; Matese, Alessandro; Mancin, Mirko; Primicerio, Jacopo; Palliotti, Alberto

    2014-12-05

    Winemaking is a dynamic process, where microbiological and chemical effects may strongly differentiate products from the same vineyard and even between wine vats. This high variability means an increase in work in terms of control and process management. The winemaking process therefore requires a site-specific approach in order to optimize cellar practices and quality management, suggesting a new concept of winemaking, identified as Precision Enology. The Institute of Biometeorology of the Italian National Research Council has developed a wireless monitoring system, consisting of a series of nodes integrated in barrel bungs with sensors for the measurement of wine physical and chemical parameters in the barrel. This paper describes an open-source evolution of the preliminary prototype, using Arduino-based technology. Results have shown good performance in terms of data transmission and accuracy, minimal size and power consumption. The system has been designed to create a low-cost product, which allows a remote and real-time control of wine evolution in each barrel, minimizing costs and time for sampling and laboratory analysis. The possibility of integrating any kind of sensors makes the system a flexible tool that can satisfy various monitoring needs.

  5. Real-time monitoring of process parameters in rice wine fermentation by a portable spectral analytical system combined with multivariate analysis.

    PubMed

    Ouyang, Qin; Zhao, Jiewen; Pan, Wenxiu; Chen, Quansheng

    2016-01-01

    A portable and low-cost spectral analytical system was developed and used to monitor real-time process parameters, i.e. total sugar content (TSC), alcohol content (AC) and pH during rice wine fermentation. Various partial least square (PLS) algorithms were implemented to construct models. The performance of a model was evaluated by the correlation coefficient (Rp) and the root mean square error (RMSEP) in the prediction set. Among the models used, the synergy interval PLS (Si-PLS) was found to be superior. The optimal performance by the Si-PLS model for the TSC was Rp = 0.8694, RMSEP = 0.438; the AC was Rp = 0.8097, RMSEP = 0.617; and the pH was Rp = 0.9039, RMSEP = 0.0805. The stability and reliability of the system, as well as the optimal models, were verified using coefficients of variation, most of which were found to be less than 5%. The results suggest this portable system is a promising tool that could be used as an alternative method for rapid monitoring of process parameters during rice wine fermentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. UMCS feasibility study for Fort George G. Meade. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    Fort George G. Meade selected eighty-three (83) buildings, from the approximately 1,500 buildings on the base to be included in the UMCS Feasibility Study. The purpose of the study is to evaluate the feasibility of replacing the existing analog based Energy Monitoring and Control System (EMCS) with a new distributed process Monitoring and Control System (UMCS).

  7. UMCS feasibility study for Fort George G. Meade volume 1. Feasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    Fort George G. Meade selected 83 buildings, from the approximately 1,500 buildings on the base to be included in the UMCS Feasibility Study. The purpose of the study is to evaluate the feasibility of replacing the existing analog based Energy Monitoring and Control System (EMCS) with a new distributed process Monitoring and Control System (UMCS).

  8. Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges

    PubMed Central

    Banaee, Hadi; Ahmed, Mobyen Uddin; Loutfi, Amy

    2013-01-01

    The past few years have witnessed an increase in the development of wearable sensors for health monitoring systems. This increase has been due to several factors such as development in sensor technology as well as directed efforts on political and stakeholder levels to promote projects which address the need for providing new methods for care given increasing challenges with an aging population. An important aspect of study in such system is how the data is treated and processed. This paper provides a recent review of the latest methods and algorithms used to analyze data from wearable sensors used for physiological monitoring of vital signs in healthcare services. In particular, the paper outlines the more common data mining tasks that have been applied such as anomaly detection, prediction and decision making when considering in particular continuous time series measurements. Moreover, the paper further details the suitability of particular data mining and machine learning methods used to process the physiological data and provides an overview of the properties of the data sets used in experimental validation. Finally, based on this literature review, a number of key challenges have been outlined for data mining methods in health monitoring systems. PMID:24351646

  9. Data mining for wearable sensors in health monitoring systems: a review of recent trends and challenges.

    PubMed

    Banaee, Hadi; Ahmed, Mobyen Uddin; Loutfi, Amy

    2013-12-17

    The past few years have witnessed an increase in the development of wearable sensors for health monitoring systems. This increase has been due to several factors such as development in sensor technology as well as directed efforts on political and stakeholder levels to promote projects which address the need for providing new methods for care given increasing challenges with an aging population. An important aspect of study in such system is how the data is treated and processed. This paper provides a recent review of the latest methods and algorithms used to analyze data from wearable sensors used for physiological monitoring of vital signs in healthcare services. In particular, the paper outlines the more common data mining tasks that have been applied such as anomaly detection, prediction and decision making when considering in particular continuous time series measurements. Moreover, the paper further details the suitability of particular data mining and machine learning methods used to process the physiological data and provides an overview of the properties of the data sets used in experimental validation. Finally, based on this literature review, a number of key challenges have been outlined for data mining methods in health monitoring systems.

  10. Damage detection in bridges through fiber optic structural health monitoring

    NASA Astrophysics Data System (ADS)

    Doornink, J. D.; Phares, B. M.; Wipf, T. J.; Wood, D. L.

    2006-10-01

    A fiber optic structural health monitoring (SHM) system was developed and deployed by the Iowa State University (ISU) Bridge Engineering Center (BEC) to detect gradual or sudden damage in fracture-critical bridges (FCBs). The SHM system is trained with measured performance data, which are collected by fiber optic strain sensors to identify typical bridge behavior when subjected to ambient traffic loads. Structural responses deviating from the trained behavior are considered to be signs of structural damage or degradation and are identified through analytical procedures similar to control chart analyses used in statistical process control (SPC). The demonstration FCB SHM system was installed on the US Highway 30 bridge near Ames, IA, and utilizes 40 fiber bragg grating (FBG) sensors to continuously monitor the bridge response when subjected to ambient traffic loads. After the data is collected and processed, weekly evaluation reports are developed that summarize the continuous monitoring results. Through use of the evaluation reports, the bridge owner is able to identify and estimate the location and severity of the damage. The information presented herein includes an overview of the SHM components, results from laboratory and field validation testing on the system components, and samples of the reduced and analyzed data.

  11. Controlling Real-Time Processes On The Space Station With Expert Systems

    NASA Astrophysics Data System (ADS)

    Leinweber, David; Perry, John

    1987-02-01

    Many aspects of space station operations involve continuous control of real-time processes. These processes include electrical power system monitoring, propulsion system health and maintenance, environmental and life support systems, space suit checkout, on-board manufacturing, and servicing of attached vehicles such as satellites, shuttles, orbital maneuvering vehicles, orbital transfer vehicles and remote teleoperators. Traditionally, monitoring of these critical real-time processes has been done by trained human experts monitoring telemetry data. However, the long duration of space station missions and the high cost of crew time in space creates a powerful economic incentive for the development of highly autonomous knowledge-based expert control procedures for these space stations. In addition to controlling the normal operations of these processes, the expert systems must also be able to quickly respond to anomalous events, determine their cause and initiate corrective actions in a safe and timely manner. This must be accomplished without excessive diversion of system resources from ongoing control activities and any events beyond the scope of the expert control and diagnosis functions must be recognized and brought to the attention of human operators. Real-time sensor based expert systems (as opposed to off-line, consulting or planning systems receiving data via the keyboard) pose particular problems associated with sensor failures, sensor degradation and data consistency, which must be explicitly handled in an efficient manner. A set of these systems must also be able to work together in a cooperative manner. This paper describes the requirements for real-time expert systems in space station control, and presents prototype implementations of space station expert control procedures in PICON (process intelligent control). PICON is a real-time expert system shell which operates in parallel with distributed data acquisition systems. It incorporates a specialized inference engine with a specialized scheduling portion specifically designed to match the allocation of system resources with the operational requirements of real-time control systems. Innovative knowledge engineering techniques used in PICON to facilitate the development of real-time sensor-based expert systems which use the special features of the inference engine are illustrated in the prototype examples.

