Sample records for process parameters affecting

  1. Multi objective optimization model for minimizing production cost and environmental impact in CNC turning process

    NASA Astrophysics Data System (ADS)

    Widhiarso, Wahyu; Rosyidi, Cucuk Nur

    2018-02-01

    Minimizing production cost in a manufacturing company will increase the profit of the company. The cutting parameters will affect total processing time which then will affect the production cost of machining process. Besides affecting the production cost and processing time, the cutting parameters will also affect the environment. An optimization model is needed to determine the optimum cutting parameters. In this paper, we develop an optimization model to minimize the production cost and the environmental impact in CNC turning process. The model is used a multi objective optimization. Cutting speed and feed rate are served as the decision variables. Constraints considered are cutting speed, feed rate, cutting force, output power, and surface roughness. The environmental impact is converted from the environmental burden by using eco-indicator 99. Numerical example is given to show the implementation of the model and solved using OptQuest of Oracle Crystal Ball software. The results of optimization indicate that the model can be used to optimize the cutting parameters to minimize the production cost and the environmental impact.

  2. Optimisation of shock absorber process parameters using failure mode and effect analysis and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal

    2013-07-01

    The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.

  3. Multi-objective optimization model of CNC machining to minimize processing time and environmental impact

    NASA Astrophysics Data System (ADS)

    Hamada, Aulia; Rosyidi, Cucuk Nur; Jauhari, Wakhid Ahmad

    2017-11-01

    Minimizing processing time in a production system can increase the efficiency of a manufacturing company. Processing time are influenced by application of modern technology and machining parameter. Application of modern technology can be apply by use of CNC machining, one of the machining process can be done with a CNC machining is turning. However, the machining parameters not only affect the processing time but also affect the environmental impact. Hence, optimization model is needed to optimize the machining parameters to minimize the processing time and environmental impact. This research developed a multi-objective optimization to minimize the processing time and environmental impact in CNC turning process which will result in optimal decision variables of cutting speed and feed rate. Environmental impact is converted from environmental burden through the use of eco-indicator 99. The model were solved by using OptQuest optimization software from Oracle Crystal Ball.

  4. Investigation on influence of Wurster coating process parameters for the development of delayed release minitablets of Naproxen.

    PubMed

    Shah, Neha; Mehta, Tejal; Aware, Rahul; Shetty, Vasant

    2017-12-01

    The present work aims at studying process parameters affecting coating of minitablets (3 mm in diameter) through Wurster coating process. Minitablets of Naproxen with high drug loading were manufactured using 3 mm multi-tip punches. The release profile of core pellets (published) and minitablets was compared with that of marketed formulation. The core formulation of minitablets was found to show similarity in dissolution profile with marketed formulation and hence was further carried forward for functional coating over it. Wurster processing was implemented to pursue functional coating over core formulation. Different process parameters were screened and control strategy was applied for factors significantly affecting the process. Modified Plackett Burman Design was applied for studying important factors. Based on the significant factors and minimum level of coating required for functionalization, optimized process was executed. Final coated batch was evaluated for coating thickness, surface morphology, and drug release study.

  5. Diffusion Modelling Reveals the Decision Making Processes Underlying Negative Judgement Bias in Rats.

    PubMed

    Hales, Claire A; Robinson, Emma S J; Houghton, Conor J

    2016-01-01

    Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142), and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward.

  6. Terrestrial photovoltaic cell process testing

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1985-01-01

    The paper examines critical test parameters, criteria for selecting appropriate tests, and the use of statistical controls and test patterns to enhance PV-cell process test results. The coverage of critical test parameters is evaluated by examining available test methods and then screening these methods by considering the ability to measure those critical parameters which are most affected by the generic process, the cost of the test equipment and test performance, and the feasibility for process testing.

  7. Terrestrial photovoltaic cell process testing

    NASA Astrophysics Data System (ADS)

    Burger, D. R.

    The paper examines critical test parameters, criteria for selecting appropriate tests, and the use of statistical controls and test patterns to enhance PV-cell process test results. The coverage of critical test parameters is evaluated by examining available test methods and then screening these methods by considering the ability to measure those critical parameters which are most affected by the generic process, the cost of the test equipment and test performance, and the feasibility for process testing.

  8. Selection of Wire Electrical Discharge Machining Process Parameters on Stainless Steel AISI Grade-304 using Design of Experiments Approach

    NASA Astrophysics Data System (ADS)

    Lingadurai, K.; Nagasivamuni, B.; Muthu Kamatchi, M.; Palavesam, J.

    2012-06-01

    Wire electrical discharge machining (WEDM) is a specialized thermal machining process capable of accurately machining parts of hard materials with complex shapes. Parts having sharp edges that pose difficulties to be machined by the main stream machining processes can be easily machined by WEDM process. Design of Experiments approach (DOE) has been reported in this work for stainless steel AISI grade-304 which is used in cryogenic vessels, evaporators, hospital surgical equipment, marine equipment, fasteners, nuclear vessels, feed water tubing, valves, refrigeration equipment, etc., is machined by WEDM with brass wire electrode. The DOE method is used to formulate the experimental layout, to analyze the effect of each parameter on the machining characteristics, and to predict the optimal choice for each WEDM parameter such as voltage, pulse ON, pulse OFF and wire feed. It is found that these parameters have a significant influence on machining characteristic such as metal removal rate (MRR), kerf width and surface roughness (SR). The analysis of the DOE reveals that, in general the pulse ON time significantly affects the kerf width and the wire feed rate affects SR, while, the input voltage mainly affects the MRR.

  9. Identification of critical process variables affecting particle size following precipitation using a supercritical fluid.

    PubMed

    Sacha, Gregory A; Schmitt, William J; Nail, Steven L

    2006-01-01

    The critical processing parameters affecting average particle size, particle size distribution, yield, and level of residual carrier solvent using the supercritical anti-solvent method (SAS) were identified. Carbon dioxide was used as the supercritical fluid. Methylprednisolone acetate was used as the model solute in tetrahydrofuran. Parameters examined included pressure of the supercritical fluid, agitation rate, feed solution flow rate, impeller diameter, and nozzle design. Pressure was identified as the most important process parameter affecting average particle size, either through the effect of pressure on dispersion of the feed solution into the precipitation vessel or through the effect of pressure on solubility of drug in the CO2/organic solvent mixture. Agitation rate, impeller diameter, feed solution flow rate, and nozzle design had significant effects on particle size, which suggests that dispersion of the feed solution is important. Crimped HPLC tubing was the most effective method of introducing feed solution into the precipitation vessel, largely because it resulted in the least amount of clogging during the precipitation. Yields of 82% or greater were consistently produced and were not affected by the processing variables. Similarly, the level of residual solvent was independent of the processing variables and was present at 0.0002% wt/wt THF or less.

  10. Diffusion Modelling Reveals the Decision Making Processes Underlying Negative Judgement Bias in Rats

    PubMed Central

    Hales, Claire A.; Robinson, Emma S. J.; Houghton, Conor J.

    2016-01-01

    Human decision making is modified by emotional state. Rodents exhibit similar biases during interpretation of ambiguous cues that can be altered by affective state manipulations. In this study, the impact of negative affective state on judgement bias in rats was measured using an ambiguous-cue interpretation task. Acute treatment with an anxiogenic drug (FG7142), and chronic restraint stress and social isolation both induced a bias towards more negative interpretation of the ambiguous cue. The diffusion model was fit to behavioural data to allow further analysis of the underlying decision making processes. To uncover the way in which parameters vary together in relation to affective state manipulations, independent component analysis was conducted on rate of information accumulation and distances to decision threshold parameters for control data. Results from this analysis were applied to parameters from negative affective state manipulations. These projected components were compared to control components to reveal the changes in decision making processes that are due to affective state manipulations. Negative affective bias in rodents induced by either FG7142 or chronic stress is due to a combination of more negative interpretation of the ambiguous cue, reduced anticipation of the high reward and increased anticipation of the low reward. PMID:27023442

  11. Warpage improvement on wheel caster by optimizing the process parameters using genetic algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    In injection moulding process, the defects will always encountered and affected the final product shape and functionality. This study is concerning on minimizing warpage and optimizing the process parameter of injection moulding part. Apart from eliminating product wastes, this project also giving out best recommended parameters setting. This research studied on five parameters. The optimization showed that warpage have been improved 42.64% from 0.6524 mm to 0.30879 mm in Autodesk Moldflow Insight (AMI) simulation result and Genetic Algorithm (GA) respectively.

  12. 32 CFR 651.48 - Scoping process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... significantly affecting the environment will go through scoping unless extenuating circumstances make it... associated environmental controversy. (4) Importance of the affected environmental parameters. (5... the affected Army organization or installation. Such integration is encouraged. (f) Scoping procedures...

  13. Properties of pellets manufactured by wet extrusion/spheronization process using kappa-carrageenan: effect of process parameters.

    PubMed

    Thommes, Markus; Kleinebudde, Peter

    2007-11-09

    The aim of this study was to systematically evaluate the pelletization process parameters of kappa-carrageenan-containing formulations. The study dealt with the effect of 4 process parameters--screw speed, number of die holes, friction plate speed, and spheronizer temperature--on the pellet properties of shape, size, size distribution, tensile strength, and drug release. These parameters were varied systematically in a 2(4) full factorial design. In addition, 4 drugs--phenacetin, chloramphenicol, dimenhydrinate, and lidocaine hydrochloride--were investigated under constant process conditions. The most spherical pellets were achieved in a high yield by using a large number of die holes and a high spheronizer speed. There was no relevant influence of the investigated process parameters on the size distribution, mechanical stability, and drug release. The poorly soluble drugs, phenacetin and chloramphenicol, resulted in pellets with adequate shape, size, and tensile strength and a fast drug release. The salts of dimenhydrinate and lidocaine affected pellet shape, mechanical stability, and the drug release properties using an aqueous solution of pH 3 as a granulation liquid. In the case of dimenhydrinate, this was attributed to the ionic interactions with kappa-carrageenan, resulting in a stable matrix during dissolution that did not disintegrate. The effect of lidocaine is comparable to the effect of sodium ions, which suppress the gelling of carrageenan, resulting in pellets with fast disintegration and drug release characteristics. The pellet properties are affected by the process parameters and the active pharmaceutical ingredient used.

  14. Catchment process affecting drinking water quality, including the significance of rainfall events, using factor analysis and event mean concentrations.

    PubMed

    Cinque, Kathy; Jayasuriya, Niranjali

    2010-12-01

    To ensure the protection of drinking water an understanding of the catchment processes which can affect water quality is important as it enables targeted catchment management actions to be implemented. In this study factor analysis (FA) and comparing event mean concentrations (EMCs) with baseline values were techniques used to asses the relationships between water quality parameters and linking those parameters to processes within an agricultural drinking water catchment. FA found that 55% of the variance in the water quality data could be explained by the first factor, which was dominated by parameters usually associated with erosion. Inclusion of pathogenic indicators in an additional FA showed that Enterococcus and Clostridium perfringens (C. perfringens) were also related to the erosion factor. Analysis of the EMCs found that most parameters were significantly higher during periods of rainfall runoff. This study shows that the most dominant processes in an agricultural catchment are surface runoff and erosion. It also shows that it is these processes which mobilise pathogenic indicators and are therefore most likely to influence the transport of pathogens. Catchment management efforts need to focus on reducing the effect of these processes on water quality.

  15. Dimensionless Analysis and Mathematical Modeling of Electromagnetic Levitation (EML) of Metals

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Shi, Zhe; Li, Donghui; Yang, Yindong; Zhang, Guifang; McLean, Alexander; Chattopadhyay, Kinnor

    2016-02-01

    Electromagnetic levitation (EML), a contactless metal melting method, can be used to produce ultra-pure metals and alloys. In the EML process, the levitation force exerted on the droplet is of paramount importance and is affected by many parameters. In this paper, the relationship between levitation force and parameters affecting the levitation process were investigated by dimensionless analysis. The general formula developed by dimensionless analysis was tested and evaluated by numerical modeling. This technique can be employed to design levitation systems for a variety of materials.

  16. Optimisation on processing parameters for minimising warpage on side arm using response surface methodology (RSM) and particle swarm optimisation (PSO)

    NASA Astrophysics Data System (ADS)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Sazli, M.; Yahya, Z. R.

    2017-09-01

    This study presents the application of optimisation method to reduce the warpage of side arm part. Autodesk Moldflow Insight software was integrated into this study to analyse the warpage. The design of Experiment (DOE) for Response Surface Methodology (RSM) was constructed and by using the equation from RSM, Particle Swarm Optimisation (PSO) was applied. The optimisation method will result in optimised processing parameters with minimum warpage. Mould temperature, melt temperature, packing pressure, packing time and cooling time was selected as the variable parameters. Parameters selection was based on most significant factor affecting warpage stated by previous researchers. The results show that warpage was improved by 28.16% for RSM and 28.17% for PSO. The warpage improvement in PSO from RSM is only by 0.01 %. Thus, the optimisation using RSM is already efficient to give the best combination parameters and optimum warpage value for side arm part. The most significant parameters affecting warpage are packing pressure.

  17. Analyzing parameters optimisation in minimising warpage on side arm using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    This paper presents a systematic methodology to analyse the warpage of the side arm part using Autodesk Moldflow Insight software. Response Surface Methodology (RSM) was proposed to optimise the processing parameters that will result in optimal solutions by efficiently minimising the warpage of the side arm part. The variable parameters considered in this study was based on most significant parameters affecting warpage stated by previous researchers, that is melt temperature, mould temperature and packing pressure while adding packing time and cooling time as these is the commonly used parameters by researchers. The results show that warpage was improved by 10.15% and the most significant parameters affecting warpage are packing pressure.

  18. The impact of semen processing on sperm parameters and pregnancy rates after intrauterine insemination.

    PubMed

    Ruiter-Ligeti, Jacob; Agbo, Chioma; Dahan, Michael

    2017-06-01

    The objective of this retrospective study was to evaluate the effect of semen processing on computer analyzed semen parameters and pregnancy rates after intrauterine insemination (IUI). Over a two-year period, a total of 981 couples undergoing 2231 IUI cycles were evaluated and the freshly collected non-donor semen was analyzed before and after density gradient centrifugation (DGC). DGC led to significant increases in sperm concentration by 66±74 ×106/mL (P=0.0001), percentage of motile sperm by 24±22% (P=0.0001), concentration motile by 27±58 ×106/mL (P=0.0001), and forward sperm progression by 18±14 µ/s (P=0.0001). In 95% of cases, there was a decrease in the total motile sperm count (TMSC), with an average decrease of 50±124% compared to pre-processed samples (P=0.0001). Importantly, the decrease in TMSC did not negatively affect pregnancy rates (P=0.45). This study proves that DGC leads to significant increases in most sperm parameters, with the exception of TMSC. Remarkably, the decrease in TMSC did not affect the pregnancy rate. This should reassure clinicians when the TMSC is negatively affected by processing.

  19. Influence of physicochemical parameters and high pressure processing on the volatile compounds of Serrano dry-cured ham after prolonged refrigerated storage.

    PubMed

    Martínez-Onandi, N; Rivas-Cañedo, A; Picon, A; Nuñez, M

    2016-12-01

    One hundred and three volatile compounds were detected by solid-phase microextraction followed by gas chromatography-mass spectrometry in 30 ripened Serrano dry-cured hams, submitted or not to high pressure processing (HPP) and afterwards held for 5months at 4°C. The effect of ham physicochemical parameters and HPP (600MPa for 6min) on volatile compounds was assessed. Physicochemical parameters primarily affected the levels of acids, alcohols, alkanes, esters, benzene compounds, sulfur compounds and some miscellaneous compounds. Intramuscular fat content was the physicochemical parameter with the most pronounced effect on the volatile fraction of untreated Serrano ham after refrigerated storage, influencing the levels of 38 volatile compounds while aw, salt content and salt-in-lean ratio respectively influenced the levels of 4, 4 and 5 volatile compounds. HPP treatment affected 21 volatile compounds, resulting in higher levels of alkanes and ketones and lower levels of esters and secondary alcohols, what might affect Serrano ham odor and aroma after 5months of refrigerated storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An Evaluation of Compressed Work Schedules and Their Impact on Electricity Use

    DTIC Science & Technology

    2010-03-01

    problems by introducing uncertainty to the known parameters of a given process ( Sobol , 1975). The MCS output represents approximate values of the...process within the observed parameters; the output is provided within a statistical distribution of likely outcomes ( Sobol , 1975). 31 In this...The Monte Carlo method is appropriate for “any process whose development is affected by random factors” ( Sobol , 1975:10). MCS introduces

  1. Taguchi Method Applied in Optimization of Shipley SJR 5740 Positive Resist Deposition

    NASA Technical Reports Server (NTRS)

    Hui, A.; Blosiu, J. O.; Wiberg, D. V.

    1998-01-01

    Taguchi Methods of Robust Design presents a way to optimize output process performance through an organized set of experiments by using orthogonal arrays. Analysis of variance and signal-to-noise ratio is used to evaluate the contribution of each of the process controllable parameters in the realization of the process optimization. In the photoresist deposition process, there are numerous controllable parameters that can affect the surface quality and thickness of the final photoresist layer.

  2. Investigation into the influence of build parameters on failure of 3D printed parts

    NASA Astrophysics Data System (ADS)

    Fornasini, Giacomo

    Additive manufacturing, including fused deposition modeling (FDM), is transforming the built world and engineering education. Deep understanding of parts created through FDM technology has lagged behind its adoption in home, work, and academic environments. Properties of parts created from bulk materials through traditional manufacturing are understood well enough to accurately predict their behavior through analytical models. Unfortunately, Additive Manufacturing (AM) process parameters create anisotropy on a scale that fundamentally affects the part properties. Understanding AM process parameters (implemented by program algorithms called slicers) is necessary to predict part behavior. Investigating algorithms controlling print parameters (slicers) revealed stark differences between the generation of part layers. In this work, tensile testing experiments, including a full factorial design, determined that three key factors, width, thickness, infill density, and their interactions, significantly affect the tensile properties of 3D printed test samples.

  3. Effect of Surface Tension Anisotropy and Welding Parameters on Initial Instability Dynamics During Solidification: A Phase-Field Study

    NASA Astrophysics Data System (ADS)

    Yu, Fengyi; Wei, Yanhong

    2018-05-01

    The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.

  4. An Investigation of TIG welding parameters on microhardness and microstructure of heat affected zone of HSLA steel

    NASA Astrophysics Data System (ADS)

    Musa, M. H. A.; Maleque, M. A.; Ali, M. Y.

    2018-01-01

    Nowadays a wide variety of metal joining methods are used in fabrication industries. In this study, the effect of various welding parameters of the TIG welding process on microhardness, depth, and microstructure of the heat-affected zone (HAZ) of L450 HSLA steel and optimizing these process parameters following Taguchi experimental design was investigated. The microhardness tended to increase significantly with the increase of welding speed from 1.0 to 2.5 mm/s whereas the width of HAZ decreased. The current and arc voltage was found to be less significant in relative comparison. Microstructures of the welded samples were also studied to analyze the changes in the microstructure of the material in terms of ferrite, pearlite, bainite, and martensite formations. Welding speed was found to be the most significant factors leading to changes in microhardness and metallurgical properties. The increase of welding heat input caused an increase in width (depth) of HAZ and the growth of prior austenite grains and then enlarged the grain size of coarse grain heat affected zone (CGHAZ). However, the amount of martensite in the HAZ decreased accompanied by an opposite change of paint. It was observed that the hardness properties and the microstructural feature of HAZ area was strongly affected by the welding parameters.

  5. Effects Of Thermal Exchange On Material Flow During Steel Thixoextrusion Process

    NASA Astrophysics Data System (ADS)

    Eric, Becker; Guochao, Gu; Laurent, Langlois; Raphaël, Pesci; Régis, Bigot

    2011-01-01

    Semisolid processing is an innovative technology for near net-shape production of components, where the metallic alloys are processed in the semisolid state. Taking advantage of the thixotropic behavior of alloys in the semisolid state, significant progress has been made in semisolid processing. However, the consequences of such behavior on the flow during thixoforming are still not completely understood. To explore and better understand the influence of the different parameters on material flow during thixoextrusion process, thixoextrusion experiments were performed using the low carbon steel C38. The billet was partially melted at high solid fraction. Effects of various process parameters including the initial billet temperature, the temperature of die, the punch speed during process and the presence of a Ceraspray layer at the interface of tool and billet were investigated through experiments and simulation. After analyzing the results thus obtained, it was identified that the aforementioned parameters mainly affect thermal exchanges between die and part. The Ceraspray layer not only plays a lubricant role, but also acts as a thermal barrier at the interface of tool and billet. Furthermore, the thermal effects can affect the material flow which is composed of various distinct zones.

  6. Simulating soil moisture change in a semiarid rangeland watershed with a process-based water-balance model

    Treesearch

    Howard Evan Canfield; Vicente L. Lopes

    2000-01-01

    A process-based, simulation model for evaporation, soil water and streamflow (BROOK903) was used to estimate soil moisture change on a semiarid rangeland watershed in southeastern Arizona. A sensitivity analysis was performed to select parameters affecting ET and soil moisture for calibration. Automatic parameter calibration was performed using a procedure based on a...

  7. Comparison of two methods for calculating the P sorption capacity parameter in soils

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) cycling in soils is an important process affecting P movement through the landscape. The P cycling routines in many computer models are based on the relationships developed for the EPIC model. An important parameter required for this model is the P sorption capacity parameter (PSP). I...

  8. Optimization of Gas Metal Arc Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  9. Effects of the Deslagging Process on some Physicochemical Parameters of Honey

    PubMed Central

    Ranjbar, Ali Mohammad; Sadeghpour, Omid; Khanavi, Mahnaz; Shams Ardekani, Mohammad Reza; Moloudian, Hamid; Hajimahmoodi, Mannan

    2015-01-01

    Some physicochemical parameters of honey have been introduced by the International Honey Commission to evaluate its quality and origin but processes such as heating and filtering can affect these parameters. In traditional Iranian medicine, deslagging process involves boiling honey in an equal volume of water and removing the slag formed during process. The aim of this study was to determine the effects of deslagging process on parameters of color intensity, diastase evaluation, electrical conductivity, pH, free acidity, refractive index, hydroxy methyl furfural (HMF), proline and water contents according to the International Honey Committee (IHC) standards. The results showed that deslagged honey was significantly different from control honey in terms of color intensity, pH, diastase number, HMF and proline content. It can be concluded that the new standards are needed to regulate deslagged honey. PMID:25901175

  10. Stability of Intercellular Exchange of Biochemical Substances Affected by Variability of Environmental Parameters

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Budinčević, Mirko; Balaž, Igor; Mihailović, Anja

    Communication between cells is realized by exchange of biochemical substances. Due to internal organization of living systems and variability of external parameters, the exchange is heavily influenced by perturbations of various parameters at almost all stages of the process. Since communication is one of essential processes for functioning of living systems it is of interest to investigate conditions for its stability. Using previously developed simplified model of bacterial communication in a form of coupled difference logistic equations we investigate stability of exchange of signaling molecules under variability of internal and external parameters.

  11. Effect of Burnishing Parameters on Surface Finish

    NASA Astrophysics Data System (ADS)

    Shirsat, Uddhav; Ahuja, Basant; Dhuttargaon, Mukund

    2017-08-01

    Burnishing is cold working process in which hard balls are pressed against the surface, resulting in improved surface finish. The surface gets compressed and then plasticized. This is a highly finishing process which is becoming more popular. Surface quality of the product improves its aesthetic appearance. The product made up of aluminum material is subjected to burnishing process during which kerosene is used as a lubricant. In this study factors affecting burnishing process such as burnishing force, speed, feed, work piece diameter and ball diameter are considered as input parameters while surface finish is considered as an output parameter In this study, experiments are designed using 25 factorial design in order to analyze the relationship between input and output parameters. The ANOVA technique and F-test are used for further analysis.

  12. Process Parameter Optimization for Wobbling Laser Spot Welding of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Vakili-Farahani, F.; Lungershausen, J.; Wasmer, K.

    Laser beam welding (LBW) coupled with "wobble effect" (fast oscillation of the laser beam) is very promising for high precision micro-joining industry. For this process, similarly to the conventional LBW, the laser welding process parameters play a very significant role in determining the quality of a weld joint. Consequently, four process parameters (laser power, wobble frequency, number of rotations within a single laser pulse and focused position) and 5 responses (penetration, width, heat affected zone (HAZ), area of the fusion zone, area of HAZ and hardness) were investigated for spot welding of Ti6Al4V alloy (grade 5) using a design of experiments (DoE) approach. This paper presents experimental results showing the effects of variating the considered most important process parameters on the spot weld quality of Ti6Al4V alloy. Semi-empirical mathematical models were developed to correlate laser welding parameters to each of the measured weld responses. Adequacies of the models were then examined by various methods such as ANOVA. These models not only allows a better understanding of the wobble laser welding process and predict the process performance but also determines optimal process parameters. Therefore, optimal combination of process parameters was determined considering certain quality criteria set.

  13. Minimizing energy dissipation of matrix multiplication kernel on Virtex-II

    NASA Astrophysics Data System (ADS)

    Choi, Seonil; Prasanna, Viktor K.; Jang, Ju-wook

    2002-07-01

    In this paper, we develop energy-efficient designs for matrix multiplication on FPGAs. To analyze the energy dissipation, we develop a high-level model using domain-specific modeling techniques. In this model, we identify architecture parameters that significantly affect the total energy (system-wide energy) dissipation. Then, we explore design trade-offs by varying these parameters to minimize the system-wide energy. For matrix multiplication, we consider a uniprocessor architecture and a linear array architecture to develop energy-efficient designs. For the uniprocessor architecture, the cache size is a parameter that affects the I/O complexity and the system-wide energy. For the linear array architecture, the amount of storage per processing element is a parameter affecting the system-wide energy. By using maximum amount of storage per processing element and minimum number of multipliers, we obtain a design that minimizes the system-wide energy. We develop several energy-efficient designs for matrix multiplication. For example, for 6×6 matrix multiplication, energy savings of upto 52% for the uniprocessor architecture and 36% for the linear arrary architecture is achieved over an optimized library for Virtex-II FPGA from Xilinx.

  14. How does the host population's network structure affect the estimation accuracy of epidemic parameters?

    NASA Astrophysics Data System (ADS)

    Yashima, Kenta; Ito, Kana; Nakamura, Kazuyuki

    2013-03-01

    When an Infectious disease where to prevail throughout the population, epidemic parameters such as the basic reproduction ratio, initial point of infection etc. are estimated from the time series data of infected population. However, it is unclear how does the structure of host population affects this estimation accuracy. In other words, what kind of city is difficult to estimate its epidemic parameters? To answer this question, epidemic data are simulated by constructing a commuting network with different network structure and running the infection process over this network. From the given time series data for each network structure, we would like to analyzed estimation accuracy of epidemic parameters.

  15. Analyzing the Effect of Spinning Process Variables on Draw Frame Blended Cotton Mélange Yarn Quality

    NASA Astrophysics Data System (ADS)

    Ray, Suchibrata; Ghosh, Anindya; Banerjee, Debamalya

    2018-06-01

    An investigation has been made to study the effect of important spinning process variables namely shade depth, ring frame spindle speed and yarn twist multiplier (TM) on various yarn quality parameters like unevenness, strength, imperfection, elongation at break and hairiness index of draw frame blended cotton mélange yarn. Three factors Box and Behnken design of experiment has been used to conduct the study. The quadratic regression model is used to device the statistical inferences about sensitivity of the yarn quality parameters to the different process variables. The response surfaces are constructed for depicting the geometric representation of yarn quality parameters plotted as a function of process variables. Analysis of the results show that yarn strength of draw frame blended cotton mélange yarn is significantly affected by shade depth and TM. Yarn unevenness is affected by shade depth and ring frame spindle speed. Yarn imperfection level is mainly influenced by the shade depth and spindle speed. The shade depth and yarn TM have shown significant impact on yarn hairiness index.

  16. Analyzing the Effect of Spinning Process Variables on Draw Frame Blended Cotton Mélange Yarn Quality

    NASA Astrophysics Data System (ADS)

    Ray, Suchibrata; Ghosh, Anindya; Banerjee, Debamalya

    2017-12-01

    An investigation has been made to study the effect of important spinning process variables namely shade depth, ring frame spindle speed and yarn twist multiplier (TM) on various yarn quality parameters like unevenness, strength, imperfection, elongation at break and hairiness index of draw frame blended cotton mélange yarn. Three factors Box and Behnken design of experiment has been used to conduct the study. The quadratic regression model is used to device the statistical inferences about sensitivity of the yarn quality parameters to the different process variables. The response surfaces are constructed for depicting the geometric representation of yarn quality parameters plotted as a function of process variables. Analysis of the results show that yarn strength of draw frame blended cotton mélange yarn is significantly affected by shade depth and TM. Yarn unevenness is affected by shade depth and ring frame spindle speed. Yarn imperfection level is mainly influenced by the shade depth and spindle speed. The shade depth and yarn TM have shown significant impact on yarn hairiness index.

  17. Parameters of Emotional Processing in Neuropsychiatric Disorders: Conceptual Issues and a Battery of Tests.

    ERIC Educational Resources Information Center

    Borod, Joan C.; And Others

    1990-01-01

    Components of emotional processing (communication channel, processing mode, and emotional valence) were examined in psychiatric and neurological populations, using an experimental affect battery. The test battery exhibited good psychometric properties and discriminated among diagnostic groups. (Author/JDD)

  18. The effect of reaction conditions on formation of wet precipitated calcium phosphates

    NASA Astrophysics Data System (ADS)

    Huang, Chen; Cao, Peng

    2015-03-01

    The precipitation process discussed in the present study involves the addition of alkaline solutions to an acidic calcium phosphate suspension. Several parameters (pH, pH buffer reagent, ageing and stirring) were investigated. The synthesized powders were calcined at 1000°C for 1 h in air, in order to study the thermal stability and crystalline phase compositions. X-ray diffraction (XRD) and ESEM analysis were used for sample characterization. It is found that all these processing parameters affect the crystalline phases evolved and resultant microstructures. Phase evolution occurred at an elevated pH level. The pH buffer reagent would affect both the phase composition and microstructure. Ageing was essential for the phase maturation. Stirring accelerated the reaction process by providing a homogeneous medium for precipitation.

  19. Experimental investigations on the effect of process parameters with the use of minimum quantity solid lubrication in turning

    NASA Astrophysics Data System (ADS)

    Makhesana, Mayur A.; Patel, K. M.; Mawandiya, B. K.

    2018-04-01

    Turning process is a very basic process in any field of mechanical application. During turning process, most of the energy is converted into heat because of the friction between work piece and tool. Heat generation can affect the surface quality of the work piece and tool life. To reduce the heat generation, Conventional Lubrication process is used in most of the industry. Minimum quantity lubrication has been an effective alternative to improve the performance of machining process. In this present work, effort has been made to study the effect of various process parameters on the surface roughness and power consumption during turning of EN8 steel material. Result revealed the effect of depth of cut and feed on the obtained surface roughness value. Further the effect of solid lubricant has been also studied and optimization of process parameters is also done for the turning process.

  20. Effect of internal and external conditions on ionization processes in the FAPA ambient desorption/ionization source.

    PubMed

    Orejas, Jaime; Pfeuffer, Kevin P; Ray, Steven J; Pisonero, Jorge; Sanz-Medel, Alfredo; Hieftje, Gary M

    2014-11-01

    Ambient desorption/ionization (ADI) sources coupled to mass spectrometry (MS) offer outstanding analytical features: direct analysis of real samples without sample pretreatment, combined with the selectivity and sensitivity of MS. Since ADI sources typically work in the open atmosphere, ambient conditions can affect the desorption and ionization processes. Here, the effects of internal source parameters and ambient humidity on the ionization processes of the flowing atmospheric pressure afterglow (FAPA) source are investigated. The interaction of reagent ions with a range of analytes is studied in terms of sensitivity and based upon the processes that occur in the ionization reactions. The results show that internal parameters which lead to higher gas temperatures afforded higher sensitivities, although fragmentation is also affected. In the case of humidity, only extremely dry conditions led to higher sensitivities, while fragmentation remained unaffected.

  1. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    PubMed

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results found in literatures.

  2. Fusiform Gyrus Dysfunction is Associated with Perceptual Processing Efficiency to Emotional Faces in Adolescent Depression: A Model-Based Approach.

    PubMed

    Ho, Tiffany C; Zhang, Shunan; Sacchet, Matthew D; Weng, Helen; Connolly, Colm G; Henje Blom, Eva; Han, Laura K M; Mobayed, Nisreen O; Yang, Tony T

    2016-01-01

    While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed.

  3. Fusiform Gyrus Dysfunction is Associated with Perceptual Processing Efficiency to Emotional Faces in Adolescent Depression: A Model-Based Approach

    PubMed Central

    Ho, Tiffany C.; Zhang, Shunan; Sacchet, Matthew D.; Weng, Helen; Connolly, Colm G.; Henje Blom, Eva; Han, Laura K. M.; Mobayed, Nisreen O.; Yang, Tony T.

    2016-01-01

    While the extant literature has focused on major depressive disorder (MDD) as being characterized by abnormalities in processing affective stimuli (e.g., facial expressions), little is known regarding which specific aspects of cognition influence the evaluation of affective stimuli, and what are the underlying neural correlates. To investigate these issues, we assessed 26 adolescents diagnosed with MDD and 37 well-matched healthy controls (HCL) who completed an emotion identification task of dynamically morphing faces during functional magnetic resonance imaging (fMRI). We analyzed the behavioral data using a sequential sampling model of response time (RT) commonly used to elucidate aspects of cognition in binary perceptual decision making tasks: the Linear Ballistic Accumulator (LBA) model. Using a hierarchical Bayesian estimation method, we obtained group-level and individual-level estimates of LBA parameters on the facial emotion identification task. While the MDD and HCL groups did not differ in mean RT, accuracy, or group-level estimates of perceptual processing efficiency (i.e., drift rate parameter of the LBA), the MDD group showed significantly reduced responses in left fusiform gyrus compared to the HCL group during the facial emotion identification task. Furthermore, within the MDD group, fMRI signal in the left fusiform gyrus during affective face processing was significantly associated with greater individual-level estimates of perceptual processing efficiency. Our results therefore suggest that affective processing biases in adolescents with MDD are characterized by greater perceptual processing efficiency of affective visual information in sensory brain regions responsible for the early processing of visual information. The theoretical, methodological, and clinical implications of our results are discussed. PMID:26869950

  4. The effect of process parameters on Twin Wire Arc spray pattern shape

    DOE PAGES

    Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne

    2015-04-20

    A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less

  5. The effect of process parameters on Twin Wire Arc spray pattern shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne

    A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less

  6. Evolution of process control parameters during extended co-composting of green waste and solid fraction of cattle slurry to obtain growing media.

    PubMed

    Cáceres, Rafaela; Coromina, Narcís; Malińska, Krystyna; Marfà, Oriol

    2015-03-01

    This study aimed to monitor process parameters when two by-products (green waste - GW, and the solid fraction of cattle slurry - SFCS) were composted to obtain growing media. Using compost in growing medium mixtures involves prolonged composting processes that can last at least half a year. It is therefore crucial to study the parameters that affect compost stability as measured in the field in order to shorten the composting process at composting facilities. Two mixtures were prepared: GW25 (25% GW and 75% SFCS, v/v) and GW75 (75% GW and 25% SFCS, v/v). The different raw mixtures resulted in the production of two different growing media, and the evolution of process management parameters was different. A new parameter has been proposed to deal with attaining the thermophilic temperature range and maintaining it during composting, not only it would be useful to optimize composting processes, but also to assess the hygienization degree. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A parametric numerical study of mixing in a cylindrical duct

    NASA Astrophysics Data System (ADS)

    Oechsle, V. L.; Mongia, H. C.; Holderman, J. D.

    1992-07-01

    The interaction is described of some of the important parameters affecting the mixing process in a quick mixing region of a rich burn/quick mix/lean burn (RQL) combustor. The performance of the quick mixing region is significantly affected by the geometric designs of both the mixing domain and the jet inlet orifices. Several of the important geometric parameters and operating conditions affecting the mixing process were analytically studied. Parameters such as jet-to-mainstream momentum flux ratio (J), mass flow ratio (MR), orifice geometry, orifice orientation, and number of orifices/row (equally spaced around the circumferential direction were analyzed. Three different sets of orifice shapes were studied: (1) square, (2) elongated slots, and (3) equilateral triangles. Based on the analytical results, the best mixing configuration depends significantly on the penetration depth of the jet to prevent the hot mainstream flow from being entrained behind the orifice. The structure in a circular mixing section is highly weighted toward the outer wall and any mixing structure affecting this area significantly affects the overall results. The increase in the number of orifices per row increases the mixing at higher J conditions. Higher slot slant angles and aspect ratios are generally the best mixing configurations at higher momentum flux ratio (J) conditions. However, the square and triangular shaped orifices were more effective mixing configurations at lower J conditions.

  8. The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy

    NASA Astrophysics Data System (ADS)

    Yang, Ling

    The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta phase on grain boundaries. Effort was made to explore the mechanisms of improving the time dependent crack propagation resistance through thermal processing, several mechanisms were identified in both environment dependent and environment independent category, and they were ranked based on their contributions in affecting crack propagation.

  9. High pressure processing's potential to inactivate norovirus and other fooodborne viruses

    USDA-ARS?s Scientific Manuscript database

    High pressure processing (HPP) can inactivate human norovirus. However, all viruses are not equally susceptible to HPP. Pressure treatment parameters such as required pressure levels, initial pressurization temperatures, and pressurization times substantially affect inactivation. How food matrix ...

  10. The effect of pelleting on in situ rumen degradability of compound feed containing brown rice for dairy cows.

    PubMed

    Tagawa, Shin-Ichi; Yoshida, Norio; Iino, Yukihiro; Horiguchi, Ken-Ichi; Takahashi, Toshiyoshi; Watanabe, Maria; Takemura, Kei; Ito, Syuhei; Mikami, Toyoji

    2017-01-01

    This study was conducted to determine the effect of pelleting on in situ dry matter degradability of pelleted compound feed containing brown rice for dairy cows. Mash feed of the same composition was used as a control and the in situ study was conducted using three non-lactating Holstein steers fitted with a rumen cannula. The feeds contained 32.3% brown rice, 19.4% rapeseed meal, 11.4% wheat bran and 10.6% soybean meal (fresh weight basis). Except for moisture content, the chemical composition of the feed was not affected by pelleting. In situ dry matter disappearance of the feed increased from 0 to 2 h and after 72 h of incubation with pellet processing. Integration of the dry matter disappearance values over time revealed that degradability parameter a (soluble fraction) increased with pellet processing, whereas parameter b (potentially degradable fraction) decreased. Parameter c (fractional rate of degradation) and effective degradability (5% passage rate) were not affected by pellet processing. We concluded that pellet processing promotes rumen degradability at early incubation hours when the pelleted feed contains brown rice. © 2016 Japanese Society of Animal Science.

  11. Optimum Design of Forging Process Parameters and Preform Shape under Uncertainties

    NASA Astrophysics Data System (ADS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2004-06-01

    Forging is a highly complex non-linear process that is vulnerable to various uncertainties, such as variations in billet geometry, die temperature, material properties, workpiece and forging equipment positional errors and process parameters. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion and production risk. Identifying the sources of uncertainties, quantifying and controlling them will reduce risk in the manufacturing environment, which will minimize the overall cost of production. In this paper, various uncertainties that affect forging tool life and preform design are identified, and their cumulative effect on the forging process is evaluated. Since the forging process simulation is computationally intensive, the response surface approach is used to reduce time by establishing a relationship between the system performance and the critical process design parameters. Variability in system performance due to randomness in the parameters is computed by applying Monte Carlo Simulations (MCS) on generated Response Surface Models (RSM). Finally, a Robust Methodology is developed to optimize forging process parameters and preform shape. The developed method is demonstrated by applying it to an axisymmetric H-cross section disk forging to improve the product quality and robustness.

  12. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.

    2015-12-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.

  13. Toward a model-based cognitive neuroscience of mind wandering.

    PubMed

    Hawkins, G E; Mittner, M; Boekel, W; Heathcote, A; Forstmann, B U

    2015-12-03

    People often "mind wander" during everyday tasks, temporarily losing track of time, place, or current task goals. In laboratory-based tasks, mind wandering is often associated with performance decrements in behavioral variables and changes in neural recordings. Such empirical associations provide descriptive accounts of mind wandering - how it affects ongoing task performance - but fail to provide true explanatory accounts - why it affects task performance. In this perspectives paper, we consider mind wandering as a neural state or process that affects the parameters of quantitative cognitive process models, which in turn affect observed behavioral performance. Our approach thus uses cognitive process models to bridge the explanatory divide between neural and behavioral data. We provide an overview of two general frameworks for developing a model-based cognitive neuroscience of mind wandering. The first approach uses neural data to segment observed performance into a discrete mixture of latent task-related and task-unrelated states, and the second regresses single-trial measures of neural activity onto structured trial-by-trial variation in the parameters of cognitive process models. We discuss the relative merits of the two approaches, and the research questions they can answer, and highlight that both approaches allow neural data to provide additional constraint on the parameters of cognitive models, which will lead to a more precise account of the effect of mind wandering on brain and behavior. We conclude by summarizing prospects for mind wandering as conceived within a model-based cognitive neuroscience framework, highlighting the opportunities for its continued study and the benefits that arise from using well-developed quantitative techniques to study abstract theoretical constructs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Reynolds, Anthony

    2015-05-25

    Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient atmore » the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.« less

  15. Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Upadhyay, Piyush; Reynolds, Anthony P.

    2015-05-01

    Process design and implementation in friction-stir welding (FSW) is mostly dependent on empirical information. Basic science of FSW and processing can only be complete when fundamental interrelationships between the process control parameters and response variables and the resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters such as tool rotation, translation rates, and forge axis force have complicated and interactive relationships to process-response variables such as peak temperature and time at temperature. Of primary influence on the other process-response parameters are temperature and its gradient in the deformation and heat-affected zones. Through a review of pertinent works in the literature and results from boundary condition experiments performed in precipitation-hardening aluminum alloys, this article partially elucidates the nature and effects of temperature transients caused by variation of thermal boundaries in FSW.

  16. EVALUATION OF BIOMASS REACTIVITY IN HYDROGASIFICATION FOR THE HYNOL PROCESS

    EPA Science Inventory

    The report gives results of an evaluation of the reactivity of poplar wood in hydrogasification under the operating conditions specific for the Hynol process, using a thermobalance reactor. Parameters affecting gasification behavior (e.g., gas velocity, particle size, system pres...

  17. Visual and Auditory Components in the Perception of Asynchronous Audiovisual Speech

    PubMed Central

    Alcalá-Quintana, Rocío

    2015-01-01

    Research on asynchronous audiovisual speech perception manipulates experimental conditions to observe their effects on synchrony judgments. Probabilistic models establish a link between the sensory and decisional processes underlying such judgments and the observed data, via interpretable parameters that allow testing hypotheses and making inferences about how experimental manipulations affect such processes. Two models of this type have recently been proposed, one based on independent channels and the other using a Bayesian approach. Both models are fitted here to a common data set, with a subsequent analysis of the interpretation they provide about how experimental manipulations affected the processes underlying perceived synchrony. The data consist of synchrony judgments as a function of audiovisual offset in a speech stimulus, under four within-subjects manipulations of the quality of the visual component. The Bayesian model could not accommodate asymmetric data, was rejected by goodness-of-fit statistics for 8/16 observers, and was found to be nonidentifiable, which renders uninterpretable parameter estimates. The independent-channels model captured asymmetric data, was rejected for only 1/16 observers, and identified how sensory and decisional processes mediating asynchronous audiovisual speech perception are affected by manipulations that only alter the quality of the visual component of the speech signal. PMID:27551361

  18. Study on residual stresses in ultrasonic torsional vibration assisted micro-milling

    NASA Astrophysics Data System (ADS)

    Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing

    2010-10-01

    It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.

  19. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  20. Effect of Voltage and Flow Rate Electrospinning Parameters on Polyacrylonitrile Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Bakar, S. S. S.; Fong, K. C.; Eleyas, A.; Nazeri, M. F. M.

    2018-03-01

    Currently, electrospinning is a very famous technique and widely used for forming polymer nanofibers. In this paper, the Polyacrylonitrile (PAN) nanofibers were prepared in concentration of 10wt% with varied processing parameters that can affect the properties of PAN fiber in term of fiber diameter and electrical conductivity was presented. Voltage of 10, 15 and 20 kV with PAN flow rate of 1 electrospun PAN fibers were then undergo pyrolysis at 800°C for 30 minutes. The resultant PAN nanofibers were then analysed by SEM, XRD and four point probe test after pyrolysis process. SEM image show continuos uniform and smooth surface fibrous structure of electrospun PAN fibers with average diameter of 1.81 μm. The fiber morphology is controlled by manipulating the processing parameters of electrospinning process. The results showed that the resistance of electrospun PAN fibers decreases as the processing parameter changes by increasing the applied voltage and flow rate of electrospinning.

  1. Assessing uncertainty and sensitivity of model parameterizations and parameters in WRF affecting simulated surface fluxes and land-atmosphere coupling over the Amazon region

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Wang, C.; Huang, M.; Berg, L. K.; Duan, Q.; Feng, Z.; Shrivastava, M. B.; Shin, H. H.; Hong, S. Y.

    2016-12-01

    This study aims to quantify the relative importance and uncertainties of different physical processes and parameters in affecting simulated surface fluxes and land-atmosphere coupling strength over the Amazon region. We used two-legged coupling metrics, which include both terrestrial (soil moisture to surface fluxes) and atmospheric (surface fluxes to atmospheric state or precipitation) legs, to diagnose the land-atmosphere interaction and coupling strength. Observations made using the Department of Energy's Atmospheric Radiation Measurement (ARM) Mobile Facility during the GoAmazon field campaign together with satellite and reanalysis data are used to evaluate model performance. To quantify the uncertainty in physical parameterizations, we performed a 120 member ensemble of simulations with the WRF model using a stratified experimental design including 6 cloud microphysics, 3 convection, 6 PBL and surface layer, and 3 land surface schemes. A multiple-way analysis of variance approach is used to quantitatively analyze the inter- and intra-group (scheme) means and variances. To quantify parameter sensitivity, we conducted an additional 256 WRF simulations in which an efficient sampling algorithm is used to explore the multiple-dimensional parameter space. Three uncertainty quantification approaches are applied for sensitivity analysis (SA) of multiple variables of interest to 20 selected parameters in YSU PBL and MM5 surface layer schemes. Results show consistent parameter sensitivity across different SA methods. We found that 5 out of 20 parameters contribute more than 90% total variance, and first-order effects dominate comparing to the interaction effects. Results of this uncertainty quantification study serve as guidance for better understanding the roles of different physical processes in land-atmosphere interactions, quantifying model uncertainties from various sources such as physical processes, parameters and structural errors, and providing insights for improving the model physics parameterizations.

  2. Discrimination of fluoride and phosphate contamination in central Florida for analyses of environmental effects

    NASA Technical Reports Server (NTRS)

    Coker, A. E.; Marshall, R.; Thomson, F.

    1972-01-01

    A study was made of the spatial registration of fluoride and phosphate pollution parameters in central Florida by utilizing remote sensing techniques. Multispectral remote sensing data were collected over the area and processed to produce multispectral recognition maps. These processed data were used to map land areas and waters containing concentrations of fluoride and phosphate. Maps showing distribution of affected and unaffected vegetation were produced. In addition, the multispectral data were processed by single band radiometric slicing to produce radiometric maps used to delineate areas of high ultraviolet radiance, which indicates high fluoride concentrations. The multispectral parameter maps and radiometric maps in combination showed distinctive patterns, which are correlated with areas known to be affected by fluoride and phosphate contamination. These remote sensing techniques have the potential for regional use to assess the environmental impact of fluoride and phosphate wastes in central Florida.

  3. Advanced Oxidation Processes: Process Mechanisms, Affecting Parameters and Landfill Leachate Treatment.

    PubMed

    Su-Huan, Kow; Fahmi, Muhammad Ridwan; Abidin, Che Zulzikrami Azner; Soon-An, Ong

    2016-11-01

      Advanced oxidation processes (AOPs) are of special interest in treating landfill leachate as they are the most promising procedures to degrade recalcitrant compounds and improve the biodegradability of wastewater. This paper aims to refresh the information base of AOPs and to discover the research gaps of AOPs in landfill leachate treatment. A brief overview of mechanisms involving in AOPs including ozone-based AOPs, hydrogen peroxide-based AOPs and persulfate-based AOPs are presented, and the parameters affecting AOPs are elaborated. Particularly, the advancement of AOPs in landfill leachate treatment is compared and discussed. Landfill leachate characterization prior to method selection and method optimization prior to treatment are necessary, as the performance and practicability of AOPs are influenced by leachate matrixes and treatment cost. More studies concerning the scavenging effects of leachate matrixes towards AOPs, as well as the persulfate-based AOPs in landfill leachate treatment, are necessary in the future.

  4. Optimization of Primary Drying in Lyophilization during Early Phase Drug Development using a Definitive Screening Design with Formulation and Process Factors.

    PubMed

    Goldman, Johnathan M; More, Haresh T; Yee, Olga; Borgeson, Elizabeth; Remy, Brenda; Rowe, Jasmine; Sadineni, Vikram

    2018-06-08

    Development of optimal drug product lyophilization cycles is typically accomplished via multiple engineering runs to determine appropriate process parameters. These runs require significant time and product investments, which are especially costly during early phase development when the drug product formulation and lyophilization process are often defined simultaneously. Even small changes in the formulation may require a new set of engineering runs to define lyophilization process parameters. In order to overcome these development difficulties, an eight factor definitive screening design (DSD), including both formulation and process parameters, was executed on a fully human monoclonal antibody (mAb) drug product. The DSD enables evaluation of several interdependent factors to define critical parameters that affect primary drying time and product temperature. From these parameters, a lyophilization development model is defined where near optimal process parameters can be derived for many different drug product formulations. This concept is demonstrated on a mAb drug product where statistically predicted cycle responses agree well with those measured experimentally. This design of experiments (DoE) approach for early phase lyophilization cycle development offers a workflow that significantly decreases the development time of clinically and potentially commercially viable lyophilization cycles for a platform formulation that still has variable range of compositions. Copyright © 2018. Published by Elsevier Inc.

  5. Parameters affecting the photocatalytic degradation of dyes using TiO2: a review

    NASA Astrophysics Data System (ADS)

    Reza, Khan Mamun; Kurny, ASW; Gulshan, Fahmida

    2017-07-01

    Traditional chemical, physical and biological processes for treating wastewater containing textile dye have such disadvantages as high cost, high energy requirement and generation of secondary pollution during treatment process. The advanced oxidation processes technology has been attracting growing attention for the decomposition of organic dyes. Such processes are based on the light-enhanced generation of highly reactive hydroxyl radicals, which oxidize the organic matter in solution and convert it completely into water, CO2 and inorganic compounds. In this presentation, the photocatalytic degradation of dyes in aqueous solution using TiO2 as photocatalyst under solar and UV irradiation has been reviewed. It is observed that the degradation of dyes depends on several parameters such as pH, catalyst concentration, substrate concentration and the presence of oxidants. Reaction temperature and the intensity of light also affect the degradation of dyes. Particle size, BET-surface area and different mineral forms of TiO2 also have influence on the degradation rate.

  6. Optimization of electrocoagulation process for the treatment of landfill leachate

    NASA Astrophysics Data System (ADS)

    Huda, N.; Raman, A. A.; Ramesh, S.

    2017-06-01

    The main problem of landfill leachate is its diverse composition comprising of persistent organic pollutants (POPs) which must be removed before being discharge into the environment. In this study, the treatment of leachate using electrocoagulation (EC) was investigated. Iron was used as both the anode and cathode. Response surface methodology was used for experimental design and to study the effects of operational parameters. Central Composite Design was used to study the effects of initial pH, inter-electrode distance, and electrolyte concentration on color, and COD removals. The process could remove up to 84 % color and 49.5 % COD. The experimental data was fitted onto second order polynomial equations. All three factors were found to be significantly affect the color removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was conducted to obtain the optimum process performance. Further work will be conducted towards integrating EC with other wastewater treatment processes such as electro-Fenton.

  7. Regional probability distribution of the annual reference evapotranspiration and its effective parameters in Iran

    NASA Astrophysics Data System (ADS)

    Khanmohammadi, Neda; Rezaie, Hossein; Montaseri, Majid; Behmanesh, Javad

    2017-10-01

    The reference evapotranspiration (ET0) plays an important role in water management plans in arid or semi-arid countries such as Iran. For this reason, the regional analysis of this parameter is important. But, ET0 process is affected by several meteorological parameters such as wind speed, solar radiation, temperature and relative humidity. Therefore, the effect of distribution type of effective meteorological variables on ET0 distribution was analyzed. For this purpose, the regional probability distribution of the annual ET0 and its effective parameters were selected. Used data in this research was recorded data at 30 synoptic stations of Iran during 1960-2014. Using the probability plot correlation coefficient (PPCC) test and the L-moment method, five common distributions were compared and the best distribution was selected. The results of PPCC test and L-moment diagram indicated that the Pearson type III distribution was the best probability distribution for fitting annual ET0 and its four effective parameters. The results of RMSE showed that the ability of the PPCC test and L-moment method for regional analysis of reference evapotranspiration and its effective parameters was similar. The results also showed that the distribution type of the parameters which affected ET0 values can affect the distribution of reference evapotranspiration.

  8. Blanking and piercing theory, applications and recent experimental results

    NASA Astrophysics Data System (ADS)

    Zaid, Adnan l. O.

    2014-06-01

    Blanking and piercing are manufacturing processes by which certain geometrical shapes are sheared off a sheet metal. If the sheared off part is the one required, the processes referred to as blanking and if the remaining part in the sheet is the one required, the process is referred to as piercing. In this paper, the theory and practice of these processes are reviewed and discussed The main parameters affecting these processes are presented and discussed. These include: the radial clearance percentage, punch and die geometrical parameters, for example punch and die profile radii. The abovementioned parameters on the force and energy required to effect blanking together with their effect on the quality of the products are also presented and discussed. Recent experimental results together with photomacrographs and photomicrographs are also included and discussed. Finally, the effect of punch and die wear on the quality of the blanks is alsogiven and discussed.

  9. Statistical analysis of porosity of 17-4PH alloy processed by selective laser melting

    NASA Astrophysics Data System (ADS)

    Ponnusamy, P.; Masood, S. H.; Ruan, D.; Palanisamy, S.; Mohamed, O. A.

    2017-07-01

    Selective Laser Melting (SLM) is a powder-bed type Additive Manufacturing (AM) process, where parts are built layer-by-layer by laser melting of powder layers of metal. There are several SLM process parameters that affect the accuracy and quality of the metal parts produced by SLM. Therefore, it is essential to understand the effect of these parameters on the quality and properties of the parts built by this process. In this paper, using Taguchi design of experiments, the effect of four SLM process parameters namely laser power, defocus distance, layer thickness and build orientation are considered on the porosity of 17-4PH stainless steel parts built on ProX200 SLM direct metal printer. The porositywas found to be optimum at a defocus distance of -4mm and a laser power of 240 W with a layer thickness of 30 μm and using vertical build orientation.

