Intelligent methods for the process parameter determination of plastic injection molding
NASA Astrophysics Data System (ADS)
Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn
2018-03-01
Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.
A concept of volume rendering guided search process to analyze medical data set.
Zhou, Jianlong; Xiao, Chun; Wang, Zhiyan; Takatsuka, Masahiro
2008-03-01
This paper firstly presents an approach of parallel coordinates based parameter control panel (PCP). The PCP is used to control parameters of focal region-based volume rendering (FRVR) during data analysis. It uses a parallel coordinates style interface. Different rendering parameters represented with nodes on each axis, and renditions based on related parameters are connected using polylines to show dependencies between renditions and parameters. Based on the PCP, a concept of volume rendering guided search process is proposed. The search pipeline is divided into four phases. Different parameters of FRVR are recorded and modulated in the PCP during search phases. The concept shows that volume visualization could play the role of guiding a search process in the rendition space to help users to efficiently find local structures of interest. The usability of the proposed approach is evaluated to show its effectiveness.
Integrated controls design optimization
Lou, Xinsheng; Neuschaefer, Carl H.
2015-09-01
A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.
Real-time parameter optimization based on neural network for smart injection molding
NASA Astrophysics Data System (ADS)
Lee, H.; Liau, Y.; Ryu, K.
2018-03-01
The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.
Mining manufacturing data for discovery of high productivity process characteristics.
Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou
2010-06-01
Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.
Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model
NASA Astrophysics Data System (ADS)
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2014-02-01
Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can be successfully applied to process-based models of high complexity. The methodology is particularly suitable for heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models.
NASA Astrophysics Data System (ADS)
Qian, Xiaoshan
2018-01-01
The traditional model of evaporation process parameters have continuity and cumulative characteristics of the prediction error larger issues, based on the basis of the process proposed an adaptive particle swarm neural network forecasting method parameters established on the autoregressive moving average (ARMA) error correction procedure compensated prediction model to predict the results of the neural network to improve prediction accuracy. Taking a alumina plant evaporation process to analyze production data validation, and compared with the traditional model, the new model prediction accuracy greatly improved, can be used to predict the dynamic process of evaporation of sodium aluminate solution components.
[Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].
Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin
2017-07-01
In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob; Yan, Jerry C. (Technical Monitor)
2000-01-01
The creation of parameter study suites has recently become a more challenging problem as the parameter studies have now become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are now seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers great resource opportunity but at the expense of great difficulty of use. We present an approach to this problem which stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.
Effect of processing parameters on FDM process
NASA Astrophysics Data System (ADS)
Chari, V. Srinivasa; Venkatesh, P. R.; Krupashankar, Dinesh, Veena
2018-04-01
This paper focused on the process parameters on fused deposition modeling (FDM). Infill, resolution, temperature are the process variables considered for experimental studies. Compression strength, Hardness test microstructure are the outcome parameters, this experimental study done based on the taguchi's L9 orthogonal array is used. Taguchi array used to build the 9 different models and also to get the effective output results on the under taken parameters. The material used for this experimental study is Polylactic Acid (PLA).
Singh, Tarini; Laub, Ruth; Burgard, Jan Pablo; Frings, Christian
2018-05-01
Selective attention refers to the ability to selectively act upon relevant information at the expense of irrelevant information. Yet, in many experimental tasks, what happens to the representation of the irrelevant information is still debated. Typically, 2 approaches to distractor processing have been suggested, namely distractor inhibition and distractor-based retrieval. However, it is also typical that both processes are hard to disentangle. For instance, in the negative priming literature (for a review Frings, Schneider, & Fox, 2015) this has been a continuous debate since the early 1980s. In the present study, we attempted to prove that both processes exist, but that they reflect distractor processing at different levels of representation. Distractor inhibition impacts stimulus representation, whereas distractor-based retrieval impacts mainly motor processes. We investigated both processes in a distractor-priming task, which enables an independent measurement of both processes. For our argument that both processes impact different levels of distractor representation, we estimated the exponential parameter (τ) and Gaussian components (μ, σ) of the exponential Gaussian reaction-time (RT) distribution, which have previously been used to independently test the effects of cognitive and motor processes (e.g., Moutsopoulou & Waszak, 2012). The distractor-based retrieval effect was evident for the Gaussian component, which is typically discussed as reflecting motor processes, but not for the exponential parameter, whereas the inhibition component was evident for the exponential parameter, which is typically discussed as reflecting cognitive processes, but not for the Gaussian parameter. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Ocylok, Sörn; Alexeev, Eugen; Mann, Stefan; Weisheit, Andreas; Wissenbach, Konrad; Kelbassa, Ingomar
One major demand of today's laser metal deposition (LMD) processes is to achieve a fail-save build-up regarding changing conditions like heat accumulations. Especially for the repair of thin parts like turbine blades is the knowledge about the correlations between melt pool behavior and process parameters like laser power, feed rate and powder mass stream indispensable. The paper will show the process layout with the camera based coaxial monitoring system and the quantitative influence of the process parameters on the melt pool geometry. Therefore the diameter, length and area of the melt pool are measured by a video analytic system at various parameters and compared with the track wide in cross-sections and the laser spot diameter. The influence of changing process conditions on the melt pool is also investigated. On the base of these results an enhanced process of the build-up of a multilayer one track fillet geometry will be presented.
Parameter optimization of electrochemical machining process using black hole algorithm
NASA Astrophysics Data System (ADS)
Singh, Dinesh; Shukla, Rajkamal
2017-12-01
Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.
Howard Evan Canfield; Vicente L. Lopes
2000-01-01
A process-based, simulation model for evaporation, soil water and streamflow (BROOK903) was used to estimate soil moisture change on a semiarid rangeland watershed in southeastern Arizona. A sensitivity analysis was performed to select parameters affecting ET and soil moisture for calibration. Automatic parameter calibration was performed using a procedure based on a...
Galí, A; García-Montoya, E; Ascaso, M; Pérez-Lozano, P; Ticó, J R; Miñarro, M; Suñé-Negre, J M
2016-09-01
Although tablet coating processes are widely used in the pharmaceutical industry, they often lack adequate robustness. Up-scaling can be challenging as minor changes in parameters can lead to varying quality results. To select critical process parameters (CPP) using retrospective data of a commercial product and to establish a design of experiments (DoE) that would improve the robustness of the coating process. A retrospective analysis of data from 36 commercial batches. Batches were selected based on the quality results generated during batch release, some of which revealed quality deviations concerning the appearance of the coated tablets. The product is already marketed and belongs to the portfolio of a multinational pharmaceutical company. The Statgraphics 5.1 software was used for data processing to determine critical process parameters in order to propose new working ranges. This study confirms that it is possible to determine the critical process parameters and create design spaces based on retrospective data of commercial batches. This type of analysis is thus converted into a tool to optimize the robustness of existing processes. Our results show that a design space can be established with minimum investment in experiments, since current commercial batch data are processed statistically.
Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis
NASA Astrophysics Data System (ADS)
Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo
2017-08-01
This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.
Dependence of quantitative accuracy of CT perfusion imaging on system parameters
NASA Astrophysics Data System (ADS)
Li, Ke; Chen, Guang-Hong
2017-03-01
Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.
Hock, Sabrina; Hasenauer, Jan; Theis, Fabian J
2013-01-01
Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters. We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes. As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.
Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao
2013-06-01
In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.
NASA Astrophysics Data System (ADS)
Daneji, A.; Ali, M.; Pervaiz, S.
2018-04-01
Friction stir welding (FSW) is a form of solid state welding process for joining metals, alloys, and selective composites. Over the years, FSW development has provided an improved way of producing welding joints, and consequently got accepted in numerous industries such as aerospace, automotive, rail and marine etc. In FSW, the base metal properties control the material’s plastic flow under the influence of a rotating tool whereas, the process and tool parameters play a vital role in the quality of weld. In the current investigation, an array of square butt joints of 6061 Aluminum alloy was to be welded under varying FSW process and tool geometry related parameters, after which the resulting weld was evaluated for the corresponding mechanical properties and welding defects. The study incorporates FSW process and tool parameters such as welding speed, pin height and pin thread pitch as input parameters. However, the weld quality related defects and mechanical properties were treated as output parameters. The experimentation paves way to investigate the correlation between the inputs and the outputs. The correlation between inputs and outputs were used as tool to predict the optimized FSW process and tool parameters for a desired weld output of the base metals under investigation. The study also provides reflection on the effect of said parameters on a welding defect such as wormhole.
NASA Astrophysics Data System (ADS)
Sethuramalingam, Prabhu; Vinayagam, Babu Kupusamy
2016-07-01
Carbon nanotube mixed grinding wheel is used in the grinding process to analyze the surface characteristics of AISI D2 tool steel material. Till now no work has been carried out using carbon nanotube based grinding wheel. Carbon nanotube based grinding wheel has excellent thermal conductivity and good mechanical properties which are used to improve the surface finish of the workpiece. In the present study, the multi response optimization of process parameters like surface roughness and metal removal rate of grinding process of single wall carbon nanotube (CNT) in mixed cutting fluids is undertaken using orthogonal array with grey relational analysis. Experiments are performed with designated grinding conditions obtained using the L9 orthogonal array. Based on the results of the grey relational analysis, a set of optimum grinding parameters is obtained. Using the analysis of variance approach the significant machining parameters are found. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically, for conditions of with and without CNT grinding wheel in grinding process.
Khandpur, Paramjeet; Gogate, Parag R
2016-03-01
The present work evaluates the performance of ultrasound based sterilization approaches for processing of different fruit and vegetable juices in terms of microbial growth and changes in the quality parameters during the storage. Comparison with the conventional thermal processing has also been presented. A novel approach based on combination of ultrasound with ultraviolet irradiation and crude extract of essential oil from orange peels has been used for the first time. Identification of the microbial growth (total bacteria and yeast content) in the juices during the subsequent storage and assessing the safety for human consumption along with the changes in the quality parameters (Brix, titratable acidity, pH, ORP, salt, conductivity, TSS and TDS) has been investigated in details. The optimized ultrasound parameters for juice sterilization were established as ultrasound power of 100 W and treatment time of 15 min for the constant frequency operation (20 kHz). It has been established that more than 5 log reduction was achieved using the novel combined approaches based on ultrasound. The treated juices using different approaches based on ultrasound also showed lower microbial growth and improved quality characteristics as compared to the thermally processed juice. Scale up studies were also performed using spinach juice as the test sample with processing at 5 L volume for the first time. The ultrasound treated juice satisfied the microbiological and physiochemical safety limits in refrigerated storage conditions for 20 days for the large scale processing. Overall the present work conclusively established the usefulness of combined treatment approaches based on ultrasound for maintaining the microbiological safety of beverages with enhanced shelf life and excellent quality parameters as compared to the untreated and thermally processed juices. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Timpe, Nathalie F.; Stuch, Julia; Scholl, Marcus; Russek, Ulrich A.
2016-03-01
This contribution presents a phenomenological, analytical model for laser welding of polymers which is suited for a quick process quality estimation for the practitioner. Besides material properties of the polymer and processing parameters like welding pressure, feed rate and laser power the model is based on a simple few parameter description of the size and shape of the laser power density distribution (PDD) in the processing zone. The model allows an estimation of the weld seam tensile strength. It is based on energy balance considerations within a thin sheet with the thickness of the optical penetration depth on the surface of the absorbing welding partner. The joining process itself is modelled by a phenomenological approach. The model reproduces the experimentally known process windows for the main process parameters correctly. Using the parameters describing the shape of the laser PDD the critical dependence of the process windows on the PDD shape will be predicted and compared with experiments. The adaption of the model to other laser manufacturing processes where the PDD influence can be modelled comparably will be discussed.
Optimizing the availability of a buffered industrial process
Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.
2004-08-24
A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.
Research on the processing technology of elongated holes based on rotary ultrasonic drilling
NASA Astrophysics Data System (ADS)
Tong, Yi; Chen, Jianhua; Sun, Lipeng; Yu, Xin; Wang, Xin
2014-08-01
The optical glass is hard, brittle and difficult to process. Based on the method of rotating ultrasonic drilling, the study of single factor on drilling elongated holes was made in optical glass. The processing equipment was DAMA ultrasonic machine, and the machining tools were electroplated with diamond. Through the detection and analysis on the processing quality and surface roughness, the process parameters (the spindle speed, amplitude, feed rate) of rotary ultrasonic drilling were researched, and the influence of processing parameters on surface roughness was obtained, which will provide reference and basis for the actual processing.
Towards simplification of hydrologic modeling: Identification of dominant processes
Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.
2016-01-01
The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many
Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad; Roman, Monica
2015-01-01
Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.
Selişteanu, Dan; Șendrescu, Dorin; Georgeanu, Vlad
2015-01-01
Monoclonal antibodies (mAbs) are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO) algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies. PMID:25685797
NASA Astrophysics Data System (ADS)
Santabarbara, Ignacio; Haas, Edwin; Kraus, David; Herrera, Saul; Klatt, Steffen; Kiese, Ralf
2014-05-01
When using biogeochemical models to estimate greenhouse gas emissions at site to regional/national levels, the assessment and quantification of the uncertainties of simulation results are of significant importance. The uncertainties in simulation results of process-based ecosystem models may result from uncertainties of the process parameters that describe the processes of the model, model structure inadequacy as well as uncertainties in the observations. Data for development and testing of uncertainty analisys were corp yield observations, measurements of soil fluxes of nitrous oxide (N2O) and carbon dioxide (CO2) from 8 arable sites across Europe. Using the process-based biogeochemical model LandscapeDNDC for simulating crop yields, N2O and CO2 emissions, our aim is to assess the simulation uncertainty by setting up a Bayesian framework based on Metropolis-Hastings algorithm. Using Gelman statistics convergence criteria and parallel computing techniques, enable multi Markov Chains to run independently in parallel and create a random walk to estimate the joint model parameter distribution. Through means distribution we limit the parameter space, get probabilities of parameter values and find the complex dependencies among them. With this parameter distribution that determines soil-atmosphere C and N exchange, we are able to obtain the parameter-induced uncertainty of simulation results and compare them with the measurements data.
Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava
2012-03-01
Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Technical Note: Approximate Bayesian parameterization of a complex tropical forest model
NASA Astrophysics Data System (ADS)
Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.
2013-08-01
Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can successfully be applied to process-based models of high complexity. The methodology is particularly suited to heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models in ecology and evolution.
Sensitivity analysis of the add-on price estimate for the silicon web growth process
NASA Technical Reports Server (NTRS)
Mokashi, A. R.
1981-01-01
The web growth process, a silicon-sheet technology option, developed for the flat plate solar array (FSA) project, was examined. Base case data for the technical and cost parameters for the technical and commercial readiness phase of the FSA project are projected. The process add on price, using the base case data for cost parameters such as equipment, space, direct labor, materials and utilities, and the production parameters such as growth rate and run length, using a computer program developed specifically to do the sensitivity analysis with improved price estimation are analyzed. Silicon price, sheet thickness and cell efficiency are also discussed.
[GSH fermentation process modeling using entropy-criterion based RBF neural network model].
Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng
2008-05-01
The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.
On selecting a prior for the precision parameter of Dirichlet process mixture models
Dorazio, R.M.
2009-01-01
In hierarchical mixture models the Dirichlet process is used to specify latent patterns of heterogeneity, particularly when the distribution of latent parameters is thought to be clustered (multimodal). The parameters of a Dirichlet process include a precision parameter ?? and a base probability measure G0. In problems where ?? is unknown and must be estimated, inferences about the level of clustering can be sensitive to the choice of prior assumed for ??. In this paper an approach is developed for computing a prior for the precision parameter ?? that can be used in the presence or absence of prior information about the level of clustering. This approach is illustrated in an analysis of counts of stream fishes. The results of this fully Bayesian analysis are compared with an empirical Bayes analysis of the same data and with a Bayesian analysis based on an alternative commonly used prior.
Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trammell, Michael P; Jolly, Brian C; Miller, James Henry
ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, B.; Wood, R.T.
1997-04-22
A method is described for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical model. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system. 1 fig.
Automated method for the systematic interpretation of resonance peaks in spectrum data
Damiano, Brian; Wood, Richard T.
1997-01-01
A method for spectral signature interpretation. The method includes the creation of a mathematical model of a system or process. A neural network training set is then developed based upon the mathematical model. The neural network training set is developed by using the mathematical model to generate measurable phenomena of the system or process based upon model input parameter that correspond to the physical condition of the system or process. The neural network training set is then used to adjust internal parameters of a neural network. The physical condition of an actual system or process represented by the mathematical model is then monitored by extracting spectral features from measured spectra of the actual process or system. The spectral features are then input into said neural network to determine the physical condition of the system or process represented by the mathematical. More specifically, the neural network correlates the spectral features (i.e. measurable phenomena) of the actual process or system with the corresponding model input parameters. The model input parameters relate to specific components of the system or process, and, consequently, correspond to the physical condition of the process or system.
Code IN Exhibits - Supercomputing 2000
NASA Technical Reports Server (NTRS)
Yarrow, Maurice; McCann, Karen M.; Biswas, Rupak; VanderWijngaart, Rob F.; Kwak, Dochan (Technical Monitor)
2000-01-01
The creation of parameter study suites has recently become a more challenging problem as the parameter studies have become multi-tiered and the computational environment has become a supercomputer grid. The parameter spaces are vast, the individual problem sizes are getting larger, and researchers are seeking to combine several successive stages of parameterization and computation. Simultaneously, grid-based computing offers immense resource opportunities but at the expense of great difficulty of use. We present ILab, an advanced graphical user interface approach to this problem. Our novel strategy stresses intuitive visual design tools for parameter study creation and complex process specification, and also offers programming-free access to grid-based supercomputer resources and process automation.
NASA Astrophysics Data System (ADS)
Yoo, C. J.; Shin, B. S.; Kang, B. S.; Yun, D. H.; You, D. B.; Hong, S. M.
2017-09-01
In this paper, we propose a new porous polymer printing technology based on CBA(chemical blowing agent), and describe the optimization process according to the process parameters. By mixing polypropylene (PP) and CBA, a hybrid CBA filament was manufactured; the diameter of the filament ranged between 1.60 mm and 1.75 mm. A porous polymer structure was manufactured based on the traditional fused deposition modelling (FDM) method. The process parameters of the three-dimensional (3D) porous polymer printing (PPP) process included nozzle temperature, printing speed, and CBA density. Porosity increase with an increase in nozzle temperature and CBA density. On the contrary, porosity increase with a decrease in the printing speed. For porous structures, it has excellent mechanical properties. We manufactured a simple shape in 3D using 3D PPP technology. In the future, we will study the excellent mechanical properties of 3D PPP technology and apply them to various safety fields.
2008-01-01
PDA Technical Report No. 14 has been written to provide current best practices, such as application of risk-based decision making, based in sound science to provide a foundation for the validation of column-based chromatography processes and to expand upon information provided in Technical Report No. 42, Process Validation of Protein Manufacturing. The intent of this technical report is to provide an integrated validation life-cycle approach that begins with the use of process development data for the definition of operational parameters as a basis for validation, confirmation, and/or minor adjustment to these parameters at manufacturing scale during production of conformance batches and maintenance of the validated state throughout the product's life cycle.
NASA Astrophysics Data System (ADS)
Cunningham, Ross; Narra, Sneha P.; Montgomery, Colt; Beuth, Jack; Rollett, A. D.
2017-03-01
The porosity observed in additively manufactured (AM) parts is a potential concern for components intended to undergo high-cycle fatigue without post-processing to remove such defects. The morphology of pores can help identify their cause: irregularly shaped lack of fusion or key-holing pores can usually be linked to incorrect processing parameters, while spherical pores suggest trapped gas. Synchrotron-based x-ray microtomography was performed on laser powder-bed AM Ti-6Al-4V samples over a range of processing conditions to investigate the effects of processing parameters on porosity. The process mapping technique was used to control melt pool size. Tomography was also performed on the powder to measure porosity within the powder that may transfer to the parts. As observed previously in experiments with electron beam powder-bed fabrication, significant variations in porosity were found as a function of the processing parameters. A clear connection between processing parameters and resulting porosity formation mechanism was observed in that inadequate melt pool overlap resulted in lack-of-fusion pores whereas excess power density produced keyhole pores.
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Poissant, Dominique; Brissette, François
2015-11-01
This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.
NASA Astrophysics Data System (ADS)
Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta
2016-06-01
With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.
NASA Astrophysics Data System (ADS)
Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.
2016-07-01
In the RF magnetron sputtering process, the desirable layer properties are largely influenced by the process parameters and conditions. If the quality of the thin film has not reached up to its intended level, the experiments have to be repeated until the desirable quality has been met. This research is proposing Gravitational Search Algorithm (GSA) as the optimization model to reduce the time and cost to be spent in the thin film fabrication. The optimization model's engine has been developed using Java. The model is developed based on GSA concept, which is inspired by the Newtonian laws of gravity and motion. In this research, the model is expected to optimize four deposition parameters which are RF power, deposition time, oxygen flow rate and substrate temperature. The results have turned out to be promising and it could be concluded that the performance of the model is satisfying in this parameter optimization problem. Future work could compare GSA with other nature based algorithms and test them with various set of data.
NASA Astrophysics Data System (ADS)
Okubo, Michinori; Kon, Tomokuni; Abe, Nobuyuki
Dissimilar smart joints are useful. In this research, welded quality of dissimilar aluminum alloys of 3 mm thickness by various welding processes and process parameters have been investigated by hardness and tensile tests, and observation of imperfection and microstructure. Base metals used in this study are A1050-H24, A2017-T3, A5083-O, A6061-T6 and A7075-T651. Welding processes used are YAG laser beam, electron beam, metal inert gas arc, tungsten inert gas arc and friction stir welding. The properties of weld zones are affected by welding processes, welding parameters and combination of base metals. Properties of high strength aluminum alloy joints are improved by friction stir welding.
NASA Astrophysics Data System (ADS)
Shrivastava, Akash; Mohanty, A. R.
2018-03-01
This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.
NASA Astrophysics Data System (ADS)
Bag, S.; de, A.
2010-09-01
The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.
A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines.
Khan, Arif Ul Maula; Mikut, Ralf; Reischl, Markus
2016-01-01
The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts.
A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines
Mikut, Ralf; Reischl, Markus
2016-01-01
The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts. PMID:27764213
Optimization of processing parameters of UAV integral structural components based on yield response
NASA Astrophysics Data System (ADS)
Chen, Yunsheng
2018-05-01
In order to improve the overall strength of unmanned aerial vehicle (UAV), it is necessary to optimize the processing parameters of UAV structural components, which is affected by initial residual stress in the process of UAV structural components processing. Because machining errors are easy to occur, an optimization model for machining parameters of UAV integral structural components based on yield response is proposed. The finite element method is used to simulate the machining parameters of UAV integral structural components. The prediction model of workpiece surface machining error is established, and the influence of the path of walking knife on residual stress of UAV integral structure is studied, according to the stress of UAV integral component. The yield response of the time-varying stiffness is analyzed, and the yield response and the stress evolution mechanism of the UAV integral structure are analyzed. The simulation results show that this method is used to optimize the machining parameters of UAV integral structural components and improve the precision of UAV milling processing. The machining error is reduced, and the deformation prediction and error compensation of UAV integral structural parts are realized, thus improving the quality of machining.
A Four-parameter Budyko Equation for Mean Annual Water Balance
NASA Astrophysics Data System (ADS)
Tang, Y.; Wang, D.
2016-12-01
In this study, a four-parameter Budyko equation for long-term water balance at watershed scale is derived based on the proportionality relationships of the two-stage partitioning of precipitation. The four-parameter Budyko equation provides a practical solution to balance model simplicity and representation of dominated hydrologic processes. Under the four-parameter Budyko framework, the key hydrologic processes related to the lower bound of Budyko curve are determined, that is, the lower bound is corresponding to the situation when surface runoff and initial evaporation not competing with base flow generation are zero. The derived model is applied to 166 MOPEX watersheds in United States, and the dominant controlling factors on each parameter are determined. Then, four statistical models are proposed to predict the four model parameters based on the dominant controlling factors, e.g., saturated hydraulic conductivity, fraction of sand, time period between two storms, watershed slope, and Normalized Difference Vegetation Index. This study shows a potential application of the four-parameter Budyko equation to constrain land-surface parameterizations in ungauged watersheds or general circulation models.
Automatic temperature adjustment apparatus
Chaplin, James E.
1985-01-01
An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.
Investigation on Effect of Material Hardness in High Speed CNC End Milling Process.
Dhandapani, N V; Thangarasu, V S; Sureshkannan, G
2015-01-01
This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.
Investigation on Effect of Material Hardness in High Speed CNC End Milling Process
Dhandapani, N. V.; Thangarasu, V. S.; Sureshkannan, G.
2015-01-01
This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results. PMID:26881267
NASA Astrophysics Data System (ADS)
Han, Zhenyu; Sun, Shouzheng; Fu, Yunzhong; Fu, Hongya
2017-10-01
Viscidity is an important physical indicator for assessing fluidity of resin that is beneficial to contact resin with the fibers effectively and reduce manufacturing defects during automated fiber placement (AFP) process. However, the effect of processing parameters on viscidity evolution is rarely studied during AFP process. In this paper, viscidities under different scales are analyzed based on multi-scale analysis method. Firstly, viscous dissipation energy (VDE) within meso-unit under different processing parameters is assessed by using finite element method (FEM). According to multi-scale energy transfer model, meso-unit energy is used as the boundary condition for microscopic analysis. Furthermore, molecular structure of micro-system is built by molecular dynamics (MD) method. And viscosity curves are then obtained by integrating stress autocorrelation function (SACF) with time. Finally, the correlation characteristics of processing parameters to viscosity are revealed by using gray relational analysis method (GRAM). A group of processing parameters is found out to achieve the stability of viscosity and better fluidity of resin.
Tamjidy, Mehran; Baharudin, B. T. Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz
2017-01-01
The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon’s entropy. PMID:28772893
Tamjidy, Mehran; Baharudin, B T Hang Tuah; Paslar, Shahla; Matori, Khamirul Amin; Sulaiman, Shamsuddin; Fadaeifard, Firouz
2017-05-15
The development of Friction Stir Welding (FSW) has provided an alternative approach for producing high-quality welds, in a fast and reliable manner. This study focuses on the mechanical properties of the dissimilar friction stir welding of AA6061-T6 and AA7075-T6 aluminum alloys. The FSW process parameters such as tool rotational speed, tool traverse speed, tilt angle, and tool offset influence the mechanical properties of the friction stir welded joints significantly. A mathematical regression model is developed to determine the empirical relationship between the FSW process parameters and mechanical properties, and the results are validated. In order to obtain the optimal values of process parameters that simultaneously optimize the ultimate tensile strength, elongation, and minimum hardness in the heat affected zone (HAZ), a metaheuristic, multi objective algorithm based on biogeography based optimization is proposed. The Pareto optimal frontiers for triple and dual objective functions are obtained and the best optimal solution is selected through using two different decision making techniques, technique for order of preference by similarity to ideal solution (TOPSIS) and Shannon's entropy.
NASA Astrophysics Data System (ADS)
Venkata Subbaiah, K.; Raju, Ch.; Suresh, Ch.
2017-08-01
The present study aims to compare the conventional cutting inserts with wiper cutting inserts during the hard turning of AISI 4340 steel at different workpiece hardness. Type of insert, hardness, cutting speed, feed, and depth of cut are taken as process parameters. Taguchi’s L18 orthogonal array was used to conduct the experimental tests. Parametric analysis carried in order to know the influence of each process parameter on the three important Surface Roughness Characteristics (Ra, Rz, and Rt) and Material Removal Rate. Taguchi based Grey Relational Analysis (GRA) used to optimize the process parameters for individual response and multi-response outputs. Additionally, the analysis of variance (ANOVA) is also applied to identify the most significant factor.
Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid
2015-05-07
Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.
Golightly, Andrew; Wilkinson, Darren J.
2011-01-01
Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583
Jannin, Vincent; Rodier, Jean-David; Musakhanian, Jasmine
2014-05-15
Lipid-based formulations are a viable option to address modern drug delivery challenges such as increasing the oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs), or sustaining the drug release of molecules intended for chronic diseases. Esters of fatty acids and glycerol (glycerides) and polyethylene-glycols (polyoxylglycerides) are two main classes of lipid-based excipients used by oral, dermal, rectal, vaginal or parenteral routes. These lipid-based materials are more and more commonly used in pharmaceutical drug products but there is still a lack of understanding of how the manufacturing processes, processing aids, or additives can impact the chemical stability of APIs within the drug product. In that regard, this review summarizes the key parameters to look at when formulating with lipid-based excipients in order to anticipate a possible impact on drug stability or variation of excipient functionality. The introduction presents the chemistry of natural lipids, fatty acids and their properties in relation to the extraction and refinement processes. Then, the key parameters during the manufacturing process influencing the quality of lipid-based excipients are provided. Finally, their critical characteristics are discussed in relation with their intended functionality and ability to interact with APIs and others excipients within the formulation. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Rosa, Benoit; Brient, Antoine; Samper, Serge; Hascoët, Jean-Yves
2016-12-01
Mastering the additive laser manufacturing surface is a real challenge and would allow functional surfaces to be obtained without finishing. Direct Metal Deposition (DMD) surfaces are composed by directional and chaotic textures that are directly linked to the process principles. The aim of this work is to obtain surface topographies by mastering the operating process parameters. Based on experimental investigation, the influence of operating parameters on the surface finish has been modeled. Topography parameters and multi-scale analysis have been used in order to characterize the DMD obtained surfaces. This study also proposes a methodology to characterize DMD chaotic texture through topography filtering and 3D image treatment. In parallel, a new parameter is proposed: density of particles (D p). Finally, this study proposes a regression modeling between process parameters and density of particles parameter.
Di Nardo, Francesco; Mengoni, Michele; Morettini, Micaela
2013-05-01
Present study provides a novel MATLAB-based parameter estimation procedure for individual assessment of hepatic insulin degradation (HID) process from standard frequently-sampled intravenous glucose tolerance test (FSIGTT) data. Direct access to the source code, offered by MATLAB, enabled us to design an optimization procedure based on the alternating use of Gauss-Newton's and Levenberg-Marquardt's algorithms, which assures the full convergence of the process and the containment of computational time. Reliability was tested by direct comparison with the application, in eighteen non-diabetic subjects, of well-known kinetic analysis software package SAAM II, and by application on different data. Agreement between MATLAB and SAAM II was warranted by intraclass correlation coefficients ≥0.73; no significant differences between corresponding mean parameter estimates and prediction of HID rate; and consistent residual analysis. Moreover, MATLAB optimization procedure resulted in a significant 51% reduction of CV% for the worst-estimated parameter by SAAM II and in maintaining all model-parameter CV% <20%. In conclusion, our MATLAB-based procedure was suggested as a suitable tool for the individual assessment of HID process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Liu, Hui; Li, Yingzi; Zhang, Yingxu; Chen, Yifu; Song, Zihang; Wang, Zhenyu; Zhang, Suoxin; Qian, Jianqiang
2018-01-01
Proportional-integral-derivative (PID) parameters play a vital role in the imaging process of an atomic force microscope (AFM). Traditional parameter tuning methods require a lot of manpower and it is difficult to set PID parameters in unattended working environments. In this manuscript, an intelligent tuning method of PID parameters based on iterative learning control is proposed to self-adjust PID parameters of the AFM according to the sample topography. This method gets enough information about the output signals of PID controller and tracking error, which will be used to calculate the proper PID parameters, by repeated line scanning until convergence before normal scanning to learn the topography. Subsequently, the appropriate PID parameters are obtained by fitting method and then applied to the normal scanning process. The feasibility of the method is demonstrated by the convergence analysis. Simulations and experimental results indicate that the proposed method can intelligently tune PID parameters of the AFM for imaging different topographies and thus achieve good tracking performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 98.295 - Procedures for estimating missing data.
Code of Federal Regulations, 2010 CFR
2010-07-01
... value shall be the best available estimate(s) of the parameter(s), based on all available process data or data used for accounting purposes. (c) For each missing value collected during the performance test (hourly CO2 concentration, stack gas volumetric flow rate, or average process vent flow from mine...
Determination of material distribution in heading process of small bimetallic bar
NASA Astrophysics Data System (ADS)
Presz, Wojciech; Cacko, Robert
2018-05-01
The electrical connectors mostly have silver contacts joined by riveting. In order to reduce costs, the core of the contact rivet can be replaced with cheaper material, e.g. copper. There is a wide range of commercially available bimetallic (silver-copper) rivets on the market for the production of contacts. Following that, new conditions in the riveting process are created because the bi-metal object is riveted. In the analyzed example, it is a small size object, which can be placed on the border of microforming. Based on the FEM modeling of the load process of bimetallic rivets with different material distributions, the desired distribution was chosen and the choice was justified. Possible material distributions were parameterized with two parameters referring to desirable distribution characteristics. The parameter: Coefficient of Mutual Interactions of Plastic Deformations and the method of its determination have been proposed. The parameter is determined based of two-parameter stress-strain curves and is a function of these parameters and the range of equivalent strains occurring in the analyzed process. The proposed method was used for the upsetting process of the bimetallic head of the electrical contact. A nomogram was established to predict the distribution of materials in the head of the rivet and the appropriate selection of a pair of materials to achieve the desired distribution.
Effect of Electron Beam Freeform Fabrication (EBF3) Processing Parameters on Composition of Ti-6-4
NASA Technical Reports Server (NTRS)
Lach, Cynthia L.; Taminger, Karen; Schuszler, A. Bud, II; Sankaran, Sankara; Ehlers, Helen; Nasserrafi, Rahbar; Woods, Bryan
2007-01-01
The Electron Beam Freeform Fabrication (EBF3) process developed at NASA Langley Research Center was evaluated using a design of experiments approach to determine the effect of processing parameters on the composition and geometry of Ti-6-4 deposits. The effects of three processing parameters: beam power, translation speed, and wire feed rate, were investigated by varying one while keeping the remaining parameters constant. A three-factorial, three-level, fully balanced mutually orthogonal array (L27) design of experiments approach was used to examine the effects of low, medium, and high settings for the processing parameters on the chemistry, geometry, and quality of the resulting deposits. Single bead high deposits were fabricated and evaluated for 27 experimental conditions. Loss of aluminum in Ti-6-4 was observed in EBF3 processing due to selective vaporization of the aluminum from the sustained molten pool in the vacuum environment; therefore, the chemistries of the deposits were measured and compared with the composition of the initial wire and base plate to determine if the loss of aluminum could be minimized through careful selection of processing parameters. The influence of processing parameters and coupling between these parameters on bulk composition, measured by Direct Current Plasma (DCP), local microchemistries determined by Wavelength Dispersive Spectrometry (WDS), and deposit geometry will also be discussed.
A Graph Based Interface for Representing Volume Visualization Results
NASA Technical Reports Server (NTRS)
Patten, James M.; Ma, Kwan-Liu
1998-01-01
This paper discusses a graph based user interface for representing the results of the volume visualization process. As images are rendered, they are connected to other images in a graph based on their rendering parameters. The user can take advantage of the information in this graph to understand how certain rendering parameter changes affect a dataset, making the visualization process more efficient. Because the graph contains more information than is contained in an unstructured history of images, the image graph is also helpful for collaborative visualization and animation.
NASA Astrophysics Data System (ADS)
Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie
2018-01-01
The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.
NASA Astrophysics Data System (ADS)
Astarita, Antonello; Boccarusso, Luca; Carrino, Luigi; Durante, Massimo; Minutolo, Fabrizio Memola Capece; Squillace, Antonino
2018-05-01
Polycarbonate sheets, 3 mm thick, were successfully friction stir welded in butt joint configuration. Aiming to study the feasibility of the process and the influence of the process parameters joints under different processing conditions, obtained by varying the tool rotational speed and the tool travel speed, were realized. Tensile tests were carried out to characterize the joints. Moreover the forces arising during the process were recorded and carefully studied. The experimental outcomes proved the feasibility of the process when the process parameters are properly set, joints retaining more than 70% of the UTS of the base material were produced. The trend of the forces was described and explained, the influence of the process parameters was also introduced.
Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu
2016-08-10
The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.
Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos
Santonja, F.; Chen-Charpentier, B.
2012-01-01
Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity epidemic model. PMID:22927889
NASA Astrophysics Data System (ADS)
Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen
2018-01-01
Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.
Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan
2017-03-16
Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW-LDPE-SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity.
Ren, Luquan; Zhou, Xueli; Song, Zhengyi; Zhao, Che; Liu, Qingping; Xue, Jingze; Li, Xiujuan
2017-01-01
Recently, with a broadening range of available materials and alteration of feeding processes, several extrusion-based 3D printing processes for metal materials have been developed. An emerging process is applicable for the fabrication of metal parts into electronics and composites. In this paper, some critical parameters of extrusion-based 3D printing processes were optimized by a series of experiments with a melting extrusion printer. The raw materials were copper powder and a thermoplastic organic binder system and the system included paraffin wax, low density polyethylene, and stearic acid (PW–LDPE–SA). The homogeneity and rheological behaviour of the raw materials, the strength of the green samples, and the hardness of the sintered samples were investigated. Moreover, the printing and sintering parameters were optimized with an orthogonal design method. The influence factors in regard to the ultimate tensile strength of the green samples can be described as follows: infill degree > raster angle > layer thickness. As for the sintering process, the major factor on hardness is sintering temperature, followed by holding time and heating rate. The highest hardness of the sintered samples was very close to the average hardness of commercially pure copper material. Generally, the extrusion-based printing process for producing metal materials is a promising strategy because it has some advantages over traditional approaches for cost, efficiency, and simplicity. PMID:28772665
NASA Astrophysics Data System (ADS)
Zimmerling, Clemens; Dörr, Dominik; Henning, Frank; Kärger, Luise
2018-05-01
Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is considered to facilitate a lean and economic part and process design under consideration of manufacturing effects.
Fryer, Jonathan P; Corcoran, Noreen; George, Brian; Wang, Ed; Darosa, Debra
2012-01-01
While the primary goal of ranking applicants for surgical residency training positions is to identify the candidates who will subsequently perform best as surgical residents, the effectiveness of the ranking process has not been adequately studied. We evaluated our general surgery resident recruitment process between 2001 and 2011 inclusive, to determine if our recruitment ranking parameters effectively predicted subsequent resident performance. We identified 3 candidate ranking parameters (United States Medical Licensing Examination [USMLE] Step 1 score, unadjusted ranking score [URS], and final adjusted ranking [FAR]), and 4 resident performance parameters (American Board of Surgery In-Training Examination [ABSITE] score, PGY1 resident evaluation grade [REG], overall REG, and independent faculty rating ranking [IFRR]), and assessed whether the former were predictive of the latter. Analyses utilized Spearman correlation coefficient. We found that the URS, which is based on objective and criterion based parameters, was a better predictor of subsequent performance than the FAR, which is a modification of the URS based on subsequent determinations of the resident selection committee. USMLE score was a reliable predictor of ABSITE scores only. However, when we compared our worst residence performances with the performances of the other residents in this evaluation, the data did not produce convincing evidence that poor resident performances could be reliably predicted by any of the recruitment ranking parameters. Finally, stratifying candidates based on their rank range did not effectively define a ranking cut-off beyond which resident performance would drop off. Based on these findings, we recommend surgery programs may be better served by utilizing a more structured resident ranking process and that subsequent adjustments to the rank list generated by this process should be undertaken with caution. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Jeon, Ju Hyeong; Bhamidipati, Manjari; Sridharan, BanuPriya; Scurto, Aaron M.; Berkland, Cory J.; Detamore, Michael S.
2015-01-01
Microsphere-based polymeric tissue-engineered scaffolds offer the advantage of shape-specific constructs with excellent spatiotemporal control and interconnected porous structures. The use of these highly versatile scaffolds requires a method to sinter the discrete microspheres together into a cohesive network, typically with the use of heat or organic solvents. We previously introduced subcritical CO2 as a sintering method for microsphere-based scaffolds; here we further explored the effect of processing parameters. Gaseous or subcritical CO2 was used for making the scaffolds, and various pressures, ratios of lactic acid to glycolic acid in poly(lactic acid-co-glycolic acid), and amounts of NaCl particles were explored. By changing these parameters, scaffolds with different mechanical properties and morphologies were prepared. The preferred range of applied subcritical CO2 was 15–25 bar. Scaffolds prepared at 25 bar with lower lactic acid ratios and without NaCl particles had a higher stiffness, while the constructs made at 15 bar, lower glycolic acid content, and with salt granules had lower elastic moduli. Human umbilical cord mesenchymal stromal cells (hUCMSCs) seeded on the scaffolds demonstrated that cells penetrate the scaffolds and remain viable. Overall, the study demonstrated the dependence of the optimal CO2 sintering parameters on the polymer and conditions, and identified desirable CO2 processing parameters to employ in the sintering of microsphere-based scaffolds as a more benign alternative to heat-sintering or solvent-based sintering methods. PMID:23115065
Optimal nonlinear information processing capacity in delay-based reservoir computers
NASA Astrophysics Data System (ADS)
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-09-01
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.
Optimal nonlinear information processing capacity in delay-based reservoir computers.
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-09-11
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.
Optimal nonlinear information processing capacity in delay-based reservoir computers
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2015-01-01
Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature. PMID:26358528
NASA Astrophysics Data System (ADS)
Malago`, M.; Mucchi, E.; Dalpiaz, G.
2016-03-01
Heavy duty wheels are used in applications such as automatic vehicles and are mainly composed of a polyurethane tread glued to a cast iron hub. In the manufacturing process, the adhesive application between tread and hub is a critical assembly phase, since it is completely made by an operator and a contamination of the bond area may happen. Furthermore, the presence of rust on the hub surface can contribute to worsen the adherence interface, reducing the operating life. In this scenario, a quality control procedure for fault detection to be used at the end of the manufacturing process has been developed. This procedure is based on vibration processing techniques and takes advantages of the results of a lumped parameter model. Indicators based on cyclostationarity can be considered as key parameters to be adopted in a monitoring test station at the end of the production line due to their not deterministic characteristics.
V2S: Voice to Sign Language Translation System for Malaysian Deaf People
NASA Astrophysics Data System (ADS)
Mean Foong, Oi; Low, Tang Jung; La, Wai Wan
The process of learning and understand the sign language may be cumbersome to some, and therefore, this paper proposes a solution to this problem by providing a voice (English Language) to sign language translation system using Speech and Image processing technique. Speech processing which includes Speech Recognition is the study of recognizing the words being spoken, regardless of whom the speaker is. This project uses template-based recognition as the main approach in which the V2S system first needs to be trained with speech pattern based on some generic spectral parameter set. These spectral parameter set will then be stored as template in a database. The system will perform the recognition process through matching the parameter set of the input speech with the stored templates to finally display the sign language in video format. Empirical results show that the system has 80.3% recognition rate.
A Bayesian Approach to Determination of F, D, and Z Values Used in Steam Sterilization Validation.
Faya, Paul; Stamey, James D; Seaman, John W
2017-01-01
For manufacturers of sterile drug products, steam sterilization is a common method used to provide assurance of the sterility of manufacturing equipment and products. The validation of sterilization processes is a regulatory requirement and relies upon the estimation of key resistance parameters of microorganisms. Traditional methods have relied upon point estimates for the resistance parameters. In this paper, we propose a Bayesian method for estimation of the well-known D T , z , and F o values that are used in the development and validation of sterilization processes. A Bayesian approach allows the uncertainty about these values to be modeled using probability distributions, thereby providing a fully risk-based approach to measures of sterility assurance. An example is given using the survivor curve and fraction negative methods for estimation of resistance parameters, and we present a means by which a probabilistic conclusion can be made regarding the ability of a process to achieve a specified sterility criterion. LAY ABSTRACT: For manufacturers of sterile drug products, steam sterilization is a common method used to provide assurance of the sterility of manufacturing equipment and products. The validation of sterilization processes is a regulatory requirement and relies upon the estimation of key resistance parameters of microorganisms. Traditional methods have relied upon point estimates for the resistance parameters. In this paper, we propose a Bayesian method for estimation of the critical process parameters that are evaluated in the development and validation of sterilization processes. A Bayesian approach allows the uncertainty about these parameters to be modeled using probability distributions, thereby providing a fully risk-based approach to measures of sterility assurance. An example is given using the survivor curve and fraction negative methods for estimation of resistance parameters, and we present a means by which a probabilistic conclusion can be made regarding the ability of a process to achieve a specified sterility criterion. © PDA, Inc. 2017.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui
2018-04-01
Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.
Chickpea seeds germination rational parameters optimization
NASA Astrophysics Data System (ADS)
Safonova, Yu A.; Ivliev, M. N.; Lemeshkin, A. V.
2018-05-01
The paper presents the influence of chickpea seeds bioactivation parameters on their enzymatic activity experimental results. Optimal bioactivation process modes were obtained by regression-factor analysis: process temperature - 13.6 °C, process duration - 71.5 h. It was found that in the germination process, the proteolytic, amylolytic and lipolytic enzymes activity increased, and the urease enzyme activity is reduced. The dependences of enzyme activity on chickpea seeds germination conditions were obtained by mathematical processing of experimental data. The calculated data are in good agreement with the experimental ones. This confirms the optimization efficiency based on experiments mathematical planning in order to determine the enzymatic activity of chickpea seeds germination optimal parameters of bioactivated seeds.
Optimal Design of Material and Process Parameters in Powder Injection Molding
NASA Astrophysics Data System (ADS)
Ayad, G.; Barriere, T.; Gelin, J. C.; Song, J.; Liu, B.