  12. The design of the intelligent monitoring system for dam safety

    NASA Astrophysics Data System (ADS)

    Yuan, Chun-qiao; Jiang, Chen-guang; Wang, Guo-hui

    2008-12-01

    Being a vital manmade water-control structure, a dam plays a very important role in the living and production of human being. To make a dam run safely, the best design and the superior construction quality are paramount; moreover, with working periods increasing, various dynamic, alternative and bad loads generate little by little various distortions on the dam structure inevitably, which shall lead to potential safety problems or further a disaster (dam burst). There are many signs before the occurrence of a dam accident, so the timely and effective surveying on the distortion of a dam is important. On the basis of the cause supra, two intelligent (automatic) monitoring systems about the dam's safety based on the RTK-GPS technology and the measuring robot has been developed. The basic principle, monitoring method and monitoring process of these two intelligent (automatic) monitoring systems are introduced. It presents examples of monitor and puts forward the basic rule of dam warning based on data of actual monitor.

  13. Early warning, warning or alarm systems for natural hazards? A generic classification.

    NASA Astrophysics Data System (ADS)

    Sättele, Martina; Bründl, Michael; Straub, Daniel

    2013-04-01

    Early warning, warning and alarm systems have gained popularity in recent years as cost-efficient measures for dangerous natural hazard processes such as floods, storms, rock and snow avalanches, debris flows, rock and ice falls, landslides, flash floods, glacier lake outburst floods, forest fires and even earthquakes. These systems can generate information before an event causes loss of property and life. In this way, they mainly mitigate the overall risk by reducing the presence probability of endangered objects. These systems are typically prototypes tailored to specific project needs. Despite their importance there is no recognised system classification. This contribution classifies warning and alarm systems into three classes: i) threshold systems, ii) expert systems and iii) model-based expert systems. The result is a generic classification, which takes the characteristics of the natural hazard process itself and the related monitoring possibilities into account. The choice of the monitoring parameters directly determines the system's lead time. The classification of 52 active systems moreover revealed typical system characteristics for each system class. i) Threshold systems monitor dynamic process parameters of ongoing events (e.g. water level of a debris flow) and incorporate minor lead times. They have a local geographical coverage and a predefined threshold determines if an alarm is automatically activated to warn endangered objects, authorities and system operators. ii) Expert systems monitor direct changes in the variable disposition (e.g crack opening before a rock avalanche) or trigger events (e.g. heavy rain) at a local scale before the main event starts and thus offer extended lead times. The final alarm decision incorporates human, model and organisational related factors. iii) Model-based expert systems monitor indirect changes in the variable disposition (e.g. snow temperature, height or solar radiation that influence the occurrence probability of snow avalanches) or trigger events (e.g. heavy snow fall) to predict spontaneous hazard events in advance. They encompass regional or national measuring networks and satisfy additional demands such as the standardisation of the measuring stations. The developed classification and the characteristics, which were revealed for each class, yield a valuable input to quantifying the reliability of warning and alarm systems. Importantly, this will facilitate to compare them with well-established standard mitigation measures such as dams, nets and galleries within an integrated risk management approach.

  14. EPICS as a MARTe Configuration Environment

    NASA Astrophysics Data System (ADS)

    Valcarcel, Daniel F.; Barbalace, Antonio; Neto, André; Duarte, André S.; Alves, Diogo; Carvalho, Bernardo B.; Carvalho, Pedro J.; Sousa, Jorge; Fernandes, Horácio; Goncalves, Bruno; Sartori, Filippo; Manduchi, Gabriele

    2011-08-01

    The Multithreaded Application Real-Time executor (MARTe) software provides an environment for the hard real-time execution of codes while leveraging a standardized algorithm development process. The Experimental Physics and Industrial Control System (EPICS) software allows the deployment and remote monitoring of networked control systems. Channel Access (CA) is the protocol that enables the communication between EPICS distributed components. It allows to set and monitor process variables across the network belonging to different systems. The COntrol and Data Acquisition and Communication (CODAC) system for the ITER Tokamak will be EPICS based and will be used to monitor and live configure the plant controllers. The reconfiguration capability in a hard real-time system requires strict latencies from the request to the actuation and it is a key element in the design of the distributed control algorithm. Presently, MARTe and its objects are configured using a well-defined structured language. After each configuration, all objects are destroyed and the system rebuilt, following the strong hard real-time rule that a real-time system in online mode must behave in a strictly deterministic fashion. This paper presents the design and considerations to use MARTe as a plant controller and enable it to be EPICS monitorable and configurable without disturbing the execution at any time, in particular during a plasma discharge. The solutions designed for this will be presented and discussed.

  15. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  16. An In-Process Surface Roughness Recognition System in End Milling Operations

    ERIC Educational Resources Information Center

    Yang, Lieh-Dai; Chen, Joseph C.

    2004-01-01

    To develop an in-process quality control system, a sensor technique and a decision-making algorithm need to be applied during machining operations. Several sensor techniques have been used in the in-process prediction of quality characteristics in machining operations. For example, an accelerometer sensor can be used to monitor the vibration of…

  17. On line instrument systems for monitoring steam turbogenerators

    NASA Astrophysics Data System (ADS)

    Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.

    A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.

  18. How to select a continuous emission monitoring system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radigan, M.J.

    1994-02-01

    Selecting a continuous emission monitoring system (CEMS) involves more than picking an analyzer. Successful CEMS interface sampling and data-management systems to produce accurate, reliable reports required by regulatory agencies. Following objective guidelines removes some of the misery from CEMS shopping. However, prospective CEMS buyers should do their homework and develop well-thought-out, detailed specification for the processes' sampling criteria. Fine tuning the analyzer/data management system can eliminate maintenance costs and keep the facility operating within its permit restrictions.

  19. Systems for monitoring and digitally recording water-quality parameters

    USGS Publications Warehouse

    Smoot, George F.; Blakey, James F.

    1966-01-01

    Digital recording of water-quality parameters is a link in the automated data collection and processing system of the U.S. Geological Survey. The monitoring and digital recording systems adopted by the Geological Survey, while punching all measurements on a standard paper tape, provide a choice of compatible components to construct a system to meet specific physical problems and data needs. As many as 10 parameters can be recorded by an Instrument, with the only limiting criterion being that measurements are expressed as electrical signals.

  20. A radar data processing and enhancement system

    NASA Technical Reports Server (NTRS)

    Anderson, K. F.; Wrin, J. W.; James, R.

    1986-01-01

    This report describes the space position data processing system of the NASA Western Aeronautical Test Range. The system is installed at the Dryden Flight Research Facility of NASA Ames Research Center. This operational radar data system (RADATS) provides simultaneous data processing for multiple data inputs and tracking and antenna pointing outputs while performing real-time monitoring, control, and data enhancement functions. Experience in support of the space shuttle and aeronautical flight research missions is described, as well as the automated calibration and configuration functions of the system.

  1. Exploiting analytics techniques in CMS computing monitoring

    NASA Astrophysics Data System (ADS)

    Bonacorsi, D.; Kuznetsov, V.; Magini, N.; Repečka, A.; Vaandering, E.

    2017-10-01

    The CMS experiment has collected an enormous volume of metadata about its computing operations in its monitoring systems, describing its experience in operating all of the CMS workflows on all of the Worldwide LHC Computing Grid Tiers. Data mining efforts into all these information have rarely been done, but are of crucial importance for a better understanding of how CMS did successful operations, and to reach an adequate and adaptive modelling of the CMS operations, in order to allow detailed optimizations and eventually a prediction of system behaviours. These data are now streamed into the CERN Hadoop data cluster for further analysis. Specific sets of information (e.g. data on how many replicas of datasets CMS wrote on disks at WLCG Tiers, data on which datasets were primarily requested for analysis, etc) were collected on Hadoop and processed with MapReduce applications profiting of the parallelization on the Hadoop cluster. We present the implementation of new monitoring applications on Hadoop, and discuss the new possibilities in CMS computing monitoring introduced with the ability to quickly process big data sets from mulltiple sources, looking forward to a predictive modeling of the system.

  2. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Guaglio, G.; Dehning, B.; Santoni, C.

    2004-11-01

    The employment of superconducting magnets in high energy colliders opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particle losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standard databases. All the data have been processed by reliability software (Isograph). The analysis ranges from the components data to the system configuration.

  3. Developing the Tools for Geologic Repository Monitoring - Andra's Monitoring R and D Program - 12045

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buschaert, S.; Lesoille, S.; Bertrand, J.

