Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process
ERIC Educational Resources Information Center
Yerushalmi, Edit; Magen, Esther
2006-01-01
Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…
Bayindir Çevik, Ayfer; Olgun, Nermin
2015-04-01
This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.
ERIC Educational Resources Information Center
Cormas, Peter C.
2016-01-01
Preservice teachers (N = 27) in two sections of a sequenced, methodological and process integrated mathematics/science course solved a levers problem with three similar learning processes and a problem-solving approach, and identified a problem-solving approach through one different learning process. Similar learning processes used included:…
ERIC Educational Resources Information Center
Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta
2015-01-01
The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…
NASA Astrophysics Data System (ADS)
Lundahl, Allison A.
Schools implementing Response to Intervention (RtI) procedures frequently engage in team problem-solving processes to address the needs of students who require intensive and individualized services. Because the effectiveness of the problem-solving process will impact the overall success of RtI systems, the present study was designed to learn more about how to strengthen the integrity of the problem-solving process. Research suggests that school districts must ensure high quality training and ongoing support to enhance the effectiveness, acceptability, and sustainability of the problem-solving process within an RtI model; however, there is a dearth of research examining the effectiveness of methods to provide this training and support. Consequently, this study investigated the effects of performance feedback and coaching strategies on the integrity with which teams of educators conducted the problem-solving process in schools. In addition, the relationships between problem-solving integrity, teacher acceptability, and student outcomes were examined. Results suggested that the performance feedback increased problem-solving procedural integrity across two of the three participating schools. Conclusions about the effectiveness of the (a) coaching intervention and (b) interventions implemented in the third school were inconclusive. Regression analyses indicated that the integrity with which the teams conducted the problem-solving process was a significant predictor of student outcomes. However, the relationship between problem-solving procedural integrity and teacher acceptability was not statistically significant.
NASA Astrophysics Data System (ADS)
Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.
2016-07-01
An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.
Understanding Undergraduates’ Problem-Solving Processes †
Nehm, Ross H.
2010-01-01
Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710
King Oedipus and the Problem Solving Process.
ERIC Educational Resources Information Center
Borchardt, Donald A.
An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…
Decomposing intuitive components in a conceptual problem solving task.
Reber, Rolf; Ruch-Monachon, Marie-Antoinette; Perrig, Walter J
2007-06-01
Research into intuitive problem solving has shown that objective closeness of participants' hypotheses were closer to the accurate solution than their subjective ratings of closeness. After separating conceptually intuitive problem solving from the solutions of rational incremental tasks and of sudden insight tasks, we replicated this finding by using more precise measures in a conceptual problem-solving task. In a second study, we distinguished performance level, processing style, implicit knowledge and subjective feeling of closeness to the solution within the problem-solving task and examined the relationships of these different components with measures of intelligence and personality. Verbal intelligence correlated with performance level in problem solving, but not with processing style and implicit knowledge. Faith in intuition, openness to experience, and conscientiousness correlated with processing style, but not with implicit knowledge. These findings suggest that one needs to decompose processing style and intuitive components in problem solving to make predictions on effects of intelligence and personality measures.
Gao, Ying; Zhang, Hao
2014-05-01
Previous behavioral studies have identified the significant role of subliminal cues in creative problem solving. However, neural mechanisms of such unconscious processing remain poorly understood. Here we utilized an event-related potential (ERP) approach and sandwich mask technique to investigate cerebral activities underlying the unconscious processing of cues in creative problem solving. College students were instructed to solve divergent problems under three different conditions (conscious cue, unconscious cue and no-cue conditions). Our data showed that creative problem solving can benefit from unconscious cues, although not as much as from conscious cues. More importantly, we found that there are crucial ERP components associated with unconscious processing of cues in solving divergent problems. Similar to the processing of conscious cues, processing unconscious cues in problem solving involves the semantic activation of unconscious cues (N280-340) in the right inferior parietal lobule (BA 40), new association formation (P350-450) in the right parahippocampal gyrus (BA 36), and mental representation transformation (P500-760) in the right superior temporal gyrus (BA 22). The present results suggest that creative problem solving can be modulated by unconscious processing of enlightening information that is weakly diffused in the semantic network beyond our conscious awareness. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Iiskala, Tuike; Vauras, Marja; Lehtinen, Erno; Salonen, Pekka
2011-01-01
This study investigated how metacognition appears as a socially shared phenomenon within collaborative mathematical word-problem solving processes of dyads of high-achieving pupils. Four dyads solved problems of different difficulty levels. The pupils were 10 years old. The problem-solving activities were videotaped and transcribed in terms of…
Capturing Problem-Solving Processes Using Critical Rationalism
ERIC Educational Resources Information Center
Chitpin, Stephanie; Simon, Marielle
2012-01-01
The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…
Moving your eyes to solution: effects of movements on the perception of a problem-solving task.
