FEL for the polymer processing industries
NASA Astrophysics Data System (ADS)
Kelley, Michael J.
1997-05-01
Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.
NASA Astrophysics Data System (ADS)
Davis, A. B.; Marshak, A.
2018-02-01
The Deep Space Gateway offers a unique vantage for Earth observation using reflected sunlight: day/night or night/day terminators slowly marching across the disc. It's an opportunity to improve our understanding of clouds at that key moment in their daily cycle.
Making Departments Distinctive: The Continuous Quality Improvement (CQI) Mindset.
ERIC Educational Resources Information Center
Chambliss, Catherine
The Continuous Quality Improvement (CQI) approach has provided many corporations with a tool for adapting to ongoing shifts in demands and resources, and it can offer academic settings similar assistance. CQI offers a mechanism for building a collaborative process that can help departments define their unique strengths and cultivate a distinctive…
Improved Design of Optical MEMS Using the SUMMiT Fabrication Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalicek, M.A.; Comtois, J.H.; Barron, C.C.
This paper describes the design and fabrication of optical Microelectromechanical Systems (MEMS) devices using the Sandia Ultra planar Multilevel MEMS Technology (SUMMiT) fabrication process. This state of the art process, offered by Sandia National Laboratories, provides unique and very advantageous features which make it ideal for optical devices. This enabling process permits the development of micromirror devices with near ideal characteristics which have previously been unrealizable in standard polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces, unique post-process metallization, and the best active surface area to date.
Space - A unique environment for process modeling R&D
NASA Technical Reports Server (NTRS)
Overfelt, Tony
1991-01-01
Process modeling, the application of advanced computational techniques to simulate real processes as they occur in regular use, e.g., welding, casting and semiconductor crystal growth, is discussed. Using the low-gravity environment of space will accelerate the technical validation of the procedures and enable extremely accurate determinations of the many necessary thermophysical properties. Attention is given to NASA's centers for the commercial development of space; joint ventures of universities, industries, and goverment agencies to study the unique attributes of space that offer potential for applied R&D and eventual commercial exploitation.
ERIC Educational Resources Information Center
Stockall, Nancy
2013-01-01
The methodology in this paper discusses the use of photographs as an elicitation strategy that can reveal the thinking processes of participants in a qualitatively rich manner. Photo-elicitation techniques combined with a Piercian semiotic perspective offer a unique method for creating a frame of action for later participant analysis. Illustrative…
Near-net-shape manufacturing: Spray-formed metal matrix composites and tooling
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.
1994-01-01
Spray forming is a materials processing technology in which a bulk liquid metal is converted to a spray of fine droplets and deposited onto a substrate or pattern to form a near-net-shape solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g. refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. The Idaho National Engineering Laboratory is developing a unique spray-forming method, the Controlled Aspiration Process (CAP), to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Results from two spray-accompanying technical and economic benefits. These programs involved spray forming aluminum strip reinforced with SiC particulate, and the production of tooling, such as injection molds and dies, using low-melting-point metals.
Process Operations Program is the First of Its Kind
ERIC Educational Resources Information Center
Elements of Technology, 1973
1973-01-01
The goal of the program is to produce a graduate with the technical background and expertise necessary for direct entry into a process operator training program in a petro-chemical plant. It is a unique program offered through Lambton College, Canada, in co-operation with the process industries in Sarnia's "Chemical Valley". (Author/DS)
Dementia Grief: A Theoretical Model of a Unique Grief Experience
Blandin, Kesstan; Pepin, Renee
2016-01-01
Previous literature reveals a high prevalence of grief in dementia caregivers before physical death of the person with dementia that is associated with stress, burden, and depression. To date, theoretical models and therapeutic interventions with grief in caregivers have not adequately considered the grief process, but instead have focused on grief as a symptom that manifests within the process of caregiving. The Dementia Grief Model explicates the unique process of pre-death grief in dementia caregivers. In this paper we introduce the Dementia Grief Model, describe the unique characteristics dementia grief, and present the psychological states associated with the process of dementia grief. The model explicates an iterative grief process involving three states – separation, liminality, and re-emergence – each with a dynamic mechanism that facilitates or hinders movement through the dementia grief process. Finally, we offer potential applied research questions informed by the model. PMID:25883036
Acousto-Optic Tunable Filter for Time-Domain Processing of Ultra-Short Optical Pulses,
The application of acousto - optic tunable filters for shaping of ultra-fast pulses in the time domain is analyzed and demonstrated. With the rapid...advance of acousto - optic tunable filter (AOTF) technology, the opportunity for sophisticated signal processing capabilities arises. AOTFs offer unique
Explosive Welding in the 1990's
NASA Technical Reports Server (NTRS)
Lalwaney, N. S.; Linse, V. D.
1985-01-01
Explosive bonding is a unique joining process with the serious potential to produce composite materials capable of fulfilling many of the high performance materials capable of fulfilling many of the high performance materials needs of the 1990's. The process has the technological versatility to provide a true high quality metallurgical compatible and incompatible systems. Metals routinely explosively bonded include a wide variety of combinations of reactive and refractory metals, low and high density metals and their alloys, corrosion resistant and high strength alloys, and common steels. The major advantage of the process is its ability to custom design and engineer composites with physical and/or mechanical properties that meet a specific or unusual performance requirement. Explosive bonding offers the designer unique opportunities in materials selection with unique combinations of properties and high integrity bonds that cannot be achieved by any other metal joining process. The process and some applications are discussed.
Recent advances in applied nanoscience for food safety
USDA-ARS?s Scientific Manuscript database
Ongoing developments in nanotechnology offer potential to transform agriculture in several areas, including food safety, quality, packaging, product traceability, food processing, and bioactive delivery. These nanoscience-based applications utilize the unique properties of materials with a dimension...
Religiosity as identity: toward an understanding of religion from a social identity perspective.
Ysseldyk, Renate; Matheson, Kimberly; Anisman, Hymie
2010-02-01
As a social identity anchored in a system of guiding beliefs and symbols, religion ought to serve a uniquely powerful function in shaping psychological and social processes. Religious identification offers a distinctive "sacred" worldview and "eternal" group membership, unmatched by identification with other social groups. Thus, religiosity might be explained, at least partially, by the marked cognitive and emotional value that religious group membership provides. The uniqueness of a positive social group, grounded in a belief system that offers epistemological and ontological certainty, lends religious identity a twofold advantage for the promotion of well-being. However, that uniqueness may have equally negative impacts when religious identity itself is threatened through intergroup conflict. Such consequences are illustrated by an examination of identities ranging from religious fundamentalism to atheism. Consideration of religion's dual function as a social identity and a belief system may facilitate greater understanding of the variability in its importance across individuals and groups.
ERIC Educational Resources Information Center
Goe, Laura; Wylie, E. Caroline; Bosso, David; Olson, Derek
2017-01-01
As states reconsider their current evaluation systems, stakeholders are offering their views about what revisions should be made to existing measures and processes. This report offers a unique perspective to these conversations by capturing and synthesizing the views of some of America's exemplary teachers: State Teachers of the Year (STOYs) and…
Application of Chemistry in Materials Research at NASA GRC
NASA Technical Reports Server (NTRS)
Kavandi, Janet L.
2016-01-01
Overview of NASA GRC Materials Development. New materials enabled by new chemistries offering unique properties and chemical processing techniques. Durability of materials in harsh environments requires understanding and modeling of chemical interaction of materials with the environment.
When Worlds Collide: Witnessing Planetary-Scale Impacts in the Coming Decades
NASA Astrophysics Data System (ADS)
Masiero, J. R.; Bauer, J. M.; Grav, T.; Mainzer, A. K.
2017-02-01
Asteroid impacts offer a unique opportunity to study the collisional processes that shape planetary systems. In the coming decades, expanded surveys may give us the chance to predict an impact with enough advance warning to observe it in situ.
Kokate, Mangesh; Garadkar, Kalyanrao; Gole, Anand
2016-12-01
We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of our product and process stems from the novel synthesis strategy, the choice and combination of the three moieties, increased surface area offered by silica, and cost effectiveness, thereby making our product and process commercially viable and sustainable for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Collaboration within Student Design Teams Participating in Architectural Design Competitions
ERIC Educational Resources Information Center
Erbil, Livanur; Dogan, Fehmi
2012-01-01
This paper investigates design collaboration with reference to convergent and divergent idea generation processes in architectural design teams entering a design competition. Study of design teams offer a unique opportunity to investigate how creativity is fostered through collaborative work. While views of creativity often relate creativity to…
Graduate Education through Telecommunications: The Computer and You.
ERIC Educational Resources Information Center
Mizell, Al P.
Providing a variety of instructional methods and materials, developing unique and effective communication systems, and evaluating the process are keys to the delivery and effectiveness of the field-based programs in graduate education offered by Nova Southeastern University (Florida). This 4-year nonprofit institution is a leader in distance…
USDA-ARS?s Scientific Manuscript database
Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...
The LMS Selection Process: Practices and Considerations. ECAR Research Bulletin
ERIC Educational Resources Information Center
Cavanagh, Thomas B.
2014-01-01
With more than 80% of institutions offering online learning options and even more using web technologies to enhance traditional classroom instruction, the learning management system (LMS) is increasingly an indispensable, enterprise-level technology for today's colleges and universities. Naturally, each institution has a unique set of…
Visual Neuroscience: Unique Neural System for Flight Stabilization in Hummingbirds.
Ibbotson, M R
2017-01-23
The pretectal visual motion processing area in the hummingbird brain is unlike that in other birds: instead of emphasizing detection of horizontal movements, it codes for motion in all directions through 360°, possibly offering precise visual stability control during hovering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Group Work and Outreach Plans for College Counselors
ERIC Educational Resources Information Center
Fitch, Trey, Ed.; Marshall, Jennifer L., Ed.
2011-01-01
In this book, group work and college counseling leaders offer step-by-step instruction in the effective use and processing of structured group activities on topics such as test anxiety; stress and anxiety management; ADHD; career development; substance abuse; eating disorders; and the unique concerns faced by GLBT students, first-generation…
Surrender To Win: How Adolescent Drug and Alcohol Users Change Their Lives.
ERIC Educational Resources Information Center
Vaughn, Courtney; Long, Wesley
1999-01-01
Investigates the uniqueness and complexity of adolescent drug and alcohol abuse recovery, particularly the early years and events catalyzing the surrender process. Offers individual interviews of seven adolescents who surrendered their alcohol and drug addictions and constructed sober identities through participation in Alcoholics Anonymous. (GCP)
Experimental Overview of Direct Photon Results in Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
Novitzky, Norbert
2016-07-01
Direct photons are color blind probes and thus they provide unique opportunities to study the colored medium created in heavy ion collisions. There are many different sources of direct photons each probing different physics processes as the system evolves. In basic 2 → 2 processes the prompt photons from primary hard scatterings offer the most precise measurements of the outgoing parton energy in the opposite direction. In heavy ion collisions the created medium emits photons as thermal radiation, whose rate and anisotropies provide a unique prospective on the properties and evolution of the system. Recent results on direct photons from the LHC and RHIC experiments are briefly summarized in this paper.
The potential of space exploration for education
NASA Technical Reports Server (NTRS)
Shair, Fredrick H.
1993-01-01
Space exploration and observations from space offer unique opportunities with respect to education. Recent technical advances have significantly increased the width and sensitivity of the electromagnetic spectrum window through which we are able to 'see' the universe. Observations from space have forced a realization that the earth is a beautiful, complex, and interconnected system. Space astronomy and the remote sensing of objects throughout our solar system have the potential of providing unique educational opportunities. Modern technologies have significantly reduced the cost of collecting, transmitting and processing data. Consequently, we are entering an age where it is possible to open up the process of discovery to almost everyone - and especially to young people throughout the world.
Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Northrup, Paul; Leri, Alessandra; Tappero, Ryan
The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less
Applications of “Tender” Energy (1-5 keV) X-ray Absorption Spectroscopy in Life Sciences
Northrup, Paul; Leri, Alessandra; Tappero, Ryan
2016-02-15
The “tender” energy range of 1 to 5 keV, between the energy ranges of most “hard” (>5 keV) and “soft” (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron-based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure, speciation, and chemistry of many important biological compounds, structures and processes. This is an area of largely untapped science, in part due to a scarcity of optimized facilities. Such measurements also entail unique experimental challenges. Lastly, this brief review describes the technique, its experimental challenges,more » recent progress in development of microbeam measurement capabilities, and several highlights illustrating applications in life sciences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aimone, James Bradley; Bernard, Michael Lewis; Vineyard, Craig Michael
2014-10-01
Adult neurogenesis in the hippocampus region of the brain is a neurobiological process that is believed to contribute to the brain's advanced abilities in complex pattern recognition and cognition. Here, we describe how realistic scale simulations of the neurogenesis process can offer both a unique perspective on the biological relevance of this process and confer computational insights that are suggestive of novel machine learning techniques. First, supercomputer based scaling studies of the neurogenesis process demonstrate how a small fraction of adult-born neurons have a uniquely larger impact in biologically realistic scaled networks. Second, we describe a novel technical approach bymore » which the information content of ensembles of neurons can be estimated. Finally, we illustrate several examples of broader algorithmic impact of neurogenesis, including both extending existing machine learning approaches and novel approaches for intelligent sensing.« less
The role of verbalization in the Rorschach response process: a review.
Gold, J M
1987-01-01
Traditional Rorschach theory has consistently overlooked the linguistic aspect of the response process. Most conceptualizations focus on the perceptual and cognitive aspects of the process, never examining the subject's need to find a linguistic representation for the inner, perceptual process. This review examines the traditional formulations and suggests that new research from information-processing, neuropsychological, and dual-coding memory theory paradigms offer new possibilities for Rorschach research that would incorporate an appreciation of the unique cognitive demand of the test--the linking of percept with language.
Transforming nanomedicine manufacturing toward Quality by Design and microfluidics.
Colombo, Stefano; Beck-Broichsitter, Moritz; Bøtker, Johan Peter; Malmsten, Martin; Rantanen, Jukka; Bohr, Adam
2018-04-05
Nanopharmaceuticals aim at translating the unique features of nano-scale materials into therapeutic products and consequently their development relies critically on the progression in manufacturing technology to allow scalable processes complying with process economy and quality assurance. The relatively high failure rate in translational nanopharmaceutical research and development, with respect to new products on the market, is at least partly due to immature bottom-up manufacturing development and resulting sub-optimal control of quality attributes in nanopharmaceuticals. Recently, quality-oriented manufacturing of pharmaceuticals has undergone an unprecedented change toward process and product development interaction. In this context, Quality by Design (QbD) aims to integrate product and process development resulting in an increased number of product applications to regulatory agencies and stronger proprietary defense strategies of process-based products. Although QbD can be applied to essentially any production approach, microfluidic production offers particular opportunities for QbD-based manufacturing of nanopharmaceuticals. Microfluidics provides unique design flexibility, process control and parameter predictability, and also offers ample opportunities for modular production setups, allowing process feedback for continuously operating production and process control. The present review aims at outlining emerging opportunities in the synergistic implementation of QbD strategies and microfluidic production in contemporary development and manufacturing of nanopharmaceuticals. In doing so, aspects of design and development, but also technology management, are reviewed, as is the strategic role of these tools for aligning nanopharmaceutical innovation, development, and advanced industrialization in the broader pharmaceutical field. Copyright © 2018 Elsevier B.V. All rights reserved.
Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts
ERIC Educational Resources Information Center
Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-01-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…
ERIC Educational Resources Information Center
Blikstein, Paulo; Worsley, Marcelo; Piech, Chris; Sahami, Mehran; Cooper, Steven; Koller, Daphne
2014-01-01
New high-frequency, automated data collection and analysis algorithms could offer new insights into complex learning processes, especially for tasks in which students have opportunities to generate unique open-ended artifacts such as computer programs. These approaches should be particularly useful because the need for scalable project-based and…
The Role of Gratitude in Fostering School Bonding
ERIC Educational Resources Information Center
Furlong, Michael J.; Froh, Jeffrey J.; Muller, Meagan E.; Gonzalez, Victoria
2014-01-01
A body of research has emerged during the past three decades focusing on how students engage in the schooling process and the broader positive developmental outcomes associated with high levels of engagement and lower involvement in high-risk behaviors. This chapter suggests that gratitude might offer a unique contribution for understanding how…
Civic Science for Public Use: Mind in the Making and Vroom
ERIC Educational Resources Information Center
Galinsky, Ellen; Bezos, Jackie; McClelland, Megan; Carlson, Stephanie M.; Zelazo, Philip D.
2017-01-01
Mind in the Making and Vroom are partner initiatives that exemplify a unique "civic science" approach to "bringing developmental science into the world." Mind in the Making offers families and professionals working with children 0-8 access to developmental research, by engaging them in an active process of professional…
Bringing an ecological view of change to Landsat-based remote sensing
Robert E. Kennedy; Serge Andrefouet; Warren B. Cohen; Cristina Gomez; Patrick Griffiths; Martin Hais; Sean P. Healey; Eileen H. Helmer; Patrick Hostert; Mitchell B. Lyons; Garrett W. Meigs; Dirk Pflugmacher; Stuart R. Phinn; Scott L. Powell; Peter Scarth; Susmita Sen; Todd A. Schroeder; Annemarie Schneider; Ruth Sonnenschein; James E. Vogelmann; Michael A. Wulder; Zhe Zhu
2014-01-01
When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more...
Understanding the Mind of a Student with Autism in Music Class
ERIC Educational Resources Information Center
Hourigan, Ryan M.; Hammel, Alice M.
2017-01-01
This article offers a unique look into the cognitive processes of students with autism spectrum disorder in music classrooms. Concepts include theory of mind, weak central coherence, executive function, joint attention, and social attention. Behavior implications are also examined. Specific examples of support tools for the music classroom are…
ERIC Educational Resources Information Center
Stanistreet, Paul
2005-01-01
In this article, the author reports on a unique project which is helping members of gypsy and traveller communities to pass their driving theory test, and, in the process, to improve their literacy skills. The Sheffield Gypsy Traveller Support Group is a centre offering a wide range of specialist services to gypsies and travellers, from welfare…
From Ford to Friedman: Teaching Microeconomics to Business Students
ERIC Educational Resources Information Center
Neymotin, Florence
2014-01-01
Teaching microeconomics to MBA students offers a unique set of challenges and opportunities to instructors. That is, the process of teaching business students may differ considerably, but in predictable ways, when compared to the classroom experience commonly found in liberal arts programs. While it is certain that all students are consumers, most…
A Water Quality Study in Rutherford County, Tennessee: Student Group Project
ERIC Educational Resources Information Center
James, Rebecca R.; Ogden, Albert E.; DiVincenzo, John P.
2006-01-01
Undergraduate research is the most rewarding way for science students to become exposed to the process of scientific investigation. Water quality studies offer the unique advantages of being easily designed by the students and analytically approachable. This two-part, 14-month study involved several students in the delineation of ground water flow…
Investigation of charge coupled device correlation techniques
NASA Technical Reports Server (NTRS)
Lampe, D. R.; Lin, H. C.; Shutt, T. J.
1978-01-01
Analog Charge Transfer Devices (CTD's) offer unique advantages to signal processing systems, which often have large development costs, making it desirable to define those devices which can be developed for general system's use. Such devices are best identified and developed early to give system's designers some interchangeable subsystem blocks, not requiring additional individual development for each new signal processing system. The objective of this work is to describe a discrete analog signal processing device with a reasonably broad system use and to implement its design, fabrication, and testing.
Detection of Ionospheric Alfven Resonator Signatures in the Equatorial Ionosphere
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven;
2012-01-01
The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfven resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfven wave propagation, and troposphere24 ionosphere-magnetosphere coupling mechanisms.
Cubesats: Cost-effective science and technology platforms for emerging and developing nations
NASA Astrophysics Data System (ADS)
Woellert, Kirk; Ehrenfreund, Pascale; Ricco, Antonio J.; Hertzfeld, Henry
2011-02-01
The development, operation, and analysis of data from cubesats can promote science education and spur technology utilization in emerging and developing nations. This platform offers uniquely low construction and launch costs together with a comparative ubiquity of launch providers; factors that have led more than 80 universities and several emerging nations to develop programs in this field. Their small size and weight enables cubesats to “piggyback” on rocket launches and accompany orbiters travelling to Moon and Mars. It is envisaged that constellations of cubesats will be used for larger science missions. We present a brief history, technology overview, and summary of applications in science and industry for these small satellites. Cubesat technical success stories are offered along with a summary of pitfalls and challenges encountered in both developed and emerging nations. A discussion of economic and public policy issues aims to facilitate the decision-making process for those considering utilization of this unique technology.
Bilingualism and Emotion in the Autobiographical Works of Nancy Huston
ERIC Educational Resources Information Center
Kinginger, Celeste
2004-01-01
Research on the links between bilingualism and emotion suggests that when a second language is learned postpuberty or in adulthood, the two languages of an individual may differ in their emotional impact. The works of bilingual writer Nancy Huston offer unique insight into the process of ascribing differential emotional value to first and second…
Carving Out Meaningful Spaces for Youth Participation and Engagement in Decision-Making
ERIC Educational Resources Information Center
Finlay, Sarah
2010-01-01
Auckland City Council has one of the longest-standing youth councils in Aotearoa New Zealand. It enables young people to learn about their community, their city and their local government. The process of engaging young people in large cities offers unique challenges for youth councils to reflect the diversity of cities and provide meaningful…
ERIC Educational Resources Information Center
Gibson, Joyce Taylor
Designed to teach educators how to consciously develop strategies and practices for cultural groups that are at risk for education failure, this book defines and describes diversity; offers a unique process for developing strategies to serve diverse populations; and provides opportunities to practice the approach through questions, exercises, and…
NBS (National Bureau of Standards): Materials measurements. [space processing experiments
NASA Technical Reports Server (NTRS)
Manning, J. R.
1983-01-01
Work directed toward the measurement of materials properties important to the design and interpretation of space processing experiments and determinations of how the space environment may offer a unique opportunity for performing improved measurements and producing materials with improved properties is reported. Surface tensions and their variations with temperature and impurities; convection during undirectional solidification; and measurement of the high temperature thermophysical properties of tungsten group liquids and solids are discussed and results are summarized.
NASA Astrophysics Data System (ADS)
Piqué, Alberto; Auyeung, Raymond C. Y.; Kim, Heungsoo; Charipar, Nicholas A.; Mathews, Scott A.
2016-06-01
Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications.
Formosan subterranean termite resistance to heat treatment of Scots pine and Norway spruce
W. Ramsay Smith; Andreas O. Rapp; Christian Welzbacher; Jerrold E. Winandy
2003-01-01
New challenges to the durability of wood building materials have arisen in the U.S. The Formosan subterranean termite (Coptotermes formosanus Shiraki) now infests sizable portions of the U.S. south (Figure 1) and their range is extending. Heat treatments offer a unique opportunity for wood-based composites because many of the process techniques already employ various...
ERIC Educational Resources Information Center
Buskohl, Philip R.; Gould, Russell A.; Curran, Susan; Archer, Shivaun D.; Butcher, Jonathan T.
2012-01-01
Embryonic development offers a unique perspective on the function of many biological processes because of embryos' heightened sensitivity to environmental factors. This hands-on lesson investigates the effects of elevated vitamin A on the morphogenesis of chicken embryos. The active form of vitamin A (retinoic acid) is applied to shell-less (ex…
A Newcomer Gains Power: An Analysis of the Role of Rhetorical Expertise.
ERIC Educational Resources Information Center
Katz, Susan M.
1998-01-01
Offers a case study describing how the rhetorical expertise of a young woman (at the lowest professional level in a male-dominated bureaucratic organization) gave her the power to revise the processes by which her organization did its work, to rewrite the job descriptions of the managers within the organization, and to create a unique role for…
Effects of Cold Plasma on Food Quality: A Review.
Pankaj, Shashi K; Wan, Zifan; Keener, Kevin M
2018-01-01
Cold plasma (CP) technology has proven very effective as an alternative tool for food decontamination and shelf-life extension. The impact of CP on food quality is very crucial for its acceptance as an alternative food processing technology. Due to the non-thermal nature, CP treatments have shown no or minimal impacts on the physical, chemical, nutritional and sensory attributes of various products. This review also discusses the negative impacts and limitations posed by CP technology for food products. The limited studies on interactions of CP species with food components at the molecular level offers future research opportunities. It also highlights the need for optimization studies to mitigate the negative impacts on visual, chemical, nutritional and functional properties of food products. The design versatility, non-thermal, economical and environmentally friendly nature of CP offers unique advantages over traditional processing technologies. However, CP processing is still in its nascent form and needs further research to reach its potential.
Lessons Learned and Challenges in Building a Filipino Health Coalition
Aguilar, David E.; Abesamis-Mendoza, Noilyn; Ursua, Rhodora; Divino, Lily Ann M.; Cadag, Kara; Gavin, Nicholas P.
2010-01-01
In recent years, community-based coalitions have become an effective channel to addressing various health problems within specific ethnic communities. The purpose of this article is twofold: (a) to describe the process involved in building the Kalusugan Coalition (KC), a Filipino American health coalition based in New York City, and (b) to highlight the lessons learned and the challenges from this collaborative venture. The challenges described also offer insights on how the coalition development process can be greatly affected by the partnership with an academic institution on a community-based research project. Because each cultural group has unique issues and concerns, the theoretical framework used by KC offers creative alternatives to address some of the challenges regarding coalition infrastructures, leadership development, unexpected change of coalition dynamics, and cultural nuances. PMID:19098260
The development of the new Eureka process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watari, R.; Shoji, Y.; Ishikawa, T.
1987-01-01
Fuji Oil and Chiyoda have jointly developed this new Eureka (ET-II) process. It utilizes the unique technology of the original Eureka process, such as the injection of superheated steam into the reaction atmosphere and the handling of pitch in a molten state. It also combines a cracking heater with a high conversion rate and a single flow type reactor. In comparison with the original Eureka process, the advantages offered by the ET-II process are: Lower capital investment; lower operating cost; higher yield of lighter distillates. The cracked oil products can also be processed in secondary upgrading processes and the pitchmore » can then be utilized as a form of pitch water slurry fuel.« less
Epilepsy: habilitation and rehabilitation.
Marks, Warren A; Hernandez, Angel; Gabriel, Marsha
2003-06-01
Rehabilitation represents not only a distinct field of medicine, but also a philosophical and practical treatment approach that can be applied to a variety of chronic disorders. Neurology encompasses many chronic disorders, making it ideal for the application of rehabilitation principles in daily practice. Epilepsy offers a unique opportunity to incorporate rehabilitation principles into the management of a complex medical disorder. Epilepsy is an evolving disease process that changes with the maturation of the central nervous system. The rehabilitative model provides the framework for a dynamic treatment plan to meet the changing needs of the child with epilepsy through the social and developmental changes of childhood, adolescence, and adulthood. The development of epilepsy may complicate the recovery from many acute and chronic conditions that affect the central nervous system. The rehabilitation process must address these many aspects of the disease process and its sequelae. This makes neurologists uniquely qualified to manage the rehabilitation team. The impact of the therapeutic milieu on the recovery process may be as important as any specific medical or surgical intervention.
WebGL and web audio software lightweight components for multimedia education
NASA Astrophysics Data System (ADS)
Chang, Xin; Yuksel, Kivanc; Skarbek, Władysław
2017-08-01
The paper presents the results of our recent work on development of contemporary computing platform DC2 for multimedia education usingWebGL andWeb Audio { the W3C standards. Using literate programming paradigm the WEBSA educational tools were developed. It offers for a user (student), the access to expandable collection of WEBGL Shaders and web Audio scripts. The unique feature of DC2 is the option of literate programming, offered for both, the author and the reader in order to improve interactivity to lightweightWebGL andWeb Audio components. For instance users can define: source audio nodes including synthetic sources, destination audio nodes, and nodes for audio processing such as: sound wave shaping, spectral band filtering, convolution based modification, etc. In case of WebGL beside of classic graphics effects based on mesh and fractal definitions, the novel image processing analysis by shaders is offered like nonlinear filtering, histogram of gradients, and Bayesian classifiers.
"Telemarketing" hospital services: benefits, pitfalls and the planning process.
Hafer, J C
1984-01-01
"Telemarketing" is an innovative concept used by many firms to increase the efficiency and effectiveness of product delivery efforts. It can be used by hospitals to benefit both patients and physicians. Further, it can be a tool that, if used properly, can improve the image of the hospital and assist in positioning the organization uniquely among its competitors. This paper discusses the exploratory nature, potential problems, and benefits of telemarketing hospital services and offers pre- and post-implementation considerations. This paper also provides an outline of a sample marketing plan that could serve as an initial model for hospitals that might consider this unique marketing approach.
Grip on health: A complex systems approach to transform health care.
van Wietmarschen, Herman A; Wortelboer, Heleen M; van der Greef, Jan
2018-02-01
This article addresses the urgent need for a transition in health care to deal with the increasing prevalence of chronic diseases and associated rapid rise of health care costs. Chronic diseases evolve and are predominantly related to lifestyle and environment. A shift is needed from a reductionist repair mode of thinking, toward a more integrated biopsychosocial way of thinking about health. The aim of this article is to discuss the opportunities that complexity science offer for transforming health care toward optimal treatment and prevention of chronic lifestyle diseases. Health and health care is discussed from a complexity science perspective. The benefits of concepts developed in the field of complexity science for stimulating transitions in health care are explored. Complexity science supports the elucidation of the essence of health processes. It provides a unique perspective on health with a focus on the relationships within networks of dynamically interacting factors and the emergence of health out of the organization of those relationships. Novel types of complexity science-based intervention strategies are being developed. The first application in practice is the integrated obesity treatment program currently piloted in the Netherlands, focusing on health awareness and healing relationships. Complexity science offers various theories and methods to capture the path toward unhealthy and healthy states, facilitating the development of a dynamic integrated biopsychosocial perspective on health. This perspective offers unique insights into health processes for patients and citizens. In addition, dynamic models driven by personal data provide simulations of health processes and the ability to detect transitions between health states. Such models are essential for aligning and reconnecting the many institutions and disciplines involved in the health care sector and evolve toward an integrated health care ecosystem. © 2016 John Wiley & Sons, Ltd.
Huang, Fei; Wu, Hongbin; Cao, Yong
2010-07-01
Water/alcohol soluble conjugated polymers (WSCPs) can be processed from water or other polar solvents, which offer good opportunities to avoid interfacial mixing upon fabrication of multilayer polymer optoelectronic devices by solution processing, and can dramatically improve charge injection from high work-function metal cathode resulting in greatly enhancement of the device performance. In this critical review, the authors provide a brief review of recent developments in this field, including the materials design, functional principles, and their unique applications as interface modification layer in solution-processable multilayer optoelectronic devices (135 references).
Lessons learned for improving spacecraft ground operations
NASA Astrophysics Data System (ADS)
Bell, Michael; Stambolian, Damon; Henderson, Gena
NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.
Lessons Learned for Improving Spacecraft Ground Operations
NASA Technical Reports Server (NTRS)
Bell, Michael A.; Stambolian, Damon B.; Henderson, Gena M.
2012-01-01
NASA has a unique history in processing the Space Shuttle fleet for launches. Some of this experience has been captured in the NASA Lessons Learned Information System (LLIS). This tool provides a convenient way for design engineers to review lessons from the past to prevent problems from reoccurring and incorporate positive lessons in new designs. At the Kennedy Space Center, the LLIS is being used to design ground support equipment for the next generation of launch and crewed vehicles. This paper describes the LLIS process and offers some examples.
An Open Architecture for Defense Virtual Environment Training Systems
2003-09-01
Additionally, in the process, preventing the loss of life is also an important result. VRTEs can provide needed training that might otherwise not be...training is directly valuable in mission accomplishment and in preventing loss of life. "One of the biggest problems in both the military and...simplified; unique bones motion offers lifelike bouncing and twisting. 43 o Complete skeletal and muscle control features. o Inverse Kinematics
NASA Technical Reports Server (NTRS)
1973-01-01
A study was conducted to determine the beneficial uses of space and to identify the products, processes, or services that will be best developed or produced in the unique environment offered by spacecraft. The subjects discussed are: (1) review of study background, (2) specific users and uses, (3) methodology, and (4) basic data generated and significant results.
Kockmann, Norbert; Gottsponer, Michael; Zimmermann, Bertin; Roberge, Dominique M
2008-01-01
Microstructured devices offer unique transport capabilities for rapid mixing, enhanced heat and mass transfer and can handle small amounts of dangerous or unstable materials. The integration of reaction kinetics into fluid dynamics and transport phenomena is essential for successful application from process design in laboratory to chemical production. Strategies to implement production campaigns up to tons of pharmaceutical chemicals are discussed, based on Lonza projects.
Fathers' Role in Play: Enhancing Early Language and Literacy of Children with Developmental Delays
ERIC Educational Resources Information Center
Stockall, Nancy; Dennis, Lindsay
2013-01-01
Fathers and paternal role models make a unique contribution to children's development. There is some research to suggest that the types of play males engage in with children is typically more active and thus offers unique possibilities for embedding activities for language and literacy development. In this article, we offer suggestions for how…
Domen, Ronald E; Wehler, Amanda Brehm
2008-04-01
Approximately 34 medical specialty and subspecialty fellowship programs in the United States have formalized the application process through the National Resident Matching Program. This approach sets standards for the application process, offers a formalized match similar to that for residency programs, functions within a specific timeline, and establishes binding rules of behavior for both applicants and programs. For fellowship programs that operate outside the National Resident Matching Program, such as those in pathology, no published guidelines exist to help programs and applicants address the many questions and problems that can arise. As a result, programs are free to set their own timelines for interviews, application requirements, contract negotiations and finalizations, and other details. Consequently, applicants often feel pressured to apply earlier and earlier in their residency for competitive fellowship programs, are often required to fill out multiple unique applications, may feel no "loyalty" toward honoring an acceptance without a contract, and often feel disenfranchised by the whole process. This article addresses professional and ethical aspects of the current application process and offers possible solutions for improving it.
Understanding identifiability as a crucial step in uncertainty assessment
NASA Astrophysics Data System (ADS)
Jakeman, A. J.; Guillaume, J. H. A.; Hill, M. C.; Seo, L.
2016-12-01
The topic of identifiability analysis offers concepts and approaches to identify why unique model parameter values cannot be identified, and can suggest possible responses that either increase uniqueness or help to understand the effect of non-uniqueness on predictions. Identifiability analysis typically involves evaluation of the model equations and the parameter estimation process. Non-identifiability can have a number of undesirable effects. In terms of model parameters these effects include: parameters not being estimated uniquely even with ideal data; wildly different values being returned for different initialisations of a parameter optimisation algorithm; and parameters not being physically meaningful in a model attempting to represent a process. This presentation illustrates some of the drastic consequences of ignoring model identifiability analysis. It argues for a more cogent framework and use of identifiability analysis as a way of understanding model limitations and systematically learning about sources of uncertainty and their importance. The presentation specifically distinguishes between five sources of parameter non-uniqueness (and hence uncertainty) within the modelling process, pragmatically capturing key distinctions within existing identifiability literature. It enumerates many of the various approaches discussed in the literature. Admittedly, improving identifiability is often non-trivial. It requires thorough understanding of the cause of non-identifiability, and the time, knowledge and resources to collect or select new data, modify model structures or objective functions, or improve conditioning. But ignoring these problems is not a viable solution. Even simple approaches such as fixing parameter values or naively using a different model structure may have significant impacts on results which are too often overlooked because identifiability analysis is neglected.
Tetteh, Hassan A
2012-01-01
Kaizen is a proven management technique that has a practical application for health care in the context of health care reform and the 2010 Institute of Medicine landmark report on the future of nursing. Compounded productivity is the unique benefit of kaizen, and its principles are change, efficiency, performance of key essential steps, and the elimination of waste through small and continuous process improvements. The kaizen model offers specific instruction for perioperative nurses to achieve process improvement in a five-step framework that includes teamwork, personal discipline, improved morale, quality circles, and suggestions for improvement. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
McHugh, K. M.; Key, J. F.
1994-06-01
Spray forming is a near- net- shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or pattern to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing, often while substantially improving product quality. Spray forming is applicable to a wide range of metals and nonmetals and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities, and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray forming technology for producing near- net- shape solids and coatings of a variety of metals, polymers, and composite materials using de Laval nozzles. This article briefly describes the atomization behavior of liquid metals in linear de Laval nozzles and illustrates the versatility of the process by summarizing results from two spray forming programs. In one program, low-carbon steel strip >0.75 mm thick was produced; in the other, polymer membranes ˜5 μm thick were spray formed.
Lee. K. Cerveny
2008-01-01
Thinking Like a Manager is a unique book that offers students and wildlife professionals a fresh format for considering a. complex array of themes associated with the contemporary wildlife management. The title refers to Aldo Leopold's classic essay, Thinking Like a Mountain, which promotes the integration of ecological and sociocultural processes in natural...
Autologous islet transplantation: challenges and lessons.
Dunn, Ty B; Wilhelm, Joshua J; Bellin, Melena D; Pruett, Timothy L
2017-08-01
Human islet isolation and autotransplantation [autologous islet transplant (AUTX)] is performed to prevent or ameliorate brittle diabetes after total pancreatectomy performed for benign disease. The success or failure of the transplant can be associated with a profound impact on the individual's quality of life and even survival. AUTX offers unique insights into the effects of pancreas quality, islet number, isolation technique and alternate site engraftment on transplant efficacy. Herein, we review islet isolation with a focus on potential pathways to further optimize the endocrine outcome of AUTX, and compare and contrast differences in islet processing for AUTX and allotransplantation (allogeneic islet transplant). New knowledge of human islet biology and issues surrounding the engraftment process offer opportunities for innovative approaches toward optimizing islet cell transplantation. Improving the rate and durability of insulin independence in the often-times marginal dose model of AUTX may provide new insight toward improving the efficiency and durability of single donor islet (allogeneic islet transplant).
Exploitation of the Ornithine Effect Enhances Characterization of Stapled and Cyclic Peptides
NASA Astrophysics Data System (ADS)
Crittenden, Christopher M.; Parker, W. Ryan; Jenner, Zachary B.; Bruns, Kerry A.; Akin, Lucas D.; McGee, William M.; Ciccimaro, Eugene; Brodbelt, Jennifer S.
2016-05-01
A method to facilitate the characterization of stapled or cyclic peptides is reported via an arginine-selective derivatization strategy coupled with MS/MS analysis. Arginine residues are converted to ornithine residues through a deguanidination reaction that installs a highly selectively cleavable site in peptides. Upon activation by CID or UVPD, the ornithine residue cyclizes to promote cleavage of the adjacent amide bond. This Arg-specific process offers a unique strategy for site-selective ring opening of stapled and cyclic peptides. Upon activation of each derivatized peptide, site-specific backbone cleavage at the ornithine residue results in two complementary products: the lactam ring-containing portion of the peptide and the amine-containing portion. The deguanidination process not only provides a specific marker site that initiates fragmentation of the peptide but also offers a means to unlock the staple and differentiate isobaric stapled peptides.
NASA Innovation Builds Better Nanotubes
NASA Technical Reports Server (NTRS)
2008-01-01
Nanotailor Inc., based in Austin, Texas, licensed Goddard Space Flight Center's unique single-walled carbon nanotube (SWCNT) fabrication process with plans to make high-quality, low-cost SWCNTs available commercially. Carbon nanotubes are being used in a wide variety of applications, and NASA's improved production method will increase their applicability in medicine, microelectronics, advanced materials, and molecular containment. Nanotailor built and tested a prototype based on Goddard's process, and is using this technique to lower the cost and improve the integrity of nanotubes, offering a better product for use in biomaterials, advanced materials, space exploration, highway and building construction, and many other applications.
Laminar fMRI and computational theories of brain function.
Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J
2017-11-02
Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Development of an Integrated, Lightweight Combat Boot. Phase 1
1988-05-01
However, we have since madb other tests on finished boots, which show a less favorable 11 comparison. It requires 200 pounds pressure for a nail to go...polybenzimiaazole, is an Crimp per inch 11 0 organic fiber with a unique combination of high- per mm 04 performance properties; % 28.0 Finish % 06 C3...offering desirable a moisture regain of 15%). is 50% more ab- garment comfort and textile processibility PBI sorbent than coton . Gillette Research
Tuning and synthesis of metallic nanostructures by mechanical compression
Fan, Hongyou; Li, Binsong
2015-11-17
The present invention provides a pressure-induced phase transformation process to engineer metal nanoparticle architectures and to fabricate new nanostructured materials. The reversible changes of the nanoparticle unit cell dimension under pressure allow precise control over interparticle separation in 2D or 3D nanoparticle assemblies, offering unique robustness for interrogation of both quantum and classic coupling interactions. Irreversible changes above a threshold pressure of about 8 GPa enables new nanostructures, such as nanorods, nanowires, or nanosheets.
Reconstruction method for data protection in telemedicine systems
NASA Astrophysics Data System (ADS)
Buldakova, T. I.; Suyatinov, S. I.
2015-03-01
In the report the approach to protection of transmitted data by creation of pair symmetric keys for the sensor and the receiver is offered. Since biosignals are unique for each person, their corresponding processing allows to receive necessary information for creation of cryptographic keys. Processing is based on reconstruction of the mathematical model generating time series that are diagnostically equivalent to initial biosignals. Information about the model is transmitted to the receiver, where the restoration of physiological time series is performed using the reconstructed model. Thus, information about structure and parameters of biosystem model received in the reconstruction process can be used not only for its diagnostics, but also for protection of transmitted data in telemedicine complexes.
Berglund, Mia; Sjögren, Reet; Ekebergh, Margaretha
2012-03-01
To describe the importance of supervisors working together in supporting the learning process of nurse students through reflective caring science supervision. A supervision model has been developed in order to meet the need for interweaving theory and practice. The model is characterized by learning reflection in caring science. A unique aspect of the present project was that the student groups were led by a teacher and a nurse. Data were collected through interviews with the supervisors. The analysis was performed with a phenomenological approach. The results showed that theory and practice can be made more tangible and interwoven by using two supervisors in a dual supervision. The essential structure is built on the constituents 'Reflection as Learning Support', 'Interweaving Caring Science with the Patient's Narrative', 'The Student as a Learning Subject' and 'The Learning Environment of Supervision'. The study concludes that supervision in pairs provides unique possibilities for interweaving and developing theory and practice. The supervision model offers unique opportunities for cooperation, for the development of theory and practice and for the development of the professional roll of nurses and teachers. © 2012 Blackwell Publishing Ltd.
101 Ways To Build Enrollment in Your Early Childhood Program.
ERIC Educational Resources Information Center
Montanari, Ellen Orton
Written for administrators of early childhood program centers, this book offers tips on how to increase enrollment. The book offers suggestions rather than a theoretical overview or a comprehensive marketing strategy. Suggestions offered include: (1) Offer a quality program; (2) be aware of your target market; (3) make your program unique; (4)…
Sibling differentiation, identity development, and the lateral dimension of psychic life.
Vivona, Jeanine M
2007-01-01
The lateral dimension of psychic life, lived through relationships with siblings and their substitutes, is structured around a distinct psychic challenge: to find one's unique place in a world of similar others. Like the challenge that structures the vertical parent-child dimension, the lateral challenge is fraught with conflict and ambivalence; its resolution imbues psychic structure. That resolution may be accomplished through a process of differentiation, an active and unconscious process of identity development by which a child amplifies differences with siblings and minimizes similarities. Differentiation from siblings serves to mitigate interpersonal rivalry with them and to ease internal conflict associated with the lateral dimension. Three clinical examples are offered to illustrate the operation of sibling differentiation and its costs, particularly in terms of constricted identity and attenuated relationships with siblings and peers. Differentiation as a process of becoming what the other is not has been eclipsed by identification in psychoanalytic theories of identity development. Yet differentiation is a common strategy for resolving the primary rivalries and conflicts of the lateral dimension, and has unique developmental and clinical implications.
NASA Astrophysics Data System (ADS)
Chen, X.; Settersten, T. B.; Radi, P. P.; Kouzov, A. P.
2008-10-01
The two-color resonant four-wave mixing (TC-RFWM) is advertised as a unique spectroscopic device enabling one to directly measure the collisional state-to-state transfer characteristics (rates and correlation times). In contrast to the laser-induced fluorescence, these characteristics are phase-sensitive and open wider opportunities to study the rotational relaxation processes. Further perspectives are offered by the recently recorded collision-induced picosecond TC-RFWM signals of OH. Their quantitative interpretation is now under development.
Grifantini, Kristina
2017-01-01
The retina is a sophisticated neural network that provides humans with high-resolution vision. And for those who suffer from retinal disease or deterioration, particularly age-related macular degeneration (the leading cause of blindness among people over the age of 50 in the United States), a better understanding of how to stimulate the retina or completely override its path to the area of the brain that processes vision may offer hope to restore sight.
Neutron imaging data processing using the Mantid framework
NASA Astrophysics Data System (ADS)
Pouzols, Federico M.; Draper, Nicholas; Nagella, Sri; Yang, Erica; Sajid, Ahmed; Ross, Derek; Ritchie, Brian; Hill, John; Burca, Genoveva; Minniti, Triestino; Moreton-Smith, Christopher; Kockelmann, Winfried
2016-09-01
Several imaging instruments are currently being constructed at neutron sources around the world. The Mantid software project provides an extensible framework that supports high-performance computing for data manipulation, analysis and visualisation of scientific data. At ISIS, IMAT (Imaging and Materials Science & Engineering) will offer unique time-of-flight neutron imaging techniques which impose several software requirements to control the data reduction and analysis. Here we outline the extensions currently being added to Mantid to provide specific support for neutron imaging requirements.
NASA Astrophysics Data System (ADS)
Biermann, D.; Kahleyss, F.; Krebs, E.; Upmeier, T.
2011-07-01
Micro-sized applications are gaining more and more relevance for NiTi-based shape memory alloys (SMA). Different types of micro-machining offer unique possibilities for the manufacturing of NiTi components. The advantage of machining is the low thermal influence on the workpiece. This is important, because the phase transformation temperatures of NiTi SMAs can be changed and the components may need extensive post manufacturing. The article offers a simulation-based approach to optimize five-axis micro-milling processes with respect to the special material properties of NiTi SMA. Especially, the influence of the various tool inclination angles is considered for introducing an intelligent tool inclination optimization algorithm. Furthermore, aspects of micro deep-hole drilling of SMAs are discussed. Tools with diameters as small as 0.5 mm are used. The possible length-to-diameter ratio reaches up to 50. This process offers new possibilities in the manufacturing of microstents. The study concentrates on the influence of the cutting speed, the feed and the tool design on the tool wear and the quality of the drilled holes.
Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Parker, Bradford H.; Hodges, Kenneth L.; Burke, Eric R.; Walker, James L.
2014-01-01
This report summarizes the National Aeronautics and Space Administrations (NASA) state of the art of nondestructive evaluation (NDE) for additive manufacturing (AM), or "3-D printed", hardware. NASA's unique need for highly customized spacecraft and instrumentation is suited for AM, which offers a compelling alternative to traditional subtractive manufacturing approaches. The Agency has an opportunity to push the envelope on how this technology is used in zero gravity, an enable in-space manufacturing of flight spares and replacement hardware crucial for long-duration, manned missions to Mars. The Agency is leveraging AM technology developed internally and by industry, academia, and other government agencies for its unique needs. Recent technical interchange meetings and workshops attended by NASA have identified NDE as a universal need for all aspects of additive manufacturing. The impact of NDE on AM is cross cutting and spans materials, processing quality assurance, testing and modeling disciplines. Appropriate NDE methods are needed before, during, and after the AM production process.
Can banks offer digital keys for health care?