  10. Efficient extraction strategies of tea (Camellia sinensis) biomolecules.

    PubMed

    Banerjee, Satarupa; Chatterjee, Jyotirmoy

    2015-06-01

    Tea is a popular daily beverage worldwide. Modulation and modifications of its basic components like catechins, alkaloids, proteins and carbohydrate during fermentation or extraction process changes organoleptic, gustatory and medicinal properties of tea. Through these processes increase or decrease in yield of desired components are evident. Considering the varied impacts of parameters in tea production, storage and processes that affect the yield, extraction of tea biomolecules at optimized condition is thought to be challenging. Implementation of technological advancements in green chemistry approaches can minimize the deviation retaining maximum qualitative properties in environment friendly way. Existed extraction processes with optimization parameters of tea have been discussed in this paper including its prospects and limitations. This exhaustive review of various extraction parameters, decaffeination process of tea and large scale cost effective isolation of tea components with aid of modern technology can assist people to choose extraction condition of tea according to necessity.

  11. Determination of key diffusion and partition parameters and their use in migration modelling of benzophenone from low-density polyethylene (LDPE) into different foodstuffs.

    PubMed

    Maia, Joaquim; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Cruz, José Manuel; Seiler, Annika; Franz, Roland; Simoneau, Catherine; Castle, Laurence; Driffield, Malcolm; Mercea, Peter; Oldring, Peter; Tosa, Valer; Paseiro, Perfecto

    2016-01-01

    The mass transport process (migration) of a model substance, benzophenone (BZP), from LDPE into selected foodstuffs at three temperatures was studied. A mathematical model based on Fick's Second Law of Diffusion was used to simulate the migration process and a good correlation between experimental and predicted values was found. The acquired results contribute to a better understanding of this phenomenon and the parameters so-derived were incorporated into the migration module of the recently launched FACET tool (Flavourings, Additives and Food Contact Materials Exposure Tool). The migration tests were carried out at different time-temperature conditions, and BZP was extracted from LDPE and analysed by HPLC-DAD. With all data, the parameters for migration modelling (diffusion and partition coefficients) were calculated. Results showed that the diffusion coefficients (within both the polymer and the foodstuff) are greatly affected by the temperature and food's physical state, whereas the partition coefficient was affected significantly only by food characteristics, particularly fat content.

  12. Advanced optic fabrication using ultrafast laser radiation

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2016-03-01

    Advanced fabrication and finishing techniques are desired for freeform optics and integrated photonics. Methods including grinding, polishing and magnetorheological finishing used for final figuring and polishing of such optics are time consuming, expensive, and may be unsuitable for complex surface features while common photonics fabrication techniques often limit devices to planar geometries. Laser processing has been investigated as an alternative method for optic forming, surface polishing, structure writing, and welding, as direct tuning of laser parameters and flexible beam delivery are advantageous for complex freeform or photonics elements and material-specific processing. Continuous wave and pulsed laser radiation down to the nanosecond regime have been implemented to achieve nanoscale surface finishes through localized material melting, but the temporal extent of the laser-material interaction often results in the formation of a sub-surface heat affected zone. The temporal brevity of ultrafast laser radiation can allow for the direct vaporization of rough surface asperities with minimal melting, offering the potential for smooth, final surface quality with negligible heat affected material. High intensities achieved in focused ultrafast laser radiation can easily induce phase changes in the bulk of materials for processing applications. We have experimentally tested the effectiveness of ultrafast laser radiation as an alternative laser source for surface processing of monocrystalline silicon. Simulation of material heating associated with ultrafast laser-material interaction has been performed and used to investigate optimized processing parameters including repetition rate. The parameter optimization process and results of experimental processing will be presented.

  13. Skin texture parameters of the dorsal hand in evaluating skin aging in China.

    PubMed

    Gao, Qian; Hu, Li-Wen; Wang, Yang; Xu, Wen-Ying; Ouyang, Nan-Ning; Dong, Guo-Qing; Shi, Song-Tian; Liu, Yang

    2011-11-01

    There are various non-invasive methods in skin morphology for assessing skin aging. The use of digital photography will make it easier and more convenient. In this study, we explored some skin texture parameters for evaluating skin aging using digital image processing. Two hundred and twenty-eight subjects who lived in Sanya, China, were involved. Individual sun exposure history and other factors influencing skin aging were collected by a questionnaire. Meanwhile, we took photos of their dorsal hands. Skin images were graded according to the Beagley-Gibson system. These skin images were also processed using image analysis software. Five skin texture parameters, Angle Num., Angle Max., Angle Diff., Distance and Grids, were produced in reference to the Beagley-Gibson system. All texture parameters were significantly associated with the Beagley-Gibson score. Among the parameters, the distance between primary lines (Distance) and the value of angle formed by intersection textures (Angle Max., Angle Diff.) were positively associated with the Beagley-Gibson score. However, there was a negative correlation between the number of grids (Grids), the number of angle (Angle Num.) and the Beagley-Gibson score. These texture parameters were also correlated with factors influencing skin aging such as sun exposure, age, smoking, drinking and body mass index. In multivariate analysis, Grids and Distance were mainly affected by age. But Angle Max. and Angle Diff. were mainly affected by sun exposure. It seemed that the skin surface morphologic parameters presented in our study reflect skin aging changes to some extent and could be used to describe skin aging using digital image processing. © 2011 John Wiley & Sons A/S.

  14. Numerically design the injection process parameters of parts fabricated with ramie fiber reinforced green composites

    NASA Astrophysics Data System (ADS)

    Chen, L. P.; He, L. P.; Chen, D. C.; Lu, G.; Li, W. J.; Yuan, J. M.

    2017-01-01

    The warpage deformation plays an important role on the performance of automobile interior components fabricated with natural fiber reinforced composites. The present work investigated the influence of process parameters on the warpage behavior of A pillar trim made of ramie fiber (RF) reinforced polypropylene (PP) composites (RF/PP) via numerical simulation with orthogonal experiment method and range analysis. The results indicated that fiber addition and packing pressure were the most important factors affecting warpage. The A pillar trim can achieved the minimum warpage value as of 2.124 mm under the optimum parameters. The optimal process parameters are: 70% percent of the default value of injection pressure for the packing pressure, 20 wt% for the fiber addition, 185 °C for the melt °C for the mold temperature, 7 s for the filling time and 17 s for the packing time.

  15. Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters.

    PubMed

    Fan, Liangliang; Zhang, Yaning; Liu, Shiyu; Zhou, Nan; Chen, Paul; Cheng, Yanling; Addy, Min; Lu, Qian; Omar, Muhammad Mubashar; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Anderson, Erik; Peng, Peng; Lei, Hanwu; Ruan, Roger

    2017-10-01

    Effects of process parameters on the yield and chemical profile of bio-oil from fast pyrolysis of lignin and the processes for lignin-derived bio-oil upgrading were reviewed. Various process parameters including pyrolysis temperature, reactor types, lignin characteristics, residence time, and feeding rate were discussed and the optimal parameter conditions for improved bio-oil yield and quality were concluded. In terms of lignin-derived bio-oil upgrading, three routes including pretreatment of lignin, catalytic upgrading, and co-pyrolysis of hydrogen-rich materials have been investigated. Zeolite cracking and hydrodeoxygenation (HDO) treatment are two main methods for catalytic upgrading of lignin-derived bio-oil. Factors affecting zeolite activity and the main zeolite catalytic mechanisms for lignin conversion were analyzed. Noble metal-based catalysts and metal sulfide catalysts are normally used as the HDO catalysts and the conversion mechanisms associated with a series of reactions have been proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Ascari, Alessandro; Fortunato, Alessandro; Orazi, Leonardo; Campana, Giampaolo

    2012-07-01

    This paper deals with an experimental campaign carried out on AA6082 8 mm thick plates in order to investigate the role of process parameters on porosity formation in hybrid LASER-GMA welding. Bead on plate weldments were obtained on the above mentioned aluminum alloy considering the variation of the following process parameters: GMAW current (120 and 180 A for short-arc mode, 90 and 130 A for pulsed-arc mode), arc transfer mode (short-arc and pulsed-arc) and mutual distance between arc and LASER sources (0, 3 and 6 mm). Porosities occurring in the fused zone were observed by means of X-ray inspection and measured exploiting an image analysis software. In order to understand the possible correlation between process parameters and porosity formation an analysis of variance statistical approach was exploited. The obtained results pointed out that GMAW current is significant on porosity formation, while the distance between the sources do not affect this aspect.

  17. Effect of Ga incorporation on morphology and defect structures evolution in VLS grown 1D In2O3 nanostructures

    NASA Astrophysics Data System (ADS)

    Ramos-Ramón, Jesús Alberto; Pal, Umapada; Cremades, Ana; Maestre, David

    2018-05-01

    Fabrication of 1D metal oxide nanostructures of controlled morphology and defect structure is of immense importance for their application in optoelectronics. While the morphology of these nanostructures depends primarily on growth parameters utilized in physical deposition processes, incorporation of foreign elements or dopants not only affects their morphology, but also affects their crystallinity and defect structure, which are the most important parameters for their device applications. Herein we report on the growth of highly crystalline 1D In2O3 nanostructures through vapor-liquid-solid process at relatively low temperature, and the effect of Ga incorporation on their morphology and defect structures. Through electron microscopy, Raman spectroscopy and cathodoluminescence spectroscopy techniques, we demonstrate that incorporation of Ga in In2O3 nanostructures not only strongly affects their morphology, but also generates new defect levels in the band gap of In2O3, shifting the overall emission of the nanostructures towards visible spectral range.

  18. Transient performance analysis of the master cylinder hydraulic system of a 6.3 MN fineblanking press

    NASA Astrophysics Data System (ADS)

    Yi, Guodong; Li, Jin

    2018-03-01

    The master cylinder hydraulic system is the core component of the fineblanking press that seriously affects the machine performance. A key issue in the design of the master cylinder hydraulic system is dealing with the heavy shock loads in the fineblanking process. In this paper, an equivalent model of the master cylinder hydraulic system is established based on typical process parameters for practical fineblanking; then, the response characteristics of the master cylinder slider to the step changes in the load and control current are analyzed, and lastly, control strategies for the proportional valve are studied based on the impact of the control parameters on the kinetic stability of the slider. The results show that the kinetic stability of the slider is significantly affected by the step change of the control current, while it is slightly affected by the step change of the system load, which can be improved by adjusting the flow rate and opening time of the proportional valve.

  19. Design of experiments reveals critical parameters for pilot-scale freeze-and-thaw processing of L-lactic dehydrogenase.

    PubMed

    Roessl, Ulrich; Humi, Sebastian; Leitgeb, Stefan; Nidetzky, Bernd

    2015-09-01

    Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze-and-thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L-lactic dehydrogenase (LDH) in a 700-mL pilot-scale freeze container equipped with internal temperature and pH probes. In 24-hour experiments, target temperature between -10 and -38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of -10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris-HCl and the non-ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE-based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Powder Bed Layer Characteristics: The Overseen First-Order Process Input

    NASA Astrophysics Data System (ADS)

    Mindt, H. W.; Megahed, M.; Lavery, N. P.; Holmes, M. A.; Brown, S. G. R.

    2016-08-01

    Powder Bed Additive Manufacturing offers unique advantages in terms of manufacturing cost, lot size, and product complexity compared to traditional processes such as casting, where a minimum lot size is mandatory to achieve economic competitiveness. Many studies—both experimental and numerical—are dedicated to the analysis of how process parameters such as heat source power, scan speed, and scan strategy affect the final material properties. Apart from the general urge to increase the build rate using thicker powder layers, the coating process and how the powder is distributed on the processing table has received very little attention to date. This paper focuses on the first step of every powder bed build process: Coating the process table. A numerical study is performed to investigate how powder is transferred from the source to the processing table. A solid coating blade is modeled to spread commercial Ti-6Al-4V powder. The resulting powder layer is analyzed statistically to determine the packing density and its variation across the processing table. The results are compared with literature reports using the so-called "rain" models. A parameter study is performed to identify the influence of process table displacement and wiper velocity on the powder distribution. The achieved packing density and how that affects subsequent heat source interaction with the powder bed is also investigated numerically.

  1. Optimization of processing parameters of UAV integral structural components based on yield response

    NASA Astrophysics Data System (ADS)

    Chen, Yunsheng

    2018-05-01

    In order to improve the overall strength of unmanned aerial vehicle (UAV), it is necessary to optimize the processing parameters of UAV structural components, which is affected by initial residual stress in the process of UAV structural components processing. Because machining errors are easy to occur, an optimization model for machining parameters of UAV integral structural components based on yield response is proposed. The finite element method is used to simulate the machining parameters of UAV integral structural components. The prediction model of workpiece surface machining error is established, and the influence of the path of walking knife on residual stress of UAV integral structure is studied, according to the stress of UAV integral component. The yield response of the time-varying stiffness is analyzed, and the yield response and the stress evolution mechanism of the UAV integral structure are analyzed. The simulation results show that this method is used to optimize the machining parameters of UAV integral structural components and improve the precision of UAV milling processing. The machining error is reduced, and the deformation prediction and error compensation of UAV integral structural parts are realized, thus improving the quality of machining.

  2. Modelling of intermittent microwave convective drying: parameter sensitivity

    NASA Astrophysics Data System (ADS)

    Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei

    2017-06-01

    The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.

  3. Selection of the most influential factors on the water-jet assisted underwater laser process by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Nikolić, Vlastimir; Petković, Dalibor; Lazov, Lyubomir; Milovančević, Miloš

    2016-07-01

    Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.

  4. Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei

    2017-06-01

    The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters.

  5. Guidelines in the Choice of Parameters for Hybrid Laser Arc Welding with Fiber Lasers

    NASA Astrophysics Data System (ADS)

    Eriksson, I.; Powell, J.; Kaplan, A.

    Laser arc hybrid welding has been a promising technology for three decades and laser welding in combination with gas metal arc welding (GMAW) has shown that it is an extremely promising technique. On the other hand the process is often considered complicated and difficult to set up correctly. An important factor in setting up the hybrid welding process is an understanding of the GMAW process. It is especially important to understand how the wire feed rate and the arc voltage (the two main parameters) affect the process. In this paper the authors show that laser hybrid welding with a 1 μm laser is similar to ordinary GMAW, and several guidelines are therefore inherited by the laser hybrid process.

  6. Mechanical Properties of Aluminum-Based Dissimilar Alloy Joints by Power Beams, Arc and FSW Processes

    NASA Astrophysics Data System (ADS)

    Okubo, Michinori; Kon, Tomokuni; Abe, Nobuyuki

    Dissimilar smart joints are useful. In this research, welded quality of dissimilar aluminum alloys of 3 mm thickness by various welding processes and process parameters have been investigated by hardness and tensile tests, and observation of imperfection and microstructure. Base metals used in this study are A1050-H24, A2017-T3, A5083-O, A6061-T6 and A7075-T651. Welding processes used are YAG laser beam, electron beam, metal inert gas arc, tungsten inert gas arc and friction stir welding. The properties of weld zones are affected by welding processes, welding parameters and combination of base metals. Properties of high strength aluminum alloy joints are improved by friction stir welding.

  7. Fatigue behavior of thermal sprayed WC-CoCr- steel systems: Role of process and deposition parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vackel, Andrew; Sampath, Sanjay

    Thermal spray deposited WC-CoCr coatings are extensively used for surface protection of wear prone components in a variety of applications. Although the primary purpose of the coating is wear and corrosion protection, many of the coated components are structural systems (aero landing gear, hydraulic cylinders, drive shafts etc.) and as such experience cyclic loading during service and are potentially prone to fatigue failure. It is of interest to ensure that the coating and the application process does not deleteriously affect the fatigue strength of the parent structural metal. It has long been appreciated that the relative fatigue life of amore » thermal sprayed component can be affected by the residual stresses arising from coating deposition. The magnitude of these stresses can be managed by torch processing parameters and can also be influenced by deposition effects, particularly the deposition temperature. In this study, the effect of both torch operating parameters (particle states) and deposition conditions (notably substrate temperature) were investigated through rotating bending fatigue studies. The results indicate a strong influence of process parameters on relative fatigue life, including credit or debit to the substrate's fatigue life measured via rotating bend beam studies. Damage progression within the substrate was further explored by stripping the coating off part way through fatigue testing, revealing a delay in the onset of substrate damage with more fatigue resistant coatings but no benefit with coatings with inadequate properties. Finally, the results indicate that compressive residual stress and adequate load bearing capability of the coating (both controlled by torch and deposition parameters) delay onset of substrate damage, enabling fatigue credit of the coated component.« less

  8. Fatigue behavior of thermal sprayed WC-CoCr- steel systems: Role of process and deposition parameters

    DOE PAGES

    Vackel, Andrew; Sampath, Sanjay

    2017-02-27

    Thermal spray deposited WC-CoCr coatings are extensively used for surface protection of wear prone components in a variety of applications. Although the primary purpose of the coating is wear and corrosion protection, many of the coated components are structural systems (aero landing gear, hydraulic cylinders, drive shafts etc.) and as such experience cyclic loading during service and are potentially prone to fatigue failure. It is of interest to ensure that the coating and the application process does not deleteriously affect the fatigue strength of the parent structural metal. It has long been appreciated that the relative fatigue life of amore » thermal sprayed component can be affected by the residual stresses arising from coating deposition. The magnitude of these stresses can be managed by torch processing parameters and can also be influenced by deposition effects, particularly the deposition temperature. In this study, the effect of both torch operating parameters (particle states) and deposition conditions (notably substrate temperature) were investigated through rotating bending fatigue studies. The results indicate a strong influence of process parameters on relative fatigue life, including credit or debit to the substrate's fatigue life measured via rotating bend beam studies. Damage progression within the substrate was further explored by stripping the coating off part way through fatigue testing, revealing a delay in the onset of substrate damage with more fatigue resistant coatings but no benefit with coatings with inadequate properties. Finally, the results indicate that compressive residual stress and adequate load bearing capability of the coating (both controlled by torch and deposition parameters) delay onset of substrate damage, enabling fatigue credit of the coated component.« less

  9. Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads.

    PubMed

    Sharon, Maheshwar; Apte, P R; Purandare, S C; Zacharia, Renju

    2005-02-01

    Seven variable parameters of the chemical vapor deposition system have been optimized with the help of the Taguchi analytical method for getting a desired product, e.g., carbon nanotubes or carbon nanobeads. It is observed that almost all selected parameters influence the growth of carbon nanotubes. However, among them, the nature of precursor (racemic, R or Technical grade camphor) and the carrier gas (hydrogen, argon and mixture of argon/hydrogen) seem to be more important parameters affecting the growth of carbon nanotubes. Whereas, for the growth of nanobeads, out of seven parameters, only two, i.e., catalyst (powder of iron, cobalt, and nickel) and temperature (1023 K, 1123 K, and 1273 K), are the most influential parameters. Systematic defects or islands on the substrate surface enhance nucleation of novel carbon materials. Quantitative contributions of process parameters as well as optimum factor levels are obtained by performing analysis of variance (ANOVA) and analysis of mean (ANOM), respectively.

  10. A Graph Based Interface for Representing Volume Visualization Results

    NASA Technical Reports Server (NTRS)

    Patten, James M.; Ma, Kwan-Liu

    1998-01-01

    This paper discusses a graph based user interface for representing the results of the volume visualization process. As images are rendered, they are connected to other images in a graph based on their rendering parameters. The user can take advantage of the information in this graph to understand how certain rendering parameter changes affect a dataset, making the visualization process more efficient. Because the graph contains more information than is contained in an unstructured history of images, the image graph is also helpful for collaborative visualization and animation.

  11. The heuristic value of redundancy models of aging.

    PubMed

    Boonekamp, Jelle J; Briga, Michael; Verhulst, Simon

    2015-11-01

    Molecular studies of aging aim to unravel the cause(s) of aging bottom-up, but linking these mechanisms to organismal level processes remains a challenge. We propose that complementary top-down data-directed modelling of organismal level empirical findings may contribute to developing these links. To this end, we explore the heuristic value of redundancy models of aging to develop a deeper insight into the mechanisms causing variation in senescence and lifespan. We start by showing (i) how different redundancy model parameters affect projected aging and mortality, and (ii) how variation in redundancy model parameters relates to variation in parameters of the Gompertz equation. Lifestyle changes or medical interventions during life can modify mortality rate, and we investigate (iii) how interventions that change specific redundancy parameters within the model affect subsequent mortality and actuarial senescence. Lastly, as an example of data-directed modelling and the insights that can be gained from this, (iv) we fit a redundancy model to mortality patterns observed by Mair et al. (2003; Science 301: 1731-1733) in Drosophila that were subjected to dietary restriction and temperature manipulations. Mair et al. found that dietary restriction instantaneously reduced mortality rate without affecting aging, while temperature manipulations had more transient effects on mortality rate and did affect aging. We show that after adjusting model parameters the redundancy model describes both effects well, and a comparison of the parameter values yields a deeper insight in the mechanisms causing these contrasting effects. We see replacement of the redundancy model parameters by more detailed sub-models of these parameters as a next step in linking demographic patterns to underlying molecular mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Capillary electrophoretic study of dibasic acids of different structures: Relation to separation of oxidative intermediates in remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.; Cocke, D.L.

    Dicarboxylic acids are important in environmental chemistry because they are intermediates in oxidative processes involved in natural remediation and waste management processes such as oxidative detoxification and advanced oxidation. Capillary electrophoresis (CE), a promising technique for separating and analyzing these intermediates, has been used to examine a series of dibasic acids of different structures and conformations. This series includes malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid, and trans, trans-muconic acid. The CE parameters as well as structural variations (molecular structure and molecular isomers, buffer composition, pH, applied voltage, injection mode, current,more » temperature, and detection wavelength) that affect the separations and analytical results have been examined in this study. Those factors that affect the separation have been delineated. Among these parameters, the pH has been found to be the most important, which affects the double-layer of the capillary wall, the electro-osmotic flow and analyte mobility. The optimum pH for separating these dibasic acids, as well as the other parameters are discussed in detail and related to the development of methods for analyzing oxidation intermediates in oxidative waste management procedures.« less

  13. Effect of process parameters on microstructure and electrical conductivity during FSW of Al-6101 and Pure Copper

    NASA Astrophysics Data System (ADS)

    Sharma, Nidhi; Khan, Zahid A.; Siddiquee, Arshad Noor; Shihab, Suha K.; Atif Wahid, Mohd

    2018-04-01

    Copper (Cu) is predominantly used material as a conducting element in electrical and electronic components due to its high conductivity. Aluminum (Al) being lighter in weight and more conductive on weight basis than that of Cu is able to replace or partially replace Cu to make lighter and cost effective electrical components. Conventional methods of joining Al to Cu, such as, fusion welding process have many shortcomings. Friction Stir Welding (FSW) is a solid state welding process which overcomes the shortcoming of the fusion welding. FSW parameters affect the mechanical and electrical properties of the joint. This study aims to evaluate the effect of different process parameters such as shoulder diameter, pin offset, welding and rotational speed on the microstructure and electrical conductivity of the dissimilar Al-Cu joint. FSW is performed using cylindrical pin profile, and four process parameters. Each parameter at different levels is varied according to Taguchi’s L18 standard orthogonal array. It is found that the electrical conductivity of the FSWed joints are equal to that of aluminum at all the welded sections. FSW is found to be an effective technique to join Al to Cu without compromising with the electrical properties. However, the electrical conductivity gets influenced by the process parameters in the stir zone. The optimal combination of the FSW parameters for maximum electrical conductivity is determined. The analysis of variance (ANOVA) technique applied on stir zone suggests that the rotational speed and tool pin offset are the significant parameters to influence the electrical conductivity.

  14. To Identify the Important Soil Properties Affecting Dinoseb Adsorption with Statistical Analysis

    PubMed Central

    Guan, Yiqing; Wei, Jianhui; Zhang, Danrong; Zu, Mingjuan; Zhang, Liru

    2013-01-01

    Investigating the influences of soil characteristic factors on dinoseb adsorption parameter with different statistical methods would be valuable to explicitly figure out the extent of these influences. The correlation coefficients and the direct, indirect effects of soil characteristic factors on dinoseb adsorption parameter were analyzed through bivariate correlation analysis, and path analysis. With stepwise regression analysis the factors which had little influence on the adsorption parameter were excluded. Results indicate that pH and CEC had moderate relationship and lower direct effect on dinoseb adsorption parameter due to the multicollinearity with other soil factors, and organic carbon and clay contents were found to be the most significant soil factors which affect the dinoseb adsorption process. A regression is thereby set up to explore the relationship between the dinoseb adsorption parameter and the two soil factors: the soil organic carbon and clay contents. A 92% of the variation of dinoseb sorption coefficient could be attributed to the variation of the soil organic carbon and clay contents. PMID:23737715

  15. Topsoil structure stability in a restored floodplain: Impacts of fluctuating water levels, soil parameters and ecosystem engineers.

    PubMed

    Schomburg, A; Schilling, O S; Guenat, C; Schirmer, M; Le Bayon, R C; Brunner, P

    2018-10-15

    Ecosystem services provided by floodplains are strongly controlled by the structural stability of soils. The development of a stable structure in floodplain soils is affected by a complex and poorly understood interplay of hydrological, physico-chemical and biological processes. This paper aims at analysing relations between fluctuating groundwater levels, soil physico-chemical and biological parameters on soil structure stability in a restored floodplain. Water level fluctuations in the soil are modelled using a numerical surface-water-groundwater flow model and correlated to soil physico-chemical parameters and abundances of plants and earthworms. Causal relations and multiple interactions between the investigated parameters are tested through structural equation modelling (SEM). Fluctuating water levels in the soil did not directly affect the topsoil structure stability, but indirectly through affecting plant roots and soil parameters that in turn determine topsoil structure stability. These relations remain significant for mean annual days of complete and partial (>25%) water saturation. Ecosystem functioning of a restored floodplain might already be affected by the fluctuation of groundwater levels alone, and not only through complete flooding by surface water during a flood period. Surprisingly, abundances of earthworms did not show any relation to other variables in the SEM. These findings emphasise that earthworms have efficiently adapted to periodic stress and harsh environmental conditions. Variability of the topsoil structure stability is thus stronger driven by the influence of fluctuating water levels on plants than by the abundance of earthworms. This knowledge about the functional network of soil engineering organisms, soil parameters and fluctuating water levels and how they affect soil structural stability is of fundamental importance to define management strategies of near-natural or restored floodplains in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. SOA formation by biogenic and carbonyl compounds: data evaluation and application.

    PubMed

    Ervens, Barbara; Kreidenweis, Sonia M

    2007-06-01

    The organic fraction of atmospheric aerosols affects the physical and chemical properties of the particles and their role in the climate system. Current models greatly underpredict secondary organic aerosol (SOA) mass. Based on a compilation of literature studies that address SOA formation, we discuss different parameters that affect the SOA formation efficiency of biogenic compounds (alpha-pinene, isoprene) and aliphatic aldehydes (glyoxal, hexanal, octanal, hexadienal). Applying a simple model, we find that the estimated SOA mass after one week of aerosol processing under typical atmospheric conditions is increased by a few microg m(-3) (low NO(x) conditions). Acid-catalyzed reactions can create > 50% more SOA mass than processes under neutral conditions; however, other parameters such as the concentration ratio of organics/NO(x), relative humidity, and absorbing mass are more significant. The assumption of irreversible SOA formation not limited by equilibrium in the particle phase or by depletion of the precursor leads to unrealistically high SOA masses for some of the assumptions we made (surface vs volume controlled processes).

  17. A Design of Experiments Approach Defining the Relationships Between Processing and Microstructure for Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A.; Bey, Kim S.; Taminger, Karen M. B.; Hafley, Robert A.

    2004-01-01

    A study was conducted to evaluate the relative significance of input parameters on Ti- 6Al-4V deposits produced by an electron beam free form fabrication process under development at the NASA Langley Research Center. Five input parameters where chosen (beam voltage, beam current, translation speed, wire feed rate, and beam focus), and a design of experiments (DOE) approach was used to develop a set of 16 experiments to evaluate the relative importance of these parameters on the resulting deposits. Both single-bead and multi-bead stacks were fabricated using 16 combinations, and the resulting heights and widths of the stack deposits were measured. The resulting microstructures were also characterized to determine the impact of these parameters on the size of the melt pool and heat affected zone. The relative importance of each input parameter on the height and width of the multi-bead stacks will be discussed. .

  18. Issues related to processability during the manufacture of thermoplastic composites using on-line consolidation techniques

    NASA Astrophysics Data System (ADS)

    Ghasemi Nejhad, M. N.

    1993-04-01

    The on-line consolidation of thermoplastic composites is a relatively new technology that can be used to manufacture composite parts with complex geometries. The localized melting/solidification technique employed in this process can reduce the residual stresses and allow for improved dimensional stability and performance. An additional advantage of this technique is the elimination of the curing steps which are necessary in the processing of thermoset-matrix composites. This article presents the effects of processing parameters on processability in on-line consolidation of thermoplastic composites for tape-laying and filament-winding processes employing anisotropic thermal analyses. The results show that the heater size, preheating conditions, and tow thickness can significantly affect the processing window which, in turn, affects the production rate and the quality of the parts.

  19. Motion compensated image processing and optimal parameters for egg crack detection using modified pressure

    USDA-ARS?s Scientific Manuscript database

    Shell eggs with microcracks are often undetected during egg grading processes. In the past, a modified pressure imaging system was developed to detect eggs with microcracks without adversely affecting the quality of normal intact eggs. The basic idea of the modified pressure imaging system was to ap...

  20. Implementation of quality by design approach in manufacturing process optimization of dry granulated, immediate release, coated tablets - a case study.

    PubMed

    Teżyk, Michał; Jakubowska, Emilia; Milanowski, Bartłomiej; Lulek, Janina

    2017-10-01

    The aim of this study was to optimize the process of tablets compression and identification of film-coating critical process parameters (CPPs) affecting critical quality attributes (CQAs) using quality by design (QbD) approach. Design of experiment (DOE) and regression methods were employed to investigate hardness, disintegration time, and thickness of uncoated tablets depending on slugging and tableting compression force (CPPs). Plackett-Burman experimental design was applied to identify critical coating process parameters among selected ones that is: drying and preheating time, atomization air pressure, spray rate, air volume, inlet air temperature, and drum pressure that may influence the hardness and disintegration time of coated tablets. As a result of the research, design space was established to facilitate an in-depth understanding of existing relationship between CPPs and CQAs of intermediate product (uncoated tablets). Screening revealed that spray rate and inlet air temperature are two most important factors that affect the hardness of coated tablets. Simultaneously, none of the tested coating factors have influence on disintegration time. The observation was confirmed by conducting film coating of pilot size batches.

  1. Sensitivity of land surface modeling to parameters: An uncertainty quantification method applied to the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.

    2015-12-01

    Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes or both to determine the full range of sensitivity of Earth system modeling to land-surface parameters. This can facilitate sampling strategies in measurement campaigns targeted at reduction of climate modeling uncertainties and can also provide guidance on land parameter calibration for simulation optimization.

  2. D-malate production by permeabilized Pseudomonas pseudoalcaligenes; optimization of conversion and biocatalyst productivity.

    PubMed

    Michielsen, M J; Frielink, C; Wijffels, R H; Tramper, J; Beeftink, H H

    2000-04-14

    For the development of a continuous process for the production of solid D-malate from a Ca-maleate suspension by permeabilized Pseudomonas pseudoalcaligenes, it is important to understand the effect of appropriate process parameters on the stability and activity of the biocatalyst. Previously, we quantified the effect of product (D-malate2 -) concentration on both the first-order biocatalyst inactivation rate and on the biocatalytic conversion rate. The effects of the remaining process parameters (ionic strength, and substrate and Ca2 + concentration) on biocatalyst activity are reported here. At (common) ionic strengths below 2 M, biocatalyst activity was unaffected. At high substrate concentrations, inhibition occurred. Ca2+ concentration did not affect biocatalyst activity. The kinetic parameters (both for conversion and inactivation) were determined as a function of temperature by fitting the complete kinetic model, featuring substrate inhibition, competitive product inhibition and first-order irreversible biocatalyst inactivation, at different temperatures simultaneously through three extended data sets of substrate concentration versus time. Temperature affected both the conversion and inactivation parameters. The final model was used to calculate the substrate and biocatalyst costs per mmol of product in a continuous system with biocatalyst replenishment and biocatalyst recycling. Despite the effect of temperature on each kinetic parameter separately, the overall effect of temperature on the costs was found to be negligible (between 293 and 308 K). Within pertinent ranges, the sum of the substrate and biocatalyst costs per mmol of product was calculated to decrease with the influent substrate concentration and the residence time. The sum of the costs showed a minimum as a function of the influent biocatalyst concentration.

  3. Part weight verification between simulation and experiment of plastic part in injection moulding process

    NASA Astrophysics Data System (ADS)

    Amran, M. A. M.; Idayu, N.; Faizal, K. M.; Sanusi, M.; Izamshah, R.; Shahir, M.

    2016-11-01

    In this study, the main objective is to determine the percentage difference of part weight between experimental and simulation work. The effect of process parameters on weight of plastic part is also investigated. The process parameters involved were mould temperature, melt temperature, injection time and cooling time. Autodesk Simulation Moldflow software was used to run the simulation of the plastic part. Taguchi method was selected as Design of Experiment to conduct the experiment. Then, the simulation result was validated with the experimental result. It was found that the minimum and maximum percentage of differential of part weight between simulation and experimental work are 0.35 % and 1.43 % respectively. In addition, the most significant parameter that affected part weight is the mould temperature, followed by melt temperature, injection time and cooling time.

  4. Box-Behnken Design of Experiments Investigation of Hydroxyapatite Synthesis for Orthopedic Applications

    NASA Astrophysics Data System (ADS)

    Kehoe, S.; Stokes, J.

    2011-03-01

    Physicochemical properties of hydroxyapatite (HAp) synthesized by the chemical precipitation method are heavily dependent on the chosen process parameters. A Box-Behnken three-level experimental design was therefore, chosen to determine the optimum set of process parameters and their effect on various HAp characteristics. These effects were quantified using design of experiments (DoE) to develop mathematical models using the Box-Behnken design, in terms of the chemical precipitation process parameters. Findings from this research show that the HAp possessing optimum powder characteristics for orthopedic application via a thermal spray technique can therefore be prepared using the following chemical precipitation process parameters: reaction temperature 60 °C, ripening time 48 h, and stirring speed 1500 rpm using high reagent concentrations. Ripening time and stirring speed significantly affected the final phase purity for the experimental conditions of the Box-Behnken design. An increase in both the ripening time (36-48 h) and stirring speed (1200-1500 rpm) was found to result in an increase of phase purity from 47(±2)% to 85(±2)%. Crystallinity, crystallite size, lattice parameters, and mean particle size were also optimized within the research to find desired settings to achieve results suitable for FDA regulations.

  5. Optimization of porthole die geometrical variables by Taguchi method

    NASA Astrophysics Data System (ADS)

    Gagliardi, F.; Ciancio, C.; Ambrogio, G.; Filice, L.

    2017-10-01

    Porthole die extrusion is commonly used to manufacture hollow profiles made of lightweight alloys for numerous industrial applications. The reliability of extruded parts is affected strongly by the quality of the longitudinal and transversal seam welds. According to that, the die geometry must be designed correctly and the process parameters must be selected properly to achieve the desired product quality. In this study, numerical 3D simulations have been created and run to investigate the role of various geometrical variables on punch load and maximum pressure inside the welding chamber. These are important outputs to take into account affecting, respectively, the necessary capacity of the extrusion press and the quality of the welding lines. The Taguchi technique has been used to reduce the number of the required numerical simulations necessary for considering the influence of twelve different geometric variables. Moreover, the Analysis of variance (ANOVA) has been implemented to individually analyze the effect of each input parameter on the two responses. Then, the methodology has been utilized to determine the optimal process configuration individually optimizing the two investigated process outputs. Finally, the responses of the optimized parameters have been verified through finite element simulations approximating the predicted value closely. This study shows the feasibility of the Taguchi technique for predicting performance, optimization and therefore for improving the design of a porthole extrusion process.

  6. The Art and Science of Climate Model Tuning

    DOE PAGES

    Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew; ...

    2017-03-31

    The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less

  7. The Art and Science of Climate Model Tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew

    The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less

  8. Effects of process parameters on the molding quality of the micro-needle array

    NASA Astrophysics Data System (ADS)

    Qiu, Z. J.; Ma, Z.; Gao, S.

    2016-07-01

    Micro-needle array, which is used in medical applications, is a kind of typical injection molded products with microstructures. Due to its tiny micro-features size and high aspect ratios, it is more likely to produce short shots defects, leading to poor molding quality. The injection molding process of the micro-needle array was studied in this paper to find the effects of the process parameters on the molding quality of the micro-needle array and to provide theoretical guidance for practical production of high-quality products. With the shrinkage ratio and warpage of micro needles as the evaluation indices of the molding quality, the orthogonal experiment was conducted and the analysis of variance was carried out. According to the results, the contribution rates were calculated to determine the influence of various process parameters on molding quality. The single parameter method was used to analyse the main process parameter. It was found that the contribution rate of the holding pressure on shrinkage ratio and warpage reached 83.55% and 94.71% respectively, far higher than that of the other parameters. The study revealed that the holding pressure is the main factor which affects the molding quality of micro-needle array so that it should be focused on in order to obtain plastic parts with high quality in the practical production.

  9. Processing Conditions Affecting Grain Size and Mechanical Properties in Nanocomposites Produced via Cold Spray

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Perrone, A.; Silvello, A.

    2014-10-01

    Cold spray is a coating technology based on aerodynamics and high-speed impact dynamics. In this process, spray particles (usually 1-50 μm in diameter) are accelerated to a high velocity (typically 300-1200 m/s) by a high-speed gas (pre-heated air, nitrogen, or helium) flow that is generated through a convergent-divergent de Laval-type nozzle. A coating is formed through the intensive plastic deformation of particles impacting on a substrate at a temperature below the melting point of the spray material. In the present paper the main processing parameters affecting the microstructural and mechanical behavior of metal-metal cold spray deposits are described. The effect of process parameters on grain refinement and mechanical properties were analyzed for composite particles of Al-Al2O3, Ni-BN, Cu-Al2O3, and Co-SiC. The properties of the formed nanocomposites were compared with those of the parent materials sprayed under the same conditions. The process conditions, leading to a strong grain refinement with an acceptable level of the deposit mechanical properties such as porosity and adhesion strength, are discussed.

  10. Effects of image processing on the detective quantum efficiency

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na

    2010-04-01

    Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.

  11. On the problem of modeling for parameter identification in distributed structures

    NASA Technical Reports Server (NTRS)

    Norris, Mark A.; Meirovitch, Leonard

    1988-01-01

    Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above.

  12. Application of Multi-Parameter Data Visualization by Means of Multidimensional Scaling to Evaluate Possibility of Coal Gasification

    NASA Astrophysics Data System (ADS)

    Jamróz, Dariusz; Niedoba, Tomasz; Surowiak, Agnieszka; Tumidajski, Tadeusz; Szostek, Roman; Gajer, Mirosław

    2017-09-01

    The application of methods drawing upon multi-parameter visualization of data by transformation of multidimensional space into two-dimensional one allow to show multi-parameter data on computer screen. Thanks to that, it is possible to conduct a qualitative analysis of this data in the most natural way for human being, i.e. by the sense of sight. An example of such method of multi-parameter visualization is multidimensional scaling. This method was used in this paper to present and analyze a set of seven-dimensional data obtained from Janina Mining Plant and Wieczorek Coal Mine. It was decided to examine whether the method of multi-parameter data visualization allows to divide the samples space into areas of various applicability to fluidal gasification process. The "Technological applicability card for coals" was used for this purpose [Sobolewski et al., 2012; 2017], in which the key parameters, important and additional ones affecting the gasification process were described.

  13. Macroscopic brain dynamics during verbal and pictorial processing of affective stimuli.

    PubMed

    Keil, Andreas

    2006-01-01

    Emotions can be viewed as action dispositions, preparing an individual to act efficiently and successfully in situations of behavioral relevance. To initiate optimized behavior, it is essential to accurately process the perceptual elements indicative of emotional relevance. The present chapter discusses effects of affective content on neural and behavioral parameters of perception, across different information channels. Electrocortical data are presented from studies examining affective perception with pictures and words in different task contexts. As a main result, these data suggest that sensory facilitation has an important role in affective processing. Affective pictures appear to facilitate perception as a function of emotional arousal at multiple levels of visual analysis. If the discrimination between affectively arousing vs. nonarousing content relies on fine-grained differences, amplification of the cortical representation may occur as early as 60-90 ms after stimulus onset. Affectively arousing information as conveyed via visual verbal channels was not subject to such very early enhancement. However, electrocortical indices of lexical access and/or activation of semantic networks showed that affectively arousing content may enhance the formation of semantic representations during word encoding. It can be concluded that affective arousal is associated with activation of widespread networks, which act to optimize sensory processing. On the basis of prioritized sensory analysis for affectively relevant stimuli, subsequent steps such as working memory, motor preparation, and action may be adjusted to meet the adaptive requirements of the situation perceived.

  14. Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.

    Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.

  15. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    PubMed

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  16. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria.

    PubMed

    Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir

    2017-11-01

    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  18. Analytical and regression models of glass rod drawing process

    NASA Astrophysics Data System (ADS)

    Alekseeva, L. B.

    2018-03-01

    The process of drawing glass rods (light guides) is being studied. The parameters of the process affecting the quality of the light guide have been determined. To solve the problem, mathematical models based on general equations of continuum mechanics are used. The conditions for the stable flow of the drawing process have been found, which are determined by the stability of the motion of the glass mass in the formation zone to small uncontrolled perturbations. The sensitivity of the formation zone to perturbations of the drawing speed and viscosity is estimated. Experimental models of the drawing process, based on the regression analysis methods, have been obtained. These models make it possible to customize a specific production process to obtain light guides of the required quality. They allow one to find the optimum combination of process parameters in the chosen area and to determine the required accuracy of maintaining them at a specified level.

  19. WORKSHOP ON MONITORING OXIDATION-REDUCTION PROCESSES FOR GROUND-WATER RESTORATION

    EPA Science Inventory

    Redox conditions are among the most important parameters for controlling contaminant transport and fate in ground-water systems. Oxidation-reduction (redox) reactions mediate the chemical behavior of both inorganic and organic chemical constituents by affecting solubility, rea...

  20. United States Air Force Summer Research Program -- 1993 Summer Research Program Final Reports. Volume 11. Arnold Engineering Development Center, Frank J. Seiler Research Laboratory, Wilford Hall Medical Center

    DTIC Science & Technology

    1993-01-01

    external parameters such as airflow, temperature, pressure, etc, are measured. Turbine Engine testing generates massive volumes of data at very high...a form that describes the signal flow graph topology as well as specific parameters of the processing blocks in the diagram. On multiprocessor...provides an interface to the symbolic builder and control functions such that parameters may be set during the build operation that will affect the

  1. Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Kumar, Ravindra

    2015-02-01

    Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.

  2. Consumer perception of dry-cured sheep meat products: Influence of process parameters under different evoked contexts.

    PubMed

    de Andrade, Juliana Cunha; Nalério, Elen Silveira; Giongo, Citieli; de Barcellos, Marcia Dutra; Ares, Gastón; Deliza, Rosires

    2017-08-01

    The development of high-quality air-dried cured sheep meat products adapted to meet consumer demands represent an interesting option to add value to the meat of adult animals. The present study aimed to evaluate the influence of process parameters on consumer choice of two products from sheep meat under different evoked contexts, considering product concepts. A total of 375 Brazilian participants completed a choice-based conjoint task with three 2-level variables for each product: maturation time, smoking, and sodium reduction for dry-cured sheep ham, and natural antioxidant, smoking, and sodium reduction for sheep meat coppa. A between-subjects experimental design was used to evaluate the influence of consumption context on consumer choices. All the process parameters significantly influenced consumer choice. However, their relative importance was affected by evoked context. Copyright © 2017. Published by Elsevier Ltd.

  3. Biological reduction of chlorinated solvents: Batch-scale geochemical modeling

    NASA Astrophysics Data System (ADS)

    Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.

    2010-09-01

    Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is able to provide valuable insight into the fundamental processes and their complex interactions during bioremediation of chlorinated ethenes in DNAPL source zones.

  4. Identification of AR(I)MA processes for modelling temporal correlations of GPS observations

    NASA Astrophysics Data System (ADS)

    Luo, X.; Mayer, M.; Heck, B.

    2009-04-01

    In many geodetic applications observations of the Global Positioning System (GPS) are routinely processed by means of the least-squares method. However, this algorithm delivers reliable estimates of unknown parameters und realistic accuracy measures only if both the functional and stochastic models are appropriately defined within GPS data processing. One deficiency of the stochastic model used in many GPS software products consists in neglecting temporal correlations of GPS observations. In practice the knowledge of the temporal stochastic behaviour of GPS observations can be improved by analysing time series of residuals resulting from the least-squares evaluation. This paper presents an approach based on the theory of autoregressive (integrated) moving average (AR(I)MA) processes to model temporal correlations of GPS observations using time series of observation residuals. A practicable integration of AR(I)MA models in GPS data processing requires the determination of the order parameters of AR(I)MA processes at first. In case of GPS, the identification of AR(I)MA processes could be affected by various factors impacting GPS positioning results, e.g. baseline length, multipath effects, observation weighting, or weather variations. The influences of these factors on AR(I)MA identification are empirically analysed based on a large amount of representative residual time series resulting from differential GPS post-processing using 1-Hz observation data collected within the permanent SAPOS® (Satellite Positioning Service of the German State Survey) network. Both short and long time series are modelled by means of AR(I)MA processes. The final order parameters are determined based on the whole residual database; the corresponding empirical distribution functions illustrate that multipath and weather variations seem to affect the identification of AR(I)MA processes much more significantly than baseline length and observation weighting. Additionally, the modelling results of temporal correlations using high-order AR(I)MA processes are compared with those by means of first order autoregressive (AR(1)) processes and empirically estimated autocorrelation functions.

  5. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients.

    PubMed

    Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia

    2016-01-01

    During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21-87) years; median time on PD 19 (3-100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters--rather than solute transport parameters--are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.

  6. Multiple-objective optimization in precision laser cutting of different thermoplastics

    NASA Astrophysics Data System (ADS)

    Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.

    2015-04-01

    Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.

  7. Increasing molecular weight parameters of a helical polymer through polymerization in a chiral solvent.

    PubMed

    Holder, Simon J; Achilleos, Mariliz; Jones, Richard G

    2006-09-27

    In this communication, we will demonstrate that polymerization in a chiral solvent can affect the molecular weight distribution of the product by perturbing the balance of the P and M helical screw senses of the growing chains. Specifically, for the Wurtz-type synthesis of polymethylphenylsilane (PMPS) in either (R) or (S)-limonene, the weight-average molecular weight of the products (average Mw = 80 000) was twice that of PMPS synthesized in (R/S)-limonene (average Mw = 39 200). Peturbation of the helical segmentation along the polymer chains leads to a reduction in the rate of occurrence of a key termination step. This the first time that a chiral solvent has been demonstrated to have such an effect on a polymerization process in affecting molecular weight parameters in contrast to affecting tacticity.

  8. Hyperspectral recognition of processing tomato early blight based on GA and SVM

    NASA Astrophysics Data System (ADS)

    Yin, Xiaojun; Zhao, SiFeng

    2013-03-01

    Processing tomato early blight seriously affect the yield and quality of its.Determine the leaves spectrum of different disease severity level of processing tomato early blight.We take the sensitive bands of processing tomato early blight as support vector machine input vector.Through the genetic algorithm(GA) to optimize the parameters of SVM, We could recognize different disease severity level of processing tomato early blight.The result show:the sensitive bands of different disease severity levels of processing tomato early blight is 628-643nm and 689-692nm.The sensitive bands are as the GA and SVM input vector.We get the best penalty parameters is 0.129 and kernel function parameters is 3.479.We make classification training and testing by polynomial nuclear,radial basis function nuclear,Sigmoid nuclear.The best classification model is the radial basis function nuclear of SVM. Training accuracy is 84.615%,Testing accuracy is 80.681%.It is combined GA and SVM to achieve multi-classification of processing tomato early blight.It is provided the technical support of prediction processing tomato early blight occurrence, development and diffusion rule in large areas.

  9. Biomachining - A new approach for micromachining of metals

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, S. C. Sakthi; Ramakrishnan, R.; Arun Prakash, C.; Sashank, C.

    2018-04-01

    Machining is the process of removal of material from workpiece. Machining can be done by physical, chemical or biological methods. Though physical and chemical methods have been widely used in machining process, they have their own disadvantages such as development of heat affected zone and usage of hazardous chemicals. Biomachining is the machining process in which bacteria is used to remove material from the metal parts. Chemolithotrophic bacteria such as Acidothiobacillus ferroxidans has been used in biomachining of metals like copper, iron etc. These bacteria are used because of their property of catalyzing the oxidation of inorganic substances. Biomachining is a suitable process for micromachining of metals. This paper reviews the biomachining process and various mechanisms involved in biomachining. This paper also briefs about various parameters/factors to be considered in biomachining and also the effect of those parameters on metal removal rate.

  10. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat.

    PubMed

    Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M

    2015-10-01

    The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    NASA Astrophysics Data System (ADS)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  12. Optimization of pulsed laser welding process parameters in order to attain minimum underfill and undercut defects in thin 316L stainless steel foils

    NASA Astrophysics Data System (ADS)

    Pakmanesh, M. R.; Shamanian, M.

    2018-02-01

    In this study, the optimization of pulsed Nd:YAG laser welding parameters was done on the lap-joint of a 316L stainless steel foil with the aim of reducing weld defects through response surface methodology. For this purpose, the effects of peak power, pulse-duration, and frequency were investigated. The most important weld defects seen in this method include underfill and undercut. By presenting a second-order polynomial, the above-mentioned statistical method was managed to be well employed to balance the welding parameters. The results showed that underfill increased with the increased power and reduced frequency, it first increased and then decreased with the increased pulse-duration; and the most important parameter affecting it was the power, whose effect was 65%. The undercut increased with the increased power, pulse-duration, and frequency; and the most important parameter affecting it was the power, whose effect was 64%. Finally, by superimposing different responses, improved conditions were presented to attain a weld with no defects.

  13. Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity

    NASA Astrophysics Data System (ADS)

    Hu, Ya-Peng; Zeng, Xiao-Xiong; Zhang, Hai-Qing

    2017-02-01

    We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.

  14. Microdesigning of Lightweight/High Strength Ceramic Materials

    DTIC Science & Technology

    1989-07-31

    Continue on reverse if necessary and identiy by block number) FIELD GROUP SUB- GROUP Ceramics, Composite Materials, Colloidal Processing Iii 19. ABSTRACT...to identify key processing parameters that affect the microstructure of the composite material. The second section describes experimental results in...results of the significant theoretical effort made in our group . Theoretical models of particle-particle interaction, particle-polymer interaction

  15. Synaptic consolidation as a temporally variable process: Uncovering the parameters modulating its time-course.

    PubMed

    Casagrande, Mirelle A; Haubrich, Josué; Pedraza, Lizeth K; Popik, Bruno; Quillfeldt, Jorge A; de Oliveira Alvares, Lucas

    2018-04-01

    Memories are not instantly created in the brain, requiring a gradual stabilization process called consolidation to be stored and persist in a long-lasting manner. However, little is known whether this time-dependent process is dynamic or static, and the factors that might modulate it. Here, we hypothesized that the time-course of consolidation could be affected by specific learning parameters, changing the time window where memory is susceptible to retroactive interference. In the rodent contextual fear conditioning paradigm, we compared weak and strong training protocols and found that in the latter memory is susceptible to post-training hippocampal inactivation for a shorter period of time. The accelerated consolidation process triggered by the strong training was mediated by glucocorticoids, since this effect was blocked by pre-training administration of metyrapone. In addition, we found that pre-exposure to the training context also accelerates fear memory consolidation. Hence, our results demonstrate that the time window in which memory is susceptible to post-training interferences varies depending on fear conditioning intensity and contextual familiarity. We propose that the time-course of memory consolidation is dynamic, being directly affected by attributes of the learning experiences. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Phosphatidylcholine Membrane Fusion Is pH-Dependent.

    PubMed

    Akimov, Sergey A; Polynkin, Michael A; Jiménez-Munguía, Irene; Pavlov, Konstantin V; Batishchev, Oleg V

    2018-05-03

    Membrane fusion mediates multiple vital processes in cell life. Specialized proteins mediate the fusion process, and a substantial part of their energy is used for topological rearrangement of the membrane lipid matrix. Therefore, the elastic parameters of lipid bilayers are of crucial importance for fusion processes and for determination of the energy barriers that have to be crossed for the process to take place. In the case of fusion of enveloped viruses (e.g., influenza) with endosomal membrane, the interacting membranes are in an acidic environment, which can affect the membrane's mechanical properties. This factor is often neglected in the analysis of virus-induced membrane fusion. In the present work, we demonstrate that even for membranes composed of zwitterionic lipids, changes of the environmental pH in the physiologically relevant range of 4.0 to 7.5 can affect the rate of the membrane fusion notably. Using a continual model, we demonstrated that the key factor defining the height of the energy barrier is the spontaneous curvature of the lipid monolayer. Changes of this parameter are likely to be caused by rearrangements of the polar part of lipid molecules in response to changes of the pH of the aqueous solution bathing the membrane.

  17. Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC

    NASA Astrophysics Data System (ADS)

    Susiluoto, Jouni; Raivonen, Maarit; Backman, Leif; Laine, Marko; Makela, Jarmo; Peltola, Olli; Vesala, Timo; Aalto, Tuula

    2018-03-01

    Estimating methane (CH4) emissions from natural wetlands is complex, and the estimates contain large uncertainties. The models used for the task are typically heavily parameterized and the parameter values are not well known. In this study, we perform a Bayesian model calibration for a new wetland CH4 emission model to improve the quality of the predictions and to understand the limitations of such models.The detailed process model that we analyze contains descriptions for CH4 production from anaerobic respiration, CH4 oxidation, and gas transportation by diffusion, ebullition, and the aerenchyma cells of vascular plants. The processes are controlled by several tunable parameters. We use a hierarchical statistical model to describe the parameters and obtain the posterior distributions of the parameters and uncertainties in the processes with adaptive Markov chain Monte Carlo (MCMC), importance resampling, and time series analysis techniques. For the estimation, the analysis utilizes measurement data from the Siikaneva flux measurement site in southern Finland. The uncertainties related to the parameters and the modeled processes are described quantitatively. At the process level, the flux measurement data are able to constrain the CH4 production processes, methane oxidation, and the different gas transport processes. The posterior covariance structures explain how the parameters and the processes are related. Additionally, the flux and flux component uncertainties are analyzed both at the annual and daily levels. The parameter posterior densities obtained provide information regarding importance of the different processes, which is also useful for development of wetland methane emission models other than the square root HelsinkI Model of MEthane buiLd-up and emIssion for peatlands (sqHIMMELI). The hierarchical modeling allows us to assess the effects of some of the parameters on an annual basis. The results of the calibration and the cross validation suggest that the early spring net primary production could be used to predict parameters affecting the annual methane production. Even though the calibration is specific to the Siikaneva site, the hierarchical modeling approach is well suited for larger-scale studies and the results of the estimation pave way for a regional or global-scale Bayesian calibration of wetland emission models.