    2012-07-01

    The French Safety Guide recommends that Andra develop a monitoring program to be implemented during repository construction and conducted until (and possibly after) closure, in order to confirm expected behavior and enhance knowledge of relevant processes. To achieve this, Andra has developed an overall monitoring strategy and identified specific technical objectives to inform disposal process management on evolutions relevant to both the long term safety and reversible, pre-closure management of the repository. Andra has launched an ambitious R and D program to ensure that reliable, durable, metrologically qualified and tested monitoring systems will be available at the time of repositorymore » construction in order to respond to monitoring objectives. After four years of a specific R and D program, first observations are described and recommendations are proposed. The results derived from 4 years of Andra's R and D program allow three main observations to be shared. First, while other industries also invest in monitoring equipment, their obvious emphasis will always be on their specific requirements and needs, thus often only providing a partial match with repository requirements. Examples can be found for all available sensors, which are generally not resistant to radiation. Second, the very close scrutiny anticipated for the geologic disposal process is likely to place an unprecedented emphasis on the quality of monitoring results. It therefore seems important to emphasize specific developments with an aim at providing metrologically qualified systems. Third, adapting existing technology to specific repository needs, and providing adequate proof of their worth, is a lengthy process. In conclusion, it therefore seems prudent to plan ahead and to invest wisely in the adequate development of those monitoring tools that will likely be needed in the repository to respond to the implementers' and regulators' requirements, including those agreed and developed to respond to potential stakeholder expectations. (authors)« less

  4. ReactorHealth Physics operations at the NIST center for neutron research.

    PubMed

    Johnston, Thomas P

    2015-02-01

    Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.

  5. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  6. Designing an autonomous environment for mission critical operation of the EUVE satellite

    NASA Technical Reports Server (NTRS)

    Abedini, Annadiana; Malina, Roger F.

    1994-01-01

    Since the launch of NASA's Extreme Ultraviolet Explorer (EUVE) satellite in 1992, there has only been a handful of occurrences that have warranted manual intervention in the EUVE Science Operations Center (ESOC). So, in an effort to reduce costs, the current environment is being redesigned to utilize a combination of off-the-shelf packages and recently developed artificial intelligence (AI) software to automate the monitoring of the science payload and ground systems. The successful implementation of systemic automation would allow the ESOC to evolve from a seven day/week, three shift operation, to a seven day/week one shift operation. First, it was necessary to identify all areas considered mission critical. These were defined as follows: (1) The telemetry stream must be monitored autonomously and anomalies identified. (2) Duty personnel must be automatically paged and informed of the occurrence of an anomaly. (3) The 'basic' state of the ground system must be assessed. (4) Monitors should check that the systems and processes needed to continue in a 'healthy' operational mode are working at all times. (5) Network loads should be monitored to ensure that they stay within established limits. (6) Connectivity to Goddard Space Flight Center (GSFC) systems should be monitored as well, not just for connectivity of the network itself but also for the ability to transfer files. (7) All necessary peripheral devices should be monitored. This would include the disks, routers, tape drives, printers, tape carousel, and power supplies. (8) System daemons such as the archival daemon, the Sybase server, the payload monitoring software, and any other necessary processes should be monitored to ensure that they are operational. (9) The monitoring system needs to be redundant so that the failure of a single machine will not paralyze the monitors. (10) Notification should be done by means of looking though a table of the pager numbers for current 'on call' personnel. The software should be capable of dialing out to notify, sending email, and producing error logs. (11) The system should have knowledge of when real-time passes and tape recorder dumps will occur and should know that these passes and data transmissions are successful. Once the design criteria were established, the design team split into two groups: one that addressed the tracking, commanding, and health and safety of the science payload and another group that addressed the ground systems and communications aspects of the overall system.

  7. An architecture for heuristic control of real-time processes

    NASA Technical Reports Server (NTRS)

    Raulefs, P.; Thorndyke, P. W.

    1987-01-01

    Abstract Process management combines complementary approaches of heuristic reasoning and analytical process control. Management of a continuous process requires monitoring the environment and the controlled system, assessing the ongoing situation, developing and revising planned actions, and controlling the execution of the actions. For knowledge-intensive domains, process management entails the potentially time-stressed cooperation among a variety of expert systems. By redesigning a blackboard control architecture in an object-oriented framework, researchers obtain an approach to process management that considerably extends blackboard control mechanisms and overcomes limitations of blackboard systems.

  8. Integrating physically based simulators with Event Detection Systems: Multi-site detection approach.

    PubMed

    Housh, Mashor; Ohar, Ziv

    2017-03-01

    The Fault Detection (FD) Problem in control theory concerns of monitoring a system to identify when a fault has occurred. Two approaches can be distinguished for the FD: Signal processing based FD and Model-based FD. The former concerns of developing algorithms to directly infer faults from sensors' readings, while the latter uses a simulation model of the real-system to analyze the discrepancy between sensors' readings and expected values from the simulation model. Most contamination Event Detection Systems (EDSs) for water distribution systems have followed the signal processing based FD, which relies on analyzing the signals from monitoring stations independently of each other, rather than evaluating all stations simultaneously within an integrated network. In this study, we show that a model-based EDS which utilizes a physically based water quality and hydraulics simulation models, can outperform the signal processing based EDS. We also show that the model-based EDS can facilitate the development of a Multi-Site EDS (MSEDS), which analyzes the data from all the monitoring stations simultaneously within an integrated network. The advantage of the joint analysis in the MSEDS is expressed by increased detection accuracy (higher true positive alarms and fewer false alarms) and shorter detection time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An Interoperable System toward Cardiac Risk Stratification from ECG Monitoring

    PubMed Central

    Mora-Jiménez, Inmaculada; Ramos-López, Javier; Quintanilla Fernández, Teresa; García-García, Antonio; Díez-Mazuela, Daniel; García-Alberola, Arcadi

    2018-01-01

    Many indices have been proposed for cardiovascular risk stratification from electrocardiogram signal processing, still with limited use in clinical practice. We created a system integrating the clinical definition of cardiac risk subdomains from ECGs and the use of diverse signal processing techniques. Three subdomains were defined from the joint analysis of the technical and clinical viewpoints. One subdomain was devoted to demographic and clinical data. The other two subdomains were intended to obtain widely defined risk indices from ECG monitoring: a simple-domain (heart rate turbulence (HRT)), and a complex-domain (heart rate variability (HRV)). Data provided by the three subdomains allowed for the generation of alerts with different intensity and nature, as well as for the grouping and scrutinization of patients according to the established processing and risk-thresholding criteria. The implemented system was tested by connecting data from real-world in-hospital electronic health records and ECG monitoring by considering standards for syntactic (HL7 messages) and semantic interoperability (archetypes based on CEN/ISO EN13606 and SNOMED-CT). The system was able to provide risk indices and to generate alerts in the health records to support decision-making. Overall, the system allows for the agile interaction of research and clinical practice in the Holter-ECG-based cardiac risk domain. PMID:29494497

  10. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project.

    PubMed

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghesso, Gaudenzio; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe; Cenedese, Angelo

    2018-04-07

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery.

  11. Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project

    PubMed Central

    Trivellin, Nicola; Barbisan, Diego; Badocco, Denis; Pastore, Paolo; Meneghini, Matteo; Zanoni, Enrico; Belgioioso, Giuseppe

    2018-01-01

    The importance of oxygen in the winemaking process is widely known, as it affects the chemical aspects and therefore the organoleptic characteristics of the final product. Hence, it is evident the usefulness of a continuous and real-time measurements of the levels of oxygen in the various stages of the winemaking process, both for monitoring and for control. The WOW project (Deployment of WSAN technology for monitoring Oxygen in Wine products) has focused on the design and the development of an innovative device for monitoring the oxygen levels in wine. This system is based on the use of an optical fiber to measure the luminescent lifetime variation of a reference metal/porphyrin complex, which decays in presence of oxygen. The developed technology results in a high sensitivity and low cost sensor head that can be employed for measuring the dissolved oxygen levels at several points inside a wine fermentation or aging tank. This system can be complemented with dynamic modeling techniques to provide predictive behavior of the nutrient evolution in space and time given few sampled measuring points, for both process monitoring and control purposes. The experimental validation of the technology has been first performed in a controlled laboratory setup to attain calibration and study sensitivity with respect to different photo-luminescent compounds and alcoholic or non-alcoholic solutions, and then in an actual case study during a measurement campaign at a renown Italian winery. PMID:29642468

  12. Study on the multi-sensors monitoring and information fusion technology of dangerous cargo container

    NASA Astrophysics Data System (ADS)

    Xu, Shibo; Zhang, Shuhui; Cao, Wensheng

    2017-10-01

    In this paper, monitoring system of dangerous cargo container based on multi-sensors is presented. In order to improve monitoring accuracy, multi-sensors will be applied inside of dangerous cargo container. Multi-sensors information fusion solution of monitoring dangerous cargo container is put forward, and information pre-processing, the fusion algorithm of homogenous sensors and information fusion based on BP neural network are illustrated, applying multi-sensors in the field of container monitoring has some novelty.