2007-04-01
The paper is concerned with optimization and parametric identification for the different stages in Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders part by solid state diffusion. In the first part, one describes an original methodology to optimize the process and geometry parameters in injection stage based on the combination of design of experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometeric curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization of material and process parameters for manufacturing a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.
Developing a probability-based model of aquifer vulnerability in an agricultural region
NASA Astrophysics Data System (ADS)
Chen, Shih-Kai; Jang, Cheng-Shin; Peng, Yi-Huei
2013-04-01
SummaryHydrogeological settings of aquifers strongly influence the regional groundwater movement and pollution processes. Establishing a map of aquifer vulnerability is considerably critical for planning a scheme of groundwater quality protection. This study developed a novel probability-based DRASTIC model of aquifer vulnerability in the Choushui River alluvial fan, Taiwan, using indicator kriging and to determine various risk categories of contamination potentials based on estimated vulnerability indexes. Categories and ratings of six parameters in the probability-based DRASTIC model were probabilistically characterized according to the parameter classification methods of selecting a maximum estimation probability and calculating an expected value. Moreover, the probability-based estimation and assessment gave us an excellent insight into propagating the uncertainty of parameters due to limited observation data. To examine the prediction capacity of pollutants for the developed probability-based DRASTIC model, medium, high, and very high risk categories of contamination potentials were compared with observed nitrate-N exceeding 0.5 mg/L indicating the anthropogenic groundwater pollution. The analyzed results reveal that the developed probability-based DRASTIC model is capable of predicting high nitrate-N groundwater pollution and characterizing the parameter uncertainty via the probability estimation processes.
Zhu, Lingyun; Li, Lianjie; Meng, Chunyan
2014-12-01
There have been problems in the existing multiple physiological parameter real-time monitoring system, such as insufficient server capacity for physiological data storage and analysis so that data consistency can not be guaranteed, poor performance in real-time, and other issues caused by the growing scale of data. We therefore pro posed a new solution which was with multiple physiological parameters and could calculate clustered background data storage and processing based on cloud computing. Through our studies, a batch processing for longitudinal analysis of patients' historical data was introduced. The process included the resource virtualization of IaaS layer for cloud platform, the construction of real-time computing platform of PaaS layer, the reception and analysis of data stream of SaaS layer, and the bottleneck problem of multi-parameter data transmission, etc. The results were to achieve in real-time physiological information transmission, storage and analysis of a large amount of data. The simulation test results showed that the remote multiple physiological parameter monitoring system based on cloud platform had obvious advantages in processing time and load balancing over the traditional server model. This architecture solved the problems including long turnaround time, poor performance of real-time analysis, lack of extensibility and other issues, which exist in the traditional remote medical services. Technical support was provided in order to facilitate a "wearable wireless sensor plus mobile wireless transmission plus cloud computing service" mode moving towards home health monitoring for multiple physiological parameter wireless monitoring.
NASA Astrophysics Data System (ADS)
Singh, Rupinder
2018-02-01
Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.
Chen, Xiaodong; Sadineni, Vikram; Maity, Mita; Quan, Yong; Enterline, Matthew; Mantri, Rao V
2015-12-01
Lyophilization is an approach commonly undertaken to formulate drugs that are unstable to be commercialized as ready to use (RTU) solutions. One of the important aspects of commercializing a lyophilized product is to transfer the process parameters that are developed in lab scale lyophilizer to commercial scale without a loss in product quality. This process is often accomplished by costly engineering runs or through an iterative process at the commercial scale. Here, we are highlighting a combination of computational and experimental approach to predict commercial process parameters for the primary drying phase of lyophilization. Heat and mass transfer coefficients are determined experimentally either by manometric temperature measurement (MTM) or sublimation tests and used as inputs for the finite element model (FEM)-based software called PASSAGE, which computes various primary drying parameters such as primary drying time and product temperature. The heat and mass transfer coefficients will vary at different lyophilization scales; hence, we present an approach to use appropriate factors while scaling-up from lab scale to commercial scale. As a result, one can predict commercial scale primary drying time based on these parameters. Additionally, the model-based approach presented in this study provides a process to monitor pharmaceutical product robustness and accidental process deviations during Lyophilization to support commercial supply chain continuity. The approach presented here provides a robust lyophilization scale-up strategy; and because of the simple and minimalistic approach, it will also be less capital intensive path with minimal use of expensive drug substance/active material.
Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M
2012-01-01
In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.
New horizons in selective laser sintering surface roughness characterization
NASA Astrophysics Data System (ADS)
Vetterli, M.; Schmid, M.; Knapp, W.; Wegener, K.
2017-12-01
Powder-based additive manufacturing of polymers and metals has evolved from a prototyping technology to an industrial process for the fabrication of small to medium series of complex geometry parts. Unfortunately due to the processing of powder as a basis material and the successive addition of layers to produce components, a significant surface roughness inherent to the process has been observed since the first use of such technologies. A novel characterization method based on an elastomeric pad coated with a reflective layer, the Gelsight, was found to be reliable and fast to characterize surfaces processed by selective laser sintering (SLS) of polymers. With help of this method, a qualitative and quantitative investigation of SLS surfaces is feasible. Repeatability and reproducibility investigations are performed for both 2D and 3D areal roughness parameters. Based on the good results, the Gelsight is used for the optimization of vertical SLS surfaces. A model built on laser scanning parameters is proposed and after confirmation could achieve a roughness reduction of 10% based on the S q parameter. The Gelsight could be successfully identified as a fast, reliable and versatile surface topography characterization method as it applies to all kind of surfaces.
Içten, Elçin; Giridhar, Arun; Nagy, Zoltan K; Reklaitis, Gintaras V
2016-04-01
The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.
NASA Astrophysics Data System (ADS)
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2017-07-01
Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.
Optimization of hybrid laser - TIG welding of 316LN steel using response surface methodology (RSM)
NASA Astrophysics Data System (ADS)
Ragavendran, M.; Chandrasekhar, N.; Ravikumar, R.; Saxena, Rajesh; Vasudevan, M.; Bhaduri, A. K.
2017-07-01
In the present study, the hybrid laser - TIG welding parameters for welding of 316LN austenitic stainless steel have been investigated by combining a pulsed laser beam with a TIG welding heat source at the weld pool. Laser power, pulse frequency, pulse duration, TIG current were presumed as the welding process parameters whereas weld bead width, weld cross-sectional area and depth of penetration (DOP) were considered as the process responses. Central composite design was used to complete the design matrix and welding experiments were conducted based on the design matrix. Weld bead measurements were then carried out to generate the dataset. Multiple regression models correlating the process parameters with the responses have been developed. The accuracy of the models were found to be good. Then, the desirability approach optimization technique was employed for determining the optimum process parameters to obtain the desired weld bead profile. Validation experiments were then carried out from the determined optimum process parameters. There was good agreement between the predicted and measured values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod
Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less
NASA Astrophysics Data System (ADS)
POP, A. B.; ȚÎȚU, M. A.
2016-11-01
In the metal cutting process, surface quality is intrinsically related to the cutting parameters and to the cutting tool geometry. At the same time, metal cutting processes are closely related to the machining costs. The purpose of this paper is to reduce manufacturing costs and processing time. A study was made, based on the mathematical modelling of the average of the absolute value deviation (Ra) resulting from the end milling process on 7136 aluminium alloy, depending on cutting process parameters. The novel element brought by this paper is the 7136 aluminium alloy type, chosen to conduct the experiments, which is a material developed and patented by Universal Alloy Corporation. This aluminium alloy is used in the aircraft industry to make parts from extruded profiles, and it has not been studied for the proposed research direction. Based on this research, a mathematical model of surface roughness Ra was established according to the cutting parameters studied in a set experimental field. A regression analysis was performed, which identified the quantitative relationships between cutting parameters and the surface roughness. Using the variance analysis ANOVA, the degree of confidence for the achieved results by the regression equation was determined, and the suitability of this equation at every point of the experimental field.
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA).
Rodriguez-Donate, Carlos; Morales-Velazquez, Luis; Osornio-Rios, Roque Alfredo; Herrera-Ruiz, Gilberto; de Jesus Romero-Troncoso, Rene
2010-01-01
Intelligent robotics demands the integration of smart sensors that allow the controller to efficiently measure physical quantities. Industrial manipulator robots require a constant monitoring of several parameters such as motion dynamics, inclination, and vibration. This work presents a novel smart sensor to estimate motion dynamics, inclination, and vibration parameters on industrial manipulator robot links based on two primary sensors: an encoder and a triaxial accelerometer. The proposed smart sensor implements a new methodology based on an oversampling technique, averaging decimation filters, FIR filters, finite differences and linear interpolation to estimate the interest parameters, which are computed online utilizing digital hardware signal processing based on field programmable gate arrays (FPGA). PMID:22319345
ERIC Educational Resources Information Center
Bogon, Johanna; Finke, Kathrin; Schulte-Körne, Gerd; Müller, Hermann J.; Schneider, Werner X.; Stenneken, Prisca
2014-01-01
People with developmental dyslexia (DD) have been shown to be impaired in tasks that require the processing of multiple visual elements in parallel. It has been suggested that this deficit originates from disturbed visual attentional functions. The parameter-based assessment of visual attention based on Bundesen's (1990) theory of visual…
NASA Astrophysics Data System (ADS)
Shao, Rongjun; Qiu, Lirong; Yang, Jiamiao; Zhao, Weiqian; Zhang, Xin
2013-12-01
We have proposed the component parameters measuring method based on the differential confocal focusing theory. In order to improve the positioning precision of the laser differential confocal component parameters measurement system (LDDCPMS), the paper provides a data processing method based on tracking light spot. To reduce the error caused by the light point moving in collecting the axial intensity signal, the image centroiding algorithm is used to find and track the center of Airy disk of the images collected by the laser differential confocal system. For weakening the influence of higher harmonic noises during the measurement, Gaussian filter is used to process the axial intensity signal. Ultimately the zero point corresponding to the focus of the objective in a differential confocal system is achieved by linear fitting for the differential confocal axial intensity data. Preliminary experiments indicate that the method based on tracking light spot can accurately collect the axial intensity response signal of the virtual pinhole, and improve the anti-interference ability of system. Thus it improves the system positioning accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allgood, G.O.; Dress, W.B.; Kercel, S.W.
1999-05-10
A major problem with cavitation in pumps and other hydraulic devices is that there is no effective method for detecting or predicting its inception. The traditional approach is to declare the pump in cavitation when the total head pressure drops by some arbitrary value (typically 3o/0) in response to a reduction in pump inlet pressure. However, the pump is already cavitating at this point. A method is needed in which cavitation events are captured as they occur and characterized by their process dynamics. The object of this research was to identify specific features of cavitation that could be used asmore » a model-based descriptor in a context-dependent condition-based maintenance (CD-CBM) anticipatory prognostic and health assessment model. This descriptor was based on the physics of the phenomena, capturing the salient features of the process dynamics. An important element of this concept is the development and formulation of the extended process feature vector @) or model vector. Thk model-based descriptor encodes the specific information that describes the phenomena and its dynamics and is formulated as a data structure consisting of several elements. The first is a descriptive model abstracting the phenomena. The second is the parameter list associated with the functional model. The third is a figure of merit, a single number between [0,1] representing a confidence factor that the functional model and parameter list actually describes the observed data. Using this as a basis and applying it to the cavitation problem, any given location in a flow loop will have this data structure, differing in value but not content. The extended process feature vector is formulated as follows: E`> [ , {parameter Iist}, confidence factor]. (1) For this study, the model that characterized cavitation was a chirped-exponentially decaying sinusoid. Using the parameters defined by this model, the parameter list included frequency, decay, and chirp rate. Based on this, the process feature vector has the form: @=> [, {01 = a, ~= b, ~ = c}, cf = 0.80]. (2) In this experiment a reversible catastrophe was examined. The reason for this is that the same catastrophe could be repeated to ensure the statistical significance of the data.« less
Uncertainty estimation of the self-thinning process by Maximum-Entropy Principle
Shoufan Fang; George Z. Gertner
2000-01-01
When available information is scarce, the Maximum-Entropy Principle can estimate the distributions of parameters. In our case study, we estimated the distributions of the parameters of the forest self-thinning process based on literature information, and we derived the conditional distribution functions and estimated the 95 percent confidence interval (CI) of the self-...
A hyperbolastic type-I diffusion process: Parameter estimation by means of the firefly algorithm.
Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco
2018-01-01
A stochastic diffusion process, whose mean function is a hyperbolastic curve of type I, is presented. The main characteristics of the process are studied and the problem of maximum likelihood estimation for the parameters of the process is considered. To this end, the firefly metaheuristic optimization algorithm is applied after bounding the parametric space by a stagewise procedure. Some examples based on simulated sample paths and real data illustrate this development. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Y.
2017-12-01
Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to urbanization, and the results show urbanization has big impact on the watershed flood responses. The peak flow increased a few times after urbanization which is much higher than previous reports.
Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui
2015-11-02
Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.
Process Simulation of Gas Metal Arc Welding Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Paul E.
2005-09-06
ARCWELDER is a Windows-based application that simulates gas metal arc welding (GMAW) of steel and aluminum. The software simulates the welding process in an accurate and efficient manner, provides menu items for process parameter selection, and includes a graphical user interface with the option to animate the process. The user enters the base and electrode material, open circuit voltage, wire diameter, wire feed speed, welding speed, and standoff distance. The program computes the size and shape of a square-groove or V-groove weld in the flat position. The program also computes the current, arc voltage, arc length, electrode extension, transfer ofmore » droplets, heat input, filler metal deposition, base metal dilution, and centerline cooling rate, in English or SI units. The simulation may be used to select welding parameters that lead to desired operation conditions.« less
NASA Astrophysics Data System (ADS)
Kelleher, Christa; McGlynn, Brian; Wagener, Thorsten
2017-07-01
Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral
sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral
parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology-soil-vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale.
NASA Astrophysics Data System (ADS)
Torabi, Amir; Kolahan, Farhad
2018-07-01
Pulsed laser welding is a powerful technique especially suitable for joining thin sheet metals. In this study, based on experimental data, pulsed laser welding of thin AISI316L austenitic stainless steel sheet has been modeled and optimized. The experimental data required for modeling are gathered as per Central Composite Design matrix in Response Surface Methodology (RSM) with full replication of 31 runs. Ultimate Tensile Strength (UTS) is considered as the main quality measure in laser welding. Furthermore, the important process parameters including peak power, pulse duration, pulse frequency and welding speed are selected as input process parameters. The relation between input parameters and the output response is established via full quadratic response surface regression with confidence level of 95%. The adequacy of the regression model was verified using Analysis of Variance technique results. The main effects of each factor and the interactions effects with other factors were analyzed graphically in contour and surface plot. Next, to maximum joint UTS, the best combinations of parameters levels were specified using RSM. Moreover, the mathematical model is implanted into a Simulated Annealing (SA) optimization algorithm to determine the optimal values of process parameters. The results obtained by both SA and RSM optimization techniques are in good agreement. The optimal parameters settings for peak power of 1800 W, pulse duration of 4.5 ms, frequency of 4.2 Hz and welding speed of 0.5 mm/s would result in a welded joint with 96% of the base metal UTS. Computational results clearly demonstrate that the proposed modeling and optimization procedures perform quite well for pulsed laser welding process.
DOE Program on Seismic Characterization for Regions of Interest to CTBT Monitoring,
1995-08-14
processing of the monitoring network data). While developing and testing the corrections and other parameters needed by the automated processing systems...the secondary network. Parameters tabulated in the knowledge base must be appropriate for routine automated processing of network data, and must also...operation of the PNDC, as well as to results of investigations of "special events" (i.e., those events that fail to locate or discriminate during automated
NASA Astrophysics Data System (ADS)
McNamara, J. P.; Semenova, O.; Restrepo, P. J.
2011-12-01
Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in terms of runoff and variable states of soil and snow over a simulation period 2000 - 2009. The parameters of the model were hand-adjusted based on rational sense, observational data and available understanding of underlying processes. For the first run some processes as riparian vegetation impact on runoff and streamflow/groundwater interaction were handled in a conceptual way. It was shown that the use of Hydrograph model which requires modest amount of parameter calibration may serve also as a quality control for observations. Based on the obtained parameters values and process understanding at the research watershed the model was applied to the larger scale watersheds located in similar environment - the Boise River at South Fork (1660 km2) and Twin Springs (2155 km2). The evaluation of the results of such upscaling will be presented.
Hierarchial mark-recapture models: a framework for inference about demographic processes
Link, W.A.; Barker, R.J.
2004-01-01
The development of sophisticated mark-recapture models over the last four decades has provided fundamental tools for the study of wildlife populations, allowing reliable inference about population sizes and demographic rates based on clearly formulated models for the sampling processes. Mark-recapture models are now routinely described by large numbers of parameters. These large models provide the next challenge to wildlife modelers: the extraction of signal from noise in large collections of parameters. Pattern among parameters can be described by strong, deterministic relations (as in ultrastructural models) but is more flexibly and credibly modeled using weaker, stochastic relations. Trend in survival rates is not likely to be manifest by a sequence of values falling precisely on a given parametric curve; rather, if we could somehow know the true values, we might anticipate a regression relation between parameters and explanatory variables, in which true value equals signal plus noise. Hierarchical models provide a useful framework for inference about collections of related parameters. Instead of regarding parameters as fixed but unknown quantities, we regard them as realizations of stochastic processes governed by hyperparameters. Inference about demographic processes is based on investigation of these hyperparameters. We advocate the Bayesian paradigm as a natural, mathematically and scientifically sound basis for inference about hierarchical models. We describe analysis of capture-recapture data from an open population based on hierarchical extensions of the Cormack-Jolly-Seber model. In addition to recaptures of marked animals, we model first captures of animals and losses on capture, and are thus able to estimate survival probabilities w (i.e., the complement of death or permanent emigration) and per capita growth rates f (i.e., the sum of recruitment and immigration rates). Covariation in these rates, a feature of demographic interest, is explicitly described in the model.
Remote Sensing Image Quality Assessment Experiment with Post-Processing
NASA Astrophysics Data System (ADS)
Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.
2018-04-01
This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.
Su-Huan, Kow; Fahmi, Muhammad Ridwan; Abidin, Che Zulzikrami Azner; Soon-An, Ong
2016-11-01
Advanced oxidation processes (AOPs) are of special interest in treating landfill leachate as they are the most promising procedures to degrade recalcitrant compounds and improve the biodegradability of wastewater. This paper aims to refresh the information base of AOPs and to discover the research gaps of AOPs in landfill leachate treatment. A brief overview of mechanisms involving in AOPs including ozone-based AOPs, hydrogen peroxide-based AOPs and persulfate-based AOPs are presented, and the parameters affecting AOPs are elaborated. Particularly, the advancement of AOPs in landfill leachate treatment is compared and discussed. Landfill leachate characterization prior to method selection and method optimization prior to treatment are necessary, as the performance and practicability of AOPs are influenced by leachate matrixes and treatment cost. More studies concerning the scavenging effects of leachate matrixes towards AOPs, as well as the persulfate-based AOPs in landfill leachate treatment, are necessary in the future.
Multiresponse Optimization of Process Parameters in Turning of GFRP Using TOPSIS Method
Parida, Arun Kumar; Routara, Bharat Chandra
2014-01-01
Taguchi's design of experiment is utilized to optimize the process parameters in turning operation with dry environment. Three parameters, cutting speed (v), feed (f), and depth of cut (d), with three different levels are taken for the responses like material removal rate (MRR) and surface roughness (R a). The machining is conducted with Taguchi L9 orthogonal array, and based on the S/N analysis, the optimal process parameters for surface roughness and MRR are calculated separately. Considering the larger-the-better approach, optimal process parameters for material removal rate are cutting speed at level 3, feed at level 2, and depth of cut at level 3, that is, v 3-f 2-d 3. Similarly for surface roughness, considering smaller-the-better approach, the optimal process parameters are cutting speed at level 1, feed at level 1, and depth of cut at level 3, that is, v 1-f 1-d 3. Results of the main effects plot indicate that depth of cut is the most influencing parameter for MRR but cutting speed is the most influencing parameter for surface roughness and feed is found to be the least influencing parameter for both the responses. The confirmation test is conducted for both MRR and surface roughness separately. Finally, an attempt has been made to optimize the multiresponses using technique for order preference by similarity to ideal solution (TOPSIS) with Taguchi approach. PMID:27437503
Estimation of correlation functions by stochastic approximation.
NASA Technical Reports Server (NTRS)
Habibi, A.; Wintz, P. A.
1972-01-01
Consideration of the autocorrelation function of a zero-mean stationary random process. The techniques are applicable to processes with nonzero mean provided the mean is estimated first and subtracted. Two recursive techniques are proposed, both of which are based on the method of stochastic approximation and assume a functional form for the correlation function that depends on a number of parameters that are recursively estimated from successive records. One technique uses a standard point estimator of the correlation function to provide estimates of the parameters that minimize the mean-square error between the point estimates and the parametric function. The other technique provides estimates of the parameters that maximize a likelihood function relating the parameters of the function to the random process. Examples are presented.
NASA Astrophysics Data System (ADS)
Gusev, E. V.; Mukhametzyanov, Z. R.; Razyapov, R. V.
2017-11-01
The problems of the existing methods for the determination of combining and technologically interlinked construction processes and activities are considered under the modern construction conditions of various facilities. The necessity to identify common parameters that characterize the interaction nature of all the technology-related construction and installation processes and activities is shown. The research of the technologies of construction and installation processes for buildings and structures with the goal of determining a common parameter for evaluating the relationship between technologically interconnected processes and construction works are conducted. The result of this research was to identify the quantitative evaluation of interaction construction and installation processes and activities in a minimum technologically necessary volume of the previous process allowing one to plan and organize the execution of a subsequent technologically interconnected process. The quantitative evaluation is used as the basis for the calculation of the optimum range of the combination of processes and activities. The calculation method is based on the use of the graph theory. The authors applied a generic characterization parameter to reveal the technological links between construction and installation processes, and the proposed technique has adaptive properties which are key for wide use in organizational decisions forming. The article provides a written practical significance of the developed technique.
NASA Astrophysics Data System (ADS)
Sharkeev, Yu. P.; Sedelnikova, M. B.; Komarova, E. G.; Khlusov, I. A.
2015-11-01
An investigation of titanium surface modification by microarc oxidation in the electrolyte based on wollastonite and hydroxyapatite was presented. The dependences of the coating properties on the microarc oxidation parameters were found. A variation of the process parameters allowed producing wollastonite-calcium phosphate coatings with aplate-like structure, thickness 25-30 µm, roughness 2.5-5.0 µm, and adhesion strength 57 MPa. The optimum microarc oxidation parameters such as the electrical voltage of 150 V, process duration of 5-10 min, and pulse duration of 100-300 µs were revealed. The wollastonite addition to the electrolyte based on the aqueous solution of phosphoric acid and hydroxyapatite allowed us to form wollastonite-calcium phosphate coatings on the titanium surface by the microarc oxidation method with enhanced strength properties and an increased ability to osseointegration.
NASA Astrophysics Data System (ADS)
Khorashadi Zadeh, Farkhondeh; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy
2017-04-01
Parameter estimation is a major concern in hydrological modeling, which may limit the use of complex simulators with a large number of parameters. To support the selection of parameters to include in or exclude from the calibration process, Global Sensitivity Analysis (GSA) is widely applied in modeling practices. Based on the results of GSA, the influential and the non-influential parameters are identified (i.e. parameters screening). Nevertheless, the choice of the screening threshold below which parameters are considered non-influential is a critical issue, which has recently received more attention in GSA literature. In theory, the sensitivity index of a non-influential parameter has a value of zero. However, since numerical approximations, rather than analytical solutions, are utilized in GSA methods to calculate the sensitivity indices, small but non-zero indices may be obtained for the indices of non-influential parameters. In order to assess the threshold that identifies non-influential parameters in GSA methods, we propose to calculate the sensitivity index of a "dummy parameter". This dummy parameter has no influence on the model output, but will have a non-zero sensitivity index, representing the error due to the numerical approximation. Hence, the parameters whose indices are above the sensitivity index of the dummy parameter can be classified as influential, whereas the parameters whose indices are below this index are within the range of the numerical error and should be considered as non-influential. To demonstrated the effectiveness of the proposed "dummy parameter approach", 26 parameters of a Soil and Water Assessment Tool (SWAT) model are selected to be analyzed and screened, using the variance-based Sobol' and moment-independent PAWN methods. The sensitivity index of the dummy parameter is calculated from sampled data, without changing the model equations. Moreover, the calculation does not even require additional model evaluations for the Sobol' method. A formal statistical test validates these parameter screening results. Based on the dummy parameter screening, 11 model parameters are identified as influential. Therefore, it can be denoted that the "dummy parameter approach" can facilitate the parameter screening process and provide guidance for GSA users to define a screening-threshold, with only limited additional resources. Key words: Parameter screening, Global sensitivity analysis, Dummy parameter, Variance-based method, Moment-independent method
Jo, Se-Hee; Lee, See-Young; Park, Kyeong-Mok; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong
2010-11-05
In this study, a three-zone carousel process based on a proper molecular imprinted polymer (MIP) resin was developed for continuous separation of Cu(2+) from Mn(2+) and Co(2+). For this task, the Cu (II)-imprinted polymer (Cu-MIP) resin was synthesized first and used to pack the chromatographic columns of a three-zone carousel process. Prior to the experiment of the carousel process based on the Cu-MIP resin (MIP-carousel process), a series of single-column experiments were performed to estimate the intrinsic parameters of the three heavy metal ions and to find out the appropriate conditions of regeneration and re-equilibration. The results from these single-column experiments and the additional computer simulations were then used for determination of the operating parameters of the MIP-carousel process under consideration. Based on the determined operating parameters, the MIP-carousel experiments were carried out. It was confirmed from the experimental results that the proposed MIP-carousel process was markedly effective in separating Cu(2+) from Mn(2+) and Co(2+) in a continuous mode with high purity and a relatively small loss. Thus, the MIP-carousel process developed in this study deserves sufficient attention in materials processing industries or metal-related industries, where the selective separation of heavy metal ions with the same charge has been a major concern. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Adam, J. C.; Tague, C.
2016-12-01
Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in adequately representing the relevant process to capture limiting resources or manage atypical environmental conditions. These results may inform future experimental work by focusing efforts on quantifying specific parameters under various environmental conditions or across diverse plant functional types.
Wang, Yi; Lee, Sui Mae; Dykes, Gary
2015-01-01
Bacterial attachment to abiotic surfaces can be explained as a physicochemical process. Mechanisms of the process have been widely studied but are not yet well understood due to their complexity. Physicochemical processes can be influenced by various interactions and factors in attachment systems, including, but not limited to, hydrophobic interactions, electrostatic interactions and substratum surface roughness. Mechanistic models and control strategies for bacterial attachment to abiotic surfaces have been established based on the current understanding of the attachment process and the interactions involved. Due to a lack of process control and standardization in the methodologies used to study the mechanisms of bacterial attachment, however, various challenges are apparent in the development of models and control strategies. In this review, the physicochemical mechanisms, interactions and factors affecting the process of bacterial attachment to abiotic surfaces are described. Mechanistic models established based on these parameters are discussed in terms of their limitations. Currently employed methods to study these parameters and bacterial attachment are critically compared. The roles of these parameters in the development of control strategies for bacterial attachment are reviewed, and the challenges that arise in developing mechanistic models and control strategies are assessed.
Using Noise and Fluctuations for In Situ Measurements of Nitrogen Diffusion Depth.
Samoila, Cornel; Ursutiu, Doru; Schleer, Walter-Harald; Jinga, Vlad; Nascov, Victor
2016-10-05
In manufacturing processes involving diffusion (of C, N, S, etc.), the evolution of the layer depth is of the utmost importance: the success of the entire process depends on this parameter. Currently, nitriding is typically either calibrated using a "post process" method or controlled via indirect measurements (H2, O2, H2O + CO2). In the absence of "in situ" monitoring, any variation in the process parameters (gas concentration, temperature, steel composition, distance between sensors and furnace chamber) can cause expensive process inefficiency or failure. Indirect measurements can prevent process failure, but uncertainties and complications may arise in the relationship between the measured parameters and the actual diffusion process. In this paper, a method based on noise and fluctuation measurements is proposed that offers direct control of the layer depth evolution because the parameters of interest are measured in direct contact with the nitrided steel (represented by the active electrode). The paper addresses two related sets of experiments. The first set of experiments consisted of laboratory tests on nitrided samples using Barkhausen noise and yieded a linear relationship between the frequency exponent in the Hooge equation and the nitriding time. For the second set, a specific sensor based on conductivity noise (at the nitriding temperature) was built for shop-floor experiments. Although two different types of noise were measured in these two sets of experiments, the use of the frequency exponent to monitor the process evolution remained valid.
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.
Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf
2010-05-25
Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks
2010-01-01
Background Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. Results In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. Conclusions The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates. PMID:20500862
Patil, Pankaj N; Bote, Sayli D; Gogate, Parag R
2014-09-01
The harmful effects of wastewaters containing pesticides or insecticides on human and aquatic life impart the need of effectively treating the wastewater streams containing these contaminants. In the present work, hydrodynamic cavitation reactors have been applied for the degradation of imidacloprid with process intensification studies based on different additives and combination with other similar processes. Effect of different operating parameters viz. concentration (20-60 ppm), pressure (1-8 bar), temperature (34 °C, 39 °C and 42 °C) and initial pH (2.5-8.3) has been investigated initially using orifice plate as cavitating device. It has been observed that 23.85% degradation of imidacloprid is obtained at optimized set of operating parameters. The efficacy of different process intensifying approaches based on the use of hydrogen peroxide (20-80 ppm), Fenton's reagent (H2O2:FeSO4 ratio as 1:1, 1:2, 2:1, 2:2, 4:1 and 4:2), advanced Fenton process (H2O2:Iron Powder ratio as 1:1, 2:1 and 4:1) and combination of Na2S2O8 and FeSO4 (FeSO4:Na2S2O8 ratio as 1:1, 1:2, 1:3 and 1:4) on the extent of degradation has been investigated. It was observed that near complete degradation of imidacloprid was achieved in all the cases at optimized values of process intensifying parameters. The time required for complete degradation of imidacloprid for approach based on hydrogen peroxide was 120 min where as for the Fenton and advance Fenton process, the required time was only 60 min. To check the effectiveness of hydrodynamic cavitation with different cavitating devices, few experiments were also performed with the help of slit venturi as a cavitating device at already optimized values of parameters. The present work has conclusively established that combined processes based on hydrodynamic cavitation can be effectively used for complete degradation of imidacloprid. Copyright © 2014 Elsevier B.V. All rights reserved.
Analytical and regression models of glass rod drawing process
NASA Astrophysics Data System (ADS)
Alekseeva, L. B.
2018-03-01
The process of drawing glass rods (light guides) is being studied. The parameters of the process affecting the quality of the light guide have been determined. To solve the problem, mathematical models based on general equations of continuum mechanics are used. The conditions for the stable flow of the drawing process have been found, which are determined by the stability of the motion of the glass mass in the formation zone to small uncontrolled perturbations. The sensitivity of the formation zone to perturbations of the drawing speed and viscosity is estimated. Experimental models of the drawing process, based on the regression analysis methods, have been obtained. These models make it possible to customize a specific production process to obtain light guides of the required quality. They allow one to find the optimum combination of process parameters in the chosen area and to determine the required accuracy of maintaining them at a specified level.
NASA Astrophysics Data System (ADS)
Wibowo, Y. T.; Baskoro, S. Y.; Manurung, V. A. T.
2018-02-01
Plastic based products spread all over the world in many aspects of life. The ability to substitute other materials is getting stronger and wider. The use of plastic materials increases and become unavoidable. Plastic based mass production requires injection process as well Mold. The milling process of plastic mold steel material was done using HSS End Mill cutting tool that is widely used in a small and medium enterprise for the reason of its ability to be re sharpened and relatively inexpensive. Study on the effect of the geometry tool states that it has an important effect on the quality improvement. Cutting speed, feed rate, depth of cut and radii are input parameters beside to the tool path strategy. This paper aims to investigate input parameter and cutting tools behaviors within some different tool path strategy. For the reason of experiments efficiency Taguchi method and ANOVA were used. Response studied is surface roughness and cutting behaviors. By achieving the expected quality, no more additional process is required. Finally, the optimal combination of machining parameters will deliver the expected roughness and of course totally reduced cutting time. However actually, SMEs do not optimally use this data for cost reduction.
Continuous welding of unidirectional fiber reinforced thermoplastic tape material
NASA Astrophysics Data System (ADS)
Schledjewski, Ralf
2017-10-01
Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.
X-ray Computed Tomography Assessment of Air Void Distribution in Concrete
NASA Astrophysics Data System (ADS)
Lu, Haizhu
Air void size and spatial distribution have long been regarded as critical parameters in the frost resistance of concrete. In cement-based materials, entrained air void systems play an important role in performance as related to durability, permeability, and heat transfer. Many efforts have been made to measure air void parameters in a more efficient and reliable manner in the past several decades. Standardized measurement techniques based on optical microscopy and stereology on flat cut and polished surfaces are widely used in research as well as in quality assurance and quality control applications. Other more automated methods using image processing have also been utilized, but still starting from flat cut and polished surfaces. The emergence of X-ray computed tomography (CT) techniques provides the capability of capturing the inner microstructure of materials at the micrometer and nanometer scale. X-ray CT's less demanding sample preparation and capability to measure 3D distributions of air voids directly provide ample prospects for its wider use in air void characterization in cement-based materials. However, due to the huge number of air voids that can exist within a limited volume, errors can easily arise in the absence of a formalized data processing procedure. In this study, air void parameters in selected types of cement-based materials (lightweight concrete, structural concrete elements, pavements, and laboratory mortars) have been measured using micro X-ray CT. The focus of this study is to propose a unified procedure for processing the data and to provide solutions to deal with common problems that arise when measuring air void parameters: primarily the reliable segmentation of objects of interest, uncertainty estimation of measured parameters, and the comparison of competing segmentation parameters.
NASA Astrophysics Data System (ADS)
Jackson-Blake, L.
2014-12-01
Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, but even in well-studied catchments, streams are often only sampled at a fortnightly or monthly frequency. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by one process-based catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the MCMC-DREAM algorithm. Using daily rather than fortnightly data resulted in improved simulation of the magnitude of peak TDP concentrations, in turn resulting in improved model performance statistics. Marginal posteriors were better constrained by the higher frequency data, resulting in a large reduction in parameter-related uncertainty in simulated TDP (the 95% credible interval decreased from 26 to 6 μg/l). The number of parameters that could be reliably auto-calibrated was lower for the fortnightly data, leading to the recommendation that parameters should not be varied spatially for models such as INCA-P unless there is solid evidence that this is appropriate, or there is a real need to do so for the model to fulfil its purpose. Secondary study aims were to highlight the subjective elements involved in auto-calibration and suggest practical improvements that could make models such as INCA-P more suited to auto-calibration and uncertainty analyses. Two key improvements include model simplification, so that all model parameters can be included in an analysis of this kind, and better documenting of recommended ranges for each parameter, to help in choosing sensible priors.
A stylistic classification of Russian-language texts based on the random walk model
NASA Astrophysics Data System (ADS)
Kramarenko, A. A.; Nekrasov, K. A.; Filimonov, V. V.; Zhivoderov, A. A.; Amieva, A. A.
2017-09-01
A formal approach to text analysis is suggested that is based on the random walk model. The frequencies and reciprocal positions of the vowel letters are matched up by a process of quasi-particle migration. Statistically significant difference in the migration parameters for the texts of different functional styles is found. Thus, a possibility of classification of texts using the suggested method is demonstrated. Five groups of the texts are singled out that can be distinguished from one another by the parameters of the quasi-particle migration process.
NASA Astrophysics Data System (ADS)
Liu, Likun
2018-01-01
In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.
Experiment Analysis and Modelling of Compaction Behaviour of Ag60Cu30Sn10 Mixed Metal Powders
NASA Astrophysics Data System (ADS)
Zhou, Mengcheng; Huang, Shangyu; Liu, Wei; Lei, Yu; Yan, Shiwei
2018-03-01
A novel process method combines powder compaction and sintering was employed to fabricate thin sheets of cadmium-free silver based filler metals, the compaction densification behaviour of Ag60Cu30Sn10 mixed metal powders was investigated experimentally. Based on the equivalent density method, the density-dependent Drucker-Prager Cap (DPC) model was introduced to model the powder compaction behaviour. Various experiment procedures were completed to determine the model parameters. The friction coefficients in lubricated and unlubricated die were experimentally determined. The determined material parameters were validated by experiments and numerical simulation of powder compaction process using a user subroutine (USDFLD) in ABAQUS/Standard. The good agreement between the simulated and experimental results indicates that the determined model parameters are able to describe the compaction behaviour of the multicomponent mixed metal powders, which can be further used for process optimization simulations.
Characteristics of Friction Stir Processed UHMW Polyethylene Based Composite
NASA Astrophysics Data System (ADS)
Hussain, G.; Khan, I.
2018-01-01
Ultra-high molecular weight polyethylene (UHMWPE) based composites are widely used in biomedical and food industries because of their biocompatibility and enhanced properties. The aim of this study was to fabricate UHMWPE / nHA composite through heat assisted Friction Stir Processing. The rotational speed (ω), feed rate (f), volume fraction of nHA (v) and shoulder temperature (T) were selected as the process parameters. Macroscopic and microscopic analysis revealed that these parameters have significant effects on the distribution of reinforcing material, defects formation and material mixing. Defects were observed especially at low levels of (ω, T) and high levels of (f, v). Low level of v with medium levels of other parameters resulted in better mixing and minimum defects. A 10% increase in strength with only 1% reduction in Percent Elongation was observed at the above set of conditions. Moreover, the resulted hardness of the composite was higher than that of the parent material.
Numerical simulation of electron beam welding with beam oscillations
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Permyakov, G. L.
2017-02-01
This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.
Knowledge transmission model with differing initial transmission and retransmission process
NASA Astrophysics Data System (ADS)
Wang, Haiying; Wang, Jun; Small, Michael
2018-10-01
Knowledge transmission is a cyclic dynamic diffusion process. The rate of acceptance of knowledge differs upon whether or not the recipient has previously held the knowledge. In this paper, the knowledge transmission process is divided into an initial and a retransmission procedure, each with its own transmission and self-learning parameters. Based on epidemic spreading model, we propose a naive-evangelical-agnostic (VEA) knowledge transmission model and derive mean-field equations to describe the dynamics of knowledge transmission in homogeneous networks. Theoretical analysis identifies a criterion for the persistence of knowledge, i.e., the reproduction number R0 depends on the minor effective parameters between the initial and retransmission process. Moreover, the final size of evangelical individuals is only related to retransmission process parameters. Numerical simulations validate the theoretical analysis. Furthermore, the simulations indicate that increasing the initial transmission parameters, including first transmission and self-learning rates of naive individuals, can accelerate the velocity of knowledge transmission efficiently but have no effect on the final size of evangelical individuals. In contrast, the retransmission parameters, including retransmission and self-learning rates of agnostic individuals, have a significant effect on the rate of knowledge transmission, i.e., the larger parameters the greater final density of evangelical individuals.
Cheng, Lin; Luo, Xiao-Jian; Han, Xiu-Lin; Wang, Wen-Kai; Rao, Xiao-Yong; Xu, Shao-Zhong; He, Yan
2016-09-01
Based on the basic theory of thermodynamics, the thermodynamic parameters and related equations in the process of water adsorption and desorption of Chinese herbal decoction pieces were established, and their water absorption and desorption characteristics were analyzed. The physical significance of the thermodynamic parameters, such as differential adsorption enthalpy, differential adsorption entropy, integral adsorption enthalpy, integral adsorption entropy and the free energy of adsorption, were discussed in this paper to provide theoretical basis for the research on the water adsorption and desorption mechanism, optimum drying process parameters, storage conditions and packaging methods of Chinese herbal decoction pieces. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Saidi, B.; Giraud-Moreau, L.; Cherouat, A.; Nasri, R.
2017-09-01
AINSI 304L stainless steel sheets are commonly formed into a variety of shapes for applications in the industrial, architectural, transportation and automobile fields, it’s also used for manufacturing of denture base. In the field of dentistry, there is a need for personalized devises that are custom made for the patient. The single point incremental forming process is highly promising in this area for manufacturing of denture base. The single point incremental forming process (ISF) is an emerging process based on the use of a spherical tool, which is moved along CNC controlled tool path. One of the major advantages of this process is the ability to program several punch trajectories on the same machine in order to obtain different shapes. Several applications of this process exist in the medical field for the manufacturing of personalized titanium prosthesis (cranial plate, knee prosthesis...) due to the need of product customization to each patient. The objective of this paper is to study the incremental forming of AISI 304L stainless steel sheets for future applications in the dentistry field. During the incremental forming process, considerable forces can occur. The control of the forming force is particularly important to ensure the safe use of the CNC milling machine and preserve the tooling and machinery. In this paper, the effect of four different process parameters on the maximum force is studied. The proposed approach consists in using an experimental design based on experimental results. An analysis of variance was conducted with ANOVA to find the input parameters allowing to minimize the maximum forming force. A numerical simulation of the incremental forming process is performed with the optimal input process parameters. Numerical results are compared with the experimental ones.
Operational stability prediction in milling based on impact tests
NASA Astrophysics Data System (ADS)
Kiss, Adam K.; Hajdu, David; Bachrathy, Daniel; Stepan, Gabor
2018-03-01
Chatter detection is usually based on the analysis of measured signals captured during cutting processes. These techniques, however, often give ambiguous results close to the stability boundaries, which is a major limitation in industrial applications. In this paper, an experimental chatter detection method is proposed based on the system's response for perturbations during the machining process, and no system parameter identification is required. The proposed method identifies the dominant characteristic multiplier of the periodic dynamical system that models the milling process. The variation of the modulus of the largest characteristic multiplier can also be monitored, the stability boundary can precisely be extrapolated, while the manufacturing parameters are still kept in the chatter-free region. The method is derived in details, and also verified experimentally in laboratory environment.
Comparison of two methods for calculating the P sorption capacity parameter in soils
USDA-ARS?s Scientific Manuscript database
Phosphorus (P) cycling in soils is an important process affecting P movement through the landscape. The P cycling routines in many computer models are based on the relationships developed for the EPIC model. An important parameter required for this model is the P sorption capacity parameter (PSP). I...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Clifford Kuofei
Chemical transport through human skin can play a significant role in human exposure to toxic chemicals in the workplace, as well as to chemical/biological warfare agents in the battlefield. The viability of transdermal drug delivery also relies on chemical transport processes through the skin. Models of percutaneous absorption are needed for risk-based exposure assessments and drug-delivery analyses, but previous mechanistic models have been largely deterministic. A probabilistic, transient, three-phase model of percutaneous absorption of chemicals has been developed to assess the relative importance of uncertain parameters and processes that may be important to risk-based assessments. Penetration routes through the skinmore » that were modeled include the following: (1) intercellular diffusion through the multiphase stratum corneum; (2) aqueous-phase diffusion through sweat ducts; and (3) oil-phase diffusion through hair follicles. Uncertainty distributions were developed for the model parameters, and a Monte Carlo analysis was performed to simulate probability distributions of mass fluxes through each of the routes. Sensitivity analyses using stepwise linear regression were also performed to identify model parameters that were most important to the simulated mass fluxes at different times. This probabilistic analysis of percutaneous absorption (PAPA) method has been developed to improve risk-based exposure assessments and transdermal drug-delivery analyses, where parameters and processes can be highly uncertain.« less
A Sensitivity Analysis Method to Study the Behavior of Complex Process-based Models
NASA Astrophysics Data System (ADS)
Brugnach, M.; Neilson, R.; Bolte, J.
2001-12-01
The use of process-based models as a tool for scientific inquiry is becoming increasingly relevant in ecosystem studies. Process-based models are artificial constructs that simulate the system by mechanistically mimicking the functioning of its component processes. Structurally, a process-based model can be characterized, in terms of its processes and the relationships established among them. Each process comprises a set of functional relationships among several model components (e.g., state variables, parameters and input data). While not encoded explicitly, the dynamics of the model emerge from this set of components and interactions organized in terms of processes. It is the task of the modeler to guarantee that the dynamics generated are appropriate and semantically equivalent to the phenomena being modeled. Despite the availability of techniques to characterize and understand model behavior, they do not suffice to completely and easily understand how a complex process-based model operates. For example, sensitivity analysis studies model behavior by determining the rate of change in model output as parameters or input data are varied. One of the problems with this approach is that it considers the model as a "black box", and it focuses on explaining model behavior by analyzing the relationship input-output. Since, these models have a high degree of non-linearity, understanding how the input affects an output can be an extremely difficult task. Operationally, the application of this technique may constitute a challenging task because complex process-based models are generally characterized by a large parameter space. In order to overcome some of these difficulties, we propose a method of sensitivity analysis to be applicable to complex process-based models. This method focuses sensitivity analysis at the process level, and it aims to determine how sensitive the model output is to variations in the processes. Once the processes that exert the major influence in the output are identified, the causes of its variability can be found. Some of the advantages of this approach are that it reduces the dimensionality of the search space, it facilitates the interpretation of the results and it provides information that allows exploration of uncertainty at the process level, and how it might affect model output. We present an example using the vegetation model BIOME-BGC.