  18. Parametric study on single shot peening by dimensional analysis method incorporated with finite element method

    NASA Astrophysics Data System (ADS)

    Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang

    2012-06-01

    Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.

  19. Kinetics modelling of color deterioration during thermal processing of tomato paste with the use of response surface methodology

    NASA Astrophysics Data System (ADS)

    Ganje, Mohammad; Jafari, Seid Mahdi; Farzaneh, Vahid; Malekjani, Narges

    2018-06-01

    To study the kinetics of color degradation, the tomato paste was designed to be processed at three different temperatures including 60, 70 and 80 °C for 25, 50, 75 and 100 min. a/b ratio, total color difference, saturation index and hue angle were calculated with the use of three main color parameters including L (lightness), a (redness-greenness) and b (yellowness-blueness) values. Kinetics of color degradation was developed by Arrhenius equation and the alterations were modelled with the use of response surface methodology (RSM). It was detected that all of the studied responses followed a first order reaction kinetics with an exception in TCD parameter (zeroth order). TCD and a/b respectively with the highest and lowest activation energy presented the highest sensitivity to the temperature alterations. The maximum and minimum rates of alterations were observed by TCD and b parameters, respectively. It was obviously determined that all of the studied parameters (responses) were affected by the selected independent parameters.

  20. Application of Gurson–Tvergaard–Needleman Constitutive Model to the Tensile Behavior of Reinforcing Bars with Corrosion Pits

    PubMed Central

    Xu, Yidong; Qian, Chunxiang

    2013-01-01

    Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140

  1. Modification Of Learning Rate With Lvq Model Improvement In Learning Backpropagation

    NASA Astrophysics Data System (ADS)

    Tata Hardinata, Jaya; Zarlis, Muhammad; Budhiarti Nababan, Erna; Hartama, Dedy; Sembiring, Rahmat W.

    2017-12-01

    One type of artificial neural network is a backpropagation, This algorithm trained with the network architecture used during the training as well as providing the correct output to insert a similar but not the same with the architecture in use at training.The selection of appropriate parameters also affects the outcome, value of learning rate is one of the parameters which influence the process of training, Learning rate affects the speed of learning process on the network architecture.If the learning rate is set too large, then the algorithm will become unstable and otherwise the algorithm will converge in a very long period of time.So this study was made to determine the value of learning rate on the backpropagation algorithm. LVQ models of learning rate is one of the models used in the determination of the value of the learning rate of the algorithm LVQ.By modifying this LVQ model to be applied to the backpropagation algorithm. From the experimental results known to modify the learning rate LVQ models were applied to the backpropagation algorithm learning process becomes faster (epoch less).

  2. Effect of fermentation parameters on bio-alcohols production from glycerol using immobilized Clostridium pasteurianum: an optimization study.

    PubMed

    Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S

    2013-01-01

    This article addresses the issue of effect of fermentation parameters for conversion of glycerol (in both pure and crude form) into three value-added products, namely, ethanol, butanol, and 1,3-propanediol (1,3-PDO), by immobilized Clostridium pasteurianum and thereby addresses the statistical optimization of this process. The analysis of effect of different process parameters such as agitation rate, fermentation temperature, medium pH, and initial glycerol concentration indicated that medium pH was the most critical factor for total alcohols production in case of pure glycerol as fermentation substrate. On the other hand, initial glycerol concentration was the most significant factor for fermentation with crude glycerol. An interesting observation was that the optimized set of fermentation parameters was found to be independent of the type of glycerol (either pure or crude) used. At optimum conditions of agitation rate (200 rpm), initial glycerol concentration (25 g/L), fermentation temperature (30°C), and medium pH (7.0), the total alcohols production was almost equal in anaerobic shake flasks and 2-L bioreactor. This essentially means that at optimum process parameters, the scale of operation does not affect the output of the process. The immobilized cells could be reused for multiple cycles for both pure and crude glycerol fermentation.

  3. [Effect of pineal peptide on parameters of the biological age and life span in mice].

    PubMed

    Anisimov, V N; Khavinson, V Kh; Zavarzina, N Iu; Zabezhinskiĭ, M A; Zimina, O A; Popovich, I G; Shtylik, A V; Arutiunian, A V; Oparina, T I; Prokopenko, V M

    2001-01-01

    Female CBA mice were injected with s.c. synthetic tetrapeptide Epithalon from a 6-month age until death. The drug failed to affect the body weight or food consumption, physical activity or behavioural parameters. However, it slowed down the age-related switching off of the estrus function, decreased body temperature, decelerated free redical processes, prolonged the mice life span with an accompanying drop in spontaneous tumour incidence.

  4. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    NASA Astrophysics Data System (ADS)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling parameter for the aerosols. The estimation method is computationally fast and can be used with more complex models where climate sensitivity is diagnosed rather than prescribed. The parameter estimates can be used to create probabilistic climate projections using the UVic ESCM model in future studies.

  5. Microscopic Evaluation of Friction Plug Welds- Correlation to a Processing Analysis

    NASA Technical Reports Server (NTRS)

    Rabenberg, Ellen M.; Chen, Poshou; Gorti, Sridhar

    2017-01-01

    Recently an analysis of dynamic forge load data from the friction plug weld (FPW) process and the corresponding tensile test results showed that good plug welds fit well within an analytically determined processing parameter box. There were, however, some outliers that compromised the predictions. Here the microstructure of the plug weld material is presented in view of the load analysis with the intent of further understanding the FPW process and how it is affected by the grain structure and subsequent mechanical properties.

  6. The physicochemical process of bacterial attachment to abiotic surfaces: Challenges for mechanistic studies, predictability and the development of control strategies.

    PubMed

    Wang, Yi; Lee, Sui Mae; Dykes, Gary

    2015-01-01

    Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.

  7. Enhancement of low power CO2 laser cutting process for injection molded polycarbonate

    NASA Astrophysics Data System (ADS)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2017-11-01

    Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.

  8. Laser tailored nanoparticle arrays to detect molecules at dilute concentration

    NASA Astrophysics Data System (ADS)

    Zanchi, Chiara; Lucotti, Andrea; Tommasini, Matteo; Trusso, Sebastiano; de Grazia, Ugo; Ciusani, Emilio; Ossi, Paolo M.

    2017-02-01

    By nanosecond pulsed laser ablation in an ambient gas gold nanoparticles (NPs) were produced that self-assemble on a substrate resulting in increasingly elaborated architectures of growing thickness, from isolated NP arrays up to percolated films. NPs nucleate and grow in the plasma plume propagating through the gas. Process parameters including laser wavelength, laser energy density, target to substrate distance, nature and pressure of the gas affect plasma expansion, thus asymptotic NP size and kinetic energy. NP size, energy and mobility at landing determine film growth and morphology that affect the physico-chemical properties of the film. Keeping fixed the other process parameters, we discuss the sensitive dependence of film surface nanostructure on Ar pressure and on laser pulse number. The initial plume velocity and average ablated mass per pulse allow predicting the asymptotic NP size. The control of growth parameters favors fine-tuning of NP aggregation, relevant to plasmonics to get optimized substrates for surface enhanced Raman spectroscopy (SERS). Their behavior is discussed for testing conditions of interest for clinical application. Both in aqueous and in biological solutions we obtained good sensitivity and reproducibility of the SERS signals for the anti-Parkinson drug apomorphine, and for the anti-epilepsy drug carbamazepine.

  9. Contextualization: Memory Formation and Retrieval in a Nested Environment

    NASA Astrophysics Data System (ADS)

    Piefke, Martina; Markowitsch, Hans J.

    Episodic memory functions are highly context-dependent. This is true for both experimental and autobiographical episodic memory. We here review neuropsychological and neuroimaging evidence for effects of differential encoding and retrieval contexts on episodic memory performance as well as the underlying neurofunctional mechanisms. In studies of laboratory episodic memory, the influence of context parameters can be assessed by experimental manipulations. Such experiments suggest that contextual variables mainly affect prefrontal functions supporting executive processes involved in episodic learning and retrieval. Context parameters affecting episodic autobiographical memory are far more complex and cannot easily be controlled. Data support the view that not only prefrontal, but also further medial temporal and posterior parietal regions mediating the re-experience and emotional evaluation of personal memories are highly influenced by changing contextual variables of memory encoding and retrieval. Based on our review of available data, we thus suggest that experimental and autobiographical episodic memories are influenced by both overlapping and differential context parameters.

  10. Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm

    PubMed Central

    Tamjidy, Mehran; Baharudin, B. T. Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz

    2017-01-01

    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon’s entropy. PMID:28772893

  11. Multi-Objective Optimization of Friction Stir Welding Process Parameters of AA6061-T6 and AA7075-T6 Using a Biogeography Based Optimization Algorithm.

    PubMed

    Tamjidy, Mehran; Baharudin, B T Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz

    2017-05-15

    The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.

  12. Influence of spray nozzle shape upon atomization process

    NASA Astrophysics Data System (ADS)

    Beniuga, Marius; Mihai, Ioan

    2016-12-01

    The atomization process is affected by a number of operating parameters (pressure, viscosity, temperature, etc.) [1-6] and the adopted constructive solution. In this article are compared parameters of atomized liquid jet with two nozzles that have different lifespan, one being new and the other one out. The last statement shows that the second nozzle was monitored as time of operation on the one hand and on the other hand, two dimensional nozzles have been analyzed using laser profilometry. To compare the experimental parameters was carried an experimental stand to change the period and pulse width in injecting liquid through two nozzles. Atomized liquid jets were photographed and filmed quickly. Images obtained were analyzed using a Matlab code that allowed to determine a number of parameters that characterize an atomized jet. Knowing the conditions and operating parameters of atomized jet, will establish a new wastewater nozzle block of parameter values that can be implemented in controller that provides dosing of the liquid injected. Experimental measurements to observe the myriad forms of atomized droplets to a wide range of operating conditions, realized using the electronic control module.

  13. Sludge stabilization through aerobic digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, R.B.; Smith, D.G.; Bennett, E.R.

    1979-10-01

    The aerobic digestion process with certain modifications is evaluated as an alternative for sludge processing capable of developing a product with characteristics required for land application. Environmental conditions, including temperature, solids concentration, and digestion time, that affect the aerobic digestion of a mixed primary sludge-trickling filter humus are investigated. Variations in these parameters that influence the characteristics of digested sludge are determined, and the parameters are optimized to: provide the maximum rate of volatile solids reduction; develop a stable, nonodorous product sludge; and provide the maximum rate of oxidation of the nitrogenous material present in the feed sludge. (3 diagrams,more » 9 graphs, 15 references, 3 tables)« less

  14. Laser Metal Deposition as Repair Technology for Stainless Steel and Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Graf, Benjamin; Gumenyuk, Andrey; Rethmeier, Michael

    In a repair process chain, damaged areas or cracks can be removed by milling and subsequently be reconditioned with new material deposition. The use of laser metal deposition has been investigated for this purpose. The material has been deposited into different groove shapes, using both stainless steel and Ti-6Al-4 V. The influence of welding parameters on the microstructure and the heat affected zone has been studied. The parameters have been modified in order to achieve low heat input and consequently low distortion as well as low metallurgical impact. Finally, an evaluation of the opportunities for an automatized repair process is made.

  15. Transmutation Fuel Fabrication-Fiscal Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fielding, Randall Sidney; Grover, Blair Kenneth

    ABSTRACT Nearly all of the metallic fuel that has been irradiated and characterized by the Advanced Fuel Campaign, and its earlier predecessors, has been arc cast. Arc casting is a very flexible method of casting lab scale quantities of materials. Although the method offers flexibility, it is an operator dependent process. Small changes in parameter space or alloy composition may affect how the material is cast. This report provides a historical insight in how the casting process has been modified over the history of the advanced fuels campaign as well as the physical parameters of the fuels cast in fiscalmore » year 2016.« less

  16. Optimization of laser welding thin-gage galvanized steel via response surface methodology

    NASA Astrophysics Data System (ADS)

    Zhao, Yangyang; Zhang, Yansong; Hu, Wei; Lai, Xinmin

    2012-09-01

    The increasing demand of light weight and durability makes thin-gage galvanized steels (<0.6 mm) attractive for future automotive applications. Laser welding, well known for its deep penetration, high speed and small heat affected zone, provides a potential solution for welding thin-gage galvanized steels in automotive industry. In this study, the effect of the laser welding parameters (i.e. laser power, welding speed, gap and focal position) on the weld bead geometry (i.e. weld depth, weld width and surface concave) of 0.4 mm-thick galvanized SAE1004 steel in a lap joint configuration has been investigated by experiments. The process windows of the concerned process parameters were therefore determined. Then, response surface methodology (RSM) was used to develop models to predict the relationship between the processing parameters and the laser weld bead profile and identify the correct and optimal combination of the laser welding input variables to obtain superior weld joint. Under the optimal welding parameters, defect-free weld were produced, and the average aspect ratio increased about 30%, from 0.62 to 0.83.

  17. Processing of face identity in the affective flanker task: a diffusion model analysis.

    PubMed

    Mueller, Christina J; Kuchinke, Lars

    2016-11-01

    Affective flanker tasks often present affective facial expressions as stimuli. However, it is not clear whether the identity of the person on the target picture needs to be the same for the flanker stimuli or whether it is better to use pictures of different persons as flankers. While Grose-Fifer, Rodrigues, Hoover & Zottoli (Advances in Cognitive Psychology 9(2):81-91, 2013) state that attentional focus might be captured by processing the differences between faces, i.e. the identity, and therefore use pictures of the same individual as target and flanker stimuli, Munro, Dywan, Harris, McKee, Unsal & Segalowitz (Biological Psychology, 76:31-42, 2007) propose an advantage in presenting pictures of a different individual as flankers. They state that participants might focus only on small visual changes when targets and flankers are from the same individual instead of processing the affective content of the stimuli. The present study manipulated face identity in a between-subject design. Through investigation of behavioral measures as well as diffusion model parameters, we conclude that both types of flankers work equally efficient. This result seems best supported by recent accounts that propose an advantage of emotional processing over identity processing in face recognition. In the present study, there is no evidence that the processing of the face identity attracts sufficient attention to interfere with the affective evaluation of the target and flanker faces.

  18. In-depth quantitative analysis of the microstructures produced by Surface Mechanical Attrition Treatment (SMAT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samih, Y., E-mail: youssef.samih@univ-lorraine.fr; Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures; Beausir, B.

    2013-09-15

    Electron BackScattered Diffraction (EBSD) maps are used to characterize quantitatively the graded microstructure formed by Surface Mechanical Attrition Treatment (SMAT) and applied here to the 316L stainless steel. In particular, the analysis of GNDs – coupled with relevant and reliable criteria – was used to depict the thickness of each zone identified in the SMAT-affected layers: (i) the “ultrafine grain” (UFG) zone present at the extreme top surface, (ii), the “transition zone” where grains were fragmented under the heavy plastic deformation and, finally, (iii) the “deformed zone” where initial grains are simply deformed. The interest of this procedure is illustratedmore » through the comparative analysis of the effect of some SMAT processing parameters (amplitude of vibration and treatment duration). The UFG and transition zones are more significantly modified than the overall affected thickness under our tested conditions. - Highlights: • EBSD maps are used to characterize quantitatively the microstructure of SMAT treated samples. • Calculation of the GND density to quantify strain gradients • A new method to depict the different zone thicknesses in the SMAT affected layer • Effects of SMAT processing parameters on the surface microstructure evolution.« less

  19. Calculation and experimental determination of the geometric parameters of the coatings by laser cladding

    NASA Astrophysics Data System (ADS)

    Birukov, V. P.; Fichkov, A. A.

    2017-12-01

    In the present work the experiments on laser cladding of powder Fe-B-Cr-6-2 on samples of steel 20. Metallographic studies of geometric parameters of deposited layers and the depth of the heat affected zone (HAZ). Using is the method of full factorial experiment (FFE) mathematical dependences of the geometrical sizes of the deposited layers of processing modes. Deviation of calculated values from experimental data is not more than 3%.

  20. Measuring the significance of pearlescence in real-time bottle forming

    NASA Astrophysics Data System (ADS)

    Nixon, J.; Menary, G.; Yan, S.

    2018-05-01

    This work examines the optical properties of polyethylene terephthalate (PET) bottles during the stretch-blow-moulding (SBM) process. PET has a relatively large process window with regards to process parameters, however if the boundaries are pushed, the resultant bottle can become insufficient for consumer requirements. One aspect of this process is the onset of pearlescence in the bottle material, where the bottle becomes opaque due to elevated stress whitening. Experimental trials were carried out using a modified free-stretch-blow machine where the deforming bottle was examined in free air. The strain values of the deformation were measured using digital image correlation (DIC) and the optical properties were measured relative to the initial amorphous PET preform. The results reveal that process parameters can significantly affect pearlescence. The detrimental level of pearlescence may be predicted therefore reducing the probability of poorly formed bottles.

  1. Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool

    NASA Astrophysics Data System (ADS)

    Rahul, NAVIK; Sameera, SHAFI; Md Miskatul, ALAM; Md Amjad, FAROOQ; Lina, LIN; Yingjie, CAI

    2018-06-01

    Physical and chemical properties of wool surface significantly affect the absorbency, rate of dye bath exhaustion and fixation of the industrial dyes. Hence, surface modification is a necessary operation prior to coloration process in wool wet processing industries. Plasma treatment is an effective alternative for physiochemical modification of wool surface. However, optimum processing parameters to get the expected modification are still under investigation, hence this technology is still under development in the wool wet processing industries. Therefore, in this paper, treatment parameters with the help of simple dielectric barrier discharge plasma reactor and air as a plasma gas, which could be a promising combination for treatment of wool substrate at industrial scale were schematically studied, and their influence on the water absorbency, mechanical, and dyeing properties of twill woven wool fabric samples are reported. It is expected that the results will assist to the wool coloration industries to improve the dyeing processes.

  2. Social priming of hemispatial neglect affects spatial coding: Evidence from the Simon task.

    PubMed

    Arend, Isabel; Aisenberg, Daniela; Henik, Avishai

    2016-10-01

    In the Simon effect (SE), choice reactions are fast if the location of the stimulus and the response correspond when stimulus location is task-irrelevant; therefore, the SE reflects the automatic processing of space. Priming of social concepts was found to affect automatic processing in the Stroop effect. We investigated whether spatial coding measured by the SE can be affected by the observer's mental state. We used two social priming manipulations of impairments: one involving spatial processing - hemispatial neglect (HN) and another involving color perception - achromatopsia (ACHM). In two experiments the SE was reduced in the "neglected" visual field (VF) under the HN, but not under the ACHM manipulation. Our results show that spatial coding is sensitive to spatial representations that are not derived from task-relevant parameters, but from the observer's cognitive state. These findings dispute stimulus-response interference models grounded on the idea of the automaticity of spatial processing. Copyright © 2016. Published by Elsevier Inc.

  3. Adaptive Neuro-Fuzzy Determination of the Effect of Experimental Parameters on Vehicle Agent Speed Relative to Vehicle Intruder.

    PubMed

    Shamshirband, Shahaboddin; Banjanovic-Mehmedovic, Lejla; Bosankic, Ivan; Kasapovic, Suad; Abdul Wahab, Ainuddin Wahid Bin

    2016-01-01

    Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.

  4. Thermodynamic Behavior Research Analysis of Twin-roll Casting Lead Alloy Strip Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chengcan; Rui, Yannian

    2017-03-01

    The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little research on the thermodynamics of lead alloy strip at home and abroad. The TRC lead process is studied in four parameters: the pouring temperature of molten lead, the depth of molten pool, the roll casting speed, and the rolling thickness of continuous casting. Firstly, the thermodynamic model for TRC lead process is built. Secondly, the thermodynamic behavior of the TRC process is simulated with the use of Fluent. Through the thermodynamics research and analysis, the process parameters of cast rolling lead strip can be obtained: the pouring temperature of molten lead: 360-400 °C, the depth of molten pool: 250-300 mm, the roll casting speed: 2.5-3 m/min, the rolling thickness: 8-9 mm. Based on the above process parameters, the optimal parameters(the pouring temperature of molten lead: 375-390 °C, the depth of molten pool: 285-300 mm, the roll casting speed: 2.75-3 m/min, the rolling thickness: 8.5-9 mm) can be gained with the use of the orthogonal experiment. Finally, the engineering test of TRC lead alloy strip is carried out and the test proves the thermodynamic model is scientific, necessary and correct. In this paper, a detailed study on the thermodynamic behavior of lead alloy strip is carried out and the process parameters of lead strip forming are obtained through the research, which provide an effective theoretical guide for TRC lead alloy strip process.

  5. Visual food cues decrease postprandial glucose concentrations in lean and obese men without affecting food intake and related endocrine parameters.

    PubMed

    Brede, Swantje; Sputh, Annika; Hartmann, Ann-Christin; Hallschmid, Manfred; Lehnert, Hendrik; Klement, Johanna

    2017-10-01

    The abundance of highly palatable food items in our environment represents a possible cause of overconsumption. Neuroimaging studies in humans have demonstrated that watching pictures of food increases activation in brain areas involved in homeostatic and hedonic food cue processing. Nevertheless, the impact of food cues on actual food intake and metabolic parameters has not been systematically investigated. We tested the hypothesis that watching high-calorie food cues increases food intake and modifies anticipatory blood parameters in lean and especially in obese men. In 20 normal-weight and 20 obese healthy fasted men, we assessed the effects of watching pictures of high-calorie food items versus neutral contents on food intake measured during a standardized test buffet and subsequent snacking as well as on glucose homeostasis and endocrine parameters. Compared to neutral pictures, viewing food pictures reduced postprandial blood glucose concentrations in lean (p = 0.016) and obese (p = 0.044) subjects, without any differences in insulin or C-peptide concentrations (all p > 0.4). Viewing food pictures did not affect total calorie intake during the buffet (all p > 0.5) and snack consumption (all p > 0.4). Concentrations of ghrelin, adrenocorticotropic hormone (ACTH), cortisol, and glucagon also remained unaffected (all p > 0.08). These data indicate that preprandial processing of food cues curbs postprandial blood glucose excursions, without immediately affecting eating behavior in normal-weight and obese men. Findings indicate that exposure to food cues does not acutely trigger calorie overconsumption but rather improves the glucoregulatory response to food intake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Experiments and simulation for 6061-T6 aluminum alloy resistance spot welded lap joints

    NASA Astrophysics Data System (ADS)

    Florea, Radu Stefanel

    This comprehensive study is the first to quantify the fatigue performance, failure loads, and microstructure of resistance spot welding (RSW) in 6061-T6 aluminum (Al) alloy according to welding parameters and process sensitivity. The extensive experimental, theoretical and simulated analyses will provide a framework to optimize the welding of lightweight structures for more fuel-efficient automotive and military applications. The research was executed in four primary components. The first section involved using electron back scatter diffraction (EBSD) scanning, tensile testing, laser beam profilometry (LBP) measurements, and optical microscopy(OM) images to experimentally investigate failure loads and deformation of the Al-alloy resistance spot welded joints. Three welding conditions, as well as nugget and microstructure characteristics, were quantified according to predefined process parameters. Quasi-static tensile tests were used to characterize the failure loads in specimens based upon these same process parameters. Profilometer results showed that increasing the applied welding current deepened the weld imprints. The EBSD scans revealed the strong dependency between the grain sizes and orientation function on the process parameters. For the second section, the fatigue behavior of the RSW'ed joints was experimentally investigated. The process optimization included consideration of the forces, currents, and times for both the main weld and post-heating. Load control cyclic tests were conducted on single weld lap-shear joint coupons to characterize the fatigue behavior in spot welded specimens. Results demonstrate that welding parameters do indeed significantly affect the microstructure and fatigue performance for these welds. The third section comprised residual strains of resistance spot welded joints measured in three different directions, denoted as in-plane longitudinal, in-plane transversal, and normal, and captured on the fusion zone, heat affected zone and base metal of the joints. Neutron diffraction results showed residual stresses in the weld are approximately 40% lower than the yield strength of the parent material, with maximum variation occurring in the vertical position of the specimen because of the orientation of electrode clamping forces that produce a non-uniform solidification pattern. In the final section a theoretical continuum modeling framework for 6061-T6 aluminum resistance spot welded joints is presented.

  7. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  8. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  9. 40 CFR 63.864 - Monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that uses an air pollution control system other than an ESP, wet scrubber, RTO, or fabric filter must... unit equipped with an alternative air pollution control system and monitoring operating parameters... affected source or process unit equipped with an alternative air pollution control system and monitoring...

  10. Effect of Fixatives and Tissue Processing on the Content and Integrity of Nucleic Acids

    PubMed Central

    Srinivasan, Mythily; Sedmak, Daniel; Jewell, Scott

    2002-01-01

    Clinical and molecular medicines are undergoing a revolution based on the accelerated advances in biotechnology such as DNA microarrays and proteomics. Answers to fundamental questions such as how does the DNA sequence differ between individuals and what makes one individual more prone for a certain disease are eagerly being sought in this postgenomic era. Several government and nonprofit organizations provide the researchers access to human tissues for molecular studies. The tissues procured by the different organizations may differ with respect to fixation and processing parameters that may affect significantly the molecular profile of the tissues. It is imperative that a prospective investigator be aware of the potential contributing factors before designing a project. The purpose of this review is to provide an overview of the methods of human tissue acquisition, fixation, and preservation. In addition, the parameters of procurement and fixation that affect the quality of the tissues at the molecular level are discussed. PMID:12466110

  11. Improvement of the Mechanical Properties of 1022 Carbon Steel Coil by Using the Taguchi Method to Optimize Spheroidized Annealing Conditions.

    PubMed

    Yang, Chih-Cheng; Liu, Chang-Lun

    2016-08-12

    Cold forging is often applied in the fastener industry. Wires in coil form are used as semi-finished products for the production of billets. This process usually requires preliminarily drawing wire coil in order to reduce the diameter of products. The wire usually has to be annealed to improve its cold formability. The quality of spheroidizing annealed wire affects the forming quality of screws. In the fastener industry, most companies use a subcritical process for spheroidized annealing. Various parameters affect the spheroidized annealing quality of steel wire, such as the spheroidized annealing temperature, prolonged heating time, furnace cooling time and flow rate of nitrogen (protective atmosphere). The effects of the spheroidized annealing parameters affect the quality characteristics of steel wire, such as the tensile strength and hardness. A series of experimental tests on AISI 1022 low carbon steel wire are carried out and the Taguchi method is used to obtain optimum spheroidized annealing conditions to improve the mechanical properties of steel wires for cold forming. The results show that the spheroidized annealing temperature and prolonged heating time have the greatest effect on the mechanical properties of steel wires. A comparison between the results obtained using the optimum spheroidizing conditions and the measures using the original settings shows the new spheroidizing parameter settings effectively improve the performance measures over their value at the original settings. The results presented in this paper could be used as a reference for wire manufacturers.

  12. Mapping the Risks of Malaria, Dengue and Influenza Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Kiang, R. K.; Soebiyanto, R. P.

    2012-07-01

    It has long been recognized that environment and climate may affect the transmission of infectious diseases. The effects are most obvious for vector-borne infectious diseases, such as malaria and dengue, but less so for airborne and contact diseases, such as seasonal influenza. In this paper, we examined the meteorological and environmental parameters that influence the transmission of malaria, dengue and seasonal influenza. Remotely sensed parameters that provide such parameters were discussed. Both statistical and biologically inspired, processed based models can be used to model the transmission of these diseases utilizing the remotely sensed parameters as input. Examples were given for modelling malaria in Thailand, dengue in Indonesia, and seasonal influenza in Hong Kong.

  13. Affective priming effects of musical sounds on the processing of word meaning.

    PubMed

    Steinbeis, Nikolaus; Koelsch, Stefan

    2011-03-01

    Recent studies have shown that music is capable of conveying semantically meaningful concepts. Several questions have subsequently arisen particularly with regard to the precise mechanisms underlying the communication of musical meaning as well as the role of specific musical features. The present article reports three studies investigating the role of affect expressed by various musical features in priming subsequent word processing at the semantic level. By means of an affective priming paradigm, it was shown that both musically trained and untrained participants evaluated emotional words congruous to the affect expressed by a preceding chord faster than words incongruous to the preceding chord. This behavioral effect was accompanied by an N400, an ERP typically linked with semantic processing, which was specifically modulated by the (mis)match between the prime and the target. This finding was shown for the musical parameter of consonance/dissonance (Experiment 1) and then extended to mode (major/minor) (Experiment 2) and timbre (Experiment 3). Seeing that the N400 is taken to reflect the processing of meaning, the present findings suggest that the emotional expression of single musical features is understood by listeners as such and is probably processed on a level akin to other affective communications (i.e., prosody or vocalizations) because it interferes with subsequent semantic processing. There were no group differences, suggesting that musical expertise does not have an influence on the processing of emotional expression in music and its semantic connotations.

  14. WE-G-204-01: BEST IN PHYSICS (IMAGING): Effect of Image Processing Parameters On Nodule Detectability in Chest Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, K; Lu, Z; MacMahon, H

    Purpose: To investigate the effect of varying system image processing parameters on lung nodule detectability in digital radiography. Methods: An anthropomorphic chest phantom was imaged in the posterior-anterior position using a GE Discovery XR656 digital radiography system. To simulate lung nodules, a polystyrene board with 6.35mm diameter PMMA spheres was placed adjacent to the phantom (into the x-ray path). Due to magnification, the projected simulated nodules had a diameter in the radiographs of approximately 7.5 mm. The images were processed using one of GE’s default chest settings (Factory3) and reprocessed by varying the “Edge” and “Tissue Contrast” processing parameters, whichmore » were the two user-configurable parameters for a single edge and contrast enhancement algorithm. For each parameter setting, the nodule signals were calculated by subtracting the chest-only image from the image with simulated nodules. Twenty nodule signals were averaged, Gaussian filtered, and radially averaged in order to generate an approximately noiseless signal. For each processing parameter setting, this noise-free signal and 180 background samples from across the lung were used to estimate ideal observer performance in a signal-known-exactly detection task. Performance was estimated using a channelized Hotelling observer with 10 Laguerre-Gauss channel functions. Results: The “Edge” and “Tissue Contrast” parameters each had an effect on the detectability as calculated by the model observer. The CHO-estimated signal detectability ranged from 2.36 to 2.93 and was highest for “Edge” = 4 and “Tissue Contrast” = −0.15. In general, detectability tended to decrease as “Edge” was increased and as “Tissue Contrast” was increased. A human observer study should be performed to validate the relation to human detection performance. Conclusion: Image processing parameters can affect lung nodule detection performance in radiography. While validation with a human observer study is needed, model observer detectability for common tasks could provide a means for optimizing image processing parameters.« less

  15. Effective Parameters in Axial Injection Suspension Plasma Spray Process of Alumina-Zirconia Ceramics

    NASA Astrophysics Data System (ADS)

    Tarasi, F.; Medraj, M.; Dolatabadi, A.; Oberste-Berghaus, J.; Moreau, C.

    2008-12-01

    Suspension plasma spray (SPS) is a novel process for producing nano-structured coatings with metastable phases using significantly smaller particles as compared to conventional thermal spraying. Considering the complexity of the system there is an extensive need to better understand the relationship between plasma spray conditions and resulting coating microstructure and defects. In this study, an alumina/8 wt.% yttria-stabilized zirconia was deposited by axial injection SPS process. The effects of principal deposition parameters on the microstructural features are evaluated using the Taguchi design of experiment. The microstructural features include microcracks, porosities, and deposition rate. To better understand the role of the spray parameters, in-flight particle characteristics, i.e., temperature and velocity were also measured. The role of the porosity in this multicomponent structure is studied as well. The results indicate that thermal diffusivity of the coatings, an important property for potential thermal barrier applications, is barely affected by the changes in porosity content.

  16. Simulation and analysis of tape spring for deployed space structures

    NASA Astrophysics Data System (ADS)

    Chang, Wei; Cao, DongJing; Lian, MinLong

    2018-03-01

    The tape spring belongs to the configuration of ringent cylinder shell, and the mechanical properties of the structure are significantly affected by the change of geometrical parameters. There are few studies on the influence of geometrical parameters on the mechanical properties of the tape spring. The bending process of the single tape spring was simulated based on simulation software. The variations of critical moment, unfolding moment, and maximum strain energy in the bending process were investigated, and the effects of different radius angles of section and thickness and length on driving capability of the simple tape spring was studied by using these parameters. Results show that the driving capability and resisting disturbance capacity grow with the increase of radius angle of section in the bending process of the single tape spring. On the other hand, these capabilities decrease with increasing length of the single tape spring. In the end, the driving capability and resisting disturbance capacity grow with the increase of thickness in the bending process of the single tape spring. The research has a certain reference value for improving the kinematic accuracy and reliability of deployable structures.

  17. wsacrvpthrc.a1

    DOE Data Explorer

    Gaustad, Krista; Hardin, Joseph

    2015-12-14

    The wsacr PCM process executed by the sacr3 binary reads in wsacr.00 data and produces CF/Radial compliant NetCDF files for each of the radar operational scanning modes. This incorporates raw data from the radar, as well as scientifically important base derived parameters that affect interpretation of the data.

  18. wsacrppivh.a1

    DOE Data Explorer

    Gaustad, Krista; Hardin, Joseph

    2015-07-22

    The wsacr PCM process executed by the sacr3 binary reads in wsacr.00 data and produces CF/Radial compliant NetCDF files for each of the radar operational scanning modes. This incorporates raw data from the radar, as well as scientifically important base derived parameters that affect interpretation of the data.

  19. wsacrzrhiv.a1

    DOE Data Explorer

    Gaustad, Krista; Hardin, Joseph

    2015-07-22

    The wsacr PCM process executed by the sacr3 binary reads in wsacr.00 data and produces CF/Radial compliant NetCDF files for each of the radar operational scanning modes. This incorporates raw data from the radar, as well as scientifically important base derived parameters that affect interpretation of the data.

  20. kasacrvpthrc.a1

    DOE Data Explorer

    Gaustad, Krista; Hardin, Joseph

    2015-07-22

    The kasacr PCM process executed by the sacr3 binary reads in kasacr.00 data and produces CF/Radial compliant NetCDF files for each of the radar operational scanning modes. This incorporates raw data from the radar, as well as scientifically important base derived parameters that affect interpretation of the data.

  1. Fabrication of a novel quartz micromachined gyroscope

    NASA Astrophysics Data System (ADS)

    Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong

    2015-04-01

    A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.

  2. An advanced technique for the prediction of decelerator system dynamics.

    NASA Technical Reports Server (NTRS)

    Talay, T. A.; Morris, W. D.; Whitlock, C. H.

    1973-01-01

    An advanced two-body six-degree-of-freedom computer model employing an indeterminate structures approach has been developed for the parachute deployment process. The program determines both vehicular and decelerator responses to aerodynamic and physical property inputs. A better insight into the dynamic processes that occur during parachute deployment has been developed. The model is of value in sensitivity studies to isolate important parameters that affect the vehicular response.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padaki, S.; Drzal, L.T.

    The consolidation process in composites made out of powder impregnated tapes differs from that of other material forms because of the distribution of fiber and matrix in the unconsolidated state. A number of factors (e.g. time, pressure, particle size, volume fraction and viscosity) affect the efficiency of the consolidation of these tapes. This paper describes the development of a mathematical process model that describes the best set of parameters required for the consolidation of a given prepreg tape.

  4. Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Alan Tin-Lun, E-mail: alan_lam@bti.a-star.edu.sg; Chen, Allen Kuan-Liang; Ting, Sherwin Qi-Peng

    Current methods for human pluripotent stem cells (hPSC) expansion and differentiation can be limited in scalability and costly (due to their labor intensive nature). This can limit their use in cell therapy, drug screening and toxicity assays. One of the approaches that can overcome these limitations is microcarrier (MC) based cultures in which cells are expanded as cell/MC aggregates and then directly differentiated as embryoid bodies (EBs) in the same agitated reactor. This integrated process can be scaled up and eliminate the need for some culture manipulation used in common monolayer and EBs cultures. This review describes the principles ofmore » such microcarriers based integrated hPSC expansion and differentiation process, and parameters that can affect its efficiency (such as MC type and extracellular matrix proteins coatings, cell/MC aggregates size, and agitation). Finally examples of integrated process for generation cardiomyocytes (CM) and neural progenitor cells (NPC) as well as challenges to be solved are described. - Highlights: • Expansion of hPSC on microcarriers. • Differentiation of hPSC on microcarriers. • Parameters that can affect the expansion and differentiation of hPSC on microcarriers. • Integration of expansion and differentiation of hPSC on microcarriers in one unit operation.« less

  5. Determining the Influence of Granule Size on Simulation Parameters and Residual Shear Stress Distribution in Tablets by Combining the Finite Element Method into the Design of Experiments.

    PubMed

    Hayashi, Yoshihiro; Kosugi, Atsushi; Miura, Takahiro; Takayama, Kozo; Onuki, Yoshinori

    2018-01-01

    The influence of granule size on simulation parameters and residual shear stress in tablets was determined by combining the finite element method (FEM) into the design of experiments (DoE). Lactose granules were prepared using a wet granulation method with a high-shear mixer and sorted into small and large granules using sieves. To simulate the tableting process using the FEM, parameters simulating each granule were optimized using a DoE and a response surface method (RSM). The compaction behavior of each granule simulated by FEM was in reasonable agreement with the experimental findings. Higher coefficients of friction between powder and die/punch (μ) and lower by internal friction angle (α y ) were generated in the case of small granules, respectively. RSM revealed that die wall force was affected by α y . On the other hand, the pressure transmissibility rate of punches value was affected not only by the α y value, but also by μ. The FEM revealed that the residual shear stress was greater for small granules than for large granules. These results suggest that the inner structure of a tablet comprising small granules was less homogeneous than that comprising large granules. To evaluate the contribution of the simulation parameters to residual stress, these parameters were assigned to the fractional factorial design and an ANOVA was applied. The result indicated that μ was the critical factor influencing residual shear stress. This study demonstrates the importance of combining simulation and statistical analysis to gain a deeper understanding of the tableting process.

  6. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  7. Warpage investigation on side arms using response surface methodology (RSM) and glow-worm swarm optimizations (GSO)

    NASA Astrophysics Data System (ADS)

    Sow, C. K.; Fathullah, M.; Nasir, S. M.; Shayfull, Z.; Shazzuan, S.

    2017-09-01

    This paper discusses on an analysis run via injection moulding process in determination of the optimum processing parameters used for manufacturing side arms of catheters in minimizing the warpage issues. The optimization method used was RSM. Moreover, in this research tries to find the most significant factor affecting the warpage. From the previous literature review,4 most significant parameters on warpage defect was selected. Those parameters were melt temperature, packing time, packing pressure, mould temperature and cooling time. At the beginning, side arm was drawn using software of CATIA V5. Then, software Mouldflow and Design Expert were employed to analyses on the popular warpage issues. After that, GSO artificial intelligence was apply using the mathematical model from Design Expert for more optimization on RSM result. Recommended parameter settings from the simulation work were then compared with the optimization work of RSM and GSO. The result show that the warpage on the side arm was improved by 3.27 %

  8. Early warning indicators for monitoring the process failure of anaerobic digestion system of food waste.

    PubMed

    Li, Lei; He, Qingming; Wei, Yunmei; He, Qin; Peng, Xuya

    2014-11-01

    To determine reliable state parameters which could be used as early warning indicators of process failure due to the acidification of anaerobic digestion of food waste, three mesophilic anaerobic digesters of food waste with different operation conditions were investigated. Such parameters as gas production, methane content, pH, concentrations of volatile fatty acid (VFA), alkalinity and their combined indicators were evaluated. Results revealed that operation conditions significantly affect the responses of parameters and thus the optimal early warning indicators of each reactor differ from each other. None of the single indicators was universally valid for all the systems. The universally valid indicators should combine several parameters to supply complementary information. A combination of total VFA, the ratio of VFA to total alkalinity (VFA/TA) and the ratio of bicarbonate alkalinity to total alkalinity (BA/TA) can reflect the metabolism of the digesting system and realize rapid and effective early warning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Prediction of porosity of food materials during drying: Current challenges and directions.

    PubMed

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  10. Modeling of microstructure evolution in direct metal laser sintering: A phase field approach

    NASA Astrophysics Data System (ADS)

    Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev

    2017-02-01

    Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.

  11. Part height control of laser metal additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Herng

    Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type, and part design, the values of each of which may change during the LMD process. Using a mathematical model to build a generic equation that predicts the deposition's layer thickness is difficult due to these complex parameters. In this thesis, we propose a simple method that utilizes a single device. This device uses a pyrometer to monitor the current build height, thereby allowing the layer thickness to be controlled during the LMD process. This method also helps the LMD system to build parts even with complex parameters and to increase material efficiency.

  12. Microstructure and mechanical properties of nickel coated multi walled carbon nanotube reinforced stainless steel 316L matrix composites by laser sintering process

    NASA Astrophysics Data System (ADS)

    Mahanthesha, P.; Mohankumar, G. C.

    2018-04-01

    Electroless Ni coated Multi-walled Carbon nanotubes reinforced with Stainless Steel 316L matrix composite was developed by Direct Metal Laser Sintering process (DMLS). Homogeneous mixture of Stainless Steel 316L powder and carbon nanotubes in different vol. % was obtained by using double cone blender machine. Characterization of electroless Ni coated carbon nanotubes was done by using X-ray diffraction, FESEM and EDS. Test samples were fabricated at different laser scan speeds. Effect of process parameters and CNT vol. % content on solidification microstructure and mechanical properties of test samples was investigated by using Optical microscopy, FESEM, and Hounsfield tensometer. Experimental results reveal DMLS process parameters affect the density and microstructure of sintered parts. Dense parts with minimum porosity when processed at low laser scan speeds and low CNT vol. %. Tensile fractured surface of test specimens evidences the survival of carbon nanotubes under high temperature processing condition.

  13. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  14. Linguistic Parameters in Performance Models.

    ERIC Educational Resources Information Center

    Mansell, Philip

    This paper deals with problems concerning the nature of the input to a phonetic processor. Several assumptions provide the basis for consideration of the problem. There is a phonological level of processing which reflects the sound structure of the language; the rules associated with it are not affected by variables associated either with the…

  15. The Impact of Sleep Loss on Hippocampal Function

    ERIC Educational Resources Information Center

    Prince, Toni-Moi; Abel, Ted

    2013-01-01

    Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep…

  16. Blasting Damage Predictions by Numerical Modeling in Siahbishe Pumped Storage Powerhouse

    NASA Astrophysics Data System (ADS)

    Eslami, Majid; Goshtasbi, Kamran

    2018-04-01

    One of the popular methods of underground and surface excavations is the use of blasting. Throughout this method of excavation, the loading resulted from blasting can be affected by different geo-mechanical and structural parameters of rock mass. Several factors affect turbulence in underground structures some of which are explosion, vibration, and stress impulses caused by the neighbouring blasting products. In investigating the blasting mechanism one should address the processes which expand with time and cause seismic events. To protect the adjoining structures against any probable deconstruction or damage, it is very important to model the blasting process prior to any actual operation. Efforts have been taken in the present study to demonstrate the potentiality of numerical methods in predicting the specified parameters in order to prevent any probable destruction. For this purpose the blasting process was modeled, according to its natural implementation, in one of the tunnels of Siahbishe dam by the 3DEC and AUTODYN 3D codes. 3DEC was used for modeling the blasting environment as well as the blast holes and AUTODYN 3D for modeling the explosion process in the blast hole. In this process the output of AUTODYN 3D, which is a result of modeling the blast hole and is in the form of stress waves, is entered into 3DEC. For analyzing the amount of destruction made by the blasting operation, the key parameter of Peak Particle Velocity was used. In the end, the numerical modeling results have been compared with the data recorded by the seismographs planted through the tunnel. As the results indicated 3DEC and AUTODYN 3D proved appropriate for analyzing such an issue. Therefore, by means of these two softwares one can analyze explosion processes prior to their implementation and make close estimation of the damage resulting from these processes.

  17. Analysis of signal-dependent sensor noise on JPEG 2000-compressed Sentinel-2 multi-spectral images

    NASA Astrophysics Data System (ADS)

    Uss, M.; Vozel, B.; Lukin, V.; Chehdi, K.

    2017-10-01

    The processing chain of Sentinel-2 MultiSpectral Instrument (MSI) data involves filtering and compression stages that modify MSI sensor noise. As a result, noise in Sentinel-2 Level-1C data distributed to users becomes processed. We demonstrate that processed noise variance model is bivariate: noise variance depends on image intensity (caused by signal-dependency of photon counting detectors) and signal-to-noise ratio (SNR; caused by filtering/compression). To provide information on processed noise parameters, which is missing in Sentinel-2 metadata, we propose to use blind noise parameter estimation approach. Existing methods are restricted to univariate noise model. Therefore, we propose extension of existing vcNI+fBm blind noise parameter estimation method to multivariate noise model, mvcNI+fBm, and apply it to each band of Sentinel-2A data. Obtained results clearly demonstrate that noise variance is affected by filtering/compression for SNR less than about 15. Processed noise variance is reduced by a factor of 2 - 5 in homogeneous areas as compared to noise variance for high SNR values. Estimate of noise variance model parameters are provided for each Sentinel-2A band. Sentinel-2A MSI Level-1C noise models obtained in this paper could be useful for end users and researchers working in a variety of remote sensing applications.

  18. Application of experimental design in geothermal resources assessment of Ciwidey-Patuha, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ashat, Ali; Pratama, Heru Berian

    2017-12-01

    The successful Ciwidey-Patuha geothermal field size assessment required integration data analysis of all aspects to determined optimum capacity to be installed. Resources assessment involve significant uncertainty of subsurface information and multiple development scenarios from these field. Therefore, this paper applied the application of experimental design approach to the geothermal numerical simulation of Ciwidey-Patuha to generate probabilistic resource assessment result. This process assesses the impact of evaluated parameters affecting resources and interacting between these parameters. This methodology have been successfully estimated the maximum resources with polynomial function covering the entire range of possible values of important reservoir parameters.

  19. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.

    PubMed

    Goshima, Hiroshika; Do, Gabsoo; Nakagawa, Kyuya

    2016-06-01

    It has been known that the sublimation kinetics of a freeze-drying product is affected by its internal ice crystal microstructures. This article demonstrates the impact of the ice morphologies of a frozen formulation in a vial on the design space for the primary drying of a pharmaceutical freeze-drying process. Cross-sectional images of frozen sucrose-bovine serum albumin aqueous solutions were optically observed and digital pictures were acquired. Binary images were obtained from the optical data to extract the geometrical parameters (i.e., ice crystal size and tortuosity) that relate to the mass-transfer resistance of water vapor during the primary drying step. A mathematical model was used to simulate the primary drying kinetics and provided the design space for the process. The simulation results predicted that the geometrical parameters of frozen solutions significantly affect the design space, with large and less tortuous ice morphologies resulting in wide design spaces and vice versa. The optimal applicable drying conditions are influenced by the ice morphologies. Therefore, owing to the spatial distributions of the geometrical parameters of a product, the boundary curves of the design space are variable and could be tuned by controlling the ice morphologies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Optimising the operational parameters of a spherical steriliser for the treatment of oil palm fresh fruit bunch

    NASA Astrophysics Data System (ADS)

    Kumaradevan, D.; Chuah, K. H.; Moey, L. K.; Mohan, V.; Wan, W. T.

    2015-09-01

    The extraction of crude palm oil (CPO) begins with the sterilization of oil palm fresh fruit bunch (FFB) in a pressurized, saturated-steam chamber. Sterilization loosens the palm fruits from the stalks and deactivates the free fatty acid (FFA)-producing enzymes. Operational parameters affecting the quality and yield of CPO from an industrial spherical sterilizer are studied at a palm oil mill. The factors are the ripeness of FFB, the number of days before treatment of FFB, and the number of pressure peaks applied in the sterilization process. The results indicate that the degree of ripeness of FFB is the most important parameter affecting the quality and yield of CPO. Ripeness is graded based on the fruits’ colour and the presence of loose fruits. Over ripe FFB that goes for the sterilization process has higher FFA content in CPO and more oil loss to the condensate chamber. The spontaneous reaction on FFB due to accumulation at the loading ramp also gives rise to higher FFA content. Oil loss to condensate chamber is reduced using a two-peak sterilization technique for over ripe FFB; the peak refers to the pressure level of stream after a flushing and refilling cycle. Overall, the generated solution improves the quality and yield of the palm oil mill.

  1. Nonlinear frequency compression: effects on sound quality ratings of speech and music.

    PubMed

    Parsa, Vijay; Scollie, Susan; Glista, Danielle; Seelisch, Andreas

    2013-03-01

    Frequency lowering technologies offer an alternative amplification solution for severe to profound high frequency hearing losses. While frequency lowering technologies may improve audibility of high frequency sounds, the very nature of this processing can affect the perceived sound quality. This article reports the results from two studies that investigated the impact of a nonlinear frequency compression (NFC) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing adults, 12 normal hearing children, 13 hearing impaired adults, and 9 hearing impaired children. In the second study, 12 normal hearing and 8 hearing impaired adult listeners rated the quality of speech in quiet, speech in noise, and music after processing with a different set of NFC parameters. Results showed that the cutoff frequency parameter had more impact on sound quality ratings than the compression ratio, and that the hearing impaired adults were more tolerant to increased frequency compression than normal hearing adults. No statistically significant differences were found in the sound quality ratings of speech-in-noise and music stimuli processed through various NFC settings by hearing impaired listeners. These findings suggest that there may be an acceptable range of NFC settings for hearing impaired individuals where sound quality is not adversely affected. These results may assist an Audiologist in clinical NFC hearing aid fittings for achieving a balance between high frequency audibility and sound quality.

  2. Identification of the Quality Spot Welding used Non Destructive Test-Ultrasonic Testing: (Effect of Welding Time)

    NASA Astrophysics Data System (ADS)

    Sifa, A.; Endramawan, T.; Badruzzaman

    2017-03-01

    Resistance Spot Welding (RSW) is frequently used as one way of welding is used in the manufacturing process, especially in the automotive industry [4][5][6][7]. Several parameters influence the process of welding points. To determine the quality of a welding job needs to be tested, either by damaging or testing without damage, in this study conducted experimental testing the quality of welding or identify quality of the nugget by using Non-Destructive Test (NDT) -Ultrasonic Testing (UT), in which the identification of the quality of the welding is done with parameter thickness of worksheet after welding using NDT-UT with use same material worksheet and have more thickness of worksheet, the thickness of the worksheet single plate 1mm, with the capability of propagation Ultrasonic Testing (UT) standard limited> 3 mm [1], welding process parameters such as the time difference between 1-10s and the welding current of 8 KV, visually Heat Affected Zone ( HAZ ) have different results due to the length of time of welding. UT uses a probe that is used with a frequency of 4 MHz, diameter 10 mm, range 100 and the couplant used is oil. Identification techniques using drop 6dB, with sound velocity 2267 m / s of Fe, with the result that the effect of the Welding time affect the size of the HAZ, identification with the lowest time 1s show results capable identified joined through NDT - UT.

  3. A risk-based approach to management of leachables utilizing statistical analysis of extractables.

    PubMed

    Stults, Cheryl L M; Mikl, Jaromir; Whelehan, Oliver; Morrical, Bradley; Duffield, William; Nagao, Lee M

    2015-04-01

    To incorporate quality by design concepts into the management of leachables, an emphasis is often put on understanding the extractable profile for the materials of construction for manufacturing disposables, container-closure, or delivery systems. Component manufacturing processes may also impact the extractable profile. An approach was developed to (1) identify critical components that may be sources of leachables, (2) enable an understanding of manufacturing process factors that affect extractable profiles, (3) determine if quantitative models can be developed that predict the effect of those key factors, and (4) evaluate the practical impact of the key factors on the product. A risk evaluation for an inhalation product identified injection molding as a key process. Designed experiments were performed to evaluate the impact of molding process parameters on the extractable profile from an ABS inhaler component. Statistical analysis of the resulting GC chromatographic profiles identified processing factors that were correlated with peak levels in the extractable profiles. The combination of statistically significant molding process parameters was different for different types of extractable compounds. ANOVA models were used to obtain optimal process settings and predict extractable levels for a selected number of compounds. The proposed paradigm may be applied to evaluate the impact of material composition and processing parameters on extractable profiles and utilized to manage product leachables early in the development process and throughout the product lifecycle.

  4. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  5. Nucleation and growth of chimney pores during electron-beam additive manufacturing

    DOE PAGES

    Cordero, Zachary C.; Dinwiddie, Ralph B.; Immel, David; ...

    2016-12-05

    The nucleation and growth of chimney pores during powder-bed, electron-beam additive manufacturing is investigated using in-situ infrared thermography as well as microcomputed tomography of as-printed parts. The pores are found to nucleate at dimples on the part s surface, clearly demonstrating how process parameters can affect surface roughness, which can in turn affect the internal defect structure in an additive manufactured part. Based on the results of this study, several strategies for suppressing the formation of chimney pores are discussed.

  6. Take a stand on your decisions, or take a sit: posture does not affect risk preferences in an economic task.

    PubMed

    O'Brien, Megan K; Ahmed, Alaa A

    2014-01-01

    Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing) and changes in elevation (ground level vs. atop a 0.8-meter-high platform). We compared three metrics between conditions to assess changes in risk-sensitivity: frequency of risky choices, and parameter fits of both utility and probability weighting parameters using cumulative prospect theory. We also measured skin conductance level to evaluate physiological response to the postural threat. Our results demonstrate that body posture does not significantly affect decision making. Secondly, despite increased skin conductance level, economic risk-sensitivity was unaffected by increased threat. Our findings indicate that economic choices are fairly robust to the physiological and emotional changes that result from posture or postural threat.

  7. Take a stand on your decisions, or take a sit: posture does not affect risk preferences in an economic task

    PubMed Central

    O’Brien, Megan K.

    2014-01-01

    Physiological and emotional states can affect our decision-making processes, even when these states are seemingly insignificant to the decision at hand. We examined whether posture and postural threat affect decisions in a non-related economic domain. Healthy young adults made a series of choices between economic lotteries in various conditions, including changes in body posture (sitting vs. standing) and changes in elevation (ground level vs. atop a 0.8-meter-high platform). We compared three metrics between conditions to assess changes in risk-sensitivity: frequency of risky choices, and parameter fits of both utility and probability weighting parameters using cumulative prospect theory. We also measured skin conductance level to evaluate physiological response to the postural threat. Our results demonstrate that body posture does not significantly affect decision making. Secondly, despite increased skin conductance level, economic risk-sensitivity was unaffected by increased threat. Our findings indicate that economic choices are fairly robust to the physiological and emotional changes that result from posture or postural threat. PMID:25083345

  8. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.

    PubMed

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-03-19

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.