  13. Statistically qualified neuro-analytic failure detection method and system

    DOEpatents

    Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

    2002-03-02

    An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.

  14. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified tomore » include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  15. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to includemore » process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less

  16. Dual sensitivity mode system for monitoring processes and sensors

    DOEpatents

    Wilks, Alan D.; Wegerich, Stephan W.; Gross, Kenneth C.

    2000-01-01

    A method and system for analyzing a source of data. The system and method involves initially training a system using a selected data signal, calculating at least two levels of sensitivity using a pattern recognition methodology, activating a first mode of alarm sensitivity to monitor the data source, activating a second mode of alarm sensitivity to monitor the data source and generating a first alarm signal upon the first mode of sensitivity detecting an alarm condition and a second alarm signal upon the second mode of sensitivity detecting an associated alarm condition. The first alarm condition and second alarm condition can be acted upon by an operator and/or analyzed by a specialist or computer program.

  17. Humanoid Flight Metabolic Simulator Project

    NASA Technical Reports Server (NTRS)

    Ross, Stuart

    2015-01-01

    NASA's Evolvable Mars Campaign (EMC) has identified several areas of technology that will require significant improvements in terms of performance, capacity, and efficiency, in order to make a manned mission to Mars possible. These include crew vehicle Environmental Control and Life Support System (ECLSS), EVA suit Portable Life Support System (PLSS) and Information Systems, autonomous environmental monitoring, radiation exposure monitoring and protection, and vehicle thermal control systems (TCS). (MADMACS) in a Suit can be configured to simulate human metabolism, consuming crew resources (oxygen) in the process. In addition to providing support for testing Life Support on unmanned flights, MADMACS will also support testing of suit thermal controls, and monitor radiation exposure, body zone temperatures, moisture, and loads.

  18. Risk Identification in a Smart Monitoring System Used to Preserve Artefacts Based on Textile Materials

    NASA Astrophysics Data System (ADS)

    Diaconescu, V. D.; Scripcariu, L.; Mătăsaru, P. D.; Diaconescu, M. R.; Ignat, C. A.

    2018-06-01

    Exhibited textile-materials-based artefacts can be affected by the environmental conditions. A smart monitoring system that commands an adaptive automatic environment control system is proposed for indoor exhibition spaces containing various textile artefacts. All exhibited objects are monitored by many multi-sensor nodes containing temperature, relative humidity and light sensors. Data collected periodically from the entire sensor network is stored in a database and statistically processed in order to identify and classify the environment risk. Risk consequences are analyzed depending on the risk class and the smart system commands different control measures in order to stabilize the indoor environment conditions to the recommended values and prevent material degradation.

  19. A safety monitoring system for taxi based on CMOS imager

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    2005-01-01

    CMOS image sensors now become increasingly competitive with respect to their CCD counterparts, while adding advantages such as no blooming, simpler driving requirements and the potential of on-chip integration of sensor, analogue circuitry, and digital processing functions. A safety monitoring system for taxi based on cmos imager that can record field situation when unusual circumstance happened is described in this paper. The monitoring system is based on a CMOS imager (OV7120), which can output digital image data through parallel pixel data port. The system consists of a CMOS image sensor, a large capacity NAND FLASH ROM, a USB interface chip and a micro controller (AT90S8515). The structure of whole system and the test data is discussed and analyzed in detail.

  20. Monitoring and analysis of data from complex systems

    NASA Technical Reports Server (NTRS)

    Dollman, Thomas; Webster, Kenneth

    1991-01-01

    Some of the methods, systems, and prototypes that have been tested for monitoring and analyzing the data from several spacecraft and vehicles at the Marshall Space Flight Center are introduced. For the Huntsville Operations Support Center (HOSC) infrastructure, the Marshall Integrated Support System (MISS) provides a migration path to the state-of-the-art workstation environment. Its modular design makes it possible to implement the system in stages on multiple platforms without the need for all components to be in place at once. The MISS provides a flexible, user-friendly environment for monitoring and controlling orbital payloads. In addition, new capabilities and technology may be incorporated into MISS with greater ease. The use of information systems technology in advanced prototype phases, as adjuncts to mainline activities, is used to evaluate new computational techniques for monitoring and analysis of complex systems. Much of the software described (specially, HSTORESIS (Hubble Space Telescope Operational Readiness Expert Safemode Investigation System), DRS (Device Reasoning Shell), DART (Design Alternatives Rational Tool), elements of the DRA (Document Retrieval Assistant), and software for the PPS (Peripheral Processing System) and the HSPP (High-Speed Peripheral Processor)) is available with supporting documentation, and may be applicable to other system monitoring and analysis applications.

  1. Model-based reasoning in SSF ECLSS

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Williams, George P. W., Jr.

    1992-01-01

    The interacting processes and reconfigurable subsystems of the Space Station Freedom Environmental Control and Life Support System (ECLSS) present a tremendous technical challenge to Freedom's crew and ground support. ECLSS operation and problem analysis is time-consuming for crew members and difficult for current computerized control, monitoring, and diagnostic software. These challenges can be at least partially mitigated by the use of advanced techniques such as Model-Based Reasoning (MBR). This paper will provide an overview of MBR as it is being applied to Space Station Freedom ECLSS. It will report on work being done to produce intelligent systems to help design, control, monitor, and diagnose Freedom's ECLSS. Specifically, work on predictive monitoring, diagnosability, and diagnosis, with emphasis on the automated diagnosis of the regenerative water recovery and air revitalization processes will be discussed.

  2. A knowledge based expert system for propellant system monitoring at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Jamieson, J. R.; Delaune, C.; Scarl, E.

    1985-01-01

    The Lox Expert System (LES) is the first attempt to build a realtime expert system capable of simulating the thought processes of NASA system engineers, with regard to fluids systems analysis and troubleshooting. An overview of the hardware and software describes the techniques used, and possible applications to other process control systems. LES is now in the advanced development stage, with a full implementation planned for late 1985.

  3. Design and implementation of a status at a glance user interface for a power distribution expert system

    NASA Technical Reports Server (NTRS)

    Liberman, Eugene M.; Manner, David B.; Dolce, James L.; Mellor, Pamela A.

    1993-01-01

    Expert systems are widely used in health monitoring and fault detection applications. One of the key features of an expert system is that it possesses a large body of knowledge about the application for which it was designed. When the user consults this knowledge base, it is essential that the expert system's reasoning process and its conclusions be as concise as possible. If, in addition, an expert system is part of a process monitoring system, the expert system's conclusions must be combined with current events of the process. Under these circumstances, it is difficult for a user to absorb and respond to all the available information. For example, a user can become distracted and confused if two or more unrelated devices in different parts of the system require attention. A human interface designed to integrate expert system diagnoses with process data and to focus the user's attention to the important matters provides a solution to the 'information overload' problem. This paper will discuss a user interface to the power distribution expert system for Space Station Freedom. The importance of features which simplify assessing system status and which minimize navigating through layers of information will be discussed. Design rationale and implementation choices will also be presented.

  4. The KATE shell: An implementation of model-based control, monitor and diagnosis

    NASA Technical Reports Server (NTRS)

    Cornell, Matthew

    1987-01-01

    The conventional control and monitor software currently used by the Space Center for Space Shuttle processing has many limitations such as high maintenance costs, limited diagnostic capabilities and simulation support. These limitations have caused the development of a knowledge based (or model based) shell to generically control and monitor electro-mechanical systems. The knowledge base describes the system's structure and function and is used by a software shell to do real time constraints checking, low level control of components, diagnosis of detected faults, sensor validation, automatic generation of schematic diagrams and automatic recovery from failures. This approach is more versatile and more powerful than the conventional hard coded approach and offers many advantages over it, although, for systems which require high speed reaction times or aren't well understood, knowledge based control and monitor systems may not be appropriate.