Shah, Neha; Mehta, Tejal; Aware, Rahul; Shetty, Vasant
2017-12-01
The present work aims at studying process parameters affecting coating of minitablets (3 mm in diameter) through Wurster coating process. Minitablets of Naproxen with high drug loading were manufactured using 3 mm multi-tip punches. The release profile of core pellets (published) and minitablets was compared with that of marketed formulation. The core formulation of minitablets was found to show similarity in dissolution profile with marketed formulation and hence was further carried forward for functional coating over it. Wurster processing was implemented to pursue functional coating over core formulation. Different process parameters were screened and control strategy was applied for factors significantly affecting the process. Modified Plackett Burman Design was applied for studying important factors. Based on the significant factors and minimum level of coating required for functionalization, optimized process was executed. Final coated batch was evaluated for coating thickness, surface morphology, and drug release study.
Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method
NASA Astrophysics Data System (ADS)
Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak
2018-03-01
The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.
Ulaczyk, Jan; Morawiec, Krzysztof; Zabierowski, Paweł; Drobiazg, Tomasz; Barreau, Nicolas
2017-09-01
A data mining approach is proposed as a useful tool for the control parameters analysis of the 3-stage CIGSe photovoltaic cell production process, in order to find variables that are the most relevant for cell electric parameters and efficiency. The analysed data set consists of stage duration times, heater power values as well as temperatures for the element sources and the substrate - there are 14 variables per sample in total. The most relevant variables of the process have been found based on the so-called random forest analysis with the application of the Boruta algorithm. 118 CIGSe samples, prepared at Institut des Matériaux Jean Rouxel, were analysed. The results are close to experimental knowledge on the CIGSe cells production process. They bring new evidence to production parameters of new cells and further research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dynamic imaging model and parameter optimization for a star tracker.
Yan, Jinyun; Jiang, Jie; Zhang, Guangjun
2016-03-21
Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.
NASA Astrophysics Data System (ADS)
Haas, Edwin; Klatt, Steffen; Kraus, David; Werner, Christian; Ruiz, Ignacio Santa Barbara; Kiese, Ralf; Butterbach-Bahl, Klaus
2014-05-01
Numerical simulation models are increasingly used to estimate greenhouse gas emissions at site to regional and national scales and are outlined as the most advanced methodology (Tier 3) for national emission inventory in the framework of UNFCCC reporting. Process-based models incorporate the major processes of the carbon and nitrogen cycle of terrestrial ecosystems like arable land and grasslands and are thus thought to be widely applicable at various spatial and temporal scales. The high complexity of ecosystem processes mirrored by such models requires a large number of model parameters. Many of those parameters are lumped parameters describing simultaneously the effect of environmental drivers on e.g. microbial community activity and individual processes. Thus, the precise quantification of true parameter states is often difficult or even impossible. As a result model uncertainty is not solely originating from input uncertainty but also subject to parameter-induced uncertainty. In this study we quantify regional parameter-induced model uncertainty on nitrous oxide (N2O) emissions and nitrate (NO3) leaching from arable soils of Saxony (Germany) using the biogeochemical model LandscapeDNDC. For this we calculate a regional inventory using a joint parameter distribution for key parameters describing microbial C and N turnover processes as obtained by a Bayesian calibration study. We representatively sampled 400 different parameter vectors from the discrete joint parameter distribution comprising approximately 400,000 parameter combinations and used these to calculate 400 individual realizations of the regional inventory. The spatial domain (represented by 4042 polygons) is set up with spatially explicit soil and climate information and a region-typical 3-year crop rotation consisting of winter wheat, rape- seed, and winter barley. Average N2O emission from arable soils in the state of Saxony across all 400 realizations was 1.43 ± 1.25 [kg N / ha] with a median value of 1.05 [kg N / ha]. Using the default IPCC emission factor approach (Tier 1) for direct emissions reveal a higher average N2O emission of 1.51 [kg N / ha] due to fertilizer use. In the regional uncertainty quantification the 20% likelihood range for N2O emissions is 0.79 - 1.37 [kg N / ha] (50% likelihood: 0.46 - 2.05 [kg N / ha]; 90% likelihood: 0.11 - 4.03 [kg N / ha]). Respective quantities were calculated for nitrate leaching. The method has proven its applicability to quantify parameter-induced uncertainty of simulated regional greenhouse gas emission and nitrate leaching inventories using process based biogeochemical models.
Using Noise and Fluctuations for In Situ Measurements of Nitrogen Diffusion Depth
Samoila, Cornel; Ursutiu, Doru; Schleer, Walter-Harald; Jinga, Vlad; Nascov, Victor
2016-01-01
In manufacturing processes involving diffusion (of C, N, S, etc.), the evolution of the layer depth is of the utmost importance: the success of the entire process depends on this parameter. Currently, nitriding is typically either calibrated using a “post process” method or controlled via indirect measurements (H2, O2, H2O + CO2). In the absence of “in situ” monitoring, any variation in the process parameters (gas concentration, temperature, steel composition, distance between sensors and furnace chamber) can cause expensive process inefficiency or failure. Indirect measurements can prevent process failure, but uncertainties and complications may arise in the relationship between the measured parameters and the actual diffusion process. In this paper, a method based on noise and fluctuation measurements is proposed that offers direct control of the layer depth evolution because the parameters of interest are measured in direct contact with the nitrided steel (represented by the active electrode). The paper addresses two related sets of experiments. The first set of experiments consisted of laboratory tests on nitrided samples using Barkhausen noise and yielded a linear relationship between the frequency exponent in the Hooge equation and the nitriding time. For the second set, a specific sensor based on conductivity noise (at the nitriding temperature) was built for shop-floor experiments. Although two different types of noise were measured in these two sets of experiments, the use of the frequency exponent to monitor the process evolution remained valid. PMID:28773941
NASA Astrophysics Data System (ADS)
Nasir, Ahmad Fakhri Ab; Suhaila Sabarudin, Siti; Majeed, Anwar P. P. Abdul; Ghani, Ahmad Shahrizan Abdul
2018-04-01
Chicken egg is a source of food of high demand by humans. Human operators cannot work perfectly and continuously when conducting egg grading. Instead of an egg grading system using weight measure, an automatic system for egg grading using computer vision (using egg shape parameter) can be used to improve the productivity of egg grading. However, early hypothesis has indicated that more number of egg classes will change when using egg shape parameter compared with using weight measure. This paper presents the comparison of egg classification by the two above-mentioned methods. Firstly, 120 images of chicken eggs of various grades (A–D) produced in Malaysia are captured. Then, the egg images are processed using image pre-processing techniques, such as image cropping, smoothing and segmentation. Thereafter, eight egg shape features, including area, major axis length, minor axis length, volume, diameter and perimeter, are extracted. Lastly, feature selection (information gain ratio) and feature extraction (principal component analysis) are performed using k-nearest neighbour classifier in the classification process. Two methods, namely, supervised learning (using weight measure as graded by egg supplier) and unsupervised learning (using egg shape parameters as graded by ourselves), are conducted to execute the experiment. Clustering results reveal many changes in egg classes after performing shape-based grading. On average, the best recognition results using shape-based grading label is 94.16% while using weight-based label is 44.17%. As conclusion, automated egg grading system using computer vision is better by implementing shape-based features since it uses image meanwhile the weight parameter is more suitable by using weight grading system.
Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.
Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis
2015-01-01
Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration. © 2015 American Institute of Chemical Engineers.
CATS - A process-based model for turbulent turbidite systems at the reservoir scale
NASA Astrophysics Data System (ADS)
Teles, Vanessa; Chauveau, Benoît; Joseph, Philippe; Weill, Pierre; Maktouf, Fakher
2016-09-01
The Cellular Automata for Turbidite systems (CATS) model is intended to simulate the fine architecture and facies distribution of turbidite reservoirs with a multi-event and process-based approach. The main processes of low-density turbulent turbidity flow are modeled: downslope sediment-laden flow, entrainment of ambient water, erosion and deposition of several distinct lithologies. This numerical model, derived from (Salles, 2006; Salles et al., 2007), proposes a new approach based on the Rouse concentration profile to consider the flow capacity to carry the sediment load in suspension. In CATS, the flow distribution on a given topography is modeled with local rules between neighboring cells (cellular automata) based on potential and kinetic energy balance and diffusion concepts. Input parameters are the initial flow parameters and a 3D topography at depositional time. An overview of CATS capabilities in different contexts is presented and discussed.
NASA Astrophysics Data System (ADS)
Zhang, Junlong; Li, Yongping; Huang, Guohe; Chen, Xi; Bao, Anming
2016-07-01
Without a realistic assessment of parameter uncertainty, decision makers may encounter difficulties in accurately describing hydrologic processes and assessing relationships between model parameters and watershed characteristics. In this study, a Markov-Chain-Monte-Carlo-based multilevel-factorial-analysis (MCMC-MFA) method is developed, which can not only generate samples of parameters from a well constructed Markov chain and assess parameter uncertainties with straightforward Bayesian inference, but also investigate the individual and interactive effects of multiple parameters on model output through measuring the specific variations of hydrological responses. A case study is conducted for addressing parameter uncertainties in the Kaidu watershed of northwest China. Effects of multiple parameters and their interactions are quantitatively investigated using the MCMC-MFA with a three-level factorial experiment (totally 81 runs). A variance-based sensitivity analysis method is used to validate the results of parameters' effects. Results disclose that (i) soil conservation service runoff curve number for moisture condition II (CN2) and fraction of snow volume corresponding to 50% snow cover (SNO50COV) are the most significant factors to hydrological responses, implying that infiltration-excess overland flow and snow water equivalent represent important water input to the hydrological system of the Kaidu watershed; (ii) saturate hydraulic conductivity (SOL_K) and soil evaporation compensation factor (ESCO) have obvious effects on hydrological responses; this implies that the processes of percolation and evaporation would impact hydrological process in this watershed; (iii) the interactions of ESCO and SNO50COV as well as CN2 and SNO50COV have an obvious effect, implying that snow cover can impact the generation of runoff on land surface and the extraction of soil evaporative demand in lower soil layers. These findings can help enhance the hydrological model's capability for simulating/predicting water resources.
Effect of Processing Parameters on 3D Printing of Cement - based Materials
NASA Astrophysics Data System (ADS)
Lin, Jia Chao; Wang, Jun; Wu, Xiong; Yang, Wen; Zhao, Ri Xu; Bao, Ming
2018-06-01
3D printing is a new study direction of building method in recent years. The applicability of 3D printing equipment and cement based materials is analyzed, and the influence of 3D printing operation parameters on the printing effect is explored in this paper. Results showed that the appropriate range of 3D printing operation parameters: print height/nozzle diameter is between 0.4 to 0.6, the printing speed 4-8 cm/s with pumpage 9 * 10-2 m 3/ h.
Prioritized Contact Transport Stream
NASA Technical Reports Server (NTRS)
Hunt, Walter Lee, Jr. (Inventor)
2015-01-01
A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.
Predictive Modeling and Optimization of Vibration-assisted AFM Tip-based Nanomachining
NASA Astrophysics Data System (ADS)
Kong, Xiangcheng
The tip-based vibration-assisted nanomachining process offers a low-cost, low-effort technique in fabricating nanometer scale 2D/3D structures in sub-100 nm regime. To understand its mechanism, as well as provide the guidelines for process planning and optimization, we have systematically studied this nanomachining technique in this work. To understand the mechanism of this nanomachining technique, we firstly analyzed the interaction between the AFM tip and the workpiece surface during the machining process. A 3D voxel-based numerical algorithm has been developed to calculate the material removal rate as well as the contact area between the AFM tip and the workpiece surface. As a critical factor to understand the mechanism of this nanomachining process, the cutting force has been analyzed and modeled. A semi-empirical model has been proposed by correlating the cutting force with the material removal rate, which was validated using experimental data from different machining conditions. With the understanding of its mechanism, we have developed guidelines for process planning of this nanomachining technique. To provide the guideline for parameter selection, the effect of machining parameters on the feature dimensions (depth and width) has been analyzed. Based on ANOVA test results, the feature width is only controlled by the XY vibration amplitude, while the feature depth is affected by several machining parameters such as setpoint force and feed rate. A semi-empirical model was first proposed to predict the machined feature depth under given machining condition. Then, to reduce the computation intensity, linear and nonlinear regression models were also proposed and validated using experimental data. Given the desired feature dimensions, feasible machining parameters could be provided using these predictive feature dimension models. As the tip wear is unavoidable during the machining process, the machining precision will gradually decrease. To maintain the machining quality, the guideline for when to change the tip should be provided. In this study, we have developed several metrics to detect tip wear, such as tip radius and the pull-off force. The effect of machining parameters on the tip wear rate has been studied using these metrics, and the machining distance before a tip must be changed has been modeled using these machining parameters. Finally, the optimization functions have been built for unit production time and unit production cost subject to realistic constraints, and the optimal machining parameters can be found by solving these functions.
Bernese advances towards a global analysis of Lunar geodesy
NASA Astrophysics Data System (ADS)
Bertone, S.; Girardin, V.; Bourgoin, A.; Arnold, D.; Jaeggi, A.
2017-12-01
In this presentation we discuss our latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the planetary extension of the Bernese GNSS Software (BSW) developed at the Astronomical Institute of the University of Bern (AIUB).Based on one-way X band and two-way S-band Doppler data, we perform orbit determination by solving six initial orbital elements, dynamical parameters, and stochastic parameters in daily arcs using a least-squares adjustment. Significative improvements to our solutions come from the recent implementation of an accurate modeling of non-gravitational forces, including accelerations due to solar and planetary (albedo and IR) radiation pressure, based on the 28-plate macromodel to represent the GRAIL satellites. Also, as suggested in previous works, we deal with imperfections in the modeling of solar eclipses by both an accurate data screening at mid-latitudes and by taking into account solar panel voltage data in our processing. Empirical and pseudo-stochastic parameters are estimated on top of our dynamical modeling to absorb its deficiencies. We analyze the impact of different parametrizations using either pulses (i.e., instantaneous velocity changes) and piecewise constant accelerations (PCA) on our orbits.Based on these improved orbits, one- and two-way Doppler and KBRR data are then used together with an appropriate weighting for a combined orbit and gravity field determination process.We present our latest solutions of the lunar gravity field, based on the recent GRAIL GRGM900C gravity field (as validation of our modeling and parametrization) and on iterations from the SELENE SGM150J gravity field (to check the independence of our solution). We detail our procedure to gradually enlarge the parameter space while adding new data to our gravity field solution. In addition, we present our latest solution for the Moon tidal Love number k_2.Moreover, some important lunar geophysical parameters are best obtained by processing data from Lunar Laser Ranging (LLR) stations. We analyze the impact of a combined processing on the recovery of a set of parameters and we provide some preliminary results.Finally, we compare all of our results with the most recent solutions of the lunar gravity field and of other geodetic parameters released by other groups.
Estimating Soil Hydraulic Parameters using Gradient Based Approach
NASA Astrophysics Data System (ADS)
Rai, P. K.; Tripathi, S.
2017-12-01
The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.
NASA Astrophysics Data System (ADS)
Kumar, S.; Singh, A.; Dhar, A.
2017-08-01
The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.
Model-Based Thermal System Design Optimization for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.
2017-01-01
Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.
Model-based thermal system design optimization for the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.
2017-10-01
Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.
Rough case-based reasoning system for continues casting
NASA Astrophysics Data System (ADS)
Su, Wenbin; Lei, Zhufeng
2018-04-01
The continuous casting occupies a pivotal position in the iron and steel industry. The rough set theory and the CBR (case based reasoning, CBR) were combined in the research and implementation for the quality assurance of continuous casting billet to improve the efficiency and accuracy in determining the processing parameters. According to the continuous casting case, the object-oriented method was applied to express the continuous casting cases. The weights of the attributes were calculated by the algorithm which was based on the rough set theory and the retrieval mechanism for the continuous casting cases was designed. Some cases were adopted to test the retrieval mechanism, by analyzing the results, the law of the influence of the retrieval attributes on determining the processing parameters was revealed. A comprehensive evaluation model was established by using the attribute recognition theory. According to the features of the defects, different methods were adopted to describe the quality condition of the continuous casting billet. By using the system, the knowledge was not only inherited but also applied to adjust the processing parameters through the case based reasoning method as to assure the quality of the continuous casting and improve the intelligent level of the continuous casting.
NASA Astrophysics Data System (ADS)
Li, Ning; McLaughlin, Dennis; Kinzelbach, Wolfgang; Li, WenPeng; Dong, XinGuang
2015-10-01
Model uncertainty needs to be quantified to provide objective assessments of the reliability of model predictions and of the risk associated with management decisions that rely on these predictions. This is particularly true in water resource studies that depend on model-based assessments of alternative management strategies. In recent decades, Bayesian data assimilation methods have been widely used in hydrology to assess uncertain model parameters and predictions. In this case study, a particular data assimilation algorithm, the Ensemble Smoother with Multiple Data Assimilation (ESMDA) (Emerick and Reynolds, 2012), is used to derive posterior samples of uncertain model parameters and forecasts for a distributed hydrological model of Yanqi basin, China. This model is constructed using MIKESHE/MIKE11software, which provides for coupling between surface and subsurface processes (DHI, 2011a-d). The random samples in the posterior parameter ensemble are obtained by using measurements to update 50 prior parameter samples generated with a Latin Hypercube Sampling (LHS) procedure. The posterior forecast samples are obtained from model runs that use the corresponding posterior parameter samples. Two iterative sample update methods are considered: one based on an a perturbed observation Kalman filter update and one based on a square root Kalman filter update. These alternatives give nearly the same results and converge in only two iterations. The uncertain parameters considered include hydraulic conductivities, drainage and river leakage factors, van Genuchten soil property parameters, and dispersion coefficients. The results show that the uncertainty in many of the parameters is reduced during the smoother updating process, reflecting information obtained from the observations. Some of the parameters are insensitive and do not benefit from measurement information. The correlation coefficients among certain parameters increase in each iteration, although they generally stay below 0.50.
Information fusion methods based on physical laws.
Rao, Nageswara S V; Reister, David B; Barhen, Jacob
2005-01-01
We consider systems whose parameters satisfy certain easily computable physical laws. Each parameter is directly measured by a number of sensors, or estimated using measurements, or both. The measurement process may introduce both systematic and random errors which may then propagate into the estimates. Furthermore, the actual parameter values are not known since every parameter is measured or estimated, which makes the existing sample-based fusion methods inapplicable. We propose a fusion method for combining the measurements and estimators based on the least violation of physical laws that relate the parameters. Under fairly general smoothness and nonsmoothness conditions on the physical laws, we show the asymptotic convergence of our method and also derive distribution-free performance bounds based on finite samples. For suitable choices of the fuser classes, we show that for each parameter the fused estimate is probabilistically at least as good as its best measurement as well as best estimate. We illustrate the effectiveness of this method for a practical problem of fusing well-log data in methane hydrate exploration.
NASA Astrophysics Data System (ADS)
Basak, Amrita; Acharya, Ranadip; Das, Suman
2016-08-01
This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.
Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties
NASA Astrophysics Data System (ADS)
Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.
2007-12-01
Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.
NASA Astrophysics Data System (ADS)
Melkozyorova, N. A.; Zinkevich, K. G.; Lebedev, E. A.; Alekseyev, A. V.; Gromov, D. G.; Kitsyuk, E. P.; Ryazanov, R. M.; Sysa, A. V.
2017-11-01
The features of electrophoretic deposition process of composite LiCoO2-based cathode and Si-based anode materials were researched. The influence of the deposition process parameters on the structure and composition of the deposit was revealed. The possibility of a local deposition of composites on a planar lithium-ion battery structure was demonstrated.
Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.
Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei
2015-06-25
Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.
The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy
NASA Astrophysics Data System (ADS)
Yang, Ling
The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta phase on grain boundaries. Effort was made to explore the mechanisms of improving the time dependent crack propagation resistance through thermal processing, several mechanisms were identified in both environment dependent and environment independent category, and they were ranked based on their contributions in affecting crack propagation.
Strategic Planning: A (Site) Sight-Based Approach to Curriculum and Staff Development.
ERIC Educational Resources Information Center
Johnson, Daniel P.
The purpose of (Colorado's) Clear Creek School District's strategic planning process has been to develop basic district-wide parameters to promote instructional improvement through a process of shared leadership. The approach is termed "sight-based" to indicate the school district's commitment to connecting curriculum and…
Evaluation of parameters of color profile models of LCD and LED screens
NASA Astrophysics Data System (ADS)
Zharinov, I. O.; Zharinov, O. O.
2017-12-01
The purpose of the research relates to the problem of parametric identification of the color profile model of LCD (liquid crystal display) and LED (light emitting diode) screens. The color profile model of a screen is based on the Grassmann’s Law of additive color mixture. Mathematically the problem is to evaluate unknown parameters (numerical coefficients) of the matrix transformation between different color spaces. Several methods of evaluation of these screen profile coefficients were developed. These methods are based either on processing of some colorimetric measurements or on processing of technical documentation data.
Soil Erosion as a stochastic process
NASA Astrophysics Data System (ADS)
Casper, Markus C.
2015-04-01
The main tools to provide estimations concerning risk and amount of erosion are different types of soil erosion models: on the one hand, there are empirically based model concepts on the other hand there are more physically based or process based models. However, both types of models have substantial weak points. All empirical model concepts are only capable of providing rough estimates over larger temporal and spatial scales, they do not account for many driving factors that are in the scope of scenario related analysis. In addition, the physically based models contain important empirical parts and hence, the demand for universality and transferability is not given. As a common feature, we find, that all models rely on parameters and input variables, which are to certain, extend spatially and temporally averaged. A central question is whether the apparent heterogeneity of soil properties or the random nature of driving forces needs to be better considered in our modelling concepts. Traditionally, researchers have attempted to remove spatial and temporal variability through homogenization. However, homogenization has been achieved through physical manipulation of the system, or by statistical averaging procedures. The price for obtaining this homogenized (average) model concepts of soils and soil related processes has often been a failure to recognize the profound importance of heterogeneity in many of the properties and processes that we study. Especially soil infiltrability and the resistance (also called "critical shear stress" or "critical stream power") are the most important empirical factors of physically based erosion models. The erosion resistance is theoretically a substrate specific parameter, but in reality, the threshold where soil erosion begins is determined experimentally. The soil infiltrability is often calculated with empirical relationships (e.g. based on grain size distribution). Consequently, to better fit reality, this value needs to be corrected experimentally. To overcome this disadvantage of our actual models, soil erosion models are needed that are able to use stochastic directly variables and parameter distributions. There are only some minor approaches in this direction. The most advanced is the model "STOSEM" proposed by Sidorchuk in 2005. In this model, only a small part of the soil erosion processes is described, the aggregate detachment and the aggregate transport by flowing water. The concept is highly simplified, for example, many parameters are temporally invariant. Nevertheless, the main problem is that our existing measurements and experiments are not geared to provide stochastic parameters (e.g. as probability density functions); in the best case they deliver a statistical validation of the mean values. Again, we get effective parameters, spatially and temporally averaged. There is an urgent need for laboratory and field experiments on overland flow structure, raindrop effects and erosion rate, which deliver information on spatial and temporal structure of soil and surface properties and processes.
NASA Technical Reports Server (NTRS)
Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.
2010-01-01
Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.
Design and implementation of a cloud based lithography illumination pupil processing application
NASA Astrophysics Data System (ADS)
Zhang, Youbao; Ma, Xinghua; Zhu, Jing; Zhang, Fang; Huang, Huijie
2017-02-01
Pupil parameters are important parameters to evaluate the quality of lithography illumination system. In this paper, a cloud based full-featured pupil processing application is implemented. A web browser is used for the UI (User Interface), the websocket protocol and JSON format are used for the communication between the client and the server, and the computing part is implemented in the server side, where the application integrated a variety of high quality professional libraries, such as image processing libraries libvips and ImageMagic, automatic reporting system latex, etc., to support the program. The cloud based framework takes advantage of server's superior computing power and rich software collections, and the program could run anywhere there is a modern browser due to its web UI design. Compared to the traditional way of software operation model: purchased, licensed, shipped, downloaded, installed, maintained, and upgraded, the new cloud based approach, which is no installation, easy to use and maintenance, opens up a new way. Cloud based application probably is the future of the software development.
Automatic brain MR image denoising based on texture feature-based artificial neural networks.
Chang, Yu-Ning; Chang, Herng-Hua
2015-01-01
Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.
NASA Astrophysics Data System (ADS)
Nikolić, Vlastimir; Petković, Dalibor; Lazov, Lyubomir; Milovančević, Miloš
2016-07-01
Water-jet assisted underwater laser cutting has shown some advantages as it produces much less turbulence, gas bubble and aerosols, resulting in a more gentle process. However, this process has relatively low efficiency due to different losses in water. It is important to determine which parameters are the most important for the process. In this investigation was analyzed the water-jet assisted underwater laser cutting parameters forecasting based on the different parameters. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for water-jet assisted underwater laser cutting parameters forecasting. Three inputs are considered: laser power, cutting speed and water-jet speed. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the water-jet assisted underwater laser cutting parameters. According to the results the combination of laser power cutting speed forms the most influential combination foe the prediction of water-jet assisted underwater laser cutting parameters. The best prediction was observed for the bottom kerf-width (R2 = 0.9653). The worst prediction was observed for dross area per unit length (R2 = 0.6804). According to the results, a greater improvement in estimation accuracy can be achieved by removing the unnecessary parameter.
Sun, Li-Qiong; Wang, Shu-Yao; Li, Yan-Jing; Wang, Yong-Xiang; Wang, Zhen-Zhong; Huang, Wen-Zhe; Wang, Yue-Sheng; Bi, Yu-An; Ding, Gang; Xiao, Wei
2016-01-01
The present study was designed to determine the relationships between the performance of ethanol precipitation and seven process parameters in the ethanol precipitation process of Re Du Ning Injections, including concentrate density, concentrate temperature, ethanol content, flow rate and stir rate in the addition of ethanol, precipitation time, and precipitation temperature. Under the experimental and simulated production conditions, a series of precipitated resultants were prepared by changing these variables one by one, and then examined by HPLC fingerprint analyses. Different from the traditional evaluation model based on single or a few constituents, the fingerprint data of every parameter fluctuation test was processed with Principal Component Analysis (PCA) to comprehensively assess the performance of ethanol precipitation. Our results showed that concentrate density, ethanol content, and precipitation time were the most important parameters that influence the recovery of active compounds in precipitation resultants. The present study would provide some reference for pharmaceutical scientists engaged in research on pharmaceutical process optimization and help pharmaceutical enterprises adapt a scientific and reasonable cost-effective approach to ensure the batch-to-batch quality consistency of the final products. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
CAD/CAM interface design of excimer laser micro-processing system
NASA Astrophysics Data System (ADS)
Jing, Liang; Chen, Tao; Zuo, Tiechuan
2005-12-01
Recently CAD/CAM technology has been gradually used in the field of laser processing. The excimer laser micro-processing system just identified G instruction before CAD/CAM interface was designed. However the course of designing a part with G instruction for users is too hard. The efficiency is low and probability of making errors is high. By secondary development technology of AutoCAD with Visual Basic, an application was developed to pick-up each entity's information in graph and convert them to each entity's processing parameters. Also an additional function was added into former controlling software to identify these processing parameters of each entity and realize continue processing of graphic. Based on the above CAD/CAM interface, Users can design a part in AutoCAD instead of using G instruction. The period of designing a part is sharply shortened. This new way of design greatly guarantees the processing parameters of the part is right and exclusive. The processing of complex novel bio-chip has been realized by this new function.
Multirate state and parameter estimation in an antibiotic fermentation with delayed measurements.
Gudi, R D; Shah, S L; Gray, M R
1994-12-01
This article discusses issues related to estimation and monitoring of fermentation processes that exhibit endogenous metabolism and time-varying maintenance activity. Such culture-related activities hamper the use of traditional, software sensor-based algorithms, such as the extended kalman filter (EKF). In the approach presented here, the individual effects of the endogenous decay and the true maintenance processes have been lumped to represent a modified maintenance coefficient, m(c). Model equations that relate measurable process outputs, such as the carbon dioxide evolution rate (CER) and biomass, to the observable process parameters (such as net specific growth rate and the modified maintenance coefficient) are proposed. These model equations are used in an estimator that can formally accommodate delayed, infrequent measurements of the culture states (such as the biomass) as well as frequent, culture-related secondary measurements (such as the CER). The resulting multirate software sensor-based estimation strategy is used to monitor biomass profiles as well as profiles of critical fermentation parameters, such as the specific growth for a fed-batch fermentation of Streptomyces clavuligerus.
Optimization of IBF parameters based on adaptive tool-path algorithm
NASA Astrophysics Data System (ADS)
Deng, Wen Hui; Chen, Xian Hua; Jin, Hui Liang; Zhong, Bo; Hou, Jin; Li, An Qi
2018-03-01
As a kind of Computer Controlled Optical Surfacing(CCOS) technology. Ion Beam Figuring(IBF) has obvious advantages in the control of surface accuracy, surface roughness and subsurface damage. The superiority and characteristics of IBF in optical component processing are analyzed from the point of view of removal mechanism. For getting more effective and automatic tool path with the information of dwell time, a novel algorithm is proposed in this thesis. Based on the removal functions made through our IBF equipment and the adaptive tool-path, optimized parameters are obtained through analysis the residual error that would be created in the polishing process. A Φ600 mm plane reflector element was used to be a simulation instance. The simulation result shows that after four combinations of processing, the surface accuracy of PV (Peak Valley) value and the RMS (Root Mean Square) value was reduced to 4.81 nm and 0.495 nm from 110.22 nm and 13.998 nm respectively in the 98% aperture. The result shows that the algorithm and optimized parameters provide a good theoretical for high precision processing of IBF.
NASA Astrophysics Data System (ADS)
Zettler, R.; Blanco, A. C.; dos Santos, J. F.; Marya, S.
An increase in the use of magnesium (Mg) in the car manufacturing industry has raised questions concerning its weldability. Friction Stir Welding (FSW) has the advantage of achieving metallic bonding below that of the melting point of the base material thus avoiding many of the metallurgical problems associated with the solidification process. The present study presents the results of a development program carried out to investigate the response of Mg alloys AZ31 and AZ61 to different FSW tool geometries and process parameters. Temperature development across the weld zone was monitored and the produced welds have been subjected to microstructural analysis and mechanical testing. Defect free welds have been produced with optimised FSW-tool and parameters. The micro structure of the welded joint resulted in similar ductility and hardness levels as compared to that of the base material. The results also demonstrated that tool geometry plays a fundamental role in the response of the investigated alloys to the FSW process.
Cui, Xiang-Long; Xu, Bing; Sun, Fei; Dai, Sheng-Yun; Shi, Xin-Yuan; Qiao, Yan-Jiang
2017-03-01
In this paper, under the guidance of quality by design (QbD) concept, the control strategy of the high shear wet granulation process of the ginkgo leaf tablet based on the design space was established to improve the process controllability and product quality consistency. The median granule size (D50) and bulk density (Da) of granules were identified as critical quality attributes (CQAs) and potential critical process parameters (pCPPs) were determined by the failure modes and effect analysis (FMEA). The Plackeet-Burmann experimental design was used to screen pCPPs and the results demonstrated that the binder amount, the wet massing time and the wet mixing impeller speed were critical process parameters (CPPs). The design space of the high shear wet granulation process was developed within pCPPs range based on the Box-Behnken design and quadratic polynomial regression models. ANOVA analysis showed that the P-values of model were less than 0.05 and the values of lack of fit test were more than 0.1, indicating that the relationship between CQAs and CPPs could be well described by the mathematical models. D₅₀ could be controlled within 170 to 500 μm, and the bulk density could be controlled within 0.30 to 0.44 g•cm⁻³ by using any CPPs combination within the scope of design space. Besides, granules produced by process parameters within the design space region could also meet the requirement of tensile strength of the ginkgo leaf tablet.. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan
2015-06-01
An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.
2018-05-01
The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the evolution profiles of temperature fields, which enable one to analyze the efficiency of the regime parameters of heat treatment.
NASA Astrophysics Data System (ADS)
Ozkat, Erkan Caner; Franciosa, Pasquale; Ceglarek, Dariusz
2017-08-01
Remote laser welding technology offers opportunities for high production throughput at a competitive cost. However, the remote laser welding process of zinc-coated sheet metal parts in lap joint configuration poses a challenge due to the difference between the melting temperature of the steel (∼1500 °C) and the vapourizing temperature of the zinc (∼907 °C). In fact, the zinc layer at the faying surface is vapourized and the vapour might be trapped within the melting pool leading to weld defects. Various solutions have been proposed to overcome this problem over the years. Among them, laser dimpling has been adopted by manufacturers because of its flexibility and effectiveness along with its cost advantages. In essence, the dimple works as a spacer between the two sheets in lap joint and allows the zinc vapour escape during welding process, thereby preventing weld defects. However, there is a lack of comprehensive characterization of dimpling process for effective implementation in real manufacturing system taking into consideration inherent changes in variability of process parameters. This paper introduces a methodology to develop (i) surrogate model for dimpling process characterization considering multiple-inputs (i.e. key control characteristics) and multiple-outputs (i.e. key performance indicators) system by conducting physical experimentation and using multivariate adaptive regression splines; (ii) process capability space (Cp-Space) based on the developed surrogate model that allows the estimation of a desired process fallout rate in the case of violation of process requirements in the presence of stochastic variation; and, (iii) selection and optimization of the process parameters based on the process capability space. The proposed methodology provides a unique capability to: (i) simulate the effect of process variation as generated by manufacturing process; (ii) model quality requirements with multiple and coupled quality requirements; and (iii) optimize process parameters under competing quality requirements such as maximizing the dimple height while minimizing the dimple lower surface area.
A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.
Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi
2009-01-01
Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.
A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing
Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi
2009-01-01
Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs. PMID:22399990
NASA Astrophysics Data System (ADS)
Reutterer, Bernd; Traxler, Lukas; Bayer, Natascha; Drauschke, Andreas
2016-04-01
Selective Laser Sintering (SLS) is considered as one of the most important additive manufacturing processes due to component stability and its broad range of usable materials. However the influence of the different process parameters on mechanical workpiece properties is still poorly studied, leading to the fact that further optimization is necessary to increase workpiece quality. In order to investigate the impact of various process parameters, laboratory experiments are implemented to improve the understanding of the SLS limitations and advantages on an educational level. Experiments are based on two different workstations, used to teach students the fundamentals of SLS. First of all a 50 W CO2 laser workstation is used to investigate the interaction of the laser beam with the used material in accordance with varied process parameters to analyze a single-layered test piece. Second of all the FORMIGA P110 laser sintering system from EOS is used to print different 3D test pieces in dependence on various process parameters. Finally quality attributes are tested including warpage, dimension accuracy or tensile strength. For dimension measurements and evaluation of the surface structure a telecentric lens in combination with a camera is used. A tensile test machine allows testing of the tensile strength and the interpreting of stress-strain curves. The developed laboratory experiments are suitable to teach students the influence of processing parameters. In this context they will be able to optimize the input parameters depending on the component which has to be manufactured and to increase the overall quality of the final workpiece.
TEM study of the FSW nugget in AA2195-T81
NASA Technical Reports Server (NTRS)
Schneider, J. A.; Nunes, A. C., Jr.; Chen, P. S.; Steele, G.
2004-01-01
During fiiction stir welding (FSW) the material being joined is subjected to a thermal- mechanical process in which the temperature, strain and strain rates are not completely understood. To produce a defect fiee weld, process parameters for the weld and tool pin design must be chosen carefully. The ability to select the weld parameters based on the thermal processing requirements of the material, would allow optimization of mechanical properties in the weld region. In this study, an attempt is made to correlate the microstructure with the variation in thermal history the material experiences during the FSW process.
[Optimization of end-tool parameters based on robot hand-eye calibration].
Zhang, Lilong; Cao, Tong; Liu, Da
2017-04-01
A new one-time registration method was developed in this research for hand-eye calibration of a surgical robot to simplify the operation process and reduce the preparation time. And a new and practical method is introduced in this research to optimize the end-tool parameters of the surgical robot based on analysis of the error sources in this registration method. In the process with one-time registration method, firstly a marker on the end-tool of the robot was recognized by a fixed binocular camera, and then the orientation and position of the marker were calculated based on the joint parameters of the robot. Secondly the relationship between the camera coordinate system and the robot base coordinate system could be established to complete the hand-eye calibration. Because of manufacturing and assembly errors of robot end-tool, an error equation was established with the transformation matrix between the robot end coordinate system and the robot end-tool coordinate system as the variable. Numerical optimization was employed to optimize end-tool parameters of the robot. The experimental results showed that the one-time registration method could significantly improve the efficiency of the robot hand-eye calibration compared with the existing methods. The parameter optimization method could significantly improve the absolute positioning accuracy of the one-time registration method. The absolute positioning accuracy of the one-time registration method can meet the requirements of the clinical surgery.
NASA Astrophysics Data System (ADS)
Ghosh, Nabendu; Kumar, Pradip; Nandi, Goutam
2016-10-01
Welding input process parameters play a very significant role in determining the quality of the welded joint. Only by properly controlling every element of the process can product quality be controlled. For better quality of MIG welding of Ferritic stainless steel AISI 409, precise control of process parameters, parametric optimization of the process parameters, prediction and control of the desired responses (quality indices) etc., continued and elaborate experiments, analysis and modeling are needed. A data of knowledge - base may thus be generated which may be utilized by the practicing engineers and technicians to produce good quality weld more precisely, reliably and predictively. In the present work, X-ray radiographic test has been conducted in order to detect surface and sub-surface defects of weld specimens made of Ferritic stainless steel. The quality of the weld has been evaluated in terms of yield strength, ultimate tensile strength and percentage of elongation of the welded specimens. The observed data have been interpreted, discussed and analyzed by considering ultimate tensile strength ,yield strength and percentage elongation combined with use of Grey-Taguchi methodology.
NASA Astrophysics Data System (ADS)
Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter
2015-09-01
Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.
A Novel Scale Up Model for Prediction of Pharmaceutical Film Coating Process Parameters.
Suzuki, Yasuhiro; Suzuki, Tatsuya; Minami, Hidemi; Terada, Katsuhide
2016-01-01
In the pharmaceutical tablet film coating process, we clarified that a difference in exhaust air relative humidity can be used to detect differences in process parameters values, the relative humidity of exhaust air was different under different atmospheric air humidity conditions even though all setting values of the manufacturing process parameters were the same, and the water content of tablets was correlated with the exhaust air relative humidity. Based on this experimental data, the exhaust air relative humidity index (EHI), which is an empirical equation that includes as functional parameters the pan coater type, heated air flow rate, spray rate of coating suspension, saturated water vapor pressure at heated air temperature, and partial water vapor pressure at atmospheric air pressure, was developed. The predictive values of exhaust relative humidity using EHI were in good correlation with the experimental data (correlation coefficient of 0.966) in all datasets. EHI was verified using the date of seven different drug products of different manufacturing scales. The EHI model will support formulation researchers by enabling them to set film coating process parameters when the batch size or pan coater type changes, and without the time and expense of further extensive testing.
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Chandrasekaran, Sivapragasam; Sankararajan, Vanitha; Neelakandhan, Nampoothiri; Ram Kumar, Mahalakshmi
2017-11-04
This study, through extensive experiments and mathematical modeling, reveals that other than retention time and wastewater temperature (T w ), atmospheric parameters also play important role in the effective functioning of aquatic macrophyte-based treatment system. Duckweed species Lemna minor is considered in this study. It is observed that the combined effect of atmospheric temperature (T atm ), wind speed (U w ), and relative humidity (RH) can be reflected through one parameter, namely the "apparent temperature" (T a ). A total of eight different models are considered based on the combination of input parameters and the best mathematical model is arrived at which is validated through a new experimental set-up outside the modeling period. The validation results are highly encouraging. Genetic programming (GP)-based models are found to reveal deeper understandings of the wetland process.
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2011-12-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
NASA Astrophysics Data System (ADS)
Qian, Y.; Yang, B.; Lin, G.; Leung, R.; Zhang, Y.
2012-04-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. The latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2012-03-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic importance sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e. the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings
NASA Astrophysics Data System (ADS)
Singer, F.
Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.
Investigating the CO 2 laser cutting parameters of MDF wood composite material
NASA Astrophysics Data System (ADS)
Eltawahni, H. A.; Olabi, A. G.; Benyounis, K. Y.
2011-04-01
Laser cutting of medium density fibreboard (MDF) is a complicated process and the selection of the process parameters combinations is essential to get the highest quality cut section. This paper presents a means for selecting the process parameters for laser cutting of MDF based on the design of experiments (DOE) approach. A CO 2 laser was used to cut three thicknesses, 4, 6 and 9 mm, of MDF panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. In this work, cutting quality was evaluated by measuring the upper kerf width, the lower kerf width, the ratio between the upper kerf width to the lower kerf width, the cut section roughness and the operating cost. The effect of each factor on the quality measures was determined. The optimal cutting combinations were presented in favours of high quality process output and in favours of low cutting cost.
Camera calibration based on the back projection process
NASA Astrophysics Data System (ADS)
Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui
2015-12-01
Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.
The Design and Management of an Organisation's Lifelong Learning Curriculum
ERIC Educational Resources Information Center
Dealtry, Richard
2009-01-01
Purpose: The purpose of this paper is to examine the successful design and management of high performance work-based lifelong learning processes. Design: The paper summarises the process management practices and contextual parameters that are being applied in the successful design and management of high performance work based lifelong learning…
A Multinomial Model of Event-Based Prospective Memory
ERIC Educational Resources Information Center
Smith, Rebekah E.; Bayen, Ute J.
2004-01-01
Prospective memory is remembering to perform an action in the future. The authors introduce the 1st formal model of event-based prospective memory, namely, a multinomial model that includes 2 separate parameters related to prospective memory processes. The 1st measures preparatory attentional processes, and the 2nd measures retrospective memory…
Cepero-Betancourt, Yamira; Oliva-Moresco, Patricio; Pasten-Contreras, Alexis; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario; Moreno-Osorio, Luis; Lemus-Mondaca, Roberto
2017-10-01
Abalone (Haliotis spp.) is an exotic seafood product recognized as a protein source of high biological value. Traditional methods used to preserve foods such as drying technology can affect their nutritional quality (protein quality and digestibility). A 28-day rat feeding study was conducted to evaluate the effects of the drying process assisted by high-pressure impregnation (HPI) (350, 450, and 500 MPa × 5 min) on chemical proximate and amino acid compositions and nutritional parameters, such as protein efficiency ratio (PER), true digestibility (TD), net protein ratio, and protein digestibility corrected amino acid score (PDCAAS) of dried abalone. The HPI-assisted drying process ensured excellent protein quality based on PER values, regardless of the pressure level. At 350 and 500 MPa, the HPI-assisted drying process had no negative effect on TD and PDCAAS then, based on nutritional parameters analysed, we recommend HPI-assisted drying process at 350 MPa × 5 min as the best process condition to dry abalone. Variations in nutritional parameters compared to casein protein were observed; nevertheless, the high protein quality and digestibility of HPI-assisted dried abalones were maintained to satisfy the metabolic demands of human beings.
NASA Astrophysics Data System (ADS)
Eimori, Takahisa; Anami, Kenji; Yoshimatsu, Norifumi; Hasebe, Tetsuya; Murakami, Kazuaki
2014-01-01
A comprehensive design optimization methodology using intuitive nondimensional parameters of inversion-level and saturation-level is proposed, especially for ultralow-power, low-voltage, and high-performance analog circuits with mixed strong, moderate, and weak inversion metal-oxide-semiconductor transistor (MOST) operations. This methodology is based on the synthesized charge-based MOST model composed of Enz-Krummenacher-Vittoz (EKV) basic concepts and advanced-compact-model (ACM) physics-based equations. The key concept of this methodology is that all circuit and system characteristics are described as some multivariate functions of inversion-level parameters, where the inversion level is used as an independent variable representative of each MOST. The analog circuit design starts from the first step of inversion-level design using universal characteristics expressed by circuit currents and inversion-level parameters without process-dependent parameters, followed by the second step of foundry-process-dependent design and the last step of verification using saturation-level criteria. This methodology also paves the way to an intuitive and comprehensive design approach for many kinds of analog circuit specifications by optimization using inversion-level log-scale diagrams and saturation-level criteria. In this paper, we introduce an example of our design methodology for a two-stage Miller amplifier.
Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning.
Caiazzo, Fabrizia; Caggiano, Alessandra
2018-03-19
Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace.
Laser Direct Metal Deposition of 2024 Al Alloy: Trace Geometry Prediction via Machine Learning
2018-01-01
Laser direct metal deposition is an advanced additive manufacturing technology suitably applicable in maintenance, repair, and overhaul of high-cost products, allowing for minimal distortion of the workpiece, reduced heat affected zones, and superior surface quality. Special interest is growing for the repair and coating of 2024 aluminum alloy parts, extensively utilized for a wide range of applications in the automotive, military, and aerospace sectors due to its excellent plasticity, corrosion resistance, electric conductivity, and strength-to-weight ratio. A critical issue in the laser direct metal deposition process is related to the geometrical parameters of the cross-section of the deposited metal trace that should be controlled to meet the part specifications. In this research, a machine learning approach based on artificial neural networks is developed to find the correlation between the laser metal deposition process parameters and the output geometrical parameters of the deposited metal trace produced by laser direct metal deposition on 5-mm-thick 2024 aluminum alloy plates. The results show that the neural network-based machine learning paradigm is able to accurately estimate the appropriate process parameters required to obtain a specified geometry for the deposited metal trace. PMID:29562682
Display system for imaging scientific telemetric information
NASA Technical Reports Server (NTRS)
Zabiyakin, G. I.; Rykovanov, S. N.
1979-01-01
A system for imaging scientific telemetric information, based on the M-6000 minicomputer and the SIGD graphic display, is described. Two dimensional graphic display of telemetric information and interaction with the computer, in analysis and processing of telemetric parameters displayed on the screen is provided. The running parameter information output method is presented. User capabilities in the analysis and processing of telemetric information imaged on the display screen and the user language are discussed and illustrated.