  9. A Systematic Evaluation of Blood Serum and Plasma Pre-Analytics for Metabolomics Cohort Studies

    PubMed Central

    Jobard, Elodie; Trédan, Olivier; Postoly, Déborah; André, Fabrice; Martin, Anne-Laure; Elena-Herrmann, Bénédicte; Boyault, Sandrine

    2016-01-01

    The recent thriving development of biobanks and associated high-throughput phenotyping studies requires the elaboration of large-scale approaches for monitoring biological sample quality and compliance with standard protocols. We present a metabolomic investigation of human blood samples that delineates pitfalls and guidelines for the collection, storage and handling procedures for serum and plasma. A series of eight pre-processing technical parameters is systematically investigated along variable ranges commonly encountered across clinical studies. While metabolic fingerprints, as assessed by nuclear magnetic resonance, are not significantly affected by altered centrifugation parameters or delays between sample pre-processing (blood centrifugation) and storage, our metabolomic investigation highlights that both the delay and storage temperature between blood draw and centrifugation are the primary parameters impacting serum and plasma metabolic profiles. Storing the blood drawn at 4 °C is shown to be a reliable routine to confine variability associated with idle time prior to sample pre-processing. Based on their fine sensitivity to pre-analytical parameters and protocol variations, metabolic fingerprints could be exploited as valuable ways to determine compliance with standard procedures and quality assessment of blood samples within large multi-omic clinical and translational cohort studies. PMID:27929400

  10. Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning

    PubMed Central

    2018-01-01

    Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace. PMID:29562682

  11. Optimisation of warpage on thin shell plastic part using response surface methodology (RSM) and glowworm swarm optimisation (GSO)

    NASA Astrophysics Data System (ADS)

    Asyirah, B. N.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    In manufacturing a variety of parts, plastic injection moulding is widely use. The injection moulding process parameters have played important role that affects the product's quality and productivity. There are many approaches in minimising the warpage ans shrinkage such as artificial neural network, genetic algorithm, glowworm swarm optimisation and hybrid approaches are addressed. In this paper, a systematic methodology for determining a warpage and shrinkage in injection moulding process especially in thin shell plastic parts are presented. To identify the effects of the machining parameters on the warpage and shrinkage value, response surface methodology is applied. In thos study, a part of electronic night lamp are chosen as the model. Firstly, experimental design were used to determine the injection parameters on warpage for different thickness value. The software used to analyse the warpage is Autodesk Moldflow Insight (AMI) 2012.

  12. Thermal effects of laser marking on microstructure and corrosion properties of stainless steel.

    PubMed

    Švantner, M; Kučera, M; Smazalová, E; Houdková, Š; Čerstvý, R

    2016-12-01

    Laser marking is an advanced technique used for modification of surface optical properties. This paper presents research on the influence of laser marking on the corrosion properties of stainless steel. Processes during the laser beam-surface interaction cause structure and color changes and can also be responsible for reduction of corrosion resistance of the surface. Corrosion tests, roughness, microscopic, energy dispersive x-ray, grazing incidence x-ray diffraction, and ferrite content analyses were carried out. It was found that increasing heat input is the most crucial parameter regarding the degradation of corrosion resistance of stainless steel. Other relevant parameters include the pulse length and pulse frequency. The authors found a correlation between laser processing parameters, grazing incidence x-ray measurement, ferrite content, and corrosion resistance of the affected surface. Possibilities and limitations of laser marking of stainless steel in the context of the reduction of its corrosion resistance are discussed.

  13. Information Use Differences in Hot and Cold Risk Processing: When Does Information About Probability Count in the Columbia Card Task?

    PubMed

    Markiewicz, Łukasz; Kubińska, Elżbieta

    2015-01-01

    This paper aims to provide insight into information processing differences between hot and cold risk taking decision tasks within a single domain. Decision theory defines risky situations using at least three parameters: outcome one (often a gain) with its probability and outcome two (often a loss) with a complementary probability. Although a rational agent should consider all of the parameters, s/he could potentially narrow their focus to only some of them, particularly when explicit Type 2 processes do not have the resources to override implicit Type 1 processes. Here we investigate differences in risky situation parameters' influence on hot and cold decisions. Although previous studies show lower information use in hot than in cold processes, they do not provide decision weight changes and therefore do not explain whether this difference results from worse concentration on each parameter of a risky situation (probability, gain amount, and loss amount) or from ignoring some parameters. Two studies were conducted, with participants performing the Columbia Card Task (CCT) in either its Cold or Hot version. In the first study, participants also performed the Cognitive Reflection Test (CRT) to monitor their ability to override Type 1 processing cues (implicit processes) with Type 2 explicit processes. Because hypothesis testing required comparison of the relative importance of risky situation decision weights (gain, loss, probability), we developed a novel way of measuring information use in the CCT by employing a conjoint analysis methodology. Across the two studies, results indicated that in the CCT Cold condition decision makers concentrate on each information type (gain, loss, probability), but in the CCT Hot condition they concentrate mostly on a single parameter: probability of gain/loss. We also show that an individual's CRT score correlates with information use propensity in cold but not hot tasks. Thus, the affective dimension of hot tasks inhibits correct information processing, probably because it is difficult to engage Type 2 processes in such circumstances. Individuals' Type 2 processing abilities (measured by the CRT) assist greater use of information in cold tasks but do not help in hot tasks.

  14. Information Use Differences in Hot and Cold Risk Processing: When Does Information About Probability Count in the Columbia Card Task?

    PubMed Central

    Markiewicz, Łukasz; Kubińska, Elżbieta

    2015-01-01

    Objective: This paper aims to provide insight into information processing differences between hot and cold risk taking decision tasks within a single domain. Decision theory defines risky situations using at least three parameters: outcome one (often a gain) with its probability and outcome two (often a loss) with a complementary probability. Although a rational agent should consider all of the parameters, s/he could potentially narrow their focus to only some of them, particularly when explicit Type 2 processes do not have the resources to override implicit Type 1 processes. Here we investigate differences in risky situation parameters' influence on hot and cold decisions. Although previous studies show lower information use in hot than in cold processes, they do not provide decision weight changes and therefore do not explain whether this difference results from worse concentration on each parameter of a risky situation (probability, gain amount, and loss amount) or from ignoring some parameters. Methods: Two studies were conducted, with participants performing the Columbia Card Task (CCT) in either its Cold or Hot version. In the first study, participants also performed the Cognitive Reflection Test (CRT) to monitor their ability to override Type 1 processing cues (implicit processes) with Type 2 explicit processes. Because hypothesis testing required comparison of the relative importance of risky situation decision weights (gain, loss, probability), we developed a novel way of measuring information use in the CCT by employing a conjoint analysis methodology. Results: Across the two studies, results indicated that in the CCT Cold condition decision makers concentrate on each information type (gain, loss, probability), but in the CCT Hot condition they concentrate mostly on a single parameter: probability of gain/loss. We also show that an individual's CRT score correlates with information use propensity in cold but not hot tasks. Thus, the affective dimension of hot tasks inhibits correct information processing, probably because it is difficult to engage Type 2 processes in such circumstances. Individuals' Type 2 processing abilities (measured by the CRT) assist greater use of information in cold tasks but do not help in hot tasks. PMID:26635652

  15. A Sensitivity Study on Modeling Black Carbon in Snow and its Radiative Forcing over the Arctic and Northern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Yun; Wang, Hailong; Zhang, Rudong

    2014-06-02

    Black carbon in snow (BCS) simulated in the Community Atmosphere Model (CAM5) is evaluated against measurements over Northern China and the Arctic, and its sensitivity to atmospheric deposition and two parameters that affect post-depositional enrichment is explored. The BCS concentration is overestimated (underestimated) by a factor of two in Northern China (Arctic) in the default model, but agreement with observations is good over both regions in the simulation with improvements in BC transport and deposition. Sensitivity studies indicate that uncertainty in the melt-water scavenging efficiency (MSE) parameter substantially affects BCS and its radiative forcing (by a factor of 2-7) inmore » the Arctic through post-depositional enrichment. The MSE parameter has a relatively small effect on the magnitude of BCS seasonal cycle but can alter its phase in Northern China. The impact of the snow aging scaling factor (SAF) on BCS, partly through the post-depositional enrichment effect, shows more complex latitudinal and seasonal dependence. Similar to MSE, SAF affects more significantly the magnitude (phase) of BCS season cycle over the Arctic (Northern China). While uncertainty associated with the representation of BC transport and deposition processes in CAM5 is more important than that associated with the two snow model parameters in Northern China, the two uncertainties have comparable effect in the Arctic.« less

  16. Effect of drying process assisted by high-pressure impregnation on protein quality and digestibility in red abalone (Haliotis rufescens).

    PubMed

    Cepero-Betancourt, Yamira; Oliva-Moresco, Patricio; Pasten-Contreras, Alexis; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario; Moreno-Osorio, Luis; Lemus-Mondaca, Roberto

    2017-10-01

    Abalone (Haliotis spp.) is an exotic seafood product recognized as a protein source of high biological value. Traditional methods used to preserve foods such as drying technology can affect their nutritional quality (protein quality and digestibility). A 28-day rat feeding study was conducted to evaluate the effects of the drying process assisted by high-pressure impregnation (HPI) (350, 450, and 500 MPa × 5 min) on chemical proximate and amino acid compositions and nutritional parameters, such as protein efficiency ratio (PER), true digestibility (TD), net protein ratio, and protein digestibility corrected amino acid score (PDCAAS) of dried abalone. The HPI-assisted drying process ensured excellent protein quality based on PER values, regardless of the pressure level. At 350 and 500 MPa, the HPI-assisted drying process had no negative effect on TD and PDCAAS then, based on nutritional parameters analysed, we recommend HPI-assisted drying process at 350 MPa × 5 min as the best process condition to dry abalone. Variations in nutritional parameters compared to casein protein were observed; nevertheless, the high protein quality and digestibility of HPI-assisted dried abalones were maintained to satisfy the metabolic demands of human beings.

  17. Scatterometry-based metrology for SAQP pitch walking using virtual reference

    NASA Astrophysics Data System (ADS)

    Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel

    2016-03-01

    Advanced technology nodes, 10nm and beyond, employing multi-patterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. Self-Aligned Quadruple Patterning (SAQP) process is used to create the Fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bares compounding effects from successive Reactive Ion Etch (RIE) and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes which work on an assumption that there is consistent spacing between fins. In SAQP there are 3 pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology such as Transmission Electron Microscopy (TEM). In this paper we will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.

  18. Measuring self-aligned quadruple patterning pitch walking with scatterometry-based metrology utilizing virtual reference

    NASA Astrophysics Data System (ADS)

    Kagalwala, Taher; Vaid, Alok; Mahendrakar, Sridhar; Lenahan, Michael; Fang, Fang; Isbester, Paul; Shifrin, Michael; Etzioni, Yoav; Cepler, Aron; Yellai, Naren; Dasari, Prasad; Bozdog, Cornel

    2016-10-01

    Advanced technology nodes, 10 nm and beyond, employing multipatterning techniques for pitch reduction pose new process and metrology challenges in maintaining consistent positioning of structural features. A self-aligned quadruple patterning (SAQP) process is used to create the fins in FinFET devices with pitch values well below optical lithography limits. The SAQP process bears the compounding effects from successive reactive ion etch and spacer depositions. These processes induce a shift in the pitch value from one fin compared to another neighboring fin. This is known as pitch walking. Pitch walking affects device performance as well as later processes, which work on an assumption that there is consistent spacing between fins. In SAQP, there are three pitch walking parameters of interest, each linked to specific process steps in the flow. These pitch walking parameters are difficult to discriminate at a specific process step by singular evaluation technique or even with reference metrology, such as transmission electron microscopy. We will utilize a virtual reference to generate a scatterometry model to measure pitch walk for SAQP process flow.

  19. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients

    PubMed Central

    Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia

    2016-01-01

    During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87) years; median time on PD 19 (3–100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane. PMID:26989432

  20. Effect of Process Parameters on Catalytic Incineration of Solvent Emissions

    PubMed Central

    Ojala, Satu; Lassi, Ulla; Perämäki, Paavo; Keiski, Riitta L.

    2008-01-01

    Catalytic oxidation is a feasible and affordable technology for solvent emission abatement. However, finding optimal operation conditions is important, since they are strongly dependent on the application area of VOC incineration. This paper presents the results of the laboratory experiments concerning four most central parameters, that is, effects of concentration, gas hourly space velocity (GHSV), temperature, and moisture on the oxidation of n-butyl acetate. Both fresh and industrially aged commercial Pt/Al2O3 catalysts were tested to determine optimal process conditions and the significance order and level of selected parameters. The effects of these parameters were evaluated by computer-aided statistical experimental design. According to the results, GHSV was the most dominant parameter in the oxidation of n-butyl acetate. Decreasing GHSV and increasing temperature increased the conversion of n-butyl acetate. The interaction effect of GHSV and temperature was more significant than the effect of concentration. Both of these affected the reaction by increasing the conversion of n-butyl acetate. Moisture had only a minor decreasing effect on the conversion, but it also decreased slightly the formation of by products. Ageing did not change the significance order of the above-mentioned parameters, however, the effects of individual parameters increased slightly as a function of ageing. PMID:18584032

  1. Simulation and design of ECT differential bobbin probes for the inspection of cracks in bolts

    NASA Astrophysics Data System (ADS)

    Ra, S. W.; Im, K. H.; Lee, S. G.; Kim, H. J.; Song, S. J.; Kim, S. K.; Cho, Y. T.; Woo, Y. D.; Jung, J. A.

    2015-12-01

    All Various defects could be generated in bolts for a use of oil filters for the manufacturing process and then may affect to the safety and quality in bolts. Also, fine defects may be imbedded in oil filter system during multiple forging manufacturing processes. So it is very important that such defects be investigated and screened during the multiple manufacturing processes. Therefore, in order effectively to evaluate the fine defects, the design parameters for bobbin-types were selected under a finite element method (FEM) simulations and Eddy current testing (ECT). Especially the FEM simulations were performed to make characterization in the crack detection of the bolts and the parameters such as number of turns of the coil, the coil size and applied frequency were calculated based on the simulation results.

  2. Application of ultrasound to improve lees ageing processes in red wines.

    PubMed

    Del Fresno, Juan Manuel; Loira, Iris; Morata, Antonio; González, Carmen; Suárez-Lepe, Jose Antonio; Cuerda, Rafael

    2018-09-30

    Ageing on lees (AOL) is a technique that increases volatile compounds, promotes colour stability, improves mouthfeel and reduces astringency in red wines. The main drawback is that it is a slow process. Several months are necessary to obtain perceptible effects in wines. Different authors have studied the application of new techniques to accelerate the AOL process. Ultrasound (US) has been used to improve different food industry processes; it could be interesting to accelerate the yeast autolysis during AOL. This work evaluates the use of the US technique together with AOL and oak chips for this purpose studying the effects of different oenological parameters of red wines. The results obtained indicate an increase of polysaccharides content when US is applied in wine AOL. In addition, total polyphenol index (TPI) and volatile acidity were not affected. However, this treatment increases the dissolved oxygen affecting the volatile compounds and total anthocyanins. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Optimization and Characterization of the Friction Stir Welded Sheets of AA 5754-H111: Monitoring of the Quality of Joints with Thermographic Techniques.

    PubMed

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Palumbo, Davide; De Finis, Rosa; Galietti, Umberto

    2017-10-11

    Friction Stir Welding (FSW) is a solid-state welding process, based on frictional and stirring phenomena, that offers many advantages with respect to the traditional welding methods. However, several parameters can affect the quality of the produced joints. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on 5754-H111 aluminum plates. In particular, the thermal behavior of the material during the process has been investigated and two thermal indexes, the maximum temperature and the heating rate of the material, correlated to the frictional power input, were investigated for different process parameters (the travel and rotation tool speeds) configurations. Moreover, other techniques (micrographs, macrographs and destructive tensile tests) were carried out for supporting in a quantitative way the analysis of the quality of welded joints. The potential of thermographic technique has been demonstrated both for monitoring the FSW process and for predicting the quality of joints in terms of tensile strength.

  4. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  5. Impact of initial surface parameters on the final quality of laser micro-polished surfaces

    NASA Astrophysics Data System (ADS)

    Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.

    2012-03-01

    Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.

  6. Optimization of Vacuum Impregnation with Calcium Lactate of Minimally Processed Melon and Shelf-Life Study in Real Storage Conditions.

    PubMed

    Tappi, Silvia; Tylewicz, Urszula; Romani, Santina; Siroli, Lorenzo; Patrignani, Francesca; Dalla Rosa, Marco; Rocculi, Pietro

    2016-10-05

    Vacuum impregnation (VI) is a processing operation that permits the impregnation of fruit and vegetable porous tissues with a fast and more homogeneous penetration of active compounds compared to the classical diffusion processes. The objective of this research was to investigate the impact on VI treatment with the addition of calcium lactate on qualitative parameters of minimally processed melon during storage. For this aim, this work was divided in 2 parts. Initially, the optimization of process parameters was carried out in order to choose the optimal VI conditions for improving texture characteristics of minimally processed melon that were then used to impregnate melons for a shelf-life study in real storage conditions. On the basis of a 2 3 factorial design, the effect of Calcium lactate (CaLac) concentration between 0% and 5% and of minimum pressure (P) between 20 and 60 MPa were evaluated on color and texture. Processing parameters corresponding to 5% CaLac concentration and 60 MPa of minimum pressure were chosen for the storage study, during which the modifications of main qualitative parameters were evaluated. Despite of the high variability of the raw material, results showed that VI allowed a better maintenance of texture during storage. Nevertheless, other quality traits were negatively affected by the application of vacuum. Impregnated products showed a darker and more translucent appearance on the account of the alteration of the structural properties. Moreover microbial shelf-life was reduced to 4 d compared to the 7 obtained for control and dipped samples. © 2016 Institute of Food Technologists®.

  7. Kinesiology and Learning: Implications for Turkish School Curriculum

    ERIC Educational Resources Information Center

    Ozar, Mirac

    2013-01-01

    Learning is a complex phenomenon and multi-faceted in nature. There are a number of parameters which influence learning cycle and the process in general. Physical exercise is thought to be one of the variants that affect the learning phenomenon. Accumulated scientific evidence can be found in the literature showing high correlations between…

  8. A Sensitivity Analysis Method to Study the Behavior of Complex Process-based Models

    NASA Astrophysics Data System (ADS)

    Brugnach, M.; Neilson, R.; Bolte, J.

    2001-12-01

    The use of process-based models as a tool for scientific inquiry is becoming increasingly relevant in ecosystem studies. Process-based models are artificial constructs that simulate the system by mechanistically mimicking the functioning of its component processes. Structurally, a process-based model can be characterized, in terms of its processes and the relationships established among them. Each process comprises a set of functional relationships among several model components (e.g., state variables, parameters and input data). While not encoded explicitly, the dynamics of the model emerge from this set of components and interactions organized in terms of processes. It is the task of the modeler to guarantee that the dynamics generated are appropriate and semantically equivalent to the phenomena being modeled. Despite the availability of techniques to characterize and understand model behavior, they do not suffice to completely and easily understand how a complex process-based model operates. For example, sensitivity analysis studies model behavior by determining the rate of change in model output as parameters or input data are varied. One of the problems with this approach is that it considers the model as a "black box", and it focuses on explaining model behavior by analyzing the relationship input-output. Since, these models have a high degree of non-linearity, understanding how the input affects an output can be an extremely difficult task. Operationally, the application of this technique may constitute a challenging task because complex process-based models are generally characterized by a large parameter space. In order to overcome some of these difficulties, we propose a method of sensitivity analysis to be applicable to complex process-based models. This method focuses sensitivity analysis at the process level, and it aims to determine how sensitive the model output is to variations in the processes. Once the processes that exert the major influence in the output are identified, the causes of its variability can be found. Some of the advantages of this approach are that it reduces the dimensionality of the search space, it facilitates the interpretation of the results and it provides information that allows exploration of uncertainty at the process level, and how it might affect model output. We present an example using the vegetation model BIOME-BGC.

  9. Impact of high pressure processing on color, bioactive compounds, polyphenol oxidase activity, and microbiological attributes of pumpkin purée.

    PubMed

    González-Cebrino, Francisco; Durán, Rocío; Delgado-Adámez, Jonathan; Contador, Rebeca; Bernabé, Rosario Ramírez

    2016-04-01

    Physicochemical parameters, bioactive compounds' content (carotenoids and total phenols), total antioxidant activity, and enzymatic activity of polyphenol oxidase (PPO) were evaluated after high pressure processing (HPP) on a pumpkin purée (cv. 'Butternut'). Three pressure levels (400, 500, and 600 MPa) were combined with three holding times (200, 400, and 600 s). The applied treatments reduced the levels of total aerobic mesophilic (TAM), total psychrophilic and psychrotrophic bacteria (TPP), and molds and yeasts (M&Y). All applied treatments did not affect enzymatic activity of PPO. Pressure level increased CIE L* values, which could enhance the lightness perception of high pressure (HP)-treated purées. No differences were found between the untreated and HP-treated purées regarding total phenols and carotenoids content (lutein, α-carotene, and β-carotene) and total antioxidant activity. HPP did not affect most quality parameters and maintained the levels of bioactive compounds. However, it did not achieve the complete inhibition of PPO, which could reduce the shelf-life of the pumpkin purée. © The Author(s) 2015.

  10. The Influence of Flight Planning and Camera Orientation in UAVs Photogrammetry. a Test in the Area of Rocca San Silvestro (li), Tuscany

    NASA Astrophysics Data System (ADS)

    Chiabrando, F.; Lingua, A.; Maschio, P.; Teppati Losè, L.

    2017-02-01

    The purpose of this paper is to discuss how much the phases of flight planning and the setting of the camera orientation can affect a UAVs photogrammetric survey. The test site chosen for these evaluations was the Rocca of San Silvestro, a medieval monumental castle near Livorno, Tuscany (Italy). During the fieldwork, different sets of data have been acquired using different parameters for the camera orientation and for the set up of flight plans. Acquisition with both nadiral and oblique orientation of the camera have been performed, as well as flights with different direction of the flight lines (related with the shape of the object of the survey). The different datasets were then processed in several blocks using Pix4D software and the results of the processing were analysed and compared. Our aim was to evaluate how much the parameters described above can affect the generation of the final products of the survey, in particular the product chosen for this evaluation was the point cloud.

  11. The TGAS HR diagram of S-type stars

    NASA Astrophysics Data System (ADS)

    Shetye, Shreeya; van Eck, Sophie; Jorissen, Alain; van Winckel, Hans; Siess, Lionel

    2018-04-01

    S-type stars are late-type giants enhanced with s-process elements originating either from nucleosynthesis during the Asymptotic Giant Branch (AGB) or from a pollution by a binary companion. The former are called intrinsic S stars, and the latter extrinsic S stars. The atmospheric parameters of S stars are more numerous than those of M-type giants (C/O ratio and s-process abundances affect the thermal structure and spectral synthesis), and hence they are more difficult to derive. Nevertheless, high-resolution spectroscopic data of S stars combined with the TGAS (Tycho-Gaia Astrometric solution) parallaxes were used to derive effective temperatures, surface gravities, and luminosities. These parameters allow to locate the intrinsic and extrinsic S stars in the Hertzsprung-Russell diagram.

  12. Supernova Neutrino-Process and Implication in Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Kajino, T.; Aoki, W.; Fujiya, W.; Mathews, G. J.; Yoshida, T.; Shaku, K.; Nakamura, K.; Hayakawa, T.

    2012-08-01

    We studied the supernova nucleosynthesis induced by neutrino interactions and found that several isotopes of rare elements like 7Li, 11B, 138La, 180Ta and many others are predominantly produced by the neutrino-process in core-collapse supernovae. These isotopes are strongly affected by the neutrino flavor oscillation due to the MSW (Mikheyev-Smirnov-Wolfenstein) effect. We here propose a new novel method to determine the unknown neutrino oscillation parameters, θ13 and mass hierarchy simultaneously from the supernova neutrino-process, combined with the r-process for heavy-element synthsis and the Galactic chemical evolution on light nuclei.

  13. Selection of meteorological parameters affecting rainfall estimation using neuro-fuzzy computing methodology

    NASA Astrophysics Data System (ADS)

    Hashim, Roslan; Roy, Chandrabhushan; Motamedi, Shervin; Shamshirband, Shahaboddin; Petković, Dalibor; Gocic, Milan; Lee, Siew Cheng

    2016-05-01

    Rainfall is a complex atmospheric process that varies over time and space. Researchers have used various empirical and numerical methods to enhance estimation of rainfall intensity. We developed a novel prediction model in this study, with the emphasis on accuracy to identify the most significant meteorological parameters having effect on rainfall. For this, we used five input parameters: wet day frequency (dwet), vapor pressure (e̅a), and maximum and minimum air temperatures (Tmax and Tmin) as well as cloud cover (cc). The data were obtained from the Indian Meteorological Department for the Patna city, Bihar, India. Further, a type of soft-computing method, known as the adaptive-neuro-fuzzy inference system (ANFIS), was applied to the available data. In this respect, the observation data from 1901 to 2000 were employed for testing, validating, and estimating monthly rainfall via the simulated model. In addition, the ANFIS process for variable selection was implemented to detect the predominant variables affecting the rainfall prediction. Finally, the performance of the model was compared to other soft-computing approaches, including the artificial neural network (ANN), support vector machine (SVM), extreme learning machine (ELM), and genetic programming (GP). The results revealed that ANN, ELM, ANFIS, SVM, and GP had R2 of 0.9531, 0.9572, 0.9764, 0.9525, and 0.9526, respectively. Therefore, we conclude that the ANFIS is the best method among all to predict monthly rainfall. Moreover, dwet was found to be the most influential parameter for rainfall prediction, and the best predictor of accuracy. This study also identified sets of two and three meteorological parameters that show the best predictions.

  14. Welding of Al6061and Al6082-Cu composite by friction stir processing

    NASA Astrophysics Data System (ADS)

    Iyer, R. B.; Dhabale, R. B.; Jatti, V. S.

    2016-09-01

    Present study aims at investigating the influence of process parameters on the microstructure and mechanical properties such as tensile strength and hardness of the dissimilar metal without and with copper powder. Before conducting the copper powder experiments, optimum process parameters were obtained by conducting experiments without copper powder. Taguchi's experimental L9 orthogonal design layout was used to carry out the experiments without copper powder. Threaded pin tool geometry was used for conducting the experiments. Based on the experimental results and Taguchi's analysis it was found that maximum tensile strength of 66.06 MPa was obtained at 1400 rpm spindle speed and weld speed of 20 mm/min. Maximum micro hardness (92 HV) was obtained at 1400 rpm spindle speed and weld speed of 16 mm/min. At these optimal setting of process parameters aluminium alloys were welded with the copper powder. Experimental results demonstrated that the tensile strength (96.54 MPa) and micro hardness (105 HV) of FSW was notably affected by the addition of copper powder when compared with FSW joint without copper powder. Tensile failure specimen was analysed using Scanning Electron Microscopy in order to study the failure mechanism.

  15. Optimization of cladding parameters for resisting corrosion on low carbon steels using simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Balan, A. V.; Shivasankaran, N.; Magibalan, S.

    2018-04-01

    Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.

  16. Microstructural Influence on Mechanical Properties in Plasma Microwelding of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Baruah, M.; Bag, S.

    2016-11-01

    The complexity of joining Ti6Al4V alloy enhances with reduction in sheet thickness. The present work puts emphasis on microplasma arc welding (MPAW) of 500-μm-thick Ti6Al4V alloy in butt joint configuration. Using controlled and regulated arc current, the MPAW process is specifically designed to use in joining of thin sheet components over a wide range of process parameters. The weld quality is assessed by carefully controlling the process parameters and by reducing the formation of oxides. The combined effect of welding speed and current on the weld joint properties is evaluated for joining of Ti6Al4V alloy. The macro- and microstructural characterizations of the weldment by optical microscopy as well as the analysis of mechanical properties by microtensile and microhardness test have been performed. The weld joint quality is affected by specifically designed fixture that controls the oxidation of the joint and introduces high cooling rate. Hence, the solidified microstructure of welded specimen influences the mechanical properties of the joint. The butt joint of titanium alloy by MPAW at optimal process parameters is of very high quality, without any internal defects and with minimum residual distortion.

  17. Design Space Approach in Optimization of Fluid Bed Granulation and Tablets Compression Process

    PubMed Central

    Djuriš, Jelena; Medarević, Djordje; Krstić, Marko; Vasiljević, Ivana; Mašić, Ivana; Ibrić, Svetlana

    2012-01-01

    The aim of this study was to optimize fluid bed granulation and tablets compression processes using design space approach. Type of diluent, binder concentration, temperature during mixing, granulation and drying, spray rate, and atomization pressure were recognized as critical formulation and process parameters. They were varied in the first set of experiments in order to estimate their influences on critical quality attributes, that is, granules characteristics (size distribution, flowability, bulk density, tapped density, Carr's index, Hausner's ratio, and moisture content) using Plackett-Burman experimental design. Type of diluent and atomization pressure were selected as the most important parameters. In the second set of experiments, design space for process parameters (atomization pressure and compression force) and its influence on tablets characteristics was developed. Percent of paracetamol released and tablets hardness were determined as critical quality attributes. Artificial neural networks (ANNs) were applied in order to determine design space. ANNs models showed that atomization pressure influences mostly on the dissolution profile, whereas compression force affects mainly the tablets hardness. Based on the obtained ANNs models, it is possible to predict tablet hardness and paracetamol release profile for any combination of analyzed factors. PMID:22919295

  18. Statistical Bayesian method for reliability evaluation based on ADT data

    NASA Astrophysics Data System (ADS)

    Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong

    2018-05-01

    Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.

  19. Process optimization electrospinning fibrous material based on polyhydroxybutyrate

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Tyubaeva, P. M.; Staroverova, O. V.; Mastalygina, E. E.; Popov, A. A.; Ischenko, A. A.; Iordanskii, A. L.

    2016-05-01

    The article analyzes the influence of the main technological parameters of electrostatic spinning on the morphology and properties of ultrathin fibers on the basis of polyhydroxybutyrate. It is found that the electric conductivity and viscosity of the spinning solution affects the process of forming fibers macrostructure. The fiber-based materials PHB lets control geometry and optimize the viscosity and conductivity of a spinning solution. The resulting fibers have found use in medicine, particularly in the construction elements musculoskeletal.

  20. Application of terahertz pulse imaging as PAT tool for non-destructive evaluation of film-coated tablets under different manufacturing conditions.

    PubMed

    Dohi, Masafumi; Momose, Wataru; Yoshino, Hiroyuki; Hara, Yuko; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Terada, Katsuhide

    2016-02-05

    Film-coated tablets (FCTs) are a popular solid dosage form in pharmaceutical industry. Manufacturing conditions during the film-coating process affect the properties of the film layer, which might result in critical quality problems. Here, we analyzed the properties of the film layer using a non-destructive approach with terahertz pulsed imaging (TPI). Hydrophilic tablets that become distended upon water absorption were used as core tablets and coated with film under different manufacturing conditions. TPI-derived parameters such as film thickness (FT), film surface reflectance (FSR), and interface density difference (IDD) between the film layer and core tablet were affected by manufacturing conditions and influenced critical quality attributes of FCTs. Relative standard deviation of FSR within tablets correlated well with surface roughness. Tensile strength could be predicted in a non-destructive manner using the multivariate regression equation to estimate the core tablet density by film layer density and IDD. The absolute value of IDD (Lateral) correlated with the risk of cracking on the lateral film layer when stored in a high-humidity environment. Further, in-process control was proposed for this value during the film-coating process, which will enable a feedback control system to be applied to process parameters and reduced risk of cracking without a stability test. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. [Quality assurance from the viewpoint of the x-ray film industry].

    PubMed

    von Volkmann, T

    1992-08-01

    The parameters of a film-screen-combination are listed in the directive to section 16 of the german X-ray Regulation. These parameters are determined by methods described in DIN standards and published by the manufacturer. Comparable but less precise parameters are determined in the Acceptance Test. For physical reasons it is not possible to determine the speed of an X-ray film or the intensification factor of a screen separately. The films, screens and processing chemicals delivered by the members of the manufacturer association ZVEI are kept below a deviation (expressed as relative contribution to the system speed S) of +/- 10% for the majority of products, the upper limit is +/- 15%. Poor storage and transport conditions may adversely affect the quality of X-ray films. A special labeling of the film box shall serve to guarantee safe distribution channels. The processing conditions are adjusted at the Acceptance Test according to the manufacturers recommendations. The Constancy Test of film processing serves to maintain these correct conditions. Methods deviating from the DIN-method are of limited (Bayerische method) or no value (Stuttgart method).

  2. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    NASA Astrophysics Data System (ADS)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2017-04-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  3. Approach to in-process tool wear monitoring in drilling: Application of Kalman filter theory

    NASA Astrophysics Data System (ADS)

    He, Ning; Zhang, Youzhen; Pan, Liangxian

    1993-05-01

    The two parameters often used in adaptive control, tool wear and wear rate, are the important factors affecting machinability. In this paper, it is attempted to use the modern cybernetics to solve the in-process tool wear monitoring problem by applying the Kalman filter theory to monitor drill wear quantitatively. Based on the experimental results, a dynamic model, a measuring model and a measurement conversion model suitable for Kalman filter are established. It is proved that the monitoring system possesses complete observability but does not possess complete controllability. A discriminant for selecting the characteristic parameters is put forward. The thrust force Fz is selected as the characteristic parameter in monitoring the tool wear by this discriminant. The in-process Kalman filter drill wear monitoring system composed of force sensor microphotography and microcomputer is well established. The results obtained by the Kalman filter, the common indirect measuring method and the real drill wear measured by the aid of microphotography are compared. The result shows that the Kalman filter has high precision of measurement and the real time requirement can be satisfied.

  4. Impact of various operating modes on performance and emission parameters of small heat source

    NASA Astrophysics Data System (ADS)

    Vician, Peter; Holubčík, Michal; Palacka, Matej; Jandačka, Jozef

    2016-06-01

    Thesis deals with the measurement of performance and emission parameters of small heat source for combustion of biomass in each of its operating modes. As the heat source was used pellet boiler with an output of 18 kW. The work includes design of experimental device for measuring the impact of changes in air supply and method for controlling the power and emission parameters of heat sources for combustion of woody biomass. The work describes the main factors that affect the combustion process and analyze the measurements of emissions at the heat source. The results of experiment demonstrate the values of performance and emissions parameters for the different operating modes of the boiler, which serve as a decisive factor in choosing the appropriate mode.

  5. Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box-Behnken design and ecotoxicity tests.

    PubMed

    Fernandes, Neemias Cintra; Brito, Lara Barroso; Costa, Gessyca Gonçalves; Taveira, Stephânia Fleury; Cunha-Filho, Marcílio Sérgio Soares; Oliveira, Gisele Augusto Rodrigues; Marreto, Ricardo Neves

    2018-06-06

    The conventional treatment of textile effluents is usually inefficient in removing azo dyes and can even generate more toxic products than the original dyes. The aim of the present study was to optimize the process factors in the degradation of Disperse Red 343 by Fenton and Fenton-like processes, as well as to investigate the ecotoxicity of the samples treated under optimized conditions. A Box-Behnken design integrated with the desirability function was used to optimize dye degradation, the amount of residual H 2 O 2 [H 2 O 2residual ], and the ecotoxicity of the treated samples (lettuce seed, Artemia salina, and zebrafish in their early-life stages). Dye degradation was affected only by catalyst concentration [Fe] in both the Fenton and Fenton-like processes. In the Fenton reaction, [H 2 O 2residual ] was significantly affected by initial [H 2 O 2 ] and its interaction with [Fe]; however, in the Fenton-like reaction, it was affected by initial [H 2 O 2 ] only. A. salina mortality was affected by different process factors in both processes, which suggests the formation of different toxic products in each process. The desirability function was applied to determine the best process parameters and predict the responses, which were confirmed experimentally. Optimal conditions facilitated the complete degradation of the dye without [H 2 O 2residual ] or toxicity for samples treated with the Fenton-like process, whereas the Fenton process induced significant mortality for A. salina. Results indicate that the Fenton-like process is superior to the Fenton reaction to degrade Disperse Red 343. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Processing study of a high temperature adhesive

    NASA Technical Reports Server (NTRS)

    Progar, D. J.

    1984-01-01

    An adhesive-bonding process cycle study was performed for a polyimidesulphone. The high molecular weight, linear aromatic system possesses properties which make it attractive as a processable, low-cost material for elevated temperature applications. The results of a study to better understand the parameters that affect the adhesive properties of the polymer for titanium alloy adherends are presented. These include the tape preparation, the use of a primer and press and simulated autoclave processing conditions. The polymer was characterized using Fourier transform infrared spectroscopy, glass transition temperature determination, flow measurements, and weight loss measurements. The lap shear strength of the adhesive was used to evaluate the effects of the bonding process variations.

  7. Effects of implant drilling parameters for pilot and twist drills on temperature rise in bone analog and alveolar bones.

    PubMed

    Chen, Yung-Chuan; Hsiao, Chih-Kun; Ciou, Ji-Sih; Tsai, Yi-Jung; Tu, Yuan-Kun

    2016-11-01

    This study concerns the effects of different drilling parameters of pilot drills and twist drills on the temperature rise of alveolar bones during dental implant procedures. The drilling parameters studied here include the feed rate and rotation speed of the drill. The bone temperature distribution was analyzed through experiments and numerical simulations of the drilling process. In this study, a three dimensional (3D) elasto-plastic dynamic finite element model (DFEM) was proposed to investigate the effects of drilling parameters on the bone temperature rise. In addition, the FE model is validated with drilling experiments on artificial human bones and porcine alveolar bones. The results indicate that 3D DFEM can effectively simulate the bone temperature rise during the drilling process. During the drilling process with pilot drills or twist drills, the maximum bone temperature occurred in the region of the cancellous bones close to the cortical bones. The feed rate was one of the important factors affecting the time when the maximum bone temperature occurred. Our results also demonstrate that the elevation of bone temperature was reduced as the feed rate increased and the drill speed decreased, which also effectively reduced the risk region of osteonecrosis. These findings can serve as a reference for dentists in choosing drilling parameters for dental implant surgeries. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Optimization of process parameters of pulsed TIG welded maraging steel C300

    NASA Astrophysics Data System (ADS)

    Deepak, P.; Jualeash, M. J.; Jishnu, J.; Srinivasan, P.; Arivarasu, M.; Padmanaban, R.; Thirumalini, S.

    2016-09-01

    Pulsed TIG welding technology provides excellent welding performance on thin sections which helps to increase productivity, enhance weld quality, minimize weld costs, and boost operator efficiency and this has drawn the attention of the welding society. Maraging C300 steel is extensively used in defence and aerospace industry and thus its welding becomes an area of paramount importance. In pulsed TIG welding, weld quality depends on the process parameters used. In this work, Pulsed TIG bead-on-plate welding is performed on a 5mm thick maraging C300 plate at different combinations of input parameters: peak current (Ip), base current (Ib) and pulsing frequency (HZ) as per box behnken design with three-levels for each factor. Response surface methodology is utilized for establishing a mathematical model for predicting the weld bead depth. The effect of Ip, Ib and HZ on the weld bead depth is investigated using the developed model. The weld bead depth is found to be affected by all the three parameters. Surface and contour plots developed from regression equation are used to optimize the processing parameters for maximizing the weld bead depth. Optimum values of Ip, Ib and HZ are obtained as 259 A, 120 A and 8 Hz respectively. Using this optimum condition, maximum bead depth of the weld is predicted to be 4.325 mm.

  9. Volcanic Ash Data Assimilation System for Atmospheric Transport Model

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.

    2017-12-01

    The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.

  10. Introducing uncertainty analysis of nucleation and crystal growth models in Process Analytical Technology (PAT) system design of crystallization processes.

    PubMed

    Samad, Noor Asma Fazli Abdul; Sin, Gürkan; Gernaey, Krist V; Gani, Rafiqul

    2013-11-01

    This paper presents the application of uncertainty and sensitivity analysis as part of a systematic model-based process monitoring and control (PAT) system design framework for crystallization processes. For the uncertainty analysis, the Monte Carlo procedure is used to propagate input uncertainty, while for sensitivity analysis, global methods including the standardized regression coefficients (SRC) and Morris screening are used to identify the most significant parameters. The potassium dihydrogen phosphate (KDP) crystallization process is used as a case study, both in open-loop and closed-loop operation. In the uncertainty analysis, the impact on the predicted output of uncertain parameters related to the nucleation and the crystal growth model has been investigated for both a one- and two-dimensional crystal size distribution (CSD). The open-loop results show that the input uncertainties lead to significant uncertainties on the CSD, with appearance of a secondary peak due to secondary nucleation for both cases. The sensitivity analysis indicated that the most important parameters affecting the CSDs are nucleation order and growth order constants. In the proposed PAT system design (closed-loop), the target CSD variability was successfully reduced compared to the open-loop case, also when considering uncertainty in nucleation and crystal growth model parameters. The latter forms a strong indication of the robustness of the proposed PAT system design in achieving the target CSD and encourages its transfer to full-scale implementation. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Relating memory to functional performance in normal aging to dementia using hierarchical Bayesian cognitive processing models.

    PubMed

    Shankle, William R; Pooley, James P; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D

    2013-01-01

    Determining how cognition affects functional abilities is important in Alzheimer disease and related disorders. A total of 280 patients (normal or Alzheimer disease and related disorders) received a total of 1514 assessments using the functional assessment staging test (FAST) procedure and the MCI Screen. A hierarchical Bayesian cognitive processing model was created by embedding a signal detection theory model of the MCI Screen-delayed recognition memory task into a hierarchical Bayesian framework. The signal detection theory model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the 6 FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. Hierarchical Bayesian cognitive processing models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition into a continuous measure of functional severity for both individuals and FAST groups. Such a translation links 2 levels of brain information processing and may enable more accurate correlations with other levels, such as those characterized by biomarkers.

  12. Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens.

    PubMed

    Safranski, David L; Boothby, Jennifer M; Kelly, Cambre N; Beatty, Kyle; Lakhera, Nishant; Frick, Carl P; Lin, Angela; Guldberg, Robert E; Griffis, Jack C

    2016-09-01

    New processing methods for shape-memory polymers allow for tailoring material properties for numerous applications. Shape-memory nonwovens have been previously electrospun, but melt blow processing has yet to be evaluated. In order to determine the process parameters affecting shape-memory behavior, this study examined the effect of air pressure and collector speed on the mechanical behavior and shape-recovery of shape-memory polyurethane nonwovens. Mechanical behavior was measured by dynamic mechanical analysis and tensile testing, and shape-recovery was measured by unconstrained and constrained recovery. Microstructure changes throughout the shape-memory cycle were also investigated by micro-computed tomography. It was found that increasing collector speed increases elastic modulus, ultimate strength and recovery stress of the nonwoven, but collector speed does not affect the failure strain or unconstrained recovery. Increasing air pressure decreases the failure strain and increases rubbery modulus and unconstrained recovery, but air pressure does not influence recovery stress. It was also found that during the shape-memory cycle, the connectivity density of the fibers upon recovery does not fully return to the initial values, accounting for the incomplete shape-recovery seen in shape-memory nonwovens. With these parameter to property relationships identified, shape-memory nonwovens can be more easily manufactured and tailored for specific applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Hemodynamic changes in a rat parietal cortex after endothelin-1-induced middle cerebral artery occlusion monitored by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Ma, Yushu; Dou, Shidan; Wang, Yi; La, Dongsheng; Liu, Jianghong; Ma, Zhenhe

    2016-07-01

    A blockage of the middle cerebral artery (MCA) on the cortical branch will seriously affect the blood supply of the cerebral cortex. Real-time monitoring of MCA hemodynamic parameters is critical for therapy and rehabilitation. Optical coherence tomography (OCT) is a powerful imaging modality that can produce not only structural images but also functional information on the tissue. We use OCT to detect hemodynamic changes after MCA branch occlusion. We injected a selected dose of endothelin-1 (ET-1) at a depth of 1 mm near the MCA and let the blood vessels follow a process first of occlusion and then of slow reperfusion as realistically as possible to simulate local cerebral ischemia. During this period, we used optical microangiography and Doppler OCT to obtain multiple hemodynamic MCA parameters. The change trend of these parameters from before to after ET-1 injection clearly reflects the dynamic regularity of the MCA. These results show the mechanism of the cerebral ischemia-reperfusion process after a transient middle cerebral artery occlusion and confirm that OCT can be used to monitor hemodynamic parameters.

  14. Robust sensor fault detection and isolation of gas turbine engines subjected to time-varying parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Pourbabaee, Bahareh; Meskin, Nader; Khorasani, Khashayar

    2016-08-01

    In this paper, a novel robust sensor fault detection and isolation (FDI) strategy using the multiple model-based (MM) approach is proposed that remains robust with respect to both time-varying parameter uncertainties and process and measurement noise in all the channels. The scheme is composed of robust Kalman filters (RKF) that are constructed for multiple piecewise linear (PWL) models that are constructed at various operating points of an uncertain nonlinear system. The parameter uncertainty is modeled by using a time-varying norm bounded admissible structure that affects all the PWL state space matrices. The robust Kalman filter gain matrices are designed by solving two algebraic Riccati equations (AREs) that are expressed as two linear matrix inequality (LMI) feasibility conditions. The proposed multiple RKF-based FDI scheme is simulated for a single spool gas turbine engine to diagnose various sensor faults despite the presence of parameter uncertainties, process and measurement noise. Our comparative studies confirm the superiority of our proposed FDI method when compared to the methods that are available in the literature.

  15. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present studymore » focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.« less

  16. Influence of laser power on the penetration depth and geometry of scanning tracks in selective laser melting

    NASA Astrophysics Data System (ADS)

    Stopyra, Wojciech; Kurzac, Jarosław; Gruber, Konrad; Kurzynowski, Tomasz; Chlebus, Edward

    2016-12-01

    SLM technology allows production of a fully functional objects from metal and ceramic powders, with true density of more than 99,9%. The quality of manufactured items in SLM method affects more than 100 parameters, which can be divided into fixed and variable. Fixed parameters are those whose value before the process should be defined and maintained in an appropriate range during the process, e.g. chemical composition and morphology of the powder, oxygen level in working chamber, heating temperature of the substrate plate. In SLM technology, five parameters are variables that optimal set allows to produce parts without defects (pores, cracks) and with an acceptable speed. These parameters are: laser power, distance between points, time of exposure, distance between lines and layer thickness. To develop optimal parameters thin walls or single track experiments are performed, to select the best sets narrowed to three parameters: laser power, exposure time and distance between points. In this paper, the effect of laser power on the penetration depth and geometry of scanned single track was shown. In this experiment, titanium (grade 2) substrate plate was used and scanned by fibre laser of 1064 nm wavelength. For each track width, height and penetration depth of laser beam was measured.

  17. The Role of Parvalbumin, Sarcoplasmatic Reticulum Calcium Pump Rate, Rates of Cross-Bridge Dynamics, and Ryanodine Receptor Calcium Current on Peripheral Muscle Fatigue: A Simulation Study

    PubMed Central

    Neumann, Verena

    2016-01-01

    A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby is on investigating how the model's original parameter sets can be interpolated such that realistic behaviour with respect to contraction time and fatigue progression can be obtained for a continuous distribution of the model's parameters across the muscle units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes. The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor calcium current to enhance the understanding of peripheral muscle fatigue. PMID:27980606

  18. Analysis of Operational Parameters Affecting the Sulfur Content in Hot Metal of the COREX Process

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Wang, Laixin; Kou, Mingyin; Wang, Yujue; Zhang, Jiacong

    2017-02-01

    The COREX process, which has obvious advantages in environment protection, still has some disadvantages. It has a higher sulfur content in hot metal (HM) than the blast furnace has. In the present work, the distribution and transfer of sulfur in the COREX have been analyzed and several operational parameters related to the sulfur content in HM ([pct S]) have been obtained. Based on this, the effects of the coal rate, slag ratio, temperature of HM, melting rate, binary basicity ( R 2), the ratio of MgO/Al2O3, utilization of reducing gas, top gas consumption per ton burden solid, metallization rate, oxidation degree of reducing gas, and coal and DRI distribution index on the sulfur content in HM are investigated. What's more, a linear model has been developed and subsequently used for predicting and controlling the S content in HM of the COREX process.

  19. A kinetic model for the characteristic surface morphologies of thin films by directional vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Huang, Po-Yu

    2017-12-01

    In order to simulate a process of directional vapor deposition, in this study, a numerical approach was applied to model the growth and evolution of surface morphologies for the crystallographic structures of thin films. The critical factors affecting the surface morphologies in a deposition process, such as the crystallographic symmetry, anisotropic interfacial energy, shadowing effect, and deposition rate, were all enclosed in the theoretical model. By altering the parameters of crystallographic symmetry in the structures, the faceted nano-columns with rectangular and hexagonal shapes were established in the simulation results. Furthermore, for revealing the influences of the anisotropic strength and the deposition rate theoretically on the crystallographic structure formations, various parameters adjusted in the numerical calculations were also investigated. Not only the morphologies but also the surface roughnesses for different processing conditions were distinctly demonstrated with the quantitative analysis of the simulations.

  20. Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach.

    PubMed

    Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik

    2015-01-01

    Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10-150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes' reported grapheme-color association. A mathematical model, based on Bundesen's (1990) Theory of Visual Attention (TVA), was fitted to each observer's data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group's model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes' expertise regarding their specific grapheme-color associations.

  1. Sensitivity Analysis Reveals Critical Factors that Affect Wetland Methane Emissions using Soil Biogeochemistry Model

    NASA Astrophysics Data System (ADS)

    Alonso-Contes, C.; Gerber, S.; Bliznyuk, N.; Duerr, I.

    2017-12-01

    Wetlands contribute approximately 20 to 40 % to global sources of methane emissions. We build a Methane model for tropical and subtropical forests, that allows inundated conditions, following the approaches used in more complex global biogeochemical emission models (LPJWhyMe and CLM4Me). The model was designed to replace model formulations with field and remotely sensed collected data for 2 essential drivers: plant productivity and hydrology. This allows us to directly focus on the central processes of methane production, consumption and transport. One of our long term goals is to make the model available to a scientists interested in including methane modeling in their location of study. Sensitivity analysis results help in focusing field data collection efforts. Here, we present results from a pilot global sensitivity analysis of the model order to determine which parameters and processes contribute most to the model's uncertainty of methane emissions. Results show that parameters related to water table behavior, carbon input (in form of plant productivity) and rooting depth affect simulated methane emissions the most. Current efforts include to perform the sensitivity analysis again on methane emissions outputs from an updated model that incorporates a soil heat flux routine and to determine the extent by which the soil temperature parameters affect CH4 emissions. Currently we are conducting field collection of data during Summer 2017 for comparison among 3 different landscapes located in the Ordway-Swisher Biological Station in Melrose, FL. We are collecting soil moisture and CH4 emission data from 4 different wetland types. Having data from 4 wetland types allows for calibration of the model to diverse soil, water and vegetation characteristics.

  2. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.

    PubMed

    Caiazzo, Fabrizia; Alfieri, Vittorio

    2018-03-16

    In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters.

  3. Cutting performance orthogonal test of single plane puncture biopsy needle based on puncture force

    NASA Astrophysics Data System (ADS)

    Xu, Yingqiang; Zhang, Qinhe; Liu, Guowei

    2017-04-01

    Needle biopsy is a method to extract the cells from the patient's body with a needle for tissue pathological examination. Many factors affect the cutting process of soft tissue, including the geometry of the biopsy needle, the mechanical properties of the soft tissue, the parameters of the puncture process and the interaction between them. This paper conducted orthogonal experiment of main cutting parameters based on single plane puncture biopsy needle, and obtained the cutting force curve of single plane puncture biopsy needle by studying the influence of the inclination angle, diameter and velocity of the single plane puncture biopsy needle on the puncture force of the biopsy needle. Stage analysis of the cutting process of biopsy needle puncture was made to determine the main influencing factors of puncture force during the cutting process, which provides a certain theoretical support for the design of new type of puncture biopsy needle and the operation of puncture biopsy.

  4. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges

    PubMed Central

    2018-01-01

    In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters. PMID:29547571

  5. Analysis of parameters for technological equipment of parallel kinematics based on rods of variable length for processing accuracy assurance

    NASA Astrophysics Data System (ADS)

    Koltsov, A. G.; Shamutdinov, A. H.; Blokhin, D. A.; Krivonos, E. V.

    2018-01-01

    A new classification of parallel kinematics mechanisms on symmetry coefficient, being proportional to mechanism stiffness and accuracy of the processing product using the technological equipment under study, is proposed. A new version of the Stewart platform with a high symmetry coefficient is presented for analysis. The workspace of the mechanism under study is described, this space being a complex solid figure. The workspace end points are reached by the center of the mobile platform which moves in parallel related to the base plate. Parameters affecting the processing accuracy, namely the static and dynamic stiffness, natural vibration frequencies are determined. The capability assessment of the mechanism operation under various loads, taking into account resonance phenomena at different points of the workspace, was conducted. The study proved that stiffness and therefore, processing accuracy with the use of the above mentioned mechanisms are comparable with the stiffness and accuracy of medium-sized series-produced machines.

  6. Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling

    PubMed Central

    Hiraki, Takehito; Miki, Takahiro; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2014-01-01

    The removability of impurities during the aluminum remelting process by oxidation was previously investigated by our research group. In the present work, alternative impurity removal with chlorination has been evaluated by thermodynamic analysis. For 43 different elements, equilibrium distribution ratios among metal, chloride flux and oxide slag phases in the aluminum remelting process were calculated by assuming the binary systems of aluminum and an impurity element. It was found that the removability of impurities isn’t significantly affected by process parameters such as chloride partial pressure, temperature and flux composition. It was shown that Ho, Dy, Li, La, Mg, Gd, Ce, Yb, Ca and Sr can be potentially eliminated into flux by chlorination from the remelted aluminum. Chlorination and oxidation are not effective to remove other impurities from the melting aluminum, due to the limited parameters which can be controlled during the remelting process. It follows that a proper management of aluminum scrap such as sorting based on the composition of the products is important for sustainable aluminum recycling. PMID:28788144

  7. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  8. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    NASA Astrophysics Data System (ADS)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  9. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    NASA Astrophysics Data System (ADS)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  10. Meteorite-asteroid spectral comparison - The effects of comminution, melting, and recrystallization

    NASA Technical Reports Server (NTRS)

    Clark, Beth E.; Fanale, Fraser P.; Salisbury, John W.

    1992-01-01

    The present laboratory simulation of possible spectral-alteration effects on the optical surface of ordinary chondrite parent bodies duplicated regolith processes through comminution of the samples to finer rain sizes. After reflectance spectra characterization, the comminuted samples were melted, crystallized, recomminuted, and again characterized. While individual spectral characteristics could be significantly changed by these processes, no combination of the alteration procedures appeared capable of affecting all relevant parameters in a way that improved the match between chondritic meteorites and S-class asteroids.