  5. Monitoring Effective Doses Received By Air Crews With A Space Weather Application

    NASA Astrophysics Data System (ADS)

    Lantos, P.

    To fulfil new requirements of the European Community concerning monitoring of effective doses received by air crews, the French Aviation Authority has developed an operational system called Sievert. The SIEVERT system is analysed as an exam- ple of Space Weather application. One of its characteristics is to calculate the dose received on-board each flight on the basis of the specific and detailled flight given by companies. Operational models will be used. As input to the models, the system needs monitoring of galactic cosmic rays and of solar flare particles. The French neu- tron monitors located in Kerguelen Islands (South Indian Ocean) and Terre Adélie (Antarctica) will be used for this purpose. Particular attention will be devoted to evo- lution of the system in conjunction with new measurements available in the frame of a permanent validation process.

  6. Development of a wearable wireless body area network for health monitoring of the elderly and disabled

    NASA Astrophysics Data System (ADS)

    Rushambwa, Munyaradzi C.; Gezimati, Mavis; Jeeva, J. B.

    2017-11-01

    Novel advancements in systems miniaturization, electronics in health care and communication technologies are enabling the integration of both patients and doctors involvement in health care system. A Wearable Wireless Body Area Network (WWBAN) provides continuous, unobtrusive ambulatory, ubiquitous health monitoring, and provide real time patient’s status to the physician without any constraint on their normal daily life activities. In this project we developed a wearable wireless body area network system that continuously monitor the health of the elderly and the disabled and provide them with independent, safe and secure living. The WWBAN system monitors the following parameters; blood oxygen saturation using a pulse oximeter sensor (SpO2), heart rate (HR) pulse sensor, Temperature, hydration, glucose level and fall detection. When the wearable system is put on, the sensor values are processed and analysed. If any of the monitored parameter values falls below or exceeds the normal range, there is trigger of remote alert by which an SMS is send to a doctor or physician via GSM module and network. The developed system offers flexibility and mobility to the user; it is a real time system and has significance in revolutionizing health care system by enabling non-invasive, inexpensive, continuous health monitoring.

  7. FTIR Monitoring Of Curing Of Composites

    NASA Technical Reports Server (NTRS)

    Druy, Mark A.; Stevenson, William A.; Young, Philip R.

    1990-01-01

    Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.

  8. Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems

    NASA Astrophysics Data System (ADS)

    Weigand, Maximilian; Kemna, Andreas

    2017-02-01

    A better understanding of root-soil interactions and associated processes is essential in achieving progress in crop breeding and management, prompting the need for high-resolution and non-destructive characterization methods. To date, such methods are still lacking or restricted by technical constraints, in particular the charactization and monitoring of root growth and function in the field. A promising technique in this respect is electrical impedance tomography (EIT), which utilizes low-frequency (< 1 kHz)- electrical conduction- and polarization properties in an imaging framework. It is well established that cells and cell clusters exhibit an electrical polarization response in alternating electric-current fields due to electrical double layers which form at cell membranes. This double layer is directly related to the electrical surface properties of the membrane, which in turn are influenced by nutrient dynamics (fluxes and concentrations on both sides of the membranes). Therefore, it can be assumed that the electrical polarization properties of roots are inherently related to ion uptake and translocation processes in the root systems. We hereby propose broadband (mHz to hundreds of Hz) multi-frequency EIT as a non-invasive methodological approach for the monitoring and physiological, i.e., functional, characterization of crop root systems. The approach combines the spatial-resolution capability of an imaging method with the diagnostic potential of electrical-impedance spectroscopy. The capability of multi-frequency EIT to characterize and monitor crop root systems was investigated in a rhizotron laboratory experiment, in which the root system of oilseed plants was monitored in a water-filled rhizotron, that is, in a nutrient-deprived environment. We found a low-frequency polarization response of the root system, which enabled the successful delineation of its spatial extension. The magnitude of the overall polarization response decreased along with the physiological decay of the root system due to the stress situation. Spectral polarization parameters, as derived from a pixel-based Debye decomposition analysis of the multi-frequency imaging results, reveal systematic changes in the spatial and spectral electrical response of the root system. In particular, quantified mean relaxation times (of the order of 10 ms) indicate changes in the length scales on which the polarization processes took place in the root system, as a response to the prolonged induced stress situation. Our results demonstrate that broadband EIT is a capable, non-invasive method to image root system extension as well as to monitor changes associated with the root physiological processes. Given its applicability on both laboratory and field scales, our results suggest an enormous potential of the method for the structural and functional imaging of root systems for various applications. This particularly holds for the field scale, where corresponding methods are highly desired but to date are lacking.

  9. A processing centre for the CNES CE-GPS experimentation

    NASA Technical Reports Server (NTRS)

    Suard, Norbert; Durand, Jean-Claude

    1994-01-01

    CNES is involved in a GPS (Global Positioning System) geostationary overlay experimentation. The purpose of this experimentation is to test various new techniques in order to select the optimal station synchronization method, as well as the geostationary spacecraft orbitography method. These new techniques are needed to develop the Ranging GPS Integrity Channel services. The CNES experimentation includes three transmitting/receiving ground stations (manufactured by IN-SNEC), one INMARSAT 2 C/L band transponder and a processing center named STE (Station de Traitements de l'Experimentation). Not all the techniques to be tested are implemented, but the experimental system has to include several functions; part of the future system simulation functions, such as a servo-loop function, and in particular a data collection function providing for rapid monitoring of system operation, analysis of existing ground station processes, and several weeks of data coverage for other scientific studies. This paper discusses system architecture and some criteria used in its design, as well as the monitoring function, the approach used to develop a low-cost and short-life processing center in collaboration with a CNES sub-contractor (ATTDATAID), and some results.

  10. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx

    PubMed Central

    Ferretti, Natascha Milesi; Galler, Michael A.; Bushby, Steven T.

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site. PMID:29167584

  11. Performance Monitoring of Chilled-Water Distribution Systems Using HVAC-Cx.

    PubMed

    Ferretti, Natascha Milesi; Galler, Michael A; Bushby, Steven T

    2017-01-01

    In this research we develop, test, and demonstrate the newest extension of the software HVAC-Cx (NIST and CSTB 2014), an automated commissioning tool for detecting common mechanical faults and control errors in chilled-water distribution systems (loops). The commissioning process can improve occupant comfort, ensure the persistence of correct system operation, and reduce energy consumption. Automated tools support the process by decreasing the time and the skill level required to carry out necessary quality assurance measures, and as a result they enable more thorough testing of building heating, ventilating, and air-conditioning (HVAC) systems. This paper describes the algorithm, developed by National Institute of Standards and Technology (NIST), to analyze chilled-water loops and presents the results of a passive monitoring investigation using field data obtained from BACnet ® (ASHRAE 2016) controllers and presents field validation of the findings. The tool was successful in detecting faults in system operation in its first field implementation supporting the investigation phase through performance monitoring. Its findings led to a full energy retrocommissioning of the field site.

  12. AN ADVANCED CALIBRATION PROCEDURE FOR COMPLEX IMPEDANCE SPECTRUM MEASUREMENTS OF ADVANCED ENERGY STORAGE DEVICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William H. Morrison; Jon P. Christophersen; Patrick Bald

    With the increasing demand for electric and hybrid electric vehicles and the explosion in popularity of mobile and portable electronic devices such as laptops, cell phones, e-readers, tablet computers and the like, reliance on portable energy storage devices such as batteries has likewise increased. The concern for the availability of critical systems in turn drives the availability of battery systems and thus the need for accurate battery health monitoring has become paramount. Over the past decade the Idaho National Laboratory (INL), Montana Tech of the University of Montana (Tech), and Qualtech Systems, Inc. (QSI) have been developing the Smart Batterymore » Status Monitor (SBSM), an integrated battery management system designed to monitor battery health, performance and degradation and use this knowledge for effective battery management and increased battery life. Key to the success of the SBSM is an in-situ impedance measurement system called the Impedance Measurement Box (IMB). One of the challenges encountered has been development of an accurate, simple, robust calibration process. This paper discusses the successful realization of this process.« less

  13. Based Real Time Remote Health Monitoring Systems: A Review on Patients Prioritization and Related "Big Data" Using Body Sensors information and Communication Technology.