Casillas, John
2013-01-01
In the quest to implement electronic health care records, health care stakeholders have uncovered an elephant in the room - how to implement patient identity and integrity solutions. Without this, linking the unique records of an individual is impossible. An inaccurate record can be dangerous for prescribing treatment. Yet many consider a unique patient identifier as an unacceptable privacy risk. Medical banking, or the convergence of banking and heath IT systems, is spawning new ideas that could impact on this difficult area. This article suggests that new forms of efficiency in payment processing may yield a common, cross-industry technology platform for managing digital identity by banks. Redefining a bank based on core competencies, the article looks at three areas: (1) the "identity theft arms race"; (2) innovations in payment processing; and (3) consumer engagement, and suggests that, as banking and health care systems converge, digital identity may become the new money. This realization may find banks fully engaged in helping health care to overcome the challenge of patient identity and integrity.
The power of theater to promote individual recovery and social change.
Faigin, David A; Stein, Catherine H
2010-03-01
Although theatrical activities are used in a variety of therapeutic settings, little attention has been paid to the ways that theater can enhance the recovery process and community integration for people living with psychiatric disabilities. Community-based theater involving people with psychiatric disabilities offers unique opportunities for personal growth, social connection, and advocacy efforts. This Open Forum posits that theater has the power to both facilitate individual recovery and improve the social conditions of people living with mental illness. Critical elements of theatrical activities that relate to processes of recovery and community integration are examined. Implications for future research and program development are discussed.
Mapping Resilience Pathways of Indigenous Youth in Five Circumpolar Communities
Allen, James; Hopper, Kim; Wexler, Lisa; Kral, Michael; Rasmus, Stacy; Nystad, Kristine
2014-01-01
This introduction to the special issue Indigenous Youth Resilience in the Arctic reviews relevant resilience theory and research, with particular attention to Arctic Indigenous youth. The role of social determinants and community resilience processes in Indigenous circumpolar settings are overviewed, as are emergent Indigenous resilience frameworks. The distinctive role for qualitative inquiry in understanding these frameworks is emphasized, as is the uniquely informative lens youth narratives offer in understanding Indigenous, cultural, and community resilience processes during times of social transition. We then describe key elements of the Circumpolar Indigenous Pathways to Adulthood study cross-site methods, including sampling, design, procedures, and analytic strategies. PMID:23965730
Proposed uses of laser light scattering instruments for polymerization studies
NASA Technical Reports Server (NTRS)
Mathias, Lon J.; Hoyle, Charles E.; Mclaughlin, Kevin; Mcmanus, Samuel P.; Caruthers, James M.; Runge, Michael L.
1989-01-01
Microgravity offers a unique environment for studying polymer diffusion and polymer polymerization reactions. The absence of convection currents, which are the major mode of mixing at the molecular level on Earth, are eliminated or reduced in the microgravity environment. More importantly, the prediction of unique copolymer composition development in microgravity allows controlled formation of new compositions of matter. The absence of mixing at the molecular level should produce unique short block copolymers available for the first time for comonomer compositions which normally lead to random or long block copolymer under good mixing. The investigation of fundamental polymer diffusion and polymer polymerization processes in microgravity is proposed. This effort will involve fundamental studies of monomer and polymer diffusion; their effects on initiation, propagation, and especially termination kinetics rate constant; and the accurate evaluation of copolymerization reactivity ratios in microgravity. The experimental design is presented for these studies along with an evaluation technique for in situ monitoring of polymer diffusion and polymerization kinetics.
Nuclear astrophysics with radioactive ions at FAIR
NASA Astrophysics Data System (ADS)
Reifarth, R.; Altstadt, S.; Göbel, K.; Heftrich, T.; Heil, M.; Koloczek, A.; Langer, C.; Plag, R.; Pohl, M.; Sonnabend, K.; Weigand, M.; Adachi, T.; Aksouh, F.; Al-Khalili, J.; AlGarawi, M.; AlGhamdi, S.; Alkhazov, G.; Alkhomashi, N.; Alvarez-Pol, H.; Alvarez-Rodriguez, R.; Andreev, V.; Andrei, B.; Atar, L.; Aumann, T.; Avdeichikov, V.; Bacri, C.; Bagchi, S.; Barbieri, C.; Beceiro, S.; Beck, C.; Beinrucker, C.; Belier, G.; Bemmerer, D.; Bendel, M.; Benlliure, J.; Benzoni, G.; Berjillos, R.; Bertini, D.; Bertulani, C.; Bishop, S.; Blasi, N.; Bloch, T.; Blumenfeld, Y.; Bonaccorso, A.; Boretzky, K.; Botvina, A.; Boudard, A.; Boutachkov, P.; Boztosun, I.; Bracco, A.; Brambilla, S.; Briz Monago, J.; Caamano, M.; Caesar, C.; Camera, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chartier, M.; Chatillon, A.; Cherciu, M.; Chulkov, L.; Coleman-Smith, P.; Cortina-Gil, D.; Crespi, F.; Crespo, R.; Cresswell, J.; Csatlós, M.; Déchery, F.; Davids, B.; Davinson, T.; Derya, V.; Detistov, P.; Diaz Fernandez, P.; DiJulio, D.; Dmitry, S.; Doré, D.; Dueñas, J.; Dupont, E.; Egelhof, P.; Egorova, I.; Elekes, Z.; Enders, J.; Endres, J.; Ershov, S.; Ershova, O.; Fernandez-Dominguez, B.; Fetisov, A.; Fiori, E.; Fomichev, A.; Fonseca, M.; Fraile, L.; Freer, M.; Friese, J.; Borge, M. G.; Galaviz Redondo, D.; Gannon, S.; Garg, U.; Gasparic, I.; Gasques, L.; Gastineau, B.; Geissel, H.; Gernhäuser, R.; Ghosh, T.; Gilbert, M.; Glorius, J.; Golubev, P.; Gorshkov, A.; Gourishetty, A.; Grigorenko, L.; Gulyas, J.; Haiduc, M.; Hammache, F.; Harakeh, M.; Hass, M.; Heine, M.; Hennig, A.; Henriques, A.; Herzberg, R.; Holl, M.; Ignatov, A.; Ignatyuk, A.; Ilieva, S.; Ivanov, M.; Iwasa, N.; Jakobsson, B.; Johansson, H.; Jonson, B.; Joshi, P.; Junghans, A.; Jurado, B.; Körner, G.; Kalantar, N.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khan, E.; Khanzadeev, A.; Kiselev, O.; Kogimtzis, M.; Körper, D.; Kräckmann, S.; Kröll, T.; Krücken, R.; Krasznahorkay, A.; Kratz, J.; Kresan, D.; Krings, T.; Krumbholz, A.; Krupko, S.; Kulessa, R.; Kumar, S.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.; Lazarus, I.; Le Bleis, T.; Lederer, C.; Lemasson, A.; Lemmon, R.; Liberati, V.; Litvinov, Y.; Löher, B.; Lopez Herraiz, J.; Münzenberg, G.; Machado, J.; Maev, E.; Mahata, K.; Mancusi, D.; Marganiec, J.; Martinez Perez, M.; Marusov, V.; Mengoni, D.; Million, B.; Morcelle, V.; Moreno, O.; Movsesyan, A.; Nacher, E.; Najafi, M.; Nakamura, T.; Naqvi, F.; Nikolski, E.; Nilsson, T.; Nociforo, C.; Nolan, P.; Novatsky, B.; Nyman, G.; Ornelas, A.; Palit, R.; Pandit, S.; Panin, V.; Paradela, C.; Parkar, V.; Paschalis, S.; Pawłowski, P.; Perea, A.; Pereira, J.; Petrache, C.; Petri, M.; Pickstone, S.; Pietralla, N.; Pietri, S.; Pivovarov, Y.; Potlog, P.; Prokofiev, A.; Rastrepina, G.; Rauscher, T.; Ribeiro, G.; Ricciardi, M.; Richter, A.; Rigollet, C.; Riisager, K.; Rios, A.; Ritter, C.; Rodriguez Frutos, T.; Rodriguez Vignote, J.; Röder, M.; Romig, C.; Rossi, D.; Roussel-Chomaz, P.; Rout, P.; Roy, S.; Söderström, P.; Saha Sarkar, M.; Sakuta, S.; Salsac, M.; Sampson, J.; Sanchez, J.; Rio Saez, del; Sanchez Rosado, J.; Sanjari, S.; Sarriguren, P.; Sauerwein, A.; Savran, D.; Scheidenberger, C.; Scheit, H.; Schmidt, S.; Schmitt, C.; Schnorrenberger, L.; Schrock, P.; Schwengner, R.; Seddon, D.; Sherrill, B.; Shrivastava, A.; Sidorchuk, S.; Silva, J.; Simon, H.; Simpson, E.; Singh, P.; Slobodan, D.; Sohler, D.; Spieker, M.; Stach, D.; Stan, E.; Stanoiu, M.; Stepantsov, S.; Stevenson, P.; Strieder, F.; Stuhl, L.; Suda, T.; Sümmerer, K.; Streicher, B.; Taieb, J.; Takechi, M.; Tanihata, I.; Taylor, J.; Tengblad, O.; Ter-Akopian, G.; Terashima, S.; Teubig, P.; Thies, R.; Thoennessen, M.; Thomas, T.; Thornhill, J.; Thungstrom, G.; Timar, J.; Togano, Y.; Tomohiro, U.; Tornyi, T.; Tostevin, J.; Townsley, C.; Trautmann, W.; Trivedi, T.; Typel, S.; Uberseder, E.; Udias, J.; Uesaka, T.; Uvarov, L.; Vajta, Z.; Velho, P.; Vikhrov, V.; Volknandt, M.; Volkov, V.; von Neumann-Cosel, P.; von Schmid, M.; Wagner, A.; Wamers, F.; Weick, H.; Wells, D.; Westerberg, L.; Wieland, O.; Wiescher, M.; Wimmer, C.; Wimmer, K.; Winfield, J. S.; Winkel, M.; Woods, P.; Wyss, R.; Yakorev, D.; Yavor, M.; Zamora Cardona, J.; Zartova, I.; Zerguerras, T.; Zgura, M.; Zhdanov, A.; Zhukov, M.; Zieblinski, M.; Zilges, A.; Zuber, K.
2016-01-01
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes.
When Science is Not Enough: A Framework Towards More Customer-Focused Drug Development.
Oraiopoulos, Nektarios; Dunlop, William C N
2017-07-01
The purpose of this study was to identify the key barriers to a customer-focused drug development process and develop a comprehensive framework to overcome them. The paper draws on existing literature, both academic and practitioner, across a range of disciplines (innovation management, marketing, organizational behavior, behavioral economics, health economics, industry reports). On the basis of this extensive review, a conceptual framework is developed that offers concrete suggestions on how organizations can overcome the barriers and enable a more customer-focused development process. The barriers to collaboration are organized into three distinct categories (economic, behavioral, organizational), and within each category, a one-to-one mapping between barriers and solutions is developed. The framework is specifically designed with the objective of offering actionable and practical advice to executives who face these challenges in their organizations. The paper provides a unique theoretical contribution by synthesizing findings from several academic disciplines with concrete examples from the pharmaceutical industry. Mundipharma International Limited.
Plasmonics and metamaterials based super-resolution imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Zhaowei
2017-05-01
In recent years, surface imaging of various biological dynamics and biomechanical phenomena has seen a surge of interest. Imaging of processes such as exocytosis and kinesin motion are most effective when depth is limited to a very thin region of interest at the edge of the cell or specimen. However, many objects and processes of interest are of size scales below the diffraction limit for safe, visible wavelength illumination. Super-resolution imaging methods such as structured illumination microscopy and others have offered various compromises between resolution, imaging speed, and bio-compatibility. In this talk, I will present our most recent progress in plasmonic structured illumination microscopy (PSIM) and localized plasmonic structured illumination microscopy (LPSIM), and their applications in bio-imaging. We have achieved wide-field surface imaging with resolution down to 75 nm while maintaining reasonable speed and compatibility with biological specimens. These plasmonic enhanced super resolution techniques offer unique solutions to obtain 50nm spatial resolution and 50 frames per second wide imaging speed at the same time.
Framing Strategies to Avoid Mother-Blame in Communicating the Origins of Chronic Disease.
Winett, Liana B; Wulf, Alyssa B; Wallack, Lawrence
2016-08-01
Evolving research in epigenetics and the developmental origins of health and disease offers tremendous promise in explaining how the social environment, place, and resources available to us have enduring effects on our health. Troubling from a communications perspective, however, is the tendency in framing the science to hold mothers almost uniquely culpable for their offspring's later disease risk. The purpose of this article is to add to the conversation about avoiding this unintended outcome by (1) discussing the importance of cognitive processing and issue frames, (2) describing framing challenges associated with communicating about developmental origins of health and disease and offering principles to address them, and (3) providing examples of conceptual metaphors that may be helpful in telling this complex and contextual story for public health.
Development of Manufacturing Technology to Accelerate Cost Reduction of Low Concentration and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrick, Adam
The purpose of this project was to accelerate deployment of cost-effective US-based manufacturing of Solaria’s unique c-Si module technology. This effort successfully resulted in the development of US-based manufacturing technology to support two highly-differentiated, market leading product platforms. The project was initially predicated on developing Solaria’s low-concentration PV (LCPV) module technology which at the time of the award was uniquely positioned to exceed the SunShot price goal of $0.50/Wp for standard c-Si modules. The Solaria LCPV module is a 2.5x concentrator that leverages proven, high-reliability PV module materials and low silicon cell usage into a technology package that already hadmore » the lowest direct material cost and leading Levelized Cost of Electricity (LCOE). With over 25 MW commercially deployed globally, the Solaria module was well positioned to continue to lead in PV module cost reduction. Throughout the term of the contract, market conditions changed dramatically and so to did Solaria’s product offerings to support this. However, the manufacturing technology developed for the LCPV module was successfully leveraged and optimized to support two new and different product platforms. BIPV “PowerVision” and High-efficiency “PowerXT” modules. The primary barrier to enabling high-volume PV module manufacturing in the US is the high manual labor component in certain unique aspects of our manufacturing process. The funding was used to develop unique manufacturing automation which makes the manual labor components of these key processes more efficient and increase throughput. At the core of Solaria’s product offerings are its unique and proprietary techniques for dicing and re-arranging solar cells into modules with highly-differentiated characteristics that address key gaps in the c-Si market. It is these techniques that were successfully evolved and deployed into US-based manufacturing site with SunShot funding. Today, Solaria is currently positioned to become the market leader with these two technologies over the coming 24 months largely due to the successful innovations of the underlying manufacturing technology. This success will leverage US-based manufacturing technology and the associated US-jobs to support. Solaria views the project as highly successful and a great example of SunShot funding enabling the creating of US jobs and the deployment of ubiquitous solar energy products.« less
Karoyo, Abdalla H.; Wilson, Lee D.
2015-01-01
Recent efforts have been directed towards the design of efficient and contaminant selective remediation technology for the removal of perfluorinated compounds (PFCs) from soils, sediments, and aquatic environments. While there is a general consensus on adsorption-based processes as the most suitable methodology for the removal of PFCs from aquatic environments, challenges exist regarding the optimal materials design of sorbents for selective uptake of PFCs. This article reviews the sorptive uptake of PFCs using cyclodextrin (CD)-based polymer adsorbents with nano- to micron-sized structural attributes. The relationship between synthesis of adsorbent materials and their structure relate to the overall sorption properties. Hence, the adsorptive uptake properties of CD-based molecularly imprinted polymers (CD-MIPs) are reviewed and compared with conventional MIPs. Further comparison is made with non-imprinted polymers (NIPs) that are based on cross-linking of pre-polymer units such as chitosan with epichlorohydrin in the absence of a molecular template. In general, MIPs offer the advantage of selectivity, chemical tunability, high stability and mechanical strength, ease of regeneration, and overall lower cost compared to NIPs. In particular, CD-MIPs offer the added advantage of possessing multiple binding sites with unique physicochemical properties such as tunable surface properties and morphology that may vary considerably. This mini-review provides a rationale for the design of unique polymer adsorbent materials that employ an intrinsic porogen via incorporation of a macrocyclic compound in the polymer framework to afford adsorbent materials with tunable physicochemical properties and unique nanostructure properties. PMID:28347047
Lismont, Jasmien; Janssens, Anne-Sophie; Odnoletkova, Irina; Vanden Broucke, Seppe; Caron, Filip; Vanthienen, Jan
2016-10-01
The aim of this study is to guide healthcare instances in applying process analytics on healthcare processes. Process analytics techniques can offer new insights in patient pathways, workflow processes, adherence to medical guidelines and compliance with clinical pathways, but also bring along specific challenges which will be examined and addressed in this paper. The following methodology is proposed: log preparation, log inspection, abstraction and selection, clustering, process mining, and validation. It was applied on a case study in the type 2 diabetes mellitus domain. Several data pre-processing steps are applied and clarify the usefulness of process analytics in a healthcare setting. Healthcare utilization, such as diabetes education, is analyzed and compared with diabetes guidelines. Furthermore, we take a look at the organizational perspective and the central role of the GP. This research addresses four challenges: healthcare processes are often patient and hospital specific which leads to unique traces and unstructured processes; data is not recorded in the right format, with the right level of abstraction and time granularity; an overflow of medical activities may cloud the analysis; and analysts need to deal with data not recorded for this purpose. These challenges complicate the application of process analytics. It is explained how our methodology takes them into account. Process analytics offers new insights into the medical services patients follow, how medical resources relate to each other and whether patients and healthcare processes comply with guidelines and regulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Career Design Education by Cooperation and Collaboration
NASA Astrophysics Data System (ADS)
Takahashi, Takeo; Koma, Tetsuya; Akiyama, Akira; Kihara, Hitoshi; Yamada, Hirofumi
Kanazawa Technical College (KTC) was established to train beginner engineering students in 1962. Since then, KTC offers a unique education/hands on, and has maintained a 100% employment rate upon graduation. In the fourth grade, students participate in a unique industrial internship program for two weeks during summer vacation. As a result, students’ overall satisfaction rate concerning their education is high. Therefore, instead of offering traditional courses that value the experience of the present, it is necessary to offer a new course that lets student discover for themselves what their future will be like. In this paper, an outline of the career design education executed by the students together with their parent (s) /guardian, the school and industry is described.
Offering memorable patient experience through creative, dynamic marketing strategy
Raţiu, M; Purcărea, T
2008-01-01
Creative, dynamic strategies are the ones that identify new and better ways of uniquely offering the target customers what they want or need. A business can achieve competitive advantage if it chooses a marketing strategy that sets the business apart from anyone else. Healthcare services companies have to understand that the customer should be placed in the centre of all specific marketing operations. The brand message should reflect the focus on the patient. Healthcare products and services offered must represent exactly the solutions that customers expect. The touchpoints with the patients must be well mastered in order to convince them to accept the proposed solutions. Healthcare service providers must be capable to look beyond customer's behaviour or product and healthcare service aquisition. This will demand proactive and far–reaching changes, including focusing specifically on customer preference, quality, and technological interfaces; rewiring strategy to find new value from existing and unfamiliar sources; disintegrating and radically reassembling operational processes; and restructuring the organization to accommodate new typess of work and skill. PMID:20108466
Offering memorable patient experience through creative, dynamic marketing strategy.
Purcărea, Victor Lorín; Raţíu, Monica; Purcărea, Theodor; Davila, Carol
2008-01-01
Creative, dynamic strategies are the ones that identify new and better ways of uniquely offering the target customers what they want or need. A business can achieve competitive advantage if it chooses a marketing strategy that sets the business apart from anyone else. Healthcare services companies have to understand that the customer should be placed in the centre of all specific marketing operations. The brand message should reflect the focus on the patient. Healthcare products and services offered must represent exactly the solutions that customers expect. The touchpoints with the patients must be well mastered in order to convince them to accept the proposed solutions. Healthcare service providers must be capable to look beyond customer's behaviour or product and healthcare service aquisition. This will demand proactive and far-reaching changes, including focusing specifically on customer preference, quality, and technological interfaces; rewiring strategy to find new value from existing and unfamiliar sources: disintegrating and radically reassembling operational processes: and restructuring the organization to accommodate new types of work and skill.
‘In the Moment’: An Analysis of Facilitator Impact During a Quality Improvement Process
Shaw, Erik; Looney, Anna; Chase, Sabrina; Navalekar, Rohini; Stello, Brian; Lontok, Oliver; Crabtree, Benjamin
2010-01-01
Facilitators frequently act ‘in the moment’ – deciding if, when and how to intervene into group process discussions. This paper offers a unique look at how facilitators impacted eleven primary care teams engaged in a 12-week quality improvement (QI) process. Participating in a federally funded QI trial, primary care practices in New Jersey and Pennsylvania formed practice-based teams comprised of physicians, nurses, administrative staff, and patients. External facilitators met with each team to help them identify and implement changes aimed at improving the organization, work relationships, office functions, and patient care. Audio-recordings of the meetings and descriptive field notes were collected. These qualitative data provided information on how facilitators acted ‘in the moment’ and how their interventions impacted group processes over time. Our findings reveal that facilitators impacted groups in multiple ways throughout the QI process, rather than through a linear progression of stages or events. We present five case examples that show what acting ‘in the moment’ looked like during the QI meetings and how these facilitator actions/interventions impacted the primary care teams. These accounts provide practical lessons learned and insights into effective facilitation that may encourage others in their own facilitation work and offer beneficial strategies to facilitators in other contexts. PMID:22557936
Energy Systems Test Area (ESTA) Pyrotechnic Operations: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Hacker, Scott
2012-01-01
The Johnson Space Center (JSC) has created and refined innovative analysis, design, development, and testing techniques that have been demonstrated in all phases of spaceflight. JSC is uniquely positioned to apply this expertise to components, systems, and vehicles that operate in remote or harsh environments. We offer a highly skilled workforce, unique facilities, flexible project management, and a proven management system. The purpose of this guide is to acquaint Test Requesters with the requirements for test, analysis, or simulation services at JSC. The guide includes facility services and capabilities, inputs required by the facility, major milestones, a roadmap of the facility s process, and roles and responsibilities of the facility and the requester. Samples of deliverables, facility interfaces, and inputs necessary to define the cost and schedule are included as appendices to the guide.
Hubert: Software for efficient analysis of in-situ nuclear forward scattering experiments
NASA Astrophysics Data System (ADS)
Vrba, Vlastimil; Procházka, Vít; Smrčka, David; Miglierini, Marcel
2016-10-01
Combination of short data acquisition time and local investigation of a solid state through hyperfine parameters makes nuclear forward scattering (NFS) a unique experimental technique for investigation of fast processes. However, the total number of acquired NFS time spectra may be very high. Therefore an efficient way of the data evaluation is needed. In this paper we report the development of Hubert software package as a response to the rapidly developing field of in-situ NFS experiments. Hubert offers several useful features for data files processing and could significantly shorten the evaluation time by using a simple connection between the neighboring time spectra through their input and output parameter values.
van Steensel, Maurice A M
2016-04-01
In this review, I will discuss how careful scrutiny of genetic skin disorders could help us to understand human biology. Like other organs, the skin and its appendages, such as hairs and teeth, experience fundamental biological processes ranging from lipid metabolism to vesicular transport and cellular migration. However, in contrast to other organ systems, they are accessible and can be studied with relative ease. By visually revealing the functional consequences of single gene defects, genetic skin diseases offer a unique opportunity to study human biology. Here, I will illustrate this concept by discussing how human genetic disorders of skin pigmentation reflect the mechanisms underlying this complex and vital process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dyads and triads at 35,000 feet - Factors affecting group process and aircrew performance
NASA Technical Reports Server (NTRS)
Foushee, H. C.
1984-01-01
The task of flying a multipilot transport aircraft is a classic small-group performance situation where a number of social, organizational, and personality factors are relevant to important outcome variables such as safety. The aviation community is becoming increasingly aware of the importance of these factors but is hampered in its efforts to improve the system because of research psychology's problems in defining the nature of the group process. This article identifies some of the problem areas as well as methods used to address these issues. It is argued that high fidelity flight simulators provide an environment that offers unique opportunities for work meeting both basic and applied research criteria.
Dyads and triads at 35,000 feet: Factors affecting group process and aircrew performance
NASA Technical Reports Server (NTRS)
Foushee, H. Clayton
1987-01-01
The task of flying a multipilot transport aircraft is a classic small-group performance situation where a number of social, organizational, and personality factors are relevant to important outcome variables such as safety. The aviation community is becoming increasingly aware of the importance of these factors but is hampered in its efforts to improve the system because of research psychology's problems in defining the nature of the group process. This article identifies some of the problem areas as well as methods used to address these issues. It is argued that high fidelity flight simulators provide an environment that offers unique opportunities for work meeting both basic and applied research criteria.
Atomic Radiations in the Decay of Medical Radioisotopes: A Physics Perspective
Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Robertson, K. A.
2012-01-01
Auger electrons emitted in nuclear decay offer a unique tool to treat cancer cells at the scale of a DNA molecule. Over the last forty years many aspects of this promising research goal have been explored, however it is still not in the phase of serious clinical trials. In this paper, we review the physical processes of Auger emission in nuclear decay and present a new model being developed to evaluate the energy spectrum of Auger electrons, and hence overcome the limitations of existing computations. PMID:22924061
Atomic radiations in the decay of medical radioisotopes: a physics perspective.
Lee, B Q; Kibédi, T; Stuchbery, A E; Robertson, K A
2012-01-01
Auger electrons emitted in nuclear decay offer a unique tool to treat cancer cells at the scale of a DNA molecule. Over the last forty years many aspects of this promising research goal have been explored, however it is still not in the phase of serious clinical trials. In this paper, we review the physical processes of Auger emission in nuclear decay and present a new model being developed to evaluate the energy spectrum of Auger electrons, and hence overcome the limitations of existing computations.
A Unitary-Transformative Nursing Science: From Angst to Appreciation.
Cowling, W Richard
2017-10-01
The discord within nursing regarding the definition of nursing science has created great angst, particularly for those who view nursing science as a body of knowledge derived from theories specific to its unique concerns. The purpose of this brief article is to suggest a perspective and process grounded in appreciation of wholeness that may offer a way forward for proponents of a unitary-transformative nursing science that transcends the discord. This way forward is guided by principles of fostering dissent without contempt, generating a well-imagined future, and garnering appreciatively inspired action for change.
Connecting Biology to Electronics: Molecular Communication via Redox Modality.
Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F
2017-12-01
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-ordered, controlled structure nanoporous membranes using constant current anodization.
Lee, Kwan; Tang, Yun; Ouyang, Min
2008-12-01
We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.
Young, Kimberly A.; Liu, Yan; Wang, Zuoxin
2008-01-01
The formation and maintenance of social bonds in adulthood is an essential component of human health. However studies investigating the underlying neurobiology of such behaviors have been scarce. Microtine rodents offer a unique comparative animal model to explore the neural processes responsible for pair bonding and its associated behaviors. Studies using monogamous prairie voles and other related species have recently offered insight into the neuroanatomical, neurobiological, and neurochemical underpinnings of social attachment. In this review, we will discuss the utility of the microtine rodents in comparative studies by exploring their natural history and social behavior in the laboratory. We will then summarize the data implicating vasopressin, oxytocin, and dopamine in the regulation of pair bonding. Finally, we will discuss the ways in which these neurochemical systems may interact to mediate this complex behavior. PMID:18417423
Fluorescent Photo-conversion: A second chance to label unique cells.
Mellott, Adam J; Shinogle, Heather E; Moore, David S; Detamore, Michael S
2015-03-01
Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2 , allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2 -transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2 , offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.
Liu, David; Zucherman, Mark; Tulloss, William B
2006-03-01
The reporting of radiological images is undergoing dramatic changes due to the introduction of two new technologies: structured reporting and speech recognition. Each technology has its own unique advantages. The highly organized content of structured reporting facilitates data mining and billing, whereas speech recognition offers a natural succession from the traditional dictation-transcription process. This article clarifies the distinction between the process and outcome of structured reporting, describes fundamental requirements for any effective structured reporting system, and describes the potential development of a novel, easy-to-use, customizable structured reporting system that incorporates speech recognition. This system should have all the advantages derived from structured reporting, accommodate a wide variety of user needs, and incorporate speech recognition as a natural component and extension of the overall reporting process.
Jiang, Jiang; Xiong, Youling L
2016-10-01
Fresh and processed meats offer numerous nutritional and health benefits and provide unique eating satisfaction in the lifestyle of the modern society. However, consumption of red meat including processed products is subjected to increasing scrutiny due to the health risks associated with cytotoxins that potentially could be generated during meat preparation. Evidence from recent studies suggests free radical pathways as a plausible mechanism for toxin formation, and antioxidants have shown promise to mitigate process-generated chemical hazards. The present review discusses the involvements of lipid and protein oxidation in meat quality, nutrition, safety, and organoleptic properties; animal production and meat processing strategies which incorporate natural antioxidants to enhance the nutritional and health benefits of meat; and the application of mixed or purified natural antioxidants to eliminate or minimize the formation of carcinogens for chemical safety of cooked and processed meats. Copyright © 2016. Published by Elsevier Ltd.
Cold Spraying of Armstrong Process Titanium Powder for Additive Manufacturing
NASA Astrophysics Data System (ADS)
MacDonald, D.; Fernández, R.; Delloro, F.; Jodoin, B.
2017-04-01
Titanium parts are ideally suited for aerospace applications due to their unique combination of high specific strength and excellent corrosion resistance. However, titanium as bulk material is expensive and challenging/costly to machine. Production of complex titanium parts through additive manufacturing looks promising, but there are still many barriers to overcome before reaching mainstream commercialization. The cold gas dynamic spraying process offers the potential for additive manufacturing of large titanium parts due to its reduced reactive environment, its simplicity to operate, and the high deposition rates it offers. A few challenges are to be addressed before the additive manufacturing potential of titanium by cold gas dynamic spraying can be reached. In particular, it is known that titanium is easy to deposit by cold gas dynamic spraying, but the deposits produced are usually porous when nitrogen is used as the carrier gas. In this work, a method to manufacture low-porosity titanium components at high deposition efficiencies is revealed. The components are produced by combining low-pressure cold spray using nitrogen as the carrier gas with low-cost titanium powder produced using the Armstrong process. The microstructure and mechanical properties of additive manufactured titanium components are investigated.
NASA Astrophysics Data System (ADS)
Shuster, W.; Schifman, L. A.; Herrmann, D.
2017-12-01
Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative green infrastructure. Yet, infiltration and drainage processes are regulated by soil surface conditions, and then the layering of subsoil horizons, respectively. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we determined how urbanization processes altered the sequence of soil horizons (compared to pre-urbanized reference soil pedons) and modeled the hydrologic implications of these shifts in layering with an unsaturated zone code (HYDRUS2D). We found that the different layering sequences in urbanized soils render different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services.
Cooper, Chris; Lovell, Rebecca; Husk, Kerryn; Booth, Andrew; Garside, Ruth
2018-06-01
We undertook a systematic review to evaluate the health benefits of environmental enhancement and conservation activities. We were concerned that a conventional process of study identification, focusing on exhaustive searches of bibliographic databases as the primary search method, would be ineffective, offering limited value. The focus of this study is comparing study identification methods. We compare (1) an approach led by searches of bibliographic databases with (2) an approach led by supplementary search methods. We retrospectively assessed the effectiveness and value of both approaches. Effectiveness was determined by comparing (1) the total number of studies identified and screened and (2) the number of includable studies uniquely identified by each approach. Value was determined by comparing included study quality and by using qualitative sensitivity analysis to explore the contribution of studies to the synthesis. The bibliographic databases approach identified 21 409 studies to screen and 2 included qualitative studies were uniquely identified. Study quality was moderate, and contribution to the synthesis was minimal. The supplementary search approach identified 453 studies to screen and 9 included studies were uniquely identified. Four quantitative studies were poor quality but made a substantive contribution to the synthesis; 5 studies were qualitative: 3 studies were good quality, one was moderate quality, and 1 study was excluded from the synthesis due to poor quality. All 4 included qualitative studies made significant contributions to the synthesis. This case study found value in aligning primary methods of study identification to maximise location of relevant evidence. Copyright © 2017 John Wiley & Sons, Ltd.
Kong, Meng; Li, Mingjie; Shang, Ruoxu; Wu, Jingyu; Yan, Peisong; Xu, Dongmei; Li, Chaoxu
2018-01-24
Marine shells not only represent a rapidly accumulating type of fishery wastes but also offer a unique sort of hybrid nanomaterials produced greenly and massively in nature. The elaborate "brick and mortar" structures of nacre enabled the synthesis of carbon nanomeshes with <1 nm thickness, hierarchical porosity, and high specific surface area through pyrolysis, in which two-dimensional (2D) organic layers served as the carbonaceous precursor and aragonite platelets as the hard template. Mineral bridges within 2D organic layers templated the formation of mesh pores of 20-70 nm. In contrast to other hydrophobic carbon nanomaterials, these carbon nanomeshes showed super dispersibility in diverse solvents and thus processability for membranes through filtration, patterning, spray-coating, and ink-writing. The carbon membranes with layered structures were capable of serving not only for high-flux filtration and continuous flow absorption but also for electrochemical and strain sensing with high sensitivity. Thus, utilization of marine shells, on one hand, relieves the environmental concern of shellfish waste, on the other hand, offers a facile, green, low-cost, and massive approach to synthesize unique carbon nanomeshes alternative to graphene nanomeshes and applicable in environmental adsorption, filtration, wearable sensors, and flexible microelectronics.
Lee, Moon Young; Park, Chanjae; Berent, Robyn M.; Park, Paul J.; Fuchs, Robert; Syn, Hannah; Chin, Albert; Townsend, Jared; Benson, Craig C.; Redelman, Doug; Shen, Tsai-wei; Park, Jong Kun; Miano, Joseph M.; Sanders, Kenton M.; Ro, Seungil
2015-01-01
Genome-scale expression data on the absolute numbers of gene isoforms offers essential clues in cellular functions and biological processes. Smooth muscle cells (SMCs) perform a unique contractile function through expression of specific genes controlled by serum response factor (SRF), a transcription factor that binds to DNA sites known as the CArG boxes. To identify SRF-regulated genes specifically expressed in SMCs, we isolated SMC populations from mouse small intestine and colon, obtained their transcriptomes, and constructed an interactive SMC genome and CArGome browser. To our knowledge, this is the first online resource that provides a comprehensive library of all genetic transcripts expressed in primary SMCs. The browser also serves as the first genome-wide map of SRF binding sites. The browser analysis revealed novel SMC-specific transcriptional variants and SRF target genes, which provided new and unique insights into the cellular and biological functions of the cells in gastrointestinal (GI) physiology. The SRF target genes in SMCs, which were discovered in silico, were confirmed by proteomic analysis of SMC-specific Srf knockout mice. Our genome browser offers a new perspective into the alternative expression of genes in the context of SRF binding sites in SMCs and provides a valuable reference for future functional studies. PMID:26241044
Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Havens, Glen G.; Beerer, Joseph G.
2012-01-01
NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.
Crosson, Jesse C.; Stroebel, Christine; Scott, John G.; Stello, Brian; Crabtree, Benjamin F.
2005-01-01
PURPOSE Electronic medical record (EMR) systems offer substantial opportunities to organize and manage clinical data in ways that can potentially improve preventive health care, the management of chronic illness, and the financial health of primary care practices. The functionality of EMRs as implemented, however, can vary substantially from that envisaged by their designers and even from those who purchase the programs. The purpose of this study was to explore how unique aspects of a family medicine office culture affect the initial implementation of an EMR. METHODS As part of a larger study, we conducted a qualitative case study of a private family medicine practice that had recently purchased and implemented an EMR. We collected data using participant observation, in-depth interviews, and key informant interviews. After the initial data collection, we shared our observations with practice members and returned 1 year later to collect additional data. RESULTS Dysfunctional communication patterns, the distribution of formal and informal decision-making power, and internal conflicts limited the effective implementation and use of the EMR. The implementation and use of the EMR made tracking and monitoring of preventive health and chronic illness unwieldy and offered little or no improvement when compared with paper charts. CONCLUSIONS Implementing an EMR without an understanding of the systemic effects and communication and the decision-making processes within an office practice and without methods for bringing to the surface and addressing conflicts limits the opportunities for improved care offered by EMRs. Understanding how these common issues manifest within unique practice settings can enhance the effective implementation and use of EMRs. PMID:16046562
Crosson, Jesse C; Stroebel, Christine; Scott, John G; Stello, Brian; Crabtree, Benjamin F
2005-01-01
Electronic medical record (EMR) systems offer substantial opportunities to organize and manage clinical data in ways that can potentially improve preventive health care, the management of chronic illness, and the financial health of primary care practices. The functionality of EMRs as implemented, however, can vary substantially from that envisaged by their designers and even from those who purchase the programs. The purpose of this study was to explore how unique aspects of a family medicine office culture affect the initial implementation of an EMR. As part of a larger study, we conducted a qualitative case study of a private family medicine practice that had recently purchased and implemented an EMR. We collected data using participant observation, in-depth interviews, and key informant interviews. After the initial data collection, we shared our observations with practice members and returned 1 year later to collect additional data. Dysfunctional communication patterns, the distribution of formal and informal decision-making power, and internal conflicts limited the effective implementation and use of the EMR. The implementation and use of the EMR made tracking and monitoring of preventive health and chronic illness unwieldy and offered little or no improvement when compared with paper charts. Implementing an EMR without an understanding of the systemic effects and communication and the decision-making processes within an office practice and without methods for bringing to the surface and addressing conflicts limits the opportunities for improved care offered by EMRs. Understanding how these common issues manifest within unique practice settings can enhance the effective implementation and use of EMRs.
NASA Technical Reports Server (NTRS)
Mchugh, Kevin M.; Key, James F.
1993-01-01
Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described.
Electrochemistry at Edge of Single Graphene Layer in a Nanopore
Banerjee, Shouvik; Shim, Jiwook; Rivera, Jose; Jin, Xiaozhong; Estrada, David; Solovyeva, Vita; You, Xiuque; Pak, James; Pop, Eric; Aluru, Narayana; Bashir, Rashid
2013-01-01
We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and Al2O3 dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to unique edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 104 A/cm2. The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many applications in sensitive chemical and biological sensing, and energy storage devices. PMID:23249127
An alternative pluripotent state confers interspecies chimaeric competency
Wu, Jun; Okamura, Daiji; Li, Mo; Suzuki, Keiichiro; Luo, Chongyuan; Ma, Li; He, Yupeng; Li, Zhongwei; Benner, Chris; Tamura, Isao; Krause, Marie N.; Nery, Joseph R.; Du, Tingting; Zhang, Zhuzhu; Hishida, Tomoaki; Takahashi, Yuta; Aizawa, Emi; Kim, Na Young; Lajara, Jeronimo; Guillen, Pedro; Campistol, Josep M.; Esteban, Concepcion Rodriguez; Ross, Pablo J.; Saghatelian, Alan; Ren, Bing; Ecker, Joseph R.; Belmonte, Juan Carlos Izpisua
2017-01-01
Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution. PMID:25945737
Cichy, Radoslaw Martin; Pantazis, Dimitrios
2017-09-01
Multivariate pattern analysis of magnetoencephalography (MEG) and electroencephalography (EEG) data can reveal the rapid neural dynamics underlying cognition. However, MEG and EEG have systematic differences in sampling neural activity. This poses the question to which degree such measurement differences consistently bias the results of multivariate analysis applied to MEG and EEG activation patterns. To investigate, we conducted a concurrent MEG/EEG study while participants viewed images of everyday objects. We applied multivariate classification analyses to MEG and EEG data, and compared the resulting time courses to each other, and to fMRI data for an independent evaluation in space. We found that both MEG and EEG revealed the millisecond spatio-temporal dynamics of visual processing with largely equivalent results. Beyond yielding convergent results, we found that MEG and EEG also captured partly unique aspects of visual representations. Those unique components emerged earlier in time for MEG than for EEG. Identifying the sources of those unique components with fMRI, we found the locus for both MEG and EEG in high-level visual cortex, and in addition for MEG in low-level visual cortex. Together, our results show that multivariate analyses of MEG and EEG data offer a convergent and complimentary view on neural processing, and motivate the wider adoption of these methods in both MEG and EEG research. Copyright © 2017 Elsevier Inc. All rights reserved.
Cera, Luca; Schalley, Christoph A
2014-03-21
The high vacuum inside a mass spectrometer offers unique conditions to broaden our view on the reactivity of supramolecules. Because dynamic exchange processes between complexes are efficiently suppressed, the intrinsic and intramolecular reactivity of the complexes of interest is observed. Besides this, the significantly higher strength of non-covalent interactions in the absence of competing solvent allows processes to occur that are unable to compete in solution. The present review highlights a series of examples illustrating different aspects of supramolecular gas-phase reactivity ranging from the dissociation and formation of covalent bonds in non-covalent complexes through the reactivity in the restricted inner phase of container molecules and step-by-step mechanistic studies of organocatalytic reaction cycles to cage contraction reactions, processes induced by electron capture, and finally dynamic molecular motion within non-covalent complexes as unravelled by hydrogen-deuterium exchange processes performed in the gas phase.
Gaguski, Michele; George, Kim; Bruce, Susan; Brucker, Edie; Leija, Carol; LeFebvre, Kristine; Thompson Mackey, Heather
2017-09-25
A project team was formulated by the Oncology Nursing Society (ONS) to create evidence-based oncology nurse generalist (ONG) competencies to establish best practices in competency development, including high-risk tasks, critical thinking criteria, and measurement of key areas for oncology nurses. This article aims to describe the process and the development of ONG competencies. This article describes how the ONG competencies were accomplished, and includes outcomes and suggestions for use in clinical practice. Institutions can use the ONG competencies to assess and develop competency programs, offer unique educational strategies to measure and appraise proficiency, and establish processes to foster a workplace environment committed to mentoring and teaching future oncology nurses. 2017 Oncology Nursing Society
Junocam: Juno's Outreach Camera
NASA Astrophysics Data System (ADS)
Hansen, C. J.; Caplinger, M. A.; Ingersoll, A.; Ravine, M. A.; Jensen, E.; Bolton, S.; Orton, G.
2017-11-01
Junocam is a wide-angle camera designed to capture the unique polar perspective of Jupiter offered by Juno's polar orbit. Junocam's four-color images include the best spatial resolution ever acquired of Jupiter's cloudtops. Junocam will look for convective clouds and lightning in thunderstorms and derive the heights of the clouds. Junocam will support Juno's radiometer experiment by identifying any unusual atmospheric conditions such as hotspots. Junocam is on the spacecraft explicitly to reach out to the public and share the excitement of space exploration. The public is an essential part of our virtual team: amateur astronomers will supply ground-based images for use in planning, the public will weigh in on which images to acquire, and the amateur image processing community will help process the data.
Ionized cluster beam deposition
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.
1983-01-01
Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.
Goodman, Petra; Turner, Annette; Agazio, Janice; Throop, Meryia; Padden, Diane; Greiner, Shawna; Hillier, Shannon L
2013-07-01
Military mothers and their children cope with unique issues when mothers are deployed. In this article, we present mothers' perspectives on how military resources affected them, their children, and their caregivers during deployment. Mothers described beneficial features of military programs such as family readiness groups and behavioral health care, processes such as unit support, and policies on length and timing of deployments. Aspects that were not supportive included inflexibility in family care plans, using personal leave time and funds for transporting children, denial of release to resolve caretaker issues, and limited time for reintegration. We offer recommendations for enhanced support to these families that the military could provide. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Outdoor Recreation and Applied Ecology. Revised.
ERIC Educational Resources Information Center
Hendren, Travis E.; And Others
This curriculum guide offers guidelines for structuring a course which exposes the students to various environmental careers. The guide is divided into three sections. The first section offers information about such a course: course description, purpose, credits, special or unique aspects, physical facilities, equipment, major materials, teacher…
Experiences Gained Creating a Biophysics Major at a Predominately Undergraduate Institution
NASA Astrophysics Data System (ADS)
Link, Justin; Herbert, Steven
2014-03-01
Xavier University, a liberal arts predominately undergraduate institution (PUI) located in Cincinnati, OH, implemented a Biophysics major in the Department of Physics in spring 2012. The program is built upon foundational physics courses and is unique due to the possible selection of upper-division courses that students elect to take towards their undergraduate degree. A capstone course is offered to bring all prior knowledge in the fundamental sciences together to approach complex problems in biology. Due to the flexibility of the program, it serves students well who are interested in pursuing advanced degrees in Biophysics or Biomedical Engineering. It also offers students interested in the health professions an alternate path towards medical school which can be advantageous in the application process. This session will express some of the advantages and challenges to creating such a program at a liberal arts PUI and discuss the capstone course within the major.
Spongy Gels by a Top-Down Approach from Polymer Fibrous Sponges.
Jiang, Shaohua; Duan, Gaigai; Kuhn, Ute; Mörl, Michaela; Altstädt, Volker; Yarin, Alexander L; Greiner, Andreas
2017-03-13
Ultralight cellular sponges offer a unique set of properties. We show here that solvent uptake by these sponges results in new gel-like materials, which we term spongy gels. The appearance of the spongy gels is very similar to classic organogels. Usually, organogels are formed by a bottom-up process. In contrast, the spongy gels are formed by a top-down approach that offers numerous advantages for the design of their properties, reproducibility, and stability. The sponges themselves represent the scaffold of a gel that could be filled with a solvent, and thereby form a mechanically stable gel-like material. The spongy gels are independent of a time-consuming or otherwise demanding in situ scaffold formation. As solvent evaporation from gels is a concern for various applications, we also studied solvent evaporation of wetting and non-wetting liquids dispersed in the sponge. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Functional Interdependence Theory: An Evolutionary Account of Social Situations.
Balliet, Daniel; Tybur, Joshua M; Van Lange, Paul A M
2017-11-01
Social interactions are characterized by distinct forms of interdependence, each of which has unique effects on how behavior unfolds within the interaction. Despite this, little is known about the psychological mechanisms that allow people to detect and respond to the nature of interdependence in any given interaction. We propose that interdependence theory provides clues regarding the structure of interdependence in the human ancestral past. In turn, evolutionary psychology offers a framework for understanding the types of information processing mechanisms that could have been shaped under these recurring conditions. We synthesize and extend these two perspectives to introduce a new theory: functional interdependence theory (FIT). FIT can generate testable hypotheses about the function and structure of the psychological mechanisms for inferring interdependence. This new perspective offers insight into how people initiate and maintain cooperative relationships, select social partners and allies, and identify opportunities to signal social motives.
Towards neutron scattering experiments with sub-millisecond time resolution
Adlmann, F. A.; Gutfreund, Phillip; Ankner, John Francis; ...
2015-02-01
Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. We demonstrate that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode atmore » the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. Finally, the opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear.« less
A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell
NASA Astrophysics Data System (ADS)
Zhang, Zhitao; Guo, Kunping; Li, Yiming; Li, Xueyi; Guan, Guozhen; Li, Houpu; Luo, Yongfeng; Zhao, Fangyuan; Zhang, Qi; Wei, Bin; Pei, Qibing; Peng, Huisheng
2015-04-01
The emergence of wearable electronics and optoelectronics requires the development of devices that are not only highly flexible but can also be woven into textiles to offer a truly integrated solution. Here, we report a colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell (PLEC). The fibre-shaped PLEC is fabricated using all-solution-based processes that can be scaled up for practical applications. The design has a coaxial structure comprising a modified metal wire cathode and a conducting aligned carbon nanotube sheet anode, with an electroluminescent polymer layer sandwiched between them. The fibre shape offers unique and promising advantages. For example, the luminance is independent of viewing angle, the fibre-shaped PLEC can provide a variety of different and tunable colours, it is lightweight, flexible and wearable, and it can potentially be woven into light-emitting clothes for the creation of smart fabrics.