  11. The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste.

    PubMed

    Hossain, M S; Gabr, M A; Asce, F

    2009-09-01

    In many situations, MSW components are processed and shredded before use in laboratory experiments using conventional soil testing apparatus. However, shredding MSW material may affect the target property to be measured. The objective of this study is to contribute to the understanding of the effect of shredding of MSW on the measured compressibility and strength properties. It is hypothesized that measured properties can be correlated to an R-value, the ratio of waste particle size to apparatus size. Results from oedometer tests, conducted on 63.5 mm, 100 mm, 200 mm diameter apparatus, indicated the dependency of the compressibility parameters on R-value. The compressibility parameters are similar for the same R-value even though the apparatus size varies. The results using same apparatus size with variable R-values indicated that shredding of MSW mainly affects initial compression. Creep and biological strain rate of the tested MSW are not significantly affected by R-value. The shear strength is affected by shredding as the light-weight reinforcing materials are shredded into smaller pieces during specimen preparation. For example, the measured friction angles are 32 degrees and 27 degrees for maximum particle sizes of 50 mm and 25 mm, respectively. The larger MSW components in the specimen provide better reinforcing contribution. This conclusion is however dependent on comparing specimen at the same level of degradation since shear strength is also a function of extent of degradation.

  12. Tomographical process monitoring of laser transmission welding with OCT

    NASA Astrophysics Data System (ADS)

    Ackermann, Philippe; Schmitt, Robert

    2017-06-01

    Process control of laser processes still encounters many obstacles. Although these processes are stable, a narrow process parameter window during the process or process deviations have led to an increase on the requirements for the process itself and on monitoring devices. Laser transmission welding as a contactless and locally limited joining technique is well-established in a variety of demanding production areas. For example, sensitive parts demand a particle-free joining technique which does not affect the inner components. Inline integrated non-destructive optical measurement systems capable of providing non-invasive tomographical images of the transparent material, the weld seam and its surrounding areas with micron resolution would improve the overall process. Obtained measurement data enable qualitative feedback into the system to adapt parameters for a more robust process. Within this paper we present the inline monitoring device based on Fourier-domain optical coherence tomography developed within the European-funded research project "Manunet Weldable". This device, after adaptation to the laser transmission welding process is optically and mechanically integrated into the existing laser system. The main target lies within the inline process control destined to extract tomographical geometrical measurement data from the weld seam forming process. Usage of this technology makes offline destructive testing of produced parts obsolete. 1,2,3,4

  13. On-Ground Processing of Yaogan-24 Remote Sensing Satellite Attitude Data and Verification Using Geometric Field Calibration

    PubMed Central

    Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun

    2016-01-01

    Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite’s on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%. PMID:27483287

  14. Model development for naphthenic acids ozonation process.

    PubMed

    Al Jibouri, Ali Kamel H; Wu, Jiangning

    2015-02-01

    Naphthenic acids (NAs) are toxic constituents of oil sands process-affected water (OSPW) which is generated during the extraction of bitumen from oil sands. NAs consist mainly of carboxylic acids which are generally biorefractory. For the treatment of OSPW, ozonation is a very beneficial method. It can significantly reduce the concentration of NAs and it can also convert NAs from biorefractory to biodegradable. In this study, a factorial design (2(4)) was used for the ozonation of OSPW to study the influences of the operating parameters (ozone concentration, oxygen/ozone flow rate, pH, and mixing) on the removal of a model NAs in a semi-batch reactor. It was found that ozone concentration had the most significant effect on the NAs concentration compared to other parameters. An empirical model was developed to correlate the concentration of NAs with ozone concentration, oxygen/ozone flow rate, and pH. In addition, a theoretical analysis was conducted to gain the insight into the relationship between the removal of NAs and the operating parameters.

  15. Experimental Study in Taguchi Method on Surface Quality Predication of HSM

    NASA Astrophysics Data System (ADS)

    Ji, Yan; Li, Yueen

    2018-05-01

    Based on the study of ball milling mechanism and machining surface formation mechanism, the formation of high speed ball-end milling surface is a time-varying and cumulative Thermos-mechanical coupling process. The nature of this problem is that the uneven stress field and temperature field affect the machined surface Process, the performance of the processing parameters in the processing interaction in the elastic-plastic materials produced by the elastic recovery and plastic deformation. The surface quality of machining surface is characterized by multivariable nonlinear system. It is still an indispensable and effective method to study the surface quality of high speed ball milling by experiments.

  16. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    NASA Astrophysics Data System (ADS)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  17. Aromatic Amino Acid-Derived Compounds Induce Morphological Changes and Modulate the Cell Growth of Wine Yeast Species

    PubMed Central

    González, Beatriz; Vázquez, Jennifer; Cullen, Paul J.; Mas, Albert; Beltran, Gemma; Torija, María-Jesús

    2018-01-01

    Yeasts secrete a large diversity of compounds during alcoholic fermentation, which affect growth rates and developmental processes, like filamentous growth. Several compounds are produced during aromatic amino acid metabolism, including aromatic alcohols, serotonin, melatonin, and tryptamine. We evaluated the effects of these compounds on growth parameters in 16 different wine yeasts, including non-Saccharomyces wine strains, for which the effects of these compounds have not been well-defined. Serotonin, tryptamine, and tryptophol negatively influenced yeast growth, whereas phenylethanol and tyrosol specifically affected non-Saccharomyces strains. The effects of the aromatic alcohols were observed at concentrations commonly found in wines, suggesting a possible role in microbial interaction during wine fermentation. Additionally, we demonstrated that aromatic alcohols and ethanol are able to affect invasive and pseudohyphal growth in a manner dependent on nutrient availability. Some of these compounds showed strain-specific effects. These findings add to the understanding of the fermentation process and illustrate the diversity of metabolic communication that may occur among related species during metabolic processes. PMID:29696002

  18. Investigation of factors affecting the synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment

    NASA Astrophysics Data System (ADS)

    Darwish, Ayman M.; Eisa, Wael H.; Shabaka, Ali A.; Talaat, Mohamed H.

    2016-01-01

    Pulsed laser ablation in a liquid medium is a promising technique as compared to the other synthetic methods to synthesize different materials in nanoscale form. The laser parameters (e.g., wavelength, pulse width, fluence, and repetition frequency) and liquid medium (e.g., aqueous/nonaqueous liquid or solution with surfactant) were tightly controlled during and after the ablation process. By optimizing these parameters, the particle size and distribution of materials can be adjusted. The UV-vis absorption spectra and weight changes of targets were used for the characterization and comparison of products.

  19. Familiality of neural preparation and response control in childhood attention deficit-hyperactivity disorder.

    PubMed

    Albrecht, B; Brandeis, D; Uebel, H; Valko, L; Heinrich, H; Drechsler, R; Heise, A; Müller, U C; Steinhausen, H-C; Rothenberger, A; Banaschewski, T

    2013-09-01

    Patients with attention deficit-hyperactivity disorder (ADHD) exhibit difficulties in multiple attentional functions. Although high heritability rates suggest a strong genetic impact, aetiological pathways from genes and environmental factors to the ADHD phenotype are not well understood. Tracking the time course of deviant task processing using event-related electrophysiological brain activity should characterize the impact of familiality on the sequence of cognitive functions from preparation to response control in ADHD. Method Preparation and response control were assessed using behavioural and electrophysiological parameters of two versions of a cued continuous performance test with varying attentional load in boys with ADHD combined type (n = 97), their non-affected siblings (n = 27) and control children without a family history of ADHD (n = 43). Children with ADHD and non-affected siblings showed more variable performance and made more omission errors than controls. The preparatory Cue-P3 and contingent negative variation (CNV) following cues were reduced in both ADHD children and their non-affected siblings compared with controls. The NoGo-P3 was diminished in ADHD compared with controls whilst non-affected siblings were located intermediate but did not differ from both other groups. No clear familiality effects were found for the Go-P3. Better task performance was further associated with higher CNV and P3 amplitudes. Impairments in performance and electrophysiological parameters reflecting preparatory processes and to some extend also for inhibitory response control, especially under high attentional load, appeared to be familially driven in ADHD and may thus constitute functionally relevant endophenotypes for the disorder.

  20. Evaluation of Spectral and Prosodic Features of Speech Affected by Orthodontic Appliances Using the Gmm Classifier

    NASA Astrophysics Data System (ADS)

    Přibil, Jiří; Přibilová, Anna; Ďuračkoá, Daniela

    2014-01-01

    The paper describes our experiment with using the Gaussian mixture models (GMM) for classification of speech uttered by a person wearing orthodontic appliances. For the GMM classification, the input feature vectors comprise the basic and the complementary spectral properties as well as the supra-segmental parameters. Dependence of classification correctness on the number of the parameters in the input feature vector and on the computation complexity is also evaluated. In addition, an influence of the initial setting of the parameters for GMM training process was analyzed. Obtained recognition results are compared visually in the form of graphs as well as numerically in the form of tables and confusion matrices for tested sentences uttered using three configurations of orthodontic appliances.

  1. Ultra-low density metallic foams synthesized by contact glow discharge electrolysis (CGDE) for laser experiments

    NASA Astrophysics Data System (ADS)

    Rocher, Sandrine; Botrel, Ronan; Durut, Frédéric; Chicanne, Cédric; Theobald, Marc; Vignal, Vincent

    2018-02-01

    The goal of this work is to realize metallic foams synthesized by contact glow discharge electrolysis with specific characteristics. In this paper, we show the results of our studies, consisting in investigating parameters that influence the foams characteristics. Thus, the morphology of metallic foams is examined through scanning electron microscopy (SEM) observations with the acid nature. Moreover, the evolution of the mass and the volume of metallic foams with two experimental parameters (overvoltage and gold concentration) is also investigated. The acid nature affects the foams microscopic structure highlighted by the SEM observations, but for now no valid explanation to this behaviour was found. We prove that the mass deposited on the electrode is dependent on the ionic salt concentration, whereas the overvoltage only affects the foam overall density. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea.

  2. Camera sensor arrangement for crop/weed detection accuracy in agronomic images.

    PubMed

    Romeo, Juan; Guerrero, José Miguel; Montalvo, Martín; Emmi, Luis; Guijarro, María; Gonzalez-de-Santos, Pablo; Pajares, Gonzalo

    2013-04-02

    In Precision Agriculture, images coming from camera-based sensors are commonly used for weed identification and crop line detection, either to apply specific treatments or for vehicle guidance purposes. Accuracy of identification and detection is an important issue to be addressed in image processing. There are two main types of parameters affecting the accuracy of the images, namely: (a) extrinsic, related to the sensor's positioning in the tractor; (b) intrinsic, related to the sensor specifications, such as CCD resolution, focal length or iris aperture, among others. Moreover, in agricultural applications, the uncontrolled illumination, existing in outdoor environments, is also an important factor affecting the image accuracy. This paper is exclusively focused on two main issues, always with the goal to achieve the highest image accuracy in Precision Agriculture applications, making the following two main contributions: (a) camera sensor arrangement, to adjust extrinsic parameters and (b) design of strategies for controlling the adverse illumination effects.

  3. Application of Plackett-Burman Experimental Design for Lipase Production by Aspergillus niger Using Shea Butter Cake

    PubMed Central

    Salihu, Aliyu; Bala, Muntari; Bala, Shuaibu M.

    2013-01-01

    Plackett-Burman design was used to efficiently select important medium components affecting the lipase production by Aspergillus niger using shea butter cake as the main substrate. Out of the eleven medium components screened, six comprising of sucrose, (NH4)2SO4, Na2HPO4, MgSO4, Tween-80, and olive oil were found to contribute positively to the overall lipase production with a maximum production of 3.35 U/g. Influence of tween-80 on lipase production was investigated, and 1.0% (v/w) of tween-80 resulted in maximum lipase production of 6.10 U/g. Thus, the statistical approach employed in this study allows for rapid identification of important medium parameters affecting the lipase production, and further statistical optimization of medium and process parameters can be explored using response surface methodology. PMID:25937979

  4. Application of Plackett-Burman Experimental Design for Lipase Production by Aspergillus niger Using Shea Butter Cake.

    PubMed

    Salihu, Aliyu; Bala, Muntari; Bala, Shuaibu M

    2013-01-01

    Plackett-Burman design was used to efficiently select important medium components affecting the lipase production by Aspergillus niger using shea butter cake as the main substrate. Out of the eleven medium components screened, six comprising of sucrose, (NH4)2SO4, Na2HPO4, MgSO4, Tween-80, and olive oil were found to contribute positively to the overall lipase production with a maximum production of 3.35 U/g. Influence of tween-80 on lipase production was investigated, and 1.0% (v/w) of tween-80 resulted in maximum lipase production of 6.10 U/g. Thus, the statistical approach employed in this study allows for rapid identification of important medium parameters affecting the lipase production, and further statistical optimization of medium and process parameters can be explored using response surface methodology.

  5. [Optimization of fuel ethanol production from kitchen waste by Plackett-Burman design].

    PubMed

    Ma, Hong-Zhi; Gong, Li-Juan; Wang, Qun-Hui; Zhang, Wen-Yu; Xu, Wen-Long

    2008-05-01

    Kitchen garbage was chosen to produce ethanol through simultaneous saccharification and fermentation (SSF) by Zymomonas mobilis. Plackett-Burman design was employed to screen affecting parameters during SSF process. The parameters were divided into two parts, enzymes and nutritions. None of the nutritions added showed significant effect during the experiment, which demonstrated that the kitchen garbage could meet the requirement of the microorganism without extra supplementation. Protease and glucoamylase were determined to be affecting factors for ethanol production. Single factor experiment showed that the optimum usage of these two enzymes were both 100 U/g and the corresponding maximum ethanol was determined to be 53 g/L. The ethanol yield could be as high as 44%. The utilization of kitchen garbage to produce ethanol could reduce threaten of waste as well as improve the protein content of the spent. This method could save the ethanol production cost and benefit for the recycle of kitchen garbage.

  6. Additive Manufacturing in Production: A Study Case Applying Technical Requirements

    NASA Astrophysics Data System (ADS)

    Ituarte, Iñigo Flores; Coatanea, Eric; Salmi, Mika; Tuomi, Jukka; Partanen, Jouni

    Additive manufacturing (AM) is expanding the manufacturing capabilities. However, quality of AM produced parts is dependent on a number of machine, geometry and process parameters. The variability of these parameters affects the manufacturing drastically and therefore standardized processes and harmonized methodologies need to be developed to characterize the technology for end use applications and enable the technology for manufacturing. This research proposes a composite methodology integrating Taguchi Design of Experiments, multi-objective optimization and statistical process control, to optimize the manufacturing process and fulfil multiple requirements imposed to an arbitrary geometry. The proposed methodology aims to characterize AM technology depending upon manufacturing process variables as well as to perform a comparative assessment of three AM technologies (Selective Laser Sintering, Laser Stereolithography and Polyjet). Results indicate that only one machine, laser-based Stereolithography, was feasible to fulfil simultaneously macro and micro level geometrical requirements but mechanical properties were not at required level. Future research will study a single AM system at the time to characterize AM machine technical capabilities and stimulate pre-normative initiatives of the technology for end use applications.

  7. Food structure: Its formation and relationships with other properties.

    PubMed

    Joardder, Mohammad U H; Kumar, Chandan; Karim, M A

    2017-04-13

    Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food.

  8. Optimization and Characterization of the Friction Stir Welded Sheets of AA 5754-H111: Monitoring of the Quality of Joints with Thermographic Techniques

    PubMed Central

    De Filippis, Luigi Alberto Ciro; Serio, Livia Maria; Galietti, Umberto

    2017-01-01

    Friction Stir Welding (FSW) is a solid-state welding process, based on frictional and stirring phenomena, that offers many advantages with respect to the traditional welding methods. However, several parameters can affect the quality of the produced joints. In this work, an experimental approach has been used for studying and optimizing the FSW process, applied on 5754-H111 aluminum plates. In particular, the thermal behavior of the material during the process has been investigated and two thermal indexes, the maximum temperature and the heating rate of the material, correlated to the frictional power input, were investigated for different process parameters (the travel and rotation tool speeds) configurations. Moreover, other techniques (micrographs, macrographs and destructive tensile tests) were carried out for supporting in a quantitative way the analysis of the quality of welded joints. The potential of thermographic technique has been demonstrated both for monitoring the FSW process and for predicting the quality of joints in terms of tensile strength. PMID:29019948

  9. Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: Effects of process parameters and optimization.

    PubMed

    Huda, N; Raman, A A A; Bello, M M; Ramesh, S

    2017-12-15

    The main problem of landfill leachate is its diverse composition comprising many persistent organic pollutants which must be removed before being discharge into the environment. This study investigated the treatment of raw landfill leachate using electrocoagulation process. An electrocoagulation system was designed with iron as both the anode and cathode. The effects of inter-electrode distance, initial pH and electrolyte concentration on colour and COD removals were investigated. All these factors were found to have significant effects on the colour removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was also conducted to obtain the optimum process performance. Under optimum conditions (initial pH: 7.73, inter-electrode distance: 1.16 cm, and electrolyte concentration (NaCl): 2.00 g/L), the process could remove up to 82.7% colour and 45.1% COD. The process can be applied as a pre-treatment for raw leachates before applying other appropriate treatment technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A GUI-based Tool for Bridging the Gap between Models and Process-Oriented Studies

    NASA Astrophysics Data System (ADS)

    Kornfeld, A.; Van der Tol, C.; Berry, J. A.

    2014-12-01

    Models used for simulation of photosynthesis and transpiration by canopies of terrestrial plants typically have subroutines such as STOMATA.F90, PHOSIB.F90 or BIOCHEM.m that solve for photosynthesis and associated processes. Key parameters such as the Vmax for Rubisco and temperature response parameters are required by these subroutines. These are often taken from the literature or determined by separate analysis of gas exchange experiments. It is useful to note however that subroutines can be extracted and run as standalone models to simulate leaf responses collected in gas exchange experiments. Furthermore, there are excellent non-linear fitting tools that can be used to optimize the parameter values in these models to fit the observations. Ideally the Vmax fit in this way should be the same as that determined by a separate analysis, but it may not because of interactions with other kinetic constants and the temperature dependence of these in the full subroutine. We submit that it is more useful to fit the complete model to the calibration experiments rather as disaggregated constants. We designed a graphical user interface (GUI) based tool that uses gas exchange photosynthesis data to directly estimate model parameters in the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model and, at the same time, allow researchers to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. We have also ported some of this functionality to an Excel spreadsheet, which could be used as a teaching tool to help integrate process-oriented and model-oriented studies.

  11. Study of Material Densification of In718 in the Higher Throughput Parameter Regime

    NASA Technical Reports Server (NTRS)

    Cordner, Samuel

    2016-01-01

    Selective Laser Melting (SLM) is a powder bed fusion additive manufacturing process used increasingly in the aerospace industry to reduce the cost, weight, and fabrication time for complex propulsion components. Previous optimization studies for SLM using the Concept Laser M1 and M2 machines at NASA Marshall Space Flight Center have centered on machine default parameters. The objective of this project is to characterize how heat treatment affects density and porosity from a microscopic point of view. This is performs using higher throughput parameters (a previously unexplored region of the manufacturing operating envelope for this application) on material consolidation. Density blocks were analyzed to explore the relationship between build parameters (laser power, scan speed, and hatch spacing) and material consolidation (assessed in terms of density and porosity). The study also considers the impact of post-processing, specifically hot isostatic pressing and heat treatment, as well as deposition pattern on material consolidation in the higher energy parameter regime. Metallurgical evaluation of specimens will also be presented. This work will contribute to creating a knowledge base (understanding material behavior in all ranges of the AM equipment operating envelope) that is critical to transitioning AM from the custom low rate production sphere it currently occupies to the world of mass high rate production, where parts are fabricated at a rapid rate with confidence that they will meet or exceed all stringent functional requirements for spaceflight hardware. These studies will also provide important data on the sensitivity of material consolidation to process parameters that will inform the design and development of future flight articles using SLM.

  12. Analysis of droplet transfer mode and forming process of weld bead in CO 2 laser-MAG hybrid welding process

    NASA Astrophysics Data System (ADS)

    Liu, Shuangyu; Liu, Fengde; Zhang, Hong; Shi, Yan

    2012-06-01

    In this paper, CO 2 laser-metal active gas (MAG) hybrid welding technique is used to weld high strength steel and the optimized process parameters are obtained. Using LD Pumped laser with an emission wavelength of 532 nm to overcome the strong interference from the welding arc, a computer-based system is developed to collect and visualize the waveforms of the electrical welding parameters and metal transfer processes in laser-MAG. The welding electric signals of hybrid welding processes are quantitatively described and analyzed using the ANALYSATOR HANNOVER. The effect of distance between laser and arc ( DLA) on weld bead geometry, forming process of weld shape, electric signals, arc characteristic and droplet transfer behavior is investigated. It is found that arc characteristic, droplet transfer mode and final weld bead geometry are strongly affected by the distance between laser and arc. The weld bead geometry is changed from "cocktail cup" to "cone-shaped" with the increasing DLA. The droplet transfer mode is changed from globular transfer to projected transfer with the increasing DLA. Projected transfer mode is an advantage for the stability of hybrid welding processes.

  13. Impact of polymer film thickness and cavity size on polymer flow during embossing : towards process design rules for nanoimprint lithography.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunk, Peter Randall; King, William P.; Sun, Amy Cha-Tien

    2006-08-01

    This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measuresmore » polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.« less

  14. An investigation on co-axial water-jet assisted fiber laser cutting of metal sheets

    NASA Astrophysics Data System (ADS)

    Madhukar, Yuvraj K.; Mullick, Suvradip; Nath, Ashish K.

    2016-02-01

    Water assisted laser cutting has received significant attention in recent times with assurance of many advantages than conventional gas assisted laser cutting. A comparative study between co-axial water-jet and gas-jet assisted laser cutting of thin sheets of mild steel (MS) and titanium (Ti) by fiber laser is presented. Fiber laser (1.07 μm wavelength) was utilised because of its low absorption in water. The cut quality was evaluated in terms of average kerf, projected dross height, heat affected zone (HAZ) and cut surface roughness. It was observed that a broad range process parameter could produce consistent cut quality in MS. However, oxygen assisted cutting could produce better quality only with optimised parameters at high laser power and high cutting speed. In Ti cutting the water-jet assisted laser cutting performed better over the entire range of process parameters compared with gas assisted cutting. The specific energy, defined as the amount of laser energy required to remove unit volume of material was found more in case of water-jet assisted laser cutting process. It is mainly due to various losses associated with water assisted laser processing such as absorption of laser energy in water and scattering at the interaction zone.

  15. Relating Memory To Functional Performance In Normal Aging to Dementia Using Hierarchical Bayesian Cognitive Processing Models

    PubMed Central

    Shankle, William R.; Pooley, James P.; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D.

    2012-01-01

    Determining how cognition affects functional abilities is important in Alzheimer’s disease and related disorders (ADRD). 280 patients (normal or ADRD) received a total of 1,514 assessments using the Functional Assessment Staging Test (FAST) procedure and the MCI Screen (MCIS). A hierarchical Bayesian cognitive processing (HBCP) model was created by embedding a signal detection theory (SDT) model of the MCIS delayed recognition memory task into a hierarchical Bayesian framework. The SDT model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the six FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. HBCP models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition to a continuous measure of functional severity for both individuals and FAST groups. Such a translation links two levels of brain information processing, and may enable more accurate correlations with other levels, such as those characterized by biomarkers. PMID:22407225

  16. A new algorithm for design, operation and cost assessment of struvite (MgNH4PO4) precipitation processes.

    PubMed

    Birnhack, Liat; Nir, Oded; Telzhenski, Marina; Lahav, Ori

    2015-01-01

    Deliberate struvite (MgNH4PO4) precipitation from wastewater streams has been the topic of extensive research in the last two decades and is expected to gather worldwide momentum in the near future as a P-reuse technique. A wide range of operational alternatives has been reported for struvite precipitation, including the application of various Mg(II) sources, two pH elevation techniques and several Mg:P ratios and pH values. The choice of each operational parameter within the struvite precipitation process affects process efficiency, the overall cost and also the choice of other operational parameters. Thus, a comprehensive simulation program that takes all these parameters into account is essential for process design. This paper introduces a systematic decision-supporting tool which accepts a wide range of possible operational parameters, including unconventional Mg(II) sources (i.e. seawater and seawater nanofiltration brines). The study is supplied with a free-of-charge computerized tool (http://tx.technion.ac.il/~agrengn/agr/Struvite_Program.zip) which links two computer platforms (Python and PHREEQC) for executing thermodynamic calculations according to predefined kinetic considerations. The model can be (inter alia) used for optimizing the struvite-fluidized bed reactor process operation with respect to P removal efficiency, struvite purity and economic feasibility of the chosen alternative. The paper describes the algorithm and its underlying assumptions, and shows results (i.e. effluent water quality, cost breakdown and P removal efficiency) of several case studies consisting of typical wastewaters treated at various operational conditions.

  17. The influence of operational and environmental loads on the process of assessing damages in beams

    NASA Astrophysics Data System (ADS)

    Furdui, H.; Muntean, F.; Minda, A. A.; Praisach, Z. I.; Gillich, N.

    2015-07-01

    Damage detection methods based on vibration analysis make use of the modal parameter changes. Natural frequencies are the features that can be acquired most simply and inexpensively. But this parameter is influenced by environmental conditions, e.g. temperature and operational loads as additional masses or axial loads induced by restraint displacements. The effect of these factors is not completely known, but in the numerous actual research it is considered that they affect negatively the damage assessment process. This is justified by the small frequency changes occurring due to damage, which can be masked by the frequency shifts due to external loads. The paper intends to clarify the effect of external loads on the natural frequencies of beams and truss elements, and to show in which manner the damage detection process is affected by these loads. The finite element analysis, performed on diverse structures for a large range of temperature values, has shown that the temperature itself has a very limited effect on the frequency changes. Thus, axial forces resulted due to obstructed displacements can influence more substantially the frequency changes. These facts are demonstrated by experimental and theoretical studies. Finally, we succeed to adapt a prior contrived relation providing the frequency changes due to damage in order to fit the case of known external loads. Whereas a new baseline for damage detection was found, considering the effect of temperature and external loads, this process can be performed without other complication.

  18. Projection matrices as a forest management tool: an invasive tree case study

    Treesearch

    Ian J. Renne; Benjamin F. Tracy; Timothy P. Spira

    2003-01-01

    Life history parameters of many forest-dwelling species are affected by native and non-native pests. In turn, these pests alter forest processes and cost the United States billions of dollars annually. Population projection matrices can aid ecologists and managers in evaluating the impact of pests on forest species as well as devising effective strategies for pest...

  19. Flow processes in overexpanded chemical rocket nozzles. Part 1: Flow separation

    NASA Technical Reports Server (NTRS)

    Schmucker, R. H.

    1984-01-01

    An investigation was made of published nozzle flow separation data in order to determine the parameters which affect the separation conditions. A comparison of experimental data with empirical and theoretical separation prediction methods leads to the selection of suitable equations for the separation criterion. The results were used to predict flow separation of the main space shuttle engine.

  20. Flow processes in overexpanded chemical rocket nozzles. Part 1: Flow separation

    NASA Technical Reports Server (NTRS)

    Schmucker, R. H.

    1973-01-01

    An investigation was made of published nozzle flow separation data in order to determine the parameters which affect the separation condition. A comparison of experimental data with empirical and theoretical separation prediction methods leads to the selection of suitable equations for the separation criterion. The results were used to predict flow separation of the main space shuttle engine.

  1. Production and fabrication of 2500-lb Nb--Ti ingots to rod

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordier, T.E.; McDonald, W.K.

    Interest in Nb--Ti superconducting devices is exploding. This paper outlines the critical production criteria for this material. Areas discussed include ingot blending, melting, forging, extrusion, and rod reducing with emphasis on the metallurgical considerations affecting mechanical properties. Data are included relating process parameters to TEM finding as well as R.T. ductility and optical microscopy. (auth)

  2. Physical fundamentals of criterial estimation of nitriding technology for parts of friction units

    NASA Astrophysics Data System (ADS)

    Kuksenova, L. I.; Gerasimov, S. A.; Lapteva, V. G.; Alekseeva, M. S.

    2013-03-01

    Characteristics of the structure and properties of surface layers of nitrided structural steels and alloys, which affect the level of surface fracture under friction, are studied. A generalized structural parameter for optimizing the nitriding process and a rapid method for estimating the quality of the surface layer of nitrided parts of friction units are developed.

  3. Spray pattern analysis in TWAS using photogrammetry and digital image correlation

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Rademacher, H. G.; Hagen, L.; Abdulgader, M.; El Barad’ei, M.

    2018-06-01

    In terms of arc spraying processes, the spray plume characteristic is mainly affected by the flow characteristic of the atomization gas at the nozzle inlet and intersection point of the wire tips, which in turn affect the particle distribution at the moment of impact when molten spray particles splash onto the substrate. With respect to the route of manufacturing of near net-shaped coatings on complex geometries, the acquisition of the spray patterns is pressingly necessary to determine the produced coating thickness. Within the scope of this study, computer fluid dynamics (CFD) simulations were carried out to determine the distribution of spray particles for different spray parameter settings. The results were evaluated by three-dimensional spray spot analyses using an optical measurement based on photogrammetry and digital image correlation. The optical measurement represents a promising and much faster candidate to measure spray patterns compared to the tactile measurement system but with an equal accuracy. For given nozzle configurations and spray parameter settings, numerous spray patterns were examined to their shape factors, demonstrating the potential of an online analysis, which encompasses a “fast sample loop” and a data processing system to generate a three-dimensional surface of the spray spot profile.

  4. Performance of tablet disintegrants: impact of storage conditions and relative tablet density.

    PubMed

    Quodbach, Julian; Kleinebudde, Peter

    2015-01-01

    Tablet disintegration can be influenced by several parameters, such as storage conditions, type and amount of disintegrant, and relative tablet density. Even though these parameters have been mentioned in the literature, the understanding of the disintegration process is limited. In this study, water uptake and force development of disintegrating tablets are analyzed, as they reveal underlying processes and interactions. Measurements were performed on dibasic calcium phosphate tablets containing seven different disintegrants stored at different relative humidities (5-97%), and on tablets containing disintegrants with different mechanisms of action (swelling and shape recovery), compressed to different relative densities. Disintegration times of tablets containing sodium starch glycolate are affected most by storage conditions, which is displayed in decreased water uptake and force development kinetics. Disintegration times of tablets with a swelling disintegrant are only marginally affected by relative tablet density, whereas the shape recovery disintegrant requires high relative densities for quick disintegration. The influence of relative tablet density on the kinetics of water uptake and force development greatly depends on the mechanism of action. Acquired data allows a detailed analysis of the influence of storage conditions and mechanisms of action on disintegration behavior.

  5. Application of Taguchi Method for Analyzing Factors Affecting the Performance of Coated Carbide Tool When Turning FCD700 in Dry Cutting Condition

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Mohd Rodzi, Mohd Nor Azmi; Zaki Nuawi, Mohd; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che; Deros, Baba Md

    2011-01-01

    Machining is one of the most important manufacturing processes in these modern industries especially for finishing an automotive component after the primary manufacturing processes such as casting and forging. In this study the turning parameters of dry cutting environment (without air, normal air and chilled air), various cutting speed, and feed rate are evaluated using a Taguchi optimization methodology. An orthogonal array L27 (313), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these turning parameters on the performance of a coated carbide tool. The results show that the tool life is affected by the cutting speed, feed rate and cutting environment with contribution of 38%, 32% and 27% respectively. Whereas for the surface roughness, the feed rate is significantly controlled the machined surface produced by 77%, followed by the cutting environment of 19%. The cutting speed is found insignificant in controlling the machined surface produced. The study shows that the dry cutting environment factor should be considered in order to produce longer tool life as well as for obtaining a good machined surface.

  6. Effects of Aging on the Biomechanics of Slips and Falls

    PubMed Central

    Lockhart, Thurmon E.; Smith, James L.; Woldstad, Jeffrey C.

    2010-01-01

    Although much has been learned in recent decades about the deterioration of muscular strength, gait adaptations, and sensory degradation among older adults, little is known about how these intrinsic changes affect biomechanical parameters associated with slip-induced fall accidents. In general, the objective of this laboratory study was to investigate the process of initiation, detection, and recovery of inadvertent slips and falls. We examined the initiation of and recovery from foot slips among three age groups utilizing biomechanical parameters, muscle strength, and sensory measurements. Forty-two young, middle-age, and older participants walked around a walking track at a comfortable pace. Slippery floor surfaces were placed on the track over force platforms at random intervals without the participants’ awareness. Results indicated that younger participants slipped as often as the older participants, suggesting that the likelihood of slip initiation is similar across all age groups; however, older individuals’ recovery process was much slower and less effective. The ability to successfully recover from a slip (thus preventing a fall) is believed to be affected by lower extremity muscle strength and sensory degradation among older individuals. Results from this research can help pinpoint possible intervention strategies for improving dynamic equilibrium among older adults. PMID:16553061

  7. Quality by control: Towards model predictive control of mammalian cell culture bioprocesses.

    PubMed

    Sommeregger, Wolfgang; Sissolak, Bernhard; Kandra, Kulwant; von Stosch, Moritz; Mayer, Martin; Striedner, Gerald

    2017-07-01

    The industrial production of complex biopharmaceuticals using recombinant mammalian cell lines is still mainly built on a quality by testing approach, which is represented by fixed process conditions and extensive testing of the end-product. In 2004 the FDA launched the process analytical technology initiative, aiming to guide the industry towards advanced process monitoring and better understanding of how critical process parameters affect the critical quality attributes. Implementation of process analytical technology into the bio-production process enables moving from the quality by testing to a more flexible quality by design approach. The application of advanced sensor systems in combination with mathematical modelling techniques offers enhanced process understanding, allows on-line prediction of critical quality attributes and subsequently real-time product quality control. In this review opportunities and unsolved issues on the road to a successful quality by design and dynamic control implementation are discussed. A major focus is directed on the preconditions for the application of model predictive control for mammalian cell culture bioprocesses. Design of experiments providing information about the process dynamics upon parameter change, dynamic process models, on-line process state predictions and powerful software environments seem to be a prerequisite for quality by control realization. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modeling motor vehicle crashes using Poisson-gamma models: examining the effects of low sample mean values and small sample size on the estimation of the fixed dispersion parameter.

    PubMed

    Lord, Dominique

    2006-07-01

    There has been considerable research conducted on the development of statistical models for predicting crashes on highway facilities. Despite numerous advancements made for improving the estimation tools of statistical models, the most common probabilistic structure used for modeling motor vehicle crashes remains the traditional Poisson and Poisson-gamma (or Negative Binomial) distribution; when crash data exhibit over-dispersion, the Poisson-gamma model is usually the model of choice most favored by transportation safety modelers. Crash data collected for safety studies often have the unusual attributes of being characterized by low sample mean values. Studies have shown that the goodness-of-fit of statistical models produced from such datasets can be significantly affected. This issue has been defined as the "low mean problem" (LMP). Despite recent developments on methods to circumvent the LMP and test the goodness-of-fit of models developed using such datasets, no work has so far examined how the LMP affects the fixed dispersion parameter of Poisson-gamma models used for modeling motor vehicle crashes. The dispersion parameter plays an important role in many types of safety studies and should, therefore, be reliably estimated. The primary objective of this research project was to verify whether the LMP affects the estimation of the dispersion parameter and, if it is, to determine the magnitude of the problem. The secondary objective consisted of determining the effects of an unreliably estimated dispersion parameter on common analyses performed in highway safety studies. To accomplish the objectives of the study, a series of Poisson-gamma distributions were simulated using different values describing the mean, the dispersion parameter, and the sample size. Three estimators commonly used by transportation safety modelers for estimating the dispersion parameter of Poisson-gamma models were evaluated: the method of moments, the weighted regression, and the maximum likelihood method. In an attempt to complement the outcome of the simulation study, Poisson-gamma models were fitted to crash data collected in Toronto, Ont. characterized by a low sample mean and small sample size. The study shows that a low sample mean combined with a small sample size can seriously affect the estimation of the dispersion parameter, no matter which estimator is used within the estimation process. The probability the dispersion parameter becomes unreliably estimated increases significantly as the sample mean and sample size decrease. Consequently, the results show that an unreliably estimated dispersion parameter can significantly undermine empirical Bayes (EB) estimates as well as the estimation of confidence intervals for the gamma mean and predicted response. The paper ends with recommendations about minimizing the likelihood of producing Poisson-gamma models with an unreliable dispersion parameter for modeling motor vehicle crashes.

  9. Landslide susceptibility estimations in the Gerecse hills (Hungary).

    NASA Astrophysics Data System (ADS)

    Gerzsenyi, Dávid; Gáspár, Albert

    2017-04-01

    Surface movement processes are constantly posing threat to property in populated and agricultural areas in the Gerecse hills (Hungary). The affected geological formations are mainly unconsolidated sediments. Pleistocene loess and alluvial terrace sediments are overwhelmingly present, but fluvio-lacustrine sediments of the latest Miocene, and consolidated Eocene and Mesozoic limestones and marls can also be found in the area. Landslides and other surface movement processes are being studied for a long time in the area, but a comprehensive GIS-based geostatistical analysis have not yet been made for the whole area. This was the reason for choosing the Gerecse as the focus area of the study. However, the base data of our study are freely accessible from online servers, so the used method can be applied to other regions in Hungary. Qualitative data was acquired from the landslide-inventory map of the Hungarian Surface Movement Survey and from the Geological Map of Hungary (1 : 100 000). Morphometric parameters derived from the SRMT-1 DEM were used as quantitative variables. Using these parameters the distribution of elevation, slope gradient, aspect and categorized geological features were computed, both for areas affected and not affected by slope movements. Then likelihood values were computed for each parameters by comparing their distribution in the two areas. With combining the likelihood values of the four parameters relative hazard values were computed for each cell. This method is known as the "empirical probability estimation" originally published by Chung (2005). The map created this way shows each cell's place in their ranking based on the relative hazard values as a percentage for the whole study area (787 km2). These values provide information about how similar is a certain area to the areas already affected by landslides based on the four predictor variables. This map can also serve as a base for more complex landslide vulnerability studies involving economic factors. The landslide-inventory database used in the research provides information regarding the state of activity of the past surface movements, however the activity of many sites are stated as unknown. A complementary field survey have been carried out aiming to categorize these areas - near to Dunaszentmiklós and Neszmély villages - in one of the most landslide-affected part of the Gerecse. Reference: Chung, C. (2005). Using likelihood ratio functions for modeling the conditional probability of occurrence of future landslides for risk assessment. Computers & Geosciences, 32., pp. 1052-1068.

  10. Optimization of a thermal hydrolysis process for sludge pre-treatment.

    PubMed

    Sapkaite, I; Barrado, E; Fdz-Polanco, F; Pérez-Elvira, S I

    2017-05-01

    At industrial scale, thermal hydrolysis is the most used process to enhance biodegradability of the sludge produced in wastewater treatment plants. Through statistically guided Box-Behnken experimental design, the present study analyses the effect of TH as pre-treatment applied to activated sludge. The selected process variables were temperature (130-180 °C), time (5-50 min) and decompression mode (slow or steam-explosion effect), and the parameters evaluated were sludge solubilisation and methane production by anaerobic digestion. A quadratic polynomial model was generated to compare the process performance for the 15 different combinations of operation conditions by modifying the process variables evaluated. The statistical analysis performed exhibited that methane production and solubility were significantly affected by pre-treatment time and temperature. During high intensity pre-treatment (high temperature and long times), the solubility increased sharply while the methane production exhibited the opposite behaviour, indicating the formation of some soluble but non-biodegradable materials. Therefore, solubilisation is not a reliable parameter to quantify the efficiency of a thermal hydrolysis pre-treatment, since it is not directly related to methane production. Based on the operational parameters optimization, the estimated optimal thermal hydrolysis conditions to enhance of sewage sludge digestion were: 140-170 °C heating temperature, 5-35min residence time, and one sudden decompression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Components of Attention in Grapheme-Color Synesthesia: A Modeling Approach

    PubMed Central

    Ásgeirsson, Árni Gunnar; Nordfang, Maria; Sørensen, Thomas Alrik

    2015-01-01

    Grapheme-color synesthesia is a condition where the perception of graphemes consistently and automatically evokes an experience of non-physical color. Many have studied how synesthesia affects the processing of achromatic graphemes, but less is known about the synesthetic processing of physically colored graphemes. Here, we investigated how the visual processing of colored letters is affected by the congruence or incongruence of synesthetic grapheme-color associations. We briefly presented graphemes (10–150 ms) to 9 grapheme-color synesthetes and to 9 control observers. Their task was to report as many letters (targets) as possible, while ignoring digit (distractors). Graphemes were either congruently or incongruently colored with the synesthetes’ reported grapheme-color association. A mathematical model, based on Bundesen’s (1990) Theory of Visual Attention (TVA), was fitted to each observer’s data, allowing us to estimate discrete components of visual attention. The models suggested that the synesthetes processed congruent letters faster than incongruent ones, and that they were able to retain more congruent letters in visual short-term memory, while the control group’s model parameters were not significantly affected by congruence. The increase in processing speed, when synesthetes process congruent letters, suggests that synesthesia affects the processing of letters at a perceptual level. To account for the benefit in processing speed, we propose that synesthetic associations become integrated into the categories of graphemes, and that letter colors are considered as evidence for making certain perceptual categorizations in the visual system. We also propose that enhanced visual short-term memory capacity for congruently colored graphemes can be explained by the synesthetes’ expertise regarding their specific grapheme-color associations. PMID:26252019

  12. Effect of Heat Index on Microstructure and Mechanical Behavior of Friction Stir Processed AZ31

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Mishra, Rajiv S.

    Friction stir processing modifies the micro structure and properties of metals through intense plastic deformation. The frictional heat input affects the microstructure evolution and resulting mechanical properties. 2 mm thick commercial AZ31B-H24 Mg alloy was friction stir processed under various process parameter combinations to investigate the effect of heat index on micro structure and properties. Recrystallized grain structure in the nugget region was observed for all processing conditions with decrease in hardness. Results indicate a reduced tensile yield strength and ultimate tensile strength compared to the as-received material in H-temper, but with an improved hardening capacity. The strain hardening behavior of friction stir processed material is discussed.

  13. Swarm intelligence application for optimization of CO2 diffusivity in polystyrene-b-polybutadiene-b-polystyrene (SEBS) foaming

    NASA Astrophysics Data System (ADS)

    Sharudin, Rahida Wati; Ajib, Norshawalina Muhamad; Yusoff, Marina; Ahmad, Mohd Aizad

    2017-12-01

    Thermoplastic elastomer SEBS foams were prepared by using carbon dioxide (CO2) as a blowing agent and the process is classified as physical foaming method. During the foaming process, the diffusivity of CO2 need to be controlled since it is one of the parameter that will affect the final cellular structure of the foam. Conventionally, the rate of CO2 diffusion was measured experimentally by using a highly sensitive device called magnetic suspension balance (MSB). Besides, this expensive MSB machine is not easily available and measurement of CO2 diffusivity is quite complicated as well as time consuming process. Thus, to overcome these limitations, a computational method was introduced. Particle Swarm Optimization (PSO) is a part of Swarm Intelligence system which acts as a beneficial optimization tool where it can solve most of nonlinear complications. PSO model was developed for predicting the optimum foaming temperature and CO2 diffusion rate in SEBS foam. Results obtained by PSO model are compared with experimental results for CO2 diffusivity at various foaming temperature. It is shown that predicted optimum foaming temperature at 154.6 °C was not represented the best temperature for foaming as the cellular structure of SEBS foamed at corresponding temperature consisted pores with unstable dimension and the structure was not visibly perceived due to foam shrinkage. The predictions were not agreed well with experimental result when single parameter of CO2 diffusivity is considered in PSO model because it is not the only factor that affected the controllability of foam shrinkage. The modification on the PSO model by considering CO2 solubility and rigidity of SEBS as additional parameters needs to be done for obtaining the optimum temperature for SEBS foaming. Hence stable SEBS foam could be prepared.

  14. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy.

    PubMed

    Markl, Daniel; Bawuah, Prince; Ridgway, Cathy; van den Ban, Sander; Goodwin, Daniel J; Ketolainen, Jarkko; Gane, Patrick; Peiponen, Kai-Erik; Zeitler, J Axel

    2018-02-15

    Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g. tensile strength) but also directional properties of the pore structure in the porous compact. This study derives a new quantitative parameter, S a , to describe the anisotropy in pore structure of pharmaceutical tablets based on terahertz time-domain spectroscopy measurements. The S a parameter analysis was applied to three different data sets including tablets with only one excipient (functionalised calcium carbonate), samples with one excipient (microcrystalline cellulose) and one drug (indomethacin), and a complex formulation (granulated product comprising several excipients and one drug). The overall porosity, tablet thickness, initial particle size distribution as well as the granule density were all found to affect the significant structural anisotropies that were observed in all investigated tablets. The S a parameter provides new insights into the microstructure of a tablet and its potential was particularly demonstrated for the analysis of formulations comprising several components. The results clearly indicate that material attributes, such as particle size and granule density, cause a change of the pore structure, which, therefore, directly impacts the liquid imbibition that is part of the disintegration process. We show, for the first time, how the granule density impacts the pore structure, which will also affect the performance of the tablet. It is thus of great importance to gain a better understanding of the relationship of the physical properties of material attributes (e.g. intragranular porosity, particle shape), the compaction process and the microstructure of the finished product. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Non-electrical-power temperature-time integrating sensor for RFID based on microfluidics

    NASA Astrophysics Data System (ADS)

    Schneider, Mike; Hoffmann, Martin

    2011-06-01

    The integration of RFID tags into packages offers the opportunity to combine logistic advantages of the technology with monitoring different parameters from inside the package at the same time. An essential demand for enhanced product safety especially in pharmacy or food industry is the monitoring of the time-temperature-integral. Thus, completely passive time-temperature-integrators (TTI) requiring no battery, microprocessor nor data logging devices are developed. TTI representing the sterilization process inside an autoclave system is a demanding challenge: a temperature of at least 120 °C have to be maintained over 45 minutes to assure that no unwanted organism remains. Due to increased temperature, the viscosity of a fluid changes and thus the speed of the fluid inside the channel increases. The filled length of the channel represents the time temperature integral affecting the system. Measurements as well as simulations allow drawing conclusions about the influence of the geometrical parameters of the system and provide the possibility of adaptation. Thus a completely passive sensor element for monitoring an integral parameter with waiving of external electrical power supply and data processing technology is demonstrated. Furthermore, it is shown how to adjust the specific TTI parameters of the sensor to different applications and needs by modifying the geometrical parameters of the system.

  16. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  17. Effect of network architecture on burst and spike synchronization in a scale-free network of bursting neurons.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2016-07-01

    We investigate the effect of network architecture on burst and spike synchronization in a directed scale-free network (SFN) of bursting neurons, evolved via two independent α- and β-processes. The α-process corresponds to a directed version of the Barabási-Albert SFN model with growth and preferential attachment, while for the β-process only preferential attachments between pre-existing nodes are made without addition of new nodes. We first consider the "pure" α-process of symmetric preferential attachment (with the same in- and out-degrees), and study emergence of burst and spike synchronization by varying the coupling strength J and the noise intensity D for a fixed attachment degree. Characterizations of burst and spike synchronization are also made by employing realistic order parameters and statistical-mechanical measures. Next, we choose appropriate values of J and D where only burst synchronization occurs, and investigate the effect of the scale-free connectivity on the burst synchronization by varying (1) the symmetric attachment degree and (2) the asymmetry parameter (representing deviation from the symmetric case) in the α-process, and (3) the occurrence probability of the β-process. In all these three cases, changes in the type and the degree of population synchronization are studied in connection with the network topology such as the degree distribution, the average path length Lp, and the betweenness centralization Bc. It is thus found that just taking into consideration Lp and Bc (affecting global communication between nodes) is not sufficient to understand emergence of population synchronization in SFNs, but in addition to them, the in-degree distribution (affecting individual dynamics) must also be considered to fully understand for the effective population synchronization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A study in cost analysis of aggregate production as depending on drilling and blasting design

    NASA Astrophysics Data System (ADS)

    Bilim, Niyazi; Çelik, Arif; Kekeç, Bilgehan

    2017-10-01

    Since aggregate production has vital importance for many engineering projects-such as construction, highway and plant-mixed concrete production-this study was undertaken to determine how the costs for such production are affected by the design of drilling and blasting processes used. Aggregates are used in the production of concrete and asphalt, which are critical resources for the construction sector. The ongoing population increase and the growth of living standards around the world drive the increasing demand for these products. As demand grows, competition has naturally arisen among producers in the industry. Competition in the market has directly affected prices, which leads to the need for new measures and cost analysis on production costs. The cost calculation is one of the most important parameters in mining activities. Aggregate production operations include drilling, blasting, secondary crushing (if necessary), loading, hauling and crushing-screening, and each of these factors affects cost. In this study, drilling and blasting design parameters (such as hole diameter, hole depth, hole distance and burden) were investigated and evaluated for their effect on the total cost of quarrying these products, based on a particular quarry selected for this research. As the result of evaluation, the parameters actually driving costs have been identified, and their effects on the cost have been determined. In addition, some suggestions are presented regarding production design which may lead to avoiding increased production costs.

  19. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts

    PubMed Central

    Young, Kyle A.; Fox, Jordan; Jokela, Jukka

    2017-01-01

    Infectious disease dynamics depend on the speed, number and fitness of parasites transmitting from infected hosts (‘donors’) to parasite-naive ‘recipients’. Donor heterogeneity likely affects these three parameters, and may arise from variation between donors in traits including: (i) infection load, (ii) resistance, (iii) stage of infection, and (iv) previous experience of transmission. We used the Trinidadian guppy, Poecilia reticulata, and a directly transmitted monogenean ectoparasite, Gyrodactylus turnbulli, to experimentally explore how these sources of donor heterogeneity affect the three transmission parameters. We exposed parasite-naive recipients to donors (infected with a single parasite strain) differing in their infection traits, and found that donor infection traits had diverse and sometimes interactive effects on transmission. First, although transmission speed increased with donor infection load, the relationship was nonlinear. Second, while the number of parasites transmitted generally increased with donor infection load, more resistant donors transmitted more parasites, as did those with previous transmission experience. Finally, parasites transmitting from experienced donors exhibited lower population growth rates on recipients than those from inexperienced donors. Stage of infection had little effect on transmission parameters. These results suggest that a more holistic consideration of within-host processes will improve our understanding of between-host transmission and hence disease dynamics. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289260

  20. Some Physical Parameters to Effect the Production of Heamatococcus pluvialis

    NASA Astrophysics Data System (ADS)

    Akpolat, O.; Eristurk, S.

    The aim of this study is to optimize the physical parameters affecting the production of Haematococcus pluvialis in photobioreactors and to simulate the process. Heamatococcus pluvialis is a green microalgea to have a great interest for production of natural astaxanthin and it can be cultivated in a closed photobiorector system under controlled conditions. Biomass composition, growth rate and high value product spectra like polyunsaturated fatty acids, pigments, poly saccariydes or vitamins depend on strongly the parameters of cultivation process. These are composition of cultivation medium, mixing model and aeration rate, hydrodynamic stress of medium which can be changed by adding some chemicals, cultivation temperature, pH, carbon dioxide and oxygen supply and most important of all: illumination. One of the most important problems during the cultivation is that cells have sensitivity to shear stress very much and the shear stress created by aeration and mixing effects the growth rate of the cell negatively and decreases yield. In this study, physical parameters such as; the rate of the air fed into the reactor, the mixing type, the reduction of the hydrodynamic stress by CMC addition, the effect of the cell size on the cell production and the flocculation speed of the culture, were investigated.

  1. Information spreading dynamics in hypernetworks

    NASA Astrophysics Data System (ADS)

    Suo, Qi; Guo, Jin-Li; Shen, Ai-Zhong

    2018-04-01

    Contact pattern and spreading strategy fundamentally influence the spread of information. Current mathematical methods largely assume that contacts between individuals are fixed by networks. In fact, individuals are affected by all his/her neighbors in different social relationships. Here, we develop a mathematical approach to depict the information spreading process in hypernetworks. Each individual is viewed as a node, and each social relationship containing the individual is viewed as a hyperedge. Based on SIS epidemic model, we construct two spreading models. One model is based on global transmission, corresponding to RP strategy. The other is based on local transmission, corresponding to CP strategy. These models can degenerate into complex network models with a special parameter. Thus hypernetwork models extend the traditional models and are more realistic. Further, we discuss the impact of parameters including structure parameters of hypernetwork, spreading rate, recovering rate as well as information seed on the models. Propagation time and density of informed nodes can reveal the overall trend of information dissemination. Comparing these two models, we find out that there is no spreading threshold in RP, while there exists a spreading threshold in CP. The RP strategy induces a broader and faster information spreading process under the same parameters.

  2. High-Throughput Platform for Synthesis of Melamine-Formaldehyde Microcapsules.

    PubMed

    Çakir, Seda; Bauters, Erwin; Rivero, Guadalupe; Parasote, Tom; Paul, Johan; Du Prez, Filip E

    2017-07-10

    The synthesis of microcapsules via in situ polymerization is a labor-intensive and time-consuming process, where many composition and process factors affect the microcapsule formation and its morphology. Herein, we report a novel combinatorial technique for the preparation of melamine-formaldehyde microcapsules, using a custom-made and automated high-throughput platform (HTP). After performing validation experiments for ensuring the accuracy and reproducibility of the novel platform, a design of experiment study was performed. The influence of different encapsulation parameters was investigated, such as the effect of the surfactant, surfactant type, surfactant concentration and core/shell ratio. As a result, this HTP-platform is suitable to be used for the synthesis of different types of microcapsules in an automated and controlled way, allowing the screening of different reaction parameters in a shorter time compared to the manual synthetic techniques.

  3. Determination of injection molding process windows for optical lenses using response surface methodology.

    PubMed

    Tsai, Kuo-Ming; Wang, He-Yi

    2014-08-20

    This study focuses on injection molding process window determination for obtaining optimal imaging optical properties, astigmatism, coma, and spherical aberration using plastic lenses. The Taguchi experimental method was first used to identify the optimized combination of parameters and significant factors affecting the imaging optical properties of the lens. Full factorial experiments were then implemented based on the significant factors to build the response surface models. The injection molding process windows for lenses with optimized optical properties were determined based on the surface models, and confirmation experiments were performed to verify their validity. The results indicated that the significant factors affecting the optical properties of lenses are mold temperature, melt temperature, and cooling time. According to experimental data for the significant factors, the oblique ovals for different optical properties on the injection molding process windows based on melt temperature and cooling time can be obtained using the curve fitting approach. The confirmation experiments revealed that the average errors for astigmatism, coma, and spherical aberration are 3.44%, 5.62%, and 5.69%, respectively. The results indicated that the process windows proposed are highly reliable.

  4. Cognitive switching processes in young people with attention-deficit/hyperactivity disorder.

    PubMed

    Oades, Robert D; Christiansen, Hanna

    2008-01-01

    Patients with attention-deficit/hyperactivity disorder (ADHD) can be slow at switching between stimuli, or between sets of stimuli to control behaviour appropriate to changing situations. We examined clinical and experimental parameters that may influence the speed of such processes measured in the trail-making (TMT) and switch-tasks in cases with ADHD combined type, their non-affected siblings and unrelated healthy controls. The latency for completion of the trail-making task controlling for psychomotor processing (TMT-B-A) was longer for ADHD cases, and correlated with Conners' ratings of symptom severity across all subjects. The effect decreased with age. Switch-task responses to questions of "Which number?" and "How many?" between sets of 1/111 or 3/333 elicited differential increases in latency with condition that affected all groups. But there was evidence for increased symptom-related intra-individual variability among the ADHD cases, and across all subjects. Young siblings showed familiality for some measures of TMT and switch-task performance but these were modest. The potential influences of moderator variables on the efficiency of processing stimulus change rather than the speed of processing are discussed.