    PubMed

    Kalid, Naser; Zaidan, A A; Zaidan, B B; Salman, Omar H; Hashim, M; Muzammil, H

    2017-12-29

    The growing worldwide population has increased the need for technologies, computerised software algorithms and smart devices that can monitor and assist patients anytime and anywhere and thus enable them to lead independent lives. The real-time remote monitoring of patients is an important issue in telemedicine. In the provision of healthcare services, patient prioritisation poses a significant challenge because of the complex decision-making process it involves when patients are considered 'big data'. To our knowledge, no study has highlighted the link between 'big data' characteristics and real-time remote healthcare monitoring in the patient prioritisation process, as well as the inherent challenges involved. Thus, we present comprehensive insights into the elements of big data characteristics according to the six 'Vs': volume, velocity, variety, veracity, value and variability. Each of these elements is presented and connected to a related part in the study of the connection between patient prioritisation and real-time remote healthcare monitoring systems. Then, we determine the weak points and recommend solutions as potential future work. This study makes the following contributions. (1) The link between big data characteristics and real-time remote healthcare monitoring in the patient prioritisation process is described. (2) The open issues and challenges for big data used in the patient prioritisation process are emphasised. (3) As a recommended solution, decision making using multiple criteria, such as vital signs and chief complaints, is utilised to prioritise the big data of patients with chronic diseases on the basis of the most urgent cases.

  14. Regulating task-monitoring systems in response to variable reward contingencies and outcomes in cocaine addicts.

    PubMed

    Morie, Kristen P; De Sanctis, Pierfilippo; Garavan, Hugh; Foxe, John J

    2016-03-01

    We investigated anticipatory and consummatory reward processing in cocaine addiction. In addition, we set out to assess whether task-monitoring systems were appropriately recalibrated in light of variable reward schedules. We also examined neural measures of task-monitoring and reward processing as a function of hedonic tone, since anhedonia is a vulnerability marker for addiction that is obviously germane in the context of reward processing. High-density event-related potentials were recorded while participants performed a speeded response task that systematically varied anticipated probabilities of reward receipt. The paradigm dissociated feedback regarding task success (or failure) from feedback regarding the value of reward (or loss), so that task-monitoring and reward processing could be examined in partial isolation. Twenty-three active cocaine abusers and 23 age-matched healthy controls participated. Cocaine abusers showed amplified anticipatory responses to reward predictive cues, but crucially, these responses were not as strongly modulated by reward probability as in controls. Cocaine users also showed blunted responses to feedback about task success or failure and did not use this information to update predictions about reward. In turn, they showed clearly blunted responses to reward feedback. In controls and users, measures of anhedonia were associated with reward motivation. In cocaine users, anhedonia was also associated with diminished monitoring and reward feedback responses. Findings imply that reward anticipation and monitoring deficiencies in addiction are associated with increased responsiveness to reward cues but impaired ability to predict reward in light of task contingencies, compounded by deficits in responding to actual reward outcomes.

  15. Student satisfaction as an element of education quality monitoring in innovative higher education institution

    NASA Astrophysics Data System (ADS)

    Razinkina, Elena; Pankova, Ludmila; Trostinskaya, Irina; Pozdeeva, Elena; Evseeva, Lidiya; Tanova, Anna

    2018-03-01

    Topicality of the research is confirmed by increasing student involvement into the educational process, when not only the academic staff and administration participate in the improvement of higher education institution's activity, but also education customers - students. This adds a new dimension to the issue of monitoring education quality and student satisfaction with higher education. This issue echoes the ideas of M. Weber about the relationship between such components as cognitive motivation, personal development and student satisfaction with higher education. Besides, it is essential to focus on the approach of R. Barnet to defining the quality of education with the emphasis on a priority of development of an educational institution as the system that meets customers' needs. Monitoring student satisfaction with education quality has become an integral part of the educational process not only in a number of European universities, which have used this monitoring for decades, but also in Russian universities, which are interested in education quality improvement. Leading universities in Russia, including Peter the Great St. Petersburg Polytechnic University, are implementing policies targeted at increasing student satisfaction with higher education quality. Education quality monitoring as a key element in the system of providing feedback to students contributes greatly to this process.

  16. The Cloud2SM Project

    NASA Astrophysics Data System (ADS)

    Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barosso, Guillermo; Simonin, Matthieu

    2015-04-01

    From the past decades the monitoring of civil engineering structure became a major field of research and development process in the domains of modelling and integrated instrumentation. This increasing of interest can be attributed in part to the need of controlling the aging of such structures and on the other hand to the need to optimize maintenance costs. From this standpoint the project Cloud2SM (Cloud architecture design for Structural Monitoring with in-line Sensors and Models tasking), has been launched to develop a robust information system able to assess the long term monitoring of civil engineering structures as well as interfacing various sensors and data. The specificity of such architecture is to be based on the notion of data processing through physical or statistical models. Thus the data processing, whether material or mathematical, can be seen here as a resource of the main architecture. The project can be divided in various items: -The sensors and their measurement process: Those items provide data to the main architecture and can embed storage or computational resources. Dependent of onboard capacity and the amount of data generated it can be distinguished heavy and light sensors. - The storage resources: Based on the cloud concept this resource can store at least two types of data, raw data and processed ones. - The computational resources: This item includes embedded "pseudo real time" resources as the dedicated computer cluster or computational resources. - The models: Used for the conversion of raw data to meaningful data. Those types of resources inform the system of their needs they can be seen as independents blocks of the system. - The user interface: This item can be divided in various HMI to assess maintaining operation on the sensors or pop-up some information to the user. - The demonstrators: The structures themselves. This project follows previous research works initiated in the European project ISTIMES [1]. It includes the infrared thermal monitoring of civil engineering structures [2-3] and/or the vibration monitoring of such structures [4-5]. The chosen architecture is based on the OGC standard in order to ensure the interoperability between the various measurement systems. This concept is extended to the notion of physical models. The last but not the least main objective of this project is to explore the feasibility and the reliability to deploy mathematical models and process a large amount of data using the GPGPU capacity of a dedicated computational cluster, while studying OGC standardization to those technical concepts. References [1] M. Proto et al., « Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing: the ISTIMES project », Journal Sensors, Sensors 2010, 10(12), 10620-10639; doi:10.3390/s101210620, December 2010. [2] J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, 17 pages ,November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [3] J Dumoulin and V Boucher; "Infrared thermography system for transport infrastructures survey with inline local atmospheric parameter measurements and offline model for radiation attenuation evaluations," J. Appl. Remote Sens., 8(1), 084978 (2014). doi:10.1117/1.JRS.8.084978. [4] V. Le Cam, M. Doehler, M. Le Pen, L. Mevel. "Embedded modal analysis algorithms on the smart wireless sensor platform PEGASE", In Proc. 9th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 2013. [5] M. Zghal, L. Mevel, P. Del Moral, "Modal parameter estimation using interacting Kalman filter", Mechanical Systems and Signal Processing, 2014.

  17. Contamination of estuaries from failing septic tank systems: difficulties in scaling up from monitored individual systems to cumulative impact.

    PubMed

    Geary, Phillip; Lucas, Steven

    2018-02-03

    Aquaculture in many coastal estuaries is threatened by diffuse sources of runoff from different land use activities. The poor performance of septic tank systems (STS), as well as runoff from agriculture, may contribute to the movement of contaminants through ground and surface waters to estuaries resulting in oyster contamination, and following their consumption, impacts to human health. In monitoring individual STS in sensitive locations, it is possible to show that nutrients and faecal contaminants are transported through the subsurface in sandy soils off-site with little attenuation. At the catchment scale however, there are always difficulties in discerning direct linkages between failing STS and water contamination due to processes such as effluent dilution, adsorption, precipitation and vegetative uptake. There is often substantial complexity in detecting and tracing effluent pathways from diffuse sources to water bodies in field studies. While source tracking as well as monitoring using tracers may assist in identifying potential pathways from STS to surface waters and estuaries, there are difficulties in scaling up from monitored individual systems to identify their contribution to the cumulative impact which may be apparent at the catchment scale. The processes which may be obvious through monitoring and dominate at the individual scale may be masked and not readily discernible at the catchment scale due to impacts from other land use activities.