NASA Astrophysics Data System (ADS)
Raj, Rahul; van der Tol, Christiaan; Hamm, Nicholas Alexander Samuel; Stein, Alfred
2018-01-01
Parameters of a process-based forest growth simulator are difficult or impossible to obtain from field observations. Reliable estimates can be obtained using calibration against observations of output and state variables. In this study, we present a Bayesian framework to calibrate the widely used process-based simulator Biome-BGC against estimates of gross primary production (GPP) data. We used GPP partitioned from flux tower measurements of a net ecosystem exchange over a 55-year-old Douglas fir stand as an example. The uncertainties of both the Biome-BGC parameters and the simulated GPP values were estimated. The calibrated parameters leaf and fine root turnover (LFRT), ratio of fine root carbon to leaf carbon (FRC : LC), ratio of carbon to nitrogen in leaf (C : Nleaf), canopy water interception coefficient (Wint), fraction of leaf nitrogen in RuBisCO (FLNR), and effective soil rooting depth (SD) characterize the photosynthesis and carbon and nitrogen allocation in the forest. The calibration improved the root mean square error and enhanced Nash-Sutcliffe efficiency between simulated and flux tower daily GPP compared to the uncalibrated Biome-BGC. Nevertheless, the seasonal cycle for flux tower GPP was not reproduced exactly and some overestimation in spring and underestimation in summer remained after calibration. We hypothesized that the phenology exhibited a seasonal cycle that was not accurately reproduced by the simulator. We investigated this by calibrating the Biome-BGC to each month's flux tower GPP separately. As expected, the simulated GPP improved, but the calibrated parameter values suggested that the seasonal cycle of state variables in the simulator could be improved. It was concluded that the Bayesian framework for calibration can reveal features of the modelled physical processes and identify aspects of the process simulator that are too rigid.
Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters.
Fan, Liangliang; Zhang, Yaning; Liu, Shiyu; Zhou, Nan; Chen, Paul; Cheng, Yanling; Addy, Min; Lu, Qian; Omar, Muhammad Mubashar; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Anderson, Erik; Peng, Peng; Lei, Hanwu; Ruan, Roger
2017-10-01
Effects of process parameters on the yield and chemical profile of bio-oil from fast pyrolysis of lignin and the processes for lignin-derived bio-oil upgrading were reviewed. Various process parameters including pyrolysis temperature, reactor types, lignin characteristics, residence time, and feeding rate were discussed and the optimal parameter conditions for improved bio-oil yield and quality were concluded. In terms of lignin-derived bio-oil upgrading, three routes including pretreatment of lignin, catalytic upgrading, and co-pyrolysis of hydrogen-rich materials have been investigated. Zeolite cracking and hydrodeoxygenation (HDO) treatment are two main methods for catalytic upgrading of lignin-derived bio-oil. Factors affecting zeolite activity and the main zeolite catalytic mechanisms for lignin conversion were analyzed. Noble metal-based catalysts and metal sulfide catalysts are normally used as the HDO catalysts and the conversion mechanisms associated with a series of reactions have been proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
McKee, Rodney A.; Walker, Frederick J.
1996-01-01
A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.
A fluidized bed technique for estimating soil critical shear stress
USDA-ARS?s Scientific Manuscript database
Soil erosion models, depending on how they are formulated, always have erodibilitiy parameters in the erosion equations. For a process-based model like the Water Erosion Prediction Project (WEPP) model, the erodibility parameters include rill and interrill erodibility and critical shear stress. Thes...
Model-based high-throughput design of ion exchange protein chromatography.
Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo
2016-08-12
This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.
The dynamic nature of conflict in Wikipedia
NASA Astrophysics Data System (ADS)
Gandica, Y.; Sampaio dos Aidos, F.; Carvalho, J.
2014-10-01
The voluntary process of Wikipedia edition provides an environment in which the outcome is clearly a collective product of interactions involving a large number of people. We propose a simple agent-based model, developed from real data, to reproduce the collaborative process of Wikipedia edition. With a small number of simple ingredients, our model mimics several interesting features of real human behaviour, namely in the context of edit wars. We show that the level of conflict is determined by a tolerance parameter, which measures the editors' capability to accept different opinions and to change their own opinion. We propose to measure conflict with a parameter based on mutual reverts, which increases only in contentious situations. Using this parameter, we find a distribution for the inter-peace periods that is heavy tailed. The effects of wiki-robots in the conflict levels and in the edition patterns are also studied. Our findings are compared with previous parameters used to measure conflicts in edit wars.
Continued Data Acquisition Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwellenbach, David
This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muonmore » tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.« less
Modelling of intermittent microwave convective drying: parameter sensitivity
NASA Astrophysics Data System (ADS)
Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei
2017-06-01
The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Optimisation of lateral car dynamics taking into account parameter uncertainties
NASA Astrophysics Data System (ADS)
Busch, Jochen; Bestle, Dieter
2014-02-01
Simulation studies on an active all-wheel-steering car show that disturbance of vehicle parameters have high influence on lateral car dynamics. This motivates the need of robust design against such parameter uncertainties. A specific parametrisation is established combining deterministic, velocity-dependent steering control parameters with partly uncertain, velocity-independent vehicle parameters for simultaneous use in a numerical optimisation process. Model-based objectives are formulated and summarised in a multi-objective optimisation problem where especially the lateral steady-state behaviour is improved by an adaption strategy based on measurable uncertainties. The normally distributed uncertainties are generated by optimal Latin hypercube sampling and a response surface based strategy helps to cut down time consuming model evaluations which offers the possibility to use a genetic optimisation algorithm. Optimisation results are discussed in different criterion spaces and the achieved improvements confirm the validity of the proposed procedure.
NASA Astrophysics Data System (ADS)
Sadashiva, M.; Shivanand, H. K.; Vidyasagar, H. N.
2018-04-01
The Current work is aimed to investigate the effect of process parameters in friction stir welding of Aluminium 2024 base alloy and Aluminium 2024 matrix alloy reinforced with E Glass and Silicon Carbide reinforcements. The process involved a set of synthesis techniques incorporating stir casting methodology resulting in fabrication of the composite material. This composite material that is synthesized is then machined to obtain a plate of dimensions 100 mm * 50 mm * 6 mm. The plate is then friction stir welded at different set of parameters viz. the spindle speed of 600 rpm, 900 rpm and 1200 rpm and feed rate of 40 mm/min, 80 mm/min and 120 mm/min for analyzing the process capability. The study of the given set of parameters is predominantly important to understand the physics of the process that may lead to better properties of the joint, which is very much important in perspective to its use in advanced engineering applications, especially in aerospace domain that uses Aluminium 2024 alloy for wing and fuselage structures under tension.
NASA Astrophysics Data System (ADS)
Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning
2009-11-01
The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.
a Region-Based Multi-Scale Approach for Object-Based Image Analysis
NASA Astrophysics Data System (ADS)
Kavzoglu, T.; Yildiz Erdemir, M.; Tonbul, H.
2016-06-01
Within the last two decades, object-based image analysis (OBIA) considering objects (i.e. groups of pixels) instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights) to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC) graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse) determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient). Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.
Multiobjective optimization in structural design with uncertain parameters and stochastic processes
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.
NASA Astrophysics Data System (ADS)
Deris, A. M.; Zain, A. M.; Sallehuddin, R.; Sharif, S.
2017-09-01
Electric discharge machine (EDM) is one of the widely used nonconventional machining processes for hard and difficult to machine materials. Due to the large number of machining parameters in EDM and its complicated structural, the selection of the optimal solution of machining parameters for obtaining minimum machining performance is remain as a challenging task to the researchers. This paper proposed experimental investigation and optimization of machining parameters for EDM process on stainless steel 316L work piece using Harmony Search (HS) algorithm. The mathematical model was developed based on regression approach with four input parameters which are pulse on time, peak current, servo voltage and servo speed to the output response which is dimensional accuracy (DA). The optimal result of HS approach was compared with regression analysis and it was found HS gave better result y giving the most minimum DA value compared with regression approach.
NASA Astrophysics Data System (ADS)
Li, Jiqing; Huang, Jing; Li, Jianchang
2018-06-01
The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.
Li, Liang; Wang, Yiying; Xu, Jiting; Flora, Joseph R V; Hoque, Shamia; Berge, Nicole D
2018-08-01
Hydrothermal carbonization (HTC) is a wet, low temperature thermal conversion process that continues to gain attention for the generation of hydrochar. The importance of specific process conditions and feedstock properties on hydrochar characteristics is not well understood. To evaluate this, linear and non-linear models were developed to describe hydrochar characteristics based on data collected from HTC-related literature. A Sobol analysis was subsequently conducted to identify parameters that most influence hydrochar characteristics. Results from this analysis indicate that for each investigated hydrochar property, the model fit and predictive capability associated with the random forest models is superior to both the linear and regression tree models. Based on results from the Sobol analysis, the feedstock properties and process conditions most influential on hydrochar yield, carbon content, and energy content were identified. In addition, a variational process parameter sensitivity analysis was conducted to determine how feedstock property importance changes with process conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael
2014-05-01
Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global search and Bayesian inference schemes.
Unified Ecoregions of Alaska: 2001
Nowacki, Gregory J.; Spencer, Page; Fleming, Michael; Brock, Terry; Jorgenson, Torre
2003-01-01
Major ecosystems have been mapped and described for the State of Alaska and nearby areas. Ecoregion units are based on newly available datasets and field experience of ecologists, biologists, geologists and regional experts. Recently derived datasets for Alaska included climate parameters, vegetation, surficial geology and topography. Additional datasets incorporated in the mapping process were lithology, soils, permafrost, hydrography, fire regime and glaciation. Thirty two units are mapped using a combination of the approaches of Bailey (hierarchial), and Omernick (integrated). The ecoregions are grouped into two higher levels using a 'tri-archy' based on climate parameters, vegetation response and disturbance processes. The ecoregions are described with text, photos and tables on the published map.
NASA Astrophysics Data System (ADS)
Jackson-Blake, Leah; Helliwell, Rachel
2015-04-01
Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, spanning all hydrochemical conditions. However, regulatory agencies and research organisations generally only sample at a fortnightly or monthly frequency, even in well-studied catchments, often missing peak flow events. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by a process-based, semi-distributed catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the Markov Chain Monte Carlo - DiffeRential Evolution Adaptive Metropolis (MCMC-DREAM) algorithm. Calibration to daily data resulted in improved simulation of peak TDP concentrations and improved model performance statistics. Parameter-related uncertainty in simulated TDP was large when fortnightly data was used for calibration, with a 95% credible interval of 26 μg/l. This uncertainty is comparable in size to the difference between Water Framework Directive (WFD) chemical status classes, and would therefore make it difficult to use this calibration to predict shifts in WFD status. The 95% credible interval reduced markedly with the higher frequency monitoring data, to 6 μg/l. The number of parameters that could be reliably auto-calibrated was lower for the fortnightly data, with a physically unrealistic TDP simulation being produced when too many parameters were allowed to vary during model calibration. Parameters should not therefore be varied spatially for models such as INCA-P unless there is solid evidence that this is appropriate, or there is a real need to do so for the model to fulfil its purpose. This study highlights the potential pitfalls of using low frequency timeseries of observed water quality to calibrate complex process-based models. For reliable model calibrations to be produced, monitoring programmes need to be designed which capture system variability, in particular nutrient dynamics during high flow events. In addition, there is a need for simpler models, so that all model parameters can be included in auto-calibration and uncertainty analysis, and to reduce the data needs during calibration.
NASA Astrophysics Data System (ADS)
Acharya, Ranadip; Das, Suman
2015-09-01
This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.
Study on feed forward neural network convex optimization for LiFePO4 battery parameters
NASA Astrophysics Data System (ADS)
Liu, Xuepeng; Zhao, Dongmei
2017-08-01
Based on the modern facility agriculture automatic walking equipment LiFePO4 Battery, the parameter identification of LiFePO4 Battery is analyzed. An improved method for the process model of li battery is proposed, and the on-line estimation algorithm is presented. The parameters of the battery are identified using feed forward network neural convex optimization algorithm.
Process-based soil erodibility estimation for empirical water erosion models
USDA-ARS?s Scientific Manuscript database
A variety of modeling technologies exist for water erosion prediction each with specific parameters. It is of interest to scrutinize parameters of a particular model from the point of their compatibility with dataset of other models. In this research, functional relationships between soil erodibilit...
Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology
NASA Astrophysics Data System (ADS)
Kumar, Amit; Soota, Tarun; Kumar, Jitendra
2018-03-01
Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.
A preliminary evaluation of an F100 engine parameter estimation process using flight data
NASA Technical Reports Server (NTRS)
Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.
1990-01-01
The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the compact engine model (CEM). In this step, the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion control law development.
A preliminary evaluation of an F100 engine parameter estimation process using flight data
NASA Technical Reports Server (NTRS)
Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.
1990-01-01
The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the 'compact engine model' (CEM). In this step the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion-control-law development.
NASA Astrophysics Data System (ADS)
Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.
2016-09-01
The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.
Using a Virtual Experiment to Analyze Infiltration Process from Point to Grid-cell Size Scale
NASA Astrophysics Data System (ADS)
Barrios, M. I.
2013-12-01
The hydrological science requires the emergence of a consistent theoretical corpus driving the relationships between dominant physical processes at different spatial and temporal scales. However, the strong spatial heterogeneities and non-linearities of these processes make difficult the development of multiscale conceptualizations. Therefore, scaling understanding is a key issue to advance this science. This work is focused on the use of virtual experiments to address the scaling of vertical infiltration from a physically based model at point scale to a simplified physically meaningful modeling approach at grid-cell scale. Numerical simulations have the advantage of deal with a wide range of boundary and initial conditions against field experimentation. The aim of the work was to show the utility of numerical simulations to discover relationships between the hydrological parameters at both scales, and to use this synthetic experience as a media to teach the complex nature of this hydrological process. The Green-Ampt model was used to represent vertical infiltration at point scale; and a conceptual storage model was employed to simulate the infiltration process at the grid-cell scale. Lognormal and beta probability distribution functions were assumed to represent the heterogeneity of soil hydraulic parameters at point scale. The linkages between point scale parameters and the grid-cell scale parameters were established by inverse simulations based on the mass balance equation and the averaging of the flow at the point scale. Results have shown numerical stability issues for particular conditions and have revealed the complex nature of the non-linear relationships between models' parameters at both scales and indicate that the parameterization of point scale processes at the coarser scale is governed by the amplification of non-linear effects. The findings of these simulations have been used by the students to identify potential research questions on scale issues. Moreover, the implementation of this virtual lab improved the ability to understand the rationale of these process and how to transfer the mathematical models to computational representations.
Anderman, E.R.; Hill, M.C.
2000-01-01
This report documents the Hydrogeologic-Unit Flow (HUF) Package for the groundwater modeling computer program MODFLOW-2000. The HUF Package is an alternative internal flow package that allows the vertical geometry of the system hydrogeology to be defined explicitly within the model using hydrogeologic units that can be different than the definition of the model layers. The HUF Package works with all the processes of MODFLOW-2000. For the Ground-Water Flow Process, the HUF Package calculates effective hydraulic properties for the model layers based on the hydraulic properties of the hydrogeologic units, which are defined by the user using parameters. The hydraulic properties are used to calculate the conductance coefficients and other terms needed to solve the ground-water flow equation. The sensitivity of the model to the parameters defined within the HUF Package input file can be calculated using the Sensitivity Process, using observations defined with the Observation Process. Optimal values of the parameters can be estimated by using the Parameter-Estimation Process. The HUF Package is nearly identical to the Layer-Property Flow (LPF) Package, the major difference being the definition of the vertical geometry of the system hydrogeology. Use of the HUF Package is illustrated in two test cases, which also serve to verify the performance of the package by showing that the Parameter-Estimation Process produces the true parameter values when exact observations are used.
NASA Astrophysics Data System (ADS)
Aleksandrova, Irina
2016-01-01
The existing studies, concerning the dressing process, focus on the major influence of the dressing conditions on the grinding response variables. However, the choice of the dressing conditions is often made, based on the experience of the qualified staff or using data from reference books. The optimal dressing parameters, which are only valid for the particular methods and dressing and grinding conditions, are also used. The paper presents a methodology for optimization of the dressing parameters in cylindrical grinding. The generalized utility function has been chosen as an optimization parameter. It is a complex indicator determining the economic, dynamic and manufacturing characteristics of the grinding process. The developed methodology is implemented for the dressing of aluminium oxide grinding wheels by using experimental diamond roller dressers with different grit sizes made of medium- and high-strength synthetic diamonds type ??32 and ??80. To solve the optimization problem, a model of the generalized utility function is created which reflects the complex impact of dressing parameters. The model is built based on the results from the conducted complex study and modeling of the grinding wheel lifetime, cutting ability, production rate and cutting forces during grinding. They are closely related to the dressing conditions (dressing speed ratio, radial in-feed of the diamond roller dresser and dress-out time), the diamond roller dresser grit size/grinding wheel grit size ratio, the type of synthetic diamonds and the direction of dressing. Some dressing parameters are determined for which the generalized utility function has a maximum and which guarantee an optimum combination of the following: the lifetime and cutting ability of the abrasive wheels, the tangential cutting force magnitude and the production rate of the grinding process. The results obtained prove the possibility of control and optimization of grinding by selecting particular dressing parameters.
Information spreading dynamics in hypernetworks
NASA Astrophysics Data System (ADS)
Suo, Qi; Guo, Jin-Li; Shen, Ai-Zhong
2018-04-01
Contact pattern and spreading strategy fundamentally influence the spread of information. Current mathematical methods largely assume that contacts between individuals are fixed by networks. In fact, individuals are affected by all his/her neighbors in different social relationships. Here, we develop a mathematical approach to depict the information spreading process in hypernetworks. Each individual is viewed as a node, and each social relationship containing the individual is viewed as a hyperedge. Based on SIS epidemic model, we construct two spreading models. One model is based on global transmission, corresponding to RP strategy. The other is based on local transmission, corresponding to CP strategy. These models can degenerate into complex network models with a special parameter. Thus hypernetwork models extend the traditional models and are more realistic. Further, we discuss the impact of parameters including structure parameters of hypernetwork, spreading rate, recovering rate as well as information seed on the models. Propagation time and density of informed nodes can reveal the overall trend of information dissemination. Comparing these two models, we find out that there is no spreading threshold in RP, while there exists a spreading threshold in CP. The RP strategy induces a broader and faster information spreading process under the same parameters.
Mode extraction on wind turbine blades via phase-based video motion estimation
NASA Astrophysics Data System (ADS)
Sarrafi, Aral; Poozesh, Peyman; Niezrecki, Christopher; Mao, Zhu
2017-04-01
In recent years, image processing techniques are being applied more often for structural dynamics identification, characterization, and structural health monitoring. Although as a non-contact and full-field measurement method, image processing still has a long way to go to outperform other conventional sensing instruments (i.e. accelerometers, strain gauges, laser vibrometers, etc.,). However, the technologies associated with image processing are developing rapidly and gaining more attention in a variety of engineering applications including structural dynamics identification and modal analysis. Among numerous motion estimation and image-processing methods, phase-based video motion estimation is considered as one of the most efficient methods regarding computation consumption and noise robustness. In this paper, phase-based video motion estimation is adopted for structural dynamics characterization on a 2.3-meter long Skystream wind turbine blade, and the modal parameters (natural frequencies, operating deflection shapes) are extracted. Phase-based video processing adopted in this paper provides reliable full-field 2-D motion information, which is beneficial for manufacturing certification and model updating at the design stage. The phase-based video motion estimation approach is demonstrated through processing data on a full-scale commercial structure (i.e. a wind turbine blade) with complex geometry and properties, and the results obtained have a good correlation with the modal parameters extracted from accelerometer measurements, especially for the first four bending modes, which have significant importance in blade characterization.
NASA Astrophysics Data System (ADS)
Takemine, S.; Rikimaru, A.; Takahashi, K.
The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.; Meyer, Claudia M.
1991-01-01
A genetic algorithm is used to select the inputs to a neural network function approximator. In the application considered, modeling critical parameters of the space shuttle main engine (SSME), the functional relationship between measured parameters is unknown and complex. Furthermore, the number of possible input parameters is quite large. Many approaches have been used for input selection, but they are either subjective or do not consider the complex multivariate relationships between parameters. Due to the optimization and space searching capabilities of genetic algorithms they were employed to systematize the input selection process. The results suggest that the genetic algorithm can generate parameter lists of high quality without the explicit use of problem domain knowledge. Suggestions for improving the performance of the input selection process are also provided.
Study of parameters in precision optical glass molding
NASA Astrophysics Data System (ADS)
Ni, Ying; Wang, Qin-hua; Yu, Jing-chi
2010-10-01
Precision glass compression molding is an attractive approach to manufacture small precision optics in large volume over traditional manufacturing techniques because of its advantages such as lower cost, faster time to market and being environment friendly. In order to study the relationship between the surface figures of molded lenses and molding process parameters such as temperature, pressure, heating rate, cooling rate and so on, we present some glass compression molding experiments using same low Tg (transition temperature) glass material to produce two different kinds of aspheric lenses by different molding process parameters. Based on results from the experiments, we know the major factors influencing surface figure of molded lenses and the changing range of these parameters. From the knowledge we could easily catch proper molding parameters which are suitable for aspheric lenses with diameter from 10mm to 30mm.
A Parameter Tuning Scheme of Sea-ice Model Based on Automatic Differentiation Technique
NASA Astrophysics Data System (ADS)
Kim, J. G.; Hovland, P. D.
2001-05-01
Automatic diferentiation (AD) technique was used to illustrate a new approach for parameter tuning scheme of an uncoupled sea-ice model. Atmospheric forcing field of 1992 obtained from NCEP data was used as enforcing variables in the study. The simulation results were compared with the observed ice movement provided by the International Arctic Buoy Programme (IABP). All of the numerical experiments were based on a widely used dynamic and thermodynamic model for simulating the seasonal sea-ice chnage of the main Arctic ocean. We selected five dynamic and thermodynamic parameters for the tuning process in which the cost function defined by the norm of the difference between observed and simulated ice drift locations was minimized. The selected parameters are the air and ocean drag coefficients, the ice strength constant, the turning angle at ice-air/ocean interface, and the bulk sensible heat transfer coefficient. The drag coefficients were the major parameters to control sea-ice movement and extent. The result of the study shows that more realistic simulations of ice thickness distribution was produced by tuning the simulated ice drift trajectories. In the tuning process, the L-BFCGS-B minimization algorithm of a quasi-Newton method was used. The derivative information required in the minimization iterations was provided by the AD processed Fortran code. Compared with a conventional approach, AD generated derivative code provided fast and robust computations of derivative information.
NASA Technical Reports Server (NTRS)
Hartman, Brian Davis
1995-01-01
A key drawback to estimating geodetic and geodynamic parameters over time based on satellite laser ranging (SLR) observations is the inability to accurately model all the forces acting on the satellite. Errors associated with the observations and the measurement model can detract from the estimates as well. These 'model errors' corrupt the solutions obtained from the satellite orbit determination process. Dynamical models for satellite motion utilize known geophysical parameters to mathematically detail the forces acting on the satellite. However, these parameters, while estimated as constants, vary over time. These temporal variations must be accounted for in some fashion to maintain meaningful solutions. The primary goal of this study is to analyze the feasibility of using a sequential process noise filter for estimating geodynamic parameters over time from the Laser Geodynamics Satellite (LAGEOS) SLR data. This evaluation is achieved by first simulating a sequence of realistic LAGEOS laser ranging observations. These observations are generated using models with known temporal variations in several geodynamic parameters (along track drag and the J(sub 2), J(sub 3), J(sub 4), and J(sub 5) geopotential coefficients). A standard (non-stochastic) filter and a stochastic process noise filter are then utilized to estimate the model parameters from the simulated observations. The standard non-stochastic filter estimates these parameters as constants over consecutive fixed time intervals. Thus, the resulting solutions contain constant estimates of parameters that vary in time which limits the temporal resolution and accuracy of the solution. The stochastic process noise filter estimates these parameters as correlated process noise variables. As a result, the stochastic process noise filter has the potential to estimate the temporal variations more accurately since the constraint of estimating the parameters as constants is eliminated. A comparison of the temporal resolution of solutions obtained from standard sequential filtering methods and process noise sequential filtering methods shows that the accuracy is significantly improved using process noise. The results show that the positional accuracy of the orbit is improved as well. The temporal resolution of the resulting solutions are detailed, and conclusions drawn about the results. Benefits and drawbacks of using process noise filtering in this type of scenario are also identified.
Effect of Geometric Parameters on Formability and Strain Path During Tube Hydrforming Process
NASA Astrophysics Data System (ADS)
Omar, A.; Harisankar, K. R.; Tewari, Asim; Narasimhan, K.
2016-08-01
Forming limit diagram (FLD) is an important tool to measure the material's formability for metal forming processes. In order to successfully manufacture a component through tube hydroforming process it is very important to know the effect of material properties, process and geometrical parameters on the outcome of finished product. This can be obtained by running a finite element code which not only saves time and money but also gives a result with considerable accuracy. Therefore, in this paper the mutual effect of diameter as well as thickness has been studied. Firstly the finite element based prediction is carried out to assess the formability of seamless and welded tubes with varying thickness. Later on, effect of varying diameter and thickness on strain path is predicted using statistical based regression analysis. Finally, the mutual effect of varying material property alongwith varying thickness and diameter on constraint factor is studied.
Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B; Sturm, Benjamin W
2014-11-11
A scintillator radiation detector system according to one embodiment includes a scintillator; and a processing device for processing pulse traces corresponding to light pulses from the scintillator, wherein pulse digitization is used to improve energy resolution of the system. A scintillator radiation detector system according to another embodiment includes a processing device for fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times and performing a direct integration of fit parameters. A method according to yet another embodiment includes processing pulse traces corresponding to light pulses from a scintillator, wherein pulse digitization is used to improve energy resolution of the system. A method in a further embodiment includes fitting digitized scintillation waveforms to an algorithm based on identifying rise and decay times; and performing a direct integration of fit parameters. Additional systems and methods are also presented.
Santos, João Rodrigo; Viegas, Olga; Páscoa, Ricardo N M J; Ferreira, Isabel M P L V O; Rangel, António O S S; Lopes, João Almeida
2016-10-01
In this work, a real-time and in-situ analytical tool based on near infrared spectroscopy is proposed to predict two of the most relevant coffee parameters during the roasting process, sucrose and colour. The methodology was developed taking in consideration different coffee varieties (Arabica and Robusta), coffee origins (Brazil, East-Timor, India and Uganda) and roasting process procedures (slow and fast). All near infrared spectroscopy-based calibrations were developed resorting to partial least squares regression. The results proved the suitability of this methodology as demonstrated by range-error-ratio and coefficient of determination higher than 10 and 0.85 respectively, for all modelled parameters. The relationship between sucrose and colour development during the roasting process is further discussed, in light of designing in real-time coffee products with similar visual appearance and distinct organoleptic profile. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rain-rate data base development and rain-rate climate analysis
NASA Technical Reports Server (NTRS)
Crane, Robert K.
1993-01-01
The single-year rain-rate distribution data available within the archives of Consultative Committee for International Radio (CCIR) Study Group 5 were compiled into a data base for use in rain-rate climate modeling and for the preparation of predictions of attenuation statistics. The four year set of tip-time sequences provided by J. Goldhirsh for locations near Wallops Island were processed to compile monthly and annual distributions of rain rate and of event durations for intervals above and below preset thresholds. A four-year data set of tropical rain-rate tip-time sequences were acquired from the NASA TRMM program for 30 gauges near Darwin, Australia. They were also processed for inclusion in the CCIR data base and the expanded data base for monthly observations at the University of Oklahoma. The empirical rain-rate distributions (edfs) accepted for inclusion in the CCIR data base were used to estimate parameters for several rain-rate distribution models: the lognormal model, the Crane two-component model, and the three parameter model proposed by Moupfuma. The intent of this segment of the study is to obtain a limited set of parameters that can be mapped globally for use in rain attenuation predictions. If the form of the distribution can be established, then perhaps available climatological data can be used to estimate the parameters rather than requiring years of rain-rate observations to set the parameters. The two-component model provided the best fit to the Wallops Island data but the Moupfuma model provided the best fit to the Darwin data.
An adaptive Gaussian process-based iterative ensemble smoother for data assimilation
NASA Astrophysics Data System (ADS)
Ju, Lei; Zhang, Jiangjiang; Meng, Long; Wu, Laosheng; Zeng, Lingzao
2018-05-01
Accurate characterization of subsurface hydraulic conductivity is vital for modeling of subsurface flow and transport. The iterative ensemble smoother (IES) has been proposed to estimate the heterogeneous parameter field. As a Monte Carlo-based method, IES requires a relatively large ensemble size to guarantee its performance. To improve the computational efficiency, we propose an adaptive Gaussian process (GP)-based iterative ensemble smoother (GPIES) in this study. At each iteration, the GP surrogate is adaptively refined by adding a few new base points chosen from the updated parameter realizations. Then the sensitivity information between model parameters and measurements is calculated from a large number of realizations generated by the GP surrogate with virtually no computational cost. Since the original model evaluations are only required for base points, whose number is much smaller than the ensemble size, the computational cost is significantly reduced. The applicability of GPIES in estimating heterogeneous conductivity is evaluated by the saturated and unsaturated flow problems, respectively. Without sacrificing estimation accuracy, GPIES achieves about an order of magnitude of speed-up compared with the standard IES. Although subsurface flow problems are considered in this study, the proposed method can be equally applied to other hydrological models.
Identification of AR(I)MA processes for modelling temporal correlations of GPS observations
NASA Astrophysics Data System (ADS)
Luo, X.; Mayer, M.; Heck, B.
2009-04-01
In many geodetic applications observations of the Global Positioning System (GPS) are routinely processed by means of the least-squares method. However, this algorithm delivers reliable estimates of unknown parameters und realistic accuracy measures only if both the functional and stochastic models are appropriately defined within GPS data processing. One deficiency of the stochastic model used in many GPS software products consists in neglecting temporal correlations of GPS observations. In practice the knowledge of the temporal stochastic behaviour of GPS observations can be improved by analysing time series of residuals resulting from the least-squares evaluation. This paper presents an approach based on the theory of autoregressive (integrated) moving average (AR(I)MA) processes to model temporal correlations of GPS observations using time series of observation residuals. A practicable integration of AR(I)MA models in GPS data processing requires the determination of the order parameters of AR(I)MA processes at first. In case of GPS, the identification of AR(I)MA processes could be affected by various factors impacting GPS positioning results, e.g. baseline length, multipath effects, observation weighting, or weather variations. The influences of these factors on AR(I)MA identification are empirically analysed based on a large amount of representative residual time series resulting from differential GPS post-processing using 1-Hz observation data collected within the permanent SAPOS® (Satellite Positioning Service of the German State Survey) network. Both short and long time series are modelled by means of AR(I)MA processes. The final order parameters are determined based on the whole residual database; the corresponding empirical distribution functions illustrate that multipath and weather variations seem to affect the identification of AR(I)MA processes much more significantly than baseline length and observation weighting. Additionally, the modelling results of temporal correlations using high-order AR(I)MA processes are compared with those by means of first order autoregressive (AR(1)) processes and empirically estimated autocorrelation functions.
Bencala, Kenneth E.
1984-01-01
Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solutestreambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. During the first 24 hours of the experiment, chloride concentrations were attenuated relative to expected plateau levels. Additional attenuation occurred for the sorbing cation strontium. The simulations account for these storage processes. Parameter values determined by calibration compare favorably with estimates from other studies in mountain streams. Without further calibration, the transport of potassium and lithium is adequately simulated using parameters determined in the chloride-strontium simulation and with measured cation distribution coefficients.
Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters
NASA Astrophysics Data System (ADS)
Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.
2018-06-01
Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters ( i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.
Improving the Bandwidth Selection in Kernel Equating
ERIC Educational Resources Information Center
Andersson, Björn; von Davier, Alina A.
2014-01-01
We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…
NASA Technical Reports Server (NTRS)
Tedesco, Marco; Kim, Edward J.
2005-01-01
In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.
Processing of AlGaAs/GaAs quantum-cascade structures for terahertz laser
NASA Astrophysics Data System (ADS)
Szerling, Anna; Kosiel, Kamil; Szymański, Michał; Wasilewski, Zbig; Gołaszewska, Krystyna; Łaszcz, Adam; Płuska, Mariusz; Trajnerowicz, Artur; Sakowicz, Maciej; Walczakowski, Michał; Pałka, Norbert; Jakieła, Rafał; Piotrowska, Anna
2015-01-01
We report research results with regard to AlGaAs/GaAs structure processing for THz quantum-cascade lasers (QCLs). We focus on the processes of Ti/Au cladding fabrication for metal-metal waveguides and wafer bonding with indium solder. Particular emphasis is placed on optimization of technological parameters for the said processes that result in working devices. A wide range of technological parameters was studied using test structures and the analysis of their electrical, optical, chemical, and mechanical properties performed by electron microscopic techniques, energy dispersive x-ray spectrometry, secondary ion mass spectroscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, and circular transmission line method. On that basis, a set of technological parameters was selected for the fabrication of devices lasing at a maximum temperature of 130 K from AlGaAs/GaAs structures grown by means of molecular beam epitaxy. Their resulting threshold-current densities were on a level of 1.5 kA/cm2. Furthermore, initial stage research regarding fabrication of Cu-based claddings is reported as these are theoretically more promising than the Au-based ones with regard to low-loss waveguide fabrication for THz QCLs.
Statistical Bayesian method for reliability evaluation based on ADT data
NASA Astrophysics Data System (ADS)
Lu, Dawei; Wang, Lizhi; Sun, Yusheng; Wang, Xiaohong
2018-05-01
Accelerated degradation testing (ADT) is frequently conducted in the laboratory to predict the products’ reliability under normal operating conditions. Two kinds of methods, degradation path models and stochastic process models, are utilized to analyze degradation data and the latter one is the most popular method. However, some limitations like imprecise solution process and estimation result of degradation ratio still exist, which may affect the accuracy of the acceleration model and the extrapolation value. Moreover, the conducted solution of this problem, Bayesian method, lose key information when unifying the degradation data. In this paper, a new data processing and parameter inference method based on Bayesian method is proposed to handle degradation data and solve the problems above. First, Wiener process and acceleration model is chosen; Second, the initial values of degradation model and parameters of prior and posterior distribution under each level is calculated with updating and iteration of estimation values; Third, the lifetime and reliability values are estimated on the basis of the estimation parameters; Finally, a case study is provided to demonstrate the validity of the proposed method. The results illustrate that the proposed method is quite effective and accuracy in estimating the lifetime and reliability of a product.
Abusam, A; Keesman, K J; van Straten, G; Spanjers, H; Meinema, K
2001-01-01
When applied to large simulation models, the process of parameter estimation is also called calibration. Calibration of complex non-linear systems, such as activated sludge plants, is often not an easy task. On the one hand, manual calibration of such complex systems is usually time-consuming, and its results are often not reproducible. On the other hand, conventional automatic calibration methods are not always straightforward and often hampered by local minima problems. In this paper a new straightforward and automatic procedure, which is based on the response surface method (RSM) for selecting the best identifiable parameters, is proposed. In RSM, the process response (output) is related to the levels of the input variables in terms of a first- or second-order regression model. Usually, RSM is used to relate measured process output quantities to process conditions. However, in this paper RSM is used for selecting the dominant parameters, by evaluating parameters sensitivity in a predefined region. Good results obtained in calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch proved that the proposed procedure is successful and reliable.
Wiegand, Iris; Töllner, Thomas; Habekost, Thomas; Dyrholm, Mads; Müller, Hermann J; Finke, Kathrin
2014-08-01
An individual's visual attentional capacity is characterized by 2 central processing resources, visual perceptual processing speed and visual short-term memory (vSTM) storage capacity. Based on Bundesen's theory of visual attention (TVA), independent estimates of these parameters can be obtained from mathematical modeling of performance in a whole report task. The framework's neural interpretation (NTVA) further suggests distinct brain mechanisms underlying these 2 functions. Using an interindividual difference approach, the present study was designed to establish the respective ERP correlates of both parameters. Participants with higher compared to participants with lower processing speed were found to show significantly reduced visual N1 responses, indicative of higher efficiency in early visual processing. By contrast, for participants with higher relative to lower vSTM storage capacity, contralateral delay activity over visual areas was enhanced while overall nonlateralized delay activity was reduced, indicating that holding (the maximum number of) items in vSTM relies on topographically specific sustained activation within the visual system. Taken together, our findings show that the 2 main aspects of visual attentional capacity are reflected in separable neurophysiological markers, validating a central assumption of NTVA. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Reduced order model based on principal component analysis for process simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Y.; Malacina, A.; Biegler, L.
2009-01-01
It is well-known that distributed parameter computational fluid dynamics (CFD) models provide more accurate results than conventional, lumped-parameter unit operation models used in process simulation. Consequently, the use of CFD models in process/equipment co-simulation offers the potential to optimize overall plant performance with respect to complex thermal and fluid flow phenomena. Because solving CFD models is time-consuming compared to the overall process simulation, we consider the development of fast reduced order models (ROMs) based on CFD results to closely approximate the high-fidelity equipment models in the co-simulation. By considering process equipment items with complicated geometries and detailed thermodynamic property models,more » this study proposes a strategy to develop ROMs based on principal component analysis (PCA). Taking advantage of commercial process simulation and CFD software (for example, Aspen Plus and FLUENT), we are able to develop systematic CFD-based ROMs for equipment models in an efficient manner. In particular, we show that the validity of the ROM is more robust within well-sampled input domain and the CPU time is significantly reduced. Typically, it takes at most several CPU seconds to evaluate the ROM compared to several CPU hours or more to solve the CFD model. Two case studies, involving two power plant equipment examples, are described and demonstrate the benefits of using our proposed ROM methodology for process simulation and optimization.« less
NASA Astrophysics Data System (ADS)
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.
Olivares, Alberto; Górriz, J M; Ramírez, J; Olivares, G
2016-05-01
With the advent of miniaturized inertial sensors many systems have been developed within the last decade to study and analyze human motion and posture, specially in the medical field. Data measured by the sensors are usually processed by algorithms based on Kalman Filters in order to estimate the orientation of the body parts under study. These filters traditionally include fixed parameters, such as the process and observation noise variances, whose value has large influence in the overall performance. It has been demonstrated that the optimal value of these parameters differs considerably for different motion intensities. Therefore, in this work, we show that, by applying frequency analysis to determine motion intensity, and varying the formerly fixed parameters accordingly, the overall precision of orientation estimation algorithms can be improved, therefore providing physicians with reliable objective data they can use in their daily practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chaos based encryption system for encrypting electroencephalogram signals.
Lin, Chin-Feng; Shih, Shun-Han; Zhu, Jin-De
2014-05-01
In the paper, we use the Microsoft Visual Studio Development Kit and C# programming language to implement a chaos-based electroencephalogram (EEG) encryption system involving three encryption levels. A chaos logic map, initial value, and bifurcation parameter for the map were used to generate Level I chaos-based EEG encryption bit streams. Two encryption-level parameters were added to these elements to generate Level II chaos-based EEG encryption bit streams. An additional chaotic map and chaotic address index assignment process was used to implement the Level III chaos-based EEG encryption system. Eight 16-channel EEG Vue signals were tested using the encryption system. The encryption was the most rapid and robust in the Level III system. The test yielded superior encryption results, and when the correct deciphering parameter was applied, the EEG signals were completely recovered. However, an input parameter error (e.g., a 0.00001 % initial point error) causes chaotic encryption bit streams, preventing the recovery of 16-channel EEG Vue signals.
Modeling and Experiment of Melt Impregnation of Continuous Fiber-reinforced Thermoplastic with Pins
NASA Astrophysics Data System (ADS)
Yang, Jian-Jun; Xin, Chun-Ling; Tang, Ke; Zhang, Zhi-Cheng; Yan, Bao-Rui; Ren, Feng; He, Ya-Dong
2016-05-01
Melt impregnation is a crucial method for continuous fiber-reinforced thermoplastic. It was developed several years ago for thermosetting plastic, but it is very popular now in the thermoplastic matrices, with a much higher viscosity. In this paper, we propose a mathematic model based on Darcy's law, which combined with processing parameters and material physical parameters. Then we use this model to predict the influence of processing parameters on the degree of impregnation of the prepreg, and the trend of prediction is consistent with the experimental results. Therefore, the exhaustive numerical study enables to define the optimal processing conditions for a perfect impregnation. The results are shown to be effective tools for finding optimal pulling speed, pin number and pressure for a given fluid/fibers pair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.
Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters aremore » identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Geoffrey Wayne
2016-03-16
This document identifies scope and some general procedural steps for performing Remediated Nitrate Salt (RNS) Surrogate Formulation and Testing. This Test Plan describes the requirements, responsibilities, and process for preparing and testing a range of chemical surrogates intended to mimic the energetic response of waste created during processing of legacy nitrate salts. The surrogates developed are expected to bound1 the thermal and mechanical sensitivity of such waste, allowing for the development of process parameters required to minimize the risk to worker and public when processing this waste. Such parameters will be based on the worst-case kinetic parameters as derived frommore » APTAC measurements as well as the development of controls to mitigate sensitivities that may exist due to friction, impact, and spark. This Test Plan will define the scope and technical approach for activities that implement Quality Assurance requirements relevant to formulation and testing.« less
Radiation Pressure Cooling as a Quantum Dynamical Process
NASA Astrophysics Data System (ADS)
He, Bing; Yang, Liu; Lin, Qing; Xiao, Min
2017-06-01
One of the most fundamental problems in optomechanical cooling is how small the thermal phonon number of a mechanical oscillator can be achieved under the radiation pressure of a proper cavity field. Different from previous theoretical predictions, which were based on an optomechanical system's time-independent steady states, we treat such cooling as a dynamical process of driving the mechanical oscillator from its initial thermal state, due to its thermal equilibrium with the environment, to a stabilized quantum state of higher purity. We find that the stabilized thermal phonon number left in the end actually depends on how fast the cooling process could be. The cooling speed is decided by an effective optomechanical coupling intensity, which constitutes an essential parameter for cooling, in addition to the sideband resolution parameter that has been considered in other theoretical studies. The limiting thermal phonon number that any cooling process cannot surpass exhibits a discontinuous jump across a certain value of the parameter.
Study on Silicon Microstructure Processing Technology Based on Porous Silicon
NASA Astrophysics Data System (ADS)
Shang, Yingqi; Zhang, Linchao; Qi, Hong; Wu, Yalin; Zhang, Yan; Chen, Jing
2018-03-01
Aiming at the heterogeneity of micro - sealed cavity in silicon microstructure processing technology, the technique of preparing micro - sealed cavity of porous silicon is proposed. The effects of different solutions, different substrate doping concentrations, different current densities, and different etching times on the rate, porosity, thickness and morphology of the prepared porous silicon were studied. The porous silicon was prepared by different process parameters and the prepared porous silicon was tested and analyzed. For the test results, optimize the process parameters and experiments. The experimental results show that the porous silicon can be controlled by optimizing the parameters of the etching solution and the doping concentration of the substrate, and the preparation of porous silicon with different porosity can be realized by different doping concentration, so as to realize the preparation of silicon micro-sealed cavity, to solve the sensor sensitive micro-sealed cavity structure heterogeneous problem, greatly increasing the application of the sensor.
NASA Astrophysics Data System (ADS)
Rajamani, D.; Esakki, Balasubramanian
2017-09-01
Selective inhibition sintering (SIS) is a powder based additive manufacturing (AM) technique to produce functional parts with an inexpensive system compared with other AM processes. Mechanical properties of SIS fabricated parts are of high dependence on various process parameters importantly layer thickness, heat energy, heater feedrate, and printer feedrate. In this paper, examining the influence of these process parameters on evaluating mechanical properties such as tensile and flexural strength using Response Surface Methodology (RSM) is carried out. The test specimens are fabricated using high density polyethylene (HDPE) and mathematical models are developed to correlate the control factors to the respective experimental design response. Further, optimal SIS process parameters are determined using desirability approach to enhance the mechanical properties of HDPE specimens. Optimization studies reveal that, combination of high heat energy, low layer thickness, medium heater feedrate and printer feedrate yielded superior mechanical strength characteristics.
Bayesian experimental design for models with intractable likelihoods.
Drovandi, Christopher C; Pettitt, Anthony N
2013-12-01
In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables. © 2013, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Yang, Kai; Chen, Xiangguang; Wang, Li; Jin, Huaiping
2017-01-01
In rubber mixing process, the key parameter (Mooney viscosity), which is used to evaluate the property of the product, can only be obtained with 4-6h delay offline. It is quite helpful for the industry, if the parameter can be estimate on line. Various data driven soft sensors have been used to prediction in the rubber mixing. However, it always not functions well due to the phase and nonlinear property in the process. The purpose of this paper is to develop an efficient soft sensing algorithm to solve the problem. Based on the proposed GMMD local sample selecting criterion, the phase information is extracted in the local modeling. Using the Gaussian local modeling method within Just-in-time (JIT) learning framework, nonlinearity of the process is well handled. Efficiency of the new method is verified by comparing the performance with various mainstream soft sensors, using the samples from real industrial rubber mixing process.
CHAM: weak signals detection through a new multivariate algorithm for process control
NASA Astrophysics Data System (ADS)
Bergeret, François; Soual, Carole; Le Gratiet, B.