  5. High-speed imaging of the transient ice accretion process on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Waldman, Rye; Hu, Hui

    2014-11-01

    Ice accretion on aircraft wings poses a performance and safety threat as aircraft encounter supercooled droplets suspended in the cloud layer. The details of the ice accretion depend on the atmospheric conditions and the fight parameters. We present the measurement results of the experiments conducted in the Iowa State icing wind tunnel on a NACA 0012 airfoil to study the transient ice accretion process under varying icing conditions. The icing process on the wing consists of a complex interaction of water deposition, surface water transport, and freezing. The aerodynamics affects the water deposition, the heat and mass transport, and ice accumulation; meanwhile, the accumulating ice also affects the aerodynamics. High-speed video of the unsteady icing accretion process was acquired under controlled environmental conditions to quantitatively measure the transient water run back, rivulet formation, and accumulated ice growth, and the experiments show how varying the environmental conditions modifies the ice accretion process. Funding support from the Iowa Energy Center with Grant No. 14-008-OG and National Science Foundation (NSF) with Grant No. CBET-1064196 and CBET-1438099 is gratefully acknowledged.

  6. The remote supervisory and controlling experiment system of traditional Chinese medicine production based on Fieldbus

    NASA Astrophysics Data System (ADS)

    Zhan, Jinliang; Lu, Pei

    2006-11-01

    Since the quality of traditional Chinese medicine products are affected by raw material, machining and many other factors, it is difficult for traditional Chinese medicine production process especially the extracting process to ensure the steady and homogeneous quality. At the same time, there exist some quality control blind spots due to lacking on-line quality detection means. But if infrared spectrum analysis technology was used in traditional Chinese medicine production process on the basis of off-line analysis to real-time detect the quality of semi-manufactured goods and to be assisted by advanced automatic control technique, the steady and homogeneous quality can be obtained. It can be seen that the on-line detection of extracting process plays an important role in the development of Chinese patent medicines industry. In this paper, the design and implement of a traditional Chinese medicine extracting process monitoring experiment system which is based on PROFIBUS-DP field bus, OPC, and Internet technology is introduced. The system integrates intelligence node which gathering data, superior sub-system which achieving figure configuration and remote supervisory, during the process of traditional Chinese medicine production, monitors the temperature parameter, pressure parameter, quality parameter etc. And it can be controlled by the remote nodes in the VPN (Visual Private Network). Experiment and application do have proved that the system can reach the anticipation effect fully, and with the merits of operational stability, real-time, reliable, convenient and simple manipulation and so on.

  7. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-03-01

    A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.

  8. Study on the surface constitute properties of high-speed end milling aluminum alloy

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoming; Li, Hongwei; Yumeng, Ma

    2017-09-01

    The physical and mechanical properties of the metal surface will change after the metal cutting processing. The comprehensive study of the influence of machining parameters on surface constitute properties are necessary. A high-speed milling experiment by means of orthogonal method with four factors was conducted for aluminum alloy7050-T7451. The surface constitutive properties of the Al-Alloy surface were measured using SSM-B4000TM stress-strain microprobe system. Based on all the load-depth curves obtained, the characteristics parameters such as strain hardening exponent n and yield strength σy of the milling surface are calculated. The effect of cutting speed, feed rate, and width and depth of cut on n and σy was investigated using the ANOVA techniques. The affecting degree of milling parameters on n and σy was v>fz> ap < ae. The influence of milling parameters on n and σ y was described and discussed.

  9. Survey of EBW Mode-Conversion Characteristics for Various Boundary Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H.; Maekawa, T.; Igami, H.

    2005-09-26

    A survey of linear mode-conversion characteristics between external transverse electromagnetic (TEM) waves and electron Bernstein waves (EBW) for various plasma and wave parameters has been presented. It is shown that if the wave propagation angle and polarization are adjusted appropriately for each individual case of the plasma parameters, efficient mode conversion occur for wide range of plasma parameters where the conventional 'XB' and 'OXB' scheme cannot cover. It is confirmed that the plasma parameters just at the upper hybrid resonance (UHR) layer strongly affect the mode conversion process and the influence of the plasma profiles distant from the UHR layermore » is not so much. The results of this survey is useful enough to examine wave injection/detection condition for efficient ECH/ECCD or measurement of emissive TEM waves for each individual experimental condition of overdense plasmas.« less

  10. Parametric optimisation and microstructural analysis on high power Yb-fibre laser welding of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Chen, L.; Davies, C. M.; Dear, J. P.

    2016-11-01

    In this work thin sheets of Ti-6Al-4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti-6Al-4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.

  11. A meta-analysis of the mechanical properties of ice-templated ceramics and metals

    PubMed Central

    Deville, Sylvain; Meille, Sylvain; Seuba, Jordi

    2015-01-01

    Ice templating, also known as freeze casting, is a popular shaping route for macroporous materials. Over the past 15 years, it has been widely applied to various classes of materials, and in particular ceramics. Many formulation and process parameters, often interdependent, affect the outcome. It is thus difficult to understand the various relationships between these parameters from isolated studies where only a few of these parameters have been investigated. We report here the results of a meta analysis of the structural and mechanical properties of ice templated materials from an exhaustive collection of records. We use these results to identify which parameters are the most critical to control the structure and properties, and to derive guidelines for optimizing the mechanical response of ice templated materials. We hope these results will be a helpful guide to anyone interested in such materials. PMID:27877817

  12. A meta-analysis of the mechanical properties of ice-templated ceramics and metals

    NASA Astrophysics Data System (ADS)

    Deville, Sylvain; Meille, Sylvain; Seuba, Jordi

    2015-08-01

    Ice templating, also known as freeze casting, is a popular shaping route for macroporous materials. Over the past 15 years, it has been widely applied to various classes of materials, and in particular ceramics. Many formulation and process parameters, often interdependent, affect the outcome. It is thus difficult to understand the various relationships between these parameters from isolated studies where only a few of these parameters have been investigated. We report here the results of a meta analysis of the structural and mechanical properties of ice templated materials from an exhaustive collection of records. We use these results to identify which parameters are the most critical to control the structure and properties, and to derive guidelines for optimizing the mechanical response of ice templated materials. We hope these results will be a helpful guide to anyone interested in such materials.

  13. Study of the Production of a Metallic Coating on Natural Fiber Composite Through the Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Astarita, Antonello; Boccarusso, Luca; Durante, Massimo; Viscusi, Antonio; Sansone, Raffaele; Carrino, Luigi

    2018-02-01

    The deposition of a metallic coating on hemp-PLA (polylactic acid) laminate through the cold spray technique was studied in this paper. A number of different combinations of the deposition parameters were tested to investigate the feasibility of the process. The feasibility of the process was proved when processing conditions are properly set. The bonding mechanism between the substrate and the first layer of particles was studied through scanning electron microscope observations, and it was found that the polymeric matrix experiences a huge plastic deformation to accommodate the impinging particles; conversely a different mechanism was observed when metallic powders impact against a previously deposited metallic layer. The difference between the bonding mechanism and the growth of the coating was also highlighted. Depending on the spraying parameters, four different processing conditions were highlighted and discussed, and as a result the processing window was defined. The mechanical properties of the composite panel before and after the deposition were also investigated. The experiments showed that when properly carried out, the deposition process does not affect the strength of the panel; moreover, no improvements were observed because the contribution of the coating is negligible with respect to one of the reinforcement fibers.

  14. Process Evaluation of AISI 4340 Steel Manufactured by Laser Powder Bed Fusion

    NASA Astrophysics Data System (ADS)

    Jelis, Elias; Hespos, Michael R.; Ravindra, Nuggehalli M.

    2018-01-01

    Laser powder bed fusion (L-PBF) involves the consolidation of metal powder, layer by layer, through laser melting and solidification. In this study, process parameters are optimized for AISI 4340 steel to produce dense and homogeneous structures. The optimized process parameters produce mechanical properties at the center of the build plate that are comparable to wrought in the vertical and horizontal orientations after heat treatment and machining. Four subsequent builds are filled with specimens to evaluate the mechanical behavior as a function of location and orientation. Variations in the mechanical properties are likely due to recoater blade interactions with the powder and uneven gas flow. The results obtained in this study are analyzed to assess the reliability and reproducibility of the process. A different build evaluates the performance of near-net-shaped tensile specimens angled 35°-90° from the build plate surface (horizontal). Ductility measurements and surface roughness vary significantly as a function of the build angle. In the stress-relieved and as-built conditions, the mechanical behavior of vertically oriented specimens exhibits somewhat lower and more variable ductility than horizontally oriented specimens. Therefore, several process variables affect the mechanical properties of parts produced by the L-PBF process.

  15. Effect of water volume based on water absorption and mixing time on physical properties of tapioca starch – wheat composite bread

    NASA Astrophysics Data System (ADS)

    Prameswari, I. K.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.

    2018-05-01

    Tapioca starch application in bread processing change water absorption level by the dough, while sufficient mixing time makes the optimal water absorption. This research aims to determine the effect of variations in water volume and mixing time on physical properties of tapioca starch – wheat composite bread and the best method for the composite bread processing. This research used Complete Randomized Factorial Design (CRFD) with two factors: variations of water volume (111,8 ml, 117,4 ml, 123 ml) and mixing time (16 minutes, 17 minutes 36 seconds, 19 minutes 12 seconds). The result showed that water volume significantly affected on dough volume, bread volume and specific volume, baking expansion, and crust thickness. Mixing time significantly affected on dough volume and specific volume, bread volume and specific volume, baking expansion, bread height, and crust thickness. While the combination of water volume and mixing time significantly affected for all physical properties parameters except crust thickness.

  16. Utilisation of chip thickness models in grinding

    NASA Astrophysics Data System (ADS)

    Singleton, Roger

    Grinding is now a well established process utilised for both stock removal and finish applications. Although significant research is performed in this field, grinding still experiences problems with burn and high forces which can lead to poor quality components and damage to equipment. This generally occurs in grinding when the process deviates from its safe working conditions. In milling, chip thickness parameters are utilised to predict and maintain process outputs leading to improved control of the process. This thesis looks to further the knowledge of the relationship between chip thickness and the grinding process outputs to provide an increased predictive and maintenance modelling capability. Machining trials were undertaken using different chip thickness parameters to understand how these affect the process outputs. The chip thickness parameters were maintained at different grinding wheel diameters for a constant productivity process to determine the impact of chip thickness at a constant material removal rate.. Additional testing using a modified pin on disc test rig was performed to provide further information on process variables. The different chip thickness parameters provide control of different process outputs in the grinding process. These relationships can be described using contact layer theory and heat flux partitioning. The contact layer is defined as the immediate layer beneath the contact arc at the wheel workpiece interface. The size of the layer governs the force experienced during the process. The rate of contact layer removal directly impacts the net power required from the system. It was also found that the specific grinding energy of a process is more dependent on the productivity of a grinding process rather than the value of chip thickness. Changes in chip thickness at constant material removal rate result in microscale changes in the rate of contact layer removal when compared to changes in process productivity. This is a significant piece of information in relation to specific grinding energy where conventional theory states it is primarily dependent on chip thickness..

  17. Effects of Deposition Parameters on Thin Film Properties of Silicon-Based Electronic Materials Deposited by Remote Plasma-Enhanced Chemical-Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Theil, Jeremy Alfred

    The motivation of this thesis is to discuss the major issues of remote plasma enhanced chemical vapor deposition (remote PECVD) that affect the properties Si-based thin films. In order to define the issues required for process optimization, the behavior of remote PECVD process must be understood. The remote PECVD process is defined as having four segments: (1) plasma generation, (2) excited species extraction, (3) excited species/downstream gas mixing, and (4) surface reaction. The double Langmuir probe technique is employed to examine plasma parameters under 13.56 MHz and 2.54 GHz excitation. Optical emission spectroscopy is used to determine changes in the excited states of radiating species in the plasma afterglow. Mass spectrometry is used to determine the excitation and consumption of process gases within the reactor during film growth. Various analytical techniques such as infrared absorption spectroscopy, (ir), high resolution transmission electron microscopy, (HRTEM), and reflected high energy electron diffraction, (RHEED), are used to ascertain film properties. The results of the Langmuir probe show that plasma coupling is frequency dependent and that the capacitive coupling mode is characterized by orders of magnitude higher electron densities in the reactor than inductive coupling. These differences can be manifested in the degree to which a hydrogenated amorphous silicon, a-Si:H, component co-deposition reaction affects film stoichiometry. Mass spectrometry shows that there is an additional excitation source in the downstream glow. In addition the growth of microcrystalline silicon, muc-Si, is correlated with the decrease in the production of disilane and heavier Si-containing species. Chloronium, H_2 Cl^{+}, a super acid ion is identified for the first time in a CVD reactor. It forms from plasma fragmentation of SiH_2 Cl_2, and H_2 . Addition of impurity gases was shown not to affect the electron temperature of the plasma. By products of deposition reactions can affect film properties by post -deposition reactions with the film. In the case of SiO _2 film growth, residual H _2O is shown to create OH groups within the film by reacting with distorted Si-O-Si bonding groups.

  18. Damage modeling and statistical analysis of optics damage performance in MJ-class laser systems.

    PubMed

    Liao, Zhi M; Raymond, B; Gaylord, J; Fallejo, R; Bude, J; Wegner, P

    2014-11-17

    Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance.

  19. Studies on Thorium Adsorption Characteristics upon Activated Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gado, M, E-mail: parq28@yahoo.com; Zaki, S

    2016-01-01

    The titanium hydroxide prepared from Rosetta ilmenite concentrate has been applied for Th (IV) adsorption from its acid aqueous solutions. The prepared hydroxide is first characterized by both Fourier transform infrared (FT-IR) spectrum and thermogravimetric analysis. The relevant factors affecting the adsorption process have been studied. The obtained equilibrium data fits well with the Langmuir isotherm rather than Freundlich isotherm, while the adsorption kinetic data follow the pseudo-second order model. The different thermodynamic parameters have also been calculated and indicate that the adsorption process is spontaneous.

  20. Copper vapor laser precision processing

    NASA Astrophysics Data System (ADS)

    Nikonchuk, Michail O.

    1991-05-01

    Copper vapor laser (CVL) was designed on the basis master oscillator (MO) - spatial filter - amplifier (AMP) system which is placed in thermostable volume. Processing material is moved by means of CNC system GPM-AP-400 with +/- 5 micrometers accuracy. Several cutting parameters are considered which define the quality and productivity of vaporization cutting: efficiency, cutwidth, height of upper and lower burr, roughness, laser and heat affected zones. Estimates are made for some metals with thickness 0.02 - 0.3 mm and cutwidth 0.01 - 0.03 mm. The examples of workpieces produced by CVL are presented.

  1. Using continuous underway isotope measurements to map water residence time in hydrodynamically complex tidal environments

    USGS Publications Warehouse

    Downing, Bryan D.; Bergamaschi, Brian; Kendall, Carol; Kraus, Tamara; Dennis, Kate J.; Carter, Jeffery A.; von Dessonneck, Travis

    2016-01-01

    Stable isotopes present in water (δ2H, δ18O) have been used extensively to evaluate hydrological processes on the basis of parameters such as evaporation, precipitation, mixing, and residence time. In estuarine aquatic habitats, residence time (τ) is a major driver of biogeochemical processes, affecting trophic subsidies and conditions in fish-spawning habitats. But τ is highly variable in estuaries, owing to constant changes in river inflows, tides, wind, and water height, all of which combine to affect τ in unpredictable ways. It recently became feasible to measure δ2H and δ18O continuously, at a high sampling frequency (1 Hz), using diffusion sample introduction into a cavity ring-down spectrometer. To better understand the relationship of τ to biogeochemical processes in a dynamic estuarine system, we continuously measured δ2H and δ18O, nitrate and water quality parameters, on board a small, high-speed boat (5 to >10 m s–1) fitted with a hull-mounted underwater intake. We then calculated τ as is classically done using the isotopic signals of evaporation. The result was high-resolution (∼10 m) maps of residence time, nitrate, and other parameters that showed strong spatial gradients corresponding to geomorphic attributes of the different channels in the area. The mean measured value of τ was 30.5 d, with a range of 0–50 d. We used the measured spatial gradients in both τ and nitrate to calculate whole-ecosystem uptake rates, and the values ranged from 0.006 to 0.039 d–1. The capability to measure residence time over single tidal cycles in estuaries will be useful for evaluating and further understanding drivers of phytoplankton abundance, resolving differences attributable to mixing and water sources, explicitly calculating biogeochemical rates, and exploring the complex linkages among time-dependent biogeochemical processes in hydrodynamically complex environments such as estuaries.

  2. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage.

    PubMed

    Lobo, Elena; Dalling, James W

    2014-03-07

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.

  3. Numerical studies of convective heat transfer in an inclined semiannular enclosure

    NASA Technical Reports Server (NTRS)

    Wang, Lin-Wen; Yung, Chain-Nan; Chai, An-Ti; Rashidnia, Nasser

    1989-01-01

    Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.

  4. Investigation of Springback Associated with Composite Material Component Fabrication (MSFC Center Director's Discretionary Fund Final Report, Project 94-09)

    NASA Technical Reports Server (NTRS)

    Benzie, M. A.

    1998-01-01

    The objective of this research project was to examine processing and design parameters in the fabrication of composite components to obtain a better understanding and attempt to minimize springback associated with composite materials. To accomplish this, both processing and design parameters were included in a Taguchi-designed experiment. Composite angled panels were fabricated, by hand layup techniques, and the fabricated panels were inspected for springback effects. This experiment yielded several significant results. The confirmation experiment validated the reproducibility of the factorial effects, error recognized, and experiment as reliable. The material used in the design of tooling needs to be a major consideration when fabricating composite components, as expected. The factors dealing with resin flow, however, raise several potentially serious material and design questions. These questions must be dealt with up front in order to minimize springback: viscosity of the resin, vacuum bagging of the part for cure, and the curing method selected. These factors directly affect design, material selection, and processing methods.

  5. Mass production of bacterial communities adapted to the degradation of volatile organic compounds (TEX).

    PubMed

    Lapertot, Miléna; Seignez, Chantal; Ebrahimi, Sirous; Delorme, Sandrine; Peringer, Paul

    2007-06-01

    This study focuses on the mass cultivation of bacteria adapted to the degradation of a mixture composed of toluene, ethylbenzene, o-, m- and p-xylenes (TEX). For the cultivation process Substrate Pulse Batch (SPB) technique was adapted under well-automated conditions. The key parameters to be monitored were handled by LabVIEW software including, temperature, pH, dissolved oxygen and turbidity. Other parameters, such as biomass, ammonium or residual substrate concentrations needed offline measurements. SPB technique has been successfully tested experimentally on TEX. The overall behavior of the mixed bacterial population was observed and discussed along the cultivation process. Carbon and nitrogen limitations were shown to affect the integrity of the bacterial cells as well as their production of exopolymeric substances (EPS). Average productivity and yield values successfully reached the industrial specifications, which were 0.45 kg(DW)m(-3) d(-1) and 0.59 g(DW)g (C) (-1) , respectively. Accuracy and reproducibility of the obtained results present the controlled SPB process as a feasible technique.

  6. Characterization of Developer Application Methods Used in Fluorescent Penetrant Inspection

    NASA Astrophysics Data System (ADS)

    Brasche, L. J. H.; Lopez, R.; Eisenmann, D.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is the most widely used inspection method for aviation components seeing use for production as well as an inservice inspection applications. FPI is a multiple step process requiring attention to the process parameters for each step in order to enable a successful inspection. A multiyear program is underway to evaluate the most important factors affecting the performance of FPI, to determine whether existing industry specifications adequately address control of the process parameters, and to provide the needed engineering data to the public domain. The final step prior to the inspection is the application of developer with typical aviation inspections involving the use of dry powder (form d) usually applied using either a pressure wand or dust storm chamber. Results from several typical dust storm chambers and wand applications have shown less than optimal performance. Measurements of indication brightness and recording of the UVA image, and in some cases, formal probability of detection (POD) studies were used to assess the developer application methods. Key conclusions and initial recommendations are provided.

  7. The effect of nozzle-exit-channel shape on resultant fiber diameter in melt-electrospinning

    NASA Astrophysics Data System (ADS)

    Esmaeilirad, Ahmad; Ko, Junghyuk; Rukosuyev, Maxym V.; Lee, Jason K.; Lee, Patrick C.; Jun, Martin B. G.

    2017-01-01

    In recent decades, electrospinning using a molten poly (ε-caprolactone) resin has gained attention for creating fibrous tissue scaffolds. The topography and diameter control of such electrospun microfibers is an important issue for their different applications in tissue engineering. Charge density, initial nozzle-exit-channel cross-sectional area, nozzle to collector distance, viscosity, and processing temperature are the most important input parameters that affect the final electrospun fiber diameters. In this paper we will show that the effect of nozzle-exit-channel shape is as important as the other effective parameters in a resultant fiber diameter. However, to the best of our knowledge, the effect of nozzle-exit-channel shapes on a resultant fiber diameter have not been studied before. Comparing rectangular and circular nozzles with almost the same exit-channel cross-sectional areas in a similar processing condition showed that using a rectangular nozzle resulted in decreasing final fiber diameter up to 50%. Furthermore, the effect of processing temperature on the final fiber topography was investigated.

  8. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    NASA Astrophysics Data System (ADS)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  9. Research on the Mean Logistic Delay Time of the Development Phrass

    NASA Astrophysics Data System (ADS)

    Na, Hou; Yi, Li; Wang, Yi-Gang; Liu, Jun-jie; Bo, Zhang; Lv, Xue-Zhi

    MIDT is a key parameter affecting operational availability though equipment designing, operation and support management. In operation process, how to strengthen the support management, layout rationally supports resource, provide support resource of the equipment maintenance, in order to avoid or reduce support; ensure MLDT satisfied to Ao's requests. It's an urgently solved question that how to assort with the RMS of equipment.

  10. Mechanochemical Preparation of Organic Nitro Compounds

    DTIC Science & Technology

    selectivity were found to depend on the ratios of the reactants and the catalyst. A parametric study addressed the effects of milling time, temperature ...Aromatic compounds such as toluene are commercially nitrated using a combination of nitric acid with other strong acids. This process relies on the...was synthesized by milling toluene with sodium nitrate and molybdenum trioxide as a catalyst. Several parameters affecting the desired product yield and

  11. The effects of habitat, climate, and Barred Owls on long-term demography of Northern Spotted Owls

    Treesearch

    Katie M. Dugger; Eric D. Forsman; Alan B. Franklin; Raymond J. Davis; Gary C. White; Carl J. Schwarz; Kenneth P. Burnham; James D. Nichols; James E. Hines; Charles B. Yackulic; Paul F. Doherty; Larissa Bailey; Darren A. Clark; Steven H. Ackers; Lawrence S. Andrews; Benjamin Augustine; Brian L. Biswell; Jennifer Blakesley; Peter C. Carlson; Matthew J. Clement; Lowell V. Diller; Elizabeth M. Glenn; Adam Green; Scott A. Gremel; Dale R. Herter; J. Mark Higley; Jeremy Hobson; Rob B. Horn; Kathryn P. Huyvaert; Christopher McCafferty; Trent McDonald; Kevin McDonnell; Gail S. Olson; Janice A. Reid; Jeremy Rockweit; Viviana Ruiz; Jessica Saenz; Stan G. Sovern

    2016-01-01

    Estimates of species’ vital rates and an understanding of the factors affecting those parameters over time and space can provide crucial information for management and conservation. We used mark–recapture, reproductive output, and territory occupancy data collected during 1985–2013 to evaluate population processes of Northern Spotted Owls (Strix occidentalis...

  12. Dimensional processing of composite materials by picosecond pulsed ytterbium fiber laser

    NASA Astrophysics Data System (ADS)

    Kotov, S. A.

    2017-12-01

    In this paper, an experimental study of laser dimensional processing of thermoset carbon fiber reinforced plastics with a thickness of 2 and 3 mm was performed. In the process of work test rig setup based on picosecond pulsed fiber laser with 1.06 microns wavelength and 30 W average power was developed. Experimental tests were carried out at the maximum average power, with laser beam moved by a galvanometric mirrors system. Cutting tests were executed with different scanning velocity, using different laser modes, number of repetitions, hatching distance and focal plane position without process gas. As a result of the research recommendations for the selection processing mode parameters, providing minimal heat affected zone, good kerf geometry and high cutting speed were produced.

  13. Fluorescent Penetrant INSPECTION—CLEANING Study Update

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.

    2009-03-01

    Fluorescent penetrant inspection (FPI) is widely used in the aviation industry and other industries for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. There is variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. Before the FPI process begins, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. From the first three phases of this project it has been found that a hot water rinse can aid in the detection process when using this nondestructive method.

  14. Parametric Study and Multi-Criteria Optimization in Laser Cladding by a High Power Direct Diode Laser

    NASA Astrophysics Data System (ADS)

    Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    In laser cladding, the performance of the deposited layers subjected to severe working conditions (e.g., wear and high temperature conditions) depends on the mechanical properties, the metallurgical bond to the substrate, and the percentage of dilution. The clad geometry and mechanical characteristics of the deposited layer are influenced greatly by the type of laser used as a heat source and process parameters used. Nowadays, the quality of fabricated coating by laser cladding and the efficiency of this process has improved thanks to the development of high-power diode lasers, with power up to 10 kW. In this study, the laser cladding by a high power direct diode laser (HPDDL) as a new heat source in laser cladding was investigated in detail. The high alloy tool steel material (AISI H13) as feedstock was deposited on mild steel (ASTM A36) by a HPDDL up to 8kW laser and with new design lateral feeding nozzle. The influences of the main process parameters (laser power, powder flow rate, and scanning speed) on the clad-bead geometry (specifically layer height and depth of the heat affected zone), and clad microhardness were studied. Multiple regression analysis was used to develop the analytical models for desired output properties according to input process parameters. The Analysis of Variance was applied to check the accuracy of the developed models. The response surface methodology (RSM) and desirability function were used for multi-criteria optimization of the cladding process. In order to investigate the effect of process parameters on the molten pool evolution, in-situ monitoring was utilized. Finally, the validation results for optimized process conditions show the predicted results were in a good agreement with measured values. The multi-criteria optimization makes it possible to acquire an efficient process for a combination of clad geometrical and mechanical characteristics control.

  15. Investigation into Generation of Micro Features by Localised Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Debnath, Subhrajit; Laskar, Hanimur Rahaman; Bhattacharyya, B.

    2017-11-01

    With the fast advancement of technology, localised electrochemical deposition (LECD) is becoming very advantageous in generating high aspect ratio micro features to meet the steep demand in modern precision industries of the present world. Except many other advantages, this technology is highly uncomplicated and economical for fabricating metal micro-parts with in micron ranges. In the present study, copper micro-columns have been fabricated utilizing LECD process. Different process parameters such as voltage, frequency, duty ratio and electrolyte concentration, which affect the deposition performance have been identified and their effects on deposition performances such as deposition rate, height and diameter of the micro-columns have been experimentally investigated. Taguchi's methodology has been used to study the effects as well as to obtain the optimum values of process parameters so that localised deposition with best performance can be achieved. Moreover, the generated micro-columns were carefully observed under optical and scanning electron microscope from where the surface quality of the deposited micro-columns has been studied qualitatively. Also, an array of copper micro-columns has been fabricated on stainless steel (SS-304) substrate for further exploration of LECD process capability.

  16. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms.

    PubMed

    Guo, Chaohua; Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs' production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs.

  17. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms

    PubMed Central

    Wei, Mingzhen; Liu, Hong

    2018-01-01

    Development of unconventional shale gas reservoirs (SGRs) has been boosted by the advancements in two key technologies: horizontal drilling and multi-stage hydraulic fracturing. A large number of multi-stage fractured horizontal wells (MsFHW) have been drilled to enhance reservoir production performance. Gas flow in SGRs is a multi-mechanism process, including: desorption, diffusion, and non-Darcy flow. The productivity of the SGRs with MsFHW is influenced by both reservoir conditions and hydraulic fracture properties. However, rare simulation work has been conducted for multi-stage hydraulic fractured SGRs. Most of them use well testing methods, which have too many unrealistic simplifications and assumptions. Also, no systematical work has been conducted considering all reasonable transport mechanisms. And there are very few works on sensitivity studies of uncertain parameters using real parameter ranges. Hence, a detailed and systematic study of reservoir simulation with MsFHW is still necessary. In this paper, a dual porosity model was constructed to estimate the effect of parameters on shale gas production with MsFHW. The simulation model was verified with the available field data from the Barnett Shale. The following mechanisms have been considered in this model: viscous flow, slip flow, Knudsen diffusion, and gas desorption. Langmuir isotherm was used to simulate the gas desorption process. Sensitivity analysis on SGRs’ production performance with MsFHW has been conducted. Parameters influencing shale gas production were classified into two categories: reservoir parameters including matrix permeability, matrix porosity; and hydraulic fracture parameters including hydraulic fracture spacing, and fracture half-length. Typical ranges of matrix parameters have been reviewed. Sensitivity analysis have been conducted to analyze the effect of the above factors on the production performance of SGRs. Through comparison, it can be found that hydraulic fracture parameters are more sensitive compared with reservoir parameters. And reservoirs parameters mainly affect the later production period. However, the hydraulic fracture parameters have a significant effect on gas production from the early period. The results of this study can be used to improve the efficiency of history matching process. Also, it can contribute to the design and optimization of hydraulic fracture treatment design in unconventional SGRs. PMID:29320489

  18. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  19. Correlation between surface topography and lubricant migration in steel sheets for the autobody manufacturing process

    NASA Astrophysics Data System (ADS)

    Benati, F.; Sacerdotti, F.; Griffiths, B. J.; Butler, C.; Karila, J. M.; Vermeulen, M.; Holtkamp, H.; Gatti, S.

    2002-05-01

    Material for the production of autobody panels is usually dispatched in the form of coils. Because of their weight, they tend to `compress' the lubricant applied for rust protection and some of it leaks from the coil. Those areas affected by lubricant starvation are known as `dry-spots' and are a cause of a number of product rejections during the subsequent forming operation. A test was deployed with the combined work of Ocas, CORUS IJmuiden and Renault that proved that surface topography controls, amongst other factors, affects lubricant migration. The test consists of compressing a stack of lubricated steel sheets at known pressure for a known time using different lubricants in different amounts. It was observed that, because of the `compression', the lubricant tends to migrate to the side of the sheet, and its migration was quantified using a Fischer Betascope MMS module. Analysis consisted of analysis of variance on several designs of experiments and subsequent correlation with surface topography 3D parameters. These experiments showed the importance of standard amplitude surface parameters and new closed area surface parameters to characterize lubricant migration under pressure.

  20. Sensitivity of viscosity Arrhenius parameters to polarity of liquids

    NASA Astrophysics Data System (ADS)

    Kacem, R. B. H.; Alzamel, N. O.; Ouerfelli, N.

    2017-09-01

    Several empirical and semi-empirical equations have been proposed in the literature to estimate the liquid viscosity upon temperature. In this context, this paper aims to study the effect of polarity of liquids on the modeling of the viscosity-temperature dependence, considering particularly the Arrhenius type equations. To achieve this purpose, the solvents are classified into three groups: nonpolar, borderline polar and polar solvents. Based on adequate statistical tests, we found that there is strong evidence that the polarity of solvents affects significantly the distribution of the Arrhenius-type equation parameters and consequently the modeling of the viscosity-temperature dependence. Thus, specific estimated values of parameters for each group of liquids are proposed in this paper. In addition, the comparison of the accuracy of approximation with and without classification of liquids, using the Wilcoxon signed-rank test, shows a significant discrepancy of the borderline polar solvents. For that, we suggested in this paper new specific coefficient values of the simplified Arrhenius-type equation for better estimation accuracy. This result is important given that the accuracy in the estimation of the viscosity-temperature dependence may affect considerably the design and the optimization of several industrial processes.

  1. Warfarin affects acute inflammatory response induced by subcutaneous polyvinyl sponge implantation in rats.

    PubMed

    Mirkov, Ivana; Popov Aleksandrov, Aleksandra; Demenesku, Jelena; Ninkov, Marina; Mileusnic, Dina; Kataranovski, Dragan; Kataranovski, Milena

    2017-09-01

    Warfarin (WF) is an anticoagulant which also affects physiological processes other than hemostasis. Our previous investigations showed the effect of WF which gained access to the organism via skin on resting peripheral blood granulocytes. Based on these data, the aim of the present study was to examine whether WF could modulate the inflammatory processes as well. To this aim the effect of WF on the inflammatory response induced by subcutaneous sponge implantation in rats was examined. Warfarin-soaked polyvinyl sponges (WF-sponges) were implanted subcutaneously and cell infiltration into sponges, the levels of nitric oxide (NO) and inflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) production by sponge cells were measured as parameters of inflammation. T cell infiltration and cytokine interferon-γ (IFN-γ), interleukin-17 (IL-17) and interleukin-10 (IL-10) were measured at day 7 post implantation. Warfarin exerted both stimulatory and suppressive effects depending on the parameter examined. Flow cytometry of cells recovered from sponges showed higher numbers of granulocytes (HIS48 + cells) at days 1 and 3 post implantation and CD11b + cells at day 1 compared to control sponges. Cells from WF-sponges had an increased NO production (Griess reaction) at days 1 and 7. In contrast, lower levels of TNF (measured by ELISA) production by cells recovered from WF-soaked sponges were found in the early (day one) phase of reaction with unchanged levels at other time points. While IL-6 production by cells recovered from WF-soaked sponges was decreased at day 1, it was increased at day 7. Higher T cell numbers were noted in WF sponges at day 7 post implantation, and recovered cells produced more IFN-γ and IL-17, while IL-10 production remained unchanged. Warfarin affects some of the parameters of inflammatory reaction induced by subcutaneous polyvinyl sponge implantation. Differential (both stimulatory as well as inhibitory) effects of WF on inflammatory response to sponge implants might affect the course and/or duration of this reaction.

  2. Not Just Bad Actions: Affective Concern for Bad Outcomes Contributes to Moral Condemnation of Harm in Moral Dilemmas.

    PubMed

    Reynolds, Caleb J; Conway, Paul

    2018-02-01

    Moral dilemmas typically entail directly causing harm (said to violate deontological ethics) to maximize overall outcomes (said to uphold utilitarian ethics). The dual process model suggests harm-rejection judgments derive from affective reactions to harm, whereas harm-acceptance judgments derive from cognitive evaluations of outcomes. Recently, Miller, Hannikainen, and Cushman (2014) argued that harm-rejection judgments primarily reflect self-focused-rather than other-focused-emotional responses, because only action aversion (self-focused reactions to the thought of causing harm), not outcome aversion (other-focused reactions to witnessing suffering), consistently predicted dilemma responses. However, they assessed only conventional relative dilemma judgments that treat harm-rejection and outcome-maximization responses as diametric opposites. Instead, we employed process dissociation to assess these response inclinations independently. In two studies (N = 558), we replicated Miller and colleagues' findings for conventional relative judgments, but process dissociation revealed that outcome aversion positively predicted both deontological and utilitarian inclinations-which canceled out for relative judgments. Additionally, individual differences associated with affective processing-psychopathy and empathic concern-correlated with the deontology but not utilitarian parameter. Together, these findings suggest that genuine other-oriented moralized concern for others' well-being contribute to both utilitarian and deontological response tendencies, but these tendencies nonetheless draw upon different psychological processes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Model Sensitivity and Use of the Comparative Finite Element Method in Mammalian Jaw Mechanics: Mandible Performance in the Gray Wolf

    PubMed Central

    Tseng, Zhijie Jack; Mcnitt-Gray, Jill L.; Flashner, Henryk; Wang, Xiaoming; Enciso, Reyes

    2011-01-01

    Finite Element Analysis (FEA) is a powerful tool gaining use in studies of biological form and function. This method is particularly conducive to studies of extinct and fossilized organisms, as models can be assigned properties that approximate living tissues. In disciplines where model validation is difficult or impossible, the choice of model parameters and their effects on the results become increasingly important, especially in comparing outputs to infer function. To evaluate the extent to which performance measures are affected by initial model input, we tested the sensitivity of bite force, strain energy, and stress to changes in seven parameters that are required in testing craniodental function with FEA. Simulations were performed on FE models of a Gray Wolf (Canis lupus) mandible. Results showed that unilateral bite force outputs are least affected by the relative ratios of the balancing and working muscles, but only ratios above 0.5 provided balancing-working side joint reaction force relationships that are consistent with experimental data. The constraints modeled at the bite point had the greatest effect on bite force output, but the most appropriate constraint may depend on the study question. Strain energy is least affected by variation in bite point constraint, but larger variations in strain energy values are observed in models with different number of tetrahedral elements, masticatory muscle ratios and muscle subgroups present, and number of material properties. These findings indicate that performance measures are differentially affected by variation in initial model parameters. In the absence of validated input values, FE models can nevertheless provide robust comparisons if these parameters are standardized within a given study to minimize variation that arise during the model-building process. Sensitivity tests incorporated into the study design not only aid in the interpretation of simulation results, but can also provide additional insights on form and function. PMID:21559475

  4. Effects of model complexity and priors on estimation using sequential importance sampling/resampling for species conservation

    USGS Publications Warehouse

    Dunham, Kylee; Grand, James B.

    2016-01-01

    We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.

  5. Commercialization of the Conversion of Bagasse to Ethanol. Summary quarterly report for the period January-September 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-02-01

    These studies were intended to further refine sugar yield parameters which effect sugar yield such as feedstock particle size, debris, acid soak time, temperature, dewatering, and pretreatment conditions (such as temperature, reaction time, percentage solids concentration, acid concentration), liquid-solids separation, and detoxification parameters (such as time temperature and mixing of detoxification ingredients). Validate and refine parameters, which affect ethanol yield such as detoxification conditions mentioned above, and to fermenter conditions such as temperature, pH adjustment, aeration, nutrients, and charging sequence. Materials of construction will be evaluated also. Evaluate stillage to determine clarification process and suitability for recycle; evaluate lignocellulosic cakemore » for thermal energy recovery to produce heat and electricity for the process; and Support Studies at UF - Toxin Amelioration and Fermentation; TVA work will provide pre-hydroylsates for the evaluation of BCI proprietary methods of toxin amelioration. Pre-hydrolysates from batch studies will allow the determination of the range of allowable hydrolyze conditions that can be used to produce a fermentable sugar stream. This information is essential to guide selection of process parameters for refinement and validation in the continuous pretreatment reactor, and for overall process design. Additional work will be conducted at UFRFI to develop improved strains that are resistant to inhibitors. The authors are quite optimistic about the long-term prospects for this advancement having recently developed strains with a 25%--50% increase in ethanol production. The biocatalyst platform selected originally, genetically engineered Escherichia coli B, has proven to be quite robust and adaptable.« less

  6. Quality of dry-cured ham compared with quality of dry-cured shoulder.

    PubMed

    Reina, Raquel; Sánchez del Pulgar, José; Tovar, Jorge; López-Buesa, Pascual; García, Carmen

    2013-08-01

    The physicochemical and sensory properties of 30 dry-cured hams and 30 dry-cured shoulders were analyzed to determine the relationships between them. The variables used to characterize both products were: compositional parameters, instrumental texture, amino acid and fatty acid composition, and sensory profile. Despite being products from the same animal and composed mainly of fat, lean, and bone, their morphological differences determine the conditions of the processing time, which produced differences between products in most of the parameters evaluated. Dry-cured shoulders showed lower moisture content and greater instrumental hardness due to their morphology and muscular structure. Besides, these samples showed lower amino acid content according to the shorter ripening time. For the same reason, the dry-cured hams showed higher moisture content, lower instrumental hardness, and higher amino acid content. However, the differences in the muscular structure did not affect the sensory characteristics, which were more related with some compositional parameters, such as chloride, moisture, and amino acid content and with the length of the curing process. © 2013 Extremadura University.

  7. Aromatic hydrocarbons from the Middle Jurassic fossil wood of the Polish Jura

    NASA Astrophysics Data System (ADS)

    Smolarek, Justyna; Marynowski, Leszek

    2013-09-01

    Aromatic hydrocarbons are present in the fossil wood samples in relatively small amounts. In almost all of the tested samples the dominating aromatic hydrocarbon is perylene and its methyl and dimethyl derivatives. The most important biomarkers present in the aromatic fraction are dehydroabietane, siomonellite and retene, compounds characteristic for conifers. The distribution of discussed compounds is highly variable due to such early diagenetic processes affecting the wood as oxidation and the activity of microorganisms. MPI1 parameter values (methylphenanthrene index) for the majority of the samples are in the range of 0.1 to 0.5, which results in the highly variable values of Rc (converted value of vitrinite reflectance) ranging from 0.45 to 0.70%. Such values suggest that MPI1 parameter is not useful as maturity parameter in case of Middle Jurassic ore-bearing clays, even if measured strictly on terrestrial organic matter (OM). As a result of weathering processes (oxidation) the distribution of aromatic hydrocarbons changes. In the oxidized samples the amount of aromatic hydrocarbons, both polycyclic as well as aromatic biomarkers decreases.

  8. Colloids removal from water resources using natural coagulant: Acacia auriculiformis

    NASA Astrophysics Data System (ADS)

    Abdullah, M.; Roslan, A.; Kamarulzaman, M. F. H.; Erat, M. M.

    2017-09-01

    All waters, especially surface waters contain dissolved, suspended particles and/or inorganic matter, as well as several biological organisms, such as bacteria, algae or viruses. This material must be removed because it can affect the water quality that can cause turbidity and colour. The objective of this study is to develop water treatment process from Seri Alam (Johor, Malaysia) lake water resources by using natural coagulant Acacia auriculiformis pods through a jar test experiment. Jar test is designed to show the effectiveness of the water treatment. This process is a laboratory procedure that will simulate coagulation/flocculation with several parameters selected namely contact time, coagulant dosage and agitation speed. The most optimum percentage of colloids removal for each parameter is determined at 0.2 g, 90 min and 80 rpm. FESEM (Field-emission Scanning Electron Microscope) observed the small structures of final floc particles for optimum parameter in this study to show that the colloids coagulated the coagulant. All result showed that the Acacia auriculiformis pods can be a very efficient coagulant in removing colloids from water.

  9. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  10. Influence of Molecular Weight of Carriers and Processing Parameters on the Extrudability, Drug Release, and Stability of Fenofibrate Formulations Processed by Hot-Melt Extrusion.

    PubMed

    Alsulays, Bader B; Park, Jun-Bom; Alshehri, Sultan M; Morott, Joseph T; Alshahrani, Saad M; Tiwari, Roshan V; Alshetaili, Abdullah S; Majumdar, Soumyajit; Langley, Nigel; Kolter, Karl; Gryczke, Andreas; Repka, Michael A

    2015-10-01

    The objective of this study was to investigate the extrudability, drug release, and stability of fenofibrate (FF) formulations utilizing various hot-melt extrusion processing parameters and polyvinylpyrrolidone (PVP) polymers of various molecular weights. The different PVP grades selected for this study were Kollidon ® 12 PF (K12), Kollidon ® 30 (K30), and Kollidon ® 90 F (K90). FF was extruded with these polymers at three drug loadings (15%, 25%, and 35% w/w). Additionally, for FF combined with each of the successfully extruded PVP grades (K12 and K30), the effects of two levels of processing parameters for screw design, screw speed, and barrel temperature were assessed. It was found that the FF with (K90) was not extrudable up to 35% drug loading. With low drug loading, the polymer viscosity significantly influenced the release of FF. The crystallinity remaining was vital in the highest drug-loaded formulation dissolution profile, and the glass transition temperature of the polymer significantly affected its stability. Modifying the screw configuration resulted in more than 95% post-extrusion drug content of the FF-K30 formulations. In contrast to FF-K30 formulations, FF release and stability with K12 were significantly influenced by the extrusion temperature and screw speed.

  11. Porosity characterization of biodegradable porous poly (L-lactic acid) electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Valipouri, Afsaneh; Gharehaghaji, Ali Akbar; Alirezazadeh, Azam; Ravandi, Seyed Abdolkarim Hosseini

    2017-12-01

    Poly-L lactic acid (PLLA) is one of the mostly used fibers in biomedical applications as a biodegradable and biocompatible material. Porosity and fiber diameter distribution are governing factors that determine the performance of nanofibers. Present work aims at investigating the process parameters that are affecting porosity and diameter distribution of PLLA nanofibers. PLLA nanofibers were fabricated through electrospinning method using the solution of PLLA polymer/dichloromethane (DCM). Nanofibers with various fiber diameter distribution and porosity were made by changing of process parameters such as spinning distance (5, 10 and 15 cm), voltage (11 and 15 kV), solution concentration (10, 11 and 12 wt%) and feeding rate (0.3, 0.4 and 0.7 ml h-1). Image processing techniques (with Matlab R2017), surface analysis (with Mountainsmap7) and diameter distribution analysis (with Measurement software) were used to examine surface morphology of samples. The results showed that the fiber diameter distribution becomes wider with increasing the applied voltage and reducing the spinning distance. In the other hand, coarse fibers possessed larger pores while having irregular and fewer pores in comparison to fine fibers. The most uniform nano-web with high porous nanofibers was attained by the choice of the process parameters at the voltage of 11 kV, spinning distance of 15 cm, feeding rate of 0.4 ml h-1 and solution concentration of 10 wt%.

  12. Study on influence of Surface roughness of Ni-Al2O3 nano composite coating and evaluation of wear characteristics

    NASA Astrophysics Data System (ADS)

    Raghavendra, C. R.; Basavarajappa, S.; Sogalad, Irappa

    2018-02-01

    Electrodeposition is one of the most technologically feasible and economically superior techniques for producing metallic coating. The advancement in the application of nano particles has grabbed the attention in all fields of engineering. In this present study an attempt has been made on the Ni-Al2O3nano particle composite coating on aluminium substrate by electrodeposition process. The aluminium surface requires a specific pre-treatment for better adherence of coating. In light of this a thin zinc layer is coated on the aluminium substrate by electroless process. In addition to this surface roughness is an important parameter for any coating method and material. In this work Ni-Al2O3 composite coating were successfully coated by varying the process parameters such as bath temperature, current density and particle loading. The experimentation was performed using central composite design based 20 trials of experiments. The effect of process parameters and surface roughness before and after coating is analyzed on wear rate and coating thickness. The results shown a better wear resistance of Ni-Al2O3 composite electrodeposited coating compared to Ni coating. The particle loading and interaction effect of current density with temperature has greater significant effect on wear rate. The surface roughness is significantly affected the wear behaviour and thickness of coating.

  13. Influence of raw material properties upon critical quality attributes of continuously produced granules and tablets.

    PubMed

    Fonteyne, Margot; Wickström, Henrika; Peeters, Elisabeth; Vercruysse, Jurgen; Ehlers, Henrik; Peters, Björn-Hendrik; Remon, Jean Paul; Vervaet, Chris; Ketolainen, Jarkko; Sandler, Niklas; Rantanen, Jukka; Naelapää, Kaisa; De Beer, Thomas

    2014-07-01

    Continuous manufacturing gains more and more interest within the pharmaceutical industry. The International Conference of Harmonisation (ICH) states in its Q8 'Pharmaceutical Development' guideline that the manufacturer of pharmaceuticals should have an enhanced knowledge of the product performance over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect their processability and several critical quality attributes of the resulting granules and tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Influence of Filler Wire Feed Rate in Laser-Arc Hybrid Welding of T-butt Joint in Shipbuilding Steel with Different Optical Setups

    NASA Astrophysics Data System (ADS)

    Unt, Anna; Poutiainen, Ilkka; Salminen, Antti

    In this paper, a study of laser-arc hybrid welding featuring three different process fibres was conducted to build knowledge about process behaviour and discuss potential benefits for improving the weld properties. The welding parameters affect the weld geometry considerably, as an example the increase in welding speed usually decreases the penetration and a larger beam diameter usually widens the weld. The laser hybrid welding system equipped with process fibres with 200, 300 and 600 μm core diameter were used to produce fillet welds. Shipbuilding steel AH36 plates with 8 mm thickness were welded with Hybrid-Laser-Arc-Welding (HLAW) in inversed T configuration, the effects of the filler wire feed rate and the beam positioning distance from the joint plane were investigated. Based on the metallographic cross-sections, the effect of process parameters on the joint geometry was studied. Joints with optimized properties (full penetration, soundness, smooth transition from bead to base material) were produced with 200 μm and 600 μm process fibres, while fiber with 300 μm core diameter produced welds with unacceptable levels of porosity.

  15. Effective inactivation of Saccharomyces cerevisiae in minimally processed Makgeolli using low-pressure homogenization-based pasteurization.

    PubMed

    Bak, Jin Seop

    2015-01-01

    In order to address the limitations associated with the inefficient pasteurization platform used to make Makgeolli, such as the presence of turbid colloidal dispersions in suspension, commercially available Makgeolli was minimally processed using a low-pressure homogenization-based pasteurization (LHBP) process. This continuous process demonstrates that promptly reducing the exposure time to excessive heat using either large molecules or insoluble particles can dramatically improve internal quality and decrease irreversible damage. Specifically, optimal homogenization increased concomitantly with physical parameters such as colloidal stability (65.0% of maximum and below 25-μm particles) following two repetitions at 25.0 MPa. However, biochemical parameters such as microbial population, acidity, and the presence of fermentable sugars rarely affected Makgeolli quality. Remarkably, there was a 4.5-log reduction in the number of Saccharomyces cerevisiae target cells at 53.5°C for 70 sec in optimally homogenized Makgeolli. This value was higher than the 37.7% measured from traditionally pasteurized Makgeolli. In contrast to the analytical similarity among homogenized Makgeollis, our objective quality evaluation demonstrated significant differences between pasteurized (or unpasteurized) Makgeolli and LHBP-treated Makgeolli. Low-pressure homogenization-based pasteurization, Makgeolli, minimal processing-preservation, Saccharomyces cerevisiae, suspension stability.

  16. Modeling carbon cycle process of soil profile in Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Finke, P.; Guo, Z.; Wu, H.

    2011-12-01

    SoilGen2 is a process-based model, which could reconstruct soil formation under various climate conditions, parent materials, vegetation types, slopes, expositions and time scales. Both organic and inorganic carbon cycle processes could be simulated, while the later process is important in carbon cycle of arid and semi-arid regions but seldom being studied. After calibrating parameters of dust deposition rate and segments depth affecting elements transportation and deposition in the profile, modeling results after 10000 years were confronted with measurements of two soil profiles in loess plateau of China, The simulated trends of organic carbon and CaCO3 in the profile are similar to measured values. Relative sensitivity analysis for carbon cycle process have been done and the results show that the change of organic carbon in long time scale is more sensitive to precipitation, temperature, plant carbon input and decomposition parameters (decomposition rate of humus, ratio of CO2/(BIO+HUM), etc.) in the model. As for the inorganic carbon cycle, precipitation and potential evaporation are important for simulation quality, while the leaching and deposition of CaCO3 are not sensitive to pCO2 and temperature of atmosphere.

  17. Thermo-Mechanical Characterization of Friction Stir Spot Welded AA7050 Sheets by Means of Experimental and FEM Analyses

    PubMed Central

    D’Urso, Gianluca; Giardini, Claudio

    2016-01-01

    The present study was carried out to evaluate how the friction stir spot welding (FSSW) process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. The experimental study was performed by means of a CNC machine tool obtaining FSSW lap joints on AA7050 aluminum alloy plates. Three thermocouples were inserted into the samples to measure the temperatures at different distance from the joint axis during the whole FSSW process. Experiments was repeated varying the process parameters, namely rotational speed, axial feed rate and plunging depth. Axial welding forces were measured during the tests using a piezoelectric load cell, while the mechanical properties of the joints were evaluated by executing shear tests on the specimens. The correlation found between process parameters and joints properties, allowed to identify the best technological window. The data collected during the experiments were used to validate a simulation model of the FSSW process, too. The model was set up using a 2D approach for the simulation of a 3D problem, in order to guarantee a very simple and practical solution for achieving results in a very short time. A specific external routine for the calculation of the thermal energy due to friction acting between pin and sheet was developed. An index for the prediction of the joint mechanical properties using the FEM simulations was finally presented and validated. PMID:28773810

  18. Thermo-Mechanical Characterization of Friction Stir Spot Welded AA7050 Sheets by Means of Experimental and FEM Analyses.

    PubMed

    D'Urso, Gianluca; Giardini, Claudio

    2016-08-11

    The present study was carried out to evaluate how the friction stir spot welding (FSSW) process parameters affect the temperature distribution in the welding region, the welding forces and the mechanical properties of the joints. The experimental study was performed by means of a CNC machine tool obtaining FSSW lap joints on AA7050 aluminum alloy plates. Three thermocouples were inserted into the samples to measure the temperatures at different distance from the joint axis during the whole FSSW process. Experiments was repeated varying the process parameters, namely rotational speed, axial feed rate and plunging depth. Axial welding forces were measured during the tests using a piezoelectric load cell, while the mechanical properties of the joints were evaluated by executing shear tests on the specimens. The correlation found between process parameters and joints properties, allowed to identify the best technological window. The data collected during the experiments were used to validate a simulation model of the FSSW process, too. The model was set up using a 2D approach for the simulation of a 3D problem, in order to guarantee a very simple and practical solution for achieving results in a very short time. A specific external routine for the calculation of the thermal energy due to friction acting between pin and sheet was developed. An index for the prediction of the joint mechanical properties using the FEM simulations was finally presented and validated.

  19. IOTA: integration optimization, triage and analysis tool for the processing of XFEL diffraction images.

    PubMed

    Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Brewster, Aaron S; Murray, Thomas D; Sauter, Nicholas K; Berger, James M; Weis, William I; Brunger, Axel T

    2016-06-01

    Serial femtosecond crystallography (SFX) uses an X-ray free-electron laser to extract diffraction data from crystals not amenable to conventional X-ray light sources owing to their small size or radiation sensitivity. However, a limitation of SFX is the high variability of the diffraction images that are obtained. As a result, it is often difficult to determine optimal indexing and integration parameters for the individual diffraction images. Presented here is a software package, called IOTA , which uses a grid-search technique to determine optimal spot-finding parameters that can in turn affect the success of indexing and the quality of integration on an image-by-image basis. Integration results can be filtered using a priori information about the Bravais lattice and unit-cell dimensions and analyzed for unit-cell isomorphism, facilitating an improvement in subsequent data-processing steps.

  20. Health Monitoring and Management for Manufacturing Workers in Adverse Working Conditions.

    PubMed

    Xu, Xiaoya; Zhong, Miao; Wan, Jiafu; Yi, Minglun; Gao, Tiancheng

    2016-10-01

    In adverse working conditions, environmental parameters such as metallic dust, noise, and environmental temperature, directly affect the health condition of manufacturing workers. It is therefore important to implement health monitoring and management based on important physiological parameters (e.g., heart rate, blood pressure, and body temperature). In recent years, new technologies, such as body area networks, cloud computing, and smart clothing, have allowed the improvement of the quality of services. In this article, we first give five-layer architecture for health monitoring and management of manufacturing workers. Then, we analyze the system implementation process, including environmental data processing, physical condition monitoring and system services and management, and present the corresponding algorithms. Finally, we carry out an evaluation and analysis from the perspective of insurance and compensation for manufacturing workers in adverse working conditions. The proposed scheme will contribute to the improvement of workplace conditions, realize health monitoring and management, and protect the interests of manufacturing workers.