Research Performance Progress Report: Diverging Supernova Explosion Experiments on NIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plewa, Tomasz
2016-10-25
The aim of this project was to design a series of blast-wave driven Rayleigh-Taylor (RT) experiments on the National Ignition Facility (NIF). The experiments of this kind are relevant to mixing in core-collapse supernovae (ccSNe) and have the potential to address previously unanswered questions in high-energy density physics (HEDP) and astrophysics. The unmatched laser power of the NIF laser offers a unique chance to observe and study “new physics” like the mass extensions observed in HEDP RT experiments performed on the Omega laser [1], which might be linked to self-generated magnetic fields [2] and so far could not be reproducedmore » by numerical simulations. Moreover, NIF is currently the only facility that offers the possibility to execute a diverging RT experiment, which would allow to observe processes such as inter-shell penetration via turbulent mixing and shock-proximity effects (distortion of the shock by RT spikes).« less
Hyperswitch communication network
NASA Technical Reports Server (NTRS)
Peterson, J.; Pniel, M.; Upchurch, E.
1991-01-01
The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed.
Impact of Hospital Information Systems on Emergency Patient Processing
Rusnak, James E.
1981-01-01
The Emergency Department offers the Hospital Information System's designer some unique problems to solve in the operational areas of patient registration, order entry, charge recording, and treatment processing. In a number of instances, Hospital Information Systems implementers have encountered serious difficulties in trying to design system components to support the requirements of the Emergency Services Department's operations. Washington Hospital has developed a very effective system for Emergency Services. The system's features are designed to meet the special requirements of the department and to maximize the use of the data captured by the Hospital Information System. The system supports accurate and timely charging for services. The treatment of the patient has been dramatically improved through the use of a computerized order processing and control. The installed systems resulted in a higher quality of care and cost effective operations.
The anatomy of a shark attack: a case report and review of the literature.
Caldicott, D G; Mahajani, R; Kuhn, M
2001-07-01
Shark attacks are rare but are associated with a high morbidity and significant mortality. We report the case of a patient's survival from a shark attack and their subsequent emergency medical and surgical management. Using data from the International Shark Attack File, we review the worldwide distribution and incidence of shark attack. A review of the world literature examines the features which make shark attacks unique pathological processes. We offer suggestions for strategies of management of shark attack, and techniques for avoiding adverse outcomes in human encounters with these endangered creatures.
Design Features and Capabilities of the First Materials Science Research Rack
NASA Technical Reports Server (NTRS)
Pettigrew, P. J.; Lehoczky, S. L.; Cobb, S. D.; Holloway, T.; Kitchens, L.
2003-01-01
The First Materials Science Research Rack (MSRR-1) aboard the International Space Station (ISS) will offer many unique capabilities and design features to facilitate a wide range of materials science investigations. The initial configuration of MSRR-1 will accommodate two independent Experiment Modules (EMS) and provide the capability for simultaneous on-orbit processing. The facility will provide the common subsystems and interfaces required for the operation of experiment hardware and accommodate telescience capabilities. MSRR1 will utilize an International Standard Payload Rack (ISPR) equipped with an Active Rack Isolation System (ARIS) for vibration isolation of the facility.
HOW MANY NUCLEOSYNTHESIS PROCESSES EXIST AT LOW METALLICITY?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, C. J.; Montes, F.; Arcones, A., E-mail: cjhansen@lsw.uni-heidelberg.de, E-mail: cjhansen@dark-cosmology.dk, E-mail: montes@nscl.msu.edu, E-mail: almudena.arcones@physik.tu-darmstadt.de
Abundances of low-metallicity stars offer a unique opportunity to understand the contribution and conditions of the different processes that synthesize heavy elements. Many old, metal-poor stars show a robust abundance pattern for elements heavier than Ba, and a less robust pattern between Sr and Ag. Here we probe if two nucleosynthesis processes are sufficient to explain the stellar abundances at low metallicity, and we carry out a site independent approach to separate the contribution from these two processes or components to the total observationally derived abundances. Our approach provides a method to determine the contribution of each process to themore » production of elements such as Sr, Zr, Ba, and Eu. We explore the observed star-to-star abundance scatter as a function of metallicity that each process leads to. Moreover, we use the deduced abundance pattern of one of the nucleosynthesis components to constrain the astrophysical conditions of neutrino-driven winds from core-collapse supernovae.« less
ERIC Educational Resources Information Center
Fredstrom, Bridget K.; Adams, Ryan E.; Gilman, Rich
2011-01-01
Previous research suggests that school-based and electronic victimization have similar negative consequences, yet it is unclear whether these two contexts offer overlapping or unique associations with adolescents' adjustment. 802 ninth-graders (43% male, mean age = 15.84 years), majority being Caucasian (82%), completed measures assessing the…
Leading change: curriculum reform in graduate education in the biomedical sciences.
Dasgupta, Shoumita; Symes, Karen; Hyman, Linda
2015-01-01
The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences. © 2015 The International Union of Biochemistry and Molecular Biology.
Nordquist, Jonas; Grigsby, R Kevin
2011-12-01
Political science offers a unique perspective from which to inform education leadership practice. This article views leadership in the health professions through the lens of political science research and offers suggestions for how theories derived from political science can be used to develop education leadership practice. Political science is rarely used in the health professions education literature. This article illuminates how this discipline can generate a more nuanced understanding of leadership in health professions education by offering a terminology, a conceptual framework and insights derived from more than 80 years of empirical work. Previous research supports the premise that successful leaders have a good understanding of political processes. Studies show current health professional education is characterised by the influence of interest groups. At the same time, the need for urgent reform of health professional education is evident. Terminology, concepts and analytical models from political science can be used to develop the political understanding of education leaders and to ultimately support the necessary changes. The analytical concepts of interest and power are applicable to current health professional education. The model presented - analysing the policy process - provides us with a tool to fine-tune our understanding of leadership challenges and hence to communicate, analyse and create strategies that allow health professional education to better meet tomorrow's challenges. © Blackwell Publishing Ltd 2011.
Compounding Opportunities in Urology.
Biundo, Bruce
2017-01-01
There are a lot of options that pharmacists, including compounding pharmacists, can offer urologists to assist their patients. Compounding pharmacists are in a great position to offer unique, effective preparations for many of the conditions urologists treat on a daily basis. It would be well worth the time to learn a little about the conditions these specialists treat and become familiar with what you can offer. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
An Examination of the Determinants of Top Management Support of Information Technology Projects
ERIC Educational Resources Information Center
Mahoney, Michael L.
2011-01-01
Despite compelling evidence that top management support promotes information technology project success, existing research fails to offer insight into the antecedents of top management support of such projects. This gap in the literature is significant since the exploitation of information technology offers organizations unique opportunities for…
The Japanese Mind: Understanding Contemporary Japanese Culture.
ERIC Educational Resources Information Center
Davies, Roger J., Ed.; Ikeno, Osamu, Ed.
This collection of essays offers an overview of contemporary Japanese culture, and can serve as a resource for classes studying Japan. The 28 essays offer an informative, accessible look at the values, attitudes, behavior patterns, and communication styles of modern Japan from the unique perspective of the Japanese people. Filled with examples…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... public disclosure. Sensitive personal information such as account numbers or Social Security numbers... in person and online? 4. What programs, policies, accommodations, or benefits do financial service... protections and fraud protections. 5. What unique assistance, if any, is currently offered by financial...
NASA Astrophysics Data System (ADS)
Zawislak, J.; Reasor, P.
2017-12-01
Each year, NOAA's Atlantic Oceanographic & Meteorological Laboratory (AOML) Hurricane Research Division (HRD), in partnership with the National Hurricane Center (NHC) and NOAA's Environmental Modeling Center (EMC), operates a hurricane field program, the Intensity Forecast Experiment (IFEX). The experiment leverages the NOAA P-3 and G-IV hurricane hunter aircraft, based at NOAA's Office of Marine and Aviation Operations (OMAO) Aircraft Operations Center (AOC). The goals of IFEX are to improve understanding of physical processes in tropical cyclones (TCs), improve operational forecasts of TC intensity, structure, and rainfall by providing data into operational numerical modeling systems, and to develop and refine measurement technologies. This season the IFEX program, leveraging mainly operationally tasked EMC and NHC missions, sampled extensively Hurricanes Harvey, Irma, Jose, Maria, and Nate, as well as Tropical Storm Franklin. We will contribute to this important session by providing an overview of aircraft missions into these storms, guidance on the datasets made available from instruments onboard the P-3 and G-IV, and will offer some perspective on the science that can be addressed with these unique datasets, such as the value of those datasets towards model forecast improvement. NOAA aircraft sampled these storms during critical periods of intensification, and for Hurricanes Harvey and Irma, just prior to the devastating landfalls in the Caribbean and United States. The unique instrument suite on the P-3 offers inner core observations of the three-dimensional precipitation and vortex structure, lower troposphere (boundary layer) thermodynamic properties, and surface wind speed. In contrast, the G-IV flies at higher altitudes, sampling the environment surrounding the storms, and provides deep-tropospheric soundings from dropsondes.
Lafora disease offers a unique window into neuronal glycogen metabolism.
Gentry, Matthew S; Guinovart, Joan J; Minassian, Berge A; Roach, Peter J; Serratosa, Jose M
2018-05-11
Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Unique Migraine Subtypes, Rare Headache Disorders, and Other Disturbances.
Goadsby, Peter J
2015-08-01
The medical aphorism that common things happen commonly makes unique (and less common) migraine subtypes especially appropriate to review for the general neurologist. This article also identifies some rare headache disorders and other disturbances, and offers strategies to manage them. This article discusses migraine with brainstem aura, which is troublesome clinically and has had a change in terminology in the International Classification of Headache Disorders, Third Edition, beta version (ICHD-3 beta), and hemiplegic migraine, which is also troublesome in practice. The rare headache disorder hypnic headache and the exploding head syndrome are also discussed. When hypnic headache is recognized, it is eminently treatable, while exploding head syndrome is a benign condition with no reported consequences. Unique migraine subtypes, rare headache disorders, and other disturbances present to neurologists. When recognized, they can often be managed very well, which offers significant benefits to patients and practice satisfaction to neurologists.
Anstey, Lauren M; Michels, Alison; Szymus, Julianna; Law, Wyanne; Edwin Ho, Man-Hymn; Qu, Fei; Yeung, Ralph T T; Chow, Natalie
2014-01-01
Near-peer facilitators (senior students serving as facilitators to their more junior peers) bring a unique student-based perspective to teaching. With fewer years of teaching experience however, students who become involved in a facilitator role typically develop related skills quickly through a process of trial-and-error within the classroom. The aim of this paper is to report on the authors' own experiences and reflections as student near-peer facilitators for an inquiry-based project in an undergraduate anatomy course. Three areas of the facilitator experience are explored: (1) offering adequate guidance as facilitators of inquiry, (2) motivating students to engage in the inquiry process, and (3) fostering creativity in learning. A practical framework for providing guidance to students is discussed which offers facilitators a scaffold for asking questions and assisting students through the inquiry process. Considerations for stimulating intrinsic motivations toward inquiry learning are made, paying attention to ways in which facilitators might influence feelings of motivation towards learning. Also, the role of creativity in inquiry learning is explored by highlighting the actions facilitators can take to foster a creative learning environment. Finally, recommendations are made for the development of formalized training programs that aid near-peer facilitators in the acquisition of facilitation skills before entering into a process of trial-and-error within the classroom. © 2013 American Association of Anatomists.
New levels of language processing complexity and organization revealed by granger causation.
Gow, David W; Caplan, David N
2012-01-01
Granger causation analysis of high spatiotemporal resolution reconstructions of brain activation offers a new window on the dynamic interactions between brain areas that support language processing. Premised on the observation that causes both precede and uniquely predict their effects, this approach provides an intuitive, model-free means of identifying directed causal interactions in the brain. It requires the analysis of all non-redundant potentially interacting signals, and has shown that even "early" processes such as speech perception involve interactions of many areas in a strikingly large network that extends well beyond traditional left hemisphere perisylvian cortex that play out over hundreds of milliseconds. In this paper we describe this technique and review several general findings that reframe the way we think about language processing and brain function in general. These include the extent and complexity of language processing networks, the central role of interactive processing dynamics, the role of processing hubs where the input from many distinct brain regions are integrated, and the degree to which task requirements and stimulus properties influence processing dynamics and inform our understanding of "language-specific" localized processes.
Spike processing with a graphene excitable laser
Shastri, Bhavin J.; Nahmias, Mitchell A.; Tait, Alexander N.; Rodriguez, Alejandro W.; Wu, Ben; Prucnal, Paul R.
2016-01-01
Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved “spiking” of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate a unified platform for spike processing with a graphene-coupled laser system. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation—fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system and also propose and simulate an analogous integrated device. The addition of graphene leads to a number of advantages which stem from its unique properties, including high absorption and fast carrier relaxation. These could lead to significant speed and efficiency improvements in unconventional laser processing devices, and ongoing research on graphene microfabrication promises compatibility with integrated laser platforms. PMID:26753897
NASA Astrophysics Data System (ADS)
Bemporad, Alessandro
Thanks to the launch of SOHO in the end of 1995 and to the continuous monitoring of the white light (WL) corona offered by the LASCO coronagraphs, it was discovered that sungrazing comets are much more common than previously thought. More than 2500 comets have been discovered over about 17 years, hence slightly less than a comet every 2 days is observed by coronagraphs. The white light emission seen by SOHO/LASCO and more recently also by the STEREO/SECCHI instruments provides information not only on the comet orbits (hence on its origin), but also on the dust-tail formation, dust-tail disconnection, occurrence of nucleus fragmentation and nucleus disintegration processes. Very interestingly, a few sungrazing comets have been also observed in the UV spectra by the SOHO UV Coronagraph Spectrometer (UVCS) and the strong emission observed in the H I Lyman-alpha lambda 1216 Å line provided direct information also on the water outgassing rate, tail chemical composition, nucleus size and occurrence of nucleus fragmentations. Moreover, the UV cometary emission provides a new method to estimate physical parameters of the coronal plasma met by the comet (like electron density, proton temperature and solar wind velocity), in a way that these comets can be considered as “local probes” for the solar corona. Unique observations of comets will be provided in the next future by the METIS coronagraph on board the Solar Orbiter mission: METIS will contemporary observe the corona in WL and in UV (HI Lyman-alpha), hence will be a unique instrument to study at the same time the transiting comets and the solar corona being crossed by the comets. Previous results and new possibilities offered by METIS on these topics are summarized and discussed here.
Kern, Marcelo; McGeehan, John E; Streeter, Simon D; Martin, Richard N A; Besser, Katrin; Elias, Luisa; Eborall, Will; Malyon, Graham P; Payne, Christina M; Himmel, Michael E; Schnorr, Kirk; Beckham, Gregg T; Cragg, Simon M; Bruce, Neil C; McQueen-Mason, Simon J
2013-06-18
Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.
Kern, Marcelo; McGeehan, John E.; Streeter, Simon D.; Martin, Richard N. A.; Besser, Katrin; Elias, Luisa; Eborall, Will; Malyon, Graham P.; Payne, Christina M.; Himmel, Michael E.; Schnorr, Kirk; Beckham, Gregg T.; Cragg, Simon M.; Bruce, Neil C.; McQueen-Mason, Simon J.
2013-01-01
Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes. PMID:23733951
Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research
Osterstock, Jason B.; Pinchak, William E.; Ishii, Shun’ichi; Nelson, Karen E.
2009-01-01
Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research. PMID:20024685
Across the Nation: Unique Delivery and Inventive Approaches
ERIC Educational Resources Information Center
Fick, Jill; McKeown, Patricia; Whiteside, Ann B.; Paneitz, Becky; Flemming, Sondra; Wolf, Toni; West-Sands, Leslie; Gray, Patricia M.; Orre, Deborah J.; Adams, Ann-Marie
2004-01-01
In this article, American Association of Community Colleges member institutions provide information on the collaborative efforts in allied health programs between their colleges and the communities they serve. These are but a fraction of the inventive and unique programs community colleges across the U.S. offer to support the health and wellness…
NASA Astrophysics Data System (ADS)
Xia, Yang; Fang, Zhigang Zak; Sun, Pei; Zhang, Ying; Zhu, Jun
2018-03-01
Ti-Ta alloys offer a good combination of high strength and low modulus among Ti-based alloys, and are ideal for biomedical applications. However, making Ti-Ta alloys has always been challenging because they tend to suffer from compositional segregation during melting due to the large difference between the melting points of Ti and Ta. This article describes a novel process for making spherical Ti-30Ta alloy powder through a unique powder metallurgy technique, namely the granulation-sintering-deoxygenation process. The results indicate that the compositional segregation problem can be overcome using this process technology. Combined with use of a deoxygenation process, the critical interstitial element, oxygen, can be controlled to < 400 ppm for powder with particle size < 75 µm. The destabilization effect of Ta on Ti-O solid solutions, and the resulting improved deoxygenation process for Ti-Ta, are discussed, as well as the phase composition and microstructure of the powders.
Biomimetic surface structuring using cylindrical vector femtosecond laser beams
NASA Astrophysics Data System (ADS)
Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel
2017-03-01
We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.
Medical Robotic and Tele surgical Simulation Education Research
2017-05-01
training exercises, DVSS = 40, dVT = 65, and RoSS = 52 for skills development. All three offer 3D visual images but use different display technologies...capabilities with an emphasis on their educational skills. They offer unique advantages and capabilities in training robotic sur- geons. Each device has been...evaluate the transfer of training effect of each simulator. Collectively, this work will offer end users and potential buyers a comparison of the value
Eight worst advertising mistakes.
Maley, Catherine
2010-11-01
This article presents strategies for advertising the medical practice. The emphasis is on breaking out of the old rules of how one should advertise and delves into asking questions that lead to a true strategy unique to one's medical practice and offerings. The article discusses the myriad ways to think about and create a patient-centered approach, turning from "here is what we offer" to instead "what you want we offer." Copyright © 2010 Elsevier Inc. All rights reserved.
Engineering Biomaterial Properties for Central Nervous System Applications
NASA Astrophysics Data System (ADS)
Rivet, Christopher John
Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.
Transcriptome of interstitial cells of Cajal reveals unique and selective gene signatures
Park, Paul J.; Fuchs, Robert; Wei, Lai; Jorgensen, Brian G.; Redelman, Doug; Ward, Sean M.; Sanders, Kenton M.
2017-01-01
Transcriptome-scale data can reveal essential clues into understanding the underlying molecular mechanisms behind specific cellular functions and biological processes. Transcriptomics is a continually growing field of research utilized in biomarker discovery. The transcriptomic profile of interstitial cells of Cajal (ICC), which serve as slow-wave electrical pacemakers for gastrointestinal (GI) smooth muscle, has yet to be uncovered. Using copGFP-labeled ICC mice and flow cytometry, we isolated ICC populations from the murine small intestine and colon and obtained their transcriptomes. In analyzing the transcriptome, we identified a unique set of ICC-restricted markers including transcription factors, epigenetic enzymes/regulators, growth factors, receptors, protein kinases/phosphatases, and ion channels/transporters. This analysis provides new and unique insights into the cellular and biological functions of ICC in GI physiology. Additionally, we constructed an interactive ICC genome browser (http://med.unr.edu/physio/transcriptome) based on the UCSC genome database. To our knowledge, this is the first online resource that provides a comprehensive library of all known genetic transcripts expressed in primary ICC. Our genome browser offers a new perspective into the alternative expression of genes in ICC and provides a valuable reference for future functional studies. PMID:28426719
International Spotlight: Israel
Glicksman, Allen; Litwin, Howard
2011-01-01
The State of Israel provides significant opportunities to study social processes that can enhance our understanding of the aging experience. It has high life expectancy and rapid growth of its older population. With an older cohort that is composed largely of former immigrants and includes a minority Arab population, Israel provides much diversity for gerontological study. Among the unique issues facing older Israelis are the aging of Holocaust survivors, modernization in the Arab sector, and privatization in the kibbutzim. New legislation related to pensions and universal health care is expected to affect aging processes. The development of “supportive communities” offers a new service model. The article notes 2 longitudinal studies of importance—the Israeli component of the Survey of Health, Ageing, and Retirement in Europe and the Jerusalem Longitudinal Cohort Study. PMID:22038339
Toward understanding dog evolutionary and domestication history.
Galibert, Francis; Quignon, Pascale; Hitte, Christophe; André, Catherine
2011-03-01
Dog domestication was probably started very early during the Upper paleolithic period (~35,000 BP), thus well before any other animal or plant domestication. This early process, probably unconscious, is called proto-domestication to distinguish it from the real domestication process that has been dated around 14,000 BC. Genomic DNA analyses have shown recently that domestication started in the Middle East and rapidly expanded into all human populations. Nowadays, the dog population is fragmented in several hundreds of breeds well characterized by their phenotypes that offer a unique spectrum of polymorphism. More recent studies detect genetic signatures that will be useful to highlight breed history as well as the impact of domestication at the DNA level. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Processing of polysiloxane-derived porous ceramics: a review
Manoj Kumar, B V; Kim, Young-Wook
2010-01-01
Because of the unique combination of their attractive properties, porous ceramics are considered as candidate materials for several engineering applications. The production of porous ceramics from polysiloxane precursors offers advantages in terms of simple processing methodology, low processing cost, and easy control over porosity and other properties of the resultant ceramics. Therefore, considerable research has been conducted to produce various Si(O)C-based ceramics from polysiloxane precursors by employing different processing strategies. The complete potential of these materials can only be achieved when properties are tailored for a specific application, whereas the control over these properties is highly dependent on the processing route. This review deals with processing strategies of polysiloxane-derived porous ceramics. The essential features of processing strategies—replica, sacrificial template, direct foaming and reaction techniques—are explained and the available literature reports are thoroughly reviewed with particular regard to the critical issues that affect pore characteristics. A short note on the cross-linking methods of polysiloxanes is also provided. The potential of each processing strategy on porosity and strength of the resultant SiC or SiOC ceramics is outlined. PMID:27877344
The Biology of Bone Metastasis.
Esposito, Mark; Guise, Theresa; Kang, Yibin
2018-06-01
Bone metastasis, or the development of secondary tumors within the bone of cancer patients, is a debilitating and incurable disease. Despite its morbidity, the biology of bone metastasis represents one of the most complex and intriguing of all oncogenic processes. This complexity derives from the intricately organized bone microenvironment in which the various stages of hematopoiesis, osteogenesis, and osteolysis are jointly regulated but spatially restricted. Disseminated tumor cells (DTCs) from various common malignancies such as breast, prostate, lung, and kidney cancers or myeloma are uniquely primed to subvert these endogenous bone stromal elements to grow into pathological osteolytic or osteoblastic lesions. This colonization process can be separated into three key steps: seeding, dormancy, and outgrowth. Targeting the processes of dormancy and initial outgrowth offers the most therapeutic promise. Here, we discuss the concepts of the bone metastasis niche, from controlling tumor-cell survival to growth into clinically detectable disease. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Mechanism on brain information processing: Energy coding
NASA Astrophysics Data System (ADS)
Wang, Rubin; Zhang, Zhikang; Jiao, Xianfa
2006-09-01
According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, the authors present a brand new scientific theory that offers a unique mechanism for brain information processing. They demonstrate that the neural coding produced by the activity of the brain is well described by the theory of energy coding. Due to the energy coding model's ability to reveal mechanisms of brain information processing based upon known biophysical properties, they cannot only reproduce various experimental results of neuroelectrophysiology but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, they estimate that the theory has very important consequences for quantitative research of cognitive function.
DeCou, Christopher R; Cole, Trevor T; Rowland, Sarah E; Kaplan, Stephanie P; Lynch, Shannon M
2015-06-01
Female sex offenders may be implicated in up to one fifth of all sex crimes committed in the United States. Despite previous research findings that suggest unique patterns of offending among female sex offenders, limited empirical research has investigated the motivations and processes involved. The present study qualitatively examined female sex offenders' offense-related experiences and characterized the internal and external factors that contributed to offending. Semi-structured interviews with 24 female sex offenders were analyzed by a team of coders with limited exposure to the existing literature using grounded theory analysis. A conceptual framework emerged representing distinctive processes for solo- and co-offending, contextualized within ecological layers of social and environmental influence. This model extends previous work by offering an example of nested vulnerabilities proximal to female sexual offending. Implications for future research, prevention, and treatment are discussed. © The Author(s) 2014.
The UARS and open data concept and analysis study. [upper atmosphere
NASA Technical Reports Server (NTRS)
Mittal, M.; Nebb, J.; Woodward, H.
1983-01-01
Alternative concepts for a common design for the UARS and OPEN Central Data Handling Facility (CDHF) are offered. Costs for alternative implementations of the UARS designs are presented, showing that the system design does not restrict the implementation to a single manufacturer. Processing demands on the alternative UARS CDHF implementations are then discussed. With this information at hand together with estimates for OPEN processing demands, it is shown that any shortfall in system capability for OPEN support can be remedied by either component upgrades or array processing attachments rather than a system redesign. In addition to a common system design, it is shown that there is significant potential for common software design, especially in the areas of data management software and non-user-unique production software. Archiving the CDHF data are discussed. Following that, cost examples for several modes of communications between the CDHF and Remote User Facilities are presented. Technology application is discussed.
Yoo, Jae-Hyuck; Kim, Eunpa; Hwang, David J.
2016-12-06
This article summarizes recent research on laser-based processing of twodimensional (2D) atomic layered materials, including graphene and transition metal dichalcogenides (TMDCs). Ultrafast lasers offer unique processing routes that take advantage of distinct interaction mechanisms with 2D materials to enable extremely localized energy deposition. Experiments have shown that ablative direct patterning of graphene by ultrafast lasers can achieve resolutions of tens of nanometers, as well as single-step pattern transfer. Ultrafast lasers also induce non-thermal excitation mechanisms that are useful for the thinning of TMDCs to tune the 2D material bandgap. Laser-assisted site-specific doping was recently demonstrated where ultrafast laser radiation undermore » ambient air environment could be used for the direct writing of high-quality graphene patterns on insulating substrates. This article concludes with an outlook towards developing further advanced laser processing with scalability, in situ monitoring strategies and potential applications.« less
The value and validation of broad spectrum biosensors for diagnosis and biodefense
Metzgar, David; Sampath, Rangarajan; Rounds, Megan A; Ecker, David J
2013-01-01
Broad spectrum biosensors capable of identifying diverse organisms are transitioning from the realm of research into the clinic. These technologies simultaneously capture signals from a wide variety of biological entities using universal processes. Specific organisms are then identified through bioinformatic signature-matching processes. This is in contrast to currently accepted molecular diagnostic technologies, which utilize unique reagents and processes to detect each organism of interest. This paradigm shift greatly increases the breadth of molecular diagnostic tools with little increase in biochemical complexity, enabling simultaneous diagnostic, epidemiologic, and biothreat surveillance capabilities at the point of care. This, in turn, offers the promise of increased biosecurity and better antimicrobial stewardship. Efficient realization of these potential gains will require novel regulatory paradigms reflective of the generalized, information-based nature of these assays, allowing extension of empirical data obtained from readily available organisms to support broader reporting of rare, difficult to culture, or extremely hazardous organisms. PMID:24128433
Amorphous microcellular polytetrafluoroethylene foam film
NASA Astrophysics Data System (ADS)
Tang, Chongzheng
1991-11-01
We report herein the preparation of novel low-density ultramicrocellular fluorocarbon foams and their application. These fluorocarbon foams are of interest for the biochemistry arena in numerous applications including foodstuff, pharmacy, wine making, beer brewery, fermentation medical laboratory, and other processing factories. All of those require good quality processing programs in which, after eliminating bacterium and virus, compressed air is needed. Ordinarily, compressed air contains bacterium and virus, its size is 0.01 - 2 micrometers fluorocarbon foam films. Having average porous diameter 0.04 - 0.1 micrometers , these are stable to high temperature (280 degree(s)C) and chemical environments, and generally have good engineering and mechanical properties (e.g., low coefficient of thermal expansion, high modulus, and good dimensional stability). Our new process for preparing low density fluorocarbon foams provides materials with unique properties. As such, they offer the possibility for being superior to earlier materials for a number of the filter applications mentioned.
The NASA Physics of the Cosmos Program
NASA Astrophysics Data System (ADS)
Bock, Jamie
2015-04-01
The NASA Physics of the Cosmos program is a portfolio of space-based investigations for studying fundamental processes in the universe. Areas of focus include: probing the physical process of inflation associated with the birth of the universe, studying the nature of the dark energy that dominates the mass-energy of the modern universe, advancing new ways to observe the universe through gravitational-wave astronomy, studying the universe in X-rays and gamma rays to probe energetic astrophysical processes and to study the formation and behavior of black holes in strong gravity, and determining the energetic origins and history of cosmic rays. The program is supported by an analysis group called the PhysPAG that serves as a forum for community input and analysis. Space offers unique advantages for these exciting investigations, and the program seeks to guide the development of future space missions through observations from current facilities, and by formulating new technologies and capabilities.
Bringing an ecological view of change to Landsat-based remote sensing
Kennedy, Robert E.; Andrefouet, Serge; Cohen, Warren; Gomez, Cristina; Griffiths, Patrick; Hais, Martin; Healey, Sean; Helmer, Eileen H.; Hostert, Patrick; Lyons, Mitchell; Meigs, Garrett; Pflugmacher, Dirk; Phinn, Stuart; Powell, Scott; Scarth, Peter; Susmita, Sen; Schroeder, Todd A.; Schneider, Annemarie; Sonnenschein, Ruth; Vogelmann, James; Wulder, Michael A.; Zhu, Zhe
2014-01-01
When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more subtle processes of interest to ecologists. Recent technical advances have led to a fundamental shift toward an ecological view of change. Although this conceptual shift began with coarser-scale global imagery, it has now reached users of Landsat imagery, since these datasets have temporal and spatial characteristics appropriate to many ecological questions. We argue that this ecologically relevant perspective of change allows the novel characterization of important dynamic processes, including disturbances, long-term trends, cyclical functions, and feedbacks, and that these improvements are already facilitating our understanding of critical driving forces, such as climate change, ecological interactions, and economic pressures.
Academic consumer researchers: a bridge between consumers and researchers.
Griffiths, Kathleen M; Jorm, Anthony F; Christensen, Helen
2004-04-01
To describe the contributions that consumers, and academic consumer researchers in particular, can make to mental health research. A literature survey and a systematic consideration of the potential advantages of consumer and academic consumer researcher involvement in health research. Consumer researchers may contribute to better health outcomes, but there are significant barriers to their participation in the research process. To date, discussion has focused on the role of nonacademic consumers in the health research process. There has been little recognition of the particular contributions that consumers with formal academic qualifications and research experience can offer. Academic consumer researchers (ACRs) offer many of the advantages associated with lay consumer participation, as well as some unique advantages. These advantages include acceptance by other researchers as equal partners in the research process; skills in research; access to research funding; training in disseminating research findings within the scientific community; potential to influence research funding and research policy; capacity to influence the research culture; and potential to facilitate the involvement of lay consumers in the research process. In recognition of the value of a critical mass of ACRs in mental health, a new ACR unit (the Depression and Anxiety Consumer Research Unit [CRU]) has been established at the Centre for Mental Health Research at the Australian National University. Academic consumer researchers have the potential to increase the relevance of mental health research to consumers, to bridge the gap between the academic and consumer communities and to contribute to the process of destigmatizing mental disorders.
Scalable graphene production: perspectives and challenges of plasma applications
NASA Astrophysics Data System (ADS)
Levchenko, Igor; Ostrikov, Kostya (Ken); Zheng, Jie; Li, Xingguo; Keidar, Michael; B. K. Teo, Kenneth
2016-05-01
Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h-1 m-2 was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.
Scalable graphene production: perspectives and challenges of plasma applications.
Levchenko, Igor; Ostrikov, Kostya Ken; Zheng, Jie; Li, Xingguo; Keidar, Michael; B K Teo, Kenneth
2016-05-19
Graphene, a newly discovered and extensively investigated material, has many unique and extraordinary properties which promise major technological advances in fields ranging from electronics to mechanical engineering and food production. Unfortunately, complex techniques and high production costs hinder commonplace applications. Scaling of existing graphene production techniques to the industrial level without compromising its properties is a current challenge. This article focuses on the perspectives and challenges of scalability, equipment, and technological perspectives of the plasma-based techniques which offer many unique possibilities for the synthesis of graphene and graphene-containing products. The plasma-based processes are amenable for scaling and could also be useful to enhance the controllability of the conventional chemical vapour deposition method and some other techniques, and to ensure a good quality of the produced graphene. We examine the unique features of the plasma-enhanced graphene production approaches, including the techniques based on inductively-coupled and arc discharges, in the context of their potential scaling to mass production following the generic scaling approaches applicable to the existing processes and systems. This work analyses a large amount of the recent literature on graphene production by various techniques and summarizes the results in a tabular form to provide a simple and convenient comparison of several available techniques. Our analysis reveals a significant potential of scalability for plasma-based technologies, based on the scaling-related process characteristics. Among other processes, a greater yield of 1 g × h(-1) m(-2) was reached for the arc discharge technology, whereas the other plasma-based techniques show process yields comparable to the neutral-gas based methods. Selected plasma-based techniques show lower energy consumption than in thermal CVD processes, and the ability to produce graphene flakes of various sizes reaching hundreds of square millimetres, and the thickness varying from a monolayer to 10-20 layers. Additional factors such as electrical voltage and current, not available in thermal CVD processes could potentially lead to better scalability, flexibility and control of the plasma-based processes. Advantages and disadvantages of various systems are also considered.
2009 Legislative Session Resource Guide. Investing in North Dakota's Future
ERIC Educational Resources Information Center
North Dakota University System, 2009
2009-01-01
The North Dakota University System (NDUS) is composed of two doctoral universities, two master's degree-granting universities, two universities that offer bachelor's degrees and five community colleges that offer associate and trade/technical degrees. Each institution is unique in its mission to serve the people of North Dakota. The "2009…
Three Views on Concurrent Enrollment. Feature on Research and Leadership. Vol. 1, No. 2
ERIC Educational Resources Information Center
Scheffel, Kent
2016-01-01
In this brief, Kent Scheffel offers a unique combination of expertise on dual credit and concurrent enrollment as he reviews questions of quality, program accreditation, and education policy for concurrent enrollment offerings from a national (National Alliance of Concurrent Enrollment Partnerships (NACEP), local (Lewis and Clark Community…
A Study of Contextualised Mobile Information Delivery for Language Learning
ERIC Educational Resources Information Center
de Jong, Tim; Specht, Marcus; Koper, Rob
2010-01-01
Mobile devices offer unique opportunities to deliver learning content in authentic learning situations. Apart from being able to play various kinds of rich multimedia content, they offer new ways of tailoring information to the learner's situation or context. This paper presents the results of a study of mobile media delivery for language…
Humanistic Wellness Services for Community Mental Health Providers
ERIC Educational Resources Information Center
Carney, Jolynn V.
2007-01-01
The author examines the unique ability of mental health providers to offer humanistic services in a highly competitive atmosphere by using a wellness approach. J. E. Myers and T. J. Sweeney's (2005) 5 second-order factors are offered as a conceptual model. Therapeutic techniques and humanizing benefits for individuals, families, and communities…
ERIC Educational Resources Information Center
Hagan, Linda M.
2012-01-01
Undergraduate marketing and public relations capstone courses utilize client projects to allow students to apply their knowledge and encourage collaboration. Yet, at the graduate level, especially with courses offered in an online modality, experiential service learning in the form of client project assignments presents unique challenges. However,…
Science 25. Curriculum Guide. Revised.
ERIC Educational Resources Information Center
Northwest Territories Dept. of Education, Yellowknife.
This science curriculum is an activity-oriented program in which an attempt has been made to provide sufficient information for non-science specialists to enable them to offer an effective course at the grades 10 and 11 levels. This curriculum offers a solution to the unique needs of life in the Canadian Northwest Territories. The role of…
Serving Stakeholders at a Small Regional University
ERIC Educational Resources Information Center
Burrage, Sean
2015-01-01
The Southeastern Oklahoma State University Honors Program serves a unique role in a small, rural setting such as Durant, Oklahoma. The honors program has a traditional mission in a university that offers a nontraditional setting and history within the context of higher education. The program thus offers special rewards to its students and to the…
"It's the Camaraderie": A History of Parent Cooperative Preschools.
ERIC Educational Resources Information Center
Hewes, Dorothy W.
This book offers a comprehensive history of the parent cooperative preschool movement, a unique educational system that attained its peak in the 1950s and 1960s. The book uses interviews with pioneers and current members of parent cooperatives, official documents, periodicals, and scholarly publications to offer a history that weaves the…
Assessing Past Surface Processes Rates Using Feldspar Luminescence
NASA Astrophysics Data System (ADS)
Lamothe, M.
2010-12-01
Luminescence dating methods (OSL) developed over the last decade offer absolute depositional ages for sediments, crystallization ages for volcanic material or firing ages for burnt archaeological materials. When these natural surface events are from well-documented geological sequences of events, the ages can decipher timing as well as intensity of processes rates. The advent of luminescence dating has yielded a unique window on the pace of the erosion-transport-depositional cycle as the event assessed using luminescence is last exposure to sunlight and burial. A unique advantage of luminescence is its universal applicability since the routinely used dosimeters, minerals of quartz and feldspar, are almost ubiquitous on the land surface. Dating applications to sediments are still clouded by low accuracy and near saturation of the natural luminescence level, commonly observed for sediments older than the Last Interglacial. The latter imposes severe constraints in the use of quartz as a reliable dosimeter for any environment beyond the Late Pleistocene. However, in the case of feldspar, if dates are corrected for anomalous fading, ages of ancient surface processes could potentially be obtained up to ca 500 ka. Nevertheless, large uncertainties inherent to older ages may therein limit usefulness to precisely assessing processes rates. Case-studies will be used to highlight the potential and limitation of luminescence to properly assess surface processes rates for a) Holocene and older aeolian sedimentary systems, b) rates of tectonic movement by dating relative sea level changes from moderately stable to highly dynamic coastal areas, and c) albeit at its early stages, processes in volcanism, by means of tephra-extracted feldspar luminescence dating.
Fluorescent Photo-conversion: A second chance to label unique cells
Mellott, Adam J.; Shinogle, Heather E.; Moore, David S.; Detamore, Michael S.
2014-01-01
Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the “unique” cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2, allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2-transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2, offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population. PMID:25914756
Ogryzko, Nikolay V; Hoggett, Emily E; Solaymani-Kohal, Sara; Tazzyman, Simon; Chico, Timothy J A; Renshaw, Stephen A; Wilson, Heather L
2014-02-01
Interleukin-1 (IL-1), the 'gatekeeper' of inflammation, is the apical cytokine in a signalling cascade that drives the early response to injury or infection. Expression, processing and secretion of IL-1 are tightly controlled, and dysregulated IL-1 signalling has been implicated in a number of pathologies ranging from atherosclerosis to complications of infection. Our understanding of these processes comes from in vitro monocytic cell culture models as lines or primary isolates, in which a range and spectra of IL-1 secretion mechanisms have been described. We therefore investigated whether zebrafish embryos provide a suitable in vivo model for studying IL-1-mediated inflammation. Structurally, zebrafish IL-1β shares a β-sheet-rich trefoil structure with its human counterpart. Functionally, leukocyte expression of IL-1β was detectable only following injury, which activated leukocytes throughout zebrafish embryos. Migration of macrophages and neutrophils was attenuated by inhibitors of either caspase-1 or P2X7, which similarly inhibited the activation of NF-κB at the site of injury. Zebrafish offer a new and versatile model to study the IL-1β pathway in inflammatory disease and should offer unique insights into IL-1 biology in vivo.
Mesenchymal Stem Cell Therapy for Nonhealing Cutaneous Wounds
Hanson, Summer E.; Bentz, Michael L.; Hematti, Peiman
2014-01-01
Summary Chronic wounds remain a major challenge in modern medicine and represent a significant burden, affecting not only physical and mental health, but also productivity, health care expenditure, and long-term morbidity. Even under optimal conditions, the healing process leads to fibrosis or scar. One promising solution, cell therapy, involves the transplantation of progenitor/stem cells to patients through local or systemic delivery, and offers a novel approach to many chronic diseases, including nonhealing wounds. Mesenchymal stem cells are multipotent, adult progenitor cells of great interest because of their unique immunologic properties and regenerative potential. A variety of preclinical and clinical studies have shown that mesenchymal stem cells may have a useful role in wound-healing and tissue-engineering strategies and both aesthetic and reconstructive surgery. Recent advances in stem cell immunobiology can offer insight into the multiple mechanisms through which mesenchymal stem cells could affect underlying pathophysiologic processes associated with nonhealing mesenchymal stem cells. Critical evaluation of the current literature is necessary for understanding how mesenchymal stem cells could potentially revolutionize our approach to skin and soft-tissue defects and designing clinical trials to address their role in wound repair and regeneration. PMID:20124836
CNAV: A Unique Approach to a Web-Based College Information Navigator at Gettysburg College.
ERIC Educational Resources Information Center
Martys, Michael; Redman, Don; Huff, Alice; Czar, Dave; Mullane, Pat; Bennett, Joseph; Getty, Robert
In 1997, Gettysburg College (Pennsylvania) deployed the CNAV (College Navigation) Web tool to allow the students' and the entire college community the ability to better navigate through its college's curricular, co-curricular, and extracurricular offerings. CNAV is unique because, rather than treating the Web as a series of static pages, it treats…
Is God Coming to Campus Too? Thoughts on the Distinctive Features of Adventist Higher Education
ERIC Educational Resources Information Center
Andreason, Niels-Erik
2005-01-01
In this, the first of a series of short essays which explore the unique ethos embraced and advanced by different Christian denominations in their schools, Andreasen argues the necessity of Christian colleges and universities offering their students a unique, distinctive Christian perspective throughout their learning experience rather than some…
High-temperature superconductivity for avionic electronic warfare and radar systems
NASA Astrophysics Data System (ADS)
Ryan, Paul A.
1994-01-01
The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS.
Vector Meson Production at Hera
NASA Astrophysics Data System (ADS)
Szuba, Dorota
The diffractive production of vector mesons ep→eVMY, with VM=ρ0, ω, ϕ, J/ψ, ψ‧ or ϒ and with Y being either the scattered proton or a low mass hadronic system, has been extensively investigated at HERA. HERA offers a unique opportunity to study the dependences of diffractive processes on different scales: the mass of the vector meson, mVM, the centre-of-mass energy of the γp system, W, the photon virtuality, Q2 and the four-momentum transfer squared at the proton vertex, |t|. Strong interactions can be investigated in the transition from the hard to the soft regime, where the confinement of quarks and gluons occurs.
Polymer/Silicate Nanocomposites Developed for Improved Thermal Stability and Barrier Properties
NASA Technical Reports Server (NTRS)
Campbell, Sandi G.
2001-01-01
The nanoscale reinforcement of polymers is becoming an attractive means of improving the properties and stability of polymers. Polymer-silicate nanocomposites are a relatively new class of materials with phase dimensions typically on the order of a few nanometers. Because of their nanometer-size features, nanocomposites possess unique properties typically not shared by more conventional composites. Polymer-layered silicate nanocomposites can attain a certain degree of stiffness, strength, and barrier properties with far less ceramic content than comparable glass- or mineral-reinforced polymers. Reinforcement of existing and new polyimides by this method offers an opportunity to greatly improve existing polymer properties without altering current synthetic or processing procedures.
NASA Technical Reports Server (NTRS)
Morris, J. F.
1981-01-01
Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.
Fine grained event processing on HPCs with the ATLAS Yoda system
NASA Astrophysics Data System (ADS)
Calafiura, Paolo; De, Kaushik; Guan, Wen; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Tsulaia, Vakhtang; Van Gemmeren, Peter; Wenaus, Torre
2015-12-01
High performance computing facilities present unique challenges and opportunities for HEP event processing. The massive scale of many HPC systems means that fractionally small utilization can yield large returns in processing throughput. Parallel applications which can dynamically and efficiently fill any scheduling opportunities the resource presents benefit both the facility (maximal utilization) and the (compute-limited) science. The ATLAS Yoda system provides this capability to HEP-like event processing applications by implementing event-level processing in an MPI-based master-client model that integrates seamlessly with the more broadly scoped ATLAS Event Service. Fine grained, event level work assignments are intelligently dispatched to parallel workers to sustain full utilization on all cores, with outputs streamed off to destination object stores in near real time with similarly fine granularity, such that processing can proceed until termination with full utilization. The system offers the efficiency and scheduling flexibility of preemption without requiring the application actually support or employ check-pointing. We will present the new Yoda system, its motivations, architecture, implementation, and applications in ATLAS data processing at several US HPC centers.
Multiculturalism as an element of Lublin's tourism product
NASA Astrophysics Data System (ADS)
Rodzoś, Jolanta; Szczęsna, Joanna
2012-01-01
Taking into account both the cultural resources and the demand for a tourist offer with elements of cultural heritage, it can be stated that creating an intergrated tourism product based on Lublin's multicultural character is possible and needed. Traces of existence of various ethnic, national, religious groups are clear and vivid and may become the basis of an interesting offer for tourists. They are at the same time original and unique enough to become the trademark of the city. The realization of such a product can make Lublin the center of historical multiculturalism. The products could become Lublin's distinctive feature on the Polish and European map. The addressees of such a product could be tourists but also Lublin's citizens themselves, for whom it would be a great opportunity to learn about the past of their city. Multicultural heritage allows to create an offer that will help tourists to engage themselves actively in the cognitive process of discovering the city. Taking part in a cultural-religious event of a particular cultural group, staying in a stylish hotel, or a meal in a restaurant offering some traditional cuisine will activate tourists in an emotional way and will offer an opportunity to experience reality in a new way. This means of presenting reality is needed these days. There is a great need for active methods of presenting history, traditions, and customs. The Lublin of today offers too many traditional means of presentation, in which tourists are just passive observers and listeners. Broadening the current offer will not only promote Lublin's multicultural heritage but will also become a chance of creating a new image of its tourism.
NASA Astrophysics Data System (ADS)
Berdychowski, Piotr P.; Zabolotny, Wojciech M.
2010-09-01
The main goal of C to VHDL compiler project is to make FPGA platform more accessible for scientists and software developers. FPGA platform offers unique ability to configure the hardware to implement virtually any dedicated architecture, and modern devices provide sufficient number of hardware resources to implement parallel execution platforms with complex processing units. All this makes the FPGA platform very attractive for those looking for efficient heterogeneous, computing environment. Current industry standard in development of digital systems on FPGA platform is based on HDLs. Although very effective and expressive in hands of hardware development specialists, these languages require specific knowledge and experience, unreachable for most scientists and software programmers. C to VHDL compiler project attempts to remedy that by creating an application, that derives initial VHDL description of a digital system (for further compilation and synthesis), from purely algorithmic description in C programming language. This idea itself is not new, and the C to VHDL compiler combines the best approaches from existing solutions developed over many previous years, with the introduction of some new unique improvements.
NASA Astrophysics Data System (ADS)
Yu, Si-Yuan; Sun, Xiao-Chen; Ni, Xu; Wang, Qing; Yan, Xue-Jun; He, Cheng; Liu, Xiao-Ping; Feng, Liang; Lu, Ming-Hui; Chen, Yan-Feng
2016-12-01
Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mollinger, Sonya A.; Salleo, Alberto; Spakowitz, Andrew J.
While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transportmore » on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.« less
Mollinger, Sonya A.; Salleo, Alberto; Spakowitz, Andrew J.
2016-11-10
While transport in conjugated polymers has many similarities to that in crystalline inorganic materials, several key differences reveal the unique relationship between the morphology of polymer films and the charge mobility. We develop a model that directly incorporates the molecular properties of the polymer film and correctly predicts these unique transport features. At low degree of polymerization, the increase of the mobility with the polymer chain length reveals trapping at chain ends, and saturation of the mobility at high degree of polymerization results from conformational traps within the chains. Similarly, the inverse field dependence of the mobility reveals that transportmore » on single polymer chains is characterized by the ability of the charge to navigate around kinks and loops in the chain. Lastly, these insights emphasize the connection between the polymer conformations and the transport and thereby offer a route to designing improved device morphologies through molecular design and materials processing.« less
Hoßbach, Janina; Bußwinkel, Franziska; Kranz, Andreas; Wattjes, Jasper; Cord-Landwehr, Stefan; Moerschbacher, Bruno M
2018-03-01
Chitosan is a structurally diverse biopolymer that is commercially derived from chitin by chemical processing, but chitin deacetylases (CDAs) potentially offer a sustainable and more controllable approach allowing the production of chitosans with tailored structures and biological activities. We investigated the CDA from Podospora anserina (PaCDA) which is closely related to Colletotrichum lindemuthianum CDA in the catalytic domain, but unique in having two chitin-binding domains. We produced recombinant PaCDA in Hansenula polymorpha for biochemical characterization and found that the catalytic domain of PaCDA is also functionally similar to C. lindemuthianum CDA, though differing in detail. When studying the enzyme's mode of action on chitin oligomers by quantitative mass-spectrometric sequencing, we found almost all possible sequences up to full deacetylation but with a clear preference for specific products. Deletion muteins lacking one or both CBDs confirmed their proposed function in supporting the enzymatic conversion of the insoluble substrate colloidal chitin. Copyright © 2017. Published by Elsevier Ltd.
Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, Ayaskanta; Russ, Boris; Su, Norman C.
Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viablemore » hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less
Bottom-up design of de novo thermoelectric hybrid materials using chalcogenide resurfacing
Sahu, Ayaskanta; Russ, Boris; Su, Norman C.; ...
2017-01-01
Hybrid organic/inorganic thermoelectric materials based on conducting polymers and inorganic nanostructures have been demonstrated to combine both the inherently low thermal conductivity of the polymer and the superior charge transport properties (high power factors) of the inorganic component. While their performance today still lags behind that of conventional inorganic thermoelectric materials, solution-processable hybrids have made rapid progress and also offer unique advantages not available to conventional rigid inorganic thermoelectrics, namely: (1) low cost fabrication on rigid and flexible substrates, as well as (2) engineering complex conformal geometries for energy harvesting/cooling. While the number of reports of new classes of viablemore » hybrid thermoelectric materials is growing, no group has reported a general approach for bottom-up design of both p- and n-type materials from one common base. Thus, unfortunately, the literature comprises mostly of disconnected discoveries, which limits development and calls for a first-principles approach for property manipulation analogous to doping in traditional semiconductor thermoelectrics. Here, molecular engineering at the organic/inorganic interface and simple processing techniques are combined to demonstrate a modular approach enabling de novo design of complex hybrid thermoelectric systems. Here, we chemically modify the surfaces of inorganic nanostructures and graft conductive polymers to yield robust solution processable p- and n-type inorganic/organic hybrid nanostructures. Our new modular approach not only offers researchers new tools to perform true bottom-up design of thermoelectric hybrids, but also strong performance advantages as well due to the quality of the designed interfaces. For example, we obtain enhanced power factors in existing (by up to 500% in Te/PEDOT:PSS) and novel (Bi 2S 3/PEDOT:PSS) p-type systems, and also generate water-processable and air-stable high performing n-type hybrid systems (Bi 2Te 3/PEDOT:PSS), thus highlighting the potency of our ex situ strategy in opening up new material options for thermoelectric applications. Finally, this strategy establishes a unique platform with broad handles for custom tailoring of thermal and electrical properties through hybrid material tunability and enables independent control over inorganic material chemistry, nanostructure geometry, and organic material properties, thus providing a robust pathway to major performance enhancements.« less
Reusable Solid Rocket Motor - Accomplishment, Lessons, and a Culture of Success
NASA Technical Reports Server (NTRS)
Moore, D. R.; Phelps, W. J.
2011-01-01
The Reusable Solid Rocket Motor (RSRM) represents the largest solid rocket motor (SRM) ever flown and the only human-rated solid motor. High reliability of the RSRM has been the result of challenges addressed and lessons learned. Advancements have resulted by applying attention to process control, testing, and postflight through timely and thorough communication in dealing with all issues. A structured and disciplined approach was taken to identify and disposition all concerns. Careful consideration and application of alternate opinions was embraced. Focus was placed on process control, ground test programs, and postflight assessment. Process control is mandatory for an SRM, because an acceptance test of the delivered product is not feasible. The RSRM maintained both full-scale and subscale test articles, which enabled continuous improvement of design and evaluation of process control and material behavior. Additionally RSRM reliability was achieved through attention to detail in post flight assessment to observe any shift in performance. The postflight analysis and inspections provided invaluable reliability data as it enables observation of actual flight performance, most of which would not be available if the motors were not recovered. RSRM reusability offered unique opportunities to learn about the hardware. NASA is moving forward with the Space Launch System that incorporates propulsion systems that takes advantage of the heritage Shuttle and Ares solid motor programs. These unique challenges, features of the RSRM, materials and manufacturing issues, and design improvements will be discussed in the paper.
Young, Liane; Koenigs, Michael
2007-01-01
Human moral decision-making has long been a topic of philosophical debate, and, more recently, a topic for empirical investigation. Central to this investigation is the extent to which emotional processes underlie our decisions about moral right and wrong. Neuroscience offers a unique perspective on this question by addressing whether brain regions associated with emotional processing are involved in moral cognition. We conduct a narrative review of neuroscientific studies focused on the role of emotion in morality. Specifically, we describe evidence implicating the ventromedial prefrontal cortex (VMPC), a brain region known to be important for emotional processing. Functional imaging studies demonstrate VMPC activation during tasks probing moral cognition. Studies of clinical populations, including patients with VMPC damage, reveal an association between impairments in emotional processing and impairments in moral judgement and behaviour. Considered together, these studies indicate that not only are emotions engaged during moral cognition, but that emotions, particularly those mediated by VMPC, are in fact critical for human morality.
NASA Technical Reports Server (NTRS)
1987-01-01
With its Landsat satellites, development of sensors, and advancement of processing techniques, NASA provided the initial technology base for another Earth-benefit application of image processing, Earth resources survey by means of remote sensing. Since each object has its own unique "signature," it is possible to distinguish among surface features and to generate computer-processed imagery identifying specific features of importance to resource managers. This capability, commercialized by Perceptive Scientific Instruments, Inc., offers practical application in such areas as agricultural crop forecasting, rangeland and forest management, land use planning, mineral and petroleum exploration, map making, water quality evaluation and disaster assessment. Major users of the technology have been federal, state, and local governments, but it is making its way into commercial operations, for example, resource exploration companies looking for oil, gas and mineral sources, and timber production firms seeking more efficient treeland management. Supporting both government and private users is a small industry composed of companies producing the processing hardware software. As is the case in the medical application, many of these companies are direct offspring of NASA's work.
Du, Yong; Zhang, Huili; Xue, Jiadan; Fang, Hongxia; Zhang, Qi; Xia, Yi; Li, Yafang; Hong, Zhi
2015-03-15
Cocrystallization can improve physical and chemical properties of active pharmaceutical ingredient, and this feature has great potential in pharmaceutical development. In this study, the cocrystal of piracetam and 3-hydroxybenzoic acid under grinding condition has been characterized by Raman and terahertz spectroscopical techniques. The major vibrational modes of individual starting components and cocrystal are obtained and assigned. Spectral results show that the vibrational modes of the cocrystal are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman and THz spectra. The formation rate is pretty fast in first several 20 min grinding time, and then it becomes slow. After ∼35 min, such process has been almost completed. These results offer us the unique means and benchmark for characterizing the cocrystal conformation from molecule-level and also provide us rich information about the reaction dynamic during cocrystal formation process in pharmaceutical fields. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Yong; Zhang, Huili; Xue, Jiadan; Fang, Hongxia; Zhang, Qi; Xia, Yi; Li, Yafang; Hong, Zhi
2015-03-01
Cocrystallization can improve physical and chemical properties of active pharmaceutical ingredient, and this feature has great potential in pharmaceutical development. In this study, the cocrystal of piracetam and 3-hydroxybenzoic acid under grinding condition has been characterized by Raman and terahertz spectroscopical techniques. The major vibrational modes of individual starting components and cocrystal are obtained and assigned. Spectral results show that the vibrational modes of the cocrystal are different from those of the corresponding parent materials. The dynamic process of such pharmaceutical cocrystal formation has also been monitored directly with Raman and THz spectra. The formation rate is pretty fast in first several 20 min grinding time, and then it becomes slow. After ∼35 min, such process has been almost completed. These results offer us the unique means and benchmark for characterizing the cocrystal conformation from molecule-level and also provide us rich information about the reaction dynamic during cocrystal formation process in pharmaceutical fields.
Supercritical fluid technology: a promising approach in pharmaceutical research.
Girotra, Priti; Singh, Shailendra Kumar; Nagpal, Kalpana
2013-02-01
Supercritical fluids possess the unique properties of behaving like liquids and gases, above their critical point. Supercritical fluid technology has recently emerged as a green and novel technique for various processes such as solubility enhancement of poorly soluble drugs, plasticization of polymers, surface modification, nanosizing and nanocrystal modification, and chromatographic extraction. Research interest in this area has been fuelled because of the numerous advantages that the technology offers over the conventional methods. This work aims to review the merits, demerits, and various processes such as rapid expansion of supercritical solutions (RESS), particles from gas saturated solutions (PGSS), gas antisolvent process (GAS), supercritical antisolvent process (SAS) and polymerization induced phase separation (PIPS), that have enabled this technology to considerably raise the interest of researchers over the past two decades. An insight has been given into the numerous applications of this technology in pharmaceutical industry and the future challenges which must be appropriately dealt with to make it effective on a commercial scale.
Boron-doped few-walled carbon nanotubes: novel synthesis and properties
NASA Astrophysics Data System (ADS)
Preston, Colin; Song, Da; Taillon, Josh; Cumings, John; Hu, Liangbing
2016-11-01
Few-walled carbon nanotubes offer a unique marriage of graphitic quality and robustness to ink-processing; however, doping procedures that may alter the band structure of these few-walled nanotubes are still lacking. This report introduces a novel solution-injected chemical vapor deposition growth process to fabricate the first boron-doped few-walled carbon nanotubes (B-FWNTs) reported in literature, which may have extensive applications in battery devices. A comprehensive characterization of the as-grown B-FWNTs confirms successful boron substitution in the graphitic lattice, and reveals varying growth parameters impact the structural properties of B-FWNT yield. An investigation into the optimal growth purification parameters and ink-making procedures was also conducted. This study introduces the first process technique to successfully grow intrinsically p-doped FWNTs, and provides the first investigation into the impact factors of the growth parameters, purification steps, and ink-making processes on the structural properties of the B-FWNTs and the electrical properties of the resulting spray-coated thin-film electrodes.
THE RAPID GROWTH OF COMMUNITY COLLEGES AND THEIR ACCESSIBILITY IN RURAL AREAS.
ERIC Educational Resources Information Center
ELDRIDGE, DONALD A.
THE COURSE OFFERINGS IN SOME JUNIOR COLLEGES FAIL TO MEET ADEQUATELY THE UNIQUE NEEDS OF RURAL YOUTH. A STUDY IN 1964 REVEALED THAT ONLY TWENTY OF THE SEVENTY JUNIOR COLLEGES IN CALIFORNIA OFFERED TRAINING IN AGRICULTURE, ALTHOUGH THE RECENTLY PUBLISHED "DIRECTORY OF JUNIOR COLLEGES" SHOWS AN INCREASE TO SIXTY. FURTHER STATISTICS REVEAL THAT 253…
Developing Fully Online Pre-Service Music and Arts Education Courses
ERIC Educational Resources Information Center
Lierse, Sharon
2015-01-01
Charles Darwin University (CDU) offers education courses for students who want to teach in Australian schools. The university is unique due to its geographic location, proximity to Asia and its high Indigenous population compared to the rest of the country. Many courses are offered fully online including music education for pre-service teachers.…
Segment-based Mass Customization: An Exploration of a New Conceptual Marketing Framework.
ERIC Educational Resources Information Center
Jiang, Pingjun
2000-01-01
Suggests that the concept of mass customization should be seen as an integral part of market segmentation theory which offers the best way to satisfy consumers' unique needs and wants while yielding profits to companies. Proposes a new concept of "segment-based based mass customization," and offers a series of propositions which are…
Minimum Competencies for Teaching Undergraduate Sport Philosophy Courses. Guidance Document
ERIC Educational Resources Information Center
National Association for Sport and Physical Education, 2004
2004-01-01
Although sport philosophy is considered to be a sub-discipline with its own unique body of knowledge, sport philosophy is more commonly offered as a single course rather than a degree program. Therefore, these guidelines are offered specifically for the teaching of a single course at the undergraduate level. In order to be effective, the course…
Preference for oddity: uniqueness heuristic or hierarchical choice process?
Waite, Thomas A
2008-10-01
Traditional economic theories assume decision makers in multialternative choice tasks "assign" a value to each option and then express rational preferences. Here, I report an apparent violation of such rationality in gray jays (Perisoreus canadensis). I tested the jays' preference in a quaternary choice task where three options were the same color and the fourth option was a different color. All options offered an identical food reward and so the strictly rational expectation was that subjects would choose the odd-colored option in 25% of choices. In clear disagreement, every subject chose the odd option more frequently than expected. I speculate as to how this surprising preference for oddity might have been ecologically rational: by using a unique-choice heuristic, the jays might have been able to bypass a deliberative phase of the decision process and devote more attention to scanning for predators. Alternatively, it is conceivable that the jays did not prefer oddity per se. Instead, they might have used a hierarchical process, assigning options to color categories and then choosing between categories. If so, their behavior matches expectation after all (on average, subjects chose the odd option 50% of the time). It should be straightforward to test these competing hypotheses. The current results can be viewed as a new example of how simple mechanisms sometimes produce economically puzzling yet ecologically rational decision making.
Product development using process monitoring and NDE data fusion
NASA Astrophysics Data System (ADS)
Peterson, Todd; Bossi, Richard H.
1998-03-01
Composite process/product development relies on both process monitoring information and nondestructive evaluation measurements for determining application suitability. In the past these activities have been performed and analyzed independently. Our present approach is to present the process monitoring and NDE data together in a data fusion workstation. This methodology leads to final product acceptance based on a combined process monitoring and NDE criteria. The data fusion work station combines process parameter and NDE data in a single workspace enabling all the data to be used in the acceptance/rejection decision process. An example application is the induction welding process, a unique joining method for assembling primary composite structure, that offers significant cost and weight advantages over traditional fasted structure. The determination of the required time, temperature and pressure conditions used in the process to achieve a complete weld is being aided by the use of ultrasonic inspection techniques. Full waveform ultrasonic inspection data is employed to evaluate the quality of spar cap to skin fit, an essential element of the welding process, and is processed to find a parameter that can be used for weld acceptance. Certification of the completed weld incorporates the data fusion methodology.
Service offerings and interfaces for the ACTS network of Earth stations
NASA Technical Reports Server (NTRS)
Coney, Thom A.
1988-01-01
The Advanced Communications Satellite (ACTS) is capable of two modes of communication. Mode 1 is a mesh network of Earth stations using baseband-switched, time-division multiple-access (BBS-TDMA) and hopping beams. Mode 2 is a mesh network using satellite-switched, time-division multiple-access (SS-TDMA) and fixed (or hopping) beams. The purpose of this paper is to present the functional requirements and the design of the ACTS Mode 1 Earth station terrestrial interface. Included among the requirements are that: (1) the interface support standard telecommunications service offerings (i.e., voice, video and data at rates ranging from 9.6 kbps to 44 Mbps); (2) the interface support the unique design characteristics of the ACTS communications systems (e.g., the real time demand assignment of satellite capacity); and (3) the interface support test hardware capable of validating ACTS communications processes. The resulting interface design makes use of an appropriate combination of T1 or T3 multiplexers and a small central office (maximum capacity 56 subscriber lines per unit).
The neural signature of emotional memories in serial crimes.
Chassy, Philippe
2017-10-01
Neural plasticity is the process whereby semantic information and emotional responses are stored in neural networks. It is hypothesized that the neural networks built over time to encode the sexual fantasies that motivate serial killers to act should display a unique, detectable activation pattern. The pathological neural watermark hypothesis posits that such networks comprise activation of brain sites that reflect four cognitive components: autobiographical memory, sexual arousal, aggression, and control over aggression. The neural sites performing these cognitive functions have been successfully identified by previous research. The key findings are reviewed to hypothesise the typical pattern of activity that serial killers should display. Through the integration of biological findings into one framework, the neural approach proposed in this paper is in stark contrast with the many theories accounting for serial killers that offer non-medical taxonomies. The pathological neural watermark hypothesis offers a new framework to understand and detect deviant individuals. The technical and legal issues are briefly discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Myers, Hector F
2009-02-01
There continues to be debate about how best to conceptualize and measure the role of exposure to ethnicity-related and socio-economic status-related stressors (e.g. racism, discrimination, class prejudice) in accounting for ethnic health disparities over the lifecourse and across generations. In this review, we provide a brief summary of the evidence of health disparities among ethnic groups, and the major evidence on the role of exposure to ethnicity- and SES-related stressors on health. We then offer a reciprocal and recursive lifespan meta-model that considers the interaction of ethnicity and SES history as impacting exposure to psychosocial adversities, including ethnicity-related stresses, and mediating biopsychosocial mechanisms that interact to result in hypothesized cumulative biopsychosocial vulnerabilities. Ultimately, group differences in the burden of cumulative vulnerabilities are hypothesized as contributing to differential health status over time. Suggestions are offered for future research on the unique role that ethnicity- and SES-related processes are likely to play as contributors to persistent ethnic health disparities.
Habitable Worlds: Delivering on the Promises of Online Education
NASA Astrophysics Data System (ADS)
Horodyskyj, Lev B.; Mead, Chris; Belinson, Zack; Buxner, Sanlyn; Semken, Steven; Anbar, Ariel D.
2018-01-01
Critical thinking and scientific reasoning are central to higher education in the United States, but many courses (in-person and online) teach students information about science much more than they teach the actual process of science and its associated knowledge and skills. In the online arena specifically, the tools available for course construction exacerbate this problem by making it difficult to build the types of active learning activities that research shows to be the most effective. Here, we present a report on Habitable Worlds, offered by Arizona State University for 12 semesters over the past 6 years. This is a unique online course that uses an array of novel technologies to deliver an active, inquiry-driven learning experience. Learning outcomes and quantitative data from more than 3000 students demonstrate the success of our approach but also identify several remaining challenges. The design and development of this course offers valuable lessons for instructional designers and educators who are interested in fully capitalizing on the capabilities of 21st-century technology to achieve educational goals.
Transient loading of CD34+ hematopoietic progenitor cells with polystyrene nanoparticles.
Deville, Sarah; Hadiwikarta, Wahyu Wijaya; Smisdom, Nick; Wathiong, Bart; Ameloot, Marcel; Nelissen, Inge; Hooyberghs, Jef
2017-01-01
CD34 + hematopoietic progenitor cells (HPCs) offer great opportunities to develop new treatments for numerous malignant and non-malignant diseases. Nanoparticle (NP)-based strategies can further enhance this potential, and therefore a thorough understanding of the loading behavior of HPCs towards NPs is essential for a successful application. The present study focusses on the interaction kinetics of 40 nm sized carboxylated polystyrene (PS) NPs with HPCs. Interestingly, a transient association of the NPs with HPCs is observed, reaching a maximum within 1 hour and declining afterwards. This behavior is not seen in dendritic cells (CD34-DCs) differentiated from HPCs, which display a monotonic increase in NP load. We demonstrate that this transient interaction requires an energy-dependent cellular process, suggesting active loading and release of NPs by HPCs. This novel observation offers a unique approach to transiently equip HPCs. A simple theoretical approach modeling the kinetics of NP loading and release is presented, contributing to a framework of describing this phenomenon.
Wigand, Moritz E; Wiegand, Hauke F; Rüsch, Nicolas; Becker, Thomas
2016-09-19
T. S. Eliot's The Waste Land and A. Ginsberg's Howl are two landmark poems of the 20th century which have a unique way of dealing with emotional suffering. (a) To explore the interplay between emotional suffering, conflicting relationships and societal perceptions; (b) to show the therapeutic effect of the writing process; (c) to analyse the portrayal of 'madness'; and (d) to discuss, in contemporary psychiatric terms, the 'solutions' offered by the poets. Qualitative research with a narrative, hermeneutic approach. Against the background of wartime/genocide and postwar disillusionment, close relationships are projected onto societal perceptions. Concepts of (self-)control, compassion, empowerment and self-efficacy are offered as solutions to overcome feelings of despair. In a time of perceived societal and environmental crises, both poems help us understand people's fears and how to counteract them. Besides biological approaches, the narrative approach to the suffering human being has not lost its significance. © The Author(s) 2016.
Droppin' Knowledge: Black Women's Communication and Informal Learning in an Online Community
ERIC Educational Resources Information Center
Steptoe, Leslye Carynn
2011-01-01
The experiences of black women offer a unique perspective on how life is lived at the juncture of race and gender in the United States. This case study of an online community for black women centers on the site's potentiality as an online learning community as well as a uniquely black woman's space. It also explores interrelated aspects of…
ERIC Educational Resources Information Center
Moynihan, Joseph A.
2015-01-01
Transition Year is a unique and exciting programme situated in the middle of the six year second level education system in Ireland. Since its introduction in 1974, the programme has experienced unprecedented growth now being offered in over 80% of schools on the island. Transition Year seeks to emphasize alternative learning methodologies…
The challenge of doing science in wilderness: historical, legal, and policy context
Peter Landres; Judy Alderson; David J. Parsons
2003-01-01
Lands designated by Congress under the Wilderness Act of 1964 (Public Law 88-577) offer unique opportunities for social and biophysical research in areas that are relatively unmodified by modern human actions. Wilderness designation also imposes a unique set of constraints on the methods that may be used or permitted to conduct this research. For example, legislated...
Surface conversion techniques for low energy neutral atom imagers
NASA Technical Reports Server (NTRS)
Quinn, J. M.
1995-01-01
This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.
NASA Technical Reports Server (NTRS)
Junaedi, Christian; Roychoudhury, SUbir; Howard, David F.; Perry, Jay L.; Knox, James C.
2011-01-01
To support continued manned space exploration, the development of atmosphere revitalization systems that are lightweight, compact, durable, and power efficient is a key challenge. The systems should be adaptable for use in a variety of habitats and should offer operational functionality to either expel removed constituents or capture them for closedloop recovery. As mission durations increase and exploration goals reach beyond low earth orbit, the need for regenerable adsorption processes for continuous removal of CO2 and trace contaminants from cabin air becomes critical. Precision Combustion, Inc. (PCI) and NASA Marshall (MSFC) have been developing an Engineered Structured Sorbents (ESS) approach based on PCI s patented Microlith technology to meet the requirements of future, extended human spaceflight explorations. This technology offers the inherent performance and safety attributes of zeolite and other sorbents with greater structural integrity, regenerability, and process control, thereby providing potential durability and efficiency improvements over current state-of-the-art systems. The major advantages of the ESS explored in this study are realized through the use of metal substrates to provide structural integrity (i.e., less partition of sorbents) and enhanced thermal control during the sorption process. The Microlith technology also offers a unique internal resistive heating capability that shows potential for short regeneration time and reduced power requirement compared to conventional systems. This paper presents the design, development, and performance results of the integrated adsorber modules for removing CO2, water vapor, and trace chemical contaminants. A related effort that utilizes the adsorber modules for sorption of toxic industrial chemicals is also discussed. Finally, the development of a 4-person two-leg ESS system for continuous CO2 removal is also presented.
Effects of unique biomedical education programs for engineers: REDEEM and ESTEEM projects.
Matsuki, Noriaki; Takeda, Motohiro; Yamano, Masahiro; Imai, Yohsuke; Ishikawa, Takuji; Yamaguchi, Takami
2009-06-01
Current engineering applications in the medical arena are extremely progressive. However, it is rather difficult for medical doctors and engineers to discuss issues because they do not always understand one another's jargon or ways of thinking. Ideally, medical engineers should become acquainted with medicine, and engineers should be able to understand how medical doctors think. Tohoku University in Japan has managed a number of unique reeducation programs for working engineers. Recurrent Education for the Development of Engineering Enhanced Medicine has been offered as a basic learning course since 2004, and Education through Synergetic Training for Engineering Enhanced Medicine has been offered as an advanced learning course since 2006. These programs, which were developed especially for engineers, consist of interactive, modular, and disease-based lectures (case studies) and substantial laboratory work. As a result of taking these courses, all students obtained better objective outcomes, on tests, and subjective outcomes, through student satisfaction. In this article, we report on our unique biomedical education programs for engineers and their effects on working engineers.
Kohn, Sivan; Barnett, Daniel J; Leventhal, Alex; Reznikovich, Shmuel; Oren, Meir; Laor, Danny; Grotto, Itamar; Balicer, Ran D
2010-07-01
In April 2009, the World Health Organization announced the emergence of a novel influenza A(H1N1-09) virus and in June 2009 declared the outbreak a pandemic. The value of military structures in responding to pandemic influenza has become widely acknowledged in recent years. In 2005, the Israeli Government appointed the Ministry of Defense to be in charge of national preparedness and response for a severe pandemic influenza scenario. The Israeli case offers a unique example of civilian-defense partnership where the interface between the governmental, military and civilian spheres has formed a distinctive structure. The Israeli pandemic preparedness protocols represent an example of a collaboration in which aspects of an inherently medical problem can be managed by the defense sector. Although distinctive concepts of the model are not applicable to all countries, it offers a unique forum for governments and international agencies to evaluate this interface within the context of pandemic influenza.
Jafari, Mahtab
2018-02-01
Within the coming decade, the demand for well-trained pharmacists is expected to only increase, especially with the aging of the United States (US) population. To help fill this growing demand, the University of California, Irvine (UCI) aims to offer a unique pre-pharmacy degree program and has developed a Bachelor of Science (BS) degree in Pharmaceutical Sciences to help achieve this goal. In this commentary, we share our experience with our curriculum and highlight its features in an effort to encourage other institutions to enhance the learning experience of their pre-pharmacy students. The efforts of the UCI Department of Pharmaceutical Sciences has resulted in UCI being consistently ranked as one of the top feeder institutions by the Pharmacy College Application Service (PharmCAS) in recent years. The UCI Pharmaceutical Sciences Bachelor of Science offers a unique pre-pharmacy educational experience in an effort to better prepare undergraduates for the rigors of the doctorate of pharmacy curriculum. Copyright © 2017. Published by Elsevier Inc.
Neonatal liver cell donation: a case report.
Godfrey, Kathleen; Kish, Mary Z
2014-01-01
Traditional organ transplant options for newborns have been rare. There continues to be an increasing need for organs for transplant and a limited number of available organs, especially for small children. Liver cell transplantation is a promising alternative to orthotopic liver transplantation to treat liver-based inborn errors of metabolism.1 The procedure is minimally invasive and can be performed repeatedly. The safety of the procedure has been well established, and the clinical results are encouraging.1 The liver cell donation process is an option for families who experience the loss of a newborn and offers them a legacy for their child by providing life for others. The purpose of this article is to discuss the neonatal liver cell donation process and present a case report of an anencephalic infant whose parents chose to participate in this unique program.
Euromir 95 T4 experiment 'Human Posture in microgravity': global results and future perspectives.
Pedrocchi, A; Baroni, G; Ferrigno, G; Massion, J; Pedotti, A
2002-07-01
After 7 years of studies on Euromir 95 T4 experiment 'Human Posture in microgravity' dataset, some important remarks can be proposed for best exploiting future experimental campaigns as well as for neurophysiological investigations on-ground. The main focus of such experiments was to monitor the process of learning and adapting to the new environment in performing complex voluntary movements. Euromir 95 was the first quantitative investigation with high technology instrumentation (ELITE-S) involving two subjects starting from 15 days after the launch until 5 months of mission. Results confirm the excellent capability of mutation of motor planning by the central nervous system (CNS) in order to best exploit environmental constraints and advantages. Under this view, the results offer a unique cue for improving the design of rehabilitation processes in motor pathologies.
Ryan, Polly; Sawin, Kathleen J
2009-01-01
Current evidence indicates that individuals and families who engage in self-management (SM) behaviors improve their health outcomes. While the results of these studies are promising, there is little agreement as to the critical components of SM or directions for future study. This article offers an organized perspective of similar and divergent ideas related to SM. Unique contributions of prior work are highlighted and findings from studies are summarized. A new descriptive mid-range theory, Individual and Family Self-management Theory, is presented; assumptions are identified, concepts defined, and proposed relationships are outlined. This theory adds to the literature on SM by focusing on individuals, dyads within the family, or the family unit as a whole; explicating process components of SM; and proposing use of proximal and distal outcomes.
Ryan, Polly; Sawin, Kathleen J.
2009-01-01
Current evidence indicates that individuals and families who engage in self-management (SM) behaviors improve their health outcomes. While the results of these studies are promising, there is little agreement as to the critical components of SM or directions for future study. This paper offers an organized perspective of similar and divergent ideas related to SM. Unique contributions of prior work are highlighted and findings from studies are summarized. A new descriptive mid-range theory, Individual and Family Self-management Theory, is presented; assumptions identified, concepts defined, and proposed relationships outlined. This theory adds to the literature on self-management by focusing on individual, dyads within the family, or the family unit as a whole; explicating process components of self-management; and proposing use of proximal and distal outcomes. PMID:19631064
Gordan, Valeria V.
2012-01-01
Clinical studies are of paramount importance for testing and translation of the research findings to the community. Despite the existence of clinical studies, a significant delay exists between the generation of new knowledge and its application into the medical/dental community and their patients. One example is the repair of defective dental restorations. About 75% of practitioners in general dental practices do not consider the repair of dental restorations as a viable alternative to the replacement of defective restorations. Engaging and partnering with health practitioners in the field on studies addressing everyday clinical research questions may offer a solution to speed up the translation of the research findings. Practice-based research (PBR) offers a unique opportunity for practitioners to be involved in the research process, formulating clinical research questions. Additionally, PBR generates evidence-based knowledge with a broader spectrum that can be more readily generalized to the public. With PBR, clinicians are involved in the entire research process from its inception to its dissemination. Early practitioner interaction in the research process may result in ideas being more readily incorporated into practice. This paper discusses PBR as a mean to speed up the translation of research findings to clinical practice. It also reviews repair versus replacement of defective restorations as one example of the delay in the application of research findings to clinical practice. PMID:22889478
The operation, products and promotion of waterpipe businesses in New York City, Abu Dhabi and Dubai.
Joudrey, P J; Jasie, K A; Pykalo, L; Singer, S T; Woodin, M B; Sherman, S
2016-07-10
We evaluated the customers, operations, products and advertising of these businesses to explore the unique policy challenges created by the suppliers of waterpipes. We completed a cross-sectional survey consisting of structured site observations and in-person interviews of businesses in New York City, Abu Dhabi and Dubai identified using Google, Yelp, Timeout Dubai and Timeout Abu Dhabi and neighbourhood visits in 2014. Regular customers made up 59% of customers. Franchises or chains were 28% of businesses. Waterpipes made up 39% of sales with 87% of businesses offering food within their menu. Flavoured tobacco made up 94% of sales. Discounts were offered by 47% of businesses and 94% of businesses used advertising, often through social media. The market consists of largely independent businesses, with a large regular customer base, frequently offering diversified services beyond waterpipes. These businesses advertise using both traditional and social media. The economics of waterpipe businesses is very different from the economics of cigarettes, and unique regulatory strategies are needed to control this epidemic.
Unique Offerings of the ISS as an Earth Observing Platform
NASA Technical Reports Server (NTRS)
Cooley, Victor M.
2013-01-01
The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.
Gleicher, Norbert; Kushnir, Vitaly A; Barad, David H
2017-04-01
Referring to two recent publications, we here propose that clinical reproductive immunology has for decades stagnated because reproductive medicine, including assisted reproduction (AR), has failed to accept embryo implantation as an immune system-driven process, dependent on establishment of maternal tolerance toward the implanting fetal semi-allograft (and complete allograft in cases of oocyte donation). Pregnancy represents a biologically unique period of temporary (to the period of gestation restricted) tolerance, otherwise only known in association with parasitic infections. Rather than investigating the immune pathways necessary to induce this rather unique state of tolerance toward the rapidly growing parasitic antigen load of the fetus, the field, instead, concentrated on irrelevant secondary immune phenomena (i.e., "immunological noise"). It, therefore, does not surprise that interesting recent research, offering new potential insights into maternal tolerance during pregnancy, was mostly published outside of the field of reproductive medicine. This research offers evidence for existence of inducible maternal tolerance pathways with the ability of improving maternal fecundity and, potentially, reducing such late pregnancy complications as premature labor and preeclampsia/eclampsia due to premature abatement of maternal tolerance. Increasing evidence also suggests that tolerance-inducing immune pathways are similar in successful pregnancy, successful organ transplantation and, likely also in the tolerance of "self" (i.e., prevention of autoimmunity). Identifying and isolating these pathways, therefore, may greatly benefit all three of these clinical areas, and research in reproductive immunology should be accordingly redirected.
Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters
NASA Astrophysics Data System (ADS)
Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon
2017-12-01
Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.
A Model Vocational High Technology in Health Care Demonstration Project. Final Performance Report.
ERIC Educational Resources Information Center
Valencia Community Coll., Orlando, FL.
A unique training program in high tech obstetrical, neonatal, and pediatric nursing care areas was designed to be offered on site at Orlando (Florida) Regional Medical/Arnold Palmer Hospital for Children and Women. The training program offered 16 different courses to 355 employees over the 18-month period of the project. A needs assessment was…
ERIC Educational Resources Information Center
Skophammer, Karen
2011-01-01
Oil pastels offer many advantages. They come in a large range of hues, intensities and values, and they lend themselves to blending and shading in a unique way that no other art medium offers. They can be worked and reworked from day to day by the students without the large mess and cleanup time that oil paints require. An artist whose works are a…
LLRW disposal facility siting approaches: Connecticut`s innovative volunteer approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forcella, D.; Gingerich, R.E.; Holeman, G.R.
1994-12-31
The Connecticut Hazardous Waste Management Service (CHWMS) has embarked on a volunteer approach to siting a LLRW disposal facility in Connecticut. This effort comes after an unsuccessful effort to site a facility using a step-wise, criteria-based site screening process that was a classic example of the decide/announce/defend approach. While some of the specific features of the CHWMS` volunteer process reflect the unique challenge presented by the state`s physical characteristics, political structure and recent unsuccessful siting experience, the basic elements of the process are applicable to siting LLRW disposal facilities in many parts of the United States. The CHWMS` volunteer processmore » is structured to reduce the {open_quotes}outrage{close_quotes} dimension of two of the variables that affect the public`s perception of risk. The two variables are the degree to which the risk is taken on voluntarily (voluntary risks are accepted more readily than those that are imposed) and the amount of control one has over the risk (risks under individual control are accepted more readily than those under government control). In the volunteer process, the CHWMS will only consider sites that have been been voluntarily offered by the community in which they are located and the CHWMS will share control over the development and operation of the facility with the community. In addition to these elements which have broad applicability, the CHWMS has tailored the volunteer approach to take advantage of the unique opportunities made possible by the earlier statewide site screening process. Specifically, the approach presents a {open_quotes}win-win{close_quotes} situation for elected officials in many communities if they decide to participate in the process.« less
Biomimetic surface structuring using cylindrical vector femtosecond laser beams
Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel
2017-01-01
We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications. PMID:28327611
On the Materials Science of Nature's Arms Race.
Liu, Zengqian; Zhang, Zhefeng; Ritchie, Robert O
2018-06-05
Biological material systems have evolved unique combinations of mechanical properties to fulfill their specific function through a series of ingenious designs. Seeking lessons from Nature by replicating the underlying principles of such biological materials offers new promise for creating unique combinations of properties in man-made systems. One case in point is Nature's means of attack and defense. During the long-term evolutionary "arms race," naturally evolved weapons have achieved exceptional mechanical efficiency with a synergy of effective offense and persistence-two characteristics that often tend to be mutually exclusive in many synthetic systems-which may present a notable source of new materials science knowledge and inspiration. This review categorizes Nature's weapons into ten distinct groups, and discusses the unique structural and mechanical designs of each group by taking representative systems as examples. The approach described is to extract the common principles underlying such designs that could be translated into man-made materials. Further, recent advances in replicating the design principles of natural weapons at differing lengthscales in artificial materials, devices and tools to tackle practical problems are revisited, and the challenges associated with biological and bioinspired materials research in terms of both processing and properties are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fast interrupt platform for extended DOS
NASA Technical Reports Server (NTRS)
Duryea, T. W.
1995-01-01
Extended DOS offers the unique combination of a simple operating system which allows direct access to the interrupt tables, 32 bit protected mode access to 4096 MByte address space, and the use of industry standard C compilers. The drawback is that fast interrupt handling requires both 32 bit and 16 bit versions of each real-time process interrupt handler to avoid mode switches on the interrupts. A set of tools has been developed which automates the process of transforming the output of a standard 32 bit C compiler to 16 bit interrupt code which directly handles the real mode interrupts. The entire process compiles one set of source code via a make file, which boosts productivity by making the management of the compile-link cycle very simple. The software components are in the form of classes written mostly in C. A foreground process written as a conventional application which can use the standard C libraries can communicate with the background real-time classes via a message passing mechanism. The platform thus enables the integration of high performance real-time processing into a conventional application framework.
Code of Federal Regulations, 2014 CFR
2014-10-01
... research, review existing product literature generally available in the industry to determine its adequacy... literature from offerors of commercial items in lieu of unique technical proposals. (b) Contracting officers...
Code of Federal Regulations, 2013 CFR
2013-10-01
... research, review existing product literature generally available in the industry to determine its adequacy... literature from offerors of commercial items in lieu of unique technical proposals. (b) Contracting officers...
Code of Federal Regulations, 2012 CFR
2012-10-01
... research, review existing product literature generally available in the industry to determine its adequacy... literature from offerors of commercial items in lieu of unique technical proposals. (b) Contracting officers...
Eusocial insects as emerging models for behavioural epigenetics.
Yan, Hua; Simola, Daniel F; Bonasio, Roberto; Liebig, Jürgen; Berger, Shelley L; Reinberg, Danny
2014-10-01
Understanding the molecular basis of how behavioural states are established, maintained and altered by environmental cues is an area of considerable and growing interest. Epigenetic processes, including methylation of DNA and post-translational modification of histones, dynamically modulate activity-dependent gene expression in neurons and can therefore have important regulatory roles in shaping behavioural responses to environmental cues. Several eusocial insect species - with their unique displays of behavioural plasticity due to age, morphology and social context - have emerged as models to investigate the genetic and epigenetic underpinnings of animal social behaviour. This Review summarizes recent studies in the epigenetics of social behaviour and offers perspectives on emerging trends and prospects for establishing genetic tools in eusocial insects.
Burning of liquid pools in reduced gravity
NASA Technical Reports Server (NTRS)
Kanury, A. M.
1977-01-01
The existing literature on the combustion of liquid fuel pools is reviewed to identify the physical and chemical aspects which require an improved understanding. Among the pre-, trans- and post-ignition processes, a delineation was made of those which seem to uniquely benefit from studies in the essential environment offered by spacelab. The role played by the gravitational constant in analytical and experimental justifications was developed. The analytical justifications were based on hypotheses, models and dimensional analyses whereas the experimental justifications were based on an examination of the range of gravity and gravity-dependent variables possible in the earth-based laboratories. Some preliminary expositions into the questions of feasibility of the proposed spacelab experiment are also reported.
Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential
Reiner, Andreas; Levitz, Joshua; Isacoff, Ehud Y.
2014-01-01
Light offers unique advantages for studying and manipulating biomolecules and the cellular processes that they control. Optical control of ionotropic and metabotropic glutamate receptors has garnered significant interest, since these receptors are central to signaling at neuronal synapses and only optical approaches provide the spatial and temporal resolution required to directly probe receptor function in cells and tissue. Following the classical method of glutamate photo-uncaging, recently developed methods have added other forms of remote control, including those with high molecular specificity and genetic targeting. These tools open the door to the direct optical control of synaptic transmission and plasticity, as well as the probing of native receptor function in intact neural circuits. PMID:25573450
NASA Astrophysics Data System (ADS)
Lehtinen, A.; Viiri, J.
2014-05-01
Even though research suggests that the use of drawings could be an important part of learning science, learner-generated drawings have not received much attention in physics classrooms. This paper presents a method for recording students’ drawings and group discussions using tablets. Compared to pen and paper, tablets offer unique benefits, which include the recording of the whole drawing process and of the discussion associated with the drawing. A study, which investigated the use of drawings and the need for guidance among Finnish upper secondary school students, is presented alongside ideas for teachers on how to see drawing in a new light.
Space Station tethered waste disposal
NASA Technical Reports Server (NTRS)
Rupp, Charles C.
1988-01-01
The Shuttle Transportation System (STS) launches more payload to the Space Station than can be returned creating an accumulation of waste. Several methods of deorbiting the waste are compared including an OMV, solid rocket motors, and a tether system. The use of tethers is shown to offer the unique potential of having a net savings in STS launch requirement. Tether technology is being developed which can satisfy the deorbit requirements but additional effort is required in waste processing, packaging, and container design. The first step in developing this capability is already underway in the Small Expendable Deployer System program. A developmental flight test of a tether initiated recovery system is seen as the second step in the evolution of this capability.
Nanobiotechnology and bone regeneration: a mini-review.
Gusić, Nadomir; Ivković, Alan; VaFaye, John; Vukasović, Andreja; Ivković, Jana; Hudetz, Damir; Janković, Saša
2014-09-01
The purpose of this paper is to review current developments in bone tissue engineering, with special focus on the promising role of nanobiotechnology. This unique fusion between nanotechnology and biotechnology offers unprecedented possibilities in studying and modulating biological processes on a molecular and atomic scale. First we discuss the multiscale hierarchical structure of bone and its implication on the design of new scaffolds and delivery systems. Then we briefly present different types of nanostructured scaffolds, and finally we conclude with nanoparticle delivery systems and their potential use in promoting bone regeneration. This review is not meant to be exhaustive and comprehensive, but aims to highlight concepts and key advances in the field of nanobiotechnology and bone regeneration.
Forensic Evaluation of Deaf Individuals: Challenges and Strategies.
Pollard, Robert Q; Berlinski, Brian T
2017-01-01
Forensic evaluation of deaf individuals presents unique challenges due to many examinees' fund of information deficits, potential for language deprivation, and examiners' frequent lack of creativity regarding communication methods. This article describes challenges most frequently encountered in competency to stand trial and criminal responsibility evaluations and offers strategies for overcoming them. The value of employing multiple communication methods, especially the use of illustrations, is emphasized. Suggestions also are offered regarding preparing evaluation reports and effectively communicating "key deaf fundamentals" to legal personnel. Encouragement is offered for qualified, sign-fluent professionals to engage in forensic work.
ERIC Educational Resources Information Center
Kreiling, Jodi L.; Brader, Kerry; Kolar, Carol; Borgstahl, Gloria E. O.
2011-01-01
A new lecture/laboratory course to offer advanced biochemical training for undergraduate and early graduate students has been developed in the Department of Chemistry at the University of Nebraska at Omaha. This unique course offers students an opportunity to work hands-on with modern instrumentation not normally found in a predominately…
Infinium HumanMethylation450 BeadChip
The HumanMethylation450 BeadChip offers a unique combination of comprehensive, expert-selected coverage and high throughput at a low price, making it ideal for screening large sample populations such as those used in genome-wide association study cohorts. By providing quantitative methylation measurement at the single-CpG–site level for normal and FFPE samples, this assay offers powerful resolution for understanding epigenetic changes.
ERIC Educational Resources Information Center
Kropp, Rhonda Y.; Montgomery, Elizabeth T.; Hill, David W.; Ruiz, Juan D.; Maldonado, Yvonne A.
2005-01-01
To identify rates and factors associated with timely prenatal care (PNC) initiation, HIV test counseling, test offering, and test offer acceptance, we conducted a semistructured survey of a convenience sample of pregnant/recently delivered Hispanic women (n = 453, 418 with analyzable data) in four California counties in 2000. Only 68.4% and 43.5%…
Supercritical fluid processing: a new dry technique for photoresist developing
NASA Astrophysics Data System (ADS)
Gallagher-Wetmore, Paula M.; Wallraff, Gregory M.; Allen, Robert D.
1995-06-01
Supercritical fluid (SCF) technology is investigated as a dry technique for photoresist developing. Because of their unique combination of gaseous and liquid-like properties, these fluids offer comparative or improved efficiencies over liquid developers and, particularly carbon dioxide, would have tremendous beneficial impact on the environment and on worker safety. Additionally, SCF technology offers the potential for processing advanced resist systems which are currently under investigation as well as those that may have been abandoned due to problems associated with conventional developers. An investigation of various negative and positive photoresist systems is ongoing. Initially, supercritical carbon dioxide (SC CO2) as a developer for polysilane resists was explored because the exposure products, polysiloxanes, are generally soluble in this fluid. These initial studies demonstrated the viability of the SCF technique with both single layer and bilayer systems. Subsequently, the investigation focused on using SC CO2 to produce negative images with polymers that would typically be considered positive resists. Polymers such as styrenes and methacrylates were chemically modified by fluorination and/or copolymerization to render them soluble in SC CO2. Siloxane copolymers and siloxane-modified methacrylates were examined as well. The preliminary findings reported here indicate the feasibility of using SC CO2 for photoresist developing.
Ogryzko, Nikolay V.; Hoggett, Emily E.; Solaymani-Kohal, Sara; Tazzyman, Simon; Chico, Timothy J. A.; Renshaw, Stephen A.; Wilson, Heather L.
2014-01-01
ABSTRACT Interleukin-1 (IL-1), the ‘gatekeeper’ of inflammation, is the apical cytokine in a signalling cascade that drives the early response to injury or infection. Expression, processing and secretion of IL-1 are tightly controlled, and dysregulated IL-1 signalling has been implicated in a number of pathologies ranging from atherosclerosis to complications of infection. Our understanding of these processes comes from in vitro monocytic cell culture models as lines or primary isolates, in which a range and spectra of IL-1 secretion mechanisms have been described. We therefore investigated whether zebrafish embryos provide a suitable in vivo model for studying IL-1-mediated inflammation. Structurally, zebrafish IL-1β shares a β-sheet-rich trefoil structure with its human counterpart. Functionally, leukocyte expression of IL-1β was detectable only following injury, which activated leukocytes throughout zebrafish embryos. Migration of macrophages and neutrophils was attenuated by inhibitors of either caspase-1 or P2X7, which similarly inhibited the activation of NF-κB at the site of injury. Zebrafish offer a new and versatile model to study the IL-1β pathway in inflammatory disease and should offer unique insights into IL-1 biology in vivo. PMID:24203886
'Outside the Original Remit': Co-production in UK mental health research, lessons from the field.
Lambert, Nicky; Carr, Sarah
2018-06-19
The aim of this discursive paper was to explore the development of co-production and service user involvement in UK university-based mental health research and to offer practical recommendations for practitioners co-producing research with service users and survivors, informed by an overview of the key literature on co-production in mental health and from a critical reflection on applied research through the medium of a case study. The paper is co-written by a mental health nurse academic and a service user/survivor researcher academic. The authors argue that the implications of co-production for mental health research remain underexplored, but that both the practitioner and service user/survivor researcher experience and perspective of co-production in research can provide practical reflections to inform developing research practice. The theories and values of emancipatory research can provide a framework from which both practitioners and service users can work together on a research project, in a way that requires reflection on process and power dynamics. The authors conclude that whilst co-produced investigations can offer unique opportunities for advancing emancipatory and applied research in mental health, practitioner researchers need to be more radical in their consideration of power in the research process. © 2018 Australian College of Mental Health Nurses Inc.
Development of a Power Metallurgy Superalloy for Use at 1800-2000 F (980-1090 C)
NASA Technical Reports Server (NTRS)
Kortovich, C. S.