2016-10-01
Derivatives technologies based on core CMOS processes are significantly aggressive in term of design rules and process control requirements. Process control plan is a derived from Process Assumption (PA) calculations which result in a design rule based on known process variability capabilities, taking into account enough margin to be safe not only for yield but especially for reliability. Even though process assumptions are calculated with a 4 sigma known process capability margin, efficient and competitive designs are challenging the process especially for derivatives technologies in 40 and 28nm nodes. For wafer fab process control, PA are declined in monovariate (layer1 CD, layer2 CD, layer2 to layer1 overlay, layer3 CD etc….) control charts with appropriated specifications and control limits which all together are securing the silicon. This is so far working fine but such system is not really sensitive to weak signals coming from interactions of multiple key parameters (high layer2 CD combined with high layer3 CD as an example). CHAM is a software using an advanced statistical algorithm specifically designed to detect small signals, especially when there are many parameters to control and when the parameters can interact to create yield issues. In this presentation we will first present the CHAM algorithm, then the case-study on critical dimensions, with the results, and we will conclude on future work. This partnership between Ippon and STM is part of E450LMDAP, European project dedicated to metrology and lithography development for future technology nodes, especially 10nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi
The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less
NASA Astrophysics Data System (ADS)
Bentley, S. N.; Watt, C. E. J.; Owens, M. J.; Rae, I. J.
2018-04-01
Ultralow frequency (ULF) waves in the magnetosphere are involved in the energization and transport of radiation belt particles and are strongly driven by the external solar wind. However, the interdependency of solar wind parameters and the variety of solar wind-magnetosphere coupling processes make it difficult to distinguish the effect of individual processes and to predict magnetospheric wave power using solar wind properties. We examine 15 years of dayside ground-based measurements at a single representative frequency (2.5 mHz) and a single magnetic latitude (corresponding to L ˜ 6.6RE). We determine the relative contribution to ULF wave power from instantaneous nonderived solar wind parameters, accounting for their interdependencies. The most influential parameters for ground-based ULF wave power are solar wind speed vsw, southward interplanetary magnetic field component Bz<0, and summed power in number density perturbations δNp. Together, the subordinate parameters Bz and δNp still account for significant amounts of power. We suggest that these three parameters correspond to driving by the Kelvin-Helmholtz instability, formation, and/or propagation of flux transfer events and density perturbations from solar wind structures sweeping past the Earth. We anticipate that this new parameter reduction will aid comparisons of ULF generation mechanisms between magnetospheric sectors and will enable more sophisticated empirical models predicting magnetospheric ULF power using external solar wind driving parameters.
Local sensitivity analysis for inverse problems solved by singular value decomposition
Hill, M.C.; Nolan, B.T.
2010-01-01
Local sensitivity analysis provides computationally frugal ways to evaluate models commonly used for resource management, risk assessment, and so on. This includes diagnosing inverse model convergence problems caused by parameter insensitivity and(or) parameter interdependence (correlation), understanding what aspects of the model and data contribute to measures of uncertainty, and identifying new data likely to reduce model uncertainty. Here, we consider sensitivity statistics relevant to models in which the process model parameters are transformed using singular value decomposition (SVD) to create SVD parameters for model calibration. The statistics considered include the PEST identifiability statistic, and combined use of the process-model parameter statistics composite scaled sensitivities and parameter correlation coefficients (CSS and PCC). The statistics are complimentary in that the identifiability statistic integrates the effects of parameter sensitivity and interdependence, while CSS and PCC provide individual measures of sensitivity and interdependence. PCC quantifies correlations between pairs or larger sets of parameters; when a set of parameters is intercorrelated, the absolute value of PCC is close to 1.00 for all pairs in the set. The number of singular vectors to include in the calculation of the identifiability statistic is somewhat subjective and influences the statistic. To demonstrate the statistics, we use the USDA’s Root Zone Water Quality Model to simulate nitrogen fate and transport in the unsaturated zone of the Merced River Basin, CA. There are 16 log-transformed process-model parameters, including water content at field capacity (WFC) and bulk density (BD) for each of five soil layers. Calibration data consisted of 1,670 observations comprising soil moisture, soil water tension, aqueous nitrate and bromide concentrations, soil nitrate concentration, and organic matter content. All 16 of the SVD parameters could be estimated by regression based on the range of singular values. Identifiability statistic results varied based on the number of SVD parameters included. Identifiability statistics calculated for four SVD parameters indicate the same three most important process-model parameters as CSS/PCC (WFC1, WFC2, and BD2), but the order differed. Additionally, the identifiability statistic showed that BD1 was almost as dominant as WFC1. The CSS/PCC analysis showed that this results from its high correlation with WCF1 (-0.94), and not its individual sensitivity. Such distinctions, combined with analysis of how high correlations and(or) sensitivities result from the constructed model, can produce important insights into, for example, the use of sensitivity analysis to design monitoring networks. In conclusion, the statistics considered identified similar important parameters. They differ because (1) with CSS/PCC can be more awkward because sensitivity and interdependence are considered separately and (2) identifiability requires consideration of how many SVD parameters to include. A continuing challenge is to understand how these computationally efficient methods compare with computationally demanding global methods like Markov-Chain Monte Carlo given common nonlinear processes and the often even more nonlinear models.
Learning-based controller for biotechnology processing, and method of using
Johnson, John A.; Stoner, Daphne L.; Larsen, Eric D.; Miller, Karen S.; Tolle, Charles R.
2004-09-14
The present invention relates to process control where some of the controllable parameters are difficult or impossible to characterize. The present invention relates to process control in biotechnology of such systems, but not limited to. Additionally, the present invention relates to process control in biotechnology minerals processing. In the inventive method, an application of the present invention manipulates a minerals bioprocess to find local exterma (maxima or minima) for selected output variables/process goals by using a learning-based controller for bioprocess oxidation of minerals during hydrometallurgical processing. The learning-based controller operates with or without human supervision and works to find processor optima without previously defined optima due to the non-characterized nature of the process being manipulated.
Subsurface damage distribution in the lapping process.
Wang, Zhuo; Wu, Yulie; Dai, Yifan; Li, Shengyi
2008-04-01
To systematically investigate the influence of lapping parameters on subsurface damage (SSD) depth and characterize the damage feature comprehensively, maximum depth and distribution of SSD generated in the optical lapping process were measured with the magnetorheological finishing wedge technique. Then, an interaction of adjacent indentations was applied to interpret the generation of maximum depth of SSD. Eventually, the lapping procedure based on the influence of lapping parameters on the material removal rate and SSD depth was proposed to improve the lapping efficiency.
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
NASA Astrophysics Data System (ADS)
Li, Fengxian; Yi, Jianhong; Eckert, Jürgen
2017-12-01
Powder forged connecting rods have the problem of non-uniform density distributions because of their complex geometric shape. The densification behaviors of powder metallurgy (PM) connecting rod preforms during hot forging processes play a significant role in optimizing the connecting rod quality. The deformation behaviors of a connecting rod preform, a Fe-3Cu-0.5C (wt pct) alloy compacted and sintered by the powder metallurgy route (PM Fe-Cu-C), were investigated using the finite element method, while damage and friction behaviors of the material were considered in the complicated forging process. The calculated results agree well with the experimental results. The relationship between the processing parameters of hot forging and the relative density of the connecting rod was revealed. The results showed that the relative density of the hot forged connecting rod at the central shank changed significantly compared with the relative density at the big end and at the small end. Moreover, the relative density of the connecting rod was sensitive to the processing parameters such as the forging velocity and the initial density of the preform. The optimum forging processing parameters were determined and presented by using an orthogonal design method. This work suggests that the processing parameters can be optimized to prepare a connecting rod with uniform density distribution and can help to better meet the requirements of the connecting rod industry.
Ou, Yangming; Resnick, Susan M.; Gur, Ruben C.; Gur, Raquel E.; Satterthwaite, Theodore D.; Furth, Susan; Davatzikos, Christos
2016-01-01
Atlas-based automated anatomical labeling is a fundamental tool in medical image segmentation, as it defines regions of interest for subsequent analysis of structural and functional image data. The extensive investigation of multi-atlas warping and fusion techniques over the past 5 or more years has clearly demonstrated the advantages of consensus-based segmentation. However, the common approach is to use multiple atlases with a single registration method and parameter set, which is not necessarily optimal for every individual scan, anatomical region, and problem/data-type. Different registration criteria and parameter sets yield different solutions, each providing complementary information. Herein, we present a consensus labeling framework that generates a broad ensemble of labeled atlases in target image space via the use of several warping algorithms, regularization parameters, and atlases. The label fusion integrates two complementary sources of information: a local similarity ranking to select locally optimal atlases and a boundary modulation term to refine the segmentation consistently with the target image's intensity profile. The ensemble approach consistently outperforms segmentations using individual warping methods alone, achieving high accuracy on several benchmark datasets. The MUSE methodology has been used for processing thousands of scans from various datasets, producing robust and consistent results. MUSE is publicly available both as a downloadable software package, and as an application that can be run on the CBICA Image Processing Portal (https://ipp.cbica.upenn.edu), a web based platform for remote processing of medical images. PMID:26679328
Zheng, Hong; Clausen, Morten Rahr; Dalsgaard, Trine Kastrup; Mortensen, Grith; Bertram, Hanne Christine
2013-08-06
We describe a time-saving protocol for the processing of LC-MS-based metabolomics data by optimizing parameter settings in XCMS and threshold settings for removing noisy and low-intensity peaks using design of experiment (DoE) approaches including Plackett-Burman design (PBD) for screening and central composite design (CCD) for optimization. A reliability index, which is based on evaluation of the linear response to a dilution series, was used as a parameter for the assessment of data quality. After identifying the significant parameters in the XCMS software by PBD, CCD was applied to determine their values by maximizing the reliability and group indexes. Optimal settings by DoE resulted in improvements of 19.4% and 54.7% in the reliability index for a standard mixture and human urine, respectively, as compared with the default setting, and a total of 38 h was required to complete the optimization. Moreover, threshold settings were optimized by using CCD for further improvement. The approach combining optimal parameter setting and the threshold method improved the reliability index about 9.5 times for a standards mixture and 14.5 times for human urine data, which required a total of 41 h. Validation results also showed improvements in the reliability index of about 5-7 times even for urine samples from different subjects. It is concluded that the proposed methodology can be used as a time-saving approach for improving the processing of LC-MS-based metabolomics data.
Determining fundamental properties of matter created in ultrarelativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Novak, J.; Novak, K.; Pratt, S.; Vredevoogd, J.; Coleman-Smith, C. E.; Wolpert, R. L.
2014-03-01
Posterior distributions for physical parameters describing relativistic heavy-ion collisions, such as the viscosity of the quark-gluon plasma, are extracted through a comparison of hydrodynamic-based transport models to experimental results from 100AGeV+100AGeV Au +Au collisions at the Relativistic Heavy Ion Collider. By simultaneously varying six parameters and by evaluating several classes of observables, we are able to explore the complex intertwined dependencies of observables on model parameters. The methods provide a full multidimensional posterior distribution for the model output, including a range of acceptable values for each parameter, and reveal correlations between them. The breadth of observables and the number of parameters considered here go beyond previous studies in this field. The statistical tools, which are based upon Gaussian process emulators, are tested in detail and should be extendable to larger data sets and a higher number of parameters.
Near-infrared spectroscopy (NIRS) for a real time monitoring of the biogas process.
Stockl, Andrea; Lichti, Fabian
2018-01-01
In this research project Near-infrared spectroscopy (NIRS) was applied to monitor the content of specific process parameters in anaerobic digestion. A laboratory scaled biogas digester was constantly fed every four hours with maize- and grass silage to keep a base load with an organic loading rate (OLR) of 2.5 kg oDM/m 3 ∗ d. Daily impact loads with shredded wheat up to an OLR of 8 kg oDM/m 3 ∗ d were added in order to generate peaks at the parameters tested. The developed calibration models are capable to show changes in process parameters like volatile fatty acids (VFA), propionic acid, total inorganic carbon (TIC) and the ratio of the volatile fatty acids to the carbonate buffer (VFA/TIC). Based on the calibration of the models for VFA and TIC, the values could be predicted with an R 2 of 0.94 and 0.97, respectively. Moreover, the residual prediction deviations were 4.0 and 6.0 for VFA and TIC, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
NASA Astrophysics Data System (ADS)
Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2015-08-01
Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.
a R-Shiny Based Phenology Analysis System and Case Study Using Digital Camera Dataset
NASA Astrophysics Data System (ADS)
Zhou, Y. K.
2018-05-01
Accurate extracting of the vegetation phenology information play an important role in exploring the effects of climate changes on vegetation. Repeated photos from digital camera is a useful and huge data source in phonological analysis. Data processing and mining on phenological data is still a big challenge. There is no single tool or a universal solution for big data processing and visualization in the field of phenology extraction. In this paper, we proposed a R-shiny based web application for vegetation phenological parameters extraction and analysis. Its main functions include phenological site distribution visualization, ROI (Region of Interest) selection, vegetation index calculation and visualization, data filtering, growth trajectory fitting, phenology parameters extraction, etc. the long-term observation photography data from Freemanwood site in 2013 is processed by this system as an example. The results show that: (1) this system is capable of analyzing large data using a distributed framework; (2) The combination of multiple parameter extraction and growth curve fitting methods could effectively extract the key phenology parameters. Moreover, there are discrepancies between different combination methods in unique study areas. Vegetation with single-growth peak is suitable for using the double logistic module to fit the growth trajectory, while vegetation with multi-growth peaks should better use spline method.
“Investigations on the machinability of Waspaloy under dry environment”
NASA Astrophysics Data System (ADS)
Deepu, J.; Kuppan, P.; SBalan, A. S.; Oyyaravelu, R.
2016-09-01
Nickel based superalloy, Waspaloy is extensively used in gas turbine, aerospace and automobile industries because of their unique combination of properties like high strength at elevated temperatures, resistance to chemical degradation and excellent wear resistance in many hostile environments. It is considered as one of the difficult to machine superalloy due to excessive tool wear and poor surface finish. The present paper is an attempt for removing cutting fluids from turning process of Waspaloy and to make the processes environmentally safe. For this purpose, the effect of machining parameters such as cutting speed and feed rate on the cutting force, cutting temperature, surface finish and tool wear were investigated barrier. Consequently, the strength and tool wear resistance and tool life increased significantly. Response Surface Methodology (RSM) has been used for developing and analyzing a mathematical model which describes the relationship between machining parameters and output variables. Subsequently ANOVA was used to check the adequacy of the regression model as well as each machining variables. The optimal cutting parameters were determined based on multi-response optimizations by composite desirability approach in order to minimize cutting force, average surface roughness and maximum flank wear. The results obtained from the experiments shown that machining of Waspaloy using coated carbide tool with special ranges of parameters, cutting fluid could be completely removed from machining process
Study on validation method for femur finite element model under multiple loading conditions
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu
2018-03-01
Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.
An Integrated Framework for Parameter-based Optimization of Scientific Workflows.
Kumar, Vijay S; Sadayappan, P; Mehta, Gaurang; Vahi, Karan; Deelman, Ewa; Ratnakar, Varun; Kim, Jihie; Gil, Yolanda; Hall, Mary; Kurc, Tahsin; Saltz, Joel
2009-01-01
Data analysis processes in scientific applications can be expressed as coarse-grain workflows of complex data processing operations with data flow dependencies between them. Performance optimization of these workflows can be viewed as a search for a set of optimal values in a multi-dimensional parameter space. While some performance parameters such as grouping of workflow components and their mapping to machines do not a ect the accuracy of the output, others may dictate trading the output quality of individual components (and of the whole workflow) for performance. This paper describes an integrated framework which is capable of supporting performance optimizations along multiple dimensions of the parameter space. Using two real-world applications in the spatial data analysis domain, we present an experimental evaluation of the proposed framework.
Influence of imperfect end boundary condition on the nonlocal dynamics of CNTs
NASA Astrophysics Data System (ADS)
Fathi, Reza; Lotfan, Saeed; Sadeghi, Morteza H.
2017-03-01
Imperfections that unavoidably occur during the fabrication process of carbon nanotubes (CNTs) have a significant influence on the vibration behavior of CNTs. Among these imperfections, the boundary condition defect is studied in this investigation based on the nonlocal elasticity theory. To this end, a mathematical model of the non-ideal end condition in a cantilever CNT is developed by a strongly non-linear spring to study its effect on the vibration behavior. The weak form equation of motion is derived via Hamilton's principle and solved based on Rayleigh-Ritz approach. Once the frequency response function (FRF) of the CNT is simulated, it is found that the defect parameter injects noise to the FRF in the range of lower frequencies and as a result the small scale effect on the FRF remains undisturbed in high frequency ranges. Besides, in this work a process is introduced to estimate the nonlocal and defect parameters for establishing the mathematical model of the CNT based on FRF, which can be competitive because of its lower instrumentation and data analysis costs. The estimation process relies on the resonance frequencies and the magnitude of noise in the frequency response function of the CNT. The results show that the constructed dynamic response of the system based on estimated parameters is in good agreement with the original response of the CNT.
NASA Astrophysics Data System (ADS)
Moritzer, E.; Leister, C.
2014-05-01
The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help of statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritzer, E., E-mail: elmar.moritzer@ktp.upb.de; Leister, C., E-mail: elmar.moritzer@ktp.upb.de
The industrial use of atmospheric pressure plasmas in the plastics processing industry has increased significantly in recent years. Users of this treatment process have the possibility to influence the target values (e.g. bond strength or surface energy) with the help of kinematic and electrical parameters. Until now, systematic procedures have been used with which the parameters can be adapted to the process or product requirements but only by very time-consuming methods. For this reason, the relationship between influencing values and target values will be examined based on the example of a pretreatment in the bonding process with the help ofmore » statistical experimental design. Because of the large number of parameters involved, the analysis is restricted to the kinematic and electrical parameters. In the experimental tests, the following factors are taken as parameters: gap between nozzle and substrate, treatment velocity (kinematic data), voltage and duty cycle (electrical data). The statistical evaluation shows significant relationships between the parameters and surface energy in the case of polypropylene. An increase in the voltage and duty cycle increases the polar proportion of the surface energy, while a larger gap and higher velocity leads to lower energy levels. The bond strength of the overlapping bond is also significantly influenced by the voltage, velocity and gap. The direction of their effects is identical with those of the surface energy. In addition to the kinematic influences of the motion of an atmospheric pressure plasma jet, it is therefore especially important that the parameters for the plasma production are taken into account when designing the pretreatment processes.« less
A GUI-based Tool for Bridging the Gap between Models and Process-Oriented Studies
NASA Astrophysics Data System (ADS)
Kornfeld, A.; Van der Tol, C.; Berry, J. A.
2014-12-01
Models used for simulation of photosynthesis and transpiration by canopies of terrestrial plants typically have subroutines such as STOMATA.F90, PHOSIB.F90 or BIOCHEM.m that solve for photosynthesis and associated processes. Key parameters such as the Vmax for Rubisco and temperature response parameters are required by these subroutines. These are often taken from the literature or determined by separate analysis of gas exchange experiments. It is useful to note however that subroutines can be extracted and run as standalone models to simulate leaf responses collected in gas exchange experiments. Furthermore, there are excellent non-linear fitting tools that can be used to optimize the parameter values in these models to fit the observations. Ideally the Vmax fit in this way should be the same as that determined by a separate analysis, but it may not because of interactions with other kinetic constants and the temperature dependence of these in the full subroutine. We submit that it is more useful to fit the complete model to the calibration experiments rather as disaggregated constants. We designed a graphical user interface (GUI) based tool that uses gas exchange photosynthesis data to directly estimate model parameters in the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model and, at the same time, allow researchers to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. We have also ported some of this functionality to an Excel spreadsheet, which could be used as a teaching tool to help integrate process-oriented and model-oriented studies.
NASA Astrophysics Data System (ADS)
Ullah, Kaleem; Garcia-Camara, Braulio; Habib, Muhammad; Yadav, N. P.; Liu, Xuefeng
2018-07-01
In this work, we report an indirect way to image the Stokes parameters of a sample under test (SUT) with sub-diffraction scattering information. We apply our previously reported technique called parametric indirect microscopic imaging (PIMI) based on a fitting and filtration process to measure the Stokes parameters of a submicron particle. A comparison with a classical Stokes measurement is also shown. By modulating the incident field in a precise way, fitting and filtration process at each pixel of the detector in PIMI make us enable to resolve and sense the scattering information of SUT and map them in terms of the Stokes parameters. We believe that our finding can be very useful in fields like singular optics, optical nanoantenna, biomedicine and much more. The spatial signature of the Stokes parameters given by our method has been confirmed with finite difference time domain (FDTD) method.
NASA Astrophysics Data System (ADS)
Zeqiri, F.; Alkan, M.; Kaya, B.; Toros, S.
2018-01-01
In this paper, the effects of cutting parameters on cutting forces and surface roughness based on Taguchi experimental design method are determined. Taguchi L9 orthogonal array is used to investigate the effects of machining parameters. Optimal cutting conditions are determined using the signal/noise (S/N) ratio which is calculated by average surface roughness and cutting force. Using results of analysis, effects of parameters on both average surface roughness and cutting forces are calculated on Minitab 17 using ANOVA method. The material that was investigated is Inconel 625 steel for two cases with heat treatment and without heat treatment. The predicted and calculated values with measurement are very close to each other. Confirmation test of results showed that the Taguchi method was very successful in the optimization of machining parameters for maximum surface roughness and cutting forces in the CNC turning process.
NASA Astrophysics Data System (ADS)
Zhang, Wei-Ya; Li, Yong-Li; Chang, Xiao-Yong; Wang, Nan
2013-09-01
In this paper, the dynamic behavior analysis of the electromechanical coupling characteristics of a flywheel energy storage system (FESS) with a permanent magnet (PM) brushless direct-current (DC) motor (BLDCM) is studied. The Hopf bifurcation theory and nonlinear methods are used to investigate the generation process and mechanism of the coupled dynamic behavior for the average current controlled FESS in the charging mode. First, the universal nonlinear dynamic model of the FESS based on the BLDCM is derived. Then, for a 0.01 kWh/1.6 kW FESS platform in the Key Laboratory of the Smart Grid at Tianjin University, the phase trajectory of the FESS from a stable state towards chaos is presented using numerical and stroboscopic methods, and all dynamic behaviors of the system in this process are captured. The characteristics of the low-frequency oscillation and the mechanism of the Hopf bifurcation are investigated based on the Routh stability criterion and nonlinear dynamic theory. It is shown that the Hopf bifurcation is directly due to the loss of control over the inductor current, which is caused by the system control parameters exceeding certain ranges. This coupling nonlinear process of the FESS affects the stability of the motor running and the efficiency of energy transfer. In this paper, we investigate into the effects of control parameter change on the stability and the stability regions of these parameters based on the averaged-model approach. Furthermore, the effect of the quantization error in the digital control system is considered to modify the stability regions of the control parameters. Finally, these theoretical results are verified through platform experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juxiu Tong; Bill X. Hu; Hai Huang
2014-03-01
With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations,more » we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.« less
Behavioral and Brain Measures of Phasic Alerting Effects on Visual Attention.
Wiegand, Iris; Petersen, Anders; Finke, Kathrin; Bundesen, Claus; Lansner, Jon; Habekost, Thomas
2017-01-01
In the present study, we investigated effects of phasic alerting on visual attention in a partial report task, in which half of the displays were preceded by an auditory warning cue. Based on the computational Theory of Visual Attention (TVA), we estimated parameters of spatial and non-spatial aspects of visual attention and measured event-related lateralizations (ERLs) over visual processing areas. We found that the TVA parameter sensory effectiveness a , which is thought to reflect visual processing capacity, significantly increased with phasic alerting. By contrast, the distribution of visual processing resources according to task relevance and spatial position, as quantified in parameters top-down control α and spatial bias w index , was not modulated by phasic alerting. On the electrophysiological level, the latencies of ERLs in response to the task displays were reduced following the warning cue. These results suggest that phasic alerting facilitates visual processing in a general, unselective manner and that this effect originates in early stages of visual information processing.
NASA Astrophysics Data System (ADS)
Vignesh, S.; Dinesh Babu, P.; Surya, G.; Dinesh, S.; Marimuthu, P.
2018-02-01
The ultimate goal of all production entities is to select the process parameters that would be of maximum strength, minimum wear and friction. The friction and wear are serious problems in most of the industries which are influenced by the working set of parameters, oxidation characteristics and mechanism involved in formation of wear. The experimental input parameters such as sliding distance, applied load, and temperature are utilized in finding out the optimized solution for achieving the desired output responses such as coefficient of friction, wear rate, and volume loss. The optimization is performed with the help of a novel method, Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based on an evolutionary algorithm. The regression equations obtained using Response Surface Methodology (RSM) are used in determining the optimum process parameters. Further, the results achieved through desirability approach in RSM are compared with that of the optimized solution obtained through NSGA-II. The results conclude that proposed evolutionary technique is much effective and faster than the desirability approach.
NASA Astrophysics Data System (ADS)
vellaichamy, Lakshmanan; Paulraj, Sathiya
2018-02-01
The dissimilar welding of Incoloy 800HT and P91 steel using Gas Tungsten arc welding process (GTAW) This material is being used in the Nuclear Power Plant and Aerospace Industry based application because Incoloy 800HT possess good corrosion and oxidation resistance and P91 possess high temperature strength and creep resistance. This work discusses on multi-objective optimization using gray relational analysis (GRA) using 9CrMoV-N filler materials. The experiment conducted L9 orthogonal array. The input parameter are current, voltage, speed. The output response are Tensile strength, Hardness and Toughness. To optimize the input parameter and multiple output variable by using GRA. The optimal parameter is combination was determined as A2B1C1 so given input parameter welding current at 120 A, voltage at 16 V and welding speed at 0.94 mm/s. The output of the mechanical properties for best and least grey relational grade was validated by the metallurgical characteristics.
Architectural setup for online monitoring and control of process parameters in robot-based ISF
NASA Astrophysics Data System (ADS)
Störkle, Denis Daniel; Thyssen, Lars; Kuhlenkötter, Bernd
2017-10-01
This article describes new developments in an incremental, robot-based sheet metal forming process (Roboforming) for the production of sheet metal components for small lot sizes and prototypes. The dieless kinematic-based generation of the shape is implemented by means of two industrial robots, which are interconnected to a cooperating robot system. Compared to other incremental sheet forming (ISF) machines, this system offers high geometrical design flexibility without the need of any part-dependent tools. However, the industrial application of ISF is still limited by certain constraints, e.g. the low geometrical accuracy. Responding to these constraints, the authors introduce a new architectural setup extending the current one by a superordinate process control. This sophisticated control consists of two modules, i.e. the compensation of the two industrial robots' low structural stiffness as well as a combined force/torque control. It is assumed that this contribution will lead to future research and development projects in which the authors will thoroughly investigate ISF process parameters influencing the geometric accuracy of the forming results.
Code of Federal Regulations, 2014 CFR
2014-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2011 CFR
2011-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... permit limit applicable to the process vent. (4) Design analysis based on accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or properties. (5) All data... tested for vapor tightness. (b) Engineering assessment. Engineering assessment to determine if a vent...
Integrated Process Modeling-A Process Validation Life Cycle Companion.
Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph
2017-10-17
During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.
Barczi, Jean-François; Rey, Hervé; Caraglio, Yves; de Reffye, Philippe; Barthélémy, Daniel; Dong, Qiao Xue; Fourcaud, Thierry
2008-05-01
AmapSim is a tool that implements a structural plant growth model based on a botanical theory and simulates plant morphogenesis to produce accurate, complex and detailed plant architectures. This software is the result of more than a decade of research and development devoted to plant architecture. New advances in the software development have yielded plug-in external functions that open up the simulator to functional processes. The simulation of plant topology is based on the growth of a set of virtual buds whose activity is modelled using stochastic processes. The geometry of the resulting axes is modelled by simple descriptive functions. The potential growth of each bud is represented by means of a numerical value called physiological age, which controls the value for each parameter in the model. The set of possible values for physiological ages is called the reference axis. In order to mimic morphological and architectural metamorphosis, the value allocated for the physiological age of buds evolves along this reference axis according to an oriented finite state automaton whose occupation and transition law follows a semi-Markovian function. Simulations were performed on tomato plants to demonstrate how the AmapSim simulator can interface external modules, e.g. a GREENLAB growth model and a radiosity model. The algorithmic ability provided by AmapSim, e.g. the reference axis, enables unified control to be exercised over plant development parameter values, depending on the biological process target: how to affect the local pertinent process, i.e. the pertinent parameter(s), while keeping the rest unchanged. This opening up to external functions also offers a broadened field of applications and thus allows feedback between plant growth and the physical environment.
Barczi, Jean-François; Rey, Hervé; Caraglio, Yves; de Reffye, Philippe; Barthélémy, Daniel; Dong, Qiao Xue; Fourcaud, Thierry
2008-01-01
Background and Aims AmapSim is a tool that implements a structural plant growth model based on a botanical theory and simulates plant morphogenesis to produce accurate, complex and detailed plant architectures. This software is the result of more than a decade of research and development devoted to plant architecture. New advances in the software development have yielded plug-in external functions that open up the simulator to functional processes. Methods The simulation of plant topology is based on the growth of a set of virtual buds whose activity is modelled using stochastic processes. The geometry of the resulting axes is modelled by simple descriptive functions. The potential growth of each bud is represented by means of a numerical value called physiological age, which controls the value for each parameter in the model. The set of possible values for physiological ages is called the reference axis. In order to mimic morphological and architectural metamorphosis, the value allocated for the physiological age of buds evolves along this reference axis according to an oriented finite state automaton whose occupation and transition law follows a semi-Markovian function. Key Results Simulations were performed on tomato plants to demostrate how the AmapSim simulator can interface external modules, e.g. a GREENLAB growth model and a radiosity model. Conclusions The algorithmic ability provided by AmapSim, e.g. the reference axis, enables unified control to be exercised over plant development parameter values, depending on the biological process target: how to affect the local pertinent process, i.e. the pertinent parameter(s), while keeping the rest unchanged. This opening up to external functions also offers a broadened field of applications and thus allows feedback between plant growth and the physical environment. PMID:17766310
Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V
2017-03-01
A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. Biotechnol. Bioeng. 2017;114: 589-599. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820
Electrochemical reduction of CerMet fuels for transmutation using surrogate CeO2-Mo pellets
NASA Astrophysics Data System (ADS)
Claux, B.; Souček, P.; Malmbeck, R.; Rodrigues, A.; Glatz, J.-P.
2017-08-01
One of the concepts chosen for the transmutation of minor actinides in Accelerator Driven Systems or fast reactors proposes the use of fuels and targets containing minor actinides oxides embedded in an inert matrix either composed of molybdenum metal (CerMet fuel) or of ceramic magnesium oxide (CerCer fuel). Since the sufficient transmutation cannot be achieved in a single step, it requires multi-recycling of the fuel including recovery of the not transmuted minor actinides. In the present work, a pyrochemical process for treatment of Mo metal inert matrix based CerMet fuels is studied, particularly the electroreduction in molten chloride salt as a head-end step required prior the main separation process. At the initial stage, different inactive pellets simulating the fuel containing CeO2 as minor actinide surrogates were examined. The main studied parameters of the process efficiency were the porosity and composition of the pellets and the process parameters as current density and passed charge. The results indicated the feasibility of the process, gave insight into its limiting parameters and defined the parameters for the future experiment on minor actinide containing material.
Fuzzy control of burnout of multilayer ceramic actuators
NASA Astrophysics Data System (ADS)
Ling, Alice V.; Voss, David; Christodoulou, Leo
1996-08-01
To improve the yield and repeatability of the burnout process of multilayer ceramic actuators (MCAs), an intelligent processing of materials (IPM-based) control system has been developed for the manufacture of MCAs. IPM involves the active (ultimately adaptive) control of a material process using empirical or analytical models and in situ sensing of critical process states (part features and process parameters) to modify the processing conditions in real time to achieve predefined product goals. Thus, the three enabling technologies for the IPM burnout control system are process modeling, in situ sensing and intelligent control. This paper presents the design of an IPM-based control strategy for the burnout process of MCAs.
Parameter Estimation and Model Selection for Indoor Environments Based on Sparse Observations
NASA Astrophysics Data System (ADS)
Dehbi, Y.; Loch-Dehbi, S.; Plümer, L.
2017-09-01
This paper presents a novel method for the parameter estimation and model selection for the reconstruction of indoor environments based on sparse observations. While most approaches for the reconstruction of indoor models rely on dense observations, we predict scenes of the interior with high accuracy in the absence of indoor measurements. We use a model-based top-down approach and incorporate strong but profound prior knowledge. The latter includes probability density functions for model parameters and sparse observations such as room areas and the building footprint. The floorplan model is characterized by linear and bi-linear relations with discrete and continuous parameters. We focus on the stochastic estimation of model parameters based on a topological model derived by combinatorial reasoning in a first step. A Gauss-Markov model is applied for estimation and simulation of the model parameters. Symmetries are represented and exploited during the estimation process. Background knowledge as well as observations are incorporated in a maximum likelihood estimation and model selection is performed with AIC/BIC. The likelihood is also used for the detection and correction of potential errors in the topological model. Estimation results are presented and discussed.
A combinaison of UV curing technology with ATL process
NASA Astrophysics Data System (ADS)
Balbzioui, I.; Hasiaoui, B.; Barbier, G.; L'hostis, G.; Laurent, F.; Ibrahim, A.; Durand, B.
2017-10-01
In order to reduce the time and the cost of manufacturing composite, UV curing technology combined with automated tape placement process (ATL) based on reverse approach by working with a fixed head was studied in this article. First, a brief description of the developed head placement is presented. Mechanical properties are then evaluated by varying process parameters, including compaction force and tape placement speed. Finally, a parametric study is carried out to identify suitable materials and process parameters to manufacture a photo composite material with high mechanical performances. The obtained results show that UV curing is a very good alternative for thermal polymerization because of its fast cure speed due to less dependency on temperature.
NASA Astrophysics Data System (ADS)
Zäh, Ralf-Kilian; Mosbach, Benedikt; Hollwich, Jan; Faupel, Benedikt
2017-02-01
To ensure the competitiveness of manufacturing companies it is indispensable to optimize their manufacturing processes. Slight variations of process parameters and machine settings have only marginally effects on the product quality. Therefore, the largest possible editing window is required. Such parameters are, for example, the movement of the laser beam across the component for the laser keyhole welding. That`s why it is necessary to keep the formation of welding seams within specified limits. Therefore, the quality of laser welding processes is ensured, by using post-process methods, like ultrasonic inspection, or special in-process methods. These in-process systems only achieve a simple evaluation which shows whether the weld seam is acceptable or not. Furthermore, in-process systems use no feedback for changing the control variables such as speed of the laser or adjustment of laser power. In this paper the research group presents current results of the research field of Online Monitoring, Online Controlling and Model predictive controlling in laser welding processes to increase the product quality. To record the characteristics of the welding process, tested online methods are used during the process. Based on the measurement data, a state space model is ascertained, which includes all the control variables of the system. Depending on simulation tools the model predictive controller (MPC) is designed for the model and integrated into an NI-Real-Time-System.
NASA Astrophysics Data System (ADS)
Pourbabaee, Bahareh; Meskin, Nader; Khorasani, Khashayar
2016-08-01
In this paper, a novel robust sensor fault detection and isolation (FDI) strategy using the multiple model-based (MM) approach is proposed that remains robust with respect to both time-varying parameter uncertainties and process and measurement noise in all the channels. The scheme is composed of robust Kalman filters (RKF) that are constructed for multiple piecewise linear (PWL) models that are constructed at various operating points of an uncertain nonlinear system. The parameter uncertainty is modeled by using a time-varying norm bounded admissible structure that affects all the PWL state space matrices. The robust Kalman filter gain matrices are designed by solving two algebraic Riccati equations (AREs) that are expressed as two linear matrix inequality (LMI) feasibility conditions. The proposed multiple RKF-based FDI scheme is simulated for a single spool gas turbine engine to diagnose various sensor faults despite the presence of parameter uncertainties, process and measurement noise. Our comparative studies confirm the superiority of our proposed FDI method when compared to the methods that are available in the literature.
NASA Astrophysics Data System (ADS)
Bogoljubova, M. N.; Afonasov, A. I.; Kozlov, B. N.; Shavdurov, D. E.
2018-05-01
A predictive simulation technique of optimal cutting modes in the turning of workpieces made of nickel-based heat-resistant alloys, different from the well-known ones, is proposed. The impact of various factors on the cutting process with the purpose of determining optimal parameters of machining in concordance with certain effectiveness criteria is analyzed in the paper. A mathematical model of optimization, algorithms and computer programmes, visual graphical forms reflecting dependences of the effectiveness criteria – productivity, net cost, and tool life on parameters of the technological process - have been worked out. A nonlinear model for multidimensional functions, “solution of the equation with multiple unknowns”, “a coordinate descent method” and heuristic algorithms are accepted to solve the problem of optimization of cutting mode parameters. Research shows that in machining of workpieces made from heat-resistant alloy AISI N07263, the highest possible productivity will be achieved with the following parameters: cutting speed v = 22.1 m/min., feed rate s=0.26 mm/rev; tool life T = 18 min.; net cost – 2.45 per hour.
Hollmann, M; Mönch, T; Mulla-Osman, S; Tempelmann, C; Stadler, J; Bernarding, J
2008-10-30
In functional MRI (fMRI) complex experiments and applications require increasingly complex parameter handling as the experimental setup usually consists of separated soft- and hardware systems. Advanced real-time applications such as neurofeedback-based training or brain computer interfaces (BCIs) may even require adaptive changes of the paradigms and experimental setup during the measurement. This would be facilitated by an automated management of the overall workflow and a control of the communication between all experimental components. We realized a concept based on an XML software framework called Experiment Description Language (EDL). All parameters relevant for real-time data acquisition, real-time fMRI (rtfMRI) statistical data analysis, stimulus presentation, and activation processing are stored in one central EDL file, and processed during the experiment. A usability study comparing the central EDL parameter management with traditional approaches showed an improvement of the complete experimental handling. Based on this concept, a feasibility study realizing a dynamic rtfMRI-based brain computer interface showed that the developed system in combination with EDL was able to reliably detect and evaluate activation patterns in real-time. The implementation of a centrally controlled communication between the subsystems involved in the rtfMRI experiments reduced potential inconsistencies, and will open new applications for adaptive BCIs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondy, Lisa Ann; Rao, Rekha Ranjana; Shelden, Bion
We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions,more » following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.« less
Bak, Jin Seop
2015-01-01
In order to address the limitations associated with the inefficient pasteurization platform used to make Makgeolli, such as the presence of turbid colloidal dispersions in suspension, commercially available Makgeolli was minimally processed using a low-pressure homogenization-based pasteurization (LHBP) process. This continuous process demonstrates that promptly reducing the exposure time to excessive heat using either large molecules or insoluble particles can dramatically improve internal quality and decrease irreversible damage. Specifically, optimal homogenization increased concomitantly with physical parameters such as colloidal stability (65.0% of maximum and below 25-μm particles) following two repetitions at 25.0 MPa. However, biochemical parameters such as microbial population, acidity, and the presence of fermentable sugars rarely affected Makgeolli quality. Remarkably, there was a 4.5-log reduction in the number of Saccharomyces cerevisiae target cells at 53.5°C for 70 sec in optimally homogenized Makgeolli. This value was higher than the 37.7% measured from traditionally pasteurized Makgeolli. In contrast to the analytical similarity among homogenized Makgeollis, our objective quality evaluation demonstrated significant differences between pasteurized (or unpasteurized) Makgeolli and LHBP-treated Makgeolli. Low-pressure homogenization-based pasteurization, Makgeolli, minimal processing-preservation, Saccharomyces cerevisiae, suspension stability.
NASA Astrophysics Data System (ADS)
Göll, S.; Samsun, R. C.; Peters, R.
Fuel-cell-based auxiliary power units can help to reduce fuel consumption and emissions in transportation. For this application, the combination of solid oxide fuel cells (SOFCs) with upstream fuel processing by autothermal reforming (ATR) is seen as a highly favorable configuration. Notwithstanding the necessity to improve each single component, an optimized architecture of the fuel cell system as a whole must be achieved. To enable model-based analyses, a system-level approach is proposed in which the fuel cell system is modeled as a multi-stage thermo-chemical process using the "flowsheeting" environment PRO/II™. Therein, the SOFC stack and the ATR are characterized entirely by corresponding thermodynamic processes together with global performance parameters. The developed model is then used to achieve an optimal system layout by comparing different system architectures. A system with anode and cathode off-gas recycling was identified to have the highest electric system efficiency. Taking this system as a basis, the potential for further performance enhancement was evaluated by varying four parameters characterizing different system components. Using methods from the design and analysis of experiments, the effects of these parameters and of their interactions were quantified, leading to an overall optimized system with encouraging performance data.
Identification of open quantum systems from observable time traces
Zhang, Jun; Sarovar, Mohan
2015-05-27
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.
NASA Astrophysics Data System (ADS)
Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping
2017-05-01
To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.
NASA Astrophysics Data System (ADS)
Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Sazli, M.; Yahya, Z. R.
2017-09-01
This study presents the application of optimisation method to reduce the warpage of side arm part. Autodesk Moldflow Insight software was integrated into this study to analyse the warpage. The design of Experiment (DOE) for Response Surface Methodology (RSM) was constructed and by using the equation from RSM, Particle Swarm Optimisation (PSO) was applied. The optimisation method will result in optimised processing parameters with minimum warpage. Mould temperature, melt temperature, packing pressure, packing time and cooling time was selected as the variable parameters. Parameters selection was based on most significant factor affecting warpage stated by previous researchers. The results show that warpage was improved by 28.16% for RSM and 28.17% for PSO. The warpage improvement in PSO from RSM is only by 0.01 %. Thus, the optimisation using RSM is already efficient to give the best combination parameters and optimum warpage value for side arm part. The most significant parameters affecting warpage are packing pressure.
NASA Astrophysics Data System (ADS)
Talakokula, Visalakshi; Bhalla, Suresh; Gupta, Ashok
2018-01-01
Concrete is the most widely used material in civil engineering construction. Its life begins when the hydration process is activated after mixing the cement granulates with water. In this paper, a non-dimensional hydration parameter, obtained from piezoelectric ceramic (PZT) patches bonded to rebars embedded inside concrete, is employed to monitor the early age hydration of concrete. The non-dimensional hydration parameter is derived from the equivalent stiffness determined from the piezo-impedance transducers using the electro-mechanical impedance (EMI) technique. The focus of the study is to monitor the hydration process of cementitious materials commencing from the early hours and continue till 28 days using single non-dimensional parameter. The experimental results show that the proposed piezo-based non-dimensional hydration parameter is very effective in monitoring the early age hydration, as it has been derived from the refined structural impedance parameters, obtained by eliminating the PZT contribution, and using both the real and imaginary components of the admittance signature.
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.; Best, Paul K.
2007-01-01
In the companion paper, [Appl. Opt. 46, 5853 (2007)] a highly accurate white light interference model was developed from just a few key parameters characterized in terms of various moments of the source and instrument transmission function. We develop and implement the end-to-end process of calibrating these moment parameters together with the differential dispersion of the instrument and applying them to the algorithms developed in the companion paper. The calibration procedure developed herein is based on first obtaining the standard monochromatic parameters at the pixel level: wavenumber, phase, intensity, and visibility parameters via a nonlinear least-squares procedure that exploits the structure of the model. The pixel level parameters are then combined to obtain the required 'global' moment and dispersion parameters. The process is applied to both simulated scenarios of astrometric observations and to data from the microarcsecond metrology testbed (MAM), an interferometer testbed that has played a prominent role in the development of this technology.
Calibration of stereo rigs based on the backward projection process
NASA Astrophysics Data System (ADS)
Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui; Zhao, Zixin
2016-08-01
High-accuracy 3D measurement based on binocular vision system is heavily dependent on the accurate calibration of two rigidly-fixed cameras. In most traditional calibration methods, stereo parameters are iteratively optimized through the forward imaging process (FIP). However, the results can only guarantee the minimal 2D pixel errors, but not the minimal 3D reconstruction errors. To address this problem, a simple method to calibrate a stereo rig based on the backward projection process (BPP) is proposed. The position of a spatial point can be determined separately from each camera by planar constraints provided by the planar pattern target. Then combined with pre-defined spatial points, intrinsic and extrinsic parameters of the stereo-rig can be optimized by minimizing the total 3D errors of both left and right cameras. An extensive performance study for the method in the presence of image noise and lens distortions is implemented. Experiments conducted on synthetic and real data demonstrate the accuracy and robustness of the proposed method.
NASA Astrophysics Data System (ADS)
Guo, Zhan; Yan, Xuefeng
2018-04-01
Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.
Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende
2014-01-01
Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.
A method to investigate the diffusion properties of nuclear calcium.
Queisser, Gillian; Wittum, Gabriel
2011-10-01
Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.
Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.
2015-01-01
The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.
NASA Astrophysics Data System (ADS)
Lawrence, K. Deepak; Ramamoorthy, B.
2016-03-01
Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.
Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong
2017-01-01
Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro–meso–scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy–enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy–enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates. PMID:28869520
Han, Zhenyu; Sun, Shouzheng; Fu, Hongya; Fu, Yunzhong
2017-09-03
Automated fiber placement (AFP) process includes a variety of energy forms and multi-scale effects. This contribution proposes a novel multi-scale low-entropy method aiming at optimizing processing parameters in an AFP process, where multi-scale effect, energy consumption, energy utilization efficiency and mechanical properties of micro-system could be taken into account synthetically. Taking a carbon fiber/epoxy prepreg as an example, mechanical properties of macro-meso-scale are obtained by Finite Element Method (FEM). A multi-scale energy transfer model is then established to input the macroscopic results into the microscopic system as its boundary condition, which can communicate with different scales. Furthermore, microscopic characteristics, mainly micro-scale adsorption energy, diffusion coefficient entropy-enthalpy values, are calculated under different processing parameters based on molecular dynamics method. Low-entropy region is then obtained in terms of the interrelation among entropy-enthalpy values, microscopic mechanical properties (interface adsorbability and matrix fluidity) and processing parameters to guarantee better fluidity, stronger adsorption, lower energy consumption and higher energy quality collaboratively. Finally, nine groups of experiments are carried out to verify the validity of the simulation results. The results show that the low-entropy optimization method can reduce void content effectively, and further improve the mechanical properties of laminates.
An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate
NASA Astrophysics Data System (ADS)
Nabhani, Mohammad; Razavi, Reza Shoja; Barekat, Masoud
2018-03-01
In this article, Ti-6Al-4V powder alloy was directly deposited on Ti-6Al-4V substrate using laser cladding process. In this process, some key parameters such as laser power (P), laser scanning rate (V) and powder feeding rate (F) play important roles. Using linear regression analysis, this paper develops the empirical-statistical relation between these key parameters and geometrical characteristics of single clad tracks (i.e. clad height, clad width, penetration depth, wetting angle, and dilution) as a combined parameter (PαVβFγ). The results indicated that the clad width linearly depended on PV-1/3 and powder feeding rate had no effect on it. The dilution controlled by a combined parameter as VF-1/2 and laser power was a dispensable factor. However, laser power was the dominant factor for the clad height, penetration depth, and wetting angle so that they were proportional to PV-1F1/4, PVF-1/8, and P3/4V-1F-1/4, respectively. Based on the results of correlation coefficient (R > 0.9) and analysis of residuals, it was confirmed that these empirical-statistical relations were in good agreement with the measured values of single clad tracks. Finally, these relations led to the design of a processing map that can predict the geometrical characteristics of the single clad tracks based on the key parameters.
Inverse modeling of geochemical and mechanical compaction in sedimentary basins
NASA Astrophysics Data System (ADS)
Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto
2015-04-01
We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model inversion (parameter estimation) within a maximum likelihood framework. In this context, the PCE-based surrogate model enables one to (i) minimize the computational cost associated with the (forward and inverse) modeling procedures leading to uncertainty quantification and parameter estimation, and (ii) compute the full set of Sobol indices quantifying the contribution of each uncertain parameter to the variability of target state variables. Results are illustrated through the simulation of one-dimensional test cases. The analyses focuses on the calibration of model parameters through literature field cases. The quality of parameter estimates is then analyzed as a function of number, type and location of data.
An improved swarm optimization for parameter estimation and biological model selection.
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
NASA Astrophysics Data System (ADS)
Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Morawski, Roman Z.
2016-11-01
The importance of research on new technologies that could be employed in care services for elderly and disabled persons is highlighted. Advantages of impulse-radar sensors, when applied for non-intrusive monitoring of such persons in their home environment, are indicated. Selected algorithms for the measurement data preprocessing - viz. the algorithms for clutter suppression and echo parameter estimation, as well as for estimation of the twodimensional position of a monitored person - are proposed. The capability of an impulse-radar- based system to provide some application-specific parameters, viz. the parameters characterising the patient's health condition, is also demonstrated.
Estimating Function Approaches for Spatial Point Processes
NASA Astrophysics Data System (ADS)
Deng, Chong
Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting second-order intensity function of spatial point processes. However, the original second-order quasi-likelihood is barely feasible due to the intense computation and high memory requirement needed to solve a large linear system. Motivated by the existence of geometric regular patterns in the stationary point processes, we find a lower dimension representation of the optimal weight function and propose a reduced second-order quasi-likelihood approach. Through a simulation study, we show that the proposed method not only demonstrates superior performance in fitting the clustering parameter but also merits in the relaxation of the constraint of the tuning parameter, H. Third, we studied the quasi-likelihood type estimating funciton that is optimal in a certain class of first-order estimating functions for estimating the regression parameter in spatial point process models. Then, by using a novel spectral representation, we construct an implementation that is computationally much more efficient and can be applied to more general setup than the original quasi-likelihood method.
Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun
2016-01-01
Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite’s on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%. PMID:27483287
Numerical framework for the modeling of electrokinetic flows
NASA Astrophysics Data System (ADS)
Deshpande, Manish; Ghaddar, Chahid; Gilbert, John R.; St. John, Pamela M.; Woudenberg, Timothy M.; Connell, Charles R.; Molho, Joshua; Herr, Amy; Mungal, Godfrey; Kenny, Thomas W.
1998-09-01
This paper presents a numerical framework for design-based analyses of electrokinetic flow in interconnects. Electrokinetic effects, which can be broadly divided into electrophoresis and electroosmosis, are of importance in providing a transport mechanism in microfluidic devices for both pumping and separation. Models for the electrokinetic effects can be derived and coupled to the fluid dynamic equations through appropriate source terms. In the design of practical microdevices, however, accurate coupling of the electrokinetic effects requires the knowledge of several material and physical parameters, such as the diffusivity and the mobility of the solute in the solvent. Additionally wall-based effects such as chemical binding sites might exist that affect the flow patterns. In this paper, we address some of these issues by describing a synergistic numerical/experimental process to extract the parameters required. Experiments were conducted to provide the numerical simulations with a mechanism to extract these parameters based on quantitative comparisons with each other. These parameters were then applied in predicting further experiments to validate the process. As part of this research, we have created NetFlow, a tool for micro-fluid analyses. The tool can be validated and applied in existing technologies by first creating test structures to extract representations of the physical phenomena in the device, and then applying them in the design analyses to predict correct behavior.
Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia
2016-01-01
During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21-87) years; median time on PD 19 (3-100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters--rather than solute transport parameters--are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.
NASA Astrophysics Data System (ADS)
Kustra, Piotr; Milenin, Andrij; Płonka, Bartłomiej; Furushima, Tsuyoshi
2016-06-01
Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages—extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion—billet temperature 400 °C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes.
Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D
2011-11-01
There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.
Food drying process by power ultrasound.
de la Fuente-Blanco, S; Riera-Franco de Sarabia, E; Acosta-Aparicio, V M; Blanco-Blanco, A; Gallego-Juárez, J A
2006-12-22
Drying processes, which have a great significance in the food industry, are frequently based on the use of thermal energy. Nevertheless, such methods may produce structural changes in the products. Consequently, a great emphasis is presently given to novel treatments where the quality will be preserved. Such is the case of the application of high-power ultrasound which represents an emergent and promising technology. During the last few years, we have been involved in the development of an ultrasonic dehydration process, based on the application of the ultrasonic vibration in direct contact with the product. Such a process has been the object of a detailed study at laboratory stage on the influence of the different parameters involved. This paper deals with the development and testing of a prototype system for the application and evaluation of the process at a pre-industrial stage. Such prototype is based on a high-power rectangular plate transducer, working at a frequency of 20 kHz, with a power capacity of about 100 W. In order to study mechanical and thermal effects, the system is provided with a series of sensors which permit monitoring the parameters of the process. Specific software has also been developed to facilitate data collection and analysis. The system has been tested with vegetable samples.
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination (R2) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R2=0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD. PMID:28176905
Kazemi, Pezhman; Khalid, Mohammad Hassan; Pérez Gago, Ana; Kleinebudde, Peter; Jachowicz, Renata; Szlęk, Jakub; Mendyk, Aleksander
2017-01-01
Dry granulation using roll compaction is a typical unit operation for producing solid dosage forms in the pharmaceutical industry. Dry granulation is commonly used if the powder mixture is sensitive to heat and moisture and has poor flow properties. The output of roll compaction is compacted ribbons that exhibit different properties based on the adjusted process parameters. These ribbons are then milled into granules and finally compressed into tablets. The properties of the ribbons directly affect the granule size distribution (GSD) and the quality of final products; thus, it is imperative to study the effect of roll compaction process parameters on GSD. The understanding of how the roll compactor process parameters and material properties interact with each other will allow accurate control of the process, leading to the implementation of quality by design practices. Computational intelligence (CI) methods have a great potential for being used within the scope of quality by design approach. The main objective of this study was to show how the computational intelligence techniques can be useful to predict the GSD by using different process conditions of roll compaction and material properties. Different techniques such as multiple linear regression, artificial neural networks, random forest, Cubist and k-nearest neighbors algorithm assisted by sevenfold cross-validation were used to present generalized models for the prediction of GSD based on roll compaction process setting and material properties. The normalized root-mean-squared error and the coefficient of determination ( R 2 ) were used for model assessment. The best fit was obtained by Cubist model (normalized root-mean-squared error =3.22%, R 2 =0.95). Based on the results, it was confirmed that the material properties (true density) followed by compaction force have the most significant effect on GSD.
Li, Mingjie; Zhou, Ping; Zhao, Zhicheng; Zhang, Jinggang
2016-03-01
Recently, fractional order (FO) processes with dead-time have attracted more and more attention of many researchers in control field, but FO-PID controllers design techniques available for the FO processes with dead-time suffer from lack of direct systematic approaches. In this paper, a simple design and parameters tuning approach of two-degree-of-freedom (2-DOF) FO-PID controller based on internal model control (IMC) is proposed for FO processes with dead-time, conventional one-degree-of-freedom control exhibited the shortcoming of coupling of robustness and dynamic response performance. 2-DOF control can overcome the above weakness which means it realizes decoupling of robustness and dynamic performance from each other. The adjustable parameter η2 of FO-PID controller is directly related to the robustness of closed-loop system, and the analytical expression is given between the maximum sensitivity specification Ms and parameters η2. In addition, according to the dynamic performance requirement of the practical system, the parameters η1 can also be selected easily. By approximating the dead-time term of the process model with the first-order Padé or Taylor series, the expressions for 2-DOF FO-PID controller parameters are derived for three classes of FO processes with dead-time. Moreover, compared with other methods, the proposed method is simple and easy to implement. Finally, the simulation results are given to illustrate the effectiveness of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Thermodynamic Behavior Research Analysis of Twin-roll Casting Lead Alloy Strip Process
NASA Astrophysics Data System (ADS)
Jiang, Chengcan; Rui, Yannian
2017-03-01
The thermodynamic behavior of twin-roll casting (TRC) lead alloy strip process directly affects the forming of the lead strip, the quality of the lead strip and the production efficiency. However, there is little research on the thermodynamics of lead alloy strip at home and abroad. The TRC lead process is studied in four parameters: the pouring temperature of molten lead, the depth of molten pool, the roll casting speed, and the rolling thickness of continuous casting. Firstly, the thermodynamic model for TRC lead process is built. Secondly, the thermodynamic behavior of the TRC process is simulated with the use of Fluent. Through the thermodynamics research and analysis, the process parameters of cast rolling lead strip can be obtained: the pouring temperature of molten lead: 360-400 °C, the depth of molten pool: 250-300 mm, the roll casting speed: 2.5-3 m/min, the rolling thickness: 8-9 mm. Based on the above process parameters, the optimal parameters(the pouring temperature of molten lead: 375-390 °C, the depth of molten pool: 285-300 mm, the roll casting speed: 2.75-3 m/min, the rolling thickness: 8.5-9 mm) can be gained with the use of the orthogonal experiment. Finally, the engineering test of TRC lead alloy strip is carried out and the test proves the thermodynamic model is scientific, necessary and correct. In this paper, a detailed study on the thermodynamic behavior of lead alloy strip is carried out and the process parameters of lead strip forming are obtained through the research, which provide an effective theoretical guide for TRC lead alloy strip process.
Light Weight Biomorphous Cellular Ceramics from Cellulose Templates
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Yee, Bo-Moon; Gray, Hugh R. (Technical Monitor)
2003-01-01
Bimorphous ceramics are a new class of materials that can be fabricated from the cellulose templates derived from natural biopolymers. These biopolymers are abundantly available in nature and are produced by the photosynthesis process. The wood cellulose derived carbon templates have three- dimensional interconnectivity. A wide variety of non-oxide and oxide based ceramics have been fabricated by template conversion using infiltration and reaction-based processes. The cellular anatomy of the cellulose templates plays a key role in determining the processing parameters (pyrolysis, infiltration conditions, etc.) and resulting ceramic materials. The processing approach, microstructure, and mechanical properties of the biomorphous cellular ceramics (silicon carbide and oxide based) have been discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beardsley, M B
2008-03-26
The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.
NASA Astrophysics Data System (ADS)
Hu, X. F.; Wang, L. G.; Wu, H.; Liu, S. S.
2017-12-01
For the forging process of the swash plate, the author designed a kind of multi-index orthogonal experiment. Based on the Archard wear model, the influences of billet temperature, die temperature, forming speed, top die hardness and friction coefficient on forming load and die wear were numerically simulated by DEFORM software. Through the analysis of experimental results, the best forging process parameters were optimized and determined, which could effectively reduce the die wear and prolong the die service life. It is significant to increase the practical production of enterprise, especially to reduce the production cost and to promote enterprise profit.
Optimization of process parameters during carbonization for improved carbon fibre strength
NASA Astrophysics Data System (ADS)
Köhler, T.; Pursche, F.; Burscheidt, P.; Seide, G.; Gries, T.
2017-10-01
Based on their extraordinary properties, carbon fibres nowadays play a significant role in modern industries. In the last years carbon fibres are increasingly used for lightweight constructions in the energy or the transportation industry. However, a bigger market penetration of carbon fibres is still hindered by high prices (~ 22 /kg) [3]. One crucial step in carbon fibre production is the process of carbonization of stabilized fibres. However, the cause effect relationships of carbonization are nowadays not fully understood. Therefore, the main goal of this research work is the quantification of the cause-effect relationships of process parameters like temperature and residence time on carbon fibre strength.
Research on On-Line Modeling of Fed-Batch Fermentation Process Based on v-SVR
NASA Astrophysics Data System (ADS)
Ma, Yongjun
The fermentation process is very complex and non-linear, many parameters are not easy to measure directly on line, soft sensor modeling is a good solution. This paper introduces v-support vector regression (v-SVR) for soft sensor modeling of fed-batch fermentation process. v-SVR is a novel type of learning machine. It can control the accuracy of fitness and prediction error by adjusting the parameter v. An on-line training algorithm is discussed in detail to reduce the training complexity of v-SVR. The experimental results show that v-SVR has low error rate and better generalization with appropriate v.
Overview of Icing Physics Relevant to Scaling
NASA Technical Reports Server (NTRS)
Anderson, David N.; Tsao, Jen-Ching
2005-01-01
An understanding of icing physics is required for the development of both scaling methods and ice-accretion prediction codes. This paper gives an overview of our present understanding of the important physical processes and the associated similarity parameters that determine the shape of Appendix C ice accretions. For many years it has been recognized that ice accretion processes depend on flow effects over the model, on droplet trajectories, on the rate of water collection and time of exposure, and, for glaze ice, on a heat balance. For scaling applications, equations describing these events have been based on analyses at the stagnation line of the model and have resulted in the identification of several non-dimensional similarity parameters. The parameters include the modified inertia parameter of the water drop, the accumulation parameter and the freezing fraction. Other parameters dealing with the leading edge heat balance have also been used for convenience. By equating scale expressions for these parameters to the values to be simulated a set of equations is produced which can be solved for the scale test conditions. Studies in the past few years have shown that at least one parameter in addition to those mentioned above is needed to describe surface-water effects, and some of the traditional parameters may not be as significant as once thought. Insight into the importance of each parameter, and the physical processes it represents, can be made by viewing whether ice shapes change, and the extent of the change, when each parameter is varied. Experimental evidence is presented to establish the importance of each of the traditionally used parameters and to identify the possible form of a new similarity parameter to be used for scaling.
Hyperspectral recognition of processing tomato early blight based on GA and SVM
NASA Astrophysics Data System (ADS)
Yin, Xiaojun; Zhao, SiFeng
2013-03-01
Processing tomato early blight seriously affect the yield and quality of its.Determine the leaves spectrum of different disease severity level of processing tomato early blight.We take the sensitive bands of processing tomato early blight as support vector machine input vector.Through the genetic algorithm(GA) to optimize the parameters of SVM, We could recognize different disease severity level of processing tomato early blight.The result show:the sensitive bands of different disease severity levels of processing tomato early blight is 628-643nm and 689-692nm.The sensitive bands are as the GA and SVM input vector.We get the best penalty parameters is 0.129 and kernel function parameters is 3.479.We make classification training and testing by polynomial nuclear,radial basis function nuclear,Sigmoid nuclear.The best classification model is the radial basis function nuclear of SVM. Training accuracy is 84.615%,Testing accuracy is 80.681%.It is combined GA and SVM to achieve multi-classification of processing tomato early blight.It is provided the technical support of prediction processing tomato early blight occurrence, development and diffusion rule in large areas.
Bizios, Dimitrios; Heijl, Anders; Hougaard, Jesper Leth; Bengtsson, Boel
2010-02-01
To compare the performance of two machine learning classifiers (MLCs), artificial neural networks (ANNs) and support vector machines (SVMs), with input based on retinal nerve fibre layer thickness (RNFLT) measurements by optical coherence tomography (OCT), on the diagnosis of glaucoma, and to assess the effects of different input parameters. We analysed Stratus OCT data from 90 healthy persons and 62 glaucoma patients. Performance of MLCs was compared using conventional OCT RNFLT parameters plus novel parameters such as minimum RNFLT values, 10th and 90th percentiles of measured RNFLT, and transformations of A-scan measurements. For each input parameter and MLC, the area under the receiver operating characteristic curve (AROC) was calculated. There were no statistically significant differences between ANNs and SVMs. The best AROCs for both ANN (0.982, 95%CI: 0.966-0.999) and SVM (0.989, 95% CI: 0.979-1.0) were based on input of transformed A-scan measurements. Our SVM trained on this input performed better than ANNs or SVMs trained on any of the single RNFLT parameters (p < or = 0.038). The performance of ANNs and SVMs trained on minimum thickness values and the 10th and 90th percentiles were at least as good as ANNs and SVMs with input based on the conventional RNFLT parameters. No differences between ANN and SVM were observed in this study. Both MLCs performed very well, with similar diagnostic performance. Input parameters have a larger impact on diagnostic performance than the type of machine classifier. Our results suggest that parameters based on transformed A-scan thickness measurements of the RNFL processed by machine classifiers can improve OCT-based glaucoma diagnosis.
Wrzus, Cornelia; Egloff, Boris; Riediger, Michaela
2017-08-01
Implicit association tests (IATs) are increasingly used to indirectly assess people's traits, attitudes, or other characteristics. In addition to measuring traits or attitudes, IAT scores also reflect differences in cognitive abilities because scores are based on reaction times (RTs) and errors. As cognitive abilities change with age, questions arise concerning the usage and interpretation of IATs for people of different age. To address these questions, the current study examined how cognitive abilities and cognitive processes (i.e., quad model parameters) contribute to IAT results in a large age-heterogeneous sample. Participants (N = 549; 51% female) in an age-stratified sample (range = 12-88 years) completed different IATs and 2 tasks to assess cognitive processing speed and verbal ability. From the IAT data, D2-scores were computed based on RTs, and quad process parameters (activation of associations, overcoming bias, detection, guessing) were estimated from individual error rates. Substantial IAT scores and quad processes except guessing varied with age. Quad processes AC and D predicted D2-scores of the content-specific IAT. Importantly, the effects of cognitive abilities and quad processes on IAT scores were not significantly moderated by participants' age. These findings suggest that IATs seem suitable for age-heterogeneous studies from adolescence to old age when IATs are constructed and analyzed appropriately, for example with D-scores and process parameters. We offer further insight into how D-scoring controls for method effects in IATs and what IAT scores capture in addition to implicit representations of characteristics. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Majumder, Himadri; Maity, Kalipada
2018-03-01
Shape memory alloy has a unique capability to return to its original shape after physical deformation by applying heat or thermo-mechanical or magnetic load. In this experimental investigation, desirability function analysis (DFA), a multi-attribute decision making was utilized to find out the optimum input parameter setting during wire electrical discharge machining (WEDM) of Ni-Ti shape memory alloy. Four critical machining parameters, namely pulse on time (TON), pulse off time (TOFF), wire feed (WF) and wire tension (WT) were taken as machining inputs for the experiments to optimize three interconnected responses like cutting speed, kerf width, and surface roughness. Input parameter combination TON = 120 μs., TOFF = 55 μs., WF = 3 m/min. and WT = 8 kg-F were found to produce the optimum results. The optimum process parameters for each desired response were also attained using Taguchi’s signal-to-noise ratio. Confirmation test has been done to validate the optimum machining parameter combination which affirmed DFA was a competent approach to select optimum input parameters for the ideal response quality for WEDM of Ni-Ti shape memory alloy.
An Improved Method to Control the Critical Parameters of a Multivariable Control System
NASA Astrophysics Data System (ADS)
Subha Hency Jims, P.; Dharmalingam, S.; Wessley, G. Jims John
2017-10-01
The role of control systems is to cope with the process deficiencies and the undesirable effect of the external disturbances. Most of the multivariable processes are highly iterative and complex in nature. Aircraft systems, Modern Power Plants, Refineries, Robotic systems are few such complex systems that involve numerous critical parameters that need to be monitored and controlled. Control of these important parameters is not only tedious and cumbersome but also is crucial from environmental, safety and quality perspective. In this paper, one such multivariable system, namely, a utility boiler has been considered. A modern power plant is a complex arrangement of pipework and machineries with numerous interacting control loops and support systems. In this paper, the calculation of controller parameters based on classical tuning concepts has been presented. The controller parameters thus obtained and employed has controlled the critical parameters of a boiler during fuel switching disturbances. The proposed method can be applied to control the critical parameters like elevator, aileron, rudder, elevator trim rudder and aileron trim, flap control systems of aircraft systems.
NASA Astrophysics Data System (ADS)
Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal
2013-07-01
The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.
NASA Technical Reports Server (NTRS)
Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.
1992-01-01
NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.
Interactive model evaluation tool based on IPython notebook
NASA Astrophysics Data System (ADS)
Balemans, Sophie; Van Hoey, Stijn; Nopens, Ingmar; Seuntjes, Piet
2015-04-01
In hydrological modelling, some kind of parameter optimization is mostly performed. This can be the selection of a single best parameter set, a split in behavioural and non-behavioural parameter sets based on a selected threshold or a posterior parameter distribution derived with a formal Bayesian approach. The selection of the criterion to measure the goodness of fit (likelihood or any objective function) is an essential step in all of these methodologies and will affect the final selected parameter subset. Moreover, the discriminative power of the objective function is also dependent from the time period used. In practice, the optimization process is an iterative procedure. As such, in the course of the modelling process, an increasing amount of simulations is performed. However, the information carried by these simulation outputs is not always fully exploited. In this respect, we developed and present an interactive environment that enables the user to intuitively evaluate the model performance. The aim is to explore the parameter space graphically and to visualize the impact of the selected objective function on model behaviour. First, a set of model simulation results is loaded along with the corresponding parameter sets and a data set of the same variable as the model outcome (mostly discharge). The ranges of the loaded parameter sets define the parameter space. A selection of the two parameters visualised can be made by the user. Furthermore, an objective function and a time period of interest need to be selected. Based on this information, a two-dimensional parameter response surface is created, which actually just shows a scatter plot of the parameter combinations and assigns a color scale corresponding with the goodness of fit of each parameter combination. Finally, a slider is available to change the color mapping of the points. Actually, the slider provides a threshold to exclude non behaviour parameter sets and the color scale is only attributed to the remaining parameter sets. As such, by interactively changing the settings and interpreting the graph, the user gains insight in the model structural behaviour. Moreover, a more deliberate choice of objective function and periods of high information content can be identified. The environment is written in an IPython notebook and uses the available interactive functions provided by the IPython community. As such, the power of the IPython notebook as a development environment for scientific computing is illustrated (Shen, 2014).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schunk, Peter Randall; King, William P.; Sun, Amy Cha-Tien
2006-08-01
This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measuresmore » polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.« less
Optimisation study of a vehicle bumper subsystem with fuzzy parameters
NASA Astrophysics Data System (ADS)
Farkas, L.; Moens, D.; Donders, S.; Vandepitte, D.
2012-10-01
This paper deals with the design and optimisation for crashworthiness of a vehicle bumper subsystem, which is a key scenario for vehicle component design. The automotive manufacturers and suppliers have to find optimal design solutions for such subsystems that comply with the conflicting requirements of the regulatory bodies regarding functional performance (safety and repairability) and regarding the environmental impact (mass). For the bumper design challenge, an integrated methodology for multi-attribute design engineering of mechanical structures is set up. The integrated process captures the various tasks that are usually performed manually, this way facilitating the automated design iterations for optimisation. Subsequently, an optimisation process is applied that takes the effect of parametric uncertainties into account, such that the system level of failure possibility is acceptable. This optimisation process is referred to as possibility-based design optimisation and integrates the fuzzy FE analysis applied for the uncertainty treatment in crash simulations. This process is the counterpart of the reliability-based design optimisation used in a probabilistic context with statistically defined parameters (variabilities).
Cutting performance orthogonal test of single plane puncture biopsy needle based on puncture force
NASA Astrophysics Data System (ADS)
Xu, Yingqiang; Zhang, Qinhe; Liu, Guowei
2017-04-01
Needle biopsy is a method to extract the cells from the patient's body with a needle for tissue pathological examination. Many factors affect the cutting process of soft tissue, including the geometry of the biopsy needle, the mechanical properties of the soft tissue, the parameters of the puncture process and the interaction between them. This paper conducted orthogonal experiment of main cutting parameters based on single plane puncture biopsy needle, and obtained the cutting force curve of single plane puncture biopsy needle by studying the influence of the inclination angle, diameter and velocity of the single plane puncture biopsy needle on the puncture force of the biopsy needle. Stage analysis of the cutting process of biopsy needle puncture was made to determine the main influencing factors of puncture force during the cutting process, which provides a certain theoretical support for the design of new type of puncture biopsy needle and the operation of puncture biopsy.
NASA Astrophysics Data System (ADS)
Koltsov, A. G.; Shamutdinov, A. H.; Blokhin, D. A.; Krivonos, E. V.
2018-01-01
A new classification of parallel kinematics mechanisms on symmetry coefficient, being proportional to mechanism stiffness and accuracy of the processing product using the technological equipment under study, is proposed. A new version of the Stewart platform with a high symmetry coefficient is presented for analysis. The workspace of the mechanism under study is described, this space being a complex solid figure. The workspace end points are reached by the center of the mobile platform which moves in parallel related to the base plate. Parameters affecting the processing accuracy, namely the static and dynamic stiffness, natural vibration frequencies are determined. The capability assessment of the mechanism operation under various loads, taking into account resonance phenomena at different points of the workspace, was conducted. The study proved that stiffness and therefore, processing accuracy with the use of the above mentioned mechanisms are comparable with the stiffness and accuracy of medium-sized series-produced machines.
NASA Astrophysics Data System (ADS)
Fan, Y. R.; Huang, G. H.; Baetz, B. W.; Li, Y. P.; Huang, K.
2017-06-01
In this study, a copula-based particle filter (CopPF) approach was developed for sequential hydrological data assimilation by considering parameter correlation structures. In CopPF, multivariate copulas are proposed to reflect parameter interdependence before the resampling procedure with new particles then being sampled from the obtained copulas. Such a process can overcome both particle degeneration and sample impoverishment. The applicability of CopPF is illustrated with three case studies using a two-parameter simplified model and two conceptual hydrologic models. The results for the simplified model indicate that model parameters are highly correlated in the data assimilation process, suggesting a demand for full description of their dependence structure. Synthetic experiments on hydrologic data assimilation indicate that CopPF can rejuvenate particle evolution in large spaces and thus achieve good performances with low sample size scenarios. The applicability of CopPF is further illustrated through two real-case studies. It is shown that, compared with traditional particle filter (PF) and particle Markov chain Monte Carlo (PMCMC) approaches, the proposed method can provide more accurate results for both deterministic and probabilistic prediction with a sample size of 100. Furthermore, the sample size would not significantly influence the performance of CopPF. Also, the copula resampling approach dominates parameter evolution in CopPF, with more than 50% of particles sampled by copulas in most sample size scenarios.
Basic research on design analysis methods for rotorcraft vibrations
NASA Technical Reports Server (NTRS)
Hanagud, S.
1991-01-01
The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.
Study on Mine Emergency Mechanism based on TARP and ICS
NASA Astrophysics Data System (ADS)
Xi, Jian; Wu, Zongzhi
2018-01-01
By analyzing the experiences and practices of mine emergency in China and abroad, especially the United States and Australia, normative principle, risk management principle and adaptability principle of constructing mine emergency mechanism based on Trigger Action Response Plans (TARP) and Incident Command System (ICS) are summarized. Classification method, framework, flow and subject of TARP and ICS which are suitable for the actual situation of domestic mine emergency are proposed. The system dynamics model of TARP and ICS is established. The parameters such as evacuation ratio, response rate, per capita emergency capability and entry rate of rescuers are set up. By simulating the operation process of TARP and ICS, the impact of these parameters on the emergency process are analyzed, which could provide a reference and basis for building emergency capacity, formulating emergency plans and setting up action plans in the emergency process.
Ring rolling process simulation for geometry optimization
NASA Astrophysics Data System (ADS)
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Ring Rolling is a complex hot forming process where different rolls are involved in the production of seamless rings. Since each roll must be independently controlled, different speed laws must be set; usually, in the industrial environment, a milling curve is introduced to monitor the shape of the workpiece during the deformation in order to ensure the correct ring production. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular speed of main roll) on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR (Hot Ring Rolling) has been implemented in SFTC DEFORM V11. The FEM model has been used to formulate a proper optimization problem. The optimization procedure has been implemented in the commercial software DS ISight in order to find the combination of process parameters which allows to minimize the percentage error of each obtained dimension with respect to its nominal value. The software allows to find the relationship between input and output parameters applying Response Surface Methodology (RSM), by using the exact values of output parameters in the control points of the design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. After the calculation of the response surfaces for the selected output parameters, an optimization procedure based on Genetic Algorithms has been applied. At the end, the error between each obtained dimension and its nominal value has been minimized. The constraints imposed were the maximum values of standard deviations of the dimensions obtained for the final ring.
Bagal, Manisha V; Gogate, Parag R
2014-01-01
Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. Copyright © 2013 Elsevier B.V. All rights reserved.
Multi-Criteria selection of technology for processing ore raw materials
NASA Astrophysics Data System (ADS)
Gorbatova, E. A.; Emelianenko, E. A.; Zaretckii, M. V.
2017-10-01
The development of Computer-Aided Process Planning (CAPP) for the Ore Beneficiation process is considered. The set of parameters to define the quality of the Ore Beneficiation process is identified. The ontological model of CAPP for the Ore Beneficiation process is described. The hybrid choice method of the most appropriate variant of the Ore Beneficiation process based on the Logical Conclusion Rules and the Fuzzy Multi-Criteria Decision Making (MCDM) approach is proposed.
NASA Astrophysics Data System (ADS)
Zhan, Jinliang; Lu, Pei
2006-11-01
Since the quality of traditional Chinese medicine products are affected by raw material, machining and many other factors, it is difficult for traditional Chinese medicine production process especially the extracting process to ensure the steady and homogeneous quality. At the same time, there exist some quality control blind spots due to lacking on-line quality detection means. But if infrared spectrum analysis technology was used in traditional Chinese medicine production process on the basis of off-line analysis to real-time detect the quality of semi-manufactured goods and to be assisted by advanced automatic control technique, the steady and homogeneous quality can be obtained. It can be seen that the on-line detection of extracting process plays an important role in the development of Chinese patent medicines industry. In this paper, the design and implement of a traditional Chinese medicine extracting process monitoring experiment system which is based on PROFIBUS-DP field bus, OPC, and Internet technology is introduced. The system integrates intelligence node which gathering data, superior sub-system which achieving figure configuration and remote supervisory, during the process of traditional Chinese medicine production, monitors the temperature parameter, pressure parameter, quality parameter etc. And it can be controlled by the remote nodes in the VPN (Visual Private Network). Experiment and application do have proved that the system can reach the anticipation effect fully, and with the merits of operational stability, real-time, reliable, convenient and simple manipulation and so on.
A phase quantification method based on EBSD data for a continuously cooled microalloyed steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H.; Wynne, B.P.; Palmiere, E.J., E-mail: e.j
2017-01-15
Mechanical properties of steels depend on the phase constitutions of the final microstructures which can be related to the processing parameters. Therefore, accurate quantification of different phases is necessary to investigate the relationships between processing parameters, final microstructures and mechanical properties. Point counting on micrographs observed by optical or scanning electron microscopy is widely used as a phase quantification method, and different phases are discriminated according to their morphological characteristics. However, it is difficult to differentiate some of the phase constituents with similar morphology. Differently, for EBSD based phase quantification methods, besides morphological characteristics, other parameters derived from the orientationmore » information can also be used for discrimination. In this research, a phase quantification method based on EBSD data in the unit of grains was proposed to identify and quantify the complex phase constitutions of a microalloyed steel subjected to accelerated coolings. Characteristics of polygonal ferrite/quasi-polygonal ferrite, acicular ferrite and bainitic ferrite on grain averaged misorientation angles, aspect ratios, high angle grain boundary fractions and grain sizes were analysed and used to develop the identification criteria for each phase. Comparing the results obtained by this EBSD based method and point counting, it was found that this EBSD based method can provide accurate and reliable phase quantification results for microstructures with relatively slow cooling rates. - Highlights: •A phase quantification method based on EBSD data in the unit of grains was proposed. •The critical grain area above which GAM angles are valid parameters was obtained. •Grain size and grain boundary misorientation were used to identify acicular ferrite. •High cooling rates deteriorate the accuracy of this EBSD based method.« less
Zhang, Hang; Xu, Qingyan; Liu, Baicheng
2014-01-01
The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD) method was used to simulate the directional solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key technological parameter). The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process. PMID:28788535
NASA Astrophysics Data System (ADS)
Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.
2017-09-01
This paper presents a systematic methodology to analyse the warpage of the side arm part using Autodesk Moldflow Insight software. Response Surface Methodology (RSM) was proposed to optimise the processing parameters that will result in optimal solutions by efficiently minimising the warpage of the side arm part. The variable parameters considered in this study was based on most significant parameters affecting warpage stated by previous researchers, that is melt temperature, mould temperature and packing pressure while adding packing time and cooling time as these is the commonly used parameters by researchers. The results show that warpage was improved by 10.15% and the most significant parameters affecting warpage are packing pressure.
NASA Astrophysics Data System (ADS)
Han, Suyue; Chang, Gary Han; Schirmer, Clemens; Modarres-Sadeghi, Yahya
2016-11-01
We construct a reduced-order model (ROM) to study the Wall Shear Stress (WSS) distributions in image-based patient-specific aneurysms models. The magnitude of WSS has been shown to be a critical factor in growth and rupture of human aneurysms. We start the process by running a training case using Computational Fluid Dynamics (CFD) simulation with time-varying flow parameters, such that these parameters cover the range of parameters of interest. The method of snapshot Proper Orthogonal Decomposition (POD) is utilized to construct the reduced-order bases using the training CFD simulation. The resulting ROM enables us to study the flow patterns and the WSS distributions over a range of system parameters computationally very efficiently with a relatively small number of modes. This enables comprehensive analysis of the model system across a range of physiological conditions without the need to re-compute the simulation for small changes in the system parameters.
Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa
2017-12-01
In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for processing of green tea, oolong tea, and black tea were calculated as 58,182, 60,947, and 66,301 MJ per ton of dry tea, respectively.
A "total parameter estimation" method in the varification of distributed hydrological models
NASA Astrophysics Data System (ADS)
Wang, M.; Qin, D.; Wang, H.
2011-12-01
Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in China. The application results demonstrate that this comprehensive testing method is very useful in the development of a distributed hydrological model and it provides a new way of thinking in hydrological sciences.
NASA Astrophysics Data System (ADS)
Mogaji, K. A.
2017-04-01
Producing a bias-free vulnerability assessment map model is significantly needed for planning a scheme of groundwater quality protection. This study developed a GIS-based AHPDST vulnerability index model for producing groundwater vulnerability model map in the hard rock terrain, Nigeria by exploiting the potentials of analytic hierarchy process (AHP) and Dempster-Shafer theory (DST) data mining models. The acquired borehole and geophysical data in the study area were processed to derive five groundwater vulnerability conditioning factors (GVCFs), namely recharge rate, aquifer transmissivity, hydraulic conductivity, transverse resistance and longitudinal conductance. The produced GVCFs' thematic maps were multi-criterially analyzed by employing the mechanisms of AHP and DST models to determine the normalized weight ( W) parameter for the GVCFs and mass function factors (MFFs) parameter for the GVCFs' thematic maps' class boundaries, respectively. Based on the application of the weighted linear average technique, the determined W and MFFs parameters were synthesized to develop groundwater vulnerability potential index (GVPI)-based AHPDST model algorithm. The developed model was applied to establish four GVPI mass/belief function indices. The estimates based on the applied GVPI belief function indices were processed in GIS environment to create prospective groundwater vulnerability potential index maps. The most representative of the resulting vulnerability maps (the GVPIBel map) was considered for producing the groundwater vulnerability potential zones (GVPZ) map for the area. The produced GVPZ map established 48 and 52% of the areal extent to be covered by the lows/moderate and highs vulnerable zones, respectively. The success and the prediction rates of the produced GVPZ map were determined using the relative operating characteristics technique to give 82.3 and 77.7%, respectively. The analyzed results reveal that the developed GVPI-based AHPDST model algorithm is capable of producing efficient groundwater vulnerability potential zones prediction map and characterizing the predicted zones uncertainty via the DST mechanism processes in the area. The produced GVPZ map in this study can be used by decision makers to formulate appropriate groundwater management strategies and the approach may be well opted in other hard rock regions of the world, especially in economically poor nations.
Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com
2016-06-15
The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiationmore » of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.« less
In-depth analysis and characterization of a dual damascene process with respect to different CD
NASA Astrophysics Data System (ADS)
Krause, Gerd; Hofmann, Detlef; Habets, Boris; Buhl, Stefan; Gutsch, Manuela; Lopez-Gomez, Alberto; Kim, Wan-Soo; Thrun, Xaver
2018-03-01
In a 200 mm high volume environment, we studied data from a dual damascene process. Dual damascene is a combination of lithography, etch and CMP that is used to create copper lines and contacts in one single step. During these process steps, different metal CD are measured by different measurement methods. In this study, we analyze the key numbers of the different measurements after different process steps and develop simple models to predict the electrical behavior* . In addition, radial profiles have been analyzed of both inline measurement parameters and electrical parameters. A matching method was developed based on inline and electrical data. Finally, correlation analysis for radial signatures is presented that can be used to predict excursions in electrical signatures.
Mingguang, Zhang; Juncheng, Jiang
2008-10-30
Overpressure is one important cause of domino effect in accidents of chemical process equipments. Damage probability and relative threshold value are two necessary parameters in QRA of this phenomenon. Some simple models had been proposed based on scarce data or oversimplified assumption. Hence, more data about damage to chemical process equipments were gathered and analyzed, a quantitative relationship between damage probability and damage degrees of equipment was built, and reliable probit models were developed associated to specific category of chemical process equipments. Finally, the improvements of present models were evidenced through comparison with other models in literatures, taking into account such parameters: consistency between models and data, depth of quantitativeness in QRA.
Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms
NASA Astrophysics Data System (ADS)
Negro Maggio, Valentina; Iocchi, Luca
2015-02-01
Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.
Deficiencies of the cryptography based on multiple-parameter fractional Fourier transform.
Ran, Qiwen; Zhang, Haiying; Zhang, Jin; Tan, Liying; Ma, Jing
2009-06-01
Methods of image encryption based on fractional Fourier transform have an incipient flaw in security. We show that the schemes have the deficiency that one group of encryption keys has many groups of keys to decrypt the encrypted image correctly for several reasons. In some schemes, many factors result in the deficiencies, such as the encryption scheme based on multiple-parameter fractional Fourier transform [Opt. Lett.33, 581 (2008)]. A modified method is proposed to avoid all the deficiencies. Security and reliability are greatly improved without increasing the complexity of the encryption process. (c) 2009 Optical Society of America.
A method for predicting optimized processing parameters for surfacing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, J.N.; Marder, A.R.
1994-12-31
Welding is used extensively for surfacing applications. To operate a surfacing process efficiently, the variables must be optimized to produce low levels of dilution with the substrate while maintaining high deposition rates. An equation for dilution in terms of the welding variables, thermal efficiency factors, and thermophysical properties of the overlay and substrate was developed by balancing energy and mass terms across the welding arc. To test the validity of the resultant dilution equation, the PAW, GTAW, GMAW, and SAW processes were used to deposit austenitic stainless steel onto carbon steel over a wide range of parameters. Arc efficiency measurementsmore » were conducted using a Seebeck arc welding calorimeter. Melting efficiency was determined based on knowledge of the arc efficiency. Dilution was determined for each set of processing parameters using a quantitative image analysis system. The pertinent equations indicate dilution is a function of arc power (corrected for arc efficiency), filler metal feed rate, melting efficiency, and thermophysical properties of the overlay and substrate. With the aid of the dilution equation, the effect of processing parameters on dilution is presented by a new processing diagram. A new method is proposed for determining dilution from welding variables. Dilution is shown to depend on the arc power, filler metal feed rate, arc and melting efficiency, and the thermophysical properties of the overlay and substrate. Calculated dilution levels were compared with measured values over a large range of processing parameters and good agreement was obtained. The results have been applied to generate a processing diagram which can be used to: (1) predict the maximum deposition rate for a given arc power while maintaining adequate fusion with the substrate, and (2) predict the resultant level of dilution with the substrate.« less
NASA Astrophysics Data System (ADS)
Lawal, S. A.; Choudhury, I. A.; Nukman, Y.
2015-01-01
The understanding of cutting fluids performance in turning process is very important in order to improve the efficiency of the process. This efficiency can be determined based on certain process parameters such as flank wear, cutting forces developed, temperature developed at the tool chip interface, surface roughness on the work piece, etc. In this study, the objective is to determine the influence of cutting fluids on flank wear during turning of AISI 4340 with coated carbide inserts. The performances of three types of cutting fluids were compared using Taguchi experimental method. The results show that palm kernel oil based cutting fluids performed better than the other two cutting fluids in reducing flank wear. Mathematical models for cutting parameters such as cutting speed, feed rate, depth of cut and cutting fluids were obtained from regression analysis using MINITAB 14 software to predict flank wear. Experiments were conducted based on the optimized values to validate the regression equations for flank wear and 5.82 % error was obtained. The optimal cutting parameters for the flank wear using S/N ratio were 160 m/min of cutting speed (level 1), 0.18 mm/rev of feed (level 1), 1.75 mm of depth of cut (level 2) and 2.97 mm2/s palm kernel oil based cutting fluid (level 3). ANOVA shows cutting speed of 85.36 %; and feed rate 4.81 %) as significant factors.
Assessing heat treatment of chicken breast cuts by impedance spectroscopy.
Schmidt, Franciny C; Fuentes, Ana; Masot, Rafael; Alcañiz, Miguel; Laurindo, João B; Barat, José M
2017-03-01
The aim of this work was to develop a new system based on impedance spectroscopy to assess the heat treatment of previously cooked chicken meat by two experiments; in the first, samples were cooked at different temperatures (from 60 to 90 ℃) until core temperature of the meat reached the water bath temperature. In the second approach, temperature was 80 ℃ and the samples were cooked for different times (from 5 to 55 min). Impedance was measured once samples had cooled. The examined processing parameters were the maximum temperature reached in thermal centre of the samples, weight loss, moisture and the integral of the temperature profile during the cooking-cooling process. The correlation between the processing parameters and impedance was studied by partial least square regressions. The models were able to predict the studied parameters. Our results are essential for developing a new system to control the technological, sensory and safety aspects of cooked meat products on the whole meat processing line.
Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection.
Caiazzo, Fabrizia; Caggiano, Alessandra
2018-04-20
Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti⁻6Al⁻4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.
Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection
2018-01-01
Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti–6Al–4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data. PMID:29677114
Multiple-objective optimization in precision laser cutting of different thermoplastics
NASA Astrophysics Data System (ADS)
Tamrin, K. F.; Nukman, Y.; Choudhury, I. A.; Shirley, S.
2015-04-01
Thermoplastics are increasingly being used in biomedical, automotive and electronics industries due to their excellent physical and chemical properties. Due to the localized and non-contact process, use of lasers for cutting could result in precise cut with small heat-affected zone (HAZ). Precision laser cutting involving various materials is important in high-volume manufacturing processes to minimize operational cost, error reduction and improve product quality. This study uses grey relational analysis to determine a single optimized set of cutting parameters for three different thermoplastics. The set of the optimized processing parameters is determined based on the highest relational grade and was found at low laser power (200 W), high cutting speed (0.4 m/min) and low compressed air pressure (2.5 bar). The result matches with the objective set in the present study. Analysis of variance (ANOVA) is then carried out to ascertain the relative influence of process parameters on the cutting characteristics. It was found that the laser power has dominant effect on HAZ for all thermoplastics.
Evaluating the process parameters of the dry coating process using a 2(5-1) factorial design.