  1. Texturing of polypropylene (PP) with nanosecond lasers

    NASA Astrophysics Data System (ADS)

    Riveiro, A.; Soto, R.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.

    2016-06-01

    Polypropylene (PP) is a biocompatible and biostable polymer, showing good mechanical properties that has been recently introduced in the biomedical field for bone repairing applications; however, its poor surface properties due to its low surface energy limit their use in biomedical applications. In this work, we have studied the topographical modification of polypropylene (PP) laser textured with Nd:YVO4 nanosecond lasers emitting at λ = 1064 nm, 532 nm, and 355 nm. First, optical response of this material under these laser wavelengths was determined. The application of an absorbing coating was also studied. The influence of the laser processing parameters on the surface modification of PP was investigated by means of statistically designed experiments. Processing maps to tailor the roughness, and wettability, the main parameters affecting cell adhesion characteristics of implants, were also determined. Microhardness measurements were performed to discern the impact of laser treatment on the final mechanical properties of PP.

  2. Black carbon aerosol size in snow.

    PubMed

    Schwarz, J P; Gao, R S; Perring, A E; Spackman, J R; Fahey, D W

    2013-01-01

    The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BC's absorption properties for calculations of BC's snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall.

  3. Diffusion welding of Cassegrainian concentrator cell stack assemblies. M.S. Thesis Final Report, Jun. 1983 - Sep. 1985

    NASA Technical Reports Server (NTRS)

    Gangl, K. J.

    1985-01-01

    Development of a procedure to join the components of the Cassegrainian concentrator photovoltaic cell stack assembly was studied. Diffusion welding was selected as the most promising process, and was concentrated on exclusively. All faying surfaces were coated with silver to promote welding. The first phase of the study consisted of developing the relationship between process parameters and joint strength using silver plated steel samples and an isostatic pressure system. In the second phase, mockups of the cell stack assembly were welded in a hot isostatic press. Excellent joint strength was achieved with parameters of 350 C and 10 ksi, but the delicate GaAs component could not survive the welding cycle without cracking. The tendency towards cracking was found to be affected by both temperature and pressure. Further work will be required in the future to solve this problem.

  4. Effects of Process Parameters on Solidification Structure of A390 Aluminum Alloy Hollow Billet

    NASA Astrophysics Data System (ADS)

    Zuo, Kesheng; Zhang, Haitao; Qin, Ke; Cui, Jianzhong; Chen, Qingzhang

    2017-08-01

    The effects of process parameters on the solidification structure of A390 aluminum alloy hollow billets prepared by direct-chill casting were investigated. The decrease of casting temperature deteriorated the homogeneity and increased the size of primary Si particles in the hollow billet. Although the average size of primary Si particles was not obviously affected by the increase of casting speed, the thickness of Si-depleted layer at the inner wall increased with the higher casting speed. The tensile strength of A390 alloy is a function of the percentage of coarse Si particles (larger than 35 μm) and the average size of primary Si particles. Higher and more stable tensile strength can be received in the hollow billet with the casting temperature of 1050 K (777 °C), because the fine and uniformly distributed primary Si particles were obtained in the hollow billet.

  5. Performance, gut morphology and carcass characteristics of fattening rabbits as affected by particle size of pelleted diets.

    PubMed

    Tufarelli, Vincenzo; Desantis, Salvatore; Zizza, Sara; Laudadio, Vito

    2010-10-01

    A review of past literature revealed inconsistencies in recommended feed particle size for optimal growth and productive performance of rabbits. Changing diet formulation and subsequent processing conditions may improve pellet texture and potentially affect rabbit performance. In the current study, two isoenergetic and isonitrogenous pelleted diets were formulated, which varied in the particle size of the concentrates (2 and 8 mm, respectively). The objective was to evaluate the effect of different particle sizes of compound diets on performance, nutrient utilisation, gut morphology, and carcass characteristics of fattening Italian White breed rabbits. The finely ground diet led to a significant improvement in feed efficiency and apparent digestibility of crude protein, ether extract, crude fibre and NDF, without any negative effect on gut morphology. Furthermore, a smaller particle size of concentrates in pelleted diets improved carcass traits. Meat colour parameters showed significant differences in longissimus lumborum and biceps femoris due to dietary treatments, but in both muscles pH values 1 h and 24 h after slaughter remained unchanged. It is concluded that a finely ground pelleted diet can be used to improve growth performance of rabbits without affecting carcass parameters.

  6. An automatic segmentation method of a parameter-adaptive PCNN for medical images.

    PubMed

    Lian, Jing; Shi, Bin; Li, Mingcong; Nan, Ziwei; Ma, Yide

    2017-09-01

    Since pre-processing and initial segmentation steps in medical images directly affect the final segmentation results of the regions of interesting, an automatic segmentation method of a parameter-adaptive pulse-coupled neural network is proposed to integrate the above-mentioned two segmentation steps into one. This method has a low computational complexity for different kinds of medical images and has a high segmentation precision. The method comprises four steps. Firstly, an optimal histogram threshold is used to determine the parameter [Formula: see text] for different kinds of images. Secondly, we acquire the parameter [Formula: see text] according to a simplified pulse-coupled neural network (SPCNN). Thirdly, we redefine the parameter V of the SPCNN model by sub-intensity distribution range of firing pixels. Fourthly, we add an offset [Formula: see text] to improve initial segmentation precision. Compared with the state-of-the-art algorithms, the new method achieves a comparable performance by the experimental results from ultrasound images of the gallbladder and gallstones, magnetic resonance images of the left ventricle, and mammogram images of the left and the right breast, presenting the overall metric UM of 0.9845, CM of 0.8142, TM of 0.0726. The algorithm has a great potential to achieve the pre-processing and initial segmentation steps in various medical images. This is a premise for assisting physicians to detect and diagnose clinical cases.

  7. Persistent monolayer-scale chemical ordering in Si{sub 1−x}Ge{sub x} heteroepitaxial films during surface roughening and strain relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amatya, J. M.; Floro, J. A.

    2015-12-28

    Chemical ordering in semiconductor alloys could modify thermal and electronic transport, with potential benefits to thermoelectric properties. Here, metastable ordering that occurs during heteroepitaxial growth of Si{sub 1−x}Ge{sub x} thin film alloys on Si(001) and Ge(001) substrates is investigated. A parametric study was performed to study how strain, surface roughness, and growth parameters affect the order parameter during the alloy growth. The order parameter for the alloy films was carefully quantified using x-ray diffraction, taking into account an often-overlooked issue associated with the presence of multiple spatial variants associated with ordering along equivalent <111> directions. Optimal ordering was observed inmore » the films having the smoothest surfaces. Extended strain relaxation is suggested to reduce the apparent order through creation of anti-phase boundaries. Ordering surprisingly persists even when the film surface extensively roughens to form (105) facets. Growth on deliberately miscut Si(001) surfaces does not affect the volume-averaged order parameter but does impact the relative volume fractions of the equivalent ordered variants in a manner consistent with geometrically necessary changes in step populations. These results provide somewhat self-contradictory implications for the role of step edges in controlling the ordering process, indicating that our understanding is still incomplete.« less

  8. The effect of epoch length on time and frequency domain parameters of electromyographic and mechanomyographic signals.

    PubMed

    Keller, Joshua L; Housh, Terry J; Camic, Clayton L; Bergstrom, Haley C; Smith, Doug B; Smith, Cory M; Hill, Ethan C; Schmidt, Richard J; Johnson, Glen O; Zuniga, Jorge M

    2018-06-01

    The selection of epoch lengths affects the time and frequency resolution of electromyographic (EMG) and mechanomyographic (MMG) signals, as well as decisions regarding the signal processing techniques to use for determining the power density spectrum. No previous studies, however, have examined the effects of epoch length on parameters of the MMG signal. The purpose of this study was to examine the differences between epoch lengths for EMG amplitude, EMG mean power frequency (MPF), MMG amplitude, and MMG MPF from the VL and VM muscles during MVIC muscle actions as well as at each 10% of the time to exhaustion (TTE) during a continuous isometric muscle action of the leg extensors at 50% of MVIC. During the MVIC trial, there were no significant (p > 0.05) differences between epoch lengths (0.25, 0.50, 1.00, and 2.00-s) for mean absolute values for any of the EMG or MMG parameters. During the submaximal, sustained muscle action, however, absolute MMG amplitude and MMG MPF were affected by the length of epoch. All epoch related differences were eliminated by normalizing the absolute values to MVIC. These findings supported normalizing EMG and MMG parameter values to MVIC and utilizing epoch lengths that ranged from 0.25 to 2.00-s. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees.

    Treesearch

    Lijun Liu; V. Missirian; Matthew S. Zinkgraf; Andrew Groover; V. Filkov

    2014-01-01

    Background: One of the great advantages of next generation sequencing is the ability to generate large genomic datasets for virtually all species, including non-model organisms. It should be possible, in turn, to apply advanced computational approaches to these datasets to develop models of biological processes. In a practical sense, working with non-model organisms...

  10. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste.

    PubMed

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Jinhui

    2018-03-01

    Information on the anaerobic digestion (AD) of food waste (FW) with different waste cooking oil contents is limited in terms of the effect of the initial substrate concentrations. In this work, batch tests were performed to evaluate the combined effects of waste cooking oil content (33-53%) and feed/inoculum (F/I) ratios (0.5-1.2) on biogas/methane yield, process stability parameters and organics reduction during the FW AD. Both waste cooking oil and the inoculation ratios were found to affect digestion parameters during the AD process start-up and the F/I ratio was the predominant factor affecting AD after the start-up phase. The possible inhibition due to acidification caused by volatile fatty acids accumulation, low pH values and long-chain fatty acids was reversible. The characteristics of the final digestate indicated a stable anaerobic system, whereas samples with F/I ratios ranging from 0.8 to 1.2 display higher propionic and valeric acid contents and high amounts of total ammonia nitrogen and free ammonia nitrogen. Overall, F/I ratios higher than 0.70 caused inhibition and resulted in low biogas/methane yields from the FW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. [Impact of atmospheric total suspended particulate pollution on photosynthetic parameters of street mango trees in Xiamen City].

    PubMed

    Yu, Yu-xian; Chen, Jin-sheng; Ren, Yin; Li, Fang-yi; Cui, Sheng-hui

    2010-05-01

    With the development of urbanization, total suspended particulate (TSP) pollution is getting serious, and the normal physiological processes of urban vegetation are profoundly affected while adsorbing and purifying the particulates. In this study, four areas were selected, i.e., Tingxi reservoir (clean control area), Xiamen University (cultural and educational area), Xianyue (business area), and Haicang (industrial area), with their atmospheric TSP concentrations and the photosynthetic parameters of street Mango (Mangifera indica) trees monitored in April and May, 2009. The daily average concentration of TSP in Tingxi, Xiamen University, Xianyue, and Haicang was 0.061, 0.113, 0.120 and 0.205 mg x m(-3), respectively, and the impact of TSP stress on M. indica was in the sequence of Haicang > Xianyue > Xiamen University > Tingxi. TSP pollution negatively affected the net photosynthetic rate, stomatal conductance, and transpiration rate of M. indica, and induced intercellular CO2 concentration changed significantly. High TSP concentration could cause the decline of net photosynthetic rate via stomatal limitation.

  12. Systematic Sensitivity Analysis of Metabolic Controllers During Reductions in Skeletal Muscle Blood Flow

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Cabrera, Marco

    2000-01-01

    An acute reduction in oxygen delivery to skeletal muscle is generally associated with profound derangements in substrate metabolism. Given the complexity of the human bioenergetic system and its components, it is difficult to quantify the interaction of cellular metabolic processes to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in oxygen availability affect the pathways of ATP synthesis and their regulation. In this study, we apply a previously developed mathematical model of human bioenergetics to study effects of ischemia during periods of increased ATP turnover (e.g., exercise). By using systematic sensitivity analysis the oxidative phosphorylation rate was found to be the most important rate parameter affecting lactate production during ischemia under resting conditions. Here we examine whether mild exercise under ischemic conditions alters the relative importance of pathways and parameters previously obtained.

  13. The effect of pale, soft and exudative meat on the quality of canned pork in gravy.

    PubMed

    Florowski, Tomasz; Florowska, Anna; Chmiel, Marta; Adamczak, Lech; Pietrzak, Dorota; Ruchlicka, Magdalena

    2017-01-01

    The objective of the study was to evaluate the use of PSE meat in the production of sterilized pork type canned meat in its own gravy. Canned meat products were produced with 50% of PSE meat as well as with 100% PSE meat, and compared with canned meat products of good quality (RFN). It was found that decreased quality of PSE meat had a small impact on the quality of canned meat products. Substitution of both 50% as well as the total quantity of RFN meat with PSE meat did not affect the course of the sterilization process, neither increase the quantity of excreted fat and jelly in canned meat. It also had no effect on the instrumentally-measured parameters of texture and neither did it affect different sensory quality features, including the overall desirability of the product. The PSE canned meat product were characterized by higher values of L* and b* color parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Physicochemical characterization of pure persimmon juice: nutritional quality and food acceptability.

    PubMed

    González, Eva; Vegara, Salud; Martí, Nuria; Valero, Manuel; Saura, Domingo

    2015-03-01

    Technological process for production of non-astringent persimmon (Diospyros kaki Thunb. cv. "Rojo Brillante") juice was described. The degree of fruit ripening expressed as color index (CI) varied between 12.37 and 16.33. Persimmon juice was characterized by determining physicochemical quality parameters as yield, total soluble solids (TSS), pH, titratable acidity (TA), organic acids, and main sugars. A thermal treatment of 90 ºC for 10 s was effective in controlling naturally occurring microorganisms for at least 105 d of storage without significantly affecting production of soluble brown pigments (BPs) and 5-hydroxymethyl furfural (5-HMF), total phenolic compounds (TPC), antioxidant capacity and acceptability of juice by panelists. Storage time affected all and each of the above parameters, reducing BPs, TPC and antioxidant capacity but increasing 5-HMF content. Refrigerated storage enhanced the acceptability of the juices. This information may be used by the juice industry as a starting point for production of pure persimmon juices. © 2015 Institute of Food Technologists®

  15. Microstructures and mechanical properties of bonding layers between low carbon steel and alloy 625 processed by gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Lou, Shuai; Lee, Seul Bi; Nam, Dae-Geun; Choi, Yoon Suk

    2017-11-01

    A filler metal wire, Alloy 625, was cladded on a plate of a low carbon streel, SS400, by gas tungsten arc welding, and the morphology of the weld bead and resulting dilution ratio were investigated under different welding parameter values (the input current, weld speed and wire feed speed). The wire feed speed was found to be most influential in controlling the dilution ratio of the weld bead, and seemed to limit the influence of other welding parameters. Two extreme welding conditions (with the minimum and maximum dilution ratios) were identified, and the corresponding microstructures, hardness and tensile properties near the bond line were compared between the two cases. The weld bead with the minimum dilution ratio showed superior hardness and tensile properties, while the formation lath martensite (due to relatively fast cooling) affected mechanical properties in the heat affected zone of the base metal with the maximum dilution ratio.

  16. How Does Higher Frequency Monitoring Data Affect the Calibration of a Process-Based Water Quality Model?

    NASA Astrophysics Data System (ADS)

    Jackson-Blake, L.

    2014-12-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, but even in well-studied catchments, streams are often only sampled at a fortnightly or monthly frequency. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by one process-based catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the MCMC-DREAM algorithm. Using daily rather than fortnightly data resulted in improved simulation of the magnitude of peak TDP concentrations, in turn resulting in improved model performance statistics. Marginal posteriors were better constrained by the higher frequency data, resulting in a large reduction in parameter-related uncertainty in simulated TDP (the 95% credible interval decreased from 26 to 6 μg/l). The number of parameters that could be reliably auto-calibrated was lower for the fortnightly data, leading to the recommendation that parameters should not be varied spatially for models such as INCA-P unless there is solid evidence that this is appropriate, or there is a real need to do so for the model to fulfil its purpose. Secondary study aims were to highlight the subjective elements involved in auto-calibration and suggest practical improvements that could make models such as INCA-P more suited to auto-calibration and uncertainty analyses. Two key improvements include model simplification, so that all model parameters can be included in an analysis of this kind, and better documenting of recommended ranges for each parameter, to help in choosing sensible priors.

  17. Process property studies of melt blown thermoplastic polyurethane polymers

    NASA Astrophysics Data System (ADS)

    Lee, Youn Eung

    The primary goal of this research was to determine optimum processing conditions to produce commercially acceptable melt blown (MB) thermoplastic polyurethane (TPU) webs. The 6-inch MB line and the 20-inch wide Accurate Products MB pilot line at the Textiles and Nonwovens Development Center (TANDEC), The University of Tennessee, Knoxville, were utilized for this study. The MB TPU trials were performed in four different phases: Phase 1 focused on the envelope of the MB operating conditions for different TPU polymers; Phase 2 focused on the production of commercially acceptable MB TPU webs; Phase 3 focused on the optimization of the processing conditions of MB TPU webs, and the determination of the significant relationships between processing parameters and web properties utilizing statistical analyses; Based on the first three phases, a more extensive study of fiber and web formation in the MB TPU process was made and a multi liner regression model for the MB TPU process versus properties was also developed in Phase 4. In conclusion, the basic MB process was fundamentally valid for the MB TPU process; however, the MB process was more complicated for TPU than PP, because web structures and properties of MB TPUs are very sensitive to MB process conditions: Furthermore, different TPU grades responded very differently to MB processing and exhibited different web structure and properties. In Phase 3 and Phase 4, small fiber diameters of less than 5mum were produced from TPU237, TPU245 and TPU280 pellets, and the mechanical strengths of MB TPU webs including the tensile strength, tear strength, abrasion resistance and tensile elongation were notably good. In addition, the statistical model showed useful interaction regarding trends for processing parameters versus properties of MB TPU webs. Die and air temperature showed multicollinearity problems and fiber diameter was notably affected by air flow rate, throughput and die/air temperature. It was also shown that most of the MB TPU web properties including mechanical strength, air permeability and fiber diameters were affected by air velocity and die temperature.

  18. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting.

    PubMed

    Kus, Abdil; Isik, Yahya; Cakir, M Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-12

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining.

  19. Thermocouple and Infrared Sensor-Based Measurement of Temperature Distribution in Metal Cutting

    PubMed Central

    Kus, Abdil; Isik, Yahya; Cakir, M. Cemal; Coşkun, Salih; Özdemir, Kadir

    2015-01-01

    In metal cutting, the magnitude of the temperature at the tool-chip interface is a function of the cutting parameters. This temperature directly affects production; therefore, increased research on the role of cutting temperatures can lead to improved machining operations. In this study, tool temperature was estimated by simultaneous temperature measurement employing both a K-type thermocouple and an infrared radiation (IR) pyrometer to measure the tool-chip interface temperature. Due to the complexity of the machining processes, the integration of different measuring techniques was necessary in order to obtain consistent temperature data. The thermal analysis results were compared via the ANSYS finite element method. Experiments were carried out in dry machining using workpiece material of AISI 4140 alloy steel that was heat treated by an induction process to a hardness of 50 HRC. A PVD TiAlN-TiN-coated WNVG 080404-IC907 carbide insert was used during the turning process. The results showed that with increasing cutting speed, feed rate and depth of cut, the tool temperature increased; the cutting speed was found to be the most effective parameter in assessing the temperature rise. The heat distribution of the cutting tool, tool-chip interface and workpiece provided effective and useful data for the optimization of selected cutting parameters during orthogonal machining. PMID:25587976

  20. Computer Optimization of Biodegradable Nanoparticles Fabricated by Dispersion Polymerization.

    PubMed

    Akala, Emmanuel O; Adesina, Simeon; Ogunwuyi, Oluwaseun

    2015-12-22

    Quality by design (QbD) in the pharmaceutical industry involves designing and developing drug formulations and manufacturing processes which ensure predefined drug product specifications. QbD helps to understand how process and formulation variables affect product characteristics and subsequent optimization of these variables vis-à-vis final specifications. Statistical design of experiments (DoE) identifies important parameters in a pharmaceutical dosage form design followed by optimizing the parameters with respect to certain specifications. DoE establishes in mathematical form the relationships between critical process parameters together with critical material attributes and critical quality attributes. We focused on the fabrication of biodegradable nanoparticles by dispersion polymerization. Aided by a statistical software, d-optimal mixture design was used to vary the components (crosslinker, initiator, stabilizer, and macromonomers) to obtain twenty nanoparticle formulations (PLLA-based nanoparticles) and thirty formulations (poly-ɛ-caprolactone-based nanoparticles). Scheffe polynomial models were generated to predict particle size (nm), zeta potential, and yield (%) as functions of the composition of the formulations. Simultaneous optimizations were carried out on the response variables. Solutions were returned from simultaneous optimization of the response variables for component combinations to (1) minimize nanoparticle size; (2) maximize the surface negative zeta potential; and (3) maximize percent yield to make the nanoparticle fabrication an economic proposition.

  1. Inhibition of Recrystallization of Amorphous Lactose in Nanocomposites Formed by Spray-Drying.

    PubMed

    Hellrup, Joel; Alderborn, Göran; Mahlin, Denny

    2015-11-01

    This study aims at investigating the recrystallization of amorphous lactose in nanocomposites. In particular, the focus is on the influence of the nano- to micrometer length scale nanofiller arrangement on the amorphous to crystalline transition. Further, the relative significance of formulation composition and manufacturing process parameters for the properties of the nanocomposite was investigated. Nanocomposites of amorphous lactose and fumed silica were produced by co-spray-drying. Solid-state transformation of the lactose was studied at 43%, 84%, and 94% relative humidity using X-ray powder diffraction and microcalorimetry. Design of experiments was used to analyze spray-drying process parameters and nanocomposite composition as factors influencing the time to 50% recrystallization. The spray-drying process parameters showed no significant influence. However, the recrystallization of the lactose in the nanocomposites was affected by the composition (fraction silica). The recrystallization rate constant decreased as a function of silica content. The lowered recrystallization rate of the lactose in the nanocomposites could be explained by three mechanisms: (1) separation of the amorphous lactose into discrete compartments on a micrometer length scale (compartmentalization), (2) lowered molecular mobility caused by molecular interactions between the lactose molecules and the surface of the silica (rigidification), and/or (3) intraparticle confinement of the amorphous lactose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Error propagation of partial least squares for parameters optimization in NIR modeling.

    PubMed

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-05

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models. Copyright © 2017. Published by Elsevier B.V.

  3. Error propagation of partial least squares for parameters optimization in NIR modeling

    NASA Astrophysics Data System (ADS)

    Du, Chenzhao; Dai, Shengyun; Qiao, Yanjiang; Wu, Zhisheng

    2018-03-01

    A novel methodology is proposed to determine the error propagation of partial least-square (PLS) for parameters optimization in near-infrared (NIR) modeling. The parameters include spectral pretreatment, latent variables and variable selection. In this paper, an open source dataset (corn) and a complicated dataset (Gardenia) were used to establish PLS models under different modeling parameters. And error propagation of modeling parameters for water quantity in corn and geniposide quantity in Gardenia were presented by both type І and type II error. For example, when variable importance in the projection (VIP), interval partial least square (iPLS) and backward interval partial least square (BiPLS) variable selection algorithms were used for geniposide in Gardenia, compared with synergy interval partial least squares (SiPLS), the error weight varied from 5% to 65%, 55% and 15%. The results demonstrated how and what extent the different modeling parameters affect error propagation of PLS for parameters optimization in NIR modeling. The larger the error weight, the worse the model. Finally, our trials finished a powerful process in developing robust PLS models for corn and Gardenia under the optimal modeling parameters. Furthermore, it could provide a significant guidance for the selection of modeling parameters of other multivariate calibration models.

  4. Approximate Model of Zone Sedimentation

    NASA Astrophysics Data System (ADS)

    Dzianik, František

    2011-12-01

    The process of zone sedimentation is affected by many factors that are not possible to express analytically. For this reason, the zone settling is evaluated in practice experimentally or by application of an empirical mathematical description of the process. The paper presents the development of approximate model of zone settling, i.e. the general function which should properly approximate the behaviour of the settling process within its entire range and at the various conditions. Furthermore, the specification of the model parameters by the regression analysis of settling test results is shown. The suitability of the model is reviewed by graphical dependencies and by statistical coefficients of correlation. The approximate model could by also useful on the simplification of process design of continual settling tanks and thickeners.

  5. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    NASA Astrophysics Data System (ADS)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  6. Dietary restriction of rodents decreases aging rate without affecting initial mortality rate -- a meta-analysis.

    PubMed

    Simons, Mirre J P; Koch, Wouter; Verhulst, Simon

    2013-06-01

    Dietary restriction (DR) extends lifespan in multiple species from various taxa. This effect can arise via two distinct but not mutually exclusive ways: a change in aging rate and/or vulnerability to the aging process (i.e. initial mortality rate). When DR affects vulnerability, this lowers mortality instantly, whereas a change in aging rate will gradually lower mortality risk over time. Unraveling how DR extends lifespan is of interest because it may guide toward understanding the mechanism(s) mediating lifespan extension and also has practical implications for the application of DR. We reanalyzed published survival data from 82 pairs of survival curves from DR experiments in rats and mice by fitting Gompertz and also Gompertz-Makeham models. The addition of the Makeham parameter has been reported to improve the estimation of Gompertz parameters. Both models separate initial mortality rate (vulnerability) from an age-dependent increase in mortality (aging rate). We subjected the obtained Gompertz parameters to a meta-analysis. We find that DR reduced aging rate without affecting vulnerability. The latter contrasts with the conclusion of a recent analysis of a largely overlapping data set, and we show how the earlier finding is due to a statistical artifact. Our analysis indicates that the biology underlying the life-extending effect of DR in rodents likely involves attenuated accumulation of damage, which contrasts with the acute effect of DR on mortality reported for Drosophila. Moreover, our findings show that the often-reported correlation between aging rate and vulnerability does not constrain changing aging rate without affecting vulnerability simultaneously. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  7. Parameters optimization of laser brazing in crimping butt using Taguchi and BPNN-GA

    NASA Astrophysics Data System (ADS)

    Rong, Youmin; Zhang, Zhen; Zhang, Guojun; Yue, Chen; Gu, Yafei; Huang, Yu; Wang, Chunming; Shao, Xinyu

    2015-04-01

    The laser brazing (LB) is widely used in the automotive industry due to the advantages of high speed, small heat affected zone, high quality of welding seam, and low heat input. Welding parameters play a significant role in determining the bead geometry and hence quality of the weld joint. This paper addresses the optimization of the seam shape in LB process with welding crimping butt of 0.8 mm thickness using back propagation neural network (BPNN) and genetic algorithm (GA). A 3-factor, 5-level welding experiment is conducted by Taguchi L25 orthogonal array through the statistical design method. Then, the input parameters are considered here including welding speed, wire speed rate, and gap with 5 levels. The output results are efficient connection length of left side and right side, top width (WT) and bottom width (WB) of the weld bead. The experiment results are embed into the BPNN network to establish relationship between the input and output variables. The predicted results of the BPNN are fed to GA algorithm that optimizes the process parameters subjected to the objectives. Then, the effects of welding speed (WS), wire feed rate (WF), and gap (GAP) on the sum values of bead geometry is discussed. Eventually, the confirmation experiments are carried out to demonstrate the optimal values were effective and reliable. On the whole, the proposed hybrid method, BPNN-GA, can be used to guide the actual work and improve the efficiency and stability of LB process.

  8. The study of the midlatitude ionospheric response to geomagnetic activity at Nagycenk Geophysical Observatory

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti; Kis, Árpád; Barta, Veronika; Novák, Attila

    2016-04-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere, causing several physical and chemical atmospheric processes. The changes and phenomena, which can be seen as a result of these processes, generally called ionospheric storm. These processes depend on altitude, term of the day, and the strength of solar activity, the geomagnetic latitude and longitude. The differences between ionospheric regions mostly come from the variations of altitude dependent neutral and ionized atmospheric components, and from the physical parameters of solar radiation. We examined the data of the ground-based radio wave ionosphere sounding instruments of the European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory), called ionosonde, to determine how and what extent a given strength of a geomagnetic disturbance affect the middle latitude ionospheric regions in winter. We chose the storm for the research from November 2012 and March 2015. As the main result of our research, we can show significant differences between the each ionospheric (F1 and F2) layer parameters on quiet and strong stormy days. When we saw, that the critical frequencies (foF2) increase from their quiet day value, then the effect of the ionospheric storm was positive, otherwise, if they drop, they were negative. With our analysis, the magnitude of these changes could be determined. Furthermore we demonstrated, how a full strong geomagnetic storm affects the ionospheric foF2 parameter during different storm phases. It has been showed, how a positive or negative ionospheric storm develop during a geomagnetic storm. For a more completed analysis, we compared also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. Therefore we determined, that the data of the ionosonde at Nagycenk Geophysical Observatory are appropriate, it detects the same state of ionosphere like the European ionosondes. Also we studied the prominent phenomena (e.g. TIDs- Travelling Ionospheric Disturbances), and plasma irregularities (e.g. spread-F) of the ionosphere in the function of geomagnetic activity. As we compared the occurrences of TIDs and spread-F phenomena on the quiet days with their occurrences on moderate and strong stormy days, we can see significant correlation between the magnitude of the Ae-index and the daily number of the occurrence of TIDs, but at the same time there is no definite connection between the daily number of the occurrence of spread-F phenomenas and the intensity of geomagnetic activity.

  9. Effects of alcohol on automated and controlled driving performances.

    PubMed

    Berthelon, Catherine; Gineyt, Guy

    2014-05-01

    Alcohol is the most frequently detected substance in fatal automobile crashes, but its precise mode of action is not always clear. The present study was designed to establish the influence of blood alcohol concentration as a function of the complexity of the scenarios. Road scenarios implying automatic or controlled driving performances were manipulated in order to identify which behavioral parameters were deteriorated. A single blind counterbalanced experiment was conducted on a driving simulator. Sixteen experienced drivers (25.3 ± 2.9 years old, 8 men and 8 women) were tested with 0, 0.3, 0.5, and 0.8 g/l of alcohol. Driving scenarios varied: road tracking, car following, and an urban scenario including events inspired by real accidents. Statistical analyses were performed on driving parameters as a function of alcohol level. Automated driving parameters such as standard deviation of lateral position measured with the road tracking and car following scenarios were impaired by alcohol, notably with the highest dose. More controlled parameters such as response time to braking and number of crashes when confronted with specific events (urban scenario) were less affected by the alcohol level. Performance decrement was greater with driving scenarios involving automated processes than with scenarios involving controlled processes.

  10. One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    1998-01-01

    OTIS is a mathematical simulation model used to characterize the fate and transport of water-borne solutes in streams and rivers. The governing equation underlying the model is the advection-dispersion equation with additional terms to account for transient storage, lateral inflow, first-order decay, and sorption. This equation and the associated equations describing transient storage and sorption are solved using a Crank-Nicolson finite-difference solution. OTIS may be used in conjunction with data from field-scale tracer experiments to quantify the hydrologic parameters affecting solute transport. This application typically involves a trial-and-error approach wherein parameter estimates are adjusted to obtain an acceptable match between simulated and observed tracer concentrations. Additional applications include analyses of nonconservative solutes that are subject to sorption processes or first-order decay. OTIS-P, a modified version of OTIS, couples the solution of the governing equation with a nonlinear regression package. OTIS-P determines an optimal set of parameter estimates that minimize the squared differences between the simulated and observed concentrations, thereby automating the parameter estimation process. This report details the development and application of OTIS and OTIS-P. Sections of the report describe model theory, input/output specifications, sample applications, and installation instructions.

  11. Numerical framework for the modeling of electrokinetic flows

    NASA Astrophysics Data System (ADS)

    Deshpande, Manish; Ghaddar, Chahid; Gilbert, John R.; St. John, Pamela M.; Woudenberg, Timothy M.; Connell, Charles R.; Molho, Joshua; Herr, Amy; Mungal, Godfrey; Kenny, Thomas W.

    1998-09-01

    This paper presents a numerical framework for design-based analyses of electrokinetic flow in interconnects. Electrokinetic effects, which can be broadly divided into electrophoresis and electroosmosis, are of importance in providing a transport mechanism in microfluidic devices for both pumping and separation. Models for the electrokinetic effects can be derived and coupled to the fluid dynamic equations through appropriate source terms. In the design of practical microdevices, however, accurate coupling of the electrokinetic effects requires the knowledge of several material and physical parameters, such as the diffusivity and the mobility of the solute in the solvent. Additionally wall-based effects such as chemical binding sites might exist that affect the flow patterns. In this paper, we address some of these issues by describing a synergistic numerical/experimental process to extract the parameters required. Experiments were conducted to provide the numerical simulations with a mechanism to extract these parameters based on quantitative comparisons with each other. These parameters were then applied in predicting further experiments to validate the process. As part of this research, we have created NetFlow, a tool for micro-fluid analyses. The tool can be validated and applied in existing technologies by first creating test structures to extract representations of the physical phenomena in the device, and then applying them in the design analyses to predict correct behavior.

  12. Interaction of an ion bunch with a plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2016-11-15

    Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.

  13. On the impact of the elastic-plastic flow upon the process of destruction of the solenoid in a super strong pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Krivosheev, S. I.; Magazinov, S. G.; Alekseev, D. I.

    2018-01-01

    At interaction of super strong magnetic fields with a solenoid material, a specific mode of the material flow forms. To describe this process, magnetohydrodynamic approximation is traditionally used. The formation of plastic shock-waves in material in a rapidly increasing pressure of 100 GPa/μs, can significantly alter the distribution of the physical parameters in the medium and affect the flow modes. In this paper, an analysis of supporting results of numerical simulations in comparison with available experimental data is presented.

  14. Development of automated control system for wood drying

    NASA Astrophysics Data System (ADS)

    Sereda, T. G.; Kostarev, S. N.

    2018-05-01

    The article considers the parameters of convective wood drying which allows changing the characteristics of the air that performs drying at different stages: humidity, temperature, speed and direction of air movement. Despite the prevalence of this type of drying equipment, the main drawbacks of it are: the high temperature and humidity, negatively affecting the working conditions of maintenance personnel when they enter the drying chambers. It makes the automation of wood drying process necessary. The synthesis of a finite state of a machine control of wood drying process is implemented on a programmable logic device Omron.

  15. Control of microstructure in soldered, brazed, welded, plated, cast or vapor deposited manufactured components

    DOEpatents

    Ripley, Edward B.; Hallman, Russell L.

    2015-11-10

    Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.

  16. Analysis of problems with dry fermentation process for biogas production

    NASA Astrophysics Data System (ADS)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  17. Effect of deposition rate on melting point of copper film catalyst substrate at atomic scale

    NASA Astrophysics Data System (ADS)

    Marimpul, Rinaldo; Syuhada, Ibnu; Rosikhin, Ahmad; Winata, Toto

    2018-03-01

    Annealing process of copper film catalyst substrate was studied by molcular dynamics simulation. This copper film catalyst substrate was produced using thermal evaporation method. The annealing process was limited in nanosecond order to observe the mechanism at atomic scale. We found that deposition rate parameter affected the melting point of catalyst substrate. The change of crystalline structure of copper atoms was observed before it had been already at melting point. The optimum annealing temperature was obtained to get the highest percentage of fcc structure on copper film catalyst substrate.

  18. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)

    NASA Astrophysics Data System (ADS)

    Frohn, Peter; Engel, Bernd; Groth, Sebastian

    2018-05-01

    Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.

  19. Development of a Nonlinear Soft-Sensor Using a GMDH Network for a Refinery Crude Distillation Tower

    NASA Astrophysics Data System (ADS)

    Fujii, Kenzo; Yamamoto, Toru

    In atmospheric distillation processes, the stabilization of processes is required in order to optimize the crude-oil composition that corresponds to product market conditions. However, the process control systems sometimes fall into unstable states in the case where unexpected disturbances are introduced, and these unusual phenomena have had an undesirable affect on certain products. Furthermore, a useful chemical engineering model has not yet been established for these phenomena. This remains a serious problem in the atmospheric distillation process. This paper describes a new modeling scheme to predict unusual phenomena in the atmospheric distillation process using the GMDH (Group Method of Data Handling) network which is one type of network model. According to the GMDH network, the model structure can be determined systematically. However, the least squares method has been commonly utilized in determining weight coefficients (model parameters). Estimation accuracy is not entirely expected, because the sum of squared errors between the measured values and estimates is evaluated. Therefore, instead of evaluating the sum of squared errors, the sum of absolute value of errors is introduced and the Levenberg-Marquardt method is employed in order to determine model parameters. The effectiveness of the proposed method is evaluated by the foaming prediction in the crude oil switching operation in the atmospheric distillation process.

  20. Bioreactor process parameter screening utilizing a Plackett-Burman design for a model monoclonal antibody.

    PubMed

    Agarabi, Cyrus D; Schiel, John E; Lute, Scott C; Chavez, Brittany K; Boyne, Michael T; Brorson, Kurt A; Khan, Mansoora; Read, Erik K

    2015-06-01

    Consistent high-quality antibody yield is a key goal for cell culture bioprocessing. This endpoint is typically achieved in commercial settings through product and process engineering of bioreactor parameters during development. When the process is complex and not optimized, small changes in composition and control may yield a finished product of less desirable quality. Therefore, changes proposed to currently validated processes usually require justification and are reported to the US FDA for approval. Recently, design-of-experiments-based approaches have been explored to rapidly and efficiently achieve this goal of optimized yield with a better understanding of product and process variables that affect a product's critical quality attributes. Here, we present a laboratory-scale model culture where we apply a Plackett-Burman screening design to parallel cultures to study the main effects of 11 process variables. This exercise allowed us to determine the relative importance of these variables and identify the most important factors to be further optimized in order to control both desirable and undesirable glycan profiles. We found engineering changes relating to culture temperature and nonessential amino acid supplementation significantly impacted glycan profiles associated with fucosylation, β-galactosylation, and sialylation. All of these are important for monoclonal antibody product quality. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Finite Element Analysis of Interaction of Laser Beam with Material in Laser Metal Powder Bed Fusion Process.

    PubMed

    Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei

    2018-05-10

    A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.

  2. Influence of Fermentation Process on the Anthocyanin Composition of Wine and Vinegar Elaborated from Strawberry.

    PubMed

    Hornedo-Ortega, Ruth; Álvarez-Fernández, M Antonia; Cerezo, Ana B; Garcia-Garcia, Isidoro; Troncoso, Ana M; Garcia-Parrilla, M Carmen

    2017-02-01

    Anthocyanins are the major polyphenolic compounds in strawberry fruit responsible for its color. Due to their sensitivity, they are affected by food processing techniques such as fermentation that alters both their chemical composition and organoleptic properties. This work aims to evaluate the impact of different fermentation processes on individual anthocyanins compounds in strawberry wine and vinegar by UHPLC-MS/MS Q Exactive analysis. Nineteen, 18, and 14 anthocyanin compounds were identified in the strawberry initial substrate, strawberry wine, and strawberry vinegar, respectively. Four and 8 anthocyanin compounds were tentatively identified with high accuracy for the 1st time to be present in the beverages obtained by alcoholic fermentation and acetic fermentation of strawberry, respectively. Both, the total and the individual anthocyanin concentrations were decreased by both fermentation processes, affecting the alcoholic fermentation to a lesser extent (19%) than the acetic fermentation (91%). Indeed, several changes in color parameters have been assessed. The color of the wine and the vinegar made from strawberry changed during the fermentation process, varying from red to orange color, this fact is directly correlated with the decrease of anthocyanins compounds. © 2017 Institute of Food Technologists®.

  3. Ceramic processing: Experimental design and optimization

    NASA Technical Reports Server (NTRS)

    Weiser, Martin W.; Lauben, David N.; Madrid, Philip

    1992-01-01

    The objectives of this paper are to: (1) gain insight into the processing of ceramics and how green processing can affect the properties of ceramics; (2) investigate the technique of slip casting; (3) learn how heat treatment and temperature contribute to density, strength, and effects of under and over firing to ceramic properties; (4) experience some of the problems inherent in testing brittle materials and learn about the statistical nature of the strength of ceramics; (5) investigate orthogonal arrays as tools to examine the effect of many experimental parameters using a minimum number of experiments; (6) recognize appropriate uses for clay based ceramics; and (7) measure several different properties important to ceramic use and optimize them for a given application.

  4. Parameter Stability of the Functional–Structural Plant Model GREENLAB as Affected by Variation within Populations, among Seasons and among Growth Stages

    PubMed Central

    Ma, Yuntao; Li, Baoguo; Zhan, Zhigang; Guo, Yan; Luquet, Delphine; de Reffye, Philippe; Dingkuhn, Michael

    2007-01-01

    Background and Aims It is increasingly accepted that crop models, if they are to simulate genotype-specific behaviour accurately, should simulate the morphogenetic process generating plant architecture. A functional–structural plant model, GREENLAB, was previously presented and validated for maize. The model is based on a recursive mathematical process, with parameters whose values cannot be measured directly and need to be optimized statistically. This study aims at evaluating the stability of GREENLAB parameters in response to three types of phenotype variability: (1) among individuals from a common population; (2) among populations subjected to different environments (seasons); and (3) among different development stages of the same plants. Methods Five field experiments were conducted in the course of 4 years on irrigated fields near Beijing, China. Detailed observations were conducted throughout the seasons on the dimensions and fresh biomass of all above-ground plant organs for each metamer. Growth stage-specific target files were assembled from the data for GREENLAB parameter optimization. Optimization was conducted for specific developmental stages or the entire growth cycle, for individual plants (replicates), and for different seasons. Parameter stability was evaluated by comparing their CV with that of phenotype observation for the different sources of variability. A reduced data set was developed for easier model parameterization using one season, and validated for the four other seasons. Key Results and Conclusions The analysis of parameter stability among plants sharing the same environment and among populations grown in different environments indicated that the model explains some of the inter-seasonal variability of phenotype (parameters varied less than the phenotype itself), but not inter-plant variability (parameter and phenotype variability were similar). Parameter variability among developmental stages was small, indicating that parameter values were largely development-stage independent. The authors suggest that the high level of parameter stability observed in GREENLAB can be used to conduct comparisons among genotypes and, ultimately, genetic analyses. PMID:17158141

  5. On the influence of surfactant on the coarsening of aqueous foams.

    PubMed

    Briceño-Ahumada, Zenaida; Langevin, Dominique

    2017-06-01

    We review the coarsening process of foams made with various surfactants and gases, focusing on physico-chemical aspects. Several parameters strongly affect coarsening: foam liquid fraction and foam film permeability, this permeability depending on the surfactant used. Both parameters may evolve with time: the liquid fraction, due to gravity drainage, and the film permeability, due to the decrease of capillary pressure during bubble growth, and to the subsequent increase in film thickness. Bubble coalescence may enhance the bubble's growth rate, in which case the bubble polydispersity increases. The differences found between the experiments reported in the literature and between experiments and theories are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang

    In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less

  7. A systematic approach to evaluate parameter consistency in the inlet stream of source separated biowaste composting facilities: A case study in Colombia.

    PubMed

    Oviedo-Ocaña, E R; Torres-Lozada, P; Marmolejo-Rebellon, L F; Torres-López, W A; Dominguez, I; Komilis, D; Sánchez, A

    2017-04-01

    Biowaste is commonly the largest fraction of municipal solid waste (MSW) in developing countries. Although composting is an effective method to treat source separated biowaste (SSB), there are certain limitations in terms of operation, partly due to insufficient control to the variability of SSB quality, which affects process kinetics and product quality. This study assesses the variability of the SSB physicochemical quality in a composting facility located in a small town of Colombia, in which SSB collection was performed twice a week. Likewise, the influence of the SSB physicochemical variability on the variability of compost parameters was assessed. Parametric and non-parametric tests (i.e. Student's t-test and the Mann-Whitney test) showed no significant differences in the quality parameters of SSB among collection days, and therefore, it was unnecessary to establish specific operation and maintenance regulations for each collection day. Significant variability was found in eight of the twelve quality parameters analyzed in the inlet stream, with corresponding coefficients of variation (CV) higher than 23%. The CVs for the eight parameters analyzed in the final compost (i.e. pH, moisture, total organic carbon, total nitrogen, C/N ratio, total phosphorus, total potassium and ash) ranged from 9.6% to 49.4%, with significant variations in five of those parameters (CV>20%). The above indicate that variability in the inlet stream can affect the variability of the end-product. Results suggest the need to consider variability of the inlet stream in the performance of composting facilities to achieve a compost of consistent quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Capturing extracellular matrix properties in vitro: Microengineering materials to decipher cell and tissue level processes.

    PubMed

    Abdeen, Amr A; Lee, Junmin; Kilian, Kristopher A

    2016-05-01

    Rapid advances in biology have led to the establishment of new fields with tremendous translational potential including regenerative medicine and immunoengineering. One commonality to these fields is the need to extract cells for manipulation in vitro; however, results obtained in laboratory cell culture will often differ widely from observations made in vivo. To more closely emulate native cell biology in the laboratory, designer engineered environments have proved a successful methodology to decipher the properties of the extracellular matrix that govern cellular decision making. Here, we present an overview of matrix properties that affect cell behavior, strategies for recapitulating important parameters in vitro, and examples of how these properties can affect cell and tissue level processes, with emphasis on leveraging these tools for immunoengineering. © 2016 by the Society for Experimental Biology and Medicine.

  9. Automatic detection and severity measurement of eczema using image processing.

    PubMed

    Alam, Md Nafiul; Munia, Tamanna Tabassum Khan; Tavakolian, Kouhyar; Vasefi, Fartash; MacKinnon, Nick; Fazel-Rezai, Reza

    2016-08-01

    Chronic skin diseases like eczema may lead to severe health and financial consequences for patients if not detected and controlled early. Early measurement of disease severity, combined with a recommendation for skin protection and use of appropriate medication can prevent the disease from worsening. Current diagnosis can be costly and time-consuming. In this paper, an automatic eczema detection and severity measurement model are presented using modern image processing and computer algorithm. The system can successfully detect regions of eczema and classify the identified region as mild or severe based on image color and texture feature. Then the model automatically measures skin parameters used in the most common assessment tool called "Eczema Area and Severity Index (EASI)," by computing eczema affected area score, eczema intensity score, and body region score of eczema allowing both patients and physicians to accurately assess the affected skin.

  10. Developing Mesoscale Model of Fibrin-Platelet Network Representing Blood Clotting =

    NASA Astrophysics Data System (ADS)

    Sun, Yueyi; Nikolov, Svetoslav; Bowie, Sam; Alexeev, Alexander; Lam, Wilbur; Myers, David

    Blood clotting disorders which prevent the body's natural ability to achieve hemostasis can lead to a variety of life threatening conditions such as, excessive bleeding, stroke, or heart attack. Treatment of these disorders is highly dependent on understanding the underlying physics behind the clotting process. Since clotting is a highly complex multi scale mechanism developing a fully atomistic model is currently not possible. We develop a mesoscale model based on dissipative particle dynamics (DPD) to gain fundamental understanding of the underlying principles controlling the clotting process. In our study, we examine experimental data on clot contraction using stacks of confocal microscopy images to estimate the crosslink density in the fibrin networks and platelet location. Using this data we reconstruct the platelet rich fibrin network and study how platelet-fibrin interactions affect clotting. Furthermore, we probe how different system parameters affect clot contraction. ANSF CAREER Award DMR-1255288.

  11. Temperature of surface waters in the conterminous United States

    USGS Publications Warehouse

    Blakey, James F.

    1966-01-01

    Temperature is probably the most important, but least discussed, parameter in determining water quality. The purpose of this report is to present the average or most probable temperatures of surface waters in the conterminous United States and to cite factors that affect and are affected by water temperature. Temperature is related, usually directly, to all the chemical, physical, and biological properties of water. The ability of water to dissolve or precipitate materials is temperature dependent, the ability of water to transport or deposit suspended material is temperature dependent, and the aquatic life of a lake or stream may thrive or die because of the water temperature.Everyone is concerned, though often unknowingly, about water temperature. The amount and type of treatment necessary for a municipal supply are temperature dependent; therefore it affects the consumer cost. Temperature determines the volume of cooling water needed for industrial processes and steampower generation. Conservation and recreation practices are affected by water temperature, and the farmers' irrigation practices and livestock production may be affected by the water temperature.

  12. Physicochemical and sensory evaluation of some cooking banana (Musa spp.) for boiling and frying process.

    PubMed

    Belayneh, M; Workneh, T S; Belew, D

    2014-12-01

    Experiments were conducted to study physicochemical properties of four cooking banana varieties (Cardaba, Nijiru, Matoke and Kitawira) and to determine their suitability for chips processing and boiling quality. A randomized complete block design with three replications was employed. Pulp to peel ratio, pulp firmness (before and after), total soluble solids, pH, titratable acidity, ascorbic acid, ease of peeling, pulp water absorption, duration of cooking (or boiling) and dry matter are the most important parameters to evaluate the quality of cooking banana including plantain. The different variety affected the fruit physical characteristics significantly (P ≤ 0.05). The Cardaba varieties fruit was found to be the heaviest and the longest. The Kitawira and Nijiru varieties had the smallest, shortest and thinnest fruit. The Cardaba contained 88 % more edible portions per unit fresh weight than the peel. The Nijiru, Matoke and Kitawira contained more pulp weight than peel weight. Most fruit chemical quality parameters were significantly (P ≤ 0.05) affected by the varieties. Similarly, the boiling and chips qualities were significantly (P ≤ 0.05) affected by varieties. Among others, the Cardaba variety was found to have high fruit weight, fruit length, fruit girth, fruit volume, total soluble solids, ascorbic acid, dry matter and low total titratable acidity. Thus, Cardaba provided the best quality boiled pulp which can serve for diversified culinary purposes. Generally, the Nijiru, Kitawira and Matoke varieties were found to be superior to produce acceptable quality chips. These varieties are recommended for chips development by food processors in Ethiopia.

  13. The effect of environmental and process parameters on flocculation treatment of high dry matter swine manure with polymers.

    PubMed

    Masse, Lucie; Massé, Daniel I

    2010-08-01

    This paper reports on the effects of environmental conditions and process parameters on flocculation of high dry matter (average DM of 7.3%) swine manure with cationic polymers with 10%, 35%, and 55% charge densities (CDs). Polymer solutions prepared with hard and distilled water allowed similar suspended solids (SS) reductions in the initial 24h. After 3-7 days at 20 degrees C, however, the efficiency of the hard water solutions started to decline, while the polymers made with distilled water maintained their performance for up to 10 days. The 10% CD polymer was considerably less affected than the 35% CD polymer by the age of the hard water solutions. During polymer injection, minimum velocity gradients (G) of 108 and 253 s(-1) were required to maximized efficiency of the 10% and 35% CD polymer, respectively. Flocculation mixing velocities up to 84 s(-1) and mixing times between 1 and 30 min had no effect on polymer efficiency. However, mixing at 22s(-1) for more than 30 min decreased SS reduction. Adding polymer in multiple injections did not improve the efficiency of medium and high CD polymers, and adversely affected that of the low CD polymer, maybe because of repeated rapid mixing cycles which ruptured the flocs. Polymer performance was not affected by operating temperature between 6 and 25 degrees C. These results were collected on a laboratory-scale apparatus and remain to be validated at larger scale. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  14. Microstructure based hygromechanical modelling of deformation of fruit tissue

    NASA Astrophysics Data System (ADS)

    Abera, M. K.; Wang, Z.; Verboven, P.; Nicolai, B.

    2017-10-01

    Quality parameters such as firmness and susceptibility to mechanical damage are affected by the mechanical properties of fruit tissue. Fruit tissue is composed of turgid cells that keep cell walls under tension, and intercellular gas spaces where cell walls of neighboring cells have separated. How the structure and properties of these complex microstructures are affecting tissue mechanics is difficult to unravel experimentally. In this contribution, a modelling methodology is presented to calculate the deformation of apple fruit tissue affected by differences in structure and properties of cells and cell walls. The model can be used to perform compression experiments in silico using a hygromechanical model that computes the stress development and water loss during tissue deformation, much like in an actual compression test. The advantage of the model is that properties and structure can be changed to test the influence on the mechanical deformation process. The effect of microstructure, turgor pressure, cell membrane permeability, wall thickness and damping) on the compressibility of the tissue was simulated. Increasing the turgor pressure and thickness of the cell walls results in increased compression resistance of apple tissue increases, as do decreasing cell size and porosity. Geometric variability of the microstructure of tissues plays a major role, affecting results more than other model parameters. Different fruit cultivars were compared, and it was demonstrated, that microstructure variations within a cultivar are so large that interpretation of cultivar-specific effects is difficult.

  15. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage

    PubMed Central

    Lobo, Elena; Dalling, James W.

    2014-01-01

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition. PMID:24452032

  16. Effects of rye inclusion in grower diets on immune competence-related parameters and performance in broilers.

    PubMed

    van Krimpen, M M; Torki, M; Schokker, D

    2017-09-01

    An experiment was conducted to investigate the effects of dietary inclusion of rye, a model ingredient to increase gut viscosity, between 14 and 28 d of age on immune competence-related parameters and performance of broilers. A total of 960 day-old male Ross 308 chicks were weighed and randomly allocated to 24 pens (40 birds per pen), and the birds in every 8 replicate pens were assigned to 1 of 3 experimental diets including graded levels, 0%, 5%, and 10% of rye. Tested immune competence-related parameters were composition of the intestinal microbiota, genes expression in gut tissue, and gut morphology. The inclusion of 5% or 10% rye in the diet (d 14 to 28) resulted in decreased performance and litter quality, but in increased villus height and crypt depth in the small intestine (jejunum) of the broilers. Relative bursa and spleen weights were not affected by dietary inclusion of rye. In the jejunum, no effects on number and size of goblet cells, and only trends on microbiota composition in the digesta were observed. Dietary inclusion of rye affected expression of genes involved in cell cycle processes of the jejunal enterocyte cells, thereby influencing cell growth, cell differentiation and cell survival, which in turn were consistent with the observed differences in the morphology of the gut wall. In addition, providing rye-rich diets to broilers affected the complement and coagulation pathways, which among others are parts of the innate immune system. These pathways are involved in eradicating invasive pathogens. Overall, it can be concluded that inclusion of 5% or 10% rye to the grower diet of broilers had limited effects on performance. Ileal gut morphology, microbiota composition of jejunal digesta, and gene expression profiles of jejunal tissue, however, were affected by dietary rye inclusion level, indicating that rye supplementation to broiler diets might affect immune competence of the birds. © 2017 Poultry Science Association Inc.