Werner, K; Raab, M
2014-01-01
There is ample evidence suggesting a bidirectional connection between bodily movements and cognitive processes, such as problem solving. Current research suggests that previous movements can influence the problem-solving process, but it is unclear what phase of this process is affected. Therefore, we investigated participants' gaze behaviour in the first phase of arithmetic problem solving with two groups (plus group, minus group) to explore a spatial bias toward the left or the right while perceiving a problem-solving task (the water-jar problem) after two different movements-that is, for the plus group, sorting marbles from two outer bowls into one in the middle, and for the minus group, sorting marbles from the middle bowl to the outer ones. We showed a right shift of spatial bias for the plus and to the left for the minus group in the perception and problem tasks. Although movements affected gaze, the groups did not differ in their overall problem-solving strategies; however, the first correct solutions did differ. This study provides further evidence of sensorimotor effects on problem solving and spatial bias and offers insight into how a two-phase problem-solving process is guided by sensorimotor information.
ERIC Educational Resources Information Center
Abele, Stephan
2018-01-01
This article deals with a theory-based investigation of the diagnostic problem-solving process in professional contexts. To begin with, a theory of the diagnostic problem-solving process was developed drawing on findings from different professional contexts. The theory distinguishes between four sub-processes of the diagnostic problem-solving…
Student’s thinking process in solving word problems in geometry
NASA Astrophysics Data System (ADS)
Khasanah, V. N.; Usodo, B.; Subanti, S.
2018-05-01
This research aims to find out the thinking process of seventh grade of Junior High School in solve word problem solving of geometry. This research was descriptive qualitative research. The subject of the research was selected based on sex and differences in mathematical ability. Data collection was done based on student’s work test, interview, and observation. The result of the research showed that there was no difference of thinking process between male and female with high mathematical ability, and there were differences of thinking process between male and female with moderate and low mathematical ability. Also, it was found that male with moderate mathematical ability took a long time in the step of making problem solving plans. While female with moderate mathematical ability took a long time in the step of understanding the problems. The importance of knowing the thinking process of students in solving word problem solving were that the teacher knows the difficulties faced by students and to minimize the occurrence of the same error in problem solving. Teacher could prepare the right learning strategies which more appropriate with student’s thinking process.
The effects of expected reward on creative problem solving.
Cristofori, Irene; Salvi, Carola; Beeman, Mark; Grafman, Jordan
2018-06-12
Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.
Parallel Algorithm Solves Coupled Differential Equations
NASA Technical Reports Server (NTRS)
Hayashi, A.
1987-01-01
Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.
ERIC Educational Resources Information Center
Koberg, Don; Bagnall, Jim
This publication provides an organizational scheme for a creative problem solving process. The authors indicate that all problems can benefit from the same logical and orderly process now employed to solve many complex problems. The principles remain constant; only specific methods change. Chapter 1 analyzes the development of creativity and fear…
ERIC Educational Resources Information Center
Anwar, Rahmad Bustanul; Rahmawati, Dwi
2017-01-01
The purpose of this research was to reveal how the construction process of symbolic representation and verbal representation made by students in problem solving. The construction process in this study referred to the problem-solving stage by Polya covering; 1) understanding the problem, 2) devising a plan, 3) carrying out the plan, and 4) looking…
Decision-Making and Problem-Solving Approaches in Pharmacy Education
Martin, Lindsay C.; Holdford, David A.
2016-01-01
Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823
Decision-Making and Problem-Solving Approaches in Pharmacy Education.
Martin, Lindsay C; Donohoe, Krista L; Holdford, David A
2016-04-25
Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.
Problem representation and mathematical problem solving of students of varying math ability.
Krawec, Jennifer L
2014-01-01
The purpose of this study was to examine differences in math problem solving among students with learning disabilities (LD, n = 25), low-achieving students (LA, n = 30), and average-achieving students (AA, n = 29). The primary interest was to analyze the processes students use to translate and integrate problem information while solving problems. Paraphrasing, visual representation, and problem-solving accuracy were measured in eighth grade students using a researcher-modified version of the Mathematical Processing Instrument. Results indicated that both students with LD and LA students struggled with processing but that students with LD were significantly weaker than their LA peers in paraphrasing relevant information. Paraphrasing and visual representation accuracy each accounted for a statistically significant amount of variance in problem-solving accuracy. Finally, the effect of visual representation of relevant information on problem-solving accuracy was dependent on ability; specifically, for students with LD, generating accurate visual representations was more strongly related to problem-solving accuracy than for AA students. Implications for instruction for students with and without LD are discussed.
A Contingency View of Problem Solving in Schools: A Case Analysis
ERIC Educational Resources Information Center
Hanson, E. Mark; Brown, Michael E.
1977-01-01
Gives definition to the problem-solving process as a cycle of events. The cycle contains numerous stages at which the problem can be deflected in any number of directions depending on the various contingencies surrounding the situation. As a result, problem solving is often an unpredictable process. (Author/IRT)
ERIC Educational Resources Information Center
Kamis, Arnold; Khan, Beverly K.