Kablitz, Caroline Désirée; Urbanetz, Nora Anne
2013-02-01
A recent development of coating technology is dry coating, where polymer powder and liquid plasticizer are layered on the cores without using organic solvents or water. Several studies evaluating the process were introduced in literature, however, little information about the critical process parameters (CPPs) is given. Aim of the study was the investigation and optimization of CPPs with respect to one of the critical quality attributes (CQAs), the coating efficiency of the dry coating process in a rotary fluid bed. Theophylline pellets were coated with hydroxypropyl methylcellulose acetate succinate as enteric film former and triethyl citrate and acetylated monoglyceride as plasticizer. A 2(5-1) design of experiments (DOEs) was created investigating five independent process parameters namely coating temperature, curing temperature, feeding/spraying rate, air flow and rotor speed. The results were evaluated by multilinear regression using the software Modde(®) 7. It is shown, that generally, low feeding/spraying rates and low rotor speeds increase coating efficiency. High coating temperatures enhance coating efficiency, whereas medium curing temperatures have been found to be optimum in terms of coating efficiency. This study provides a scientific base for the design of efficient dry coating processes with respect to coating efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Qing; Wang, Jiang; Yu, Haitao
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-spacemore » method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.« less
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
NASA Astrophysics Data System (ADS)
Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok
2016-06-01
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.
Influence of Process Parameters on the Process Efficiency in Laser Metal Deposition Welding
NASA Astrophysics Data System (ADS)
Güpner, Michael; Patschger, Andreas; Bliedtner, Jens
Conventionally manufactured tools are often completely constructed of a high-alloyed, expensive tool steel. An alternative way to manufacture tools is the combination of a cost-efficient, mild steel and a functional coating in the interaction zone of the tool. Thermal processing methods, like laser metal deposition, are always characterized by thermal distortion. The resistance against the thermal distortion decreases with the reduction of the material thickness. As a consequence, there is a necessity of a special process management for the laser based coating of thin parts or tools. The experimental approach in the present paper is to keep the energy and the mass per unit length constant by varying the laser power, the feed rate and the powder mass flow. The typical seam parameters are measured in order to characterize the cladding process, define process limits and evaluate the process efficiency. Ways to optimize dilution, angular distortion and clad height are presented.
Developing lignin-based bio-nanofibers by centrifugal spinning technique.
Stojanovska, Elena; Kurtulus, Mustafa; Abdelgawad, Abdelrahman; Candan, Zeki; Kilic, Ali
2018-07-01
Lignin-based nanofibers were produced via centrifugal spinning from lignin-thermoplastic polyurethane polymer blends. The most suitable process parameters were chosen by optimization of the rotational speed, nozzle diameter and spinneret-to-collector distance using different blend ratios of the two polymers at different total polymer concentrations. The basic characteristics of polymer solutions were enlightened by their viscosity and surface tension. The morphology of the fibers produced was characterized by SEM, while their thermal properties by DSC and TG analysis. Multiply regression was used to determine the parameters that have higher impact on the fiber diameter. It was possible to obtain thermally stable lignin/polyurethane nanofibers with diameters below 500nm. From the aspect of spinnability, 1:1 lignin/TPU contents were shown to be more feasible. On the other side, the most suitable processing parameters were found to be angular velocity of 8500rpm for nozzles of 0.5mm diameter and working distance of 30cm. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming
2013-05-01
An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.
Efficiency of the Inertia Friction Welding Process and Its Dependence on Process Parameters
NASA Astrophysics Data System (ADS)
Senkov, O. N.; Mahaffey, D. W.; Tung, D. J.; Zhang, W.; Semiatin, S. L.
2017-07-01
It has been widely assumed, but never proven, that the efficiency of the inertia friction welding (IFW) process is independent of process parameters and is relatively high, i.e., 70 to 95 pct. In the present work, the effect of IFW parameters on process efficiency was established. For this purpose, a series of IFW trials was conducted for the solid-state joining of two dissimilar nickel-base superalloys (LSHR and Mar-M247) using various combinations of initial kinetic energy ( i.e., the total weld energy, E o), initial flywheel angular velocity ( ω o), flywheel moment of inertia ( I), and axial compression force ( P). The kinetics of the conversion of the welding energy to heating of the faying sample surfaces ( i.e., the sample energy) vs parasitic losses to the welding machine itself were determined by measuring the friction torque on the sample surfaces ( M S) and in the machine bearings ( M M). It was found that the rotating parts of the welding machine can consume a significant fraction of the total energy. Specifically, the parasitic losses ranged from 28 to 80 pct of the total weld energy. The losses increased (and the corresponding IFW process efficiency decreased) as P increased (at constant I and E o), I decreased (at constant P and E o), and E o (or ω o) increased (at constant P and I). The results of this work thus provide guidelines for selecting process parameters which minimize energy losses and increase process efficiency during IFW.
Moment-Based Physical Models of Broadband Clutter due to Aggregations of Fish
2013-09-30
statistical models for signal-processing algorithm development. These in turn will help to develop a capability to statistically forecast the impact of...aggregations of fish based on higher-order statistical measures describable in terms of physical and system parameters. Environmentally , these models...processing. In this experiment, we had good ground truth on (1) and (2), and had control over (3) and (4) except for environmentally -imposed restrictions
Joe J. Landsberg; Kurt H. Johnsen; Timothy J. Albaugh; H. Lee Allen; Steven E. McKeand
2001-01-01
3-PG is a simple process-based model that requires few parameter values and only readily available input data. We tested the structure of the model by calibrating it against loblolly pine data from the control treatment of the SETRES experiment in Scotland County, NC, then altered the fertility rating to simulate the effects of fertilization. There was excellent...
Conveyor Performance based on Motor DC 12 Volt Eg-530ad-2f using K-Means Clustering
NASA Astrophysics Data System (ADS)
Arifin, Zaenal; Artini, Sri DP; Much Ibnu Subroto, Imam
2017-04-01
To produce goods in industry, a controlled tool to improve production is required. Separation process has become a part of production process. Separation process is carried out based on certain criteria to get optimum result. By knowing the characteristics performance of a controlled tools in separation process the optimum results is also possible to be obtained. Clustering analysis is popular method for clustering data into smaller segments. Clustering analysis is useful to divide a group of object into a k-group in which the member value of the group is homogeny or similar. Similarity in the group is set based on certain criteria. The work in this paper based on K-Means method to conduct clustering of loading in the performance of a conveyor driven by a dc motor 12 volt eg-530-2f. This technique gives a complete clustering data for a prototype of conveyor driven by dc motor to separate goods in term of height. The parameters involved are voltage, current, time of travelling. These parameters give two clusters namely optimal cluster with center of cluster 10.50 volt, 0.3 Ampere, 10.58 second, and unoptimal cluster with center of cluster 10.88 volt, 0.28 Ampere and 40.43 second.
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2015-10-01
Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.
Modeling the cooperative and competitive contagions in online social networks
NASA Astrophysics Data System (ADS)
Zhuang, Yun-Bei; Chen, J. J.; Li, Zhi-hong
2017-10-01
The wide adoption of social media has increased the interaction among different pieces of information, and this interaction includes cooperation and competition for our finite attention. While previous research focus on fully competition, this paper extends the interaction to be both "cooperation" and "competition", by employing an IS1S2 R model. To explore how two different pieces of information interact with each other, the IS1S2 R model splits the agents into four parts-(Ignorant-Spreader I-Spreader II-Stifler), based on SIR epidemic spreading model. Using real data from Weibo.com, a social network site similar to Twitter, we find some parameters, like decaying rates, can both influence the cooperative diffusion process and the competitive process, while other parameters, like infectious rates only have influence on the competitive diffusion process. Besides, the parameters' effect are more significant in the competitive diffusion than in the cooperative diffusion.
NASA Astrophysics Data System (ADS)
Zhou, Y.; Zhang, X.; Xiao, W.
2018-04-01
As the geomagnetic sensor is susceptible to interference, a pre-processing total least square iteration method is proposed for calibration compensation. Firstly, the error model of the geomagnetic sensor is analyzed and the correction model is proposed, then the characteristics of the model are analyzed and converted into nine parameters. The geomagnetic data is processed by Hilbert transform (HHT) to improve the signal-to-noise ratio, and the nine parameters are calculated by using the combination of Newton iteration method and the least squares estimation method. The sifter algorithm is used to filter the initial value of the iteration to ensure that the initial error is as small as possible. The experimental results show that this method does not need additional equipment and devices, can continuously update the calibration parameters, and better than the two-step estimation method, it can compensate geomagnetic sensor error well.
Two-lane traffic-flow model with an exact steady-state solution.
Kanai, Masahiro
2010-12-01
We propose a stochastic cellular-automaton model for two-lane traffic flow based on the misanthrope process in one dimension. The misanthrope process is a stochastic process allowing for an exact steady-state solution; hence, we have an exact flow-density diagram for two-lane traffic. In addition, we introduce two parameters that indicate, respectively, driver's driving-lane preference and passing-lane priority. Due to the additional parameters, the model shows a deviation of the density ratio for driving-lane use and a biased lane efficiency in flow. Then, a mean-field approach explicitly describes the asymmetric flow by the hop rates, the driving-lane preference, and the passing-lane priority. Meanwhile, the simulation results are in good agreement with an observational data, and we thus estimate these parameters. We conclude that the proposed model successfully produces two-lane traffic flow particularly with the driving-lane preference and the passing-lane priority.
de Andrade, Juliana Cunha; Nalério, Elen Silveira; Giongo, Citieli; de Barcellos, Marcia Dutra; Ares, Gastón; Deliza, Rosires
2017-08-01
The development of high-quality air-dried cured sheep meat products adapted to meet consumer demands represent an interesting option to add value to the meat of adult animals. The present study aimed to evaluate the influence of process parameters on consumer choice of two products from sheep meat under different evoked contexts, considering product concepts. A total of 375 Brazilian participants completed a choice-based conjoint task with three 2-level variables for each product: maturation time, smoking, and sodium reduction for dry-cured sheep ham, and natural antioxidant, smoking, and sodium reduction for sheep meat coppa. A between-subjects experimental design was used to evaluate the influence of consumption context on consumer choices. All the process parameters significantly influenced consumer choice. However, their relative importance was affected by evoked context. Copyright © 2017. Published by Elsevier Ltd.
The drift diffusion model as the choice rule in reinforcement learning.
Pedersen, Mads Lund; Frank, Michael J; Biele, Guido
2017-08-01
Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.
Boe, Kanokwan; Steyer, Jean-Philippe; Angelidaki, Irini
2008-01-01
Simple logic control algorithms were tested for automatic control of a lab-scale CSTR manure digester. Using an online VFA monitoring system, propionate concentration in the reactor was used as parameter for control of the biogas process. The propionate concentration was kept below a threshold of 10 mM by manipulating the feed flow. Other online parameters such as pH, biogas production, total VFA, and other individual VFA were also measured to examine process performance. The experimental results showed that a simple logic control can successfully prevent the reactor from overload, but with fluctuations of the propionate level due to the nature of control approach. The fluctuation of propionate concentration could be reduced, by adding a lower feed flow limit into the control algorithm to prevent undershooting of propionate response. It was found that use of the biogas production as a main control parameter, rather than propionate can give a more stable process, since propionate was very persistent and only responded very slowly to the decrease of the feed flow which lead to high fluctuation of biogas production. Propionate, however, was still an excellent parameter to indicate process stress under gradual overload and thus recommended as an alarm in the control algorithm. Copyright IWA Publishing 2008.
Optimization of processing parameters of amaranth grits before grinding into flour
NASA Astrophysics Data System (ADS)
Zharkova, I. M.; Safonova, Yu A.; Slepokurova, Yu I.
2018-05-01
There are the results of experimental studies about the influence of infrared treatment (IR processing) parameters of the amaranth grits before their grinding into flour on the composition and properties of the received product. Using the method called as regressionfactor analysis, the optimal conditions of the thermal processing to the amaranth grits were obtained: the belt speed of the conveyor – 0.049 m/s; temperature of amaranth grits in the tempering silo – 65.4 °C the thickness of the layer of amaranth grits on the belt is 3 - 5 mm and the lamp power is 69.2 kW/m2. The conducted researches confirmed that thermal effect to the amaranth grains in the IR setting allows getting flour with a smaller size of starch grains, with the increased water-holding ability, and with a changed value of its glycemic index. Mathematical processing of experimental data allowed establishing the dependence of the structural and technological characteristics of the amaranth flour on the IR processing parameters of amaranth grits. The obtained results are quite consistent with the experimental ones that proves the effectiveness of optimization based on mathematical planning of the experiment to determine the influence of heat treatment optimal parameters of the amaranth grits on the functional and technological properties of the flour received from it.
The drift diffusion model as the choice rule in reinforcement learning
Frank, Michael J.
2017-01-01
Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyper-activity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups. PMID:27966103
Time series modeling by a regression approach based on a latent process.
Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice
2009-01-01
Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.
Hanke, Alexander T; Tsintavi, Eleni; Ramirez Vazquez, Maria Del Pilar; van der Wielen, Luuk A M; Verhaert, Peter D E M; Eppink, Michel H M; van de Sandt, Emile J A X; Ottens, Marcel
2016-09-01
Knowledge-based development of chromatographic separation processes requires efficient techniques to determine the physicochemical properties of the product and the impurities to be removed. These characterization techniques are usually divided into approaches that determine molecular properties, such as charge, hydrophobicity and size, or molecular interactions with auxiliary materials, commonly in the form of adsorption isotherms. In this study we demonstrate the application of a three-dimensional liquid chromatography approach to a clarified cell homogenate containing a therapeutic enzyme. Each separation dimension determines a molecular property relevant to the chromatographic behavior of each component. Matching of the peaks across the different separation dimensions and against a high-resolution reference chromatogram allows to assign the determined parameters to pseudo-components, allowing to determine the most promising technique for the removal of each impurity. More detailed process design using mechanistic models requires isotherm parameters. For this purpose, the second dimension consists of multiple linear gradient separations on columns in a high-throughput screening compatible format, that allow regression of isotherm parameters with an average standard error of 8%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1283-1291, 2016. © 2016 American Institute of Chemical Engineers.
Pervez, Hifsa; Mozumder, Mohammad S; Mourad, Abdel-Hamid I
2016-08-22
The current study presents an investigation on the optimization of injection molding parameters of HDPE/TiO₂ nanocomposites using grey relational analysis with the Taguchi method. Four control factors, including filler concentration (i.e., TiO₂), barrel temperature, residence time and holding time, were chosen at three different levels of each. Mechanical properties, such as yield strength, Young's modulus and elongation, were selected as the performance targets. Nine experimental runs were carried out based on the Taguchi L₉ orthogonal array, and the data were processed according to the grey relational steps. The optimal process parameters were found based on the average responses of the grey relational grades, and the ideal operating conditions were found to be a filler concentration of 5 wt % TiO₂, a barrel temperature of 225 °C, a residence time of 30 min and a holding time of 20 s. Moreover, analysis of variance (ANOVA) has also been applied to identify the most significant factor, and the percentage of TiO₂ nanoparticles was found to have the most significant effect on the properties of the HDPE/TiO₂ nanocomposites fabricated through the injection molding process.
Electrospraying of polymer solutions: Study of formulation and process parameters.
Smeets, Annelies; Clasen, Christian; Van den Mooter, Guy
2017-10-01
Over the past decade, electrospraying has proven to be a promising method for the preparation of amorphous solid dispersions, an established formulation strategy to improve the oral bioavailability of poorly soluble drug compounds. Due to the lack of fundamental knowledge concerning adequate single nozzle electrospraying conditions, a trial-and-error approach is currently the only option. The objective of this paper is to study/investigate the influence of the different formulation and process parameters, as well as their interplay, on the formation of a stable cone-jet mode as a prerequisite for a reproducible production of monodisperse micro- and nanoparticles. To this purpose, different polymers commonly used in the formulation of solid dispersions were electrosprayed to map out the workable parameter ranges of the process. The experiments evaluate the importance of the experimental parameters as flow rate, electric potential difference and the distance between the tip of the nozzle and collector. Based on this, the type of solvent and the concentration of the polymer solutions, along with their viscosity and conductivity, were identified as determinative formulation parameters. This information is of utmost importance to rationally design further electrospraying methods for the preparation of amorphous solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, S. T.; Shu, X. D.; Shchukin, V.; Kozhevnikova, G.
2018-06-01
In order to achieve reasonable process parameters in forming multi-step shaft by cross wedge rolling, the research studied the rolling-forming process multi-step shaft on the DEFORM-3D finite element software. The interactive orthogonal experiment was used to study the effect of the eight parameters, the first section shrinkage rate φ1, the first forming angle α1, the first spreading angle β1, the first spreading length L1, the second section shrinkage rate φ2, the second forming angle α2, the second spreading angle β2 and the second spreading length L2, on the quality of shaft end and the microstructure uniformity. By using the fuzzy mathematics comprehensive evaluation method and the extreme difference analysis, the influence degree of the process parameters on the quality of the multi-step shaft is obtained: β2>φ2L1>α1>β1>φ1>α2L2. The results of the study can provide guidance for obtaining multi-stepped shaft with high mechanical properties and achieving near net forming without stub bar in cross wedge rolling.
Plinkert, P K; Federspil, P A; Plinkert, B; Henrich, D
2002-03-01
Excellent precision, miss of retiring, reproducibility are main characteristics of robots in the operating theatre. Because of these facts their use for surgery in the lateral scull base is of great interest. In recent experiments we determined process parameters for robot assisted reaming of a cochlea implant bed and for a mastoidectomy. These results suggested that optimizing parameters for thrilling with the robot is needed. Therefore we implemented a suitable reaming curve from the geometrical data of the implant and a force controlled process control for robot assisted reaming at the lateral scull base. Experiments were performed with an industrial robot on animal and human scull base specimen. Because of online force detection and feedback of sensory data the reaming with the robot was controlled. With increasing force values above a defined limit feed rates were automatically regulated. Furthermore we were able to detect contact of the thrill to dura mater by analyzing the force values. With the new computer program the desired implant bed was exactly prepared. Our examinations showed a successful reaming of an implant bed in the lateral scull base with a robot. Because of a force controlled reaming process locale navigation is possible and enables careful thrilling with a robot.
Ring rolling process simulation for microstructure optimization
NASA Astrophysics Data System (ADS)
Franchi, Rodolfo; Del Prete, Antonio; Donatiello, Iolanda; Calabrese, Maurizio
2017-10-01
Metal undergoes complicated microstructural evolution during Hot Ring Rolling (HRR), which determines the quality, mechanical properties and life of the ring formed. One of the principal microstructure properties which mostly influences the structural performances of forged components, is the value of the average grain size. In the present paper a ring rolling process has been studied and optimized in order to obtain anular components to be used in aerospace applications. In particular, the influence of process input parameters (feed rate of the mandrel and angular velocity of driver roll) on microstructural and on geometrical features of the final ring has been evaluated. For this purpose, a three-dimensional finite element model for HRR has been developed in SFTC DEFORM V11, taking into account also microstructural development of the material used (the nickel superalloy Waspalloy). The Finite Element (FE) model has been used to formulate a proper optimization problem. The optimization procedure has been developed in order to find the combination of process parameters which allows to minimize the average grain size. The Response Surface Methodology (RSM) has been used to find the relationship between input and output parameters, by using the exact values of output parameters in the control points of a design space explored through FEM simulation. Once this relationship is known, the values of the output parameters can be calculated for each combination of the input parameters. Then, an optimization procedure based on Genetic Algorithms has been applied. At the end, the minimum value of average grain size with respect to the input parameters has been found.
Mueller, Christina J; White, Corey N; Kuchinke, Lars
2017-11-27
The goal of this study was to replicate findings of diffusion model parameters capturing emotion effects in a lexical decision task and investigating whether these findings extend to other tasks of implicit emotion processing. Additionally, we were interested in the stability of diffusion model parameters across emotional stimuli and tasks for individual subjects. Responses to words in a lexical decision task were compared with responses to faces in a gender categorization task for stimuli of the emotion categories: happy, neutral and fear. Main effects of emotion as well as stability of emerging response style patterns as evident in diffusion model parameters across these tasks were analyzed. Based on earlier findings, drift rates were assumed to be more similar in response to stimuli of the same emotion category compared to stimuli of a different emotion category. Results showed that emotion effects of the tasks differed with a processing advantage for happy followed by neutral and fear-related words in the lexical decision task and a processing advantage for neutral followed by happy and fearful faces in the gender categorization task. Both emotion effects were captured in estimated drift rate parameters-and in case of the lexical decision task also in the non-decision time parameters. A principal component analysis showed that contrary to our hypothesis drift rates were more similar within a specific task context than within a specific emotion category. Individual response patterns of subjects across tasks were evident in significant correlations regarding diffusion model parameters including response styles, non-decision times and information accumulation.
NASA Technical Reports Server (NTRS)
Jones, L. D.
1979-01-01
The Space Environment Test Division Post-Test Data Reduction Program processes data from test history tapes generated on the Flexible Data System in the Space Environment Simulation Laboratory at the National Aeronautics and Space Administration/Lyndon B. Johnson Space Center. The program reads the tape's data base records to retrieve the item directory conversion file, the item capture file and the process link file to determine the active parameters. The desired parameter names are read in by lead cards after which the periodic data records are read to determine parameter data level changes. The data is considered to be compressed rather than full sample rate. Tabulations and/or a tape for generating plots may be output.
Laser cutting metallic plates using a 2kW direct diode laser source
NASA Astrophysics Data System (ADS)
Fallahi Sichani, E.; Hauschild, D.; Meinschien, J.; Powell, J.; Assunção, E. G.; Blackburn, J.; Khan, A. H.; Kong, C. Y.
2015-07-01
This paper investigates the feasibility of using a 2kW direct diode laser source for producing high-quality cuts in a variety of materials. Cutting trials were performed in a two-stage experimental procedure. The first phase of trials was based on a one-factor-at-a-time change of process parameters aimed at exploring the process window and finding a semi-optimum set of parameters for each material/thickness combination. In the second phase, a full factorial experimental matrix was performed for each material and thickness, as a result of which, the optimum cutting parameters were identified. Characteristic values of the optimum cuts were then measured as per BS EN ISO 9013:2002.
Advanced Method to Estimate Fuel Slosh Simulation Parameters
NASA Technical Reports Server (NTRS)
Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl
2005-01-01
The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the estimation approach to a simple, accurately modeled system, its effectiveness and accuracy can be evaluated. The same experimental setup can then be used with fluid-filled tanks to further evaluate the effectiveness of the process. Ultimately, the proven process can be applied to the full-sized spinning experimental setup to quickly and accurately determine the slosh model parameters for a particular spacecraft mission. Automating the parameter identification process will save time, allow more changes to be made to proposed designs, and lower the cost in the initial design stages.
A fast and efficient method for device level layout analysis
NASA Astrophysics Data System (ADS)
Dong, YaoQi; Zou, Elaine; Pang, Jenny; Huang, Lucas; Yang, Legender; Zhang, Chunlei; Du, Chunshan; Hu, Xinyi; Wan, Qijian
2017-03-01
There is an increasing demand for device level layout analysis, especially as technology advances. The analysis is to study standard cells by extracting and classifying critical dimension parameters. There are couples of parameters to extract, like channel width, length, gate to active distance, and active to adjacent active distance, etc. for 14nm technology, there are some other parameters that are cared about. On the one hand, these parameters are very important for studying standard cell structures and spice model development with the goal of improving standard cell manufacturing yield and optimizing circuit performance; on the other hand, a full chip device statistics analysis can provide useful information to diagnose the yield issue. Device analysis is essential for standard cell customization and enhancements and manufacturability failure diagnosis. Traditional parasitic parameters extraction tool like Calibre xRC is powerful but it is not sufficient for this device level layout analysis application as engineers would like to review, classify and filter out the data more easily. This paper presents a fast and efficient method based on Calibre equation-based DRC (eqDRC). Equation-based DRC extends the traditional DRC technology to provide a flexible programmable modeling engine which allows the end user to define grouped multi-dimensional feature measurements using flexible mathematical expressions. This paper demonstrates how such an engine and its programming language can be used to implement critical device parameter extraction. The device parameters are extracted and stored in a DFM database which can be processed by Calibre YieldServer. YieldServer is data processing software that lets engineers query, manipulate, modify, and create data in a DFM database. These parameters, known as properties in eqDRC language, can be annotated back to the layout for easily review. Calibre DesignRev can create a HTML formatted report of the results displayed in Calibre RVE which makes it easy to share results among groups. This method has been proven and used in SMIC PDE team and SPICE team.
Study of parameters of the nearest neighbour shared algorithm on clustering documents
NASA Astrophysics Data System (ADS)
Mustika Rukmi, Alvida; Budi Utomo, Daryono; Imro’atus Sholikhah, Neni
2018-03-01
Document clustering is one way of automatically managing documents, extracting of document topics and fastly filtering information. Preprocess of clustering documents processed by textmining consists of: keyword extraction using Rapid Automatic Keyphrase Extraction (RAKE) and making the document as concept vector using Latent Semantic Analysis (LSA). Furthermore, the clustering process is done so that the documents with the similarity of the topic are in the same cluster, based on the preprocesing by textmining performed. Shared Nearest Neighbour (SNN) algorithm is a clustering method based on the number of "nearest neighbors" shared. The parameters in the SNN Algorithm consist of: k nearest neighbor documents, ɛ shared nearest neighbor documents and MinT minimum number of similar documents, which can form a cluster. Characteristics The SNN algorithm is based on shared ‘neighbor’ properties. Each cluster is formed by keywords that are shared by the documents. SNN algorithm allows a cluster can be built more than one keyword, if the value of the frequency of appearing keywords in document is also high. Determination of parameter values on SNN algorithm affects document clustering results. The higher parameter value k, will increase the number of neighbor documents from each document, cause similarity of neighboring documents are lower. The accuracy of each cluster is also low. The higher parameter value ε, caused each document catch only neighbor documents that have a high similarity to build a cluster. It also causes more unclassified documents (noise). The higher the MinT parameter value cause the number of clusters will decrease, since the number of similar documents can not form clusters if less than MinT. Parameter in the SNN Algorithm determine performance of clustering result and the amount of noise (unclustered documents ). The Silhouette coeffisient shows almost the same result in many experiments, above 0.9, which means that SNN algorithm works well with different parameter values.
Toward a model-based cognitive neuroscience of mind wandering.
Hawkins, G E; Mittner, M; Boekel, W; Heathcote, A; Forstmann, B U
2015-12-03
People often "mind wander" during everyday tasks, temporarily losing track of time, place, or current task goals. In laboratory-based tasks, mind wandering is often associated with performance decrements in behavioral variables and changes in neural recordings. Such empirical associations provide descriptive accounts of mind wandering - how it affects ongoing task performance - but fail to provide true explanatory accounts - why it affects task performance. In this perspectives paper, we consider mind wandering as a neural state or process that affects the parameters of quantitative cognitive process models, which in turn affect observed behavioral performance. Our approach thus uses cognitive process models to bridge the explanatory divide between neural and behavioral data. We provide an overview of two general frameworks for developing a model-based cognitive neuroscience of mind wandering. The first approach uses neural data to segment observed performance into a discrete mixture of latent task-related and task-unrelated states, and the second regresses single-trial measures of neural activity onto structured trial-by-trial variation in the parameters of cognitive process models. We discuss the relative merits of the two approaches, and the research questions they can answer, and highlight that both approaches allow neural data to provide additional constraint on the parameters of cognitive models, which will lead to a more precise account of the effect of mind wandering on brain and behavior. We conclude by summarizing prospects for mind wandering as conceived within a model-based cognitive neuroscience framework, highlighting the opportunities for its continued study and the benefits that arise from using well-developed quantitative techniques to study abstract theoretical constructs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Yi; Lados, Diana A.
2017-04-01
Friction stir welding (FSW) is a solid-state process widely used for joining similar and dissimilar materials for critical applications in the transportation sector. Understanding the effects of the process on microstructure and mechanical properties is critical in design for structural integrity. In this study, four aluminum alloy systems (wrought 6061-T651 and cast A356, 319, and A390) were processed in both as-fabricated and pre-weld heat-treated (T6) conditions using various processing parameters. The effects of processing and heat treatment on the resulting microstructures, macro-/micro-hardness, and tensile properties were systematically investigated and mechanistically correlated to changes in grain size, characteristic phases, and strengthening precipitates. Tensile tests were performed at room temperature both along and across the welding zones. A new method able to evaluate weld quality (using a weld quality index) was developed based on the stress concentration calculated under tensile loading. Optimum processing parameter domains that provide both defect-free welds and good mechanical properties were determined for each alloy and associated with the thermal history of the process. These results were further related to characteristic microstructural features, which can be used for component design and materials/process optimization.
Inferring the parameters of a Markov process from snapshots of the steady state
NASA Astrophysics Data System (ADS)
Dettmer, Simon L.; Berg, Johannes
2018-02-01
We seek to infer the parameters of an ergodic Markov process from samples taken independently from the steady state. Our focus is on non-equilibrium processes, where the steady state is not described by the Boltzmann measure, but is generally unknown and hard to compute, which prevents the application of established equilibrium inference methods. We propose a quantity we call propagator likelihood, which takes on the role of the likelihood in equilibrium processes. This propagator likelihood is based on fictitious transitions between those configurations of the system which occur in the samples. The propagator likelihood can be derived by minimising the relative entropy between the empirical distribution and a distribution generated by propagating the empirical distribution forward in time. Maximising the propagator likelihood leads to an efficient reconstruction of the parameters of the underlying model in different systems, both with discrete configurations and with continuous configurations. We apply the method to non-equilibrium models from statistical physics and theoretical biology, including the asymmetric simple exclusion process (ASEP), the kinetic Ising model, and replicator dynamics.
Signal Processing in Periodically Forced Gradient Frequency Neural Networks
Kim, Ji Chul; Large, Edward W.
2015-01-01
Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858
Centroid estimation for a Shack-Hartmann wavefront sensor based on stream processing.
Kong, Fanpeng; Polo, Manuel Cegarra; Lambert, Andrew
2017-08-10
Using center of gravity to estimate the centroid of the spot in a Shack-Hartmann wavefront sensor, the measurement corrupts with photon and detector noise. Parameters, like window size, often require careful optimization to balance the noise error, dynamic range, and linearity of the response coefficient under different photon flux. It also needs to be substituted by the correlation method for extended sources. We propose a centroid estimator based on stream processing, where the center of gravity calculation window floats with the incoming pixel from the detector. In comparison with conventional methods, we show that the proposed estimator simplifies the choice of optimized parameters, provides a unit linear coefficient response, and reduces the influence of background and noise. It is shown that the stream-based centroid estimator also works well for limited size extended sources. A hardware implementation of the proposed estimator is discussed.
Optimization of a growth process for as-grown 2D materials-based devices
NASA Astrophysics Data System (ADS)
Lindquist, Miles; Khadka, Sudiksha; Aleithan, Shrouq; Blumer, Ari; Wickramasinghe, Thushan; Thorat, Ruhi; Kordesch, Martin; Stinaff, Eric
We will present the effects of varying key parameters of a deterministic growth method for producing self-contacted 2D transition metal dichalcogenides. Chemical vapor deposition is used to grow a film of 2D material nucleated around and seeded from metallic features prepared by photolithography and sputtering on a Si/SiO2 substrate prior to growth. We will focus on a particular method of growing variable MoS2 based device structures. The goal of this work is to arrive at robust platform for growing a variety of device structures by systematically altering parameters such as the amount of reactants used, the heat of the substrate and oxide powder, and the flow rate of argon gas used. These results will help advance a comprehensive process for the scalable production of as-grown, complex, 2D materials-based device architectures.
TVA-based assessment of visual attentional functions in developmental dyslexia
Bogon, Johanna; Finke, Kathrin; Stenneken, Prisca
2014-01-01
There is an ongoing debate whether an impairment of visual attentional functions constitutes an additional or even an isolated deficit of developmental dyslexia (DD). Especially performance in tasks that require the processing of multiple visual elements in parallel has been reported to be impaired in DD. We review studies that used parameter-based assessment for identifying and quantifying impaired aspect(s) of visual attention that underlie this multi-element processing deficit in DD. These studies used the mathematical framework provided by the “theory of visual attention” (Bundesen, 1990) to derive quantitative measures of general attentional resources and attentional weighting aspects on the basis of behavioral performance in whole- and partial-report tasks. Based on parameter estimates in children and adults with DD, the reviewed studies support a slowed perceptual processing speed as an underlying primary deficit in DD. Moreover, a reduction in visual short term memory storage capacity seems to present a modulating component, contributing to difficulties in written language processing. Furthermore, comparing the spatial distributions of attentional weights in children and adults suggests that having limited reading and writing skills might impair the development of a slight leftward bias, that is typical for unimpaired adult readers. PMID:25360129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos
2013-07-01
Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing ofmore » facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)« less
NASA Astrophysics Data System (ADS)
Casas-Castillo, M. Carmen; Llabrés-Brustenga, Alba; Rius, Anna; Rodríguez-Solà, Raúl; Navarro, Xavier
2018-02-01
As well as in other natural processes, it has been frequently observed that the phenomenon arising from the rainfall generation process presents fractal self-similarity of statistical type, and thus, rainfall series generally show scaling properties. Based on this fact, there is a methodology, simple scaling, which is used quite broadly to find or reproduce the intensity-duration-frequency curves of a place. In the present work, the relationship of the simple scaling parameter with the characteristic rainfall pattern of the area of study has been investigated. The calculation of this scaling parameter has been performed from 147 daily rainfall selected series covering the temporal period between 1883 and 2016 over the Catalonian territory (Spain) and its nearby surroundings, and a discussion about the relationship between the scaling parameter spatial distribution and rainfall pattern, as well as about trends of this scaling parameter over the past decades possibly due to climate change, has been presented.
NASA Astrophysics Data System (ADS)
Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang
2012-06-01
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.
Xu, Yidong; Qian, Chunxiang
2013-01-01
Based on meso-damage mechanics and finite element analysis, the aim of this paper is to describe the feasibility of the Gurson–Tvergaard–Needleman (GTN) constitutive model in describing the tensile behavior of corroded reinforcing bars. The orthogonal test results showed that different fracture pattern and the related damage evolution process can be simulated by choosing different material parameters of GTN constitutive model. Compared with failure parameters, the two constitutive parameters are significant factors affecting the tensile strength. Both the nominal yield and ultimate tensile strength decrease markedly with the increase of constitutive parameters. Combining with the latest data and trial-and-error method, the suitable material parameters of GTN constitutive model were adopted to simulate the tensile behavior of corroded reinforcing bars in concrete under carbonation environment attack. The numerical predictions can not only agree very well with experimental measurements, but also simplify the finite element modeling process. PMID:23342140
NASA Astrophysics Data System (ADS)
Miao, Changyun; Shi, Boya; Li, Hongqiang
2008-12-01
A human physiological parameters intelligent clothing is researched with FBG sensor technology. In this paper, the principles and methods of measuring human physiological parameters including body temperature and heart rate in intelligent clothing with distributed FBG are studied, the mathematical models of human physiological parameters measurement are built; the processing method of body temperature and heart rate detection signals is presented; human physiological parameters detection module is designed, the interference signals are filtered out, and the measurement accuracy is improved; the integration of the intelligent clothing is given. The intelligent clothing can implement real-time measurement, processing, storage and output of body temperature and heart rate. It has accurate measurement, portability, low cost, real-time monitoring, and other advantages. The intelligent clothing can realize the non-contact monitoring between doctors and patients, timely find the diseases such as cancer and infectious diseases, and make patients get timely treatment. It has great significance and value for ensuring the health of the elders and the children with language dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbamalu, G.A.N.; El-Hawary, M.E.
The authors propose suboptimal least squares or IRWLS procedures for estimating the parameters of a seasonal multiplicative AR model encountered during power system load forecasting. The proposed method involves using an interactive computer environment to estimate the parameters of a seasonal multiplicative AR process. The method comprises five major computational steps. The first determines the order of the seasonal multiplicative AR process, and the second uses the least squares or the IRWLS to estimate the optimal nonseasonal AR model parameters. In the third step one obtains the intermediate series by back forecast, which is followed by using the least squaresmore » or the IRWLS to estimate the optimal season AR parameters. The final step uses the estimated parameters to forecast future load. The method is applied to predict the Nova Scotia Power Corporation's 168 lead time hourly load. The results obtained are documented and compared with results based on the Box and Jenkins method.« less
NASA Astrophysics Data System (ADS)
Han, Y.; Misra, S.
2018-04-01
Multi-frequency measurement of a dispersive electromagnetic (EM) property, such as electrical conductivity, dielectric permittivity, or magnetic permeability, is commonly analyzed for purposes of material characterization. Such an analysis requires inversion of the multi-frequency measurement based on a specific relaxation model, such as Cole-Cole model or Pelton's model. We develop a unified inversion scheme that can be coupled to various type of relaxation models to independently process multi-frequency measurement of varied EM properties for purposes of improved EM-based geomaterial characterization. The proposed inversion scheme is firstly tested in few synthetic cases in which different relaxation models are coupled into the inversion scheme and then applied to multi-frequency complex conductivity, complex resistivity, complex permittivity, and complex impedance measurements. The method estimates up to seven relaxation-model parameters exhibiting convergence and accuracy for random initializations of the relaxation-model parameters within up to 3-orders of magnitude variation around the true parameter values. The proposed inversion method implements a bounded Levenberg algorithm with tuning initial values of damping parameter and its iterative adjustment factor, which are fixed in all the cases shown in this paper and irrespective of the type of measured EM property and the type of relaxation model. Notably, jump-out step and jump-back-in step are implemented as automated methods in the inversion scheme to prevent the inversion from getting trapped around local minima and to honor physical bounds of model parameters. The proposed inversion scheme can be easily used to process various types of EM measurements without major changes to the inversion scheme.
NASA Astrophysics Data System (ADS)
Dethlefsen, Frank; Tilmann Pfeiffer, Wolf; Schäfer, Dirk
2016-04-01
Numerical simulations of hydraulic, thermal, geomechanical, or geochemical (THMC-) processes in the subsurface have been conducted for decades. Often, such simulations are commenced by applying a parameter set that is as realistic as possible. Then, a base scenario is calibrated on field observations. Finally, scenario simulations can be performed, for instance to forecast the system behavior after varying input data. In the context of subsurface energy and mass storage, however, these model calibrations based on field data are often not available, as these storage actions have not been carried out so far. Consequently, the numerical models merely rely on the parameter set initially selected, and uncertainties as a consequence of a lack of parameter values or process understanding may not be perceivable, not mentioning quantifiable. Therefore, conducting THMC simulations in the context of energy and mass storage deserves a particular review of the model parameterization with its input data, and such a review so far hardly exists to the required extent. Variability or aleatory uncertainty exists for geoscientific parameter values in general, and parameters for that numerous data points are available, such as aquifer permeabilities, may be described statistically thereby exhibiting statistical uncertainty. In this case, sensitivity analyses for quantifying the uncertainty in the simulation resulting from varying this parameter can be conducted. There are other parameters, where the lack of data quantity and quality implies a fundamental changing of ongoing processes when such a parameter value is varied in numerical scenario simulations. As an example for such a scenario uncertainty, varying the capillary entry pressure as one of the multiphase flow parameters can either allow or completely inhibit the penetration of an aquitard by gas. As the last example, the uncertainty of cap-rock fault permeabilities and consequently potential leakage rates of stored gases into shallow compartments are regarded as recognized ignorance by the authors of this study, as no realistic approach exists to determine this parameter and values are best guesses only. In addition to these aleatory uncertainties, an equivalent classification is possible for rating epistemic uncertainties describing the degree of understanding processes such as the geochemical and hydraulic effects following potential gas intrusions from deeper reservoirs into shallow aquifers. As an outcome of this grouping of uncertainties, prediction errors of scenario simulations can be calculated by sensitivity analyses, if the uncertainties are identified as statistical. However, if scenario uncertainties exist or even recognized ignorance has to be attested to a parameter or a process in question, the outcomes of simulations mainly depend on the decision of the modeler by choosing parameter values or by interpreting the occurring of processes. In that case, the informative value of numerical simulations is limited by ambiguous simulation results, which cannot be refined without improving the geoscientific database through laboratory or field studies on a longer term basis, so that the effects of the subsurface use may be predicted realistically. This discussion, amended by a compilation of available geoscientific data to parameterize such simulations, will be presented in this study.
Standardization of domestic frying processes by an engineering approach.
Franke, K; Strijowski, U
2011-05-01
An approach was developed to enable a better standardization of domestic frying of potato products. For this purpose, 5 domestic fryers differing in heating power and oil capacity were used. A very defined frying process using a highly standardized model product and a broad range of frying conditions was carried out in these fryers and the development of browning representing an important quality parameter was measured. Product-to-oil ratio, oil temperature, and frying time were varied. Quite different color changes were measured in the different fryers although the same frying process parameters were applied. The specific energy consumption for water evaporation (spECWE) during frying related to product amount was determined for all frying processes to define an engineering parameter for characterizing the frying process. A quasi-linear regression approach was applied to calculate this parameter from frying process settings and fryer properties. The high significance of the regression coefficients and a coefficient of determination close to unity confirmed the suitability of this approach. Based on this regression equation, curves for standard frying conditions (SFC curves) were calculated which describe the frying conditions required to obtain the same level of spECWE in the different domestic fryers. Comparison of browning results from the different fryers operated at conditions near the SFC curves confirmed the applicability of the approach. © 2011 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Xiao, D.; Shi, Y.; Li, L.
2016-12-01
Field measurements are important to understand the fluxes of water, energy, sediment, and solute in the Critical Zone however are expensive in time, money, and labor. This study aims to assess the model predictability of hydrological processes in a watershed using information from another intensively-measured watershed. We compare two watersheds of different lithology using national datasets, field measurements, and physics-based model, Flux-PIHM. We focus on two monolithological, forested watersheds under the same climate in the Shale Hills Susquehanna CZO in central Pennsylvania: the Shale-based Shale Hills (SSH, 0.08 km2) and the sandstone-based Garner Run (GR, 1.34 km2). We firstly tested the transferability of calibration coefficients from SSH to GR. We found that without any calibration the model can successfully predict seasonal average soil moisture and discharge which shows the advantage of a physics-based model, however, cannot precisely capture some peaks or the runoff in summer. The model reproduces the GR field data better after calibrating the soil hydrology parameters. In particular, the percentage of sand turns out to be a critical parameter in reproducing data. With sandstone being the dominant lithology, GR has much higher sand percentage than SSH (48.02% vs. 29.01%), leading to higher hydraulic conductivity, lower overall water storage capacity, and in general lower soil moisture. This is consistent with area averaged soil moisture observations using the cosmic-ray soil moisture observing system (COSMOS) at the two sites. This work indicates that some parameters, including evapotranspiration parameters, are transferrable due to similar climatic and land cover conditions. However, the key parameters that control soil moisture, including the sand percentage, need to be recalibrated, reflecting the key role of soil hydrological properties.
NASA Astrophysics Data System (ADS)
Huang, Guoqin; Zhang, Meiqin; Huang, Hui; Guo, Hua; Xu, Xipeng
2018-04-01
Circular sawing is an important method for the processing of natural stone. The ability to predict sawing power is important in the optimisation, monitoring and control of the sawing process. In this paper, a predictive model (PFD) of sawing power, which is based on the tangential force distribution at the sawing contact zone, was proposed, experimentally validated and modified. With regard to the influence of sawing speed on tangential force distribution, the modified PFD (MPFD) performed with high predictive accuracy across a wide range of sawing parameters, including sawing speed. The mean maximum absolute error rate was within 6.78%, and the maximum absolute error rate was within 11.7%. The practicability of predicting sawing power by the MPFD with few initial experimental samples was proved in case studies. On the premise of high sample measurement accuracy, only two samples are required for a fixed sawing speed. The feasibility of applying the MPFD to optimise sawing parameters while lowering the energy consumption of the sawing system was validated. The case study shows that energy use was reduced 28% by optimising the sawing parameters. The MPFD model can be used to predict sawing power, optimise sawing parameters and control energy.
Artificial neuron-glia networks learning approach based on cooperative coevolution.
Mesejo, Pablo; Ibáñez, Oscar; Fernández-Blanco, Enrique; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana B
2015-06-01
Artificial Neuron-Glia Networks (ANGNs) are a novel bio-inspired machine learning approach. They extend classical Artificial Neural Networks (ANNs) by incorporating recent findings and suppositions about the way information is processed by neural and astrocytic networks in the most evolved living organisms. Although ANGNs are not a consolidated method, their performance against the traditional approach, i.e. without artificial astrocytes, was already demonstrated on classification problems. However, the corresponding learning algorithms developed so far strongly depends on a set of glial parameters which are manually tuned for each specific problem. As a consequence, previous experimental tests have to be done in order to determine an adequate set of values, making such manual parameter configuration time-consuming, error-prone, biased and problem dependent. Thus, in this paper, we propose a novel learning approach for ANGNs that fully automates the learning process, and gives the possibility of testing any kind of reasonable parameter configuration for each specific problem. This new learning algorithm, based on coevolutionary genetic algorithms, is able to properly learn all the ANGNs parameters. Its performance is tested on five classification problems achieving significantly better results than ANGN and competitive results with ANN approaches.
NASA Astrophysics Data System (ADS)
Müller, M. F.; Thompson, S. E.