  17. Trophic transfer of essential elements in the clownfish Amphiprion ocellaris in the context of ocean acidification.

    PubMed

    Jacob, Hugo; Pouil, Simon; Lecchini, David; Oberhänsli, François; Swarzenski, Peter; Metian, Marc

    2017-01-01

    Little information exists on the effects of ocean acidification (OA) on the digestive and post-digestive processes in marine fish. Here, we investigated OA impacts (Δ pH = 0.5) on the trophic transfer of select trace elements in the clownfish Amphiprion ocellaris using radiotracer techniques. Assimilation efficiencies of three essential elements (Co, Mn and Zn) as well as their other short-term and long-term kinetic parameters in juvenile clownfish were not affected by this experimental pH change. In complement, their stomach pH during digestion were not affected by the variation in seawater pH. Such observations suggest that OA impacts do not affect element assimilation in these fish. This apparent pCO2 tolerance may imply that clownfish have the ability to self-regulate pH shifts in their digestive tract, or that they can metabolically accommodate such shifts. Such results are important to accurately assess future OA impacts on diverse marine biota, as such impacts are highly species specific, complex, and may be modulated by species-specific metabolic processes.

  18. Trophic transfer of essential elements in the clownfish Amphiprion ocellaris in the context of ocean acidification

    PubMed Central

    Pouil, Simon; Lecchini, David; Oberhänsli, François; Swarzenski, Peter; Metian, Marc

    2017-01-01

    Little information exists on the effects of ocean acidification (OA) on the digestive and post-digestive processes in marine fish. Here, we investigated OA impacts (Δ pH = 0.5) on the trophic transfer of select trace elements in the clownfish Amphiprion ocellaris using radiotracer techniques. Assimilation efficiencies of three essential elements (Co, Mn and Zn) as well as their other short-term and long-term kinetic parameters in juvenile clownfish were not affected by this experimental pH change. In complement, their stomach pH during digestion were not affected by the variation in seawater pH. Such observations suggest that OA impacts do not affect element assimilation in these fish. This apparent pCO2 tolerance may imply that clownfish have the ability to self-regulate pH shifts in their digestive tract, or that they can metabolically accommodate such shifts. Such results are important to accurately assess future OA impacts on diverse marine biota, as such impacts are highly species specific, complex, and may be modulated by species-specific metabolic processes. PMID:28399186

  19. Modeling the compliance of polyurethane nanofiber tubes for artificial common bile duct

    NASA Astrophysics Data System (ADS)

    Moazeni, Najmeh; Vadood, Morteza; Semnani, Dariush; Hasani, Hossein

    2018-02-01

    The common bile duct is one of the body’s most sensitive organs and a polyurethane nanofiber tube can be used as a prosthetic of the common bile duct. The compliance is one of the most important properties of prosthetic which should be adequately compliant as long as possible to keep the behavioral integrity of prosthetic. In the present paper, the prosthetic compliance was measured and modeled using regression method and artificial neural network (ANN) based on the electrospinning process parameters such as polymer concentration, voltage, tip-to-collector distance and flow rate. Whereas, the ANN model contains different parameters affecting on the prediction accuracy directly, the genetic algorithm (GA) was used to optimize the ANN parameters. Finally, it was observed that the optimized ANN model by GA can predict the compliance with high accuracy (mean absolute percentage error = 8.57%). Moreover, the contribution of variables on the compliance was investigated through relative importance analysis and the optimum values of parameters for ideal compliance were determined.

  20. Stochastic differential equation (SDE) model of opening gold share price of bursa saham malaysia

    NASA Astrophysics Data System (ADS)

    Hussin, F. N.; Rahman, H. A.; Bahar, A.

    2017-09-01

    Black and Scholes option pricing model is one of the most recognized stochastic differential equation model in mathematical finance. Two parameter estimation methods have been utilized for the Geometric Brownian model (GBM); historical and discrete method. The historical method is a statistical method which uses the property of independence and normality logarithmic return, giving out the simplest parameter estimation. Meanwhile, discrete method considers the function of density of transition from the process of diffusion normal log which has been derived from maximum likelihood method. These two methods are used to find the parameter estimates samples of Malaysians Gold Share Price data such as: Financial Times and Stock Exchange (FTSE) Bursa Malaysia Emas, and Financial Times and Stock Exchange (FTSE) Bursa Malaysia Emas Shariah. Modelling of gold share price is essential since fluctuation of gold affects worldwide economy nowadays, including Malaysia. It is found that discrete method gives the best parameter estimates than historical method due to the smallest Root Mean Square Error (RMSE) value.

  1. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2013-08-01

    In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  2. Dynamical investigation and parameter stability region analysis of a flywheel energy storage system in charging mode

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan

    2013-09-01

    In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.

  3. Meta 2: Lingua Franca Design and Integration Language

    DTIC Science & Technology

    2011-08-01

    the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of...buses must be powered in case of no more than 1 failure beyond the Minimum Equipment List (MEL – list of failure combinations that do not affect the...in real systems are rarely plain, but rather they are a complex logical combination of many factors and parameters. The specific processes that

  4. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  5. Photon energy lifter.

    PubMed

    Gaburro, Zeno; Ghulinyan, Mher; Riboli, Francesco; Pavesi, Lorenzo; Recati, Alessio; Carusotto, Iacopo

    2006-08-07

    We propose a time-dependent, spatially periodic photonic structure which is able to shift the carrier frequency of an optical pulse which propagates through it. Taking advantage of the slow group velocity of light in periodic photonic structures, the wavelength conversion process can be performed with an efficiency close to 1 and without affecting the shape and the coherence of the pulse. Quantitative Finite Difference Time Domain simulations are performed for realistic systems with optical parameters of conventional silicon technology.

  6. Mechanical Adaptivity as a Process: Implications to New Materials and Material System Design

    DTIC Science & Technology

    2012-08-01

    Deliver. Rev. 2004 Microactuators and valves Uses: • Drug delivery • Microfluidic actuators, valves , and pumps • Chemical and biological Sensors... paper where they did a study with f the stoichiometric parameter involved in the reduction step, and they looked at 2 X* - both far away from the...through strain? How do varying material properties affect behavior? Smith, Vaia et al. submitted 2012 23 Fibrous Paper Next Step: Heterogeneous

  7. Developing a Model for Predicting Snowpack Parameters Affecting Vehicle Mobility,

    DTIC Science & Technology

    1983-05-01

    Service River Forecast System -Snow accumulation and JO ablation model. NOAA Technical Memorandum NWS HYDRO-17, National Weather Service, JS Silver Spring... Forecast System . This model indexes each phys- ical process that occurs in the snowpack to the air temperature. Although this results in a signifi...pressure P Probability Q Energy Q Specific humidity R Precipitation s Snowfall depth T Air temperature t Time U Wind speed V Water vapor

  8. AmapSim: a structural whole-plant simulator based on botanical knowledge and designed to host external functional models.

    PubMed

    Barczi, Jean-François; Rey, Hervé; Caraglio, Yves; de Reffye, Philippe; Barthélémy, Daniel; Dong, Qiao Xue; Fourcaud, Thierry

    2008-05-01

    AmapSim is a tool that implements a structural plant growth model based on a botanical theory and simulates plant morphogenesis to produce accurate, complex and detailed plant architectures. This software is the result of more than a decade of research and development devoted to plant architecture. New advances in the software development have yielded plug-in external functions that open up the simulator to functional processes. The simulation of plant topology is based on the growth of a set of virtual buds whose activity is modelled using stochastic processes. The geometry of the resulting axes is modelled by simple descriptive functions. The potential growth of each bud is represented by means of a numerical value called physiological age, which controls the value for each parameter in the model. The set of possible values for physiological ages is called the reference axis. In order to mimic morphological and architectural metamorphosis, the value allocated for the physiological age of buds evolves along this reference axis according to an oriented finite state automaton whose occupation and transition law follows a semi-Markovian function. Simulations were performed on tomato plants to demonstrate how the AmapSim simulator can interface external modules, e.g. a GREENLAB growth model and a radiosity model. The algorithmic ability provided by AmapSim, e.g. the reference axis, enables unified control to be exercised over plant development parameter values, depending on the biological process target: how to affect the local pertinent process, i.e. the pertinent parameter(s), while keeping the rest unchanged. This opening up to external functions also offers a broadened field of applications and thus allows feedback between plant growth and the physical environment.

  9. AmapSim: A Structural Whole-plant Simulator Based on Botanical Knowledge and Designed to Host External Functional Models

    PubMed Central

    Barczi, Jean-François; Rey, Hervé; Caraglio, Yves; de Reffye, Philippe; Barthélémy, Daniel; Dong, Qiao Xue; Fourcaud, Thierry

    2008-01-01

    Background and Aims AmapSim is a tool that implements a structural plant growth model based on a botanical theory and simulates plant morphogenesis to produce accurate, complex and detailed plant architectures. This software is the result of more than a decade of research and development devoted to plant architecture. New advances in the software development have yielded plug-in external functions that open up the simulator to functional processes. Methods The simulation of plant topology is based on the growth of a set of virtual buds whose activity is modelled using stochastic processes. The geometry of the resulting axes is modelled by simple descriptive functions. The potential growth of each bud is represented by means of a numerical value called physiological age, which controls the value for each parameter in the model. The set of possible values for physiological ages is called the reference axis. In order to mimic morphological and architectural metamorphosis, the value allocated for the physiological age of buds evolves along this reference axis according to an oriented finite state automaton whose occupation and transition law follows a semi-Markovian function. Key Results Simulations were performed on tomato plants to demostrate how the AmapSim simulator can interface external modules, e.g. a GREENLAB growth model and a radiosity model. Conclusions The algorithmic ability provided by AmapSim, e.g. the reference axis, enables unified control to be exercised over plant development parameter values, depending on the biological process target: how to affect the local pertinent process, i.e. the pertinent parameter(s), while keeping the rest unchanged. This opening up to external functions also offers a broadened field of applications and thus allows feedback between plant growth and the physical environment. PMID:17766310

  10. The impact of radiation belts region on top side ionosphere condition during last solar minimum.

    NASA Astrophysics Data System (ADS)

    Rothkaehl, Hanna; Przepiórka, Dororta; Matyjasiak, Barbara

    2014-05-01

    The wave particle interactions in radiation belts region are one of the key parameters in understanding the global physical processes which govern the near Earth environment. The populations of outer radiation belts electrons increasing in response to changes in the solar wind and the interplanetary magnetic field, and decreasing as a result of scattering into the loss cone and subsequent absorption by the atmosphere. The most important question in relation to understanding the physical processes in radiation belts region relates to estimate the ratio between acceleration and loss processes. This can be also very useful for construct adequate models adopted in Space Weather program. Moreover the wave particle interaction in inner radiation zone and in outer radiation zone have significant influence on the space plasma property at ionospheric altitude. The aim of this presentation is to show the manifestation of radiation belts region at the top side ionosphere during the last long solar minimum. The presentation of longitude and seasonal changes of plasma parameters affected by process occurred in radiation belts region has been performed on the base of the DEMETER and COSMIC 3 satellite registration. This research is partly supported by grant O N517 418440

  11. Protonation linked equilibria and apparent affinity constants: the thermodynamic profile of the alpha-chymotrypsin-proflavin interaction.

    PubMed

    Bruylants, Gilles; Wintjens, René; Looze, Yvan; Redfield, Christina; Bartik, Kristin

    2007-12-01

    Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.

  12. Latent variable modeling to analyze the effects of process parameters on the dissolution of paracetamol tablet

    PubMed Central

    Sun, Fei; Xu, Bing; Zhang, Yi; Dai, Shengyun; Shi, Xinyuan; Qiao, Yanjiang

    2017-01-01

    ABSTRACT The dissolution is one of the critical quality attributes (CQAs) of oral solid dosage forms because it relates to the absorption of drug. In this paper, the influence of raw materials, granules and process parameters on the dissolution of paracetamol tablet was analyzed using latent variable modeling methods. The variability in raw materials and granules was understood based on the principle component analysis (PCA), respectively. A multi-block partial least squares (MBPLS) model was used to determine the critical factors affecting the dissolution. The results showed that the binder amount, the post granulation time, the API content in granule, the fill depth and the punch tip separation distance were the critical factors with variable importance in the projection (VIP) values larger than 1. The importance of each unit of the whole process was also ranked using the block importance in the projection (BIP) index. It was concluded that latent variable models (LVMs) were very useful tools to extract information from the available data and improve the understanding on dissolution behavior of paracetamol tablet. The obtained LVMs were also helpful to propose the process design space and to design control strategies in the further research. PMID:27689242

  13. Laser surface texturing for high control of interference fit joint load bearing

    NASA Astrophysics Data System (ADS)

    Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.

    2017-10-01

    Laser beams attract the attention of researchers, engineers and manufacturer as they can deliver high energy with finite controlled processing parameters and heat affected zone (HAZ) on almost all kind of materials [1-3]. Laser beams can be generated in the broad range of wavelengths, energies and beam modes in addition to the unique property of propagation in straight lines with less or negligible divergence [3]. These features made lasers preferential for metal treatment and surface modification over the conventional machining and heat treatment methods. Laser material forming and processing is prosperous and competitive because of its flexibility and the creation of new solutions and techniques [3-5]. This study is focused on the laser surface texture of 316L stainless steel pins for the application of interference fit, widely used in automotive and aerospace industry. The main laser processing parameters applied are the power, frequency and the overlapping laser beam scans. The produced samples were characterized by measuring the increase in the insertion diameter, insertion and removal force, surface morphology and cross section alteration and the modified layer chemical composition and residual stresses.

  14. Moringa oleifera-mediated coagulation of textile wastewater and its biodegradation using novel consortium-BBA grown on agricultural waste substratum.

    PubMed

    Bedekar, Priyanka A; Bhalkar, Bhumika N; Patil, Swapnil M; Govindwar, Sanjay P

    2016-10-01

    Generation of secondary sludge is a major concern of textile dye removal by coagulation process. Combinatorial coagulation-biodegradation treatment system has been found efficient in degradation of coagulated textile dye sludge. Moringa oleifera seed powder (700 mg L -1 ) was able to coagulate textile dyestuff from real textile wastewater with 98 % color removal. Novel consortium-BBA was found to decolorize coagulated dye sludge. Parameters that significantly affect coagulation process were optimized using response surface methodology. The bench-scale stirred tank reactor (50-L capacity) designed with optimized parameters for coagulation process could efficiently remove 98, 89, 78, and 67 % of American Dye Manufacturer's Institute (ADMI) in four repetitive cycles, respectively. Solid-state fermentation composting reactor designed to treat coagulated dye sludge showed 96 % removal of dye within 10 days. Coagulation of dyes from textile wastewater and degradation of coagulated dye sludge were confirmed by Fourier transform infrared spectroscopy (FTIR) analysis. Cell morphology assay, comet assay, and phytotoxicity confirmed the formation of less toxic products after coagulation and degradation mechanism.

  15. New model for colour kinetics of plum under infrared vacuum condition and microwave drying.

    PubMed

    Chayjan, Reza Amiri; Alaei, Behnam

    2016-01-01

    Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most important quality indices and plays a determinant role in consumer acceptability of food materials and the processing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness), a* (redness/greenness) and b* (yellowness/blueness) model, which is an international standard for color measurement developed by the Commission Internationale d'Eclairage (CIE). These values were also used to calculate total colour change (∆E), chroma, hue angle, and browning index (BI). A new model was used for mathematical modelling of colour change kinetics. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinetics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and microwave power for initial slow drying of plum slices and provided the desired results for colour change.

  16. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  17. The impact of temporal sampling resolution on parameter inference for biological transport models.

    PubMed

    Harrison, Jonathan U; Baker, Ruth E

    2018-06-25

    Imaging data has become an essential tool to explore key biological questions at various scales, for example the motile behaviour of bacteria or the transport of mRNA, and it has the potential to transform our understanding of important transport mechanisms. Often these imaging studies require us to compare biological species or mutants, and to do this we need to quantitatively characterise their behaviour. Mathematical models offer a quantitative description of a system that enables us to perform this comparison, but to relate mechanistic mathematical models to imaging data, we need to estimate their parameters. In this work we study how collecting data at different temporal resolutions impacts our ability to infer parameters of biological transport models; performing exact inference for simple velocity jump process models in a Bayesian framework. The question of how best to choose the frequency with which data is collected is prominent in a host of studies because the majority of imaging technologies place constraints on the frequency with which images can be taken, and the discrete nature of observations can introduce errors into parameter estimates. In this work, we mitigate such errors by formulating the velocity jump process model within a hidden states framework. This allows us to obtain estimates of the reorientation rate and noise amplitude for noisy observations of a simple velocity jump process. We demonstrate the sensitivity of these estimates to temporal variations in the sampling resolution and extent of measurement noise. We use our methodology to provide experimental guidelines for researchers aiming to characterise motile behaviour that can be described by a velocity jump process. In particular, we consider how experimental constraints resulting in a trade-off between temporal sampling resolution and observation noise may affect parameter estimates. Finally, we demonstrate the robustness of our methodology to model misspecification, and then apply our inference framework to a dataset that was generated with the aim of understanding the localization of RNA-protein complexes.

  18. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    NASA Astrophysics Data System (ADS)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  19. Predictive Modeling and Optimization of Vibration-assisted AFM Tip-based Nanomachining

    NASA Astrophysics Data System (ADS)

    Kong, Xiangcheng

    The tip-based vibration-assisted nanomachining process offers a low-cost, low-effort technique in fabricating nanometer scale 2D/3D structures in sub-100 nm regime. To understand its mechanism, as well as provide the guidelines for process planning and optimization, we have systematically studied this nanomachining technique in this work. To understand the mechanism of this nanomachining technique, we firstly analyzed the interaction between the AFM tip and the workpiece surface during the machining process. A 3D voxel-based numerical algorithm has been developed to calculate the material removal rate as well as the contact area between the AFM tip and the workpiece surface. As a critical factor to understand the mechanism of this nanomachining process, the cutting force has been analyzed and modeled. A semi-empirical model has been proposed by correlating the cutting force with the material removal rate, which was validated using experimental data from different machining conditions. With the understanding of its mechanism, we have developed guidelines for process planning of this nanomachining technique. To provide the guideline for parameter selection, the effect of machining parameters on the feature dimensions (depth and width) has been analyzed. Based on ANOVA test results, the feature width is only controlled by the XY vibration amplitude, while the feature depth is affected by several machining parameters such as setpoint force and feed rate. A semi-empirical model was first proposed to predict the machined feature depth under given machining condition. Then, to reduce the computation intensity, linear and nonlinear regression models were also proposed and validated using experimental data. Given the desired feature dimensions, feasible machining parameters could be provided using these predictive feature dimension models. As the tip wear is unavoidable during the machining process, the machining precision will gradually decrease. To maintain the machining quality, the guideline for when to change the tip should be provided. In this study, we have developed several metrics to detect tip wear, such as tip radius and the pull-off force. The effect of machining parameters on the tip wear rate has been studied using these metrics, and the machining distance before a tip must be changed has been modeled using these machining parameters. Finally, the optimization functions have been built for unit production time and unit production cost subject to realistic constraints, and the optimal machining parameters can be found by solving these functions.

  20. Misrepresentation of hydro-erosional processes in rainfall simulations using disturbed soil samples

    NASA Astrophysics Data System (ADS)

    Thomaz, Edivaldo L.; Pereira, Adalberto A.

    2017-06-01

    Interrill erosion is a primary soil erosion process which consists of soil detachment by raindrop impact and particle transport by shallow flow. Interill erosion affects other soil erosion sub-processes, e.g., water infiltration, sealing, crusting, and rill initiation. Interrill erosion has been widely studied in laboratories, and the use of a sieved soil, i.e., disturbed soil, has become a standard method in laboratory experiments. The aims of our study are to evaluate the hydro-erosional response of undisturbed and disturbed soils in a laboratory experiment, and to quantify the extent to which hydraulic variables change during a rainstorm. We used a splash pan of 0.3 m width, 0.45 m length, and 0.1 m depth. A rainfall simulation of 58 mm h- 1 lasting for 30 min was conducted on seven replicates of undisturbed and disturbed soils. During the experiment, several hydro-physical parameters were measured, including splashed sediment, mean particle size, runoff, water infiltration, and soil moisture. We conclude that use of disturbed soil samples results in overestimation of interrill processes. Of the nine assessed parameters, four displayed greater responses in the undisturbed soil: infiltration, topsoil shear strength, mean particle size of eroded particles, and soil moisture. In the disturbed soil, five assessed parameters displayed greater responses: wash sediment, final runoff coefficient, runoff, splash, and sediment yield. Therefore, contextual soil properties are most suitable for understanding soil erosion, as well as for defining soil erodibility.

  1. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  2. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations.

    PubMed

    Revilla, Eloy; Wiegand, Thorsten

    2008-12-09

    The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth-death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.

  3. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants.

    PubMed

    Pérez-Pérez, José Manuel; Rubio-Díaz, Silvia; Dhondt, Stijn; Hernández-Romero, Diana; Sánchez-Soriano, Joaquín; Beemster, Gerrit T S; Ponce, María Rosa; Micol, José Luis

    2011-12-01

    Despite the large number of genes known to affect leaf shape or size, we still have a relatively poor understanding of how leaf morphology is established. For example, little is known about how cell division and cell expansion are controlled and coordinated within a growing leaf to eventually develop into a laminar organ of a definite size. To obtain a global perspective of the cellular basis of variations in leaf morphology at the organ, tissue and cell levels, we studied a collection of 111 non-allelic mutants with abnormally shaped and/or sized leaves, which broadly represent the mutational variations in Arabidopsis thaliana leaf morphology not associated with lethality. We used image-processing techniques on these mutants to quantify morphological parameters running the gamut from the palisade mesophyll and epidermal cells to the venation, whole leaf and rosette levels. We found positive correlations between epidermal cell size and leaf area, which is consistent with long-standing Avery's hypothesis that the epidermis drives leaf growth. In addition, venation parameters were positively correlated with leaf area, suggesting that leaf growth and vein patterning share some genetic controls. Positional cloning of the genes affected by the studied mutations will eventually establish functional links between genotypes, molecular functions, cellular parameters and leaf phenotypes. © 2011 Blackwell Publishing Ltd.

  4. Predicted Infiltration for Sodic/Saline Soils from Reclaimed Coastal Areas: Sensitivity to Model Parameters

    PubMed Central

    She, Dongli; Yu, Shuang'en; Shao, Guangcheng

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm3. A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ 0 was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils. PMID:25197699

  5. Predicted infiltration for sodic/saline soils from reclaimed coastal areas: sensitivity to model parameters.

    PubMed

    Liu, Dongdong; She, Dongli; Yu, Shuang'en; Shao, Guangcheng; Chen, Dan

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm(3). A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ₀ was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils.

  6. Tailoring the Hydrothermal Synthesis of Stainless Steel Wire Sieve-Supported Ag-Doped ZnO Nanowires to Optimize Their Photo-catalytic Activity

    NASA Astrophysics Data System (ADS)

    Jing, W. X.; Shi, J. F.; Xu, Z. P.; Jiang, Z. D.; Wei, Z. Y.; Zhou, F.; Wu, Q.; Cui, Q. B.

    2018-03-01

    Batches of un-doped and Ag-doped ZnO nanowires (ZnONWs) were prepared hydrothermally on stainless steel wire sieves at varied Zn2+ concentrations of the growth solution and at different Ag+ concentrations of the silver nitrate solution. Methylene blue solution was degraded with these as-prepared ZnONWs in the presences of ultraviolet irradiation. It is found that both the processing parameters greatly affect the surface textures, wettability, and photo-activity of the ZnONWs. The latter synthesizing parameter is optimized only after the former one has been finely regulated. The un-doped and Ag-doped ZnONWs at Zn2+ concentration of 75 mM of the growth solution and at Ag+ concentration of3 mM of the silver nitrate solution both produce Gaussian rough surfaces and in each batch are most hydrophilic. Therefore, in the related batch the contacting surface area of the catalyst is the largest, the hydroxyl radicals attached on the top ends of corresponding ZnONWs the most, and the catalytic activity of these catalysts the optimal. Besides these, the latter synthesizing parameter affects the photo-activity of Ag-doped ZnONWs more significantly than the former one does that of un-doped ZnONWs.

  7. Evaluation of flip-flop jet nozzles for use as practical excitation devices

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.; Cornelius, David M.

    1994-01-01

    This paper describes the flowfield characteristics of the flip-flop jet nozzle and the potential for using this nozzle as a practical excitation device. It appears from the existing body of published information that there is a lack of data on the parameters affecting the operation of such nozzles and on the mechanism of operation of these nozzles. An attempt is made in the present work to study the important parameters affecting the operation and performance of a flip-flop jet nozzle. Measurements were carried out to systematically assess the effect of varying the nozzle pressure ratio (NPR) as well as the length and volume of the feedback tube on the frequency of oscillation of this device. Flow visualization was used to obtain a better understanding of the jet flowfield and of the processes occurring within the feedback tube. The frequency of oscillation of the flip-flop jet depended significantly on the feedback tube length and volume as well as on the nozzle pressure ratio. In contrast, the coherent velocity perturbation levels did not depend on the above mentioned parameters. The data presented in this paper would be useful for modeling such flip-flop excitation devices that are potentially useful for controlling practical shear flows.

  8. Capturing Context-Related Change in Emotional Dynamics via Fixed Moderated Time Series Analysis.

    PubMed

    Adolf, Janne K; Voelkle, Manuel C; Brose, Annette; Schmiedek, Florian

    2017-01-01

    Much of recent affect research relies on intensive longitudinal studies to assess daily emotional experiences. The resulting data are analyzed with dynamic models to capture regulatory processes involved in emotional functioning. Daily contexts, however, are commonly ignored. This may not only result in biased parameter estimates and wrong conclusions, but also ignores the opportunity to investigate contextual effects on emotional dynamics. With fixed moderated time series analysis, we present an approach that resolves this problem by estimating context-dependent change in dynamic parameters in single-subject time series models. The approach examines parameter changes of known shape and thus addresses the problem of observed intra-individual heterogeneity (e.g., changes in emotional dynamics due to observed changes in daily stress). In comparison to existing approaches to unobserved heterogeneity, model estimation is facilitated and different forms of change can readily be accommodated. We demonstrate the approach's viability given relatively short time series by means of a simulation study. In addition, we present an empirical application, targeting the joint dynamics of affect and stress and how these co-vary with daily events. We discuss potentials and limitations of the approach and close with an outlook on the broader implications for understanding emotional adaption and development.

  9. Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel

    NASA Astrophysics Data System (ADS)

    Xie, Yanmin

    2011-08-01

    Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.

  10. The interaction between short-term heat-treatment and the formability of an Al-Mg-Si alloy regarding deep drawing processes

    NASA Astrophysics Data System (ADS)

    Machhammer, M.; Sommitsch, C.

    2016-11-01

    Research conducted in recent years has shown that heat-treatable Al-Mg-Si alloys (6xxx) have great potential concerning the design of lightweight car bodies. Compared to conventional deep drawing steels the field of application is limited by a lower formability. In order to minimize the disadvantage of a lower drawability a short-term heat-treatment (SHT) can be applied before the forming process. The SHT, conducted in selected areas on the initial blank, leads to a local reduction of strength aiming at the decrease of critical stress during the deep drawing process. For the successful procedure of the SHT a solid knowledge about the crucial process parameters such as the design of the SHT layout, the SHT process time and the maximum SHT temperature are urgently required. It also should be noted that the storage time between the SHT and the forming processes affects the mechanical properties of the SHT area. In this paper, the effect of diverse SHT process parameters and various storage time-frames on the major and minor strain situation of a deep drawn part is discussed by the evaluation of the forming limit diagram. For the purpose of achieving short heating times and a homogenous temperature distribution a one side contact heating tool has been used for the heat treatment in this study.

  11. The effects of sleep deprivation on item and associative recognition memory.

    PubMed

    Ratcliff, Roger; Van Dongen, Hans P A

    2018-02-01

    Sleep deprivation adversely affects the ability to perform cognitive tasks, but theories range from predicting an overall decline in cognitive functioning because of reduced stability in attentional networks to specific deficits in various cognitive domains or processes. We measured the effects of sleep deprivation on two memory tasks, item recognition ("was this word in the list studied") and associative recognition ("were these two words studied in the same pair"). These tasks test memory for information encoded a few minutes earlier and so do not address effects of sleep deprivation on working memory or consolidation after sleep. A diffusion model was used to decompose accuracy and response time distributions to produce parameter estimates of components of cognitive processing. The model assumes that over time, noisy evidence from the task stimulus is accumulated to one of two decision criteria, and parameters governing this process are extracted and interpreted in terms of distinct cognitive processes. Results showed that sleep deprivation reduces drift rate (evidence used in the decision process), with little effect on the other components of the decision process. These results contrast with the effects of aging, which show little decline in item recognition but large declines in associative recognition. The results suggest that sleep deprivation degrades the quality of information stored in memory and that this may occur through degraded attentional processes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: Does gender matter?

    PubMed Central

    Crozier, Joseph C.; Wang, Lihong; Huettel, Scott A.; De Bellis, Michael D.

    2014-01-01

    We investigated the relationship of gender to cognitive and affective processing in maltreated youth with posttraumatic stress disorder (PTSD) symptoms using functional magnetic resonance imaging. Maltreated (N=29; n=13 females, n=16 males) and non-maltreated participants (N=45; n=26 females, n=19 males) performed an emotional oddball task that involved detection of targets with fear or scrambled face distractors. Results were moderated by gender. During the executive component of this task, left precuneus/posterior middle cingulate hypoactivation to fear versus calm or scrambled face targets were seen in maltreated versus control males and may represent dysfunction and less resilience in attentional networks. Maltreated males also showed decreased activation in the inferior frontal gyrus compared to control males. No differences were found in females. Posterior cingulate activations positively correlated with PTSD symptoms. While viewing fear faces, maltreated females exhibited decreased activity in dorsomedial prefrontal cortex and cerebellum I–VI; whereas maltreated males exhibited increased activity in left hippocampus, fusiform cortex, right cerebellar crus I, and visual cortex compared to their same gender controls. Gender by maltreatment effects were not attributable to demographic, clinical, or maltreatment parameters. Maltreated girls and boys exhibited distinct patterns of neural activations during executive and affective processing, a new finding in the maltreatment literature. PMID:24621958

  13. Neural correlates of cognitive and affective processing in maltreated youth with posttraumatic stress symptoms: does gender matter?

    PubMed

    Crozier, Joseph C; Wang, Lihong; Huettel, Scott A; De Bellis, Michael D

    2014-05-01

    We investigated the relationship of gender to cognitive and affective processing in maltreated youth with posttraumatic stress disorder symptoms using functional magnetic resonance imaging. Maltreated (N = 29, 13 females, 16 males) and nonmaltreated participants (N = 45, 26 females, 19 males) performed an emotional oddball task that involved detection of targets with fear or scrambled face distractors. Results were moderated by gender. During the executive component of this task, left precuneus/posterior middle cingulate hypoactivation to fear versus calm or scrambled face targets were seen in maltreated versus control males and may represent dysfunction and less resilience in attentional networks. Maltreated males also showed decreased activation in the inferior frontal gyrus compared to control males. No differences were found in females. Posterior cingulate activations positively correlated with posttraumatic stress disorder symptoms. While viewing fear faces, maltreated females exhibited decreased activity in the dorsomedial prefrontal cortex and cerebellum I-VI, whereas maltreated males exhibited increased activity in the left hippocampus, fusiform cortex, right cerebellar crus I, and visual cortex compared to their same-gender controls. Gender by maltreatment effects were not attributable to demographic, clinical, or maltreatment parameters. Maltreated girls and boys exhibited distinct patterns of neural activations during executive and affective processing, a new finding in the maltreatment literature.

  14. Assessment of ECG and respiration recordings from simulated emergency landings of ultra light aircraft.

    PubMed

    Bruna, Ondřej; Levora, Tomáš; Holub, Jan

    2018-05-08

    Pilots of ultra light aircraft have limited training resources, but with the use of low cost simulators it might be possible to train and test some parts of their training on the ground. The purpose of this paper is to examine possibility of stress inducement on a low cost flight simulator. Stress is assessed from electrocardiogram and respiration. Engine failure during flight served as a stress inducement stimuli. For one flight, pilots had access to an emergency navigation system. There were recorded some statistically significant changes in parameters regarding breathing frequency. Although no significant change was observed in ECG parameters, there appears to be an effect on respiration parameters. Physiological signals processed with analysis of variance suggest, that the moment of engine failure and approach for landing affected average breathing frequency. Presence of navigation interface does not appear to have a significant effect on pilots.

  15. An open circuit voltage decay system for performing injection dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Lacouture, Shelby; Schrock, James; Hirsch, Emily; Bayne, Stephen; O'Brien, Heather; Ogunniyi, Aderinto A.

    2017-09-01

    Of all of the material parameters associated with a semiconductor, the carrier lifetime is by far the most complex and dynamic, being a function of the dominant recombination mechanism, the equilibrium number of carriers, the perturbations in carriers (e.g., carrier injection), and the temperature, to name the most prominent variables. The carrier lifetime is one of the most important parameters in bipolar devices, greatly affecting conductivity modulation, on-state voltage, and reverse recovery. Carrier lifetime is also a useful metric for device fabrication process control and material quality. As it is such a dynamic quantity, carrier lifetime cannot be quoted in a general range such as mobility; it must be measured. The following describes a stand-alone, wide-injection range open circuit voltage decay system with unique lifetime extraction algorithms. The system is initially used along with various lifetime spectroscopy techniques to extract fundamental recombination parameters from a commercial high-voltage PIN diode.

  16. Powder properties and compaction parameters that influence punch sticking propensity of pharmaceuticals.

    PubMed

    Paul, Shubhajit; Taylor, Lisa J; Murphy, Brendan; Krzyzaniak, Joseph F; Dawson, Neil; Mullarney, Matthew P; Meenan, Paul; Sun, Changquan Calvin

    2017-04-15

    Punch sticking is a frequently occurring problem that challenges successful tablet manufacturing. A mechanistic understanding of the punch sticking phenomenon facilitates the design of effective strategies to solve punch sticking problems of a drug. The first step in this effort is to identify process parameters and particle properties that can profoundly affect sticking performance. This work was aimed at elucidating the key material properties and compaction parameters that influence punch sticking by statistically analyzing punch sticking data of 24 chemically diverse compounds obtained using a set of tooling with removable upper punch tip. Partial least square (PLS) analysis of the data revealed that particle surface area and tablet tensile strength are the most significant factors attributed to punch sticking. Die-wall pressure, ejection force, and take-off force also correlate with sticking, but to a lesser extent. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Identification and stochastic control of helicopter dynamic modes

    NASA Technical Reports Server (NTRS)

    Molusis, J. A.; Bar-Shalom, Y.

    1983-01-01

    A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.

  18. Effects of Nongray Opacity on Radiatively Driven Wolf-Rayet Winds

    NASA Astrophysics Data System (ADS)

    Onifer, A. J.; Gayley, K. G.

    2002-05-01

    Wolf-Rayet winds are characterized by their large momentum fluxes, and simulations of radiation driving have been increasingly successful in modeling these winds. Simple analytic approaches that help understand the most critical processes for copious momentum deposition already exist in the effectively gray approximation, but these have not been extended to more realistic nongray opacities. With this in mind, we have developed a simplified theory for describing the interaction of the stellar flux with nongray wind opacity. We replace the detailed line list with a set of statistical parameters that are sensitive not only to the strength but also the wavelength distribution of lines, incorporating as a free parameter the rate of photon frequency redistribution. We label the resulting flux-weighted opacity the statistical Sobolev- Rosseland (SSR) mean, and explore how changing these various statistical parameters affects the flux/opacity interaction. We wish to acknowledge NSF grant AST-0098155

  19. Automatic Sleep Stage Determination by Multi-Valued Decision Making Based on Conditional Probability with Optimal Parameters

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Sugi, Takenao; Wang, Xingyu; Nakamura, Masatoshi

    Data for human sleep study may be affected by internal and external influences. The recorded sleep data contains complex and stochastic factors, which increase the difficulties for the computerized sleep stage determination techniques to be applied for clinical practice. The aim of this study is to develop an automatic sleep stage determination system which is optimized for variable sleep data. The main methodology includes two modules: expert knowledge database construction and automatic sleep stage determination. Visual inspection by a qualified clinician is utilized to obtain the probability density function of parameters during the learning process of expert knowledge database construction. Parameter selection is introduced in order to make the algorithm flexible. Automatic sleep stage determination is manipulated based on conditional probability. The result showed close agreement comparing with the visual inspection by clinician. The developed system can meet the customized requirements in hospitals and institutions.

  20. Parameter Estimation and Image Reconstruction of Rotating Targets with Vibrating Interference in the Terahertz Band

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Deng, Bin; Wang, Hongqiang; Qin, Yuliang

    2017-07-01

    Rotation is one of the typical micro-motions of radar targets. In many cases, rotation of the targets is always accompanied with vibrating interference, and it will significantly affect the parameter estimation and imaging, especially in the terahertz band. In this paper, we propose a parameter estimation method and an image reconstruction method based on the inverse Radon transform, the time-frequency analysis, and its inverse. The method can separate and estimate the rotating Doppler and the vibrating Doppler simultaneously and can obtain high-quality reconstructed images after vibration compensation. In addition, a 322-GHz radar system and a 25-GHz commercial radar are introduced and experiments on rotating corner reflectors are carried out in this paper. The results of the simulation and experiments verify the validity of the methods, which lay a foundation for the practical processing of the terahertz radar.

  1. Design of a gap tunable flux qubit with FastHenry

    NASA Astrophysics Data System (ADS)

    Akhtar, Naheed; Zheng, Yarui; Nazir, Mudassar; Wu, Yulin; Deng, Hui; Zheng, Dongning; Zhu, Xiaobo

    2016-12-01

    In the preparations of superconducting qubits, circuit design is a vital process because the parameters and layout of the circuit not only determine the way we address the qubits, but also strongly affect the qubit coherence properties. One of the most important circuit parameters, which needs to be carefully designed, is the mutual inductance among different parts of a superconducting circuit. In this paper we demonstrate how to design a gap-tunable flux qubit by layout design and inductance extraction using a fast field solver FastHenry. The energy spectrum of the gap-tunable flux qubit shows that the measured parameters are close to the design values. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374344, 11404386, and 91321208), the National Basic Research Program of China (Grant No. 2014CB921401), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07010300).

  2. Prediction of laser cutting heat affected zone by extreme learning machine

    NASA Astrophysics Data System (ADS)

    Anicic, Obrad; Jović, Srđan; Skrijelj, Hivzo; Nedić, Bogdan

    2017-01-01

    Heat affected zone (HAZ) of the laser cutting process may be developed based on combination of different factors. In this investigation the HAZ forecasting, based on the different laser cutting parameters, was analyzed. The main goal was to predict the HAZ according to three inputs. The purpose of this research was to develop and apply the Extreme Learning Machine (ELM) to predict the HAZ. The ELM results were compared with genetic programming (GP) and artificial neural network (ANN). The reliability of the computational models were accessed based on simulation results and by using several statistical indicators. Based upon simulation results, it was demonstrated that ELM can be utilized effectively in applications of HAZ forecasting.

  3. Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters

    NASA Astrophysics Data System (ADS)

    Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai

    2016-04-01

    Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion

  4. Morphological parameters for implantation of the screwless spring loop dynamic posterior spinous process stabilizing system.

    PubMed

    Song, Geun Soo; Lee, Yeon Soo

    2015-07-01

    This study aimed to quantify morphological characteristics of the posterior lumbar spinous process, which may affect stable implantation of screwless wire spring loops. Virtual implantations of a screwless wire spring loop onto pairs of lumbar spinous processes were performed for computed tomography (CT)-derived three-dimensional vertebral models of 40 Korean subjects. Morphological parameters of lumbar vertebrae 1 through 5 (L1-L5) were measured with regard to bone-implant interference. In males, the transspinous process fixation lengths decreased from 57.8±3.0mm to 48.8±3.2mm as the lumbar joints descend from L1-L2 to L4-L5, with those in females about 4.1±0.4mm shorter (p<0.05) than in males through all lumbar joints. The fixation angle on the sagittal plane varied from 105.0° to 101.3° relative to the transverse plane as the vertebrae descend. The clenched thickness in females was the least (6.7±1.2mm) for the L2 lower spinous process and the greatest (8.1±2.2mm) for the L4 upper spinous process; this was 1.0±10.3mm less than that for males at corresponding levels (p>0.05). The ratio of the spinous process clenched thickness to the transspinous fixation length increased from 0.133±0.016 to 0.196±0.076 for the upper spinous processes as the lumbar joints descend. The ratio of the spinous process clenched thickness to the transspinous fixation length varies, depending on gender and whether the clenched level is the upper or lower spinous process. These parameters related to the clenching fixation stability should be considered in development and implantations of the screwless wire spring loop. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality.

    PubMed

    Waters, Deborah M; Arendt, Elke K; Moroni, Alice V

    2017-01-22

    Quality of coffee is a complex trait and is influenced by physical and sensory parameters. A complex succession of transformations during the processing of seeds to roasted coffee will inevitably influence the in-cup attributes of coffee. Germination and fermentation of the beans are two bioprocesses that take place during post-harvest treatment, and may lead to significant modifications of coffee attributes. The aim of this review is to address the current knowledge of dynamics of these two processes and their significance for bean modifications and coffee quality. The first part of this review gives an overview of coffee germination and its influence on coffee chemistry and quality. The germination process initiates while these non-orthodox seeds are still inside the cherry. This process is asynchronous and the evolution of germination depends on how the beans are processed. A range of metabolic reactions takes place during germination and can influence the carbohydrate, protein, and lipid composition of the beans. The second part of this review focuses on the microbiota associated with the beans during post-harvesting, exploring its effects on coffee quality and safety. The microbiota associated with the coffee cherries and beans comprise several bacterial, yeast, and fungal species and affects the processing from cherries to coffee beans. Indigenous bacteria and yeasts play a role in the degradation of pulp/mucilage, and their metabolism can affect the sensory attributes of coffee. On the other hand, the fungal population occurring during post-harvest and storage negatively affects coffee quality, especially regarding spoilage, off-tastes, and mycotoxin production.

  6. Towards robust quantification and reduction of uncertainty in hydrologic predictions: Integration of particle Markov chain Monte Carlo and factorial polynomial chaos expansion

    NASA Astrophysics Data System (ADS)

    Wang, S.; Huang, G. H.; Baetz, B. W.; Ancell, B. C.

    2017-05-01

    The particle filtering techniques have been receiving increasing attention from the hydrologic community due to its ability to properly estimate model parameters and states of nonlinear and non-Gaussian systems. To facilitate a robust quantification of uncertainty in hydrologic predictions, it is necessary to explicitly examine the forward propagation and evolution of parameter uncertainties and their interactions that affect the predictive performance. This paper presents a unified probabilistic framework that merges the strengths of particle Markov chain Monte Carlo (PMCMC) and factorial polynomial chaos expansion (FPCE) algorithms to robustly quantify and reduce uncertainties in hydrologic predictions. A Gaussian anamorphosis technique is used to establish a seamless bridge between the data assimilation using the PMCMC and the uncertainty propagation using the FPCE through a straightforward transformation of posterior distributions of model parameters. The unified probabilistic framework is applied to the Xiangxi River watershed of the Three Gorges Reservoir (TGR) region in China to demonstrate its validity and applicability. Results reveal that the degree of spatial variability of soil moisture capacity is the most identifiable model parameter with the fastest convergence through the streamflow assimilation process. The potential interaction between the spatial variability in soil moisture conditions and the maximum soil moisture capacity has the most significant effect on the performance of streamflow predictions. In addition, parameter sensitivities and interactions vary in magnitude and direction over time due to temporal and spatial dynamics of hydrologic processes.

  7. Preliminary Results of Cleaning Process for Lubricant Contamination

    NASA Astrophysics Data System (ADS)

    Eisenmann, D.; Brasche, L.; Lopez, R.

    2006-03-01

    Fluorescent penetrant inspection (FPI) is widely used for aviation and other components for surface-breaking crack detection. As with all inspection methods, adherence to the process parameters is critical to the successful detection of defects. Prior to FPI, components are cleaned using a variety of cleaning methods which are selected based on the alloy and the soil types which must be removed. It is also important that the cleaning process not adversely affect the FPI process. There are a variety of lubricants and surface coatings used in the aviation industry which must be removed prior to FPI. To assess the effectiveness of typical cleaning processes on removal of these contaminants, a study was initiated at an airline overhaul facility. Initial results of the cleaning study for lubricant contamination in nickel, titanium and aluminum alloys will be presented.

  8. Influence of processing conditions on apparent viscosity and system parameters during extrusion of distiller's dried grains-based snacks.

    PubMed

    Singha, Poonam; Muthukumarappan, Kasiviswanathan; Krishnan, Padmanaban

    2018-01-01

    A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase in apparent viscosity, SME and torque. FDDG had no significant effect (p > .5) on mass flow rate. SME also increased with increase in the screw speed which could be due to the higher shear rates at higher screw speeds. Screw speed and moisture content had significant negative effect ( p  <   .05) on the torque. The apparent viscosity of dough inside the extruder and the system parameters were affected by the processing conditions. This study will be useful for control of extrusion process of blends containing these ingredients for the development of high-protein high-fiber extruded snacks.

  9. Statistical Study to Evaluate the Effect of Processing Variables on Shrinkage Incidence During Solidification of Nodular Cast Irons

    NASA Astrophysics Data System (ADS)

    Gutiérrez, J. M.; Natxiondo, A.; Nieves, J.; Zabala, A.; Sertucha, J.

    2017-04-01

    The study of shrinkage incidence variations in nodular cast irons is an important aspect of manufacturing processes. These variations change the feeding requirements on castings and the optimization of risers' size is consequently affected when avoiding the formation of shrinkage defects. The effect of a number of processing variables on the shrinkage size has been studied using a layout specifically designed for this purpose. The β parameter has been defined as the relative volume reduction from the pouring temperature up to the room temperature. It is observed that shrinkage size and β decrease as effective carbon content increases and when inoculant is added in the pouring stream. A similar effect is found when the parameters selected from cooling curves show high graphite nucleation during solidification of cast irons for a given inoculation level. Pearson statistical analysis has been used to analyze the correlations among all involved variables and a group of Bayesian networks have been subsequently built so as to get the best accurate model for predicting β as a function of the input processing variables. The developed models can be used in foundry plants to study the shrinkage incidence variations in the manufacturing process and to optimize the related costs.

  10. Control of Chemical Effects in the Separation Process of a Differential Mobility / Mass Spectrometer System

    PubMed Central

    Schneider, Bradley B.; Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.

    2013-01-01

    Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure. PMID:20065515

  11. Effect of Spray Particle Velocity on Cavitation Erosion Resistance Characteristics of HVOF and HVAF Processed 86WC-10Co4Cr Hydro Turbine Coatings

    NASA Astrophysics Data System (ADS)

    Kumar, R. K.; Kamaraj, M.; Seetharamu, S.; Pramod, T.; Sampathkumaran, P.

    2016-08-01

    The hydro plants utilizing silt-laden water for power generation suffer from severe metal wastage due to particle-induced erosion and cavitation. High-velocity oxy-fuel process (HVOF)-based coatings is widely applied to improve the erosion life. The process parameters such as particle velocity, size, powder feed rate, temperature, affect their mechanical properties. The high-velocity air fuel (HVAF) technology, with higher particle velocities and lower spray temperatures, gives dense and substantially nonoxidized coating. In the present study, the cavitation resistance of 86WC-10Co4Cr-type HVOF coating processed at 680 m/s spray particle velocity was compared with HVAF coatings made at 895, 960, and 1010 m/s. The properties such as porosity, hardness, indentation toughness, and cavitation resistance were investigated. The surface damage morphology has been analyzed in SEM. The cohesion between different layers has been examined qualitatively through scratch depth measurements across the cross section. The HVAF coatings have shown a lower porosity, higher hardness, and superior cavitation resistance. Delamination, extensive cracking of the matrix interface, and detachment of the WC grains were observed in HVOF coating. The rate of metal loss is low in HVAF coatings implying that process parameters play a vital role in achieving improved cavitation resistance.

  12. Formability behavior studies on CP-Al sheets processed through the helical tool path of incremental forming process

    NASA Astrophysics Data System (ADS)

    Markanday, H.; Nagarajan, D.

    2018-02-01

    Incremental sheet forming (ISF) is a novel die-less sheet metal forming process, which can produce components directly from the CAD geometry using a CNC milling machine at less production time and cost. The formability of the sheet material used is greatly affected by the process parameters involved and tool path adopted, and the present study is aimed to investigate the influence of different process parameter values using the helical tool path strategy on the formability of a commercial pure Al and to achieve maximum formability in the material. ISF experiments for producing an 80 mm diameter axisymmetric dome were carried out on 2 mm thickness commercially pure Al sheets for different tool speeds and feed rates in a CNC milling machine with a 10 mm hemispherical forming tool. The obtained parts were analyzed for springback, amount of thinning and maximum forming depth. The results showed that when the tool speed was increased by keeping the feed rate constant, the forming depth and thinning were also increased. On contrary, when the feed rate was increased by keeping the tool speed constant, the forming depth and thinning were decreased. Springback was found to be higher when the feed rate was increased rather than the tool speed was increased.

  13. Novel Online Diagnostic Analysis for In-Flight Particle Properties in Cold Spraying

    NASA Astrophysics Data System (ADS)

    Koivuluoto, Heli; Matikainen, Ville; Larjo, Jussi; Vuoristo, Petri

    2018-02-01

    In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.

  14. Modelling of fluoride removal via batch monopolar electrocoagulation process using aluminium electrodes

    NASA Astrophysics Data System (ADS)

    Amri, N.; Hashim, M. I.; Ismail, N.; Rohman, F. S.; Bashah, N. A. A.

    2017-09-01

    Electrocoagulation (EC) is a promising technology that extensively used to remove fluoride ions efficiently from industrial wastewater. However, it has received very little consideration and understanding on mechanism and factors that affecting the fluoride removal process. In order to determine the efficiency of fluoride removal in EC process, the effect of operating parameters such as voltage and electrolysis time were investigated in this study. A batch experiment with monopolar aluminium electrodes was conducted to identify the model of fluoride removal using empirical model equation. The EC process was investigated using several parameters which include voltage (3 - 12 V) and electrolysis time (0 - 60 minutes) at a constant initial fluoride concentration of 25 mg/L. The result shows that the fluoride removal efficiency increased steadily with increasing voltage and electrolysis time. The best fluoride removal efficiency was obtained with 94.8 % removal at 25 mg/L initial fluoride concentration, voltage of 12 V and 60 minutes electrolysis time. The results indicated that the rate constant, k and number of order, n decreased as the voltage increased. The rate of fluoride removal model was developed based on the empirical model equation using the correlation of k and n. Overall, the result showed that EC process can be considered as a potential alternative technology for fluoride removal in wastewater.

  15. Does river restoration affect diurnal and seasonal changes to surface water quality? A study along the Thur River, Switzerland.

    PubMed

    Chittoor Viswanathan, Vidhya; Molson, John; Schirmer, Mario

    2015-11-01

    Changes in river water quality were investigated along the lower reach of the Thur River, Switzerland, following river restoration and a summer storm event. River restoration and hydrological storm events can each cause dramatic changes to water quality by affecting various bio-geochemical processes in the river, but have to date not been well documented, especially in combination. Evaluating the success of river restoration is often restricted in large catchments due to a lack of high frequency water quality data, which are needed for process understanding. These challenges were addressed in this study by measuring water quality parameters including dissolved oxygen (DO), temperature, pH, electrical conductivity (EC), nitrate and dissolved organic carbon (DOC) with a high temporal frequency (15 min-1h) over selected time scales. In addition, the stable isotopes of water (δD and δ(18)O-H2O) as well as those of nitrate (δ(15)N-NO3(-) and δ(18)O-NO3(-)) were measured to follow changes in water quality in response to the hydrological changes in the river. To compare the spatial distribution of pre- and post-restoration water quality, the sampling stations were chosen upstream and downstream of the restored section. The diurnal and seasonal changes were monitored by conducting 24-hour campaigns in three seasons (winter, summer and autumn) in 2012 and 2013. The amplitude of the diurnal changes of the various observed parameters showed significant seasonal and spatial variability. Biological processes--mainly photosynthesis and respiration--were found to be the major drivers of these diurnal cycles. During low flow in autumn, a reduction of nitrate (attributed to assimilation by autotrophs) in the pre-dawn period and a production of DOC during the daytime (attributed to photosynthesis) were observed downstream of the restored site. Further, a summer storm event was found to override the influence of these biological processes that control the diurnal changes. High frequency daily monitoring of key water quality parameters over different seasons is shown to be essential in evaluating river restoration success. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  17. Development of a simulation environment to support intercalibration studies over the Algodones Dunes system

    NASA Astrophysics Data System (ADS)

    Eon, Rehman S.; Gerace, Aaron D.; Montanaro, Matthew; Ambeau, Brittany L.; McCorkel, Joel T.

    2018-01-01

    The ability of sensors to detect changes in the Earth's environment is dependent on retrieving radiometrically consistent and calibrated measurements from its surface. Intercalibration provides consistency among satellite instruments and ensures fidelity of scientific information. Intercalibration is especially important for spaceborne satellites without any on-board calibration, as accuracy of instruments is significantly affected by changes that occur postlaunch. To better understand the key parameters that impact the intercalibration process, this paper describes a simulation environment that was developed to support the primary mission of the Algodones Dunes campaign. Specifically, measurements obtained from the campaign were utilized to create a synthetic landscape to assess the feasibility of using the Algodones Dunes system as an intercalibration site for spaceborne instruments. The impact of two key parameters (differing view-angles and temporal offsets between instruments) on the intercalibration process was assessed. Results of these studies indicate that although the accuracy of intercalibration is sensitive to these parameters, proper knowledge of their impact leads to situations that minimize their effect. This paper concludes with a case study that addresses the feasibility of performing intercalibration on the International Space Station's platform to support NASA's CLARREO, the climate absolute radiance and refractivity observatory, mission.

  18. Physical properties and microstructure study of stainless steel 316L alloy fabricated by selective laser melting

    NASA Astrophysics Data System (ADS)

    Islam, Nurul Kamariah Md Saiful; Harun, Wan Sharuzi Wan; Ghani, Saiful Anwar Che; Omar, Mohd Asnawi; Ramli, Mohd Hazlen; Ismail, Muhammad Hussain

    2017-12-01

    Selective Laser Melting (SLM) demonstrates the 21st century's manufacturing infrastructure in which powdered raw material is melted by a high energy focused laser, and built up layer-by-layer until it forms three-dimensional metal parts. SLM process involves a variation of process parameters which affects the final material properties. 316L stainless steel compacts through the manipulation of building orientation and powder layer thickness parameters were manufactured by SLM. The effect of the manipulated parameters on the relative density and dimensional accuracy of the 316L stainless steel compacts, which were in the as-build condition, were experimented and analysed. The relationship between the microstructures and the physical properties of fabricated 316L stainless steel compacts was investigated in this study. The results revealed that 90° building orientation has higher relative density and dimensional accuracy than 0° building orientation. Building orientation was found to give more significant effect in terms of dimensional accuracy, and relative density of SLM compacts compare to build layer thickness. Nevertheless, the existence of large number and sizes of pores greatly influences the low performances of the density.

  19. Effect of roll compaction on granule size distribution of microcrystalline cellulose–mannitol mixtures: computational intelligence modeling and parametric analysis

    PubMed Central

    Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander

    2017-01-01

    Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905

  20. Effect of roll compaction on granule size distribution of microcrystalline cellulose-mannitol mixtures: computational intelligence modeling and parametric analysis.

    PubMed

    Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander

    2017-01-01

    Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.

Top