1973-01-01
A program was conducted to develop a powder metallurgy nickel-base superalloy for 1800-2000 F (980-1090 C) temperature applications. The feasibility of a unique concept for alloying carbon into a superalloy powder matrix and achieving both grain growth and a discrete particle grain boundary carbide precipitation was demonstrated. The process consisted of blending metastable carbides with a carbon free base alloy and consolidating this blend by hot extrusion. This was followed by heat treatment to grow a desired ASTM No. 2-3 grain size and to solution the metastable carbides to allow precipitation of discrete particle grain boundary carbides during subsequent aging heat treatments. The best alloy developed during this program was hydrogen-atomized, thermal-mechanically processed, modified MAR-M246 base alloy plus VC (0.28 w/o C). Although below those for cast MAR-M246, the mechanical properties exhibited by this alloy represent the best combination offered by conventional powder metallurgy processing to date.
Deviations from a uniform period spacing of gravity modes in a massive star.
Degroote, Pieter; Aerts, Conny; Baglin, Annie; Miglio, Andrea; Briquet, Maryline; Noels, Arlette; Niemczura, Ewa; Montalban, Josefina; Bloemen, Steven; Oreiro, Raquel; Vucković, Maja; Smolders, Kristof; Auvergne, Michel; Baudin, Frederic; Catala, Claude; Michel, Eric
2010-03-11
The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.
Berry, Scott A; Laam, Leslie A; Wary, Andrea A; Mateer, Harry O; Cassagnol, Hans P; McKinley, Karen E; Nolan, Ruth A
2011-05-01
Geisinger Health System (GHS) has applied its ProvenCare model to demonstrate that a large integrated health care delivery system, enabled by an electronic health record (EHR), could reengineer a complicated clinical process, reduce unwarranted variation, and provide evidence-based care for patients with a specified clinical condition. In 2007 GHS began to apply the model to a more complicated, longer-term condition of "wellness"--perinatal care. ADAPTING PROVENCARE TO PERINATAL CARE: The ProvenCare Perinatal initiative was more complex than the five previous ProvenCare endeavors in terms of breadth, scope, and duration. Each of the 22 sites created a process flow map to depict the current, real-time process at each location. The local practice site providers-physicians and mid-level practitioners-reached consensus on 103 unique best practice measures (BPMs), which would be tracked for every patient. These maps were then used to create a single standardized pathway that included the BPMs but also preserved some unique care offerings that reflected the needs of the local context. A nine-phase methodology, expanded from the previous six-phase model, was implemented on schedule. Pre- to postimplementation improvement occurred for all seven BPMs or BPM bundles that were considered the most clinically relevant, with five statistically significant. In addition, the rate of primary cesarean sections decreased by 32%, and birth trauma remained unchanged as the number of vaginal births increased. Preliminary experience suggests that integrating evidence/guideline-based best practices into work flows in inpatient and outpatient settings can achieve improvements in daily patient care processes and outcomes.
Harlé, Katia M; Chang, Luke J; van 't Wout, Mascha; Sanfey, Alan G
2012-05-15
Though emotions have been shown to have sometimes dramatic effects on decision-making, the neural mechanisms mediating these biases are relatively unexplored. Here, we investigated how incidental affect (i.e. emotional states unrelated to the decision at hand) may influence decisions, and how these biases are implemented in the brain. Nineteen adult participants made decisions which involved accepting or rejecting monetary offers from others in an Ultimatum Game while undergoing functional magnetic resonance imaging (fMRI). Prior to each set of decisions, participants watched a short video clip aimed at inducing either a sad or neutral emotional state. Results demonstrated that, as expected, sad participants rejected more unfair offers than those in the neutral condition. Neuroimaging analyses revealed that receiving unfair offers while in a sad mood elicited activity in brain areas related to aversive emotional states and somatosensory integration (anterior insula) and to cognitive conflict (anterior cingulate cortex). Sad participants also showed a diminished sensitivity in neural regions associated with reward processing (ventral striatum). Importantly, insular activation uniquely mediated the relationship between sadness and decision bias. This study is the first to reveal how subtle mood states can be integrated at the neural level to influence decision-making. Copyright © 2012 Elsevier Inc. All rights reserved.
Kornberg, Thomas B
2016-01-01
The field of developmental biology is not the same one that I entered in 1975. At that time, it seemed that most of its practitioners used various kinds of microscopes to watch animals as they matured, described morphological details with impressive temporal and spatial resolution, and recorded responses to physical and genetic insults. The number of genes whose mutant phenotypes offered insights into developmental mechanisms was small, the expression and functionalities of these genes were unknown, and because the extent of evolutionary conservation between different animals or even different organs in the same animal was also unknown, the vocabularies that were used to describe development were unique to each system. The distance between the descriptors and inferred molecular mechanisms was vast; it was a descriptive discipline. Today genome sequences are available for the animals that developmental biologists study, saturation genetic screens are possible, transgenesis offers powerful ways to modify genomes, and the proteins that direct and implement developmental processes can be imaged in real time. These advances have transformed the field into one that merges with cell biology, physiology, neurobiology, and immunology, and they have transformed our understanding of development. In this essay, I offer my perspectives and my sense of some principles that have emerged. © 2016 Elsevier Inc. All rights reserved.
Shot noise generated by graphene p–n junctions in the quantum Hall effect regime
Kumada, N.; Parmentier, F. D.; Hibino, H.; Glattli, D. C.; Roulleau, P.
2015-01-01
Graphene offers a unique system to investigate transport of Dirac Fermions at p–n junctions. In a magnetic field, combination of quantum Hall physics and the characteristic transport across p–n junctions leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a p–n junction could be used as an electronic beam splitter. Here we report the shot noise study of the mode-mixing process and demonstrate the crucial role of the p–n junction length. For short p–n junctions, the amplitude of the noise is consistent with an electronic beam-splitter behaviour, whereas, for longer p–n junctions, it is reduced by the energy relaxation. Remarkably, the relaxation length is much larger than typical size of mesoscopic devices, encouraging using graphene for electron quantum optics and quantum information processing. PMID:26337067
Learning cell biology as a team: a project-based approach to upper-division cell biology.
Wright, Robin; Boggs, James
2002-01-01
To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor.
NASA Technical Reports Server (NTRS)
2003-01-01
In order to rapidly and efficiently grow crystals, tools were needed to automatically identify and analyze the growing process of protein crystals. To meet this need, Diversified Scientific, Inc. (DSI), with the support of a Small Business Innovation Research (SBIR) contract from NASA s Marshall Space Flight Center, developed CrystalScore(trademark), the first automated image acquisition, analysis, and archiving system designed specifically for the macromolecular crystal growing community. It offers automated hardware control, image and data archiving, image processing, a searchable database, and surface plotting of experimental data. CrystalScore is currently being used by numerous pharmaceutical companies and academic and nonprofit research centers. DSI, located in Birmingham, Alabama, was awarded the patent Method for acquiring, storing, and analyzing crystal images on March 4, 2003. Another DSI product made possible by Marshall SBIR funding is VaporPro(trademark), a unique, comprehensive system that allows for the automated control of vapor diffusion for crystallization experiments.
Brain connectivity reflects human aesthetic responses to music
Sachs, Matthew E.; Ellis, Robert J.; Schlaug, Gottfried
2016-01-01
Abstract Humans uniquely appreciate aesthetics, experiencing pleasurable responses to complex stimuli that confer no clear intrinsic value for survival. However, substantial variability exists in the frequency and specificity of aesthetic responses. While pleasure from aesthetics is attributed to the neural circuitry for reward, what accounts for individual differences in aesthetic reward sensitivity remains unclear. Using a combination of survey data, behavioral and psychophysiological measures and diffusion tensor imaging, we found that white matter connectivity between sensory processing areas in the superior temporal gyrus and emotional and social processing areas in the insula and medial prefrontal cortex explains individual differences in reward sensitivity to music. Our findings provide the first evidence for a neural basis of individual differences in sensory access to the reward system, and suggest that social–emotional communication through the auditory channel may offer an evolutionary basis for music making as an aesthetically rewarding function in humans. PMID:26966157
Gels and gel-derived glasses in the Na2O-B2O3-SiO2 system. [containerless melting in space
NASA Technical Reports Server (NTRS)
Mukherjee, S. P.
1982-01-01
The containerless melting of high-purity multicomponent homogeneous gels and gel-monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the Na2O-B2O3-SiO2 system are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures were found to be significantly different. IR absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel-monoliths to transparent 'glass' without melting are described.
Gels and gel-derived glasses in the system Na2O-B2O3-SiO2
NASA Technical Reports Server (NTRS)
Mukherjee, S. P.
1983-01-01
The containerless melting of high-purity multicomponent homogeneous gels and gel monoliths offers a unique approach to making ultrapure multicomponent optical glasses in the reduced gravity environment of space. Procedures for preparing and characterizing gels and gel-derived glasses in the system Na2O-B2O3-SiO2 are described. Preparation is based on the polymerization reactions of alkoxysilane with trimethyl borate or boric acid and a suitable sodium compound. The chemistry of the gelling process is discussed in terms of process parameters and the gel compositions. The physicochemical nature of gels prepared by three different procedures was found to be significantly different. Infrared absorption spectra indicate finite differences in the molecular structures of the different gels. The melting of the gel powders and the transformation of porous gel monoliths to transparent 'glass' without melting are described.
Methods to Manipulate and Monitor Wnt Signaling in Human Pluripotent Stem Cells.
Huggins, Ian J; Brafman, David; Willert, Karl
2016-01-01
Human pluripotent stem cells (hPSCs) may revolutionize medical practice by providing: (a) a renewable source of cells for tissue replacement therapies, (b) a powerful system to model human diseases in a dish, and (c) a platform for examining efficacy and safety of novel drugs. Furthermore, these cells offer a unique opportunity to study early human development in vitro, in particular, the process by which a seemingly uniform cell population interacts to give rise to the three main embryonic lineages: ectoderm, endoderm. and mesoderm. This process of lineage allocation is regulated by a number of inductive signals that are mediated by growth factors, including FGF, TGFβ, and Wnt. In this book chapter, we introduce a set of tools, methods, and protocols to specifically manipulate the Wnt signaling pathway with the intention of altering the cell fate outcome of hPSCs.
Energy coding in biological neural networks
Zhang, Zhikang
2007-01-01
According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function. PMID:19003513
Tempest: Accelerated MS/MS Database Search Software for Heterogeneous Computing Platforms.
Adamo, Mark E; Gerber, Scott A
2016-09-07
MS/MS database search algorithms derive a set of candidate peptide sequences from in silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU (central processing unit) generates peptide candidates that are asynchronously sent to a discrete GPU (graphics processing unit) to be scored against experimental spectra in parallel. The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors. Three protocols describe how to configure and run a Tempest search, including discussion of how to leverage Tempest's unique feature set to produce optimal results. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Boyer, Chantal; Gaudin, Karen; Kauss, Tina; Gaubert, Alexandra; Boudis, Abdelhakim; Verschelden, Justine; Franc, Mickaël; Roussille, Julie; Boucher, Jacques; Olliaro, Piero; White, Nicholas J.; Millet, Pascal; Dubost, Jean-Pierre
2012-01-01
Near infrared spectroscopy (NIRS) methods were developed for the determination of analytical content of an antimalarial-antibiotic (artesunate and azithromycin) co-formulation in hard gelatin capsule (HGC). The NIRS consists of pre-processing treatment of spectra (raw spectra and first-derivation of two spectral zones), a unique principal component analysis model to ensure the specificity and then two partial least-squares regression models for the determination content of each active pharmaceutical ingredient. The NIRS methods were developed and validated with no reference method, since the manufacturing process of HGC is basically mixed excipients with active pharmaceutical ingredients. The accuracy profiles showed β-expectation tolerance limits within the acceptance limits (±5%). The analytical control approach performed by reversed phase (HPLC) required two different methods involving two different preparation and chromatographic methods. NIRS offers advantages in terms of lower costs of equipment and procedures, time saving, environmentally friendly. PMID:22579599
Amine–Oxide Hybrid Materials for CO 2 Capture from Ambient Air
Didas, Stephanie A.; Choi, Sunho; Chaikittisilp, Watcharop; ...
2015-09-10
Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO 2 on global climate change, the study of the use of amine-oxide hybrid materials as CO 2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO 2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO 2 from ultradilute gas mixtures, such as ambientmore » air. As unique, low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO 2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO 2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO 2 extraction from simulated ambient air (400 ppm of CO 2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO 2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine-oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a “direct air capture” process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas-solid contacting strategy. In conclusion, the utility of low pressure drop monolith contactors is suggested to offer a practical mode of amine sorbent/air contacting for direct air capture.« less
Amine–Oxide Hybrid Materials for CO 2 Capture from Ambient Air
Didas, Stephanie A.; Choi, Sunho; Chaikittisilp, Watcharop; ...
2015-09-10
CONSPECTUS: Oxide supports functionalized with amine moieties have been used for decades as catalysts and chromatographic media. Owing to the recognized impact of atmospheric CO2 on global climate change, the study of the use of amine-oxide hybrid materials as CO2 sorbents has exploded in the past decade. While the majority of the work has concerned separation of CO2 from dilute mixtures such as flue gas from coal-fired power plants, it has been recognized by us and others that such supported amine materials are also perhaps uniquely suited to extract CO2 from ultradilute gas mixtures, such as ambient air. As unique,more » low temperature chemisorbents, they can operate under ambient conditions, spontaneously extracting CO2 from ambient air, while being regenerated under mild conditions using heat or the combination of heat and vacuum. This Account describes the evolution of our activities on the design of amine-functionalized silica materials for catalysis to the design, characterization, and utilization of these materials in CO2 separations. New materials developed in our laboratory, such as hyperbranched aminosilica materials, and previously known amine-oxide hybrid compositions, have been extensively studied for CO2 extraction from simulated ambient air (400 ppm of CO2). The role of amine type and structure (molecular, polymeric), support type and structure, the stability of the various compositions under simulated operating conditions, and the nature of the adsorbed CO2 have been investigated in detail. The requirements for an effective, practical air capture process have been outlined and the ability of amine−oxide hybrid materials to meet these needs has been discussed. Ultimately, the practicality of such a “direct air capture” process is predicated not only on the physicochemical properties of the sorbent, but also how the sorbent operates in a practical process that offers a scalable gas−solid contacting strategy. In this regard, the utility of low pressure drop monolith contactors is suggested to offer a practical mode of amine sorbent/air contacting for direct air capture.« less
Using New-Antiquarian Photographic Processes to Integrate Art and Science
NASA Astrophysics Data System (ADS)
Beaver, J.
2017-12-01
In this session we describe an interdisciplinary course, The Art and Science of Photography (ASP), and its accompanying textbook and associated project-based activities, offered at the University of Wisconsin - Fox Valley in Menasha, Wisconsin. ASP uses photography as a point of departure to inspire students to ask fundamental questions about the nature of art, and to consider physics and astronomy as part of the study of nature. In turn, aspects of art and physics/astronomy are chosen in part for their direct relevance to the fundamentals of photography. For example, the subtle nature of shadows on a sunny day is related to the geometry of eclipses.ASP is offered as a 4-credit lecture/lab/studio course, and the students have a choice of registration for either art or natural-science credit. A large majority of students register for natural-science credit, and we suggest that ASP may be particularly useful as an entry point for students who view themselves as lacking ability in the sciences.Combining art with science in an introductory course is a particularly fruitful way to increase student engagement, as there is a perception that to be "artistic" precludes success in science. But it is of equal importance that students sometimes perceive that being "science-minded" precludes success in art.Part of the aim of ASP is to integrate art and science to such a degree that a student is always doing both, while still maintaining the integrity and rigor of each discipline. Towards this end, we have developed several unique hands-on practices that often use antiquarian photographic processes in a new way.Some of these hybrid techniques are little known or not previously described. Yet they allow for unique artistic expression, while also highlighting - in a way that ordinary digital photography does not - prinicpals of the interaction between light, atmosphere, weather, and the physical photographic substrate. These newly-described processes are accessible and inexpensive, but also artisticly versatile and to-the-point regarding the understanding of fundamental principals.
A guide to transportation enhancements
DOT National Transportation Integrated Search
2004-12-01
The Federal Transportation Enhancement Program offers extensive opportunities to take unique and creative actions to integrate transportation into our communities and the natural environment. Transportation enhancement activities can be stand-alone p...
Goyat, M S; Ghosh, P K
2018-04-01
Emerging ex-situ technique, ultrasonic dual mixing (UDM) offers unique and hitherto unapproachable opportunities to alter the physical and mechanical properties of polymer nanocomposites. In this study, triangular lattice-like arranged dispersion of TiO 2 nanoparticles (average size ∼ 48 nm) in the epoxy polymer has been attained via concurrent use of a probe ultra-sonicator and 4 blades pitched impeller which collectively named as UDM technique. The UDM processing of neat epoxy reveals the generation of triangular lattice-like arranged nanocavities with nanoscale inter-cavity spacing. The UDM processing of epoxy-TiO 2 nanocomposites reveals two unique features such as partial and complete entrapping of the nanoparticles by the nanocavities leading the arranged dispersion of particles in the epoxy matrix. Pristine TiO 2 nanoparticles were dispersed in the epoxy polymer at loading fractions of up to 20% by weight. The results display that the arranged dispersion of nanoparticles is very effective at enhancing the glass transition temperature (T g ) and tensile properties of the epoxy at loading fractions of 10 wt%. We quantify a direct relationship among three important parameters such as nanoparticle content, cluster size, and inter-particle spacing. Our results offer a novel understanding of these parameters on the T g and tensile properties of the epoxy nanocomposites. The tensile fracture surfaces revealed several toughening mechanisms such as particle pull-out, plastic void growth, crack deflection, crack bridging and plastic deformation. We show that a strong nanoparticle-matrix interface led to the enhanced mechanical properties due to leading toughening mechanisms such as crack deflection, plastic deformation and particle pull-out. We showed that the UDM has an inordinate prospective to alter the dispersion state of nanoparticles in viscous polymer matrices. Copyright © 2017 Elsevier B.V. All rights reserved.
High-frequency applications of high-temperature superconductor thin films
NASA Astrophysics Data System (ADS)
Klein, N.
2002-10-01
High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.
Current status of gene therapy trials for Parkinson's disease.
Fiandaca, Massimo; Forsayeth, John; Bankiewicz, Krystof
2008-01-01
The incidence of Parkinson's disease (PD) increases greatly with age, and the baby-boomer population can expect to generate a large number of individuals with the disease, all of whom will have significantly increased medical care needs over periods of 20 years or more. This emerging healthcare burden to our society calls for accelerated efforts to understand this disease better and treat it more effectively. The growing interest in gene therapy grew out of a recognition that new medicines may be needed to combat the relentless progression of the disease in the face of conventional pharmaco-therapies and surgical interventions that have so far failed to offer more than palliative relief. The potential of gene therapy to alter dramatically the course of the disease lies very much with the challenge of converting a research tool into a medical option, a process that clearly requires a unique combination of rigor and flexibility. In this review, we examine the unique aspects of gene therapy that make its use in PD attractive, but also analyze the difficulties of employing a medicine that acts for the rest of the patient's life.
Polymer-directed crystallization of atorvastatin.
Choi, Hyemin; Lee, Hyeseung; Lee, Min Kyung; Lee, Jonghwi
2012-08-01
Living organisms secrete minerals composed of peptides and proteins, resulting in "mesocrystals" of three-dimensional-assembled composite structures. Recently, this biomimetic polymer-directed crystallization technique has been widely applied to inorganic materials, although it has seldom been used with drugs. In this study, the technique was applied to the drowning-out crystallization of atorvastatin using various polymers. Nucleation and growth at optimized conditions successfully produced composite crystals with significant polymer contents and unusual characteristics. Atorvastatin composite crystals containing polyethylene glycol, polyacrylic acid, polyethylene imine, and chitosan showed a markedly decreased melting point and heat of fusion, improved stability, and sustained-release patterns. The use of hydroxypropyl cellulose yielded a unique combination of enhanced in vitro release and improved drug stability under a forced degradation condition. The formation hypothesis of unique mesocrystal structures was strongly supported by an X-ray diffraction pattern and substantial melting point reduction. This polymer-directed crystallization technique offers a novel and effective way, different from the solid dispersion approach, to engineer the release, stability, and processability of drug crystals. Copyright © 2012 Wiley Periodicals, Inc.
Using NASA's GRACE and SMAP satellites to measure human impacts on the water cycle
NASA Astrophysics Data System (ADS)
Reager, J. T., II; Castle, S.; Turmon, M.; Famiglietti, J. S.; Fournier, S.
2017-12-01
Two satellite missions, the Gravity Recovery and Climate Experiment (GRACE) mission and the Soil Moisture Active Passive (SMAP) mission are enabling the measurement of the dynamic state of the water cycle globally, offering a unique opportunity for the study of human impacts on terrestrial hydrology and an opportunity to quantify the direct augmentation of natural cycles by human activities. While many model-data fusion studies aim to apply observations to improve model performance, we present recent studies on measuring the multi-scale impacts of human activities by differencing or contrasting model simulations and observations. Results that will be presented include studies on: the measurement of human impacts on evapotranspiration in the Colorado River Basin; the estimation of the human portion of groundwater depletion in the Southwestern U.S.; and the influence of irrigation on runoff generation in the Mississippi River basin. Each of these cases has a unique implications for the sustainable use of natural resources by humans, and indicate the relevant extent and magnitude of human influence on natural processes, suggesting their importance for inclusion in hydrology and land-surface models.
A new look at lunar soil collected from the sea of tranquility during the Apollo 11 mission.
Kiely, Carol; Greenberg, Gary; Kiely, Christopher J
2011-02-01
Complementary state-of-the-art optical, scanning electron, and X-ray microscopy techniques have been used to study the morphology of Apollo 11 lunar soil particles (10084-47). The combination of innovative lighting geometries with image processing of a through focal series of images has allowed us to obtain a unique collection of high-resolution light micrographs of these fascinating particles. Scanning electron microscopy (SEM) stereo-pair imaging has been exploited to illustrate some of the unique morphological properties of lunar regolith. In addition, for the first time, X-ray micrographs with submicron resolution have been taken of individual particles using X-ray ultramicroscopy (XuM). This SEM-based technique lends itself readily to the imaging of pores, cracks, and inclusions and allows the internal structure of an entire particle to be viewed. Rotational SEM and XuM movies have also been constructed from a series of images collected at sequential angles through 360°. These offer a new and insightful view of these complex particles providing size, shape, and spatial information on many of their internal features.
Quantum Opportunities and Challenges for Fundamental Sciences in Space
NASA Technical Reports Server (NTRS)
Yu, Nan
2012-01-01
Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.
Stimuli-responsive chitosan-based nanocarriers for cancer therapy
Fathi, Marziyeh; Sahandi Zangabad, Parham; Majidi, Sima; Barar, Jaleh; Erfan-Niya, Hamid
2017-01-01
Introduction: Stimuli-responsive nanocarriers offer unique advantages over the traditional drug delivery systems (DDSs) in terms of targeted drug delivery and on-demand release of cargo drug molecules. Of these, chitosan (CS)-based DDSs offer several advantages such as high compatibility with biological settings. Methods: In this study, we surveyed the literature in terms of the stimuli-responsive nanocarriers and discussed the most recent advancements in terms of CS-based nanosystems and their applications in cancer therapy and diagnosis. Results: These advanced DDSs are able to release the entrapped drugs in response to a specific endogenous stimulus (e.g., pH, glutathione concentration or certain enzymes) or exogenous stimulus (e.g., temperature, light, ultrasound, and magnetic field) at the desired time and target site. Dual-responsive nanocarriers by the combination of different stimuli have also been developed as efficient and improved DDSs. Among the stimuli-responsive nanocarriers, CS-based DDSs offer several advantages, including biocompatibility and biodegradability, antibacterial activity, ease of modification and functionalization, and non-immunogenicity. They are as one of the most ideal smart multifunction DDSs. Conclusion: The CS-based stimuli-responsive multifunctional nanosystems (NSs) offer unique potential for the targeted delivery of anticancer agents and provide great potential for on-demand and controlled-release of anticancer agents in response to diverse external/internal stimuli. PMID:29435435
Stimuli-responsive chitosan-based nanocarriers for cancer therapy.
Fathi, Marziyeh; Sahandi Zangabad, Parham; Majidi, Sima; Barar, Jaleh; Erfan-Niya, Hamid; Omidi, Yadollah
2017-01-01
Introduction: Stimuli-responsive nanocarriers offer unique advantages over the traditional drug delivery systems (DDSs) in terms of targeted drug delivery and on-demand release of cargo drug molecules. Of these, chitosan (CS)-based DDSs offer several advantages such as high compatibility with biological settings. Methods: In this study, we surveyed the literature in terms of the stimuli-responsive nanocarriers and discussed the most recent advancements in terms of CS-based nanosystems and their applications in cancer therapy and diagnosis. Results: These advanced DDSs are able to release the entrapped drugs in response to a specific endogenous stimulus (e.g., pH, glutathione concentration or certain enzymes) or exogenous stimulus (e.g., temperature, light, ultrasound, and magnetic field) at the desired time and target site. Dual-responsive nanocarriers by the combination of different stimuli have also been developed as efficient and improved DDSs. Among the stimuli-responsive nanocarriers, CS-based DDSs offer several advantages, including biocompatibility and biodegradability, antibacterial activity, ease of modification and functionalization, and non-immunogenicity. They are as one of the most ideal smart multifunction DDSs. Conclusion: The CS-based stimuli-responsive multifunctional nanosystems (NSs) offer unique potential for the targeted delivery of anticancer agents and provide great potential for on-demand and controlled-release of anticancer agents in response to diverse external/internal stimuli.
Joyce, Anthony S; Ogrodniczuk, John S; Kealy, David
2017-01-01
Entrenched interpersonal difficulties are a defining feature of those with personality dysfunction. Evening treatment-a comprehensive and intensive group-oriented outpatient therapy program-offers a unique approach to delivering mental health services to patients with chronic personality dysfunction. This study assessed change in interpersonal problems as a key outcome, the relevance of such change to future social functioning, and the influence of early group processes on this change. Consecutively admitted patients (N = 75) to a group-oriented evening treatment program were recruited; the majority were diagnosed with personality disorder. Therapy outcome was represented by scores on the Inventory of Interpersonal Problems. Follow-up outcome was represented by the global score of the Social Adjustment Scale. Group climate, group cohesion, and the therapeutic alliance were examined as process variables. Patients experienced substantial reduction in distress associated with interpersonal problems; early process factors that reflected a cohesive and engaged group climate and stronger therapeutic alliance were predictive of this outcome. Improvement in interpersonal distress was predictive of global social functioning six months later. The therapeutic alliance most strongly accounted for change in interpersonal problems at posttreatment and social functioning at follow-up. A comprehensive and integrated outpatient group therapy program, offered in the evening to accommodate patients' real-life demands, can facilitate considerable improvement in interpersonal problems, which in turn influences later social functioning. The intensity and intimacy of peer interactions in the therapy groups, and a strong alliance with the program therapists, are likely interacting factors that are particularly important to facilitate such change.
Powder Bed Layer Characteristics: The Overseen First-Order Process Input
NASA Astrophysics Data System (ADS)
Mindt, H. W.; Megahed, M.; Lavery, N. P.; Holmes, M. A.; Brown, S. G. R.
2016-08-01
Powder Bed Additive Manufacturing offers unique advantages in terms of manufacturing cost, lot size, and product complexity compared to traditional processes such as casting, where a minimum lot size is mandatory to achieve economic competitiveness. Many studies—both experimental and numerical—are dedicated to the analysis of how process parameters such as heat source power, scan speed, and scan strategy affect the final material properties. Apart from the general urge to increase the build rate using thicker powder layers, the coating process and how the powder is distributed on the processing table has received very little attention to date. This paper focuses on the first step of every powder bed build process: Coating the process table. A numerical study is performed to investigate how powder is transferred from the source to the processing table. A solid coating blade is modeled to spread commercial Ti-6Al-4V powder. The resulting powder layer is analyzed statistically to determine the packing density and its variation across the processing table. The results are compared with literature reports using the so-called "rain" models. A parameter study is performed to identify the influence of process table displacement and wiper velocity on the powder distribution. The achieved packing density and how that affects subsequent heat source interaction with the powder bed is also investigated numerically.
Special event planning for the emergency manager.
Gaynor, Peter T
2009-11-01
In the domain of emergency management and homeland security there is a lack of a formal planning process at the local level when it comes to special event planning. The unique nature of special event planning demands an understanding of the planning process for both traditional and non-traditional planning partners. This understanding will make certain that local governments apply due diligence when planning for the safety of the public. This paper offers a practical roadmap for planning at the local level. It will address those 'special events' that are beyond routine local events but not of a sufficient scale to be granted National Special Security Event status. Due to the infrequency of 'special events' in most communities, it is imperative that deliberate planning takes place. Upon conclusion, the reader will be able to construct a planning process tailored to the needs of their community, guide both traditional and non-traditional planning partners through the planning process, determine priorities, explore alternatives, plan for contingencies, conduct a confirmation brief, facilitate operations and assemble an after-action report and improvement plan.
Musical melody and speech intonation: singing a different tune.
Zatorre, Robert J; Baum, Shari R
2012-01-01
Music and speech are often cited as characteristically human forms of communication. Both share the features of hierarchical structure, complex sound systems, and sensorimotor sequencing demands, and both are used to convey and influence emotions, among other functions [1]. Both music and speech also prominently use acoustical frequency modulations, perceived as variations in pitch, as part of their communicative repertoire. Given these similarities, and the fact that pitch perception and production involve the same peripheral transduction system (cochlea) and the same production mechanism (vocal tract), it might be natural to assume that pitch processing in speech and music would also depend on the same underlying cognitive and neural mechanisms. In this essay we argue that the processing of pitch information differs significantly for speech and music; specifically, we suggest that there are two pitch-related processing systems, one for more coarse-grained, approximate analysis and one for more fine-grained accurate representation, and that the latter is unique to music. More broadly, this dissociation offers clues about the interface between sensory and motor systems, and highlights the idea that multiple processing streams are a ubiquitous feature of neuro-cognitive architectures.
A programmable nanoreplica molding for the fabrication of nanophotonic devices.
Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng
2016-03-01
The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively.
A programmable nanoreplica molding for the fabrication of nanophotonic devices
Liu, Longju; Zhang, Jingxiang; Badshah, Mohsin Ali; Dong, Liang; Li, Jingjing; Kim, Seok-min; Lu, Meng
2016-01-01
The ability to fabricate periodic structures with sub-wavelength features has a great potential for impact on integrated optics, optical sensors, and photovoltaic devices. Here, we report a programmable nanoreplica molding process to fabricate a variety of sub-micrometer periodic patterns using a single mold. The process utilizes a stretchable mold to produce the desired periodic structure in a photopolymer on glass or plastic substrates. During the replica molding process, a uniaxial force is applied to the mold and results in changes of the periodic structure, which resides on the surface of the mold. Direction and magnitude of the force determine the array geometry, including the lattice constant and arrangement. By stretching the mold, 2D arrays with square, rectangular, and triangular lattice structures can be fabricated. As one example, we present a plasmonic crystal device with surface plasmon resonances determined by the force applied during molding. In addition, photonic crystal slabs with different array patterns are fabricated and characterized. This unique process offers the capability of generating various periodic nanostructures rapidly and inexpensively. PMID:26925828
Mapping Residency Global Health Experiences to the ACGME Family Medicine Milestones.
Grissom, Maureen O; Iroku-Malize, Tochi; Peila, Rita; Perez, Marco; Philippe, Neubert
2017-07-01
Global health (GH) experiences are a unique part of family medicine (FM) training that offer an opportunity for residents to demonstrate development across a multitude of the milestones recently implemented by the Accreditation Council for Graduate Medical Education (ACGME). The GH experience presents an opportunity for resident development, and including a component of written reflection can provide tangible evidence of development in areas that can be difficult to assess. A mixed methods approach was used to integrate quantitative (frequency) data with qualitative content from the written reflections of 12 of our FM residents who participated in GH experiences. Written reflections touched on each of the 22 milestones, although some milestones were noted more frequently than others. The most commonly identified milestones fell within the competency areas of systems-based practice, professionalism, and practice-based learning and improvement. Our qualitative approach allowed us to gain an appreciation of the unique experiences that demonstrated growth across the various milestones. We conclude that any program that offers GH experiences should incorporate some form of written reflection to maximize resident growth and offer evaluative faculty a window into that development.
Microstructural Evolution during DPRM Process of Semisolid Ledeburitic D2 Tool Steel
Mohammed, M. N.; Omar, M. Z.; Syarif, J.; Sajuri, Z.; Salleh, M. S.; Alhawari, K. S.
2013-01-01
Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μm), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network. PMID:24223510
Microstructural evolution during DPRM process of semisolid ledeburitic D2 tool steel.
Mohammed, M N; Omar, M Z; Syarif, J; Sajuri, Z; Salleh, M S; Alhawari, K S
2013-01-01
Semisolid metal processing is a relatively new technology that offers several advantages over liquid processing and solid processing because of the unique behaviour and characteristic microstructure of metals in this state. With the aim of finding a minimum process chain for the manufacture of high-quality production at minimal cost for forming, the microstructural evolution of the ledeburitic AISI D2 tool steel in the semisolid state was studied experimentally. The potential of the direct partial remelting (DPRM) process for the production of AISI D2 with a uniform globular microstructure was revealed. The liquid fraction was determined using differential scanning calorimetry. The microstructures of the samples were investigated using an optical microscope and a scanning electron microscope equipped with an energy dispersive spectroscopy analyser, while X-ray phase analysis was performed to identify the phase evolution and the type of carbides. Mechanical characterisation was completed by hardness measurements. The typical microstructure after DPRM consists of metastable austenite which was located particularly in the globular grains (average grain size about 50 μ m), while the remaining interspaces were filled by precipitated eutectic carbides on the grain boundaries and lamellar network.
Reconsolidation of memory: a decade of debate.
Besnard, Antoine; Caboche, Jocelyne; Laroche, Serge
2012-10-01
Memory consolidation refers to a slow process that stabilises a memory trace after initial acquisition of novel events. The consolidation theory posits that once a memory is stored in the brain, it remains fixed for the lifetime of the memory. However, compelling evidence has suggested that upon recall, memories can re-enter a state of transient instability, requiring further stabilisation to be available once again for recall. Since its rehabilitation in the past ten years, this process of reconsolidation of memory after recall stimulated intense debates in the field of cognitive neuroscience. In this review we compile this plentiful literature with a particular emphasis on some of the key questions that have emerged from the reconsolidation theory. We focus on tracing the characterisation of the boundary conditions that constrain the occurrence of memory reconsolidation. We also discuss accumulating evidence supporting the idea that reconsolidation, as implied by its definition, is not a mere repetition of consolidation. We review seminal studies that uncovered specific mechanisms recruited during reconsolidation that are not always crucially involved in consolidation. We next address the physiological significance of reconsolidation since several lines of evidence support the idea that reconsolidation, as opposed to consolidation, may offer a unique opportunity to update memories. We finally discuss recent evidence for or against the potential that the process of memory reconsolidation offers for ongoing efforts to develop novel strategies to combat pathogenic memories. Copyright © 2012 Elsevier Ltd. All rights reserved.
van der Loo, Lars E; Beckervordersandforth, Jan; Colon, Albert J; Schijns, Olaf E M G
2017-02-01
We present the first and unique case of a rapid-growing skull hemangioma in a patient with Klippel-Trénaunay-Weber syndrome. This case report provides evidence that not all rapid-growing, osteolytic skull lesions need to have a malignant character but certainly need a histopathological verification. This material offers insight into the list of rare pathological diagnoses in an infrequent syndrome.
Addressing Unison and Uniqueness of Reliability and Safety for Better Integration
NASA Technical Reports Server (NTRS)
Huang, Zhaofeng; Safie, Fayssal
2015-01-01
For a long time, both in theory and in practice, safety and reliability have not been clearly differentiated, which leads to confusion, inefficiency, and sometime counter-productive practices in executing each of these two disciplines. It is imperative to address the uniqueness and the unison of these two disciplines to help both disciplines become more effective and to promote a better integration of the two for enhancing safety and reliability in our products as an overall objective. There are two purposes of this paper. First, it will investigate the uniqueness and unison of each discipline and discuss the interrelationship between the two for awareness and clarification. Second, after clearly understanding the unique roles and interrelationship between the two in a product design and development life cycle, we offer suggestions to enhance the disciplines with distinguished and focused roles, to better integrate the two, and to improve unique sets of skills and tools of reliability and safety processes. From the uniqueness aspect, the paper identifies and discusses the respective uniqueness of reliability and safety from their roles, accountability, nature of requirements, technical scopes, detailed technical approaches, and analysis boundaries. It is misleading to equate unreliable to unsafe, since a safety hazard may or may not be related to the component, sub-system, or system functions, which are primarily what reliability addresses. Similarly, failing-to-function may or may not lead to hazard events. Examples will be given in the paper from aerospace, defense, and consumer products to illustrate the uniqueness and differences between reliability and safety. From the unison aspect, the paper discusses what the commonalities between reliability and safety are, and how these two disciplines are linked, integrated, and supplemented with each other to accomplish the customer requirements and product goals. In addition to understanding the uniqueness in reliability and safety, a better understanding of unison and commonalities will further help in understanding the interaction between reliability and safety. This paper discusses the unison and uniqueness of reliability and safety. It presents some suggestions for better integration of the two disciplines in terms of technical approaches, tools, techniques, and skills to enhance the role of reliability and safety in supporting a product design and development life cycle. The paper also discusses eliminating the redundant effort and minimizing the overlap of reliability and safety analyses for an efficient implementation of the two disciplines.
Cell separation using tilted-angle standing surface acoustic waves
Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2014-01-01
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150
Cell separation using tilted-angle standing surface acoustic waves.
Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun
2014-09-09
Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.
Transformation in Teaching-Learning: Emerging Possibilities with Interprofessional Education.
Yancey, Nan Russell; Cahill, Susan; McDowell, Michael
2018-04-01
As the global community continues to face increasing mobility, rising healthcare costs, and decreasing or inaccessible healthcare resources, healthcare providers must be able to work together effectively in addressing the needs of progressively older and diverse persons and populations. In this column, the notion of interprofessional education (IPE) is explored and a model proposed for implementation in an institution offering graduate programs in nursing and occupational therapy. While the proposed model was developed for two disciplinary programs in a specific institution, the recommendations offered may easily be adapted for use in academic institutions offering varied and unique healthcare professional programs.
Haystack, a web-based tool for metabolomics research
2014-01-01
Background Liquid chromatography coupled to mass spectrometry (LCMS) has become a widely used technique in metabolomics research for differential profiling, the broad screening of biomolecular constituents across multiple samples to diagnose phenotypic differences and elucidate relevant features. However, a significant limitation in LCMS-based metabolomics is the high-throughput data processing required for robust statistical analysis and data modeling for large numbers of samples with hundreds of unique chemical species. Results To address this problem, we developed Haystack, a web-based tool designed to visualize, parse, filter, and extract significant features from LCMS datasets rapidly and efficiently. Haystack runs in a browser environment with an intuitive graphical user interface that provides both display and data processing options. Total ion chromatograms (TICs) and base peak chromatograms (BPCs) are automatically displayed, along with time-resolved mass spectra and extracted ion chromatograms (EICs) over any mass range. Output files in the common .csv format can be saved for further statistical analysis or customized graphing. Haystack's core function is a flexible binning procedure that converts the mass dimension of the chromatogram into a set of interval variables that can uniquely identify a sample. Binned mass data can be analyzed by exploratory methods such as principal component analysis (PCA) to model class assignment and identify discriminatory features. The validity of this approach is demonstrated by comparison of a dataset from plants grown at two light conditions with manual and automated peak detection methods. Haystack successfully predicted class assignment based on PCA and cluster analysis, and identified discriminatory features based on analysis of EICs of significant bins. Conclusion Haystack, a new online tool for rapid processing and analysis of LCMS-based metabolomics data is described. It offers users a range of data visualization options and supports non-biased differential profiling studies through a unique and flexible binning function that provides an alternative to conventional peak deconvolution analysis methods. PMID:25350247
Haystack, a web-based tool for metabolomics research.
Grace, Stephen C; Embry, Stephen; Luo, Heng
2014-01-01
Liquid chromatography coupled to mass spectrometry (LCMS) has become a widely used technique in metabolomics research for differential profiling, the broad screening of biomolecular constituents across multiple samples to diagnose phenotypic differences and elucidate relevant features. However, a significant limitation in LCMS-based metabolomics is the high-throughput data processing required for robust statistical analysis and data modeling for large numbers of samples with hundreds of unique chemical species. To address this problem, we developed Haystack, a web-based tool designed to visualize, parse, filter, and extract significant features from LCMS datasets rapidly and efficiently. Haystack runs in a browser environment with an intuitive graphical user interface that provides both display and data processing options. Total ion chromatograms (TICs) and base peak chromatograms (BPCs) are automatically displayed, along with time-resolved mass spectra and extracted ion chromatograms (EICs) over any mass range. Output files in the common .csv format can be saved for further statistical analysis or customized graphing. Haystack's core function is a flexible binning procedure that converts the mass dimension of the chromatogram into a set of interval variables that can uniquely identify a sample. Binned mass data can be analyzed by exploratory methods such as principal component analysis (PCA) to model class assignment and identify discriminatory features. The validity of this approach is demonstrated by comparison of a dataset from plants grown at two light conditions with manual and automated peak detection methods. Haystack successfully predicted class assignment based on PCA and cluster analysis, and identified discriminatory features based on analysis of EICs of significant bins. Haystack, a new online tool for rapid processing and analysis of LCMS-based metabolomics data is described. It offers users a range of data visualization options and supports non-biased differential profiling studies through a unique and flexible binning function that provides an alternative to conventional peak deconvolution analysis methods.
NASA Astrophysics Data System (ADS)
Luehmann, April Lynn; Frink, Jeremiah
2009-06-01
Science teachers struggle with meeting curricular goals outlined by professional organizations within the constraints of traditional school. Engaging science learners as a community who collaboratively and creatively co-construct scientific understanding through inquiry requires teachers to adopt new tools as well as a different mindset about the kind of classroom culture they need to nurture. Classroom blogs (i.e., blogs that are managed by a teacher for his/her students to post their work and exchange ideas) have been purported in the literature as offering unique opportunities to achieve this goal, although with little empirical support thus far. To fill this gap, nine classroom blogs were selected through an extensive search, and systematically analyzed to determine how the teachers' instructional designs and classrooms' enactment were able to capitalize on the specific affordances blogging may offer to support reform-based learning goals. The shift in teacher mindset needed to realize blogging affordances occurred as teachers engaged with students in the process of `living' the classroom blog.
Teachers guide for building and operating weather satellite ground stations for high school science
NASA Technical Reports Server (NTRS)
Summers, R. J.; Gotwald, T.
1981-01-01
A number of colleges and universities are operating APT direct readout stations. However, high school science teachers have often failed to realize the potential of meteorological satellites and their products as unique instructional tools. The ability to receive daily pictures from these satellites offers exciting opportunities for secondary school teachers and students to assemble the electronic hardware and to view real time pictures of Earth from outer space. The station and pictures can be used in the classroom to develop an approach to science teaching that could span many scientific disciplines and offer many opportunities for student research and participation in scientific processes. This can be accomplished with relatively small expenditures of funds for equipment. In most schools some of the equipment may already be available. Others can be constructed by teachers and/or students. Yet another source might be the purchase of used equipment from industry or through the government surplus channels. The information necessary for individuals unfamiliar with these systems to construct a direct readout for receiving real time APT photographs on a daily basis in the classroom is presented.
Carr, Gloria F.
2011-01-01
Purpose. Based on a review of the literature, this paper presents a unique and innovative model that offers an empowerment framework, which may be used to develop advocacy in African American (AA) grandmother caregivers. This proposed framework centers on education as a catalyst to the empowerment process in these grandmothers. Application of this model has potential to guide the practice of healthcare providers as they assist these caregivers in managing their own lives. Methodology. Various empowerment definitions and research were used to develop this empowerment framework. Discussion. This framework offers an empowerment education program for AA grandmothers providing care for their grandchildren on topics that they feel are necessary to appropriately care for themselves and their grandchildren. Outcomes of this empowerment education are to develop skills within these grandmothers so that they will be able to advocate for themselves, their grandchildren, and others within their communities. This education will ultimately produce skillful AA grandmothers who will develop abilities to empower themselves and other AA grandmothers who are in similar circumstances. PMID:21994894
Schlehuber, Lisa D; McFadyen, Iain J; Shu, Yu; Carignan, James; Duprex, W Paul; Forsyth, William R; Ho, Jason H; Kitsos, Christine M; Lee, George Y; Levinson, Douglas A; Lucier, Sarah C; Moore, Christopher B; Nguyen, Niem T; Ramos, Josephine; Weinstock, B André; Zhang, Junhong; Monagle, Julie A; Gardner, Colin R; Alvarez, Juan C
2011-07-12
As a result of thermal instability, some live attenuated viral (LAV) vaccines lose substantial potency from the time of manufacture to the point of administration. Developing regions lacking extensive, reliable refrigeration ("cold-chain") infrastructure are particularly vulnerable to vaccine failure, which in turn increases the burden of disease. Development of a robust, infectivity-based high throughput screening process for identifying thermostable vaccine formulations offers significant promise for vaccine development across a wide variety of LAV products. Here we describe a system that incorporates thermal stability screening into formulation design using heat labile measles virus as a prototype. The screening of >11,000 unique formulations resulted in the identification of liquid formulations with marked improvement over those used in commercial monovalent measles vaccines, with <1.0 log loss of activity after incubation for 8h at 40°C. The approach was shown to be transferable to a second unrelated virus, and therefore offers significant promise towards the optimization of formulation for LAV vaccine products. Copyright © 2011 Elsevier Ltd. All rights reserved.
Stretched Lens Array Squarerigger (SLASR) Technology Maturation
NASA Technical Reports Server (NTRS)
O'Neill, Mark; McDanal, A.J.; Howell, Joe; Lollar, Louis; Carrington, Connie; Hoppe, David; Piszczor, Michael; Suszuki, Nantel; Eskenazi, Michael; Aiken, Dan;
2007-01-01
Since April 2005, our team has been underway on a competitively awarded program sponsored by NASA s Exploration Systems Mission Directorate to develop, refine, and mature the unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of performance metrics, SLASR offers an unprecedented portfolio of performance metrics, including the following: Areal Power Density = 300 W/m2 (2005) - 400 W/m2 (2008 Target) Specific Power = 300 W/kg (2005) - 500 W/kg (2008 Target) for a Full 100 kW Solar Array Stowed Power = 80 kW/cu m (2005) - 120 kW/m3 (2008 Target) for a Full 100 kW Solar Array Scalable Array Capacity = 100 s of W s to 100 s of kW s Super-Insulated Small Cell Circuit = High-Voltage (300-600 V) Operation at Low Mass Penalty Super-Shielded Small Cell Circuit = Excellent Radiation Hardness at Low Mass Penalty 85% Cell Area Savings = 75% Lower Array Cost per Watt than One-Sun Array Modular, Scalable, & Mass-Producible at MW s per Year Using Existing Processes and Capacities
Micrometeoroids and debris on LDEF
NASA Technical Reports Server (NTRS)
Mandeville, Jean-Claude
1992-01-01
Part of the LDEF tray allocated to French Experiments (FRECOPA) was devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Two passive experiments were flown: a set of glass and metallic samples; and multilayer thin foil detectors. Crater size distribution made possible the evaluation of the incident microparticle flux in the near environment. Comparisons are made with measurements obtained on the other faces of LDEF and with results from similar experiments on the MIR. Of interest was the study of impact features on stacked thin foil detectors. The top foil acted as a shield, fragmenting the projectiles and spreading the fragments over the surface of the thick plate located underneath. EDS analysis has provided evidence of impactor fragments. Detectors consisting of a thin shield and thick bottom plate appear to offer a significantly higher return of data concerning chemical analysis of impactor residues than single plate detectors. The samples of various materials offer a unique opportunity for the study of the many processes involved upon hypervelocity impact phenomena.
Habitable Worlds: Delivering on the Promises of Online Education.