2016-02-01
The prediction of flow duration curves (FDCs) in ungauged basins remains an important task for hydrologists given the practical relevance of FDCs for water management and infrastructure design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or model parameters. This task is complicated if climate becomes non-stationary, as the prediction challenge now also requires extrapolation through time. In this context, process-based models for FDCs that mechanistically link the streamflow distribution to climate and landscape factors may have an advantage over purely statistical methods to predict FDCs. This study compares a stochastic (process-based) and statistical method for FDC prediction in both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary conditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80 in 75 % of the tested catchments. The main drivers of uncertainty differ between the models: parameter interpolation was the main source of error for the statistical model, while violations of the assumptions of the process-based model represented the main source of its error. The process-based approach performed better than the statistical approach in numerical simulations with non-stationary climate drivers. The predictions of the statistical method under non-stationary rainfall conditions were poor if (i) local runoff coefficients were not accurately determined from the gauge network, or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analysis shows that the streamflow regimes in catchments characterized by frequent wet-season runoff and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall statistics. In these cases, process-based prediction approaches are favored over statistical models.
Metric Aspects of Digital Images and Digital Image Processing.
1984-09-01
produced in a reconstructed digital image. Synthesized aerial photographs were formed by processing a combined elevation and orthophoto data base. These...brightness values h1 and Iion b) a line equation whose two parameters are calculated h12, along with tile borderline that separates the two intensity
Campbell, D A; Chkrebtii, O
2013-12-01
Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Distribution and avoidance of debris on epoxy resin during UV ns-laser scanning processes
NASA Astrophysics Data System (ADS)
Veltrup, Markus; Lukasczyk, Thomas; Ihde, Jörg; Mayer, Bernd
2018-05-01
In this paper the distribution of debris generated by a nanosecond UV laser (248 nm) on epoxy resin and the prevention of the corresponding re-deposition effects by parameter selection for a ns-laser scanning process were investigated. In order to understand the mechanisms behind the debris generation, in-situ particle measurements were performed during laser treatment. These measurements enabled the determination of the ablation threshold of the epoxy resin as well as the particle density and size distribution in relation to the applied laser parameters. The experiments showed that it is possible to reduce debris on the surface with an adapted selection of pulse overlap with respect to laser fluence. A theoretical model for the parameter selection was developed and tested. Based on this model, the correct choice of laser parameters with reduced laser fluence resulted in a surface without any re-deposited micro-particles.
NASA Astrophysics Data System (ADS)
McCann, C.; Repasky, K. S.; Morin, M.; Lawrence, R. L.; Powell, S. L.
2016-12-01
Compact, cost-effective, flight-based hyperspectral imaging systems can provide scientifically relevant data over large areas for a variety of applications such as ecosystem studies, precision agriculture, and land management. To fully realize this capability, unsupervised classification techniques based on radiometrically-calibrated data that cluster based on biophysical similarity rather than simply spectral similarity are needed. An automated technique to produce high-resolution, large-area, radiometrically-calibrated hyperspectral data sets based on the Landsat surface reflectance data product as a calibration target was developed and applied to three subsequent years of data covering approximately 1850 hectares. The radiometrically-calibrated data allows inter-comparison of the temporal series. Advantages of the radiometric calibration technique include the need for minimal site access, no ancillary instrumentation, and automated processing. Fitting the reflectance spectra of each pixel using a set of biophysically relevant basis functions reduces the data from 80 spectral bands to 9 parameters providing noise reduction and data compression. Examination of histograms of these parameters allows for determination of natural splitting into biophysical similar clusters. This method creates clusters that are similar in terms of biophysical parameters, not simply spectral proximity. Furthermore, this method can be applied to other data sets, such as urban scenes, by developing other physically meaningful basis functions. The ability to use hyperspectral imaging for a variety of important applications requires the development of data processing techniques that can be automated. The radiometric-calibration combined with the histogram based unsupervised classification technique presented here provide one potential avenue for managing big-data associated with hyperspectral imaging.
NASA Astrophysics Data System (ADS)
Kataev, M. Yu.; Loseva, N. V.; Mitsel, A. A.; Bulysheva, L. A.; Kozlov, S. V.
2017-01-01
The paper presents an approach, based on business processes, assessment and control of the state of the state institution, the social insurance Fund. The paper describes the application of business processes, such as items with clear measurable parameters that need to be determined, controlled and changed for management. The example of one of the business processes of the state institutions, which shows the ability to solve management tasks, is given. The authors of the paper demonstrate the possibility of applying the mathematical apparatus of imitative simulation for solving management tasks.
Hydroformability study of seamless tube using Gurson-Tvergaard-Needleman (GTN) fracture model
NASA Astrophysics Data System (ADS)
Harisankar, K. R.; Omar, A.; Narasimhan, K.
2017-09-01
Tube hydroforming process is an advanced manufacturing process in which tube acting as blank is placed in between the dies and deformed with the help of hydraulic pressure. It has several advantages over conventional stamping process such as high strength to weight ratio, higher reliability, less tooling cost etc. Fracture surface investigation of tube hydroformed samples reveal dimple formation in the form of void coalescence which is a characteristic feature of ductile fracture. Hence, in order to accurately predict the limiting strains at fracture it is important to model the process using ductile damage criteria. Fracture criteria are broadly classified into two, microscopic and macroscopic. In the present work Gurson-Tvergaard-Neeedleman (GTN) model, which is a microscopic based ductile damage criteria, was used for predicting the limiting strains at fracture for seamless steel tubes and implemented in explicit finite element software, ABAQUS, for variety of strain path and boundary conditions to obtain fracture based forming limit diagram. The original void porosity, the critical porosity and fracture porosity of the Gurson-Tvergaard-Needleman model were determined by image analysis of scanning electron micrographs of the specimen at different testing conditions of the uniaxial tensile test. The other parameters of the model were determined by using inverse approach combined with uniaxial tensile test and simulation. Predicted FLD is found to be in good agreement with the experimental FLD. Furthermore, numerical simulation based parametric study was carried out to understand the impact of various GTN parameters on different aspects of formability parameters such as bursting pressure, bulge height, principal strains and strain path to develop the understanding of deformation and fracture behaviour at the micro-level during tube hydroforming process.
On the use of PGD for optimal control applied to automated fibre placement
NASA Astrophysics Data System (ADS)
Bur, N.; Joyot, P.
2017-10-01
Automated Fibre Placement (AFP) is an incipient manufacturing process for composite structures. Despite its concep-tual simplicity it involves many complexities related to the necessity of melting the thermoplastic at the interface tape-substrate, ensuring the consolidation that needs the diffusion of molecules and control the residual stresses installation responsible of the residual deformations of the formed parts. The optimisation of the process and the determination of the process window cannot be achieved in a traditional way since it requires a plethora of trials/errors or numerical simulations, because there are many parameters involved in the characterisation of the material and the process. Using reduced order modelling such as the so called Proper Generalised Decomposition method, allows the construction of multi-parametric solution taking into account many parameters. This leads to virtual charts that can be explored on-line in real time in order to perform process optimisation or on-line simulation-based control. Thus, for a given set of parameters, determining the power leading to an optimal temperature becomes easy. However, instead of controlling the power knowing the temperature field by particularizing an abacus, we propose here an approach based on optimal control: we solve by PGD a dual problem from heat equation and optimality criteria. To circumvent numerical issue due to ill-conditioned system, we propose an algorithm based on Uzawa's method. That way, we are able to solve the dual problem, setting the desired state as an extra-coordinate in the PGD framework. In a single computation, we get both the temperature field and the required heat flux to reach a parametric optimal temperature on a given zone.
Sliding mode control: an approach to regulate nonlinear chemical processes
Camacho; Smith
2000-01-01
A new approach for the design of sliding mode controllers based on a first-order-plus-deadtime model of the process, is developed. This approach results in a fixed structure controller with a set of tuning equations as a function of the characteristic parameters of the model. The controller performance is judged by simulations on two nonlinear chemical processes.
Multiphase porous media modelling: A novel approach to predicting food processing performance.
Khan, Md Imran H; Joardder, M U H; Kumar, Chandan; Karim, M A
2018-03-04
The development of a physics-based model of food processing is essential to improve the quality of processed food and optimize energy consumption. Food materials, particularly plant-based food materials, are complex in nature as they are porous and have hygroscopic properties. A multiphase porous media model for simultaneous heat and mass transfer can provide a realistic understanding of transport processes and thus can help to optimize energy consumption and improve food quality. Although the development of a multiphase porous media model for food processing is a challenging task because of its complexity, many researchers have attempted it. The primary aim of this paper is to present a comprehensive review of the multiphase models available in the literature for different methods of food processing, such as drying, frying, cooking, baking, heating, and roasting. A critical review of the parameters that should be considered for multiphase modelling is presented which includes input parameters, material properties, simulation techniques and the hypotheses. A discussion on the general trends in outcomes, such as moisture saturation, temperature profile, pressure variation, and evaporation patterns, is also presented. The paper concludes by considering key issues in the existing multiphase models and future directions for development of multiphase models.
A trust-based recommendation method using network diffusion processes
NASA Astrophysics Data System (ADS)
Chen, Ling-Jiao; Gao, Jian
2018-09-01
A variety of rating-based recommendation methods have been extensively studied including the well-known collaborative filtering approaches and some network diffusion-based methods, however, social trust relations are not sufficiently considered when making recommendations. In this paper, we contribute to the literature by proposing a trust-based recommendation method, named CosRA+T, after integrating the information of trust relations into the resource-redistribution process. Specifically, a tunable parameter is used to scale the resources received by trusted users before the redistribution back to the objects. Interestingly, we find an optimal scaling parameter for the proposed CosRA+T method to achieve its best recommendation accuracy, and the optimal value seems to be universal under several evaluation metrics across different datasets. Moreover, results of extensive experiments on the two real-world rating datasets with trust relations, Epinions and FriendFeed, suggest that CosRA+T has a remarkable improvement in overall accuracy, diversity and novelty. Our work takes a step towards designing better recommendation algorithms by employing multiple resources of social network information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Jochen, E-mail: jochen.schmidt@fau.de; Sachs, Marius; Fanselow, Stephanie
2016-03-09
Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles aremore » produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.« less
NASA Astrophysics Data System (ADS)
Sato, Aki-Hiro
2004-04-01
Autoregressive conditional duration (ACD) processes, which have the potential to be applied to power law distributions of complex systems found in natural science, life science, and social science, are analyzed both numerically and theoretically. An ACD(1) process exhibits the singular second order moment, which suggests that its probability density function (PDF) has a power law tail. It is verified that the PDF of the ACD(1) has a power law tail with an arbitrary exponent depending on a model parameter. On the basis of theory of the random multiplicative process a relation between the model parameter and the power law exponent is theoretically derived. It is confirmed that the relation is valid from numerical simulations. An application of the ACD(1) to intervals between two successive transactions in a foreign currency market is shown.
Sato, Aki-Hiro
2004-04-01
Autoregressive conditional duration (ACD) processes, which have the potential to be applied to power law distributions of complex systems found in natural science, life science, and social science, are analyzed both numerically and theoretically. An ACD(1) process exhibits the singular second order moment, which suggests that its probability density function (PDF) has a power law tail. It is verified that the PDF of the ACD(1) has a power law tail with an arbitrary exponent depending on a model parameter. On the basis of theory of the random multiplicative process a relation between the model parameter and the power law exponent is theoretically derived. It is confirmed that the relation is valid from numerical simulations. An application of the ACD(1) to intervals between two successive transactions in a foreign currency market is shown.
System and method for motor parameter estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luhrs, Bin; Yan, Ting
2014-03-18
A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values formore » motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.« less
NASA Astrophysics Data System (ADS)
Eleiwi, Fadi; Laleg-Kirati, Taous Meriem
2018-06-01
An observer-based perturbation extremum seeking control is proposed for a direct-contact membrane distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D advection-diffusion equation model which has pump flow rates as process inputs. The objective of the controller is to optimise the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analysed, and simulations based on real DCMD process parameters for each control input are provided.
Neural substrates of embodied natural beauty and social endowed beauty: An fMRI study.
Zhang, Wei; He, Xianyou; Lai, Siyan; Wan, Juan; Lai, Shuxian; Zhao, Xueru; Li, Darong
2017-08-02
What are the neural mechanisms underlying beauty based on objective parameters and beauty based on subjective social construction? This study scanned participants with fMRI while they performed aesthetic judgments on concrete pictographs and abstract oracle bone scripts. Behavioral results showed both pictographs and oracle bone scripts were judged to be more beautiful when they referred to beautiful objects and positive social meanings, respectively. Imaging results revealed regions associated with perceptual, cognitive, emotional and reward processing were commonly activated both in beautiful judgments of pictographs and oracle bone scripts. Moreover, stronger activations of orbitofrontal cortex (OFC) and motor-related areas were found in beautiful judgments of pictographs, whereas beautiful judgments of oracle bone scripts were associated with putamen activity, implying stronger aesthetic experience and embodied approaching for beauty were elicited by the pictographs. In contrast, only visual processing areas were activated in the judgments of ugly pictographs and negative oracle bone scripts. Results provide evidence that the sense of beauty is triggered by two processes: one based on the objective parameters of stimuli (embodied natural beauty) and the other based on the subjective social construction (social endowed beauty).
Gradient-based model calibration with proxy-model assistance
NASA Astrophysics Data System (ADS)
Burrows, Wesley; Doherty, John
2016-02-01
Use of a proxy model in gradient-based calibration and uncertainty analysis of a complex groundwater model with large run times and problematic numerical behaviour is described. The methodology is general, and can be used with models of all types. The proxy model is based on a series of analytical functions that link all model outputs used in the calibration process to all parameters requiring estimation. In enforcing history-matching constraints during the calibration and post-calibration uncertainty analysis processes, the proxy model is run for the purposes of populating the Jacobian matrix, while the original model is run when testing parameter upgrades; the latter process is readily parallelized. Use of a proxy model in this fashion dramatically reduces the computational burden of complex model calibration and uncertainty analysis. At the same time, the effect of model numerical misbehaviour on calculation of local gradients is mitigated, this allowing access to the benefits of gradient-based analysis where lack of integrity in finite-difference derivatives calculation would otherwise have impeded such access. Construction of a proxy model, and its subsequent use in calibration of a complex model, and in analysing the uncertainties of predictions made by that model, is implemented in the PEST suite.
NASA Astrophysics Data System (ADS)
Haas, Edwin; Santabarbara, Ignacio; Kiese, Ralf; Butterbach-Bahl, Klaus
2017-04-01
Numerical simulation models are increasingly used to estimate greenhouse gas emissions at site to regional / national scale and are outlined as the most advanced methodology (Tier 3) in the framework of UNFCCC reporting. Process-based models incorporate the major processes of the carbon and nitrogen cycle of terrestrial ecosystems and are thus thought to be widely applicable at various conditions and spatial scales. Process based modelling requires high spatial resolution input data on soil properties, climate drivers and management information. The acceptance of model based inventory calculations depends on the assessment of the inventory's uncertainty (model, input data and parameter induced uncertainties). In this study we fully quantify the uncertainty in modelling soil N2O and NO emissions from arable, grassland and forest soils using the biogeochemical model LandscapeDNDC. We address model induced uncertainty (MU) by contrasting two different soil biogeochemistry modules within LandscapeDNDC. The parameter induced uncertainty (PU) was assessed by using joint parameter distributions for key parameters describing microbial C and N turnover processes as obtained by different Bayesian calibration studies for each model configuration. Input data induced uncertainty (DU) was addressed by Bayesian calibration of soil properties, climate drivers and agricultural management practices data. For the MU, DU and PU we performed several hundred simulations each to contribute to the individual uncertainty assessment. For the overall uncertainty quantification we assessed the model prediction probability, followed by sampled sets of input datasets and parameter distributions. Statistical analysis of the simulation results have been used to quantify the overall full uncertainty of the modelling approach. With this study we can contrast the variation in model results to the different sources of uncertainties for each ecosystem. Further we have been able to perform a fully uncertainty analysis for modelling N2O and NO emissions from arable, grassland and forest soils necessary for the comprehensibility of modelling results. We have applied the methodology to a regional inventory to assess the overall modelling uncertainty for a regional N2O and NO emissions inventory for the state of Saxony, Germany.
Hurst Estimation of Scale Invariant Processes with Stationary Increments and Piecewise Linear Drift
NASA Astrophysics Data System (ADS)
Modarresi, N.; Rezakhah, S.
The characteristic feature of the discrete scale invariant (DSI) processes is the invariance of their finite dimensional distributions by dilation for certain scaling factor. DSI process with piecewise linear drift and stationary increments inside prescribed scale intervals is introduced and studied. To identify the structure of the process, first, we determine the scale intervals, their linear drifts and eliminate them. Then, a new method for the estimation of the Hurst parameter of such DSI processes is presented and applied to some period of the Dow Jones indices. This method is based on fixed number equally spaced samples inside successive scale intervals. We also present some efficient method for estimating Hurst parameter of self-similar processes with stationary increments. We compare the performance of this method with the celebrated FA, DFA and DMA on the simulated data of fractional Brownian motion (fBm).
NASA Astrophysics Data System (ADS)
Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki
2018-06-01
A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan
2017-01-01
This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772
Digital image processing and analysis for activated sludge wastewater treatment.
Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed
2015-01-01
Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.
Stepwise calibration procedure for regional coupled hydrological-hydrogeological models
NASA Astrophysics Data System (ADS)
Labarthe, Baptiste; Abasq, Lena; de Fouquet, Chantal; Flipo, Nicolas
2014-05-01
Stream-aquifer interaction is a complex process depending on regional and local processes. Indeed, the groundwater component of hydrosystem and large scale heterogeneities control the regional flows towards the alluvial plains and the rivers. In second instance, the local distribution of the stream bed permeabilities controls the dynamics of stream-aquifer water fluxes within the alluvial plain, and therefore the near-river piezometric head distribution. In order to better understand the water circulation and pollutant transport in watersheds, the integration of these multi-dimensional processes in modelling platform has to be performed. Thus, the nested interfaces concept in continental hydrosystem modelling (where regional fluxes, simulated by large scale models, are imposed at local stream-aquifer interfaces) has been presented in Flipo et al (2014). This concept has been implemented in EauDyssée modelling platform for a large alluvial plain model (900km2) part of a 11000km2 multi-layer aquifer system, located in the Seine basin (France). The hydrosystem modelling platform is composed of four spatially distributed modules (Surface, Sub-surface, River and Groundwater), corresponding to four components of the terrestrial water cycle. Considering the large number of parameters to be inferred simultaneously, the calibration process of coupled models is highly computationally demanding and therefore hardly applicable to a real case study of 10000km2. In order to improve the efficiency of the calibration process, a stepwise calibration procedure is proposed. The stepwise methodology involves determining optimal parameters of all components of the coupled model, to provide a near optimum prior information for the global calibration. It starts with the surface component parameters calibration. The surface parameters are optimised based on the comparison between simulated and observed discharges (or filtered discharges) at various locations. Once the surface parameters have been determined, the groundwater component is calibrated. The calibration procedure is performed under steady state hypothesis (to minimize the procedure time length) using recharge rates given by the surface component calibration and imposed fluxes boundary conditions given by the regional model. The calibration is performed using pilot point where the prior variogram is calculated from observed transmissivities values. This procedure uses PEST (http//:www.pesthomepage.org/Home.php) as the inverse modelling tool and EauDyssée as the direct model. During the stepwise calibration process, each modules, even if they are actually dependant from each other, are run and calibrated independently, therefore contributions between each module have to be determined. For the surface module, groundwater and runoff contributions have been determined by hydrograph separation. Among the automated base-flow separation methods, the one-parameter Chapman filter (Chapman et al 1999) has been chosen. This filter is a decomposition of the actual base-flow between the previous base-flow and the discharge gradient weighted by functions of the recession coefficient. For the groundwater module, the recharge has been determined from surface and sub-surface module. References : Flipo, N., A. Mourhi, B. Labarthe, and S. Biancamaria (2014). Continental hydrosystem modelling : the concept of nested stream-aquifer interfaces. Hydrol. Earth Syst. Sci. Discuss. 11, 451-500. Chapman,TG. (1999). A comparison of algorithms for stream flow recession and base-flow separation. hydrological Processes 13, 701-714.
Design Principles of DNA Enzyme-Based Walkers: Translocation Kinetics and Photoregulation.
Cha, Tae-Gon; Pan, Jing; Chen, Haorong; Robinson, Heather N; Li, Xiang; Mao, Chengde; Choi, Jong Hyun
2015-07-29
Dynamic DNA enzyme-based walkers complete their stepwise movements along the prescribed track through a series of reactions, including hybridization, enzymatic cleavage, and strand displacement; however, their overall translocation kinetics is not well understood. Here, we perform mechanistic studies to elucidate several key parameters that govern the kinetics and processivity of DNA enzyme-based walkers. These parameters include DNA enzyme core type and structure, upper and lower recognition arm lengths, and divalent metal cation species and concentration. A theoretical model is developed within the framework of single-molecule kinetics to describe overall translocation kinetics as well as each reaction step. A better understanding of kinetics and design parameters enables us to demonstrate a walker movement near 5 μm at an average speed of ∼1 nm s(-1). We also show that the translocation kinetics of DNA walkers can be effectively controlled by external light stimuli using photoisomerizable azobenzene moieties. A 2-fold increase in the cleavage reaction is observed when the hairpin stems of enzyme catalytic cores are open under UV irradiation. This study provides general design guidelines to construct highly processive, autonomous DNA walker systems and to regulate their translocation kinetics, which would facilitate the development of functional DNA walkers.
Investigation of Parametric Influence on the Properties of Al6061-SiCp Composite
NASA Astrophysics Data System (ADS)
Adebisi, A. A.; Maleque, M. A.; Bello, K. A.
2017-03-01
The influence of process parameter in stir casting play a major role on the development of aluminium reinforced silicon carbide particle (Al-SiCp) composite. This study aims to investigate the influence of process parameters on wear and density properties of Al-SiCp composite using stir casting technique. Experimental data are generated based on a four-factors-five-level central composite design of response surface methodology. Analysis of variance is utilized to confirm the adequacy and validity of developed models considering the significant model terms. Optimization of the process parameters adequately predicts the Al-SiCp composite properties with stirring speed as the most influencing factor. The aim of optimization process is to minimize wear and maximum density. The multiple objective optimization (MOO) achieved an optimal value of 14 wt% reinforcement fraction (RF), 460 rpm stirring speed (SS), 820 °C processing temperature (PTemp) and 150 secs processing time (PT). Considering the optimum parametric combination, wear mass loss achieved a minimum of 1 x 10-3 g and maximum density value of 2.780g/mm3 with a confidence and desirability level of 95.5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Justin
Here we report the results from a project aimed at developing a fully superconducting joint between two REBCO coated conductors using electric field processing (EFP). Due to a reduction in the budget and time period of this contract, we reduced the project scope and focused first on the key scientific issues for forming a strong bond between conductors, and subsequently focused on improving through-the-joint transport. A modified timeline and task list is shown in Table 1, summarizing accomplishments to date. In the first period, we accomplished initial surface characterization as well as rounds of EFP experiments to begin to understandmore » processing parameters which produce well-bonded tapes. In the second phase, we explored the effects of two fundamental EFP parameters, voltage and pressure, and the limitations they place on the process. In the third phase, we achieved superconducting joints and established base characteristics of both the bonding process and the types of tapes best suited to this process. Finally, we investigated some of the parameters related to kinetics which appeared inhibit joint quality and performance.« less
NASA Astrophysics Data System (ADS)
Basin, M.; Maldonado, J. J.; Zendejo, O.
2016-07-01
This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.
Event-based image recognition applied in tennis training assistance
NASA Astrophysics Data System (ADS)
Wawrzyniak, Zbigniew M.; Kowalski, Adam
2016-09-01
This paper presents a concept of a real-time system for individual tennis training assistance. The system is supposed to provide user (player) with information on his strokes accuracy as well as other training quality parameters such as velocity and rotation of the ball during its flight. The method is based on image processing methods equipped with developed explorative analysis of the events and their description by parameters of the movement. There has been presented the concept for further deployment to create a complete system that could assist tennis player during individual training.
TWT transmitter fault prediction based on ANFIS
NASA Astrophysics Data System (ADS)
Li, Mengyan; Li, Junshan; Li, Shuangshuang; Wang, Wenqing; Li, Fen
2017-11-01
Fault prediction is an important component of health management, and plays an important role in the reliability guarantee of complex electronic equipments. Transmitter is a unit with high failure rate. The cathode performance of TWT is a common fault of transmitter. In this dissertation, a model based on a set of key parameters of TWT is proposed. By choosing proper parameters and applying adaptive neural network training model, this method, combined with analytic hierarchy process (AHP), has a certain reference value for the overall health judgment of TWT transmitters.
VIP: A knowledge-based design aid for the engineering of space systems
NASA Technical Reports Server (NTRS)
Lewis, Steven M.; Bellman, Kirstie L.
1990-01-01
The Vehicles Implementation Project (VIP), a knowledge-based design aid for the engineering of space systems is described. VIP combines qualitative knowledge in the form of rules, quantitative knowledge in the form of equations, and other mathematical modeling tools. The system allows users rapidly to develop and experiment with models of spacecraft system designs. As information becomes available to the system, appropriate equations are solved symbolically and the results are displayed. Users may browse through the system, observing dependencies and the effects of altering specific parameters. The system can also suggest approaches to the derivation of specific parameter values. In addition to providing a tool for the development of specific designs, VIP aims at increasing the user's understanding of the design process. Users may rapidly examine the sensitivity of a given parameter to others in the system and perform tradeoffs or optimizations of specific parameters. A second major goal of VIP is to integrate the existing corporate knowledge base of models and rules into a central, symbolic form.
Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas
2018-02-01
Pharmaceutical batch freeze-drying is commonly used to improve the stability of biological therapeutics. The primary drying step is regulated by the dynamic settings of the adaptable process variables, shelf temperature T s and chamber pressure P c . Mechanistic modelling of the primary drying step leads to the optimal dynamic combination of these adaptable process variables in function of time. According to Good Modelling Practices, a Global Sensitivity Analysis (GSA) is essential for appropriate model building. In this study, both a regression-based and variance-based GSA were conducted on a validated mechanistic primary drying model to estimate the impact of several model input parameters on two output variables, the product temperature at the sublimation front T i and the sublimation rate ṁ sub . T s was identified as most influential parameter on both T i and ṁ sub , followed by P c and the dried product mass transfer resistance α Rp for T i and ṁ sub , respectively. The GSA findings were experimentally validated for ṁ sub via a Design of Experiments (DoE) approach. The results indicated that GSA is a very useful tool for the evaluation of the impact of different process variables on the model outcome, leading to essential process knowledge, without the need for time-consuming experiments (e.g., DoE). Copyright © 2017 Elsevier B.V. All rights reserved.
Sorptive removal of nickel onto weathered basaltic andesite products: kinetics and isotherms.
Shah, Bhavna A; Shah, Ajay V; Singh, Rajesh R; Patel, Nayan B
2009-07-15
The suitability of weathered basaltic andesite products (WBAP) as a potential sorbent was assessed for the removal of Ni (II) from electroplating industrial wastewater. A model study based on the batch mode of operation was carried out for Ni (II) removal from aqueous solution. The effect of various parameters such as hydronium ion concentration, shaking time, sorbent dose, initial Ni (II) concentration, and temperature on the sorption process was studied. At optimised conditions of the various parameters, the industrial wastewater loaded with Ni (II) was sorbed onto WBAP. Thermodynamic parameters for the sorption process were evaluated. Freundlich, Langmuir, Temkin, and Dubinin-Kaganer-Radushkevich isotherms were applied to the sorption pattern on the WBAP. The sorption dynamics of the process was evaluated by applying Lagergren, Bangham, and Weber & Morris equations. The sorption process follows Pseudo-second-order rate of surface diffusion which is identified as the predominating mechanism. The sorption process was found to be reversible by the recovery of sorbed Ni (II) upon extraction with 0.5 MHNO3. The sorbent before and after sorption, was characterized by Fourier transform infrared (FTIR), Powder X-Ray diffraction PXRD), and Thermogravimetric analysis (TGA) methods. The change in surface morphology and crystallanity of the mineral after sorption was analyzed by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). Based on the previous model study, an electroplating industrial effluent was successfully treated with WBAP to minimize the pollution load caused by Ni (II).
Ding, Jinliang; Chai, Tianyou; Wang, Hong
2011-03-01
This paper presents a novel offline modeling for product quality prediction of mineral processing which consists of a number of unit processes in series. The prediction of the product quality of the whole mineral process (i.e., the mixed concentrate grade) plays an important role and the establishment of its predictive model is a key issue for the plantwide optimization. For this purpose, a hybrid modeling approach of the mixed concentrate grade prediction is proposed, which consists of a linear model and a nonlinear model. The least-squares support vector machine is adopted to establish the nonlinear model. The inputs of the predictive model are the performance indices of each unit process, while the output is the mixed concentrate grade. In this paper, the model parameter selection is transformed into the shape control of the probability density function (PDF) of the modeling error. In this context, both the PDF-control-based and minimum-entropy-based model parameter selection approaches are proposed. Indeed, this is the first time that the PDF shape control idea is used to deal with system modeling, where the key idea is to turn model parameters so that either the modeling error PDF is controlled to follow a target PDF or the modeling error entropy is minimized. The experimental results using the real plant data and the comparison of the two approaches are discussed. The results show the effectiveness of the proposed approaches.
The status of membrane bioreactor technology.
Judd, Simon
2008-02-01
In this article, the current status of membrane bioreactor (MBR) technology for wastewater treatment is reviewed. Fundamental facets of the MBR process and membrane and process configurations are outlined and the advantages and disadvantages over conventional suspended growth-based biotreatment are briefly identified. Key process design and operating parameters are defined and their significance explained. The inter-relationships between these parameters are identified and their implications discussed, with particular reference to impacts on membrane surface fouling and channel clogging. In addition, current understanding of membrane surface fouling and identification of candidate foulants is appraised. Although much interest in this technology exists and its penetration of the market will probably increase significantly, there remains a lack of understanding of key process constraints such as membrane channel clogging, and of the science of membrane cleaning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J; Brown, B; Bayles, B
The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable lifemore » prediction and process design.« less
NASA Astrophysics Data System (ADS)
Li, Y. J.; Kokkinaki, Amalia; Darve, Eric F.; Kitanidis, Peter K.
2017-08-01
The operation of most engineered hydrogeological systems relies on simulating physical processes using numerical models with uncertain parameters and initial conditions. Predictions by such uncertain models can be greatly improved by Kalman-filter techniques that sequentially assimilate monitoring data. Each assimilation constitutes a nonlinear optimization, which is solved by linearizing an objective function about the model prediction and applying a linear correction to this prediction. However, if model parameters and initial conditions are uncertain, the optimization problem becomes strongly nonlinear and a linear correction may yield unphysical results. In this paper, we investigate the utility of one-step ahead smoothing, a variant of the traditional filtering process, to eliminate nonphysical results and reduce estimation artifacts caused by nonlinearities. We present the smoothing-based compressed state Kalman filter (sCSKF), an algorithm that combines one step ahead smoothing, in which current observations are used to correct the state and parameters one step back in time, with a nonensemble covariance compression scheme, that reduces the computational cost by efficiently exploring the high-dimensional state and parameter space. Numerical experiments show that when model parameters are uncertain and the states exhibit hyperbolic behavior with sharp fronts, as in CO2 storage applications, one-step ahead smoothing reduces overshooting errors and, by design, gives physically consistent state and parameter estimates. We compared sCSKF with commonly used data assimilation methods and showed that for the same computational cost, combining one step ahead smoothing and nonensemble compression is advantageous for real-time characterization and monitoring of large-scale hydrogeological systems with sharp moving fronts.
Focusing the research agenda for simulation training visual system requirements
NASA Astrophysics Data System (ADS)
Lloyd, Charles J.
2014-06-01
Advances in the capabilities of the display-related technologies with potential uses in simulation training devices continue to occur at a rapid pace. Simultaneously, ongoing reductions in defense spending stimulate the services to push a higher proportion of training into ground-based simulators to reduce their operational costs. These two trends result in increased customer expectations and desires for more capable training devices, while the money available for these devices is decreasing. Thus, there exists an increasing need to improve the efficiency of the acquisition process and to increase the probability that users get the training devices they need at the lowest practical cost. In support of this need the IDEAS program was initiated in 2010 with the goal of improving display system requirements associated with unmet user needs and expectations and disrupted acquisitions. This paper describes a process of identifying, rating, and selecting the design parameters that should receive research attention. Analyses of existing requirements documents reveal that between 40 and 50 specific design parameters (i.e., resolution, contrast, luminance, field of view, frame rate, etc.) are typically called out for the acquisition of a simulation training display system. Obviously no research effort can address the effects of this many parameters. Thus, we developed a defensible strategy for focusing limited R&D resources on a fraction of these parameters. This strategy encompasses six criteria to identify the parameters most worthy of research attention. Examples based on display design parameters recommended by stakeholders are provided.
NASA Astrophysics Data System (ADS)
Dang, Van Tuan; Lafon, Pascal; Labergere, Carl
2017-10-01
In this work, a combination of Proper Orthogonal Decomposition (POD) and Radial Basis Function (RBF) is proposed to build a surrogate model based on the Benchmark Springback 3D bending from the Numisheet2011 congress. The influence of the two design parameters, the geometrical parameter of the die radius and the process parameter of the blank holder force, on the springback of the sheet after a stamping operation is analyzed. The classical Design of Experience (DoE) uses Full Factorial to design the parameter space with sample points as input data for finite element method (FEM) numerical simulation of the sheet metal stamping process. The basic idea is to consider the design parameters as additional dimensions for the solution of the displacement fields. The order of the resultant high-fidelity model is reduced through the use of POD method which performs model space reduction and results in the basis functions of the low order model. Specifically, the snapshot method is used in our work, in which the basis functions is derived from snapshot deviation of the matrix of the final displacements fields of the FEM numerical simulation. The obtained basis functions are then used to determine the POD coefficients and RBF is used for the interpolation of these POD coefficients over the parameter space. Finally, the presented POD-RBF approach which is used for shape optimization can be performed with high accuracy.
Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah
2015-02-01
Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Norton, P. A., II
2015-12-01
The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.
Modeling Physiological Processes That Relate Toxicant Exposure and Bacterial Population Dynamics
Klanjscek, Tin; Nisbet, Roger M.; Priester, John H.; Holden, Patricia A.
2012-01-01
Quantifying effects of toxicant exposure on metabolic processes is crucial to predicting microbial growth patterns in different environments. Mechanistic models, such as those based on Dynamic Energy Budget (DEB) theory, can link physiological processes to microbial growth. Here we expand the DEB framework to include explicit consideration of the role of reactive oxygen species (ROS). Extensions considered are: (i) additional terms in the equation for the “hazard rate” that quantifies mortality risk; (ii) a variable representing environmental degradation; (iii) a mechanistic description of toxic effects linked to increase in ROS production and aging acceleration, and to non-competitive inhibition of transport channels; (iv) a new representation of the “lag time” based on energy required for acclimation. We estimate model parameters using calibrated Pseudomonas aeruginosa optical density growth data for seven levels of cadmium exposure. The model reproduces growth patterns for all treatments with a single common parameter set, and bacterial growth for treatments of up to 150 mg(Cd)/L can be predicted reasonably well using parameters estimated from cadmium treatments of 20 mg(Cd)/L and lower. Our approach is an important step towards connecting levels of biological organization in ecotoxicology. The presented model reveals possible connections between processes that are not obvious from purely empirical considerations, enables validation and hypothesis testing by creating testable predictions, and identifies research required to further develop the theory. PMID:22328915
A novel pulsed gas metal arc welding system with direct droplet transfer close-loop control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q.; Li, P.; Zhang, L.
1994-12-31
In pulsed gas metal arc welding (GMAW), a predominant parameter that has to be monitored and controlled in real time for maintaining process stability and ensuring weld quality, is droplet transfer. Based on the close correlation between droplet transfer and arc light radiant flux in GMAW of steel and aluminum, a direct closed-loop droplet transfer control system for pulsed GMAW with arc light sensor has been developed. By sensing the droplet transfer directly via the arc light signal, a pulsed GMAW process with real and exact one-pulse, one-droplet transfer has been achieved. The novel pulsed GMAW machine consists of threemore » parts: a sensing system, a controlling system, and a welding power system. The software used in this control system is capable of data sampling and processing, parameter matching, optimum parameter restoring, and resetting. A novel arc light sensing system has been developed. The sensor is small enough to be clamped to a semiautomatic welding torch. Based on thissensingn system, a closed-loop droplet transfer control system of GMAW of steel and aluminum has been built and a commercial prototype has been made. The system is capable of keeping one-pulse, one-droplet transfer against external interferences. The welding process with this control system has been proved to be stable, quiet, with no spatter, and provide good weld formation.« less
Modelling of dynamic contact length in rail grinding process
NASA Astrophysics Data System (ADS)
Zhi, Shaodan; Li, Jianyong; Zarembski, A. M.
2014-09-01
Rails endure frequent dynamic loads from the passing trains for supporting trains and guiding wheels. The accumulated stress concentrations will cause the plastic deformation of rail towards generating corrugations, contact fatigue cracks and also other defects, resulting in more dangerous status even the derailment risks. So the rail grinding technology has been invented with rotating grinding stones pressed on the rail with defects removal. Such rail grinding works are directed by experiences rather than scientifically guidance, lacking of flexible and scientific operating methods. With grinding control unit holding the grinding stones, the rail grinding process has the characteristics not only the surface grinding but also the running railway vehicles. First of all, it's important to analyze the contact length between the grinding stone and the rail, because the contact length is a critical parameter to measure the grinding capabilities of stones. Moreover, it's needed to build up models of railway vehicle unit bonded with the grinding stone to represent the rail grinding car. Therefore the theoretical model for contact length is developed based on the geometrical analysis. And the calculating models are improved considering the grinding car's dynamic behaviors during the grinding process. Eventually, results are obtained based on the models by taking both the operation parameters and the structure parameters into the calculation, which are suitable for revealing the process of rail grinding by combining the grinding mechanism and the railway vehicle systems.
Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy
Kabir, Mohammad Rizviul; Richter, Henning
2017-01-01
A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework. PMID:28772504
Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.
Kabir, Mohammad Rizviul; Richter, Henning
2017-02-08
A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.
Measurement and modeling of unsaturated hydraulic conductivity: Chapter 21
Perkins, Kim S.; Elango, Lakshmanan
2011-01-01
This chapter will discuss, by way of examples, various techniques used to measure and model hydraulic conductivity as a function of water content, K(). The parameters that describe the K() curve obtained by different methods are used directly in Richards’ equation-based numerical models, which have some degree of sensitivity to those parameters. This chapter will explore the complications of using laboratory measured or estimated properties for field scale investigations to shed light on how adequately the processes are represented. Additionally, some more recent concepts for representing unsaturated-zone flow processes will be discussed.
Simulation of the microwave heating of a thin multilayered composite material: A parameter analysis
NASA Astrophysics Data System (ADS)
Tertrais, Hermine; Barasinski, Anaïs; Chinesta, Francisco
2018-05-01
Microwave (MW) technology relies on volumetric heating. Thermal energy is transferred to the material that can absorb it at specific frequencies. The complex physics involved in this process is far from being understood and that is why a simulation tool has been developed in order to solve the electromagnetic and thermal equations in such a complex material as a multilayered composite part. The code is based on the in-plane-out-of-plane separated representation within the Proper Generalized Decomposition framework. To improve the knowledge on the process, a parameter study in carried out in this paper.
Gaussian Process Regression Model in Spatial Logistic Regression
NASA Astrophysics Data System (ADS)
Sofro, A.; Oktaviarina, A.
2018-01-01
Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.
Reflow dynamics of thin patterned viscous films
NASA Astrophysics Data System (ADS)
Leveder, T.; Landis, S.; Davoust, L.
2008-01-01
This letter presents a study of viscous smoothening dynamics of a nanopatterned thin film. Ultrathin film manufacturing processes appearing to be a key point of nanotechnology engineering and numerous studies have been recently led in order to exhibit driving parameters of this transient surface motion, focusing on time scale accuracy method. Based on nanomechanical analysis, this letter shows that controlled shape measurements provided much more detailed information about reflow mechanism. Control of reflow process of any complex surface shape, or measurement of material parameter as thin film viscosity, free surface energy, or even Hamaker constant are therefore possible.
Heat and Mass Transfer Processes in Scrubber of Flue Gas Heat Recovery Device
NASA Astrophysics Data System (ADS)
Veidenbergs, Ivars; Blumberga, Dagnija; Vigants, Edgars; Kozuhars, Grigorijs
2010-01-01
The paper deals with the heat and mass transfer process research in a flue gas heat recovery device, where complicated cooling, evaporation and condensation processes are taking place simultaneously. The analogy between heat and mass transfer is used during the process of analysis. In order to prepare a detailed process analysis based on heat and mass process descriptive equations, as well as the correlation for wet gas parameter calculation, software in the
NASA Astrophysics Data System (ADS)
Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.
2018-03-01
Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.
Theory of Visual Attention (TVA) applied to mice in the 5-choice serial reaction time task.
Fitzpatrick, C M; Caballero-Puntiverio, M; Gether, U; Habekost, T; Bundesen, C; Vangkilde, S; Woldbye, D P D; Andreasen, J T; Petersen, A
2017-03-01
The 5-choice serial reaction time task (5-CSRTT) is widely used to measure rodent attentional functions. In humans, many attention studies in healthy and clinical populations have used testing based on Bundesen's Theory of Visual Attention (TVA) to estimate visual processing speeds and other parameters of attentional capacity. We aimed to bridge these research fields by modifying the 5-CSRTT's design and by mathematically modelling data to derive attentional parameters analogous to human TVA-based measures. C57BL/6 mice were tested in two 1-h sessions on consecutive days with a version of the 5-CSRTT where stimulus duration (SD) probe length was varied based on information from previous TVA studies. Thereafter, a scopolamine hydrobromide (HBr; 0.125 or 0.25 mg/kg) pharmacological challenge was undertaken, using a Latin square design. Mean score values were modelled using a new three-parameter version of TVA to obtain estimates of visual processing speeds, visual thresholds and motor response baselines in each mouse. The parameter estimates for each animal were reliable across sessions, showing that the data were stable enough to support analysis on an individual level. Scopolamine HBr dose-dependently reduced 5-CSRTT attentional performance while also increasing reward collection latency at the highest dose. Upon TVA modelling, scopolamine HBr significantly reduced visual processing speed at both doses, while having less pronounced effects on visual thresholds and motor response baselines. This study shows for the first time how 5-CSRTT performance in mice can be mathematically modelled to yield estimates of attentional capacity that are directly comparable to estimates from human studies.
Key Processes of Silicon-On-Glass MEMS Fabrication Technology for Gyroscope Application.
Ma, Zhibo; Wang, Yinan; Shen, Qiang; Zhang, Han; Guo, Xuetao
2018-04-17
MEMS fabrication that is based on the silicon-on-glass (SOG) process requires many steps, including patterning, anodic bonding, deep reactive ion etching (DRIE), and chemical mechanical polishing (CMP). The effects of the process parameters of CMP and DRIE are investigated in this study. The process parameters of CMP, such as abrasive size, load pressure, and pH value of SF1 solution are examined to optimize the total thickness variation in the structure and the surface quality. The ratio of etching and passivation cycle time and the process pressure are also adjusted to achieve satisfactory performance during DRIE. The process is optimized to avoid neither the notching nor lag effects on the fabricated silicon structures. For demonstrating the capability of the modified CMP and DRIE processes, a z-axis micro gyroscope is fabricated that is based on the SOG process. Initial test results show that the average surface roughness of silicon is below 1.13 nm and the thickness of the silicon is measured to be 50 μm. All of the structures are well defined without the footing effect by the use of the modified DRIE process. The initial performance test results of the resonant frequency for the drive and sense modes are 4.048 and 4.076 kHz, respectively. The demands for this kind of SOG MEMS device can be fulfilled using the optimized process.
Guo, Songfeng; Qi, Shengwen; Zou, Yu; Zheng, Bowen
2017-01-01
In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool—Fast Lagrangian Analysis of Continua in three Dimensions (FLAC3D), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter μ and the coefficient of variance (hcv, the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and hcv. The range of hcv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a consistent tendency between the local stress difference and the AE events process. PMID:28772738
Guo, Songfeng; Qi, Shengwen; Zou, Yu; Zheng, Bowen
2017-04-01
In rocks or rock-like materials, the constituents, e.g. quartz, calcite and biotite, as well as the microdefects have considerably different mechanical properties that make such materials heterogeneous at different degrees. The failure of materials subjected to external loads is a cracking process accompanied with stress redistribution due to material heterogeneity. However, the latter cannot be observed from the experiments in laboratory directly. In this study, the cracking and stress features during uniaxial compression process are numerically studied based on a presented approach. A plastic strain dependent strength model is implemented into the continuous numerical tool-Fast Lagrangian Analysis of Continua in three Dimensions (FLAC 3D ), and the Gaussian statistical function is adopted to depict the heterogeneity of mechanical parameters including elastic modulus, friction angle, cohesion and tensile strength. The mean parameter μ and the coefficient of variance ( h cv , the ratio of mean parameter to standard deviation) in the function are used to define the mean value and heterogeneity degree of the parameters, respectively. The results show that this numerical approach can perfectly capture the general features of brittle materials including fracturing process, AE events as well as stress-strain curves. Furthermore, the local stress disturbance is analyzed and the crack initiation stress threshold is identified based on the AE events process and stress-strain curves. It is shown that the stress concentration always appears in the undamaged elements near the boundary of damaged sites. The peak stress and crack initiation stress are both heterogeneity dependent, i.e., a linear relation exists between the two stress thresholds and h cv . The range of h cv is suggested as 0.12 to 0.21 for most rocks. The stress concentration degree is represented by a stress concentration factor and found also heterogeneity dominant. Finally, it is found that there exists a consistent tendency between the local stress difference and the AE events process.