  18. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  19. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  20. SSV Launch Monitoring Strategies: HGDS Design Implementation Through System Maturity

    NASA Technical Reports Server (NTRS)

    Shoemaker, Marc D.; Crimi, Thomas

    2010-01-01

    With over 500,000 gallons of liquid hydrogen and liquid oxygen, it is of vital importance to monitor the space shuttle vehicle (SSV) from external tank (ET) load through launch. The Hazardous Gas Detection System (HGDS) was installed as the primary system responsible for monitoring fuel leaks within the orbiter and ET. The HGDS was designed to obtain the lowest possible detection limits with the best resolution while monitoring the SSV for any hydrogen, helium, oxygen, or argon as the main requirement. The HGDS is a redundant mass spectrometer used for real-time monitoring during Power Reactant Storage and Distribution (PRSD) load and ET load through launch or scrub. This system also performs SSV processing leak checks of the Tail Service Mast (TSM) umbilical quick disconnects (QD's), Ground Umbilical Carrier Plate (GUCP) QD's and supports auxiliary power unit (APU) system tests. From design to initial implementation and operations, the HGDS has evolved into a mature and reliable launch support system. This paper will discuss the operational challenges and lessons learned from facing design deficiencies, validation and maintenance efforts, life cycle issues, and evolving requirements

  1. Advances in the continuous monitoring of erosion and deposition dynamics: Developments and applications of the new PEEP-3T system

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.

    2008-01-01

    In most episodic erosion and deposition systems, knowledge of the timing of geomorphological change, in relation to fluctuations in the driving forces, is crucial to strong erosion process inference, and model building, validation and development. A challenge for geomorphology, however, is that few studies have focused on geomorphological event structure (timing, magnitude, frequency and duration of individual erosion and deposition events), in relation to applied stresses, because of the absence of key monitoring methodologies. This paper therefore (a) presents full details of a new erosion and deposition measurement system — PEEP-3T — developed from the Photo-Electronic Erosion Pin sensor in five key areas, including the addition of nocturnal monitoring through the integration of the Thermal Consonance Timing (TCT) concept, to produce a continuous sensing system; (b) presents novel high-resolution datasets from the redesigned PEEP-3T system for river bank system of the Rivers Nidd and Wharfe, northern England, UK; and (c) comments on their potential for wider application throughout geomorphology to address these key measurement challenges. Relative to manual methods of erosion and deposition quantification, continuous PEEP-3T methodologies increase the temporal resolution of erosion/deposition event detection by more than three orders of magnitude (better than 1-second resolution if required), and this facility can significantly enhance process inference. Results show that river banks are highly dynamic thermally and respond quickly to radiation inputs. Data on bank retreat timing, fixed with PEEP-3T TCT evidence, confirmed that they were significantly delayed up to 55 h after flood peaks. One event occurred 13 h after emergence from the flow. This suggests that mass failure processes rather than fluid entrainment dominated the system. It is also shown how, by integrating turbidity instrumentation with TCT ideas, linkages between sediment supply and sediment flux can be forged at event timescales, and a lack of sediment exhaustion was evident here. Five challenges for wider geomorphological process investigation are discussed. This event-based dynamics approach, based on continuous monitoring methodologies, appears to have considerable wider potential for stronger process inference and model testing and validation in many areas of geomorphology.

  2. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    NASA Technical Reports Server (NTRS)

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-01-01

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  3. The Multi-Isotope Process (MIP) Monitor Project: FY13 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, David E.; Coble, Jamie B.; Jordan, David V.

    The Multi-Isotope Process (MIP) Monitor provides an efficient approach to monitoring the process conditions in reprocessing facilities in support of the goal of “… (minimization of) the risks of nuclear proliferation and terrorism.” The MIP Monitor measures the distribution of the radioactive isotopes in product and waste streams of a nuclear reprocessing facility. These isotopes are monitored online by gamma spectrometry and compared, in near-real-time, to spectral patterns representing “normal” process conditions using multivariate analysis and pattern recognition algorithms. The combination of multivariate analysis and gamma spectroscopy allows us to detect small changes in the gamma spectrum, which may indicatemore » changes in process conditions. By targeting multiple gamma-emitting indicator isotopes, the MIP Monitor approach is compatible with the use of small, portable, relatively high-resolution gamma detectors that may be easily deployed throughout an existing facility. The automated multivariate analysis can provide a level of data obscurity, giving a built-in information barrier to protect sensitive or proprietary operational data. Proof-of-concept simulations and experiments have been performed in previous years to demonstrate the validity of this tool in a laboratory setting for systems representing aqueous reprocessing facilities. However, pyroprocessing is emerging as an alternative to aqueous reprocessing techniques.« less

  4. A KPI framework for process-based benchmarking of hospital information systems.

    PubMed

    Jahn, Franziska; Winter, Alfred

    2011-01-01

    Benchmarking is a major topic for monitoring, directing and elucidating the performance of hospital information systems (HIS). Current approaches neglect the outcome of the processes that are supported by the HIS and their contribution to the hospital's strategic goals. We suggest to benchmark HIS based on clinical documentation processes and their outcome. A framework consisting of a general process model and outcome criteria for clinical documentation processes is introduced.

  5. Development of A Low-Cost FPGA-Based Measurement System for Real-Time Processing of Acoustic Emission Data: Proof of Concept Using Control of Pulsed Laser Ablation in Liquids.

    PubMed

    Wirtz, Sebastian F; Cunha, Adauto P A; Labusch, Marc; Marzun, Galina; Barcikowski, Stephan; Söffker, Dirk

    2018-06-01

    Today, the demand for continuous monitoring of valuable or safety critical equipment is increasing in many industrial applications due to safety and economical requirements. Therefore, reliable in-situ measurement techniques are required for instance in Structural Health Monitoring (SHM) as well as process monitoring and control. Here, current challenges are related to the processing of sensor data with a high data rate and low latency. In particular, measurement and analyses of Acoustic Emission (AE) are widely used for passive, in-situ inspection. Advantages of AE are related to its sensitivity to different micro-mechanical mechanisms on the material level. However, online processing of AE waveforms is computationally demanding. The related equipment is typically bulky, expensive, and not well suited for permanent installation. The contribution of this paper is the development of a Field Programmable Gate Array (FPGA)-based measurement system using ZedBoard devlopment kit with Zynq-7000 system on chip for embedded implementation of suitable online processing algorithms. This platform comprises a dual-core Advanced Reduced Instruction Set Computer Machine (ARM) architecture running a Linux operating system and FPGA fabric. A FPGA-based hardware implementation of the discrete wavelet transform is realized to accelerate processing the AE measurements. Key features of the system are low cost, small form factor, and low energy consumption, which makes it suitable to serve as field-deployed measurement and control device. For verification of the functionality, a novel automatically realized adjustment of the working distance during pulsed laser ablation in liquids is established as an example. A sample rate of 5 MHz is achieved at 16 bit resolution.

  6. New insights into the Kawah Ijen hydrothermal system from geophysical data

    USGS Publications Warehouse

    Caudron, Corentin; Mauri, G.; Williams-Jones, Glyn; Lecocq, Thomas; Syahbana, Devy Kamil; de Plaen, Raphael; Peiffer, Loic; Bernard, Alain; Saracco, Ginette

    2017-01-01

    Volcanoes with crater lakes and/or extensive hydrothermal systems pose significant challenges with respect to monitoring and forecasting eruptions, but they also provide new opportunities to enhance our understanding of magmatic–hydrothermal processes. Their lakes and hydrothermal systems serve as reservoirs for magmatic heat and fluid emissions, filtering and delaying the surface expressions of magmatic unrest and eruption, yet they also enable sampling and monitoring of geochemical tracers. Here, we describe the outcomes of a highly focused international experimental campaign and workshop carried out at Kawah Ijen volcano, Indonesia, in September 2014, designed to answer fundamental questions about how to improve monitoring and eruption forecasting at wet volcanoes.

  7. Distributed architecture and distributed processing mode in urban sewage treatment

    NASA Astrophysics Data System (ADS)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Decentralized rural sewage treatment facility over the broad area, a larger operation and management difficult, based on the analysis of rural sewage treatment model based on the response to these challenges, we describe the principle, structure and function in networking technology and network communications technology as the core of distributed remote monitoring system, through the application of case analysis to explore remote monitoring system features in a decentralized rural sewage treatment facilities in the daily operation and management. Practice shows that the remote monitoring system to provide technical support for the long-term operation and effective supervision of the facilities, and reduced operating, maintenance and supervision costs for development.