Horodyskyj, Lev B; Mead, Chris; Belinson, Zack; Buxner, Sanlyn; Semken, Steven; Anbar, Ariel D
2018-01-01
Critical thinking and scientific reasoning are central to higher education in the United States, but many courses (in-person and online) teach students information about science much more than they teach the actual process of science and its associated knowledge and skills. In the online arena specifically, the tools available for course construction exacerbate this problem by making it difficult to build the types of active learning activities that research shows to be the most effective. Here, we present a report on Habitable Worlds, offered by Arizona State University for 12 semesters over the past 6 years. This is a unique online course that uses an array of novel technologies to deliver an active, inquiry-driven learning experience. Learning outcomes and quantitative data from more than 3000 students demonstrate the success of our approach but also identify several remaining challenges. The design and development of this course offers valuable lessons for instructional designers and educators who are interested in fully capitalizing on the capabilities of 21 st -century technology to achieve educational goals. Key Words: Online education-Active learning-SETI-Astrobiology-Teaching. Astrobiology 17, 86-99.
ERIC Educational Resources Information Center
Environmental Science and Technology, 1975
1975-01-01
Michigan State University faculty members plus an impressive roster of noted speakers are the elements of a unique environmental course offered by the chemical engineering department aimed at discussing pollution problems and solutions rationally. (Author/BT)
Enhanced mobility for aging populations using automated vehicles.
DOT National Transportation Integrated Search
2015-12-01
Automated vehicles (AV) offer a unique opportunity to improve the safety and efficiency of the transportation : system and enhance the mobility of aging and transportation disadvantaged populations simultaneously. : However, before this potential can...
Operational Leadership in the Information Age: A New Model
2000-02-08
of operational leadership and offers the individual a tool for development as well as for analyzing unique leadership situation% and thinking about the most appropriate balance of leadership styles and techniques.
New Technologies for the Diagnosis of Sleep Apnea.
Alshaer, Hisham
2016-01-01
Sleep Apnea is a very common condition that has serious cardiovascular sequelae such as hypertension, heart failure, and stroke. Since the advent of modern computers and digital circuits, several streams of new technologies have been introduced to enhance the traditional diagnostic method of polysomnography and offer alternatives that are more accessible, comfortable, and economic. The categories presented in this review include portable polygraphy, mattress-like devices, remote sensing, and acoustic technologies. These innovations are classified as a function of their physical structure and the capabilities of their sensing technologies, due to the importance of these factors in determining the end-user experiences (both patients and medical professionals). Each of those categories offers unique strengths, which then make them particularly suitable for specific applications and end users. To our knowledge, this is a unique approach in presenting and classifying sleep apnea diagnostic innovations.
NASA Astrophysics Data System (ADS)
Rumbaugh, Roy N.; Grealish, Kevin; Kacir, Tom; Arsenault, Barry; Murphy, Robert H.; Miller, Scott
2003-09-01
A new 4th generation MicroIR architecture is introduced as the latest in the highly successful Standard Camera Core (SCC) series by BAE SYSTEMS to offer an infrared imaging engine with greatly reduced size, weight, power, and cost. The advanced SCC500 architecture provides great flexibility in configuration to include multiple resolutions, an industry standard Real Time Operating System (RTOS) for customer specific software application plug-ins, and a highly modular construction for unique physical and interface options. These microbolometer based camera cores offer outstanding and reliable performance over an extended operating temperature range to meet the demanding requirements of real-world environments. A highly integrated lens and shutter is included in the new SCC500 product enabling easy, drop-in camera designs for quick time-to-market product introductions.
Thin-film luminescent concentrators for integrated devices: a cookbook.
Evenson, S A; Rawicz, A H
1995-11-01
A luminescent concentrator (LC) is a nonimaging optical device used for collecting light energy. As a result of its unique properties, a LC also offers the possibility of separating different portions of the spectrum and concentrating them at the same time. Hence, LC's can be applied to a whole range of problems requiring the collection, manipulation, and distribution or measurement of light. Further-more, as described in our previous research, thin-film LC elements can be deposited directly over sensor and processing electronics in the form of integrated LC devices. As an aid to further research, the materials and technology required to fabricate these thin-film LC elements through the use of an ultraviolet-curable photopolymer are documented in detail.
NASA Astrophysics Data System (ADS)
Mohanapriya, S.; Renuka devi, R.; Raj, V.
2018-02-01
Mesoporous Nickel has been prepared by electrodeposition using non-ionic surfactant based liquid crystalline template under optimized processing conditions. Physico-chemical properties of mesoporous nickel is systematically characterized through XRD, SEM and AFM analyses. Comparison of electrocatalytic activity of mesoporous nickel with smooth nickel was interrogated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) analyses. Distinctly enhanced electrocatalytic activity with improved surface poisoning resistance related to mesoporous nickel electrode towards methanol oxidation stems from unique mesoporous morphology. This mesoporous morphology with high surface to volume ratio is highly beneficial to promote active catalytic centers to offer readily accessible Pt catalytic sites for MOR, through facilitating mass and electron transports.
Potential of ordered mesoporous silica for oral delivery of poorly soluble drugs.
Vialpando, Monica; Martens, Johan A; Van den Mooter, Guy
2011-08-01
The use of ordered mesoporous silica is one of the more recent and rapidly developing formulation techniques for enhancing the solubility of poorly water-soluble drugs. Their large surface area and pore volume make ordered mesoporous silica materials excellent candidates for efficient drug loading and rapid release. While this new approach offers many promising advantages, further research is still necessary to elucidate the molecular mechanisms and to improve our scientific insight into the behavior of this system. In this review, the significant developments to date are presented and research challenges highlighted. Aspects of downstream processability are discussed in view of their special bulk powder properties and unique pore architecture. Lastly, perspectives for successful oral dosage form development are presented.
Helping science to succeed: improving processes in R&D.
Sewing, Andreas; Winchester, Toby; Carnell, Pauline; Hampton, David; Keighley, Wilma
2008-03-01
Bringing drugs to the market remains a costly and, until now, often unpredictable challenge. Although understanding the underlying science is key to further progress, our imperfect knowledge of disease and complex biological systems leaves excellence in execution as the most tangible lever to sustain our serendipitous approach to drug discovery. The problems encountered in pharmaceutical R&D are not unique, but to learn from other industries it is important to recognise similarity, rather than differences, and to advance industrialisation of R&D beyond technology and automation. Tools like Lean and Six Sigma, already applied to increase business excellence across diverse organisations, can equally be introduced to pharmaceutical R&D and offer the potential to transform operations without large-scale investment.
Controlling ionotropic and metabotropic glutamate receptors with light: principles and potential.
Reiner, Andreas; Levitz, Joshua; Isacoff, Ehud Y
2015-02-01
Light offers unique advantages for studying and manipulating biomolecules and the cellular processes that they control. Optical control of ionotropic and metabotropic glutamate receptors has garnered significant interest, since these receptors are central to signaling at neuronal synapses and only optical approaches provide the spatial and temporal resolution required to directly probe receptor function in cells and tissue. Following the classical method of glutamate photo-uncaging, recently developed methods have added other forms of remote control, including those with high molecular specificity and genetic targeting. These tools open the door to the direct optical control of synaptic transmission and plasticity, as well as the probing of native receptor function in intact neural circuits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Detecting Structural Failures Via Acoustic Impulse Responses
NASA Technical Reports Server (NTRS)
Bayard, David S.; Joshi, Sanjay S.
1995-01-01
Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.
An intravital microscopy model to study early pancreatic inflammation in type 1 diabetes in NOD mice
Lehmann, Christian; Fisher, Nicholas B.; Tugwell, Barna; Zhou, Juan
2016-01-01
ABSTRACT Intravital microscopy (IVM) of the pancreas has been proven to be an invaluable tool in pancreatitis, transplantation and ischemia/reperfusion research. Also in type 1 diabetes (T1D) pancreatic IVM offers unique advantages for the elucidation of the disease process. Female non-obese diabetic (NOD) mice develop T1D spontaneously by 40 weeks of age. Our goal was to establish an IVM-based method to study early pancreatic inflammation in NOD mice, which can be used to screen novel medications to prevent or delay T1D in future studies. This included evaluation of leukocyte-endothelial interactions as well as disturbances of capillary perfusion in the pancreatic microcirculation. PMID:28243521
Sputtering. [as deposition technique in mechanical engineering
NASA Technical Reports Server (NTRS)
Spalvins, T.
1976-01-01
This paper primarily reviews the potential of using the sputtering process as a deposition technique; however, the manufacturing and sputter etching aspects are also discussed. Since sputtering is not regulated by classical thermodynamics, new multicomponent materials can be developed in any possible chemical composition. The basic mechanism for dc and rf sputtering is described. Sputter-deposition is described in terms of the unique advantageous features it offers such as versatility, momentum transfer, stoichiometry, sputter-etching, target geometry (coating complex surfaces), precise controls, flexibility, ecology, and sputtering rates. Sputtered film characteristics, such as strong adherence and coherence and film morphology, are briefly evaluated in terms of varying the sputtering parameters. Also described are some of the specific industrial areas which are turning to sputter-deposition techniques.
From idea to implementation: creation of an educational picture book for radiation therapy patients.
Osmar, Kari; Webb, Deborah
2015-03-01
Patient education is an integral part of the cancer patient's journey. Radiation therapists strive to provide timely, effective, and evidence-based information on care processes, side effects, and side effect management treatment strategies. Patient satisfaction surveys in health-care settings can guide new interventions and strategies to provide the right education to patients at the right time. Courses offered in adult education and patient education to practicing health-care providers allow for a unique opportunity to look at the current provision of health-care education to patients. This paper explores the development and implementation of a new visual aid for radiation therapy patients in an acute health-care setting with a diversity of languages spoken using principles of adult education.
Reconnaissance Report on San Pedro Ports, California.
1979-01-01
skirt completely around its periphery. More recent in technology than other types of vessels, ACV’s offer high speed at low drag. They offer a unique...concentrated on the present effect of the channel and on the communities through which it runs and on the citizens of those communities . The general...Vehicular traffic contributes significantly to the noise levels within the San Pedro Harbor area, and it is the dominating source within the area
Coparental Affect, Children's Emotion Dysregulation, and Parent and Child Depressive Symptoms.
Thomassin, Kristel; Suveg, Cynthia; Davis, Molly; Lavner, Justin A; Beach, Steven R H
2017-03-01
Children's emotion dysregulation and depressive symptoms are known to be affected by a range of individual (parent, child) and systemic (parent-child, marital, and family) characteristics. The current study builds on this literature by examining the unique role of coparental affect in children's emotion dysregulation, and whether this association mediates the link between parent and child depressive symptoms. Participants were 51 mother-father-child triads with children aged 7 to 12 (M age = 9.24 years). Triads discussed a time when the child felt sad and a time when the child felt happy. Maternal and paternal displays of positive affect were coded, and sequential analyses examined the extent to which parents were congruent in their displays of positive affect during the emotion discussions. Results indicated that interparental positive affect congruity (IPAC) during the sadness discussion, but not the happiness discussion, uniquely predicted parent-reported child emotion dysregulation, above and beyond the contributions of child negative affect and parental punitive reactions. The degree of IPAC during the sadness discussion and child emotion dysregulation mediated the association between maternal, but not paternal, depressive symptoms and child depressive symptoms. Findings highlight the unique role of coparental affect in the socialization of sadness in youth and offer initial support for low levels of IPAC as a risk factor for the transmission of depressive symptoms in youth. © 2015 Family Process Institute.
NASA Technical Reports Server (NTRS)
Nabors, Sammy
2015-01-01
NASA offers companies an optical system that provides a unique panoramic perspective with a single camera. NASA's Marshall Space Flight Center has developed a technology that combines a panoramic refracting optic (PRO) lens with a unique detection system to acquire a true 360-degree field of view. Although current imaging systems can acquire panoramic images, they must use up to five cameras to obtain the full field of view. MSFC's technology obtains its panoramic images from one vantage point.
NASA Astrophysics Data System (ADS)
Kim, D. Y.; Marinelli, R. L.; Heidelberg, K., IV
2014-12-01
Studies have shown that undergraduate participation in research opportunities strengthens the retention of students in STEM fields. Increasing students' confidence levels in their scientific abilities, aiding in the development of their scientific identity, and strengthening their sense of belonging to a scientific community have been cited as important contributing factors. Research field stations offer unique advantages that amplify these benefits by challenging students to plan and work in the field, enhancing networking opportunities with multi-disciplinary professionals from numerous institutions and hierarchical levels, and creating a stronger sense of belonging and comradery within a science community. The USC Wrigley Institute for Environmental Studies' (WIES) Research Experiences for Undergraduates (REU) program is an 8-week program that begins on the main USC campus in Los Angeles and moves to a marine field station on Catalina Island during weeks 2-7, before returning to the mainland to complete the last week of the program. This unique model provides REU students with an opportunity to become integrated into faculty mentors' labs on the main campus, while exposing them to life as a researcher at a field station, both of which contribute significantly to the students' development as a scientist. Here, we present the WIES REU model and include a discussion of benefits and challenges to this unique infrastructure.
Ultrasonic material property determinations
NASA Technical Reports Server (NTRS)
Serabian, S.
1986-01-01
The use and potential offered by ultrasonic velocity and attenuation measurements to determine and/or monitor material properties is explored. The basis for such unique measurements along with examples of materials from a variety of industries are presented.
Hypertension Detection and Results Among Young Adults
ERIC Educational Resources Information Center
Garner, Walton R.; Gerald, Michael C.
1977-01-01
A comprehensive hypertension education and detection program, in which 2,852 students were tested and, if necessary, referred to area physicians, illustrates the unique position a university setting offers for work in this area. (MB)
Tebes, Jacob Kraemer; Thai, Nghi D; Matlin, Samantha L
2014-06-01
In this paper we maintain that twenty-first century science is, fundamentally, a relational process in which knowledge is produced (or co-produced) through transactions among researchers or among researchers and public stakeholders. We offer an expanded perspective on the practice of twenty-first century science, the production of scientific knowledge, and what community psychology can contribute to these developments. We argue that: (1) trends in science show that research is increasingly being conducted in teams; (2) scientific teams, such as transdisciplinary teams of researchers or of researchers collaborating with various public stakeholders, are better able to address complex challenges; (3) transdisciplinary scientific teams are part of the larger, twenty-first century transformation in science; (4) the concept of heterarchy is a heuristic for team science aligned with this transformation; (5) a contemporary philosophy of science known as perspectivism provides an essential foundation to advance twenty-first century science; and (6) community psychology, through its core principles and practice competencies, offers theoretical and practical expertise for advancing team science and the transformation in science currently underway. We discuss the implications of these points and illustrate them briefly with two examples of transdisciplinary team science from our own work. We conclude that a new narrative is emerging for science in the twenty-first century that draws on interpersonal transactions in teams, and active engagement by researchers with the public to address critical accountabilities. Because of its core organizing principles and unique blend of expertise on the intersection of research and practice, community psychologists are well-prepared to help advance these developments, and thus have much to offer twenty-first century science.
Tebes, Jacob Kraemer; Thai, Nghi D.; Matlin, Samantha L.
2014-01-01
In this paper we maintain that 21st century science is, fundamentally, a relational process in which knowledge is produced (or co-produced) through transactions among researchers or among researchers and public stakeholders. We offer an expanded perspective on the practice of 21st century science, the production of scientific knowledge, and what community psychology can contribute to these developments. We argue that: 1) trends in science show that research is increasingly being conducted in teams; 2) scientific teams, such as transdisciplinary teams of researchers or of researchers collaborating with various public stakeholders, are better able to address complex challenges; 3) transdisciplinary scientific teams are part of the larger, 21st century transformation in science; 4) the concept of heterarchy is a heuristic for team science aligned with this transformation; 5) a contemporary philosophy of science known as perspectivism provides an essential foundation to advance 21st century science; and 6) community psychology, through its core principles and practice competencies, offers theoretical and practical expertise for advancing team science and the transformation in science currently underway. We discuss the implications of these points and illustrate them briefly with two examples of transdisciplinary team science from our own work. We conclude that a new narrative is emerging for science in the 21st century that draws on interpersonal transactions in teams, and active engagement by researchers with the public to address critical accountabilities. Because of its core organizing principles and unique blend of expertise on the intersection of research and practice, community psychologists are extraordinarily well-prepared to help advance these developments, and thus have much to offer 21st century science. PMID:24496718
Gestalt isomorphism and the primacy of subjective conscious experience: a Gestalt Bubble model.
Lehar, Steven
2003-08-01
A serious crisis is identified in theories of neurocomputation, marked by a persistent disparity between the phenomenological or experiential account of visual perception and the neurophysiological level of description of the visual system. In particular, conventional concepts of neural processing offer no explanation for the holistic global aspects of perception identified by Gestalt theory. The problem is paradigmatic and can be traced to contemporary concepts of the functional role of the neural cell, known as the Neuron Doctrine. In the absence of an alternative neurophysiologically plausible model, I propose a perceptual modeling approach, to model the percept as experienced subjectively, rather than modeling the objective neurophysiological state of the visual system that supposedly subserves that experience. A Gestalt Bubble model is presented to demonstrate how the elusive Gestalt principles of emergence, reification, and invariance can be expressed in a quantitative model of the subjective experience of visual consciousness. That model in turn reveals a unique computational strategy underlying visual processing, which is unlike any algorithm devised by man, and certainly unlike the atomistic feed-forward model of neurocomputation offered by the Neuron Doctrine paradigm. The perceptual modeling approach reveals the primary function of perception as that of generating a fully spatial virtual-reality replica of the external world in an internal representation. The common objections to this "picture-in-the-head" concept of perceptual representation are shown to be ill founded.
Optimizability of OGC Standards Implementations - a Case Study
NASA Astrophysics Data System (ADS)
Misev, D.; Baumann, P.
2012-04-01
Why do we shop at Amazon? Because they have a unique offering that is nowhere else available? Certainly not. Rather, Amazon offers (i) simple, yet effective search; (ii) very simple payment; (iii) extremely rapid delivery. This is how scientific services will be distinguished in future: not for their data holding (there will be manifold choice), but for their service quality. We are facing the transition from data stewardship to service stewardship. One of the OGC standards which particularly enables flexible retrieval is the Web Coverage Processing Service (WCPS). It defines a high-level query language on large, multi-dimensional raster data, such as 1D timeseries, 2D EO imagery, 3D x/y/t image time series and x/y/z geophysical data, 4D x/y/z/t climate and ocean data. We have implemented WCPS based on an Array Database Management System, rasdaman, which is available in open source. In this demonstration, we study WCPS queries on 2D, 3D, and 4D data sets. Particular emphasis is placed on the computational load queries generate in such on-demand processing and filtering. We look at different techniques and their impact on performance, such as adaptive storage partitioning, query rewriting, and just-in-time compilation. Results show that there is significant potential for effective server-side optimization once a query language is sufficiently high-level and declarative.
Watterson, Andrew; Dinan, William
2018-04-04
Unconventional oil and gas extraction (UOGE) including fracking for shale gas is underway in North America on a large scale, and in Australia and some other countries. It is viewed as a major source of global energy needs by proponents. Critics consider fracking and UOGE an immediate and long-term threat to global, national, and regional public health and climate. Rarely have governments brought together relatively detailed assessments of direct and indirect public health risks associated with fracking and weighed these against potential benefits to inform a national debate on whether to pursue this energy route. The Scottish government has now done so in a wide-ranging consultation underpinned by a variety of reports on unconventional gas extraction including fracking. This paper analyses the Scottish government approach from inception to conclusion, and from procedures to outcomes. The reports commissioned by the Scottish government include a comprehensive review dedicated specifically to public health as well as reports on climate change, economic impacts, transport, geology, and decommissioning. All these reports are relevant to public health, and taken together offer a comprehensive review of existing evidence. The approach is unique globally when compared with UOGE assessments conducted in the USA, Australia, Canada, and England. The review process builds a useful evidence base although it is not without flaws. The process approach, if not the content, offers a framework that may have merits globally.
Patterns of Responding in the Word Associations of West African Children
ERIC Educational Resources Information Center
Sharp, Donald; Cole, Michael
1972-01-01
Studies conducted among the Kpelle of north central Liberia whose present cultural milieu offers unique possibilities for studying the role of particular experiential factors, particularly education, on the development of paradigmatic response. (Authors)
REGIONAL CARDIAC BLOOD FLOW WITH AIR PARTICLE EXPOSURE
This proposal offers the unique application of novel techniques to improve understanding of the mechanisms whereby ambient particulate exerts deleterious influences on the heart and circulation. Enhanced ischemia has broad implications for cardiac morbidity and mor...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
...'') and broker-dealers increased authority and flexibility to offer new and unique market data to..., providing virtually limitless opportunities for entrepreneurs who wish to produce and distribute their own...
Developing a remote practice office.
D'Elia, V L
1987-11-01
Remote practice offices (RPOs) offer unique opportunities for hospitals and physicians to increase market share from targeted areas where previously only limited demand existed. This article discusses the benefits and explores the fundamentals of developing a remote practice office.
EPA's P3 – People, Prosperity, and the Planet—Program is a unique college competition for designing solutions for a sustainable future. P3 offers students quality hands-on experience that brings their classroom learning to life
The Use and Method of Action of Intravenous Lidocaine and Its Metabolite in Headache Disorders.
Berk, Thomas; Silberstein, Stephen D
2018-03-14
Lidocaine, an amide anesthetic, has been used in the treatment of a wide variety of pain disorders for over 75 years. In addition to pain control, lidocaine is an anti-arrhythmic agent and has anti-inflammatory properties. Lidocaine's unique properties, including nonlinear pharmacokinetics, have limited its modern-day use. The purpose of this review is to offer a better understanding of the properties of this unique treatment, which we hope will allow more practitioners to offer this to their patients. An analysis of the history, pharmacokinetics, and relevant uses of lidocaine in headache medicine based on a synthesis of the medical literature and clinical experience. Lidocaine is an amide anesthetic that inhibits voltage gated sodium channels, and lidocaine metabolism occurs exclusively in the liver. One lidocaine metabolite has its own unique properties and may be an active form of the drug. Open label and retrospective studies have investigated the use of lidocaine in many headache disorders, primarily via injection or infusion. Further research into the active metabolite of lidocaine may allow for its use as a novel nonopiate treatment of chronic pain. © 2018 American Headache Society.
Luft, Pamela
2015-01-01
Deaf and hard of hearing (DHH) adolescents and young adults with disabilities (DWD) are a highly diverse group who may also demonstrate a range of functional limitations. These present unique challenges to professional efforts to provide high-quality transition services. Despite these issues, a majority of this population has cognitive abilities within the typical range, and therefore, their transition expectations should be commensurately high in comparison to those of their DHH peers. Research-based transition practices offer a range of interventions, and although none have been validated with DHH or DWD students, several provide important foundational learning opportunities. Yet their implementation will require modifications with programming and expertise beyond what is available in most school districts. Use of a multilevel, ecological framework and person-centered planning offers systematic strategies for increasing access to transition resources and supports to address these unique needs and lead to successful adulthood.
Listing a Geological Rarity of ‘Stone Balls’ in Kysuce Among World Geotourism Destinations
NASA Astrophysics Data System (ADS)
Duraj, Miloš; Niemiec, Dominik; Marschalko, Marian; Yilmaz, Işik
2016-10-01
Kysuce, situated on the border with the Czech Republic and Poland, belongs among distinctive regions in the Slovak Republic. This region offers tourism many interesting sites. Few decades ago, Kysuce offered tourists and visitors well-preserved national architecture, which is nowadays concentrated in an open-air museum Vychylovka. Thanks to the rich afforestation and a sophisticated network of signs for hikers, hiking has been very popular. The ground relief and climatic conditions also encourage winter sports. The world-wide development of geotourism has also concerned this region. Despite a low-varied geological structure, there are unique geological formations that have attracted attention for years. For example, tourists visit the interesting mineralized springs and a remarkable crude oil seep in Korna. Geologically unique are also the occurrences of ‘stone balls’ from sandstone and conglomerates. This phenomenon has attracted attention of both geologists and esotericism supporters.
Power in the hypnotic relationship: therapeutic or abusive?
Walling, D P; Levine, R E
1997-01-01
The unique relationship between hypnotist and subject has been theorized as one explanation for the effectiveness of hypnosis. This relationship carries a power differential, present in most therapeutic relationships, but accentuated by hypnosis. The power differential is sometimes perceived as the ability of the hypnotist to control the subject. Perceptions of hypnosis offered by stage hypnotists, the popular media, and some clinicians perpetuate the notion that the hypnotist has the ability to exert undue influence upon the client. The present article examines the relationship between hypnotist and subject focusing on issues of power and control. The authors examine the unique dynamics accompanying the use of hypnosis and their impact on the therapeutic dyad. Evidence is offered demonstrating the power differential, and how this differential can serve as either a positive or negative agent of change. Therapists should be aware of the dynamics created by using hypnosis. Implications for training therapists in the use of hypnosis are suggested.
Connatser, Raynella M.; Lewis, Sr., Samuel Arthur; Keiser, James R.; ...
2014-10-03
Integrating biofuels with conventional petroleum products requires improvements in processing to increase blendability with existing fuels. This work demonstrates analysis techniques for more hydrophilic bio-oil liquids that give improved quantitative and qualitative description of the total acid content and organic acid profiles. To protect infrastructure from damage and reduce the cost associated with upgrading, accurate determination of acid content and representative chemical compound analysis are central imperatives to assessing both the corrosivity and the progress toward removing oxygen and acidity in processed biomass liquids. Established techniques form an ample basis for bio-liquids evaluation. However, early in the upgrading process, themore » unique physical phases and varied hydrophilicity of many pyrolysis liquids can render analytical methods originally designed for use in petroleum-derived oils inadequate. In this work, the water solubility of the organic acids present in bio-oils is exploited in a novel extraction and titration technique followed by analysis on the water-based capillary electrophoresis (CE) platform. The modification of ASTM D664, the standard for Total Acid Number (TAN), to include aqueous carrier solvents improves the utility of that approach for quantifying acid content in hydrophilic bio-oils. Termed AMTAN (modified Total Acid Number), this technique offers 1.2% relative standard deviation and dynamic range comparable to the conventional ASTM method. Furthermore, the results of corrosion product evaluations using several different sources of real bio-oil are discussed in the context of the unique AMTAN and CE analytical approaches developed to facilitate those measurements.« less
UPMC's blueprint for BuILDing a high-value health care system.
Keyser, Donna; Kogan, Jane; McGowan, Marion; Peele, Pamela; Holder, Diane; Shrank, William
2018-03-30
National-level demonstration projects and real-world studies continue to inform health care transformation efforts and catalyze implementation of value-based service delivery and payment models, though evidence generation and diffusion of learnings often occurs at a relatively slow pace. Rapid-cycle learning models, however, can help individual organizations to more quickly adapt health care innovations to meet the challenges and demands of a rapidly changing health care landscape. Integrated delivery and financing systems (IDFSs) offer a unique platform for rapid-cycle learning and innovation. Since both the provider and payer benefit from delivering care that enhances the patient experience, improves quality, and reduces cost, incentives are aligned to experiment with value-based models, enhance learning about what works and why, and contribute to solutions that can accelerate transformation. In this article, we describe how the UPMC Insurance Services Division, as part of a large IDFS, uses its Business, Innovation, Learning, and Dissemination (BuILD) model to prioritize, design, test, and refine health care innovations and accelerate learning. We provide examples of how the BuILD model offers an approach for quickly assessing the impact and value of health care transformation efforts. Lessons learned through the BuILD process will offer insights and guidance for a wide range of stakeholders whether an IDFS or independent payer-provider collaborators. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Reinitz, Steven D.
Ultra-high molecular weight polyethylene (UHMWPE) remains the most common bearing material for total joint arthroplasty. Advances in radiation cross-linking and other post-consolidation treatments have led to a rapid differentiation of polyethylene products on the market, with more than twenty unique materials currently being sold by the five largest orthopaedic manufacturers alone. Through oxidation, cross-link density, and free radical measurements, this work demonstrates for the first time that in vivo material degradation is occurring in cross-linked UHMWPE materials. Based on the rate of the reaction in certain materials, it is concluded that oxidative degradation may compromise the mechanical properties of the bearings in as few as ten years, potentially leading to early clinical failure of the devices. Using the knowledge gained from this work as well as previously published observations about UHMWPE oxidation, a two-mechanism model of oxidation is proposed that offers an explanation for the observed in vivo changes. From this model it is concluded that oxidative degradation is in part the result of in vivo chemical species. The two-mechanism model of oxidation suggests that different processing techniques for UHMWPE may reduce the risk of oxidative degradation. It is concluded that by avoiding any radiation cross-linking step, Equal Channel Angular Processing (ECAP) can produce UHMWPE materials with a reduced risk for in vivo oxidation while at the same time offering superior mechanical properties compared to commercially available UHMWPE materials, as well as similar wear behavior. Using dynamic mechanical analysis, the entanglement density in ECAP materials is quantified, and is related back to the ECAP processing parameters. The relationship between entanglement density and resultant material properties is established. The results will allow informed processing parameter selection for producing optimized materials for orthopaedics and other applications.
ALH84001: The Key to Unlocking Secrets About Mars-15 Years and Counting
NASA Technical Reports Server (NTRS)
Gibson, Everett K.
2011-01-01
From the December 27, 1984 discovery of ALH84001, and its subsequent identification as a sample of Mars in 1993, mystery and debate has surrounded the meteorite. With the realization that the ALH84001 sample was a orthopyroxenite and one of the oldest SNC meteorites (4.09 Ga) available to study, important and critical information about the Martian hydrosphere and atmosphere along with the early history and evolution of the planet could be obtained by studying the unique carbonate globules (3.9 Ga) in the sample. The initial work showed the carbonate globules were deposited within fractures and cracks in the host-orthopyroxene by low-temperature aqueous fluids. Ideas that the carbonates were formed at temperatures approaching 800oC were ruled out by later experiments. The 1996 announcement by McKay et al. that ALH84001 contained features which could be interpreted as having a biogenic origin generated considerable excitement and criticism. The NASA Administrator Dan Golden said the 1996 ALH84001 announcement saved NASA s Mars planetary exploration program and injected $6 billion dollars over five years into the scientific research and analysis efforts. All of the original four lines of evidence for possible biogenic features within ALH84001 offered by McKay et al. have withstood the test of time. Criticism has been directed at the interpretation of the 1996 analytical data. Research has expanded to other SNC meteorites. Despite the numerous attacks on the ideas, the debate continues after 15 years. The 2009 paper by Thomas-Keprta et al. on the origins of a suite of magnetites within the ALH84001 has offered strong arguments that some of the magnetites can only be formed by biogenic processes and not from thermal decomposition or shock events which happened to the meteorite. NASA s Astrobiology Institute was formed from the foundation laid by the ALH84001 hypothesis of finding life beyond the Earth. The strong astrobiology outreach programs have expanded because of the work done on the Martian meteorites. Despite the criticism on the biogenic-like features in ALH84001, the meteorite has opened a window into the early history of Mars. Clearly low-temperature fluids have left their signatures within the ALH84001 meteorite and subsequent cratering events on Mars have been recorded on observable features within the meteorite. The 15 years of detailed study on ALH84001 and its unique carbonate globules have clearly shown formational and secondary processes at work on Mars. The evidence for biogenic processes operating on early Mars along with ground water activity within the last 15% of the life of Mars offers clear evidence that another niche for life may be possible within our solar system. Now we need a well-documented Mars sample return mission.
MIRIADS: miniature infrared imaging applications development system description and operation
NASA Astrophysics Data System (ADS)
Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.; Couture, Michael E.
2001-10-01
A cooperative effort between the U.S. Air Force Research Laboratory, Nova Research, Inc., the Raytheon Infrared Operations (RIO) and Optics 1, Inc. has successfully produced a miniature infrared camera system that offers significant real-time signal and image processing capabilities by virtue of its modular design. This paper will present an operational overview of the system as well as results from initial testing of the 'Modular Infrared Imaging Applications Development System' (MIRIADS) configured as a missile early-warning detection system. The MIRIADS device can operate virtually any infrared focal plane array (FPA) that currently exists. Programmable on-board logic applies user-defined processing functions to the real-time digital image data for a variety of functions. Daughterboards may be plugged onto the system to expand the digital and analog processing capabilities of the system. A unique full hemispherical infrared fisheye optical system designed and produced by Optics 1, Inc. is utilized by the MIRIADS in a missile warning application to demonstrate the flexibility of the overall system to be applied to a variety of current and future AFRL missions.
Under-sampling in a Multiple-Channel Laser Vibrometry System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corey, Jordan
2007-03-01
Laser vibrometry is a technique used to detect vibrations on objects using the interference of coherent light with itself. Most vibrometry systems process only one target location at a time, but processing multiple locations simultaneously provides improved detection capabilities. Traditional laser vibrometry systems employ oversampling to sample the incoming modulated-light signal, however as the number of channels increases in these systems, certain issues arise such a higher computational cost, excessive heat, increased power requirements, and increased component cost. This thesis describes a novel approach to laser vibrometry that utilizes undersampling to control the undesirable issues associated with over-sampled systems. Undersamplingmore » allows for significantly less samples to represent the modulated-light signals, which offers several advantages in the overall system design. These advantages include an improvement in thermal efficiency, lower processing requirements, and a higher immunity to the relative intensity noise inherent in laser vibrometry applications. A unique feature of this implementation is the use of a parallel architecture to increase the overall system throughput. This parallelism is realized using a hierarchical multi-channel architecture based on off-the-shelf programmable logic devices (PLDs).« less
Ti film deposition process of a plasma focus: Study by an experimental design
NASA Astrophysics Data System (ADS)
Inestrosa-Izurieta, M. J.; Moreno, J.; Davis, S.; Soto, L.
2017-10-01
The plasma generated by plasma focus (PF) devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i) an electric erosion of the outer material of the anode; ii) substrate ablation generating an interlayer; iii) electron beam deposition of material from the center of the anode; iv) heat load provoking clustering or even melting of the deposition surface.
The Accounting Capstone Problem
ERIC Educational Resources Information Center
Elrod, Henry; Norris, J. T.
2012-01-01
Capstone courses in accounting programs bring students experiences integrating across the curriculum (University of Washington, 2005) and offer unique (Sanyal, 2003) and transformative experiences (Sill, Harward, & Cooper, 2009). Students take many accounting courses without preparing complete sets of financial statements. Accountants not only…
Commuter choice managers and parking managers coordination
DOT National Transportation Integrated Search
2002-11-01
Shared use park and ride represents a unique approach for addressing parking problems, and can offer substantial savings in land and development costs. One of the fundamental factors that determines the success of this approach is the level of coordi...
ERIC Educational Resources Information Center
Waldron, Larry W.
1990-01-01
Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)
Denali National Park: bus shuttle system analysis
DOT National Transportation Integrated Search
2013-09-01
This is the first in a series of briefs exploring best practices in the various ways to provide transit service in national parks. While Denali operates in a unique environment, the Visitor Transportation Service experience offers many lessons relate...
Integration of multiple research disciplines on the International Space Station
NASA Technical Reports Server (NTRS)
Penley, N. J.; Uri, J.; Sivils, T.; Bartoe, J. D.
2000-01-01
The International Space Station will provide an extremely high-quality, long-duration microgravity environment for the conduct of research. In addition, the ISS offers a platform for performing observations of Earth and Space from a high-inclination orbit, outside of the Earth's atmosphere. This unique environment and observational capability offers the opportunity for advancement in a diverse set of research fields. Many of these disciplines do not relate to one another, and present widely differing approaches to study, as well as different resource and operational requirements. Significant challenges exist to ensure the highest quality research return for each investigation. Requirements from different investigations must be identified, clarified, integrated and communicated to ISS personnel in a consistent manner. Resources such as power, crew time, etc. must be apportioned to allow the conduct of each investigation. Decisions affecting research must be made at the strategic level as well as at a very detailed execution level. The timing of the decisions can range from years before an investigation to real-time operations. The international nature of the Space Station program adds to the complexity. Each participating country must be assured that their interests are represented during the entire planning and operations process. A process for making decisions regarding research planning, operations, and real-time replanning is discussed. This process ensures adequate representation of all research investigators. It provides a means for timely decisions, and it includes a means to ensure that all ISS International Partners have their programmatic interests represented. c 2000 Published by Elsevier Science Ltd. All rights reserved.
Thompson, Rachel T.; Meslin, Eric M.; Braitstein, Paula K. A.; Nyandiko, Winstone M.; Ayaya, Samuel O.; Vreeman, Rachel C.
2013-01-01
Orphans are a subpopulation with a unique set of additional vulnerabilities. Increasing focus on children’s rights, pediatric global health, and pediatric research makes it imperative to recognize and address unique vulnerabilities of orphaned children. This paper describes the unique vulnerabilities of the orphaned pediatric population and offers a structured set of factors that require consideration when including orphans in biomedical research. Pediatric orphans are particularly vulnerable due to decreased economic resources, psychosocial instability, increased risk of abuse, and delayed/decreased access to healthcare. These vulnerabilities are significant. By carefully considering each issue in a population in a culturally specific and study-specific manner, researchers can make valuable contributions to the overall health and well-being of this uniquely vulnerable population. PMID:23086048
New Amniotic Membrane Based Biocomposite for Future Application in Reconstructive Urology
Tworkiewicz, Jakub; Kowalczyk, Tomasz; van Breda, Shane V.; Tyloch, Dominik; Kloskowski, Tomasz; Bodnar, Magda; Skopinska-Wisniewska, Joanna; Marszałek, Andrzej; Frontczak-Baniewicz, Malgorzata; Kowalewski, Tomasz A.; Drewa, Tomasz
2016-01-01
Objective Due to the capacity of the amniotic membrane (Am) to support re-epithelisation and inhibit scar formation, Am has a potential to become a considerable asset for reconstructive urology i.e., reconstruction of ureters and urethrae. The application of Am in reconstructive urology is limited due to a poor mechanical characteristic. Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance, without affecting its unique bioactivity profile. This study evaluated biocomposite material composed of Am and nanofibers as a graft for urinary bladder augmentation in a rat model. Material and Methods Sandwich-structured biocomposite material was constructed from frozen Am and covered on both sides with two-layered membranes prepared from electrospun poly-(L-lactide-co-E-caprolactone) (PLCL). Wistar rats underwent hemicystectomy and bladder augmentation with the biocomposite material. Results Immunohistohemical analysis (hematoxylin and eosin [H&E], anti-smoothelin and Masson’s trichrome staining [TRI]) revealed effective regeneration of the urothelial and smooth muscle layers. Anti-smoothelin staining confirmed the presence of contractile smooth muscle within a new bladder wall. Sandwich-structured biocomposite graft material was designed to regenerate the urinary bladder wall, fulfilling the requirements for normal bladder tension, contraction, elasticity and compliance. Mechanical evaluation of regenerated bladder wall conducted based on Young’s elastic modulus reflected changes in the histological remodeling of the augmented part of the bladder. The structure of the biocomposite material made it possible to deliver an intact Am to the area for regeneration. An unmodified Am surface supported regeneration of the urinary bladder wall and the PLCL membranes did not disturb the regeneration process. Conclusions Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance without affecting its unique bioactivity profile. PMID:26766636
CCMC: bringing space weather awareness to the next generation
NASA Astrophysics Data System (ADS)
Chulaki, A.; Muglach, K.; Zheng, Y.; Mays, M. L.; Kuznetsova, M. M.; Taktakishvili, A.; Collado-Vega, Y. M.; Rastaetter, L.; Mendoza, A. M. M.; Thompson, B. J.; Pulkkinen, A. A.; Pembroke, A. D.
2017-12-01
Making space weather an element of core education is critical for the future of the young field of space weather. Community Coordinated Modeling Center (CCMC) is an interagency partnership established to aid the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable our small group to serve as a hub for rising generations of young space scientists and engineers. CCMC offers a variety of educational tools and resources publicly available online and providing access to the largest collection of modern space science models developed by the international research community. CCMC has revolutionized the way these simulations are utilized in classrooms settings, student projects, and scientific labs. Every year, this online system serves hundreds of students, educators and researchers worldwide. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unique capabilities and experiences, the team also provides in-depth space weather training to hundreds of students and professionals. One training module offers undergraduates an opportunity to actively engage in real-time space weather monitoring, analysis, forecasting, tools development and research, eventually serving remotely as NASA space weather forecasters. In yet another project, CCMC is collaborating with Hayden Planetarium and Linkoping University on creating a visualization platform for planetariums (and classrooms) to provide simulations of dynamic processes in the large domain stretching from the solar corona to the Earth's upper atmosphere, for near real-time and historical space weather events.
Col-OSSOS: Colors of the Interstellar Planetesimal 1I/‘Oumuamua
NASA Astrophysics Data System (ADS)
Bannister, Michele T.; Schwamb, Megan E.; Fraser, Wesley C.; Marsset, Michael; Fitzsimmons, Alan; Benecchi, Susan D.; Lacerda, Pedro; Pike, Rosemary E.; Kavelaars, J. J.; Smith, Adam B.; Stewart, Sunny O.; Wang, Shiang-Yu; Lehner, Matthew J.
2017-12-01
The recent discovery by Pan-STARRS1 of 1I/2017 U1 (‘Oumuamua), on an unbound and hyperbolic orbit, offers a rare opportunity to explore the planetary formation processes of other stars and the effect of the interstellar environment on a planetesimal surface. 1I/‘Oumuamua’s close encounter with the inner solar system in 2017 October was a unique chance to make observations matching those used to characterize the small-body populations of our own solar system. We present near-simultaneous g‧, r‧, and J photometry and colors of 1I/‘Oumuamua from the 8.1 m Frederick C. Gillett Gemini-North Telescope and gri photometry from the 4.2 m William Herschel Telescope. Our g‧r‧J observations are directly comparable to those from the high-precision Colours of the Outer Solar System Origins Survey (Col-OSSOS), which offer unique diagnostic information for distinguishing between outer solar system surfaces. The J-band data also provide the highest signal-to-noise measurements made of 1I/‘Oumuamua in the near-infrared. Substantial, correlated near-infrared and optical variability is present, with the same trend in both near-infrared and optical. Our observations are consistent with 1I/‘Oumuamua rotating with a double-peaked period of 8.10 ± 0.42 hr and being a highly elongated body with an axial ratio of at least 5.3:1, implying that it has significant internal cohesion. The color of the first interstellar planetesimal is at the neutral end of the range of solar system g ‑ r and r ‑ J solar-reflectance colors: it is like that of some dynamically excited objects in the Kuiper Belt and the less-red Jupiter Trojans.
2012-03-07
technology, that being the instructor-graded versus computer-graded activities. In essence, the study came to be about how diverse student bodies reacted...terms of student body and academic offerings, Metropolitan State College of Denver (Metro State) is a unique institution in Colorado and the United...slate of baccalaureate degree offerings. Metro State’s student body of over 24,000 is an exemplar of diversity. The institution admits students via a
2018-01-01
Background Structural and functional brain images are essential imaging modalities for medical experts to study brain anatomy. These images are typically visually inspected by experts. To analyze images without any bias, they must be first converted to numeric values. Many software packages are available to process the images, but they are complex and difficult to use. The software packages are also hardware intensive. The results obtained after processing vary depending on the native operating system used and its associated software libraries; data processed in one system cannot typically be combined with data on another system. Objective The aim of this study was to fulfill the neuroimaging community’s need for a common platform to store, process, explore, and visualize their neuroimaging data and results using Neuroimaging Web Services Interface: a series of processing pipelines designed as a cyber physical system for neuroimaging and clinical data in brain research. Methods Neuroimaging Web Services Interface accepts magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and functional magnetic resonance imaging. These images are processed using existing and custom software packages. The output is then stored as image files, tabulated files, and MySQL tables. The system, made up of a series of interconnected servers, is password-protected and is securely accessible through a Web interface and allows (1) visualization of results and (2) downloading of tabulated data. Results All results were obtained using our processing servers in order to maintain data validity and consistency. The design is responsive and scalable. The processing pipeline started from a FreeSurfer reconstruction of Structural magnetic resonance imaging images. The FreeSurfer and regional standardized uptake value ratio calculations were validated using Alzheimer’s Disease Neuroimaging Initiative input images, and the results were posted at the Laboratory of Neuro Imaging data archive. Notable leading researchers in the field of Alzheimer’s Disease and epilepsy have used the interface to access and process the data and visualize the results. Tabulated results with unique visualization mechanisms help guide more informed diagnosis and expert rating, providing a truly unique multimodal imaging platform that combines magnetic resonance imaging, positron emission tomography, diffusion tensor imaging, and resting state functional magnetic resonance imaging. A quality control component was reinforced through expert visual rating involving at least 2 experts. Conclusions To our knowledge, there is no validated Web-based system offering all the services that Neuroimaging Web Services Interface offers. The intent of Neuroimaging Web Services Interface is to create a tool for clinicians and researchers with keen interest on multimodal neuroimaging. More importantly, Neuroimaging Web Services Interface significantly augments the Alzheimer’s Disease Neuroimaging Initiative data, especially since our data contain a large cohort of Hispanic normal controls and Alzheimer’s Disease patients. The obtained results could be scrutinized visually or through the tabulated forms, informing researchers on subtle changes that characterize the different stages of the disease. PMID:29699962
Sun, Zhuohua; Barta, Katalin
2018-06-21
The structural complexity of lignocellulose offers unique opportunities for the development of entirely new, energy efficient and waste-free pathways in order to obtain valuable bio-based building blocks. Such sustainable catalytic methods - specifically tailored to address the efficient conversion of abundant renewable starting materials - are necessary to successfully compete, in the future, with fossil-based multi-step processes. In this contribution we give a summary of recent developments in this field and describe our "cleave and couple" strategy, where "cleave" refers to the catalytic deconstruction of lignocellulose to aromatic and aliphatic alcohol intermediates, and "couple" involves the development of novel, sustainable transformations for the formation of C-C and C-N bonds in order to obtain a range of attractive products from lignocellulose.
Size-dependent chemical transformation, structural phase-change, and optical properties of nanowires
Piccione, Brian; Agarwal, Rahul; Jung, Yeonwoong; Agarwal, Ritesh
2013-01-01
Nanowires offer a unique approach for the bottom up assembly of electronic and photonic devices with the potential of integrating photonics with existing technologies. The anisotropic geometry and mesoscopic length scales of nanowires also make them very interesting systems to study a variety of size-dependent phenomenon where finite size effects become important. We will discuss the intriguing size-dependent properties of nanowire systems with diameters in the 5 – 300 nm range, where finite size and interfacial phenomena become more important than quantum mechanical effects. The ability to synthesize and manipulate nanostructures by chemical methods allows tremendous versatility in creating new systems with well controlled geometries, dimensions and functionality, which can then be used for understanding novel processes in finite-sized systems and devices. PMID:23997656
The indissociable unity of psyche and soma: a view from the Paris Psychosomatic School.
Aisenstein, Marilia
2006-06-01
Depending on whether or not psyche/soma is seen as singular or dual, one may construct different systems explaining man and the world, life and death. In the author's view, the discoveries of psychoanalysis offer a perfectly cogent and unique solution to the famous mind/body problem. In transferring the duality psyche/soma on to the duality of drives, psychoanalysis places the origin of the thought process in the body. In Beyond the pleasure principle, Freud discusses the drastic effect of a painful somatic illness on the distribution and modalities of the libido. He provides a starting point for the Paris Psychosomatic School's psychoanalytical approach to patients afflicted with somatic illnesses. To illustrate the technical implications of this theory the author relates two clinical cases.
Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe
NASA Astrophysics Data System (ADS)
Cote, Benoit; JINA-CEE, NuGrid, ChETEC
2018-06-01
Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.
MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors.