  8. Job monitoring on DIRAC for Belle II distributed computing

    NASA Astrophysics Data System (ADS)

    Kato, Yuji; Hayasaka, Kiyoshi; Hara, Takanori; Miyake, Hideki; Ueda, Ikuo

    2015-12-01

    We developed a monitoring system for Belle II distributed computing, which consists of active and passive methods. In this paper we describe the passive monitoring system, where information stored in the DIRAC database is processed and visualized. We divide the DIRAC workload management flow into steps and store characteristic variables which indicate issues. These variables are chosen carefully based on our experiences, then visualized. As a result, we are able to effectively detect issues. Finally, we discuss the future development for automating log analysis, notification of issues, and disabling problematic sites.

  9. Intraoperative monitoring of somatosensory-evoked potential in the spinal cord rectification operation by means of wavelet analysis

    NASA Astrophysics Data System (ADS)

    Liu, W.; Du, M. H.; Chan, Francis H. Y.; Lam, F. K.; Luk, D. K.; Hu, Y.; Fung, Kan S. M.; Qiu, W.

    1998-09-01

    Recently there has been a considerable interest in the use of a somatosensory evoked potential (SEP) for monitoring the functional integrity of the spinal cord during surgery such as spinal scoliosis. This paper describes a monitoring system and signal processing algorithms, which consists of 50 Hz mains filtering and a wavelet signal analyzer. Our system allows fast detection of changes in SEP peak latency, amplitude and signal waveform, which are the main parameters of interest during intra-operative procedures.

  10. A portable fetal heart monitor and its adaption to the detection of certain prenatal abnormalities

    NASA Technical Reports Server (NTRS)

    Zahorian, Stephen A.

    1994-01-01

    There were three primary objectives for this task: (1) The investigation of the feasibility of making the fetal heart rate monitor portable, using a laptop computer; (2) Improvements in the signal processing for the monitor; and (3) Implementation of a real-time hardware software system. These tasks have been completed as discussed in the following section.

  11. Remote Blood Glucose Monitoring in mHealth Scenarios: A Review.

    PubMed

    Lanzola, Giordano; Losiouk, Eleonora; Del Favero, Simone; Facchinetti, Andrea; Galderisi, Alfonso; Quaglini, Silvana; Magni, Lalo; Cobelli, Claudio

    2016-11-24

    Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient's significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators.

  12. LabVIEW: a software system for data acquisition, data analysis, and instrument control.

    PubMed

    Kalkman, C J

    1995-01-01

    Computer-based data acquisition systems play an important role in clinical monitoring and in the development of new monitoring tools. LabVIEW (National Instruments, Austin, TX) is a data acquisition and programming environment that allows flexible acquisition and processing of analog and digital data. The main feature that distinguishes LabVIEW from other data acquisition programs is its highly modular graphical programming language, "G," and a large library of mathematical and statistical functions. The advantage of graphical programming is that the code is flexible, reusable, and self-documenting. Subroutines can be saved in a library and reused without modification in other programs. This dramatically reduces development time and enables researchers to develop or modify their own programs. LabVIEW uses a large amount of processing power and computer memory, thus requiring a powerful computer. A large-screen monitor is desirable when developing larger applications. LabVIEW is excellently suited for testing new monitoring paradigms, analysis algorithms, or user interfaces. The typical LabVIEW user is the researcher who wants to develop a new monitoring technique, a set of new (derived) variables by integrating signals from several existing patient monitors, closed-loop control of a physiological variable, or a physiological simulator.

  13. Remote Blood Glucose Monitoring in mHealth Scenarios: A Review

    PubMed Central

    Lanzola, Giordano; Losiouk, Eleonora; Del Favero, Simone; Facchinetti, Andrea; Galderisi, Alfonso; Quaglini, Silvana; Magni, Lalo; Cobelli, Claudio

    2016-01-01

    Glucose concentration in the blood stream is a critical vital parameter and an effective monitoring of this quantity is crucial for diabetes treatment and intensive care management. Effective bio-sensing technology and advanced signal processing are therefore of unquestioned importance for blood glucose monitoring. Nevertheless, collecting measurements only represents part of the process as another critical task involves delivering the collected measures to the treating specialists and caregivers. These include the clinical staff, the patient’s significant other, his/her family members, and many other actors helping with the patient treatment that may be located far away from him/her. In all of these cases, a remote monitoring system, in charge of delivering the relevant information to the right player, becomes an important part of the sensing architecture. In this paper, we review how the remote monitoring architectures have evolved over time, paralleling the progress in the Information and Communication Technologies, and describe our experiences with the design of telemedicine systems for blood glucose monitoring in three medical applications. The paper ends summarizing the lessons learned through the experiences of the authors and discussing the challenges arising from a large-scale integration of sensors and actuators. PMID:27886122

  14. Information Assurance Technology Analysis Center Information Assurance Tools Report Intrusion Detection

    DTIC Science & Technology

    1998-01-01

    such as central processing unit (CPU) usage, disk input/output (I/O), memory usage, user activity, and number of logins attempted. The statistics... EMERALD Commercial anomaly detection, system monitoring SRI porras@csl.sri.com www.csl.sri.com/ emerald /index. html Gabriel Commercial system...sensors, it starts to protect the network with minimal configuration and maximum intelligence. T 11 EMERALD TITLE EMERALD (Event Monitoring

  15. The Development and Technical Adequacy of Seventh-Grade Reading Comprehension Measures in a Progress Monitoring Assessment System. Technical Report #1102

    ERIC Educational Resources Information Center

    Park, Bitnara Jasmine; Alonzo, Julie; Tindal, Gerald

    2011-01-01

    This technical report describes the process of development and piloting of reading comprehension measures that are appropriate for seventh-grade students as part of an online progress screening and monitoring assessment system, http://easycbm.com. Each measure consists of an original fictional story of approximately 1,600 to 1,900 words with 20…

  16. Design of a Basic System of Indicators for Monitoring and Evaluating Spanish Cooperation's Culture and Development Strategy

    ERIC Educational Resources Information Center

    Coll-Serrano, Vicente; Carrasco-Arroyo, Salvador; Blasco-Blasco, Olga; Vila-Lladosa, Luis

    2012-01-01

    Objective: This article describes the process implemented in order to define and build up a Basic Monitoring and Evaluation System for Spanish Cooperation's Culture and Development Strategy (CD-S). Research Design: Delphi techniques were used to assess a wide catalogue of indicators for each of the strategic areas included in the CD-S. Afterward,…

  17. 40 CFR 63.605 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants § 63.605... the mass flow of phosphorus-bearing feed material to the process. The monitoring system shall have an...

  18. Real-time diagnostics for a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Merrill, W.; Duyar, A.

    1992-01-01

    A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is implemented using a real-time expert system tool called G2 by Gensym Corp. Finally, the distributed diagnostic system requires another level of intelligence to oversee the fault mode reports generated by component fault detectors. The decision making at this level can best be done using a rule-based expert system. This level of expert knowledge is also implemented using G2.

  19. Application of GNSS Methods for Monitoring Offshore Platform Deformation

    NASA Astrophysics Data System (ADS)

    Myint, Khin Cho; Nasir Matori, Abd; Gohari, Adel

    2018-03-01

    Global Navigation Satellite System (GNSS) has become a powerful tool for high-precision deformation monitoring application. Monitoring of deformation and subsidence of offshore platform due to factors such as shallow gas phenomena. GNSS is the technical interoperability and compatibility between various satellite navigation systems such as modernized GPS, Galileo, reconstructed GLONASS to be used by civilian users. It has been known that excessive deformation affects platform structurally, causing loss of production and affects the efficiency of the machinery on board the platform. GNSS have been proven to be one of the most precise positioning methods where by users can get accuracy to the nearest centimeter of a given position from carrier phase measurement processing of GPS signals. This research is aimed at using GNSS technique, which is one of the most standard methods to monitor the deformation of offshore platforms. Therefore, station modeling, which accounts for the spatial correlated errors, and hence speeds up the ambiguity resolution process is employed. It was found that GNSS combines the high accuracy of the results monitoring the offshore platforms deformation with the possibility of survey.

  20. 40 CFR 63.104 - Heat exchange system requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry... subpart shall monitor each heat exchange system used to cool process equipment in a chemical manufacturing process unit meeting the conditions of § 63.100 (b)(1) through (b)(3) of this subpart, except for chemical...

Top