Li, Guo-Chang; Liu, Peng-Fei; Liu, Rui; Liu, Minmin; Tao, Kai; Zhu, Shuai-Ru; Wu, Meng-Ke; Yi, Fei-Yan; Han, Lei
2016-09-14
Nanorods-composed yolk-shell bimetallic-organic frameworks microspheres are successfully synthesized by a one-step solvothermal method in the absence of any template or surfactant. Furthermore, hierarchical double-shelled NiO/ZnO hollow spheres are obtained by calcination of the bimetallic organic frameworks in air. The NiO/ZnO hollow spheres, as supercapacitor electrodes, exhibit high capacitance of 497 F g(-1) at the current density of 1.3 A g(-1) and present a superior cycling stability. The superior electrochemical performance is believed to come from the unique double-shelled NiO/ZnO hollow structures, which offer free space to accommodate the volume change during the ion insertion and desertion processes, as well as provide rich electroactive sites for the electrochemical reactions.
Guitars, Keyboards, Strobes, and Motors -- From Vibrational Motion to Active Research
NASA Astrophysics Data System (ADS)
Tagg, Randall; Carlson, John; Asadi-Zeydabadi, Masoud; Busley, Brad; Law-Balding, Katie; Juengel, Mattea
2013-01-01
Physics First is offered to ninth graders at high schools in Aurora, CO. A unique new asset of this school system is an embedded research lab called the "Innovation Hyperlab." The goal of the lab is to connect secondary school teaching to ongoing university scientific research, supporting the school district's aim to create opportunities to integrate P-20 (preschool to graduate school) learning. This paper is an example of how we create research connections in the context of introductory physics lessons on vibrations and waves. Key to the process is the use of several different types of technical resources, hence the name "hyperlab." Students learn many practical experimental techniques, reinforcing their knowledge of fundamentals and preparing them to work effectively on open-ended research or engineering projects.
Biological adaptive control model: a mechanical analogue of multi-factorial bone density adaptation.
Davidson, Peter L; Milburn, Peter D; Wilson, Barry D
2004-03-21
The mechanism of how bone adapts to every day demands needs to be better understood to gain insight into situations in which the musculoskeletal system is perturbed. This paper offers a novel multi-factorial mathematical model of bone density adaptation which combines previous single-factor models in a single adaptation system as a means of gaining this insight. Unique aspects of the model include provision for interaction between factors and an estimation of the relative contribution of each factor. This interacting system is considered analogous to a Newtonian mechanical system and the governing response equation is derived as a linear version of the adaptation process. The transient solution to sudden environmental change is found to be exponential or oscillatory depending on the balance between cellular activation and deactivation frequencies.
Standardized patient feedback: making it work across disciplines.
Dayer Berenson, Linda; Goodill, Sharon W; Wenger, Sarah
2012-01-01
In health professions education, feedback can be defined as the sharing of information about a student's performance. The most valuable learning occurs when students receive detailed feedback delivered in a way they can utilize it. In clinical simulations, feedback from a standardized patient (SP) offers a unique perspective. This article presents some of the underlying theory and research on feedback delivery with a particular emphasis on the role of non-verbal communication. We explore what feedback students need from SPs, how to provide feedback effectively as well as common challenges to the process. The authors, working from different health care disciplines, collaborated to develop a training workshop for the college's SPs designed to ensure a consistent approach to SP feedback delivery. We describe this workshop and its outcomes.
An organoboron compound with a wide absorption spectrum for solar cell applications.
Liu, Fangbin; Ding, Zicheng; Liu, Jun; Wang, Lixiang
2017-11-09
Organoboron compounds offer new approaches to tune the electronic structures of π-conjugated molecules. In this work, an electron acceptor (M-BNBP4P-1) is developed by endcapping an organoboron core unit with two strong electron-withdrawing groups. M-BNBP4P-1 exhibits a unique wide absorption spectrum with two strong absorption bands in the long wavelength region (λ max = 771 nm) and the short wavelength region (λ max = 502 nm), which indicate superior sunlight harvesting capability. This is due to its special electronic structure, i.e. a delocalized LUMO and a localized HOMO. Prototype solution-processed organic solar cells based on M-BNBP4P-1 show a power conversion efficiency of 7.06% and a wide photoresponse from 350 nm to 880 nm.
Ethical issues in nanomedicine: Tempest in a teapot?
Allon, Irit; Ben-Yehudah, Ahmi; Dekel, Raz; Solbakk, Jan-Helge; Weltring, Klaus-Michael; Siegal, Gil
2017-03-01
Nanomedicine offers remarkable options for new therapeutic avenues. As methods in nanomedicine advance, ethical questions conjunctly arise. Nanomedicine is an exceptional niche in several aspects as it reflects risks and uncertainties not encountered in other areas of medical research or practice. Nanomedicine partially overlaps, partially interlocks and partially exceeds other medical disciplines. Some interpreters agree that advances in nanotechnology may pose varied ethical challenges, whilst others argue that these challenges are not new and that nanotechnology basically echoes recurrent bioethical dilemmas. The purpose of this article is to discuss some of the ethical issues related to nanomedicine and to reflect on the question whether nanomedicine generates ethical challenges of new and unique nature. Such a determination should have implications on regulatory processes and professional conducts and protocols in the future.
Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology.
Im, Hyungsoon; Wittenberg, Nathan J; Lindquist, Nathan C; Oh, Sang-Hyun
2012-02-28
While atomic layer deposition (ALD) has been used for many years as an industrial manufacturing method for microprocessors and displays, this versatile technique is finding increased use in the emerging fields of plasmonics and nanobiotechnology. In particular, ALD coatings can modify metallic surfaces to tune their optical and plasmonic properties, to protect them against unwanted oxidation and contamination, or to create biocompatible surfaces. Furthermore, ALD is unique among thin-film deposition techniques in its ability to meet the processing demands for engineering nanoplasmonic devices, offering conformal deposition of dense and ultra-thin films on high-aspect-ratio nanostructures at temperatures below 100 °C. In this review, we present key features of ALD and describe how it could benefit future applications in plasmonics, nanosciences, and biotechnology.
Rajagopal, Adharsh; Yao, Kai; Jen, Alex K-Y
2018-06-08
High-efficiency and low-cost perovskite solar cells (PVKSCs) are an ideal candidate for addressing the scalability challenge of solar-based renewable energy. The dynamically evolving research field of PVKSCs has made immense progress in solving inherent challenges and capitalizing on their unique structure-property-processing-performance traits. This review offers a unique outlook on the paths toward commercialization of PVKSCs from the interfacial engineering perspective, relevant to both specialists and nonspecialists in the field through a brief introduction of the background of the field, current state-of-the-art evolution, and future research prospects. The multifaceted role of interfaces in facilitating PVKSC development is explained. Beneficial impacts of diverse charge-transporting materials and interfacial modifications are summarized. In addition, the role of interfaces in improving efficiency and stability for all emerging areas of PVKSC design are also evaluated. The authors' integral contributions in this area are highlighted on all fronts. Finally, future research opportunities for interfacial material development and applications along with scalability-durability-sustainability considerations pivotal for facilitating laboratory to industry translation are presented. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Guildford, Beth J; Jacobs, Clair M; Daly-Eichenhardt, Aisling; Scott, Whitney; McCracken, Lance M
2016-01-01
Physical functioning is a recommended outcome domain for pain management programmes. It can be assessed by self-report and by direct assessment of performance. Although physical performance measures may provide unique and useful information about patient functioning over and above self-report measures, it is not entirely clear which of the many possible performances to assess. This study investigated a battery of three directly assessed physical performance measures and their relationship to three currently used self-report measures of general health and functioning. The three performance measures were sensitive to treatment; patients performed significantly better on all three measures following completion of the pain management programme. The three performance measures were shown to represent a single underlying dimension, and there was a significant degree of overlap between them. The performance measures were shown to be relevant in explaining variation in the self-report measures, as well as to offer a clinically relevant different dimension of assessment to self-report. Future research could focus on developing performance-based measures that capture quality of movement and that are sensitive to relevant processes of therapeutic change. PMID:28386404
Keatley, David; Clarke, David D; Hagger, Martin S
2013-09-01
Research into the effects of individuals'autonomous motivation on behaviour has traditionally adopted explicit measures and self-reported outcome assessment. Recently, there has been increased interest in the effects of implicit motivational processes underlying behaviour from a self-determination theory (SDT) perspective. The aim of the present research was to provide support for the predictive validity of an implicit measure of autonomous motivation on behavioural persistence on two objectively measurable tasks. SDT and a dual-systems model were adopted as frameworks to explain the unique effects offered by explicit and implicit autonomous motivational constructs on behavioural persistence. In both studies, implicit autonomous motivation significantly predicted unique variance in time spent on each task. Several explicit measures of autonomous motivation also significantly predicted persistence. Results provide support for the proposed model and the inclusion of implicit measures in research on motivated behaviour. In addition, implicit measures of autonomous motivation appear to be better suited to explaining variance in behaviours that are more spontaneous or unplanned. Future implications for research examining implicit motivation from dual-systems models and SDT approaches are outlined. © 2012 The British Psychological Society.
Lin, Szu-Han Joanna; Johnson, Russell E
2015-09-01
One way that employees contribute to organizational effectiveness is by expressing voice. They may offer suggestions for how to improve the organization (promotive voice behavior), or express concerns to prevent harmful events from occurring (prohibitive voice behavior). Although promotive and prohibitive voices are thought to be distinct types of behavior, very little is known about their unique antecedents and consequences. In this study we draw on regulatory focus and ego depletion theories to derive a theoretical model that outlines a dynamic process of the antecedents and consequences of voice behavior. Results from 2 multiwave field studies revealed that promotion and prevention foci have unique ties to promotive and prohibitive voice, respectively. Promotive and prohibitive voice, in turn, were associated with decreases and increases, respectively, in depletion. Consistent with the dynamic nature of self-control, depletion was associated with reductions in employees' subsequent voice behavior, regardless of the type of voice (promotive or prohibitive). Results were consistent across 2 studies and remained even after controlling for other established antecedents of voice and alternative mediating mechanisms beside depletion. (c) 2015 APA, all rights reserved).
Yu, Yanbao; Leng, Taohua; Yun, Dong; Liu, Na; Yao, Jun; Dai, Ying; Yang, Pengyuan; Chen, Xian
2013-01-01
Emerging evidences indicate that blood platelets function in multiple biological processes including immune response, bone metastasis and liver regeneration in addition to their known roles in hemostasis and thrombosis. Global elucidation of platelet proteome will provide the molecular base of these platelet functions. Here, we set up a high throughput platform for maximum exploration of the rat/human platelet proteome using integrated proteomics technologies, and then applied to identify the largest number of the proteins expressed in both rat and human platelets. After stringent statistical filtration, a total of 837 unique proteins matched with at least two unique peptides were precisely identified, making it the first comprehensive protein database so far for rat platelets. Meanwhile, quantitative analyses of the thrombin-stimulated platelets offered great insights into the biological functions of platelet proteins and therefore confirmed our global profiling data. A comparative proteomic analysis between rat and human platelets was also conducted, which revealed not only a significant similarity, but also an across-species evolutionary link that the orthologous proteins representing ‘core proteome’, and the ‘evolutionary proteome’ is actually a relatively static proteome. PMID:20443191
2007-01-01
In this Evaluation, we examine whether the Steris Reliance EPS--a flexible endoscope reprocessing system that was recently introduced to the U.S. market--offers meaningful advantages over "traditional" automated endoscope reprocessors (AERs). Most AERs on the market function similarly to one another. The Reliance EPS, however, includes some unique features that distinguish it from other AERs. For example, it incorporates a "boot" technology for loading the endoscopes into the unit without requiring a lot of endoscope-specific connectors, and it dispenses the germicide used to disinfect the endoscopes from a single-use container. This Evaluation looks at whether the unique features of this model make it a better choice than traditional AERs for reprocessing flexible endoscopes. Our study focuses on whether the Reliance EPS is any more likely to be used correctly-thereby reducing the likelihood that an endoscope will be reprocessed inadequately-and whether the unit possesses any design flaws that could lead to reprocessing failures. We detail the unit's advantages and disadvantages compared with other AERs, and we describe what current users have to say. Our conclusions will help facilities determine whether to select the Reliance EPS.
Lankau, Emily W.; Cruz Bedon, Lenin; Mackie, Roderick I.
2012-01-01
It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome. PMID:22615968
Electroproduction of the neutral pion off 4He
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torayev, Bayram
Deeply virtual exclusive processes offer a unique opportunity to study the internal structure of the nucleon and nuclei. The goal of this work is to extract the beam-spin asymmetry in deeply virtual coherent neutral pion electroproduction, e^4He to e'^4He'pi^0, using the CLAS detector in the experimental Hall B at Thomas Jefferson National Accelerator Facility. The data were collected in 2009 with a 6 GeV longitudinally polarized electron beam impinging on a 30 cm long, 6 atm Helium-4 gaseous target. In order to ensure that the process is coherent, a new Radial Time Projection Chamber was used to detect and identifymore » low energy recoil a-particles. The Beam Spin Asymmetry in the coherent deep exclusive regime was measured at Q^2 = 1.50 GeV^2, xB = 0.18 and -t = 0.14 GeV^2. The measured asymmetry has an amplitude of 10%+/-5% and has the opposite sign compared the asymmetry measured for pi^0 production on the proton.« less
Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul
2016-01-01
The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388
McDaniel, Hunter; Fuke, Nobuhiro; Makarov, Nikolay S.; Pietryga, Jeffrey M.; Klimov, Victor I.
2013-01-01
Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2−x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2−x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime. PMID:24322379
Quantitative subsurface analysis using frequency modulated thermal wave imaging
NASA Astrophysics Data System (ADS)
Subhani, S. K.; Suresh, B.; Ghali, V. S.
2018-01-01
Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.
Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.
Gutmann, Bernhard; Cantillo, David; Kappe, C Oliver
2015-06-01
In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bassett, Danielle S.; Mattar, Marcelo G.
2017-01-01
Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior. PMID:28259554
Bassett, Danielle S; Mattar, Marcelo G
2017-04-01
Humans adapt their behavior to their external environment in a process often facilitated by learning. Efforts to describe learning empirically can be complemented by quantitative theories that map changes in neurophysiology to changes in behavior. In this review we highlight recent advances in network science that offer a sets of tools and a general perspective that may be particularly useful in understanding types of learning that are supported by distributed neural circuits. We describe recent applications of these tools to neuroimaging data that provide unique insights into adaptive neural processes, the attainment of knowledge, and the acquisition of new skills, forming a network neuroscience of human learning. While promising, the tools have yet to be linked to the well-formulated models of behavior that are commonly utilized in cognitive psychology. We argue that continued progress will require the explicit marriage of network approaches to neuroimaging data and quantitative models of behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Human Trafficking Identification and Service Provision in the Medical and Social Service Sectors.
Schwarz, Corinne; Unruh, Erik; Cronin, Katie; Evans-Simpson, Sarah; Britton, Hannah; Ramaswamy, Megha
2016-06-01
The medical sector presents a unique opportunity for identification and service to victims of human trafficking. In this article, we describe local and site-specific efforts to develop an intervention tool to be used in an urban hospital's emergency department in the midwestern United States. In the development of our tool, we focused on both identification and intervention to assist trafficked persons, through a largely collaborative process in which we engaged local stakeholders for developing site-specific points of intervention. In the process of developing our intervention, we highlight the importance of using existing resources and services in a specific community to address critical gaps in coverage for trafficked persons. For example, we focus on those who are victims of labor trafficking, in addition to those who are victims of sex trafficking. We offer a framework informed by rights-based approaches to anti-trafficking efforts that addresses the practical challenges of human trafficking victim identification while simultaneously working to provide resources and disseminate services to those victims.
NASA Astrophysics Data System (ADS)
Langevin, Dominique; Saint-Jalmes, Arnaud; Marze, Sébastien; Cox, Simon; Hutzler, Stefan; Drenckhan, Wiebke; Weaire, Denis; Caps, Hervé; Vandewalle, Nicolas; Adler, Micheàle; Pitois, Olivier; Rouyer, Florence; Cohen-Addad, Sylvie; Höhler, Reinhard; Ritacco, Hernan
2005-10-01
Foams and foaming pose important questions and problems to the chemical industry. As a material, foam is unusual in being a desired product while also being an unwanted byproduct within industry. Liquid foams are an essential part of gas/liquid contacting processes such as distillation and absorption, but over-production of foam in these processes can lead to downtime and loss of efficiency. Solid polymeric foams, such as polystyrene and polyurethane, find applications as insulation panels in the construction industry. Their combination of low weight and unique elastic/plastic properties make them ideal as packing and cushioning materials. Foams made with proteins are extensively used in the food industry. Despite the fact that foam science is a rapidly maturing field, critical aspects of foam physics and chemistry remain unclear. Several gaps in knowledge were identified to be tackled as the core of this MAP project. In addition, microgravity affords conditions for extending our understanding far beyond the possibilities offered by ground-based investigation. This MAP project addresses the challenges posed by the physics of foams under microgravity.
Transfusion safety: is this the business of blood centers?
Slapak, Colleen; Fredrich, Nanci; Wagner, Jeffrey
2011-12-01
ATSO is in a unique position to break down organizational silos between hospitals and blood centers through the development of a collaborative relationship between the two entities. Use of the TSO as blood center staff centralizes the role into a consultative position thereby retaining the independence of the hospitals. The TSO position then becomes a value-added service offered by the blood center designed to supplement processes within the hospital.Whether the TSO is based in the hospital or the blood center, improvements are gained through appropriate utilization of blood components, reductions in hospital costs, ongoing education of hospital staff involved in transfusion practice, and increased availability of blood products within the community. Implementation and standardization of best practice processes for ordering and administration of blood products developed by TSOs leads to improved patient outcomes. As a liaison between hospitals and blood centers, the TSO integrates the mutual goal of transfusion safety: the provision of the safest blood product to the right patient at the right time for the right reason.
Brain connectivity reflects human aesthetic responses to music.
Sachs, Matthew E; Ellis, Robert J; Schlaug, Gottfried; Loui, Psyche
2016-06-01
Humans uniquely appreciate aesthetics, experiencing pleasurable responses to complex stimuli that confer no clear intrinsic value for survival. However, substantial variability exists in the frequency and specificity of aesthetic responses. While pleasure from aesthetics is attributed to the neural circuitry for reward, what accounts for individual differences in aesthetic reward sensitivity remains unclear. Using a combination of survey data, behavioral and psychophysiological measures and diffusion tensor imaging, we found that white matter connectivity between sensory processing areas in the superior temporal gyrus and emotional and social processing areas in the insula and medial prefrontal cortex explains individual differences in reward sensitivity to music. Our findings provide the first evidence for a neural basis of individual differences in sensory access to the reward system, and suggest that social-emotional communication through the auditory channel may offer an evolutionary basis for music making as an aesthetically rewarding function in humans. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Novel biomaterials: plasma-enabled nanostructures and functions
NASA Astrophysics Data System (ADS)
Levchenko, Igor; Keidar, Michael; Cvelbar, Uroš; Mariotti, Davide; Mai-Prochnow, Anne; Fang, Jinghua; (Ken Ostrikov, Kostya
2016-07-01
Material processing techniques utilizing low-temperature plasmas as the main process tool feature many unique capabilities for the fabrication of various nanostructured materials. As compared with the neutral-gas based techniques and methods, the plasma-based approaches offer higher levels of energy and flux controllability, often leading to higher quality of the fabricated nanomaterials and sometimes to the synthesis of the hierarchical materials with interesting properties. Among others, nanoscale biomaterials attract significant attention due to their special properties towards the biological materials (proteins, enzymes), living cells and tissues. This review briefly examines various approaches based on the use of low-temperature plasma environments to fabricate nanoscale biomaterials exhibiting high biological activity, biological inertness for drug delivery system, and other features of the biomaterials make them highly attractive. In particular, we briefly discuss the plasma-assisted fabrication of gold and silicon nanoparticles for bio-applications; carbon nanoparticles for bioimaging and cancer therapy; carbon nanotube-based platforms for enzyme production and bacteria growth control, and other applications of low-temperature plasmas in the production of biologically-active materials.
NASA Astrophysics Data System (ADS)
Bernabei, R.; Belli, P.; d'Angelo, A.; d'Angelo, S.; Di Marco, A.; Montecchia, F.; Incicchitti, A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, X. H.; Sheng, X. D.; Wang, R. G.; Ye, Z. P.
2016-11-01
The DAMA project develops and uses new/improved low background scintillation detectors to investigate the Dark Matter (DM) particle component(s) in the galactic halo and rare processes deep underground at the Gran Sasso National Laboratory (LNGS) of the I.N.F.N.. Here some highlights of DAMA/LIBRA (Large sodium Iodide Bulk for Rare processes) as a unique apparatus in direct DM investigation for its full sensitive mass, target material, intrinsic radio-purity, methodological approach and all the controls performed on the experimental parameters are outlined. The DAMA/LIBRA-phase1 and the former DAMA/NaI data (cumulative exposure 1.33 ton × yr, corresponding to 14 annual cycles) have reached a model-independent evidence at 9.3 σ C.L. for the presence of DM particles in the galactic halo exploiting the DM annual modulation signature with highly radio-pure NaI(Tl) target. Some of the perspectives of the presently running DAMA/LIBRA-phase2 are summarised and the powerful tools offered by a model independent strategy of DM investigation are pointed out.
NASA Astrophysics Data System (ADS)
Stork, A. L.; Stuart, G. W.; Henderson, C. M.; Keir, D.; Hammond, J. O. S.
2013-04-01
The Afar Depression, Ethiopia, offers unique opportunities to study the transition from continental rifting to oceanic spreading because the process is occurring onland. Using traveltime tomography and data from a temporary seismic deployment, we describe the first regional study of uppermost mantle P-wave velocities (VPn). We find two separate low VPn zones (as low as 7.2 km s-1) beneath regions of localized thinned crust in northern Afar, indicating the existence of high temperatures and, potentially, partial melt. The zones are beneath and off-axis from, contemporary crustal magma intrusions in active magmatic segments, the Dabbahu-Manda-Hararo and Erta'Ale segments. This suggests that these intrusions can be fed by off-axis delivery of melt in the uppermost mantle and that discrete areas of mantle upwelling and partial melting, thought to characterize segmentation of the uppermost mantle at seafloor spreading centres, are initiated during the final stages of break-up.
Nanoscale Engineering in VO2 Nanowires via Direct Electron Writing Process.
Zhang, Zhenhua; Guo, Hua; Ding, Wenqiang; Zhang, Bin; Lu, Yue; Ke, Xiaoxing; Liu, Weiwei; Chen, Furong; Sui, Manling
2017-02-08
Controlling phase transition in functional materials at nanoscale is not only of broad scientific interest but also important for practical applications in the fields of renewable energy, information storage, transducer, sensor, and so forth. As a model functional material, vanadium dioxide (VO 2 ) has its metal-insulator transition (MIT) usually at a sharp temperature around 68 °C. Here, we report a focused electron beam can directly lower down the transition temperature of a nanoarea to room temperature without prepatterning the VO 2 . This novel process is called radiolysis-assisted MIT (R-MIT). The electron beam irradiation fabricates a unique gradual MIT zone to several times of the beam size in which the temperature-dependent phase transition is achieved in an extended temperature range. The gradual transformation zone offers to precisely control the ratio of metal/insulator phases. This direct electron writing technique can open up an opportunity to precisely engineer nanodomains of diversified electronic properties in functional material-based devices.
Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.
Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L
2017-06-14
Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.
Mass fractionation processes of transition metal isotopes
NASA Astrophysics Data System (ADS)
Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.
2002-06-01
Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.
Strategies and Challenges in Clinical Trials Targeting Human Aging
Newman, John C.; Milman, Sofiya; Hashmi, Shahrukh K.; Austad, Steve N.; Kirkland, James L.; Halter, Jeffrey B.
2016-01-01
Interventions that target fundamental aging processes have the potential to transform human health and health care. A variety of candidate drugs have emerged from basic and translational research that may target aging processes. Some of these drugs are already in clinical use for other purposes, such as metformin and rapamycin. However, designing clinical trials to test interventions that target the aging process poses a unique set of challenges. This paper summarizes the outcomes of an international meeting co-ordinated by the NIH-funded Geroscience Network to further the goal of developing a translational pipeline to move candidate compounds through clinical trials and ultimately into use. We review the evidence that some drugs already in clinical use may target fundamental aging processes. We discuss the design principles of clinical trials to test such interventions in humans, including study populations, interventions, and outcomes. As examples, we offer several scenarios for potential clinical trials centered on the concepts of health span (delayed multimorbidity and functional decline) and resilience (response to or recovery from an acute health stress). Finally, we describe how this discussion helped inform the design of the proposed Targeting Aging with Metformin study. PMID:27535968
Tape transfer printing of a liquid metal alloy for stretchable RF electronics.
Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang
2014-09-03
In order to make conductors with large cross sections for low impedance radio frequency (RF) electronics, while still retaining high stretchability, liquid-alloy-based microfluidic stretchable electronics offers stretchable electronic systems the unique opportunity to combine various sensors on our bodies or organs with high-quality wireless communication with the external world (devices/systems), without sacrificing enhanced user comfort. This microfluidic approach, based on printed circuit board technology, allows large area processing of large cross section conductors and robust contacts, which can handle a lot of stretching between the embedded rigid active components and the surrounding system. Although it provides such benefits, further development is needed to realize its potential as a high throughput, cost-effective process technology. In this paper, tape transfer printing is proposed to supply a rapid prototyping batch process at low cost, albeit at a low resolution of 150 μm. In particular, isolated patterns can be obtained in a simple one-step process. Finally, a stretchable radio frequency identification (RFID) tag is demonstrated. The measured results show the robustness of the hybrid integrated system when the tag is stretched at 50% for 3000 cycles.
Understanding the dark and bright sides of anxiety: A theory of workplace anxiety.
Cheng, Bonnie Hayden; McCarthy, Julie M
2018-05-01
Researchers have uncovered inconsistent relations between anxiety and performance. Although the prominent view is a "dark side," where anxiety has a negative relation with performance, a "bright side" of anxiety has also been suggested. We reconcile past findings by presenting a comprehensive multilevel, multiprocess model of workplace anxiety called the theory of workplace anxiety (TWA). This model highlights the processes and conditions through which workplace anxiety may lead to debilitative and facilitative job performance and includes 19 theoretical propositions. Drawing on past theories of anxiety, resource depletion, cognitive-motivational processing, and performance, we uncover the debilitative and facilitative nature of dispositional and situational workplace anxiety by positioning emotional exhaustion, self-regulatory processing, and cognitive interference as distinct contrasting processes underlying the relationship between workplace anxiety and job performance. Extending our theoretical model, we pinpoint motivation, ability, and emotional intelligence as critical conditions that shape when workplace anxiety will debilitate and facilitate job performance. We also identify the unique employee, job, and situational characteristics that serve as antecedents of dispositional and situational workplace anxiety. The TWA offers a nuanced perspective on workplace anxiety and serves as a foundation for future work. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Silicon photonics for high-performance interconnection networks
NASA Astrophysics Data System (ADS)
Biberman, Aleksandr
2011-12-01
We assert in the course of this work that silicon photonics has the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems, and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. This work showcases that chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, enable unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of this work, we demonstrate such feasibility of waveguides, modulators, switches, and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. Furthermore, we leverage the unique properties of available silicon photonic materials to create novel silicon photonic devices, subsystems, network topologies, and architectures to enable unprecedented performance of these photonic interconnection networks and computing systems. We show that the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. Furthermore, we explore the immense potential of all-optical functionalities implemented using parametric processing in the silicon platform, demonstrating unique methods that have the ability to revolutionize computation and communication. Silicon photonics enables new sets of opportunities that we can leverage for performance gains, as well as new sets of challenges that we must solve. Leveraging its inherent compatibility with standard fabrication techniques of the semiconductor industry, combined with its capability of dense integration with advanced microelectronics, silicon photonics also offers a clear path toward commercialization through low-cost mass-volume production. Combining empirical validations of feasibility, demonstrations of massive performance gains in large-scale systems, and the potential for commercial penetration of silicon photonics, the impact of this work will become evident in the many decades that follow.
Tippens, Kimberly M; Chao, Maria T; Connelly, Erin; Locke, Adrianna
2013-10-29
Community acupuncture is a recent innovation in acupuncture service delivery in the U.S. that aims to improve access to care through low-cost treatments in group-based settings. Patients at community acupuncture clinics represent a broader socioeconomic spectrum and receive more frequent treatments compared to acupuncture users nationwide. As a relatively new model of acupuncture in the U.S., little is known about the experiences of patients at community acupuncture clinics and whether quality of care is compromised through this high-volume model. The aim of this study was to assess patients' perspectives on the care received through community acupuncture clinics. The investigators conducted qualitative, thematic analysis of written comments from an observational, cross-sectional survey of clients of the Working Class Acupuncture clinics in Portland, Oregon. The survey included an open-ended question for respondents to share comments about their experiences with community acupuncture. Comments were received from 265 community acupuncture patients. Qualitative analysis of written comments identified two primary themes that elucidate patients' perspectives on quality of care: 1) aspects of health care delivery unique to community acupuncture, and 2) patient engagement in health care. Patients identified unique aspects of community acupuncture, including structures that facilitate access, processes that make treatments more comfortable and effective and holistic outcomes including physical improvements, enhanced quality of life, and empowerment. The group setting, community-based locations, and low cost were highlighted as aspects of this model that allow patients to access acupuncture. Patients' perspectives on the values and experiences unique to community acupuncture offer insights on the quality of care received in these settings. The group setting, community-based locations, and low cost of this model potentially reduce access barriers for those who might not otherwise consider using acupuncture. In addition, the community acupuncture model may offer individuals the opportunity for increased frequency of treatments, which raises pertinent questions about the dose-response relationship of acupuncture and health outcomes. This study provides preliminary data for future evaluations of the quality and effectiveness of community acupuncture. Future studies should include the perspectives of patients who initiated, and subsequently, discontinued community acupuncture treatment.
ERIC Educational Resources Information Center
Columba, Lynn
2013-01-01
Mathematics is about reasoning, patterns, and making sense of things. Children's literature provides a powerful opportunity to foster unique experiences in mathematics learning. Storybooks, thinking strategies, and manipulatives offer a winning combination for mastering multiplication facts based on conceptual ideas and relationships. The most…
Health monitoring of post-tension tendons in bridges.
DOT National Transportation Integrated Search
2003-01-01
Post-tensioned concrete has been used in a number of bridge structures and is expected to be used more in future construction in Virginia. This type of detail offers unique advantages for improving the performance of concrete members. Recent problems...
UV lasers for drilling and marking applications.
Hannon, T
1999-10-01
Lasers emitting ultraviolet (UV) light have unique capabilities for precision micromachining and marking plastic medical devices. This review of the benefits offered by laser technology includes a look at recently developed UV diode-pumped solid-state lasers and their key features.
ERIC Educational Resources Information Center
American School & University, 2003
2003-01-01
Presents high school and college vocational/industrial arts buildings considered outstanding in a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, highlighting unique concepts and ideas. For each citation, the article offers information on the…
Nanocrystalline cellulose from coir fiber: preparation, properties, and applications
USDA-ARS?s Scientific Manuscript database
Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...
Price Advice: Counseling Alumni About the Cost of an Education.
ERIC Educational Resources Information Center
Wynn, G. Richard; Morrell, Louis R.
1999-01-01
In excerpts from alumni magazines, the treasurers of Haverford College (Pennsylvania) and Wake Forest University (North Carolina) communicate issues involved in setting tuition and offer unique approaches to explaining the value that students receive at these private institutions. (MSE)
ERIC Educational Resources Information Center
Owen Blakemore, Judith E.; Berenbaum, Sheri A.; Liben, Lynn S.
2008-01-01
This new text offers a unique developmental focus on gender. Gender development is examined from infancy through adolescence, integrating biological, socialization, and cognitive perspectives. The book's current empirical focus is complemented by a lively and readable style that includes anecdotes about children's everyday experiences. The book's…
How small business health exchanges can offer value to their future customers--and why they must.
Kingsdale, Jon
2012-02-01
The success of the Small Business Health Options Program (SHOP)-health insurance exchanges targeted at the small-group market and opening for business in January 2014-will depend in large part on persuading small employers and qualified health plans to participate. The most important objective will be offering employers lower-cost health plans than they have now. Other critical objectives will be offering small firms administrative efficiencies and access to choices among high-value plans that are not offered elsewhere. This article frames the challenges that exchanges will encounter in meeting these objectives. In particular, it discusses the advisability of small-business exchanges' offering an "employee choice" model (which the article describes in detail); of combining the small-business and individual exchanges to broaden product offerings and gain operational efficiencies; and of encouraging low-cost plans to enter the exchange market, perhaps by enabling Medicaid managed care plans to offer comparable commercial products, and in turn affording health plans access to a uniquely motivated market of small firms and their workers who want affordable coverage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumaran, D.; Eswaramoorthy, S; Furey, W
2009-01-01
Clostridium botulinum produces seven antigenically distinct neurotoxins [C. botulinum neurotoxins (BoNTs) A-G] sharing a significant sequence homology. Based on sequence and functional similarity, it was believed that their three-dimensional structures will also be similar. Indeed, the crystal structures of BoNTs A and B exhibit similar fold and domain association where the translocation domain is flanked on either side by binding and catalytic domains. Here, we report the crystal structure of BoNT E holotoxin and show that the domain association is different and unique, although the individual domains are similar to those of BoNTs A and B. In BoNT E, bothmore » the binding domain and the catalytic domain are on the same side of the translocation domain, and all three have mutual interfaces. This unique association may have an effect on the rate of translocation, with the molecule strategically positioned in the vesicle for quick entry into cytosol. Botulism, the disease caused by BoNT E, sets in faster than any other serotype because of its speedy internalization and translocation, and the present structure offers a credible explanation. We propose that the translocation domain in other BoNTs follows a two-step process to attain translocation-competent conformation as in BoNT E. We also suggest that this translocation-competent conformation in BoNT E is a probable reason for its faster toxic rate compared to BoNT A. However, this needs further experimental elucidation.« less
The homeostatic psyche: Freudian theory and somatic markers.
Arminjon, Mathieu; Ansermet, François; Magistretti, Pierre
2010-11-01
After years of reciprocal lack of interest, if not opposition, neuroscience and psychoanalysis are poised for a renewed dialogue. This article discusses some aspects of the Freudian metapsychology and its link with specific biological mechanisms. It highlights in particular how the physiological concept of homeostasis resonates with certain fundamental concepts of psychoanalysis. Similarly, the authors underline how the Freud and Damasio theories of brain functioning display remarkable complementarities, especially through their common reference to Meynert and James. Furthermore, the Freudian theory of drives is discussed in the light of current neurobiological evidences of neural plasticity and trace formation and of their relationships with the processes of homeostasis. The ensuing dynamics between traces and homeostasis opens novel avenues to consider inner life in reference to the establishment of fantasies unique to each subject. The lack of determinism, within a context of determinism, implied by plasticity and reconsolidation participates in the emergence of singularity, the creation of uniqueness and the unpredictable future of the subject. There is a gap in determinism inherent to biology itself. Uniqueness and discontinuity: this should today be the focus of the questions raised in neuroscience. Neuroscience needs to establish the new bases of a "discontinuous" biology. Psychoanalysis can offer to neuroscience the possibility to think of discontinuity. Neuroscience and psychoanalysis meet thus in an unexpected way with regard to discontinuity and this is a new point of convergence between them. Copyright © 2010 Elsevier Ltd. All rights reserved.
Barriers to offering French language physician services in rural and northern Ontario.
Timony, Patrick E; Gauthier, Alain P; Serresse, Suzanne; Goodale, Natalie; Prpic, Jason
2016-01-01
Rural and Northern Ontario francophones face many health-related challenges including poor health status, a poor supply of French-speaking physicians, and the potential for an inability or reduced ability to effectively communicate with anglophone healthcare providers. As such, it can reasonably be expected that rural and Northern Ontario francophones experience barriers when receiving care. However, the experience of physicians working in areas densely populated by francophones is largely unexplored. This paper identifies barriers experienced by French-speaking and Non-French-speaking rural and Northern Ontario physicians when serving francophone patients. A series of key informant interviews were conducted with 18 family physicians practicing in rural and urban francophone communities of Northeastern Ontario. Interviews were analyzed using a thematic analysis process. Five categories of barrier were identified: (1) language discordance, (2) characteristics of francophone patients, (3) dominance of English in the medical profession, (4) lack of French-speaking medical personnel, and (5) physicians' linguistic (in)sensitivity. Some barriers identified were unique to Non-French-speaking physicians (eg language discordance, use of interpreters, feelings of inadequacy), some were unique to French-speaking physicians (eg limited French education and resources), and some were common to both groups (eg lack of French-speaking colleagues/staff, added time commitments, and the particularities of Franco-Ontarian preferences and culture). Healthcare providers and decision makers may take interest in these results. Although physicians were the focus of the present article, the barriers expressed are likely experienced by other healthcare providers, and thus the lessons learned from this article extend beyond the physician workforce. Efforts must be made to offer educational opportunities for physicians and other healthcare providers working in areas densely populated by francophones; these include linguistic and cultural sensitivity training, in addition to teaching strategies for the practice of 'active offer' of French-language services. In sum, the present study outlines the importance of linguistic concordant communication in healthcare delivery, and describes some of the challenges faced when providing French-language services in rural and Northern Ontario.
NASA Astrophysics Data System (ADS)
Ward, Logan
The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate material can have a significant effect on adhesion and the mechanical response between the coating and substrate. Depending on deposition parameters and the selected material MPPMS and DOMS are promising alternatives to DCMS, PMS, and CAD.
Hierarchical Micro/Nano-Porous Acupuncture Needles Offering Enhanced Therapeutic Properties
NASA Astrophysics Data System (ADS)
in, Su-Ll; Gwak, Young S.; Kim, Hye Rim; Razzaq, Abdul; Lee, Kyeong-Seok; Kim, Hee Young; Chang, Suchan; Lee, Bong Hyo; Grimes, Craig A.; Yang, Chae Ha
2016-10-01
Acupuncture as a therapeutic intervention has been widely used for treatment of many pathophysiological disorders. For achieving improved therapeutic effects, relatively thick acupuncture needles have been frequently used in clinical practice with, in turn, enhanced stimulation intensity. However due to the discomforting nature of the larger-diameter acupuncture needles there is considerable interest in developing advanced acupuncture therapeutical techniques that provide more comfort with improved efficacy. So motivated, we have developed a new class of acupuncture needles, porous acupuncture needles (PANs) with hierarchical micro/nano-scale conical pores upon the surface, fabricated via a simple and well known electrochemical process, with surface area approximately 20 times greater than conventional acupuncture needles. The performance of these high-surface-area PANs is evaluated by monitoring the electrophysiological and behavioral responses from the in vivo stimulation of Shenmen (HT7) points in Wistar rats, showing PANs to be more effective in controlling electrophysiological and behavioral responses than conventional acupuncture needles. Comparative analysis of cocaine induced locomotor activity using PANs and thick acupuncture needles shows enhanced performance of PANs with significantly less pain sensation. Our work offers a unique pathway for achieving a comfortable and improved acupuncture therapeutic effect.
Hierarchical Micro/Nano-Porous Acupuncture Needles Offering Enhanced Therapeutic Properties
In, Su-ll; Gwak, Young S.; Kim, Hye Rim; Razzaq, Abdul; Lee, Kyeong-Seok; Kim, Hee Young; Chang, SuChan; Lee, Bong Hyo; Grimes, Craig A.; Yang, Chae Ha
2016-01-01
Acupuncture as a therapeutic intervention has been widely used for treatment of many pathophysiological disorders. For achieving improved therapeutic effects, relatively thick acupuncture needles have been frequently used in clinical practice with, in turn, enhanced stimulation intensity. However due to the discomforting nature of the larger-diameter acupuncture needles there is considerable interest in developing advanced acupuncture therapeutical techniques that provide more comfort with improved efficacy. So motivated, we have developed a new class of acupuncture needles, porous acupuncture needles (PANs) with hierarchical micro/nano-scale conical pores upon the surface, fabricated via a simple and well known electrochemical process, with surface area approximately 20 times greater than conventional acupuncture needles. The performance of these high-surface-area PANs is evaluated by monitoring the electrophysiological and behavioral responses from the in vivo stimulation of Shenmen (HT7) points in Wistar rats, showing PANs to be more effective in controlling electrophysiological and behavioral responses than conventional acupuncture needles. Comparative analysis of cocaine induced locomotor activity using PANs and thick acupuncture needles shows enhanced performance of PANs with significantly less pain sensation. Our work offers a unique pathway for achieving a comfortable and improved acupuncture therapeutic effect. PMID:27713547
Scherrer, Carol S.
2004-01-01
Background: Leaders in the profession encourage academic health sciences librarians to assume new roles as part of the growth process for remaining vital professionals. Have librarians embraced these new roles? Objectives: This research sought to examine from the reference librarians' viewpoints how their roles have changed over the past ten years and what the challenges these changes present as viewed by both the librarians and library directors. Method: A series of eight focus groups was conducted with reference librarians from private and public academic health sciences libraries. Directors of these libraries were interviewed separately. Results: Reference librarians' activities have largely confirmed the role changes anticipated by their leaders. They are teaching more, engaging in outreach through liaison initiatives, and designing Web pages, in addition to providing traditional reference duties. Librarians offer insights into unanticipated issues encountered in each of these areas and offer some creative solutions. Directors discuss the issues from their unique perspective. Conclusion: Librarians have identified areas for focusing efforts in lifelong learning. Adult learning theory, specialized databases and resources needed by researchers, ever-evolving technology, and promotion and evaluation of the library are areas needing attention. Implications for library education and continuing professional development are presented. PMID:15098052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouse, Gene D.
The APS journals receive manuscripts from scientists all over the world. For authors whose names cannot be expressed in Latin characters, their names in the byline must be transliterated, a process that is not necessarily bidirectionally unique. For example, the eight Chinese names all transliterate as Wei Wang. To remove some of the ambiguity arising from this unfortunate degeneracy of names, APS will allow some authors the option to include their names in their own language in parentheses after the transliterated name, such as Wei Wang. The option to present names in the article byline in this manner is anmore » experiment initially offered to Chinese, Japanese, and Korean authors, whose names can be expressed in Unicode characters. An example of a Japanese name is Tadanori Minamisono and a Korean name is Chang Kee Jung. In the English text the given name precedes the family name, while the reverse is true for the characters. As we gain experience, we may be able to broaden this offer to other languages. Authors who wish to try this option will need to prepare their manuscripts by following the special instructions at http://authors.aps.org/names.html.« less
Scherrer, Carol S
2004-04-01
Leaders in the profession encourage academic health sciences librarians to assume new roles as part of the growth process for remaining vital professionals. Have librarians embraced these new roles? This research sought to examine from the reference librarians' viewpoints how their roles have changed over the past ten years and what the challenges these changes present as viewed by both the librarians and library directors. A series of eight focus groups was conducted with reference librarians from private and public academic health sciences libraries. Directors of these libraries were interviewed separately. Reference librarians' activities have largely confirmed the role changes anticipated by their leaders. They are teaching more, engaging in outreach through liaison initiatives, and designing Web pages, in addition to providing traditional reference duties. Librarians offer insights into unanticipated issues encountered in each of these areas and offer some creative solutions. Directors discuss the issues from their unique perspective. Librarians have identified areas for focusing efforts in lifelong learning. Adult learning theory, specialized databases and resources needed by researchers, ever-evolving technology, and promotion and evaluation of the library are areas needing attention. Implications for library education and continuing professional development are presented.
Microfabrication for Drug Delivery
Koch, Brendan; Rubino, Ilaria; Quan, Fu-Shi; Yoo, Bongyoung; Choi, Hyo-Jick
2016-01-01
This review is devoted to discussing the application of microfabrication technologies to target challenges encountered in life processes by the development of drug delivery systems. Recently, microfabrication has been largely applied to solve health and pharmaceutical science issues. In particular, fabrication methods along with compatible materials have been successfully designed to produce multifunctional, highly effective drug delivery systems. Microfabrication offers unique tools that can tackle problems in this field, such as ease of mass production with high quality control and low cost, complexity of architecture design and a broad range of materials. Presented is an overview of silicon- and polymer-based fabrication methods that are key in the production of microfabricated drug delivery systems. Moreover, the efforts focused on studying the biocompatibility of materials used in microfabrication are analyzed. Finally, this review discusses representative ways microfabrication has been employed to develop systems delivering drugs through the transdermal and oral route, and to improve drug eluting implants. Additionally, microfabricated vaccine delivery systems are presented due to the great impact they can have in obtaining a cold chain-free vaccine, with long-term stability. Microfabrication will continue to offer new, alternative solutions for the development of smart, advanced drug delivery systems. PMID:28773770
Benefits attained from space flight in pre-clinical evaluation of candidate drugs
NASA Astrophysics Data System (ADS)
Stodieck, Louis S.; Bateman, Ted; Ayers, Reed; Ferguson, Virginia; Simske, Steve
1998-01-01
Modern medicine has made great strides in recent decades. The promises of biotechnology and advances in gene identification and manipulation offer tremendous potential for treatment of disease. However, developing new drug therapies by biotechnology and pharmaceutical companies is still a very costly and time consuming process. One of the important milestones in drug development is the successful completion of preclinical evaluation. During this phase, drug candidates must be shown to be safe, yet effective as a treatment of the target disease or disorder. Critical for preclinical testing is the availability of biomedical test models that adequately mimic the target disease. A good model will 1) allow confident prediction of a drug's effects before expensive clinical trials are begun, 2) provide convincing data for use in an FDA new drug application and 3) minimize the time required for testing. Space flight may offer a completely unique and new set of biomedical models for use in pharmaceutical testing. This paper highlights some examples of recent experiments done in space to test new compounds for Chiron, (Emmeryville, CA) and discusses the importance of the International Space Station to greatly expand such commercial opportunities.
A Management Model for International Participation in Space Exploration Missions
NASA Technical Reports Server (NTRS)
George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.
2005-01-01
This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.
Moore, Sarah A; Granger, Nicolas; Olby, Natasha J; Spitzbarth, Ingo; Jeffery, Nick D; Tipold, Andrea; Nout-Lomas, Yvette S; da Costa, Ronaldo C; Stein, Veronika M; Noble-Haeusslein, Linda J; Blight, Andrew R; Grossman, Robert G; Basso, D Michele; Levine, Jonathan M
2017-06-15
Translation of therapeutic interventions for spinal cord injury (SCI) from laboratory to clinic has been historically challenging, highlighting the need for robust models of injury that more closely mirror the human condition. The high prevalence of acute, naturally occurring SCI in pet dogs provides a unique opportunity to evaluate expeditiously promising interventions in a population of animals that receive diagnoses and treatment clinically in a manner similar to persons with SCI, while adhering to National Institutes of Health guidelines for scientific rigor and transparent reporting. In addition, pet dogs with chronic paralysis are often maintained long-term by their owners, offering a similarly unique population for study of chronic SCI. Despite this, only a small number of studies have used the clinical dog model of SCI. The Canine Spinal Cord Injury Consortium (CANSORT-SCI) was recently established by a group of veterinarians and basic science researchers to promote the value of the canine clinical model of SCI. The CANSORT-SCI group held an inaugural meeting November 20 and 21, 2015 to evaluate opportunities and challenges to the use of pet dogs in SCI research. Key challenges identified included lack of familiarity with the model among nonveterinary scientists and questions about how and where in the translational process the canine clinical model would be most valuable. In light of these, we review the natural history, outcome, and available assessment tools associated with canine clinical SCI with emphasis on their relevance to human SCI and the translational process.
Patton, J F; Lavrik, N V; Joy, D C; Hunter, S R; Datskos, P G; Smith, D B; Sepaniak, M J
2012-11-23
A model is presented regarding the mechanistic properties associated with the interaction of hydrogen with nanoporous palladium (np-Pd) films prepared using a spontaneous galvanic displacement reaction (SGDR), which involves PdCl(2) reduction by atomic Ag. Characterization of these films shows both chemical and morphological factors, which influence the performance characteristics of np-Pd microcantilever (MC) nanomechanical sensing devices. Raman spectroscopy, uniquely complemented with MC response profiles, is used to explore the chemical influence of palladium oxide (PdO). These combined techniques support a reaction mechanism that provides for rapid response to H(2) and recovery in the presence of O(2). Post-SGDR processing via reduction of PdCl(2)(s) in a H(2) environment results in a segregated nanoparticle three-dimensional matrix dispersed in a silver layer. The porous nature of the reduced material is shown by high resolution scanning electron microscopy. Extended grain boundaries, typical of these materials, result in a greater surface area conducive to fast sorption/desorption of hydrogen, encouraged by the presence of PdO. X-ray diffraction and inductively coupled plasma-optical emission spectroscopy are employed to study changes in morphology and chemistry occurring in these nanoporous films under different processing conditions. The unique nature of chemical/morphological effects, as demonstrated by the above characterization methods, provides evidence in support of observed nanomechanical response/recovery profiles offering insight for catalysis, H(2) storage and improved sensing applications.
Dental caries - not just holes in teeth! A perspective.
Bowen, W H
2016-06-01
Cavitation in teeth results from a pathogenic process termed dental caries that has occurred on the tooth surface for weeks or even years. Accumulation of dental plaque (biofilm) on the tooth is usually the first manifestation of the disease. Although acid production is the immediate and proximal cause of dissolution of teeth; it is the milieu within which the acid is formed that should be of primary concern. Focusing on the 'critical pH' has detracted attention from the more biological aspects (biofilm formation) of dental caries. Dental caries is unique; it is a biological process occurring on essentially an inert surface. Investigation of the multitude of interactions occurring in plaque ranging from enamel interfaces to surfaces of bacteria and matrices poses challenges worthy of the best scientific minds. The mouth clearly offers unique opportunities to investigate the multi facets of biofilm formation in vivo, generating data that have relevance way beyond the mouth. Prevention of this ubiquitous disease, dental caries, continues to present serious challenges. The public health benefits of fluoride delivered in its various formats are well recognized. Nevertheless, additional preventive approaches are required. Overcoming the rapid clearance of agents from the mouth is particularly challenging. Building on the polymerizing capacity of glucosyltransferases it may be possible to incorporate a therapeutic agent into the matrix plaque, thereby delivering therapeutic agents precisely to where they are needed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
2015-01-01
Novel physicochemistries of engineered nanomaterials (ENMs) offer considerable commercial potential for new products and processes, but also the possibility of unforeseen and negative consequences upon ENM release into the environment. Investigations of ENM ecotoxicity have revealed that the unique properties of ENMs and a lack of appropriate test methods can lead to results that are inaccurate or not reproducible. The occurrence of spurious results or misinterpretations of results from ENM toxicity tests that are unique to investigations of ENMs (as opposed to traditional toxicants) have been reported, but have not yet been systemically reviewed. Our objective in this manuscript is to highlight artifacts and misinterpretations that can occur at each step of ecotoxicity testing: procurement or synthesis of the ENMs and assessment of potential toxic impurities such as metals or endotoxins, ENM storage, dispersion of the ENMs in the test medium, direct interference with assay reagents and unacknowledged indirect effects such as nutrient depletion during the assay, and assessment of the ENM biodistribution in organisms. We recommend thorough characterization of initial ENMs including measurement of impurities, implementation of steps to minimize changes to the ENMs during storage, inclusion of a set of experimental controls (e.g., to assess impacts of nutrient depletion, ENM specific effects, impurities in ENM formulation, desorbed surface coatings, the dispersion process, and direct interference of ENM with toxicity assays), and use of orthogonal measurement methods when available to assess ENMs fate and distribution in organisms. PMID:24617739
Cumulative risk assessment (CRA) offers a unique context for addressing Environmental Justice (EJ) issues from scientific perspectives, especially when it comes to examining combined effects of multiple environmental stressors1. Not only chemical stressors (e.g. radon, toluene an...
Learning Disabilities: From Identification to Intervention
ERIC Educational Resources Information Center
Fletcher, Jack M.; Lyon, G. Reid; Fuchs, Lynn S.; Barnes, Marcia A.
2006-01-01
Evidence based and comprehensive, this important work offers a new approach to understanding and intervening with students with learning disabilities. The authors--leading experts in neuropsychology and special education--present a unique model of learning disabilities that integrates the cognitive, neural, genetic, and contextual factors…
Preparing Rural Community College Professionals
ERIC Educational Resources Information Center
Williams, Mitchell R.; Pennington, Kevin L.; Couch, Gene; Dougherty, Michael A.
2007-01-01
A limited number of universities offer graduate programs that focus specifically on preparing rural community college leaders. At the same time, community colleges are facing projections of unprecedented turnover in both administrative and instructional leadership. The rural community college is a unique educational institution which faces…
Reading, Dyslexia and the Brain
ERIC Educational Resources Information Center
Goswami, Usha
2008-01-01
Background: Neuroimaging offers unique opportunities for understanding the acquisition of reading by children and for unravelling the mystery of developmental dyslexia. Here, I provide a selective overview of recent neuroimaging studies, drawing out implications for education and the teaching of reading. Purpose: The different neuroimaging…
ERIC Educational Resources Information Center
Amato, Sheila
2003-01-01
This brief report describes the development and implementation of a unique, full-year, credit-bearing, technology course in literary Braille transcription offered at a Long Island (New York) high school. It describes the program's goals, development, implementation, students, ongoing activities, outreach efforts, and student attitudes. Suggestions…
Mental Health: A Case for Spiritual Education in Public Schools.
ERIC Educational Resources Information Center
Dennis, Dixie L.; Dennis, Brent G.
2002-01-01
Suggests a unique mental health prevention strategy that focuses on spiritual education in public schools, defining spirituality, describing the spirituality-mental health connection, highlighting educators' responsibility toward spiritual education, and offering specific activities and strategies for enhancing students' spirituality suitable for…
ERIC Educational Resources Information Center
Mohsini, S. R.
The "Folkehojskole," or Folk High School (more accurately translated as "People's College") which is Denmark's unique contribution to adult education, offer residential adult instruction. The aims of folk education are to help adults behave as independent and mature members of the community and think and speak freely. Emphasis…
Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Matthew T., E-mail: matthew.johnson.9@us.af.mil; Siriani, Dominic F.; Peun Tan, Meng
2013-11-11
Coherently coupled vertical-cavity surface-emitting laser arrays offer unique advantages for nonmechanical beam steering applications. We have applied dynamic coupled mode theory to show that the observed temporal phase shift between vertical-cavity surface-emitting array elements is caused by the detuning of their resonant wavelengths. Hence, a complete theoretical connection between the differential current injection into array elements and the beam steering direction has been established. It is found to be a fundamentally unique beam-steering mechanism with distinct advantages in efficiency, compactness, speed, and phase-sensitivity to current.
NASA Astrophysics Data System (ADS)
Napoli, Jay
2016-05-01
Precision fiber optic gyroscopes (FOGs) are critical components for an array of platforms and applications ranging from stabilization and pointing orientation of payloads and platforms to navigation and control for unmanned and autonomous systems. In addition, FOG-based inertial systems provide extremely accurate data for geo-referencing systems. Significant improvements in the performance of FOGs and FOG-based inertial systems at KVH are due, in large part, to advancements in the design and manufacture of optical fiber, as well as in manufacturing operations and signal processing. Open loop FOGs, such as those developed and manufactured by KVH Industries, offer tactical-grade performance in a robust, small package. The success of KVH FOGs and FOG-based inertial systems is due to innovations in key fields, including the development of proprietary D-shaped fiber with an elliptical core, and KVH's unique ThinFiber. KVH continually improves its FOG manufacturing processes and signal processing, which result in improved accuracies across its entire FOG product line. KVH acquired its FOG capabilities, including its patented E•Core fiber, when the company purchased Andrew Corporation's Fiber Optic Group in 1997. E•Core fiber is unique in that the light-guiding core - critical to the FOG's performance - is elliptically shaped. The elliptical core produces a fiber that has low loss and high polarization-maintaining ability. In 2010, KVH developed its ThinFiber, a 170-micron diameter fiber that retains the full performance characteristics of E•Core fiber. ThinFiber has enabled the development of very compact, high-performance open-loop FOGs, which are also used in a line of FOG-based inertial measurement units and inertial navigation systems.
Watterson, Andrew
2018-01-01
Unconventional oil and gas extraction (UOGE) including fracking for shale gas is underway in North America on a large scale, and in Australia and some other countries. It is viewed as a major source of global energy needs by proponents. Critics consider fracking and UOGE an immediate and long-term threat to global, national, and regional public health and climate. Rarely have governments brought together relatively detailed assessments of direct and indirect public health risks associated with fracking and weighed these against potential benefits to inform a national debate on whether to pursue this energy route. The Scottish government has now done so in a wide-ranging consultation underpinned by a variety of reports on unconventional gas extraction including fracking. This paper analyses the Scottish government approach from inception to conclusion, and from procedures to outcomes. The reports commissioned by the Scottish government include a comprehensive review dedicated specifically to public health as well as reports on climate change, economic impacts, transport, geology, and decommissioning. All these reports are relevant to public health, and taken together offer a comprehensive review of existing evidence. The approach is unique globally when compared with UOGE assessments conducted in the USA, Australia, Canada, and England. The review process builds a useful evidence base although it is not without flaws. The process approach, if not the content, offers a framework that may have merits globally. PMID:29617318
The constructed catchment Chicken Creek as Critical Zone Observatory under transition
NASA Astrophysics Data System (ADS)
Gerwin, Werner; Schaaf, Wolfgang; Elmer, Michael; Hinz, Christoph
2014-05-01
The constructed catchment Chicken Creek was established in 2005 as an experimental landscape laboratory for ecosystem research. The 6 ha area with clearly defined horizontal as well as vertical boundary conditions was left for an unrestricted primary succession. All Critical Zone elements are represented at this site, which allows the study of most processes occurring at the interface of bio-, pedo-, geo- and hydrosphere. It provides outstanding opportunities for investigating interactions and feedbacks between different evolving compartments during ecosystem development. The catchment is extensively instrumented since 2005 in order to detect transition stages of the ecosystem. Data recorded with a high spatial and temporal resolution include hydrological, geomorphological, pedological, limnological as well as biological parameters. In contrast to other Critical Zone Observatories, this site offers the unique situation of an early stage ecosystem with highly dynamic system properties. The first years of development were characterized by a fast formation of geomorphological structures due to massive erosion processes at the initially non-vegetated surface. Hydrological processes led to the establishment of a local groundwater body within 5 years. In the following years the influence of biological structures like vegetation patterns gained an increasing importance. Feedbacks between developing vegetation and e.g. hydrological features became more and more dominant. As a result, different phases of ecosystem development could be distinguished until now. This observatory offers manifold possibilities to identify and disentangle complex interactions between Critical Zone processes in situ under natural conditions. The originally low complexity of the system is growing with time facilitating the identification of influences of newly developing structures on system functions. Thus, it is possible to study effects of small-scale processes on the whole system at the landscape scale. In addition, the highly dynamic initial system properties allow the observation of multifaceted changes of Critical Zone properties and functions within short periods of time. Chicken Creek could complement the existing network of Critical Zone Observatories which are usually established at ecosystems in a mature state.
Circuitry to explain how the relative number of L and M cones shapes color experience
Schmidt, Brian P.; Touch, Phanith; Neitz, Maureen; Neitz, Jay
2016-01-01
The wavelength of light that appears unique yellow is surprisingly consistent across people even though the ratio of middle (M) to long (L) wavelength sensitive cones is strikingly variable. This observation has been explained by normalization to the mean spectral distribution of our shared environment. Our purpose was to reconcile the nearly perfect alignment of everyone's unique yellow through a normalization process with the striking variability in unique green, which varies by as much as 60 nm between individuals. The spectral location of unique green was measured in a group of volunteers whose cone ratios were estimated with a technique that combined genetics and flicker photometric electroretinograms. In contrast to unique yellow, unique green was highly dependent upon relative cone numerosity. We hypothesized that the difference in neural architecture of the blue-yellow and red-green opponent systems in the presence of a normalization process creates the surprising dependence of unique green on cone ratio. We then compared the predictions of different theories of color vision processing that incorporate L and M cone ratio and a normalization process. The results of this analysis reveal that—contrary to prevailing notions--postretinal contributions may not be required to explain the phenomena of unique hues. PMID:27366885
ERIC Educational Resources Information Center
Jepsen, David A.
2008-01-01
This tribute to Tiedeman takes the form of an invitation to read his written work. The author concludes that Tiedeman's body of work is unique and paradoxical, abstract and challenging, and deeply practical. He offered principles intended to change the way counselors think about careers and career development.
Teaching, Connecting & Empowering Today's Learners
ERIC Educational Resources Information Center
Jones, Virginia R.
2013-01-01
Since career and technical education (CTE) is based historically on promoting technical, hands-on, real-world applications in numerous vocations, CTE educators are uniquely poised to offer more use of instructional technology in their classrooms. Many CTE educators have remarkable connections with industry partnerships, internships and learning…
Journal Club Format Emphasizing Techniques of Critical Reading.
ERIC Educational Resources Information Center
Woods, James R., Jr.; Winkel, Craig E.
1982-01-01
The journal club format offers the resident a unique opportunity to develop specific skills in reading, comprehending, and evaluating medical literature. A course designed for residents in obstetrics and gynecology at the Letterman Army Medical Center and at the University of Cincinnati is described. (MLW)
Students participate in Congressional Night
NASA Technical Reports Server (NTRS)
1997-01-01
Middle school students were offered a unique opportunity at Stennis Space Center to speak real-time through audio and visual means to NASA scientists in Washington D.C., about numerous research projects, such as the Martian meteorite NASA researchers claim contains fossilized proof that life existed on Mars.
CITE NLM: Natural-Language Searching in an Online Catalog.
ERIC Educational Resources Information Center
Doszkocs, Tamas E.
1983-01-01
The National Library of Medicine's Current Information Transfer in English public access online catalog offers unique subject search capabilities--natural-language query input, automatic medical subject headings display, closest match search strategy, ranked document output, dynamic end user feedback for search refinement. References, description…
Physical-Education Facilities/Recreation Centers.
ERIC Educational Resources Information Center
American School & University, 2003
2003-01-01
Presents K-12 and college physical education/recreation facilities considered outstanding in a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, highlighting unique concepts and ideas. For each citation, the article offers information on the firm,…
76 FR 22001 - National Park Week, 2011
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... Nation's collective health and spirit. These places preserve our unique history and iconic symbols. They... of our land. They offer opportunities for wholesome outdoor recreation, which can improve the health... this legacy with the America's Great Outdoors Initiative, designed to create a 21st-century...
Introduction
Polychlorinated biphenyls (PCBs) offer a unique model to understand the major issues related to complex environmental mixtures. These environmental pollutants are ubiquitous, persistent, bioaccumulate in human body through the food chain, and exist as mixtures of ...
Transpersonal Art Therapy Education.
ERIC Educational Resources Information Center
Franklin, Michael; Farrelly-Hansen, Mimi; Marek, Bernie; Swan-Foster, Nora; Wallingford, Sue
2000-01-01
Addresses the task of training future art therapists through a unique branch of transpersonal psychology referred to as "contemplative education." Discusses contemplative practices, such as meditation, and their relationship to creating art. Offers a definition of transpersonal art therapy as well as a literature review. (Contains 80…
2008 Campus Technology Innovators
ERIC Educational Resources Information Center
Campus Technology, 2008
2008-01-01
This article features the 14 winners of the 2008 Campus Technology Innovators. This article offers an insider's view of the winners' campus technology initiatives, their project leads, and vendor partners jointly recognized for a unique ability to advance teaching, learning, administration, and operation on North American college and university…
Successful Web Learning Environments: New Design Guidelines.
ERIC Educational Resources Information Center
Martinez, Margaret
The Web offers the perfect technology and environment for precision learning because learners can be uniquely identified, relevant content can be specifically personalized, and subsequent response and progress can be monitored, supported, and assessed. Technologically, researchers are making rapid progress realizing the personalized learning dream…
Wang, Han; Zhen, Honglou; Li, Shilong; Jing, Youliang; Huang, Gaoshan; Mei, Yongfeng; Lu, Wei
2016-01-01
Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)–embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes. PMID:27536723
Quantum dot behavior in transition metal dichalcogenides nanostructures
NASA Astrophysics Data System (ADS)
Luo, Gang; Zhang, Zhuo-Zhi; Li, Hai-Ou; Song, Xiang-Xiang; Deng, Guang-Wei; Cao, Gang; Xiao, Ming; Guo, Guo-Ping
2017-08-01
Recently, transition metal dichalcogenides (TMDCs) semiconductors have been utilized for investigating quantum phenomena because of their unique band structures and novel electronic properties. In a quantum dot (QD), electrons are confined in all lateral dimensions, offering the possibility for detailed investigation and controlled manipulation of individual quantum systems. Beyond the definition of graphene QDs by opening an energy gap in nanoconstrictions, with the presence of a bandgap, gate-defined QDs can be achieved on TMDCs semiconductors. In this paper, we review the confinement and transport of QDs in TMDCs nanostructures. The fabrication techniques for demonstrating two-dimensional (2D) materials nanostructures such as field-effect transistors and QDs, mainly based on e-beam lithography and transfer assembly techniques are discussed. Subsequently, we focus on electron transport through TMDCs nanostructures and QDs. With steady improvement in nanoscale materials characterization and using graphene as a springboard, 2D materials offer a platform that allows creation of heterostructure QDs integrated with a variety of crystals, each of which has entirely unique physical properties.
Methods of measuring metabolism during surgery in humans: focus on the liver-brain relationship.
Battezzati, Alberto; Bertoli, Simona
2004-09-01
The purpose of this work is to review recent advances in setting methods and models for measuring metabolism during surgery in humans. Surgery, especially solid organ transplantation, may offer unique experimental models in which it is ethically acceptable to gain information on difficult problems of amino acid and protein metabolism. Two areas are reviewed: the metabolic study of the anhepatic phase during liver transplantation and brain microdialysis during cerebral surgery. The first model offers an innovative approach to understand the relative role of liver and extrahepatic organs in gluconeogenesis, and to evaluate whether other organs can perform functions believed to be exclusively or almost exclusively performed by the liver. The second model offers an insight to intracerebral metabolism that is closely bound to that of the liver. The recent advances in metabolic research during surgery provide knowledge immediately useful for perioperative patient management and for a better control of surgical stress. The studies during the anhepatic phase of liver transplantation have showed that gluconeogenesis and glutamine metabolism are very active processes outside the liver. One of the critical organs for extrahepatic glutamine metabolism is the brain. Microdialysis studies helped to prove that in humans there is an intense trafficking of glutamine, glutamate and alanine among neurons and astrocytes. This delicate network is influenced by systemic amino acid metabolism. The metabolic dialogue between the liver and the brain is beginning to be understood in this light in order to explain the metabolic events of brain damage during liver failure.
Shifting from Production to Service to Experience-Based Operations
NASA Astrophysics Data System (ADS)
Angelis, Jannis; de Lima, Edson Pinheiro
This chapter covers the shift in focus of value added business operations from production to services, and in turn, to experience-based operations where customer involvement itself becomes part of the offering. The shift has significant implications for how businesses are managed. The greater service focus affects the firm's unique value proposition, which necessitates considerations on strategy, supplier relations, post-sale offerings and so on. Meanwhile, the inclusion of customer experiences affect the way operations are designed and employed so that these are structurally systematically captured and capitalised.
Modularity, comparative cognition and human uniqueness.
Shettleworth, Sara J
2012-10-05
Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.
Modularity, comparative cognition and human uniqueness
Shettleworth, Sara J.
2012-01-01
Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the ‘core knowledge’ account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578
Non-coalescence of oppositely charged droplets in pH-sensitive emulsions
Liu, Tingting; Seiffert, Sebastian; Thiele, Julian; Abate, Adam R.; Weitz, David A.; Richtering, Walter
2012-01-01
Like charges stabilize emulsions, whereas opposite charges break emulsions. This is the fundamental principle for many industrial and practical processes. Using micrometer-sized pH-sensitive polymeric hydrogel particles as emulsion stabilizers, we prepare emulsions that consist of oppositely charged droplets, which do not coalesce. We observe noncoalescence of oppositely charged droplets in bulk emulsification as well as in microfluidic devices, where oppositely charged droplets are forced to collide within channel junctions. The results demonstrate that electrostatic interactions between droplets do not determine their stability and reveal the unique pH-dependent properties of emulsions stabilized by soft microgel particles. The noncoalescence can be switched to coalescence by neutralizing the microgels, and the emulsion can be broken on demand. This unusual feature of the microgel-stabilized emulsions offers fascinating opportunities for future applications of these systems. PMID:22203968
Regulating DNA Replication in Plants
Sanchez, Maria de la Paz; Costas, Celina; Sequeira-Mendes, Joana; Gutierrez, Crisanto
2012-01-01
Chromosomal DNA replication in plants has requirements and constraints similar to those in other eukaryotes. However, some aspects are plant-specific. Studies of DNA replication control in plants, which have unique developmental strategies, can offer unparalleled opportunities of comparing regulatory processes with yeast and, particularly, metazoa to identify common trends and basic rules. In addition to the comparative molecular and biochemical studies, genomic studies in plants that started with Arabidopsis thaliana in the year 2000 have now expanded to several dozens of species. This, together with the applicability of genomic approaches and the availability of a large collection of mutants, underscores the enormous potential to study DNA replication control in a whole developing organism. Recent advances in this field with particular focus on the DNA replication proteins, the nature of replication origins and their epigenetic landscape, and the control of endoreplication will be reviewed. PMID:23209151
Susan Lindquist: Visionary scientist and peerless mentor
2017-01-01
The science universe is dimmer after one of our brightest stars, Susan Lee Lindquist, was taken by cancer on October 27, 2016. Sue was an innovative, creative, out-of-the-box scientific thinker. She had unique biological intuition—an instinct for both the way things worked and the right questions to ask to uncover new research insights. Her wide-ranging career began with the study of protein folding and molecular chaperones, and she went on to show that protein folding can have profound and unexpected biological effects on such diverse processes as cancer, evolution, and neurodegenerative disease. As Sue's laboratory manager, I would like to offer a ground-floor perspective on what made her an exceptional scientist, mentor, and leader. She created a harmonious, collegial environment where collaborative synergy fueled meaningful progress that will impact science for decades to come. PMID:28028126
NASA Astrophysics Data System (ADS)
Ma, Tao; Fan, Qun; Tao, Hengcong; Han, Zishan; Jia, Mingwen; Gao, Yunnan; Ma, Wangjing; Sun, Zhenyu
2017-11-01
Electrochemical CO2 reduction (ECR) offers an important pathway for renewable energy storage and fuels production. It still remains a challenge in designing highly selective, energy-efficient, robust, and cost-effective electrocatalysts to facilitate this kinetically slow process. Metal-free carbon-based materials have features of low cost, good electrical conductivity, renewability, diverse structure, and tunability in surface chemistry. In particular, surface functionalization of carbon materials, for example by doping with heteroatoms, enables access to unique active site architectures for CO2 adsorption and activation, leading to interesting catalytic performances in ECR. We aim to provide a comprehensive review of this category of metal-free catalysts for ECR, providing discussions and/or comparisons among different nonmetallic catalysts, and also possible origin of catalytic activity. Fundamentals and some future challenges are also described.
SPACEHAB: A giant step in the commercial development of space
NASA Astrophysics Data System (ADS)
Shepard, James E.
SPACEHAB is a privately developed and operated system offering customers a crew-tended microgravity environment for experimentation and product development. The first SPACEHAB flight module was delivered to the SPACEHAB Payload Processing Facility (SPPF) in Florida and 22 experiments are being integrated for an April 1993 mission. SPACEHAB modules are flown in the forward quarter-bay of the NASA Orbiter and are supported by two crew members. The paylaod accommodations include up to 61 experiment lockers, double and single racks and standard mounting plates for mounting unique payload containers directly to the module structure. Experiments designed for the Orbiter mid-deck, Spacelab or Space Station Freedom can be flown in SPACEHAB. The 24-month integration cycle is currently the shortest for any crew-tended carrier; a goal of 18 months is being actively pursued.
Histone modifications controlling native and induced neural stem cell identity.
Broccoli, Vania; Colasante, Gaia; Sessa, Alessandro; Rubio, Alicia
2015-10-01
During development, neural progenitor cells (NPCs) that are capable of self-renewing maintain a proliferative cellular pool while generating all differentiated neural cell components. Although the genetic network of transcription factors (TFs) required for neural specification has been well characterized, the unique set of histone modifications that accompanies this process has only recently started to be investigated. In vitro neural differentiation of pluripotent stem cells is emerging as a powerful system to examine epigenetic programs. Deciphering the histone code and how it shapes the chromatin environment will reveal the intimate link between epigenetic changes and mechanisms for neural fate determination in the developing nervous system. Furthermore, it will offer a molecular framework for a stringent comparison between native and induced neural stem cells (iNSCs) generated by direct neural cell conversion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study on process design of partially-balanced, hydraulically lifting vertical ship lift
NASA Astrophysics Data System (ADS)
Xin, Shen; Xiaofeng, Xu; Lu, Zhang; Bing, Zhu; Fei, Li
2017-11-01
The hub ship lift in Panjin is the first navigation structure in China for the link between the inland and open seas, which adopts a novel partially-balanced, hydraulically lifting ship lift; it can meet such requirements as fast and sharp water level change in open sea, large draft of a yacht, and launching of a ship reception chamber; its balancing weight system can effectively reduce the load of the primary lifting cylinder, and optimize the force distribution of the ship reception chamber. The paper provides an introduction to main equipment, basic principles, main features and system composition of a ship lift. The unique power system and balancing system of the completed ship lift has offered some experience for the construction of the tourism-type ship lifts with a lower lifting height.
Immunogenetics of pemphigus: an update.
Tron, François; Gilbert, Danièle; Joly, Pascal; Mouquet, Hugo; Drouot, Laurent; Ayed, Mourad Ben; Sellami, Myriam; Masmoudi, Hatem; Makni, Sondès
2006-11-01
Pemphigus are rare but informative models of organ-specific autoimmune diseases, resulting from the interplay of environmental, genetic and stochastic factors. There are many arguments to consider that pemphigus have a genetic basis involving, as many other autoimmune diseases, several different genes with additive or synergistic effects. So far, the unique strategy used to identify the contributive loci has been direct analysis of candidate genes through conventional case-control association studies. The major histocompatibility complex in particular the class II locus was demonstrated to be associated with pemphigus with a high rate of replicability. The progresses in the understanding of pemphigus physiopathology and the development of new molecular tools offer new perspectives to unveiled the genetic basis of this group of autoimmune blistering diseases, as shown by recent studies of candidate genes expressed at different levels of the autoimmune process.
Susan Lindquist: Visionary scientist and peerless mentor.
Bevis, Brooke J
2017-01-02
The science universe is dimmer after one of our brightest stars, Susan Lee Lindquist, was taken by cancer on October 27, 2016. Sue was an innovative, creative, out-of-the-box scientific thinker. She had unique biological intuition-an instinct for both the way things worked and the right questions to ask to uncover new research insights. Her wide-ranging career began with the study of protein folding and molecular chaperones, and she went on to show that protein folding can have profound and unexpected biological effects on such diverse processes as cancer, evolution, and neurodegenerative disease. As Sue's laboratory manager, I would like to offer a ground-floor perspective on what made her an exceptional scientist, mentor, and leader. She created a harmonious, collegial environment where collaborative synergy fueled meaningful progress that will impact science for decades to come. © 2017 Bevis.
Methods for nanoparticle labeling of ricin and effect on toxicity
NASA Astrophysics Data System (ADS)
Wark, Alastair W.; Yu, Jun; Lindsay, Christopher D.; Nativo, Paola; Graham, Duncan
2009-09-01
The unique optical properties associated with nanostructured materials that support the excitation of surface plasmons offer many new opportunities for the enhanced optical investigation of biological materials that pose a security threat. In particular, ricin is considered a significant bioterrorism risk due to its high toxicity combined with its ready availability as a byproduct in castor oil production. Therefore, the development of optical techniques capable of rapid on-site toxin detection with high molecular specificity and sensitivity continues to be of significant importance. Furthermore, understanding of the ricin cell entry and intracellular pathways remains poor due to a lack of suitable bioanalytical techniques. Initial work aimed at simultaneously tackling both these issues is described where different approaches for the nanoparticle labeling of ricin are investigated along with changes in ricin toxicity associated with the labeling process.
Niwa, Erika Y.; Boxer, Paul; Dubow, Eric; Huesmann, L. Rowell; Shikaki, Khalil; Landau, Simha; Gvirsman, Shira Dvir
2016-01-01
Ethno-political violence impacts thousands of youth and is associated with numerous negative outcomes. Yet little research examines adaptation to ethno-political violence over time or across multiple outcomes simultaneously. The present study examines longitudinal patterns of aggressive behavior and emotional distress as they co-occur among Palestinian (n=600) youth exposed to ethno-political violence over 3 years in 3 age cohorts (starting ages: 8, 11, 14). Findings indicate distinct profiles of aggressive behavior and emotional distress, and unique joint patterns. Further, youth among key joint profiles (e.g., high aggression-emotional desensitization) are more likely to endorse normative beliefs about aggression toward ethnic out-groups. This study offers a dynamic perspective on emotional and behavioral adaptation to ethno-political violence and the implications of those processes. PMID:27684400
Nanotechnology based approaches in cancer therapeutics
NASA Astrophysics Data System (ADS)
Kumer Biswas, Amit; Reazul Islam, Md; Sadek Choudhury, Zahid; Mostafa, Asif; Fahim Kadir, Mohammad
2014-12-01
The current decades are marked not by the development of new molecules for the cure of various diseases but rather the development of new delivery methods for optimum treatment outcome. Nanomedicine is perhaps playing the biggest role in this concern. Nanomedicine offers numerous advantages over conventional drug delivery approaches and is particularly the hot topic in anticancer research. Nanoparticles (NPs) have many unique criteria that enable them to be incorporated in anticancer therapy. This topical review aims to look at the properties and various forms of NPs and their use in anticancer treatment, recent development of the process of identifying new delivery approaches as well as progress in clinical trials with these newer approaches. Although the outcome of cancer therapy can be increased using nanomedicine there are still many disadvantages of using this approach. We aim to discuss all these issues in this review.
Expression of enzymes for the usage in food and feed industry with Pichia pastoris.
Spohner, Sebastian C; Müller, Hagen; Quitmann, Hendrich; Czermak, Peter
2015-05-20
The methylotrophic yeast Pichia pastoris is an established protein expression host for the production of industrial enzymes. This yeast can be grown to very high cell densities and produces high titers of recombinant protein, which can be expressed intercellularly or be secreted to the fermentation medium. P. pastoris offers some advantages over other established expression systems especially in protein maturation. In food and feed production many enzymatically catalyzed processes are reported and the demand for new enzymes grows continuously. For instance the unique catalytic properties of enzymes are used to improve resource efficiency, maintain quality, functionalize food, and to prevent off-flavors. This review aims to provide an overview on recent developments in heterologous production of enzymes with P. pastoris and their application within the food sector. Copyright © 2015 Elsevier B.V. All rights reserved.
Providing and funding breast health services in urban nurse-managed health centers.
Tsai, Pei-Yun; Peterman, Beth; Baisch, Mary Jo; Ji, Eun Sun; Zwiers, Kelly
2014-01-01
Nurse-managed health centers (NMHCs) are an innovative health care delivery model that serves as an important point of health care access for populations at risk for disparities in health outcomes. This article describes the process and outcomes of clinical breast health services in two NMHCs located in a large Midwestern city. Findings indicate that client's knowledge about breast health was increased after they received breast health services from NMHC nurses. Significant positive changes in behavior related to the early detection of breast cancer were found in the study. NMHCs, identified for expansion in the Patient Protection and Affordable Care Act, offer a unique health care services delivery model that promotes access to care and early identification of breast cancer in very low-income and uninsured women. Copyright © 2014 Elsevier Inc. All rights reserved.
Pixel-level plasmonic microcavity infrared photodetector
Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei
2016-01-01
Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111
Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko
2016-01-01
The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244
Social Ecology, Genomics, and African American Health: A Nonlinear Dynamical Perspective
Madhere, Serge; Harrell, Jules; Royal, Charmaine D. M.
2009-01-01
This article offers a model that clarifies the degree of interdependence between social ecology and genomic processes. Drawing on principles from nonlinear dynamics, the model delineates major lines of bifurcation involving people's habitat, their family health history, and collective catastrophes experienced by their community. It shows how mechanisms of resource acquisition, depletion, and preservation can lead to disruptions in basic metabolism and in the activity of cytokines, neurotransmitters, and protein kinases, thus giving impetus to epigenetic changes. The hypotheses generated from the model are discussed throughout the article for their relevance to health problems among African Americans. Where appropriate, they are examined in light of data from the National Vital Statistics System. Multiple health outcomes are considered. For any one of them, the model makes clear the unique and converging contributions of multiple antecedent factors. PMID:19672481
Dose- and Time-Dependent Transcriptional Response of Ishikawa Cells Exposed to Genistein
Naciff, Jorge M.; Khambatta, Zubin S.; Carr, Gregory J.; Tiesman, Jay P.; Singleton, David W.; Khan, Sohaib A.; Daston, George P.
2016-01-01
To further define the utility of the Ishikawa cells as a reliable in vitro model to determine the potential estrogenic activity of chemicals of interest, transcriptional changes induced by genistein (GES) in Ishikawa cells at various doses (10 pM, 1 nM, 100 nM, and 10 μM) and time points (8, 24, and 48 h) were identified using a comprehensive microarray approach. Trend analysis indicated that the expression of 5342 unique genes was modified by GES in a dose- and time-dependent manner (P ≤ 0.0001). However, the majority of gene expression changes induced in Ishikawa cells were elicited by the highest dose of GES evaluated (10 μM). The GES’ estrogenic activity was identified by comparing the Ishikawa cells’ response to GES versus 17 α-ethynyl estradiol (EE, at equipotent doses, ie, 10 μM vs 1 μM, respectively) and was defined by changes in the expression of 284 unique genes elicited by GES and EE in the same direction, although the magnitude of the change for some genes was different. Further, comparing the response of the Ishikawa cells exposed to high doses of GES and EE versus the response of the juvenile rat uterus exposed to EE, we identified 66 unique genes which were up- or down regulated in a similar manner in vivo as well as in vitro. Genistein elicits changes in multiple molecular pathways affecting various biological processes particularly associated with cell organization and biogenesis, regulation of translation, cell proliferation, and intracellular transport; processes also affected by estrogen exposure in the uterus of the rat. These results indicate that Ishikawa cells are capable of generating a biologically relevant estrogenic response and offer an in vitro model to assess this mode of action. PMID:26865667
Dose- and Time-Dependent Transcriptional Response of Ishikawa Cells Exposed to Genistein.
Naciff, Jorge M; Khambatta, Zubin S; Carr, Gregory J; Tiesman, Jay P; Singleton, David W; Khan, Sohaib A; Daston, George P
2016-05-01
To further define the utility of the Ishikawa cells as a reliable in vitro model to determine the potential estrogenic activity of chemicals of interest, transcriptional changes induced by genistein (GES) in Ishikawa cells at various doses (10 pM, 1 nM, 100 nM, and 10 μM) and time points (8, 24, and 48 h) were identified using a comprehensive microarray approach. Trend analysis indicated that the expression of 5342 unique genes was modified by GES in a dose- and time-dependent manner (P ≤ 0.0001). However, the majority of gene expression changes induced in Ishikawa cells were elicited by the highest dose of GES evaluated (10 μM). The GES' estrogenic activity was identified by comparing the Ishikawa cells' response to GES versus 17 α-ethynyl estradiol (EE, at equipotent doses, ie, 10 μM vs 1 μM, respectively) and was defined by changes in the expression of 284 unique genes elicited by GES and EE in the same direction, although the magnitude of the change for some genes was different. Further, comparing the response of the Ishikawa cells exposed to high doses of GES and EE versus the response of the juvenile rat uterus exposed to EE, we identified 66 unique genes which were up- or down regulated in a similar manner in vivo as well as in vitro Genistein elicits changes in multiple molecular pathways affecting various biological processes particularly associated with cell organization and biogenesis, regulation of translation, cell proliferation, and intracellular transport; processes also affected by estrogen exposure in the uterus of the rat. These results indicate that Ishikawa cells are capable of generating a biologically relevant estrogenic response and offer an in vitro model to assess this mode of action. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution
Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.
2003-01-01
Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent to a fresh quarry face. The results at this site support using deterministic deconvolution, which incorporates the GPR instrument's unique source wavelet, as a standard part of routine GPR data processing. ?? 2003 Elsevier B.V. All rights reserved.
Evolution of a Reconfigurable Processing Platform for a Next Generation Space Software Defined Radio
NASA Technical Reports Server (NTRS)
Kacpura, Thomas J.; Downey, Joseph A.; Anderson, Keffery R.; Baldwin, Keith
2014-01-01
The National Aeronautics and Space Administration (NASA)Harris Ka-Band Software Defined Radio (SDR) is the first, fully reprogrammable space-qualified SDR operating in the Ka-Band frequency range. Providing exceptionally higher data communication rates than previously possible, this SDR offers in-orbit reconfiguration, multi-waveform operation, and fast deployment due to its highly modular hardware and software architecture. Currently in operation on the International Space Station (ISS), this new paradigm of reconfigurable technology is enabling experimenters to investigate navigation and networking in the space environment.The modular SDR and the NASA developed Space Telecommunications Radio System (STRS) architecture standard are the basis for Harris reusable, digital signal processing space platform trademarked as AppSTAR. As a result, two new space radio products are a synthetic aperture radar payload and an Automatic Detection Surveillance Broadcast (ADS-B) receiver. In addition, Harris is currently developing many new products similar to the Ka-Band software defined radio for other applications. For NASAs next generation flight Ka-Band radio development, leveraging these advancements could lead to a more robust and more capable software defined radio.The space environment has special considerations different from terrestrial applications that must be considered for any system operated in space. Each space mission has unique requirements that can make these systems unique. These unique requirements can make products that are expensive and limited in reuse. Space systems put a premium on size, weight and power. A key trade is the amount of reconfigurability in a space system. The more reconfigurable the hardware platform, the easier it is to adapt to the platform to the next mission, and this reduces the amount of non-recurring engineering costs. However, the more reconfigurable platforms often use more spacecraft resources. Software has similar considerations to hardware. Having an architecture standard promotes reuse of software and firmware. Space platforms have limited processor capability, which makes the trade on the amount of amount of flexibility paramount.
Dynamics of hybrid amoeba proteus containing zoochlorellae studied using fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Liu, C.-H.; Fong, B. A.; Alfano, S. A., Jr.; Rakhlin, I.; Wang, W. B.; Ni, X. H.; Yang, Y. L.; Zhou, F.; Zuzolo, R. C.; Alfano, R. R.
2011-03-01
The microinjection of organelles, plants, particles or chemical solutions into Amoeba proteus coupled with spectroscopic analysis and observed for a period of time provides a unique new model for cancer treatment and studies. The amoeba is a eukaryote having many similar features of mammalian cells. The amoeba biochemical functions monitored spectroscopically can provide time sequence in vivo information about many metabolic transitions and metabolic exchanges between cellar organelles and substances microinjected into the amoeba. It is possible to microinject algae, plant mitochondria, drugs or carcinogenic solutions followed by recording the native fluorescence spectra of these composites. This model can be used to spectroscopically monitor the pre-metabolic transitions in developing diseased cells such as a cancer. Knowing specific metabolic transitions could offer solutions to inhibit cancer or reverse it as well as many other diseases. In the present study a simple experiment was designed to test the feasibility of this unique new model by injecting algae and chloroplasts into amoeba. The nonradiative dynamics found from these composites are evidence in terms of the emission ratios between the intensities at 337nm and 419nm; and 684nm bands. There were reductions in the metabolic and photosynthetic processes in amoebae that were microinjected with chloroplasts and zoochlorellae as well of those amoebae that ingested the algae and chloroplasts. The changes in the intensity of the emissions of the peaks indicate that the zoochlorellae lived in the amoebae for ten days. Spectral changes in intensity under the UV and 633nm wavelength excitation are from the energy transfer of DNA and RNA, protein-bound chromophores and chlorophylls present in zoochlorellae undergoing photosynthesis. The fluorescence spectroscopic probes established the biochemical interplay between the cell organelles and the algae present in the cell cytoplasm. This hybrid state is indicative that a symbiotic system is in place and the results definitely support the potential use of this unique new model. This model many help in plant / animal and cancer processes.
Mulkerin, Daniel L; Bergsbaken, Jason J; Fischer, Jessica A; Mulkerin, Mary J; Bohler, Aaron M; Mably, Mary S
2016-10-01
Use of oral chemotherapy is expanding and offers advantages while posing unique safety challenges. ASCO and the Oncology Nursing Society jointly published safety standards for administering chemotherapy that offer a framework for improving oral chemotherapy practice at the University of Wisconsin Carbone Cancer Center. With the goal of improving safety, quality, and uniformity within our oral chemotherapy practice, we conducted a gap analysis comparing our practice against ASCO/Oncology Nursing Society guidelines. Areas for improvement were addressed by multidisciplinary workgroups that focused on education, workflows, and information technology. Recommendations and process changes included defining chemotherapy, standardizing patient and caregiver education, mandating the use of comprehensive electronic order sets, and standardizing documentation for dose modification. Revised processes allow pharmacists to review all orders for oral chemotherapy, and they support monitoring adherence and toxicity by using a library of scripted materials. Between August 2015 and January 2016, revised processes were implemented across the University of Wisconsin Carbone Cancer Center clinics. The following are key performance indicators: 92.5% of oral chemotherapy orders (n = 1,216) were initiated within comprehensive electronic order sets (N = 1,315), 89.2% compliance with informed consent was achieved, 14.7% of orders (n = 193) required an average of 4.4 minutes review time by the pharmacist, and 100% compliance with first-cycle monitoring of adherence and toxicity was achieved. We closed significant gaps between institutional practice and published standards for our oral chemotherapy practice and experienced steady improvement and sustainable performance in key metrics. We created an electronic definition of oral chemotherapies that allowed us to leverage our electronic health records. We believe our tools are broadly applicable.
Bergsbaken, Jason J.; Fischer, Jessica A.; Mulkerin, Mary J.; Bohler, Aaron M.; Mably, Mary S.
2016-01-01
Purpose: Use of oral chemotherapy is expanding and offers advantages while posing unique safety challenges. ASCO and the Oncology Nursing Society jointly published safety standards for administering chemotherapy that offer a framework for improving oral chemotherapy practice at the University of Wisconsin Carbone Cancer Center. Methods: With the goal of improving safety, quality, and uniformity within our oral chemotherapy practice, we conducted a gap analysis comparing our practice against ASCO/Oncology Nursing Society guidelines. Areas for improvement were addressed by multidisciplinary workgroups that focused on education, workflows, and information technology. Recommendations and process changes included defining chemotherapy, standardizing patient and caregiver education, mandating the use of comprehensive electronic order sets, and standardizing documentation for dose modification. Revised processes allow pharmacists to review all orders for oral chemotherapy, and they support monitoring adherence and toxicity by using a library of scripted materials. Results: Between August 2015 and January 2016, revised processes were implemented across the University of Wisconsin Carbone Cancer Center clinics. The following are key performance indicators: 92.5% of oral chemotherapy orders (n = 1,216) were initiated within comprehensive electronic order sets (N = 1,315), 89.2% compliance with informed consent was achieved, 14.7% of orders (n = 193) required an average of 4.4 minutes review time by the pharmacist, and 100% compliance with first-cycle monitoring of adherence and toxicity was achieved. Conclusion: We closed significant gaps between institutional practice and published standards for our oral chemotherapy practice and experienced steady improvement and sustainable performance in key metrics. We created an electronic definition of oral chemotherapies that allowed us to leverage our electronic health records. We believe our tools are broadly applicable. PMID:27858570
NASA Astrophysics Data System (ADS)
Wietsma, T. W.; Oostrom, M.; Foster, N. S.
2003-12-01
Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.
Contemplative Administration: Transforming the Workplace Culture of Higher Education
ERIC Educational Resources Information Center
Beer, Laura E.
2010-01-01
A contemplative approach to higher education is receiving increased attention and application in the classroom. Applying contemplative practices to administration, however, has received little attention in the literature. This case study offers a unique look at Naropa University and its implementation of contemplative administration. Findings…
Reflection in Medical Education
ERIC Educational Resources Information Center
Hargreaves, Ken
2016-01-01
This paper offers a medical-education perspective that I will hope complement other disciplinary perspectives in examining the value of reflection for learning in tertiary education. The paper outlines some of the theoretical strands of reflective practice facilitated in a unique course subject for professionalism and patient safety, within the…
Cluster Analysis of Adolescent Blogs
ERIC Educational Resources Information Center
Liu, Eric Zhi-Feng; Lin, Chun-Hung; Chen, Feng-Yi; Peng, Ping-Chuan
2012-01-01
Emerging web applications and networking systems such as blogs have become popular, and they offer unique opportunities and environments for learners, especially for adolescent learners. This study attempts to explore the writing styles and genres used by adolescents in their blogs by employing content, factor, and cluster analyses. Factor…
A Polarization Technique for Mitigating Low Grazing Angle Radar Sea Clutter
2017-03-03
alarm mitigation, low grazing angles, polarimetry , radar, sea clutter. I. INTRODUCTION Sea clutter poses unique challenges for maritime radars looking...radar polarimetry offers a practical means of robustly mitigating LGA sea clutter across a range of radar and environmental parameters, we stood up a
Innovative Voices in Education: Engaging Diverse Communities
ERIC Educational Resources Information Center
Kugler, Eileen Gale, Ed.
2012-01-01
Diverse schools offer enriched academic and social environments, as students and families of different backgrounds and experiences provide a vibrant mosaic of insights, perspectives, and skills. To take advantage of the unique opportunities that diversity brings, schools must value and effectively connect with students and families of all…
Learning Emotional Understanding and Emotion Regulation through Sibling Interaction
ERIC Educational Resources Information Center
Kramer, Laurie
2014-01-01
Research Findings: Young children's relationships with their sisters and brothers offer unique and important opportunities for learning about emotions and developing emotional understanding. Through a critical analysis, this article examines sibling interaction in 3 different but normative contexts (conflict/conflict management, play, and…
If Not Us, Who? Social Media Policy and the Ischool Classroom
ERIC Educational Resources Information Center
Nathan, Lisa P.; MacGougan, Alice; Shaffer, Elizabeth
2014-01-01
Social networking tools offer opportunities for innovative, participative pedagogical practice within traditional institutional frameworks. However, tensions continue to develop within this space: between creativity and security, personal and professional identity, privacy and openness. We argue that iSchools are uniquely positioned to create…
Indirect Cost Reimbursement: An Industrial View.
ERIC Educational Resources Information Center
Bolton, Robert
1987-01-01
The meaning of indirect costs in an industrial environment is discussed. Other factors considered are corporate policies; nature of work being supported; the uniqueness of the work; who is doing the negotiating for industry; and indirect rates. Suggestions are offered for approaches to indirect cost reimbursement. (Author/MLW)
USDA-ARS?s Scientific Manuscript database
Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. ...
Suggested Perspectives in Counseling the American Indian Client.
ERIC Educational Resources Information Center
Paisano-Suazo, Aleta
The standard western theoretical approach to mental health counseling is not applicable to the views held by Native American clients. Consideration must be given to their unique differences, if the therapist is to provide maximum effectiveness. Several perspectives offer alternative counseling procedures. For instance, Indians place great…
Creating University-Community Alliances to Build Internship Programs
ERIC Educational Resources Information Center
Perfect, Michelle M.; Schmitt, Ara J.; Hughes, Tammy L.; Herndon-Sobalvarro, Adrianna
2015-01-01
By bringing together a community of field-based practitioners, university faculty can help school districts develop accredited school psychology internships. This article describes the rationale for an increase in university involvement in the development of internships, offers considerations unique to schools when supporting the development of an…