2009-01-01
How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…
The Impact of Metacognitive Strategies and Self-Regulating Processes of Solving Math Word Problems
ERIC Educational Resources Information Center
Vula, Eda; Avdyli, Rrezarta; Berisha, Valbona; Saqipi, Blerim; Elezi, Shpetim
2017-01-01
This empirical study investigates the impact of metacognitive strategies and self-regulating processes in learners' achievement on solving math word problems. It specifically analyzes the impact of the linguistic factor and the number of steps and arithmetical operations that learners need to apply during the process of solving math word problems.…
ERIC Educational Resources Information Center
Ekici, Didem Inel
2016-01-01
This study aimed to determine Turkish junior high-school students' perceptions of the general problem-solving process. The Turkish junior high-school students' perceptions of the general problem-solving process were examined in relation to their gender, grade level, age and their grade point with regards to the science course identified in the…
Thinking Process of Naive Problem Solvers to Solve Mathematical Problems
ERIC Educational Resources Information Center
Mairing, Jackson Pasini
2017-01-01
Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…
Newton, J Stephen; Horner, Robert H; Algozzine, Bob; Todd, Anne W; Algozzine, Kate
2012-08-01
Members of Positive Behavior Interventions and Supports (PBIS) teams from 34 elementary schools participated in a Team-Initiated Problem Solving (TIPS) Workshop and follow-up technical assistance. Within the context of a randomized wait-list controlled trial, team members who were the first recipients of the TIPS intervention demonstrated greater implementation integrity in using the problem-solving processes during their team meetings than did members of PBIS Teams in the Wait-List Control group. The success of TIPS at improving implementation integrity of the problem-solving processes is encouraging and suggests the value of conducting additional research focused on determining whether there is a functional relation between use of these problem-solving processes and actual resolution of targeted student academic and social problems. Copyright © 2012 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
2016-04-01
Practical Problem Solving Method RMD Resource Management Decision ROI Return on Investment SECAF Secretary of the Air Force SECNAV Secretary of...AFSO21 and now AF CPI, this program seeks to train and certify an organic cadre of CPI practitioners to support the use of its standard problem solving ...process known as the AF Practical Problem Solving Method (PPSM) to solve mission critical process deficiencies. The PPSM leverages several industry
Wang, Jing-Jy; Lo, Chi-Hui Kao; Ku, Ya-Lie
2004-11-01
A set of problem solving strategies integrated into nursing process in nursing core courses (PSNP) was developed for students enrolled in a post-RN baccalaureate nursing program (RN-BSN) in a university in Taiwan. The purpose of this study, therefore, was to evaluate the effectiveness of PSNP on students' clinical problem solving abilities. The one-group post-test design with repeated measures was used. In total 114 nursing students with 47 full-time students and 67 part-time students participated in this study. The nursing core courses were undertaken separately in three semesters. After each semester's learning, students would start their clinical practice, and were asked to submit three written nursing process recordings during each clinic. Assignments from the three practices were named post-test I, II, and III sequentially, and provided the data for this study. The overall score of problem solving indicated that score on the post-test III was significantly better than that on post-test I and II, meaning both full-time and part-time students' clinical problem solving abilities improved at the last semester. In conclusion, problem-solving strategies integrated into nursing process designed for future RN-BSN students are recommendable.
A problem-solving routine for improving hospital operations.
Ghosh, Manimay; Sobek Ii, Durward K
2015-01-01
The purpose of this paper is to examine empirically why a systematic problem-solving routine can play an important role in the process improvement efforts of hospitals. Data on 18 process improvement cases were collected through semi-structured interviews, reports and other documents, and artifacts associated with the cases. The data were analyzed using a grounded theory approach. Adherence to all the steps of the problem-solving routine correlated to greater degrees of improvement across the sample. Analysis resulted in two models. The first partially explains why hospital workers tended to enact short-term solutions when faced with process-related problems; and tended not seek longer-term solutions that prevent problems from recurring. The second model highlights a set of self-reinforcing behaviors that are more likely to address problem recurrence and result in sustained process improvement. The study was conducted in one hospital setting. Hospital managers can improve patient care and increase operational efficiency by adopting and diffusing problem-solving routines that embody three key characteristics. This paper offers new insights on why caregivers adopt short-term approaches to problem solving. Three characteristics of an effective problem-solving routine in a healthcare setting are proposed.
ERIC Educational Resources Information Center
Scherer, Ronny; Tiemann, Rudiger
2012-01-01
The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…
Front-Stage Stars and Backstage Producers: The Role of Judges in Problem-Solving Courts1
Portillo, Shannon; Rudes, Danielle; Viglione, Jill; Nelson, Matthew; Taxman, Faye
2012-01-01
In problem-solving courts judges are no longer neutral arbitrators in adversarial justice processes. Instead, judges directly engage with court participants. The movement towards problem-solving court models emerges from a collaborative therapeutic jurisprudence framework. While most scholars argue judges are the central courtroom actors within problem-solving courts, we find judges are the stars front-stage, but play a more supporting role backstage. We use Goffman's front-stage-backstage framework to analyze 350 hours of ethnographic fieldwork within five problem-solving courts. Problem-solving courts are collaborative organizations with shifting leadership, based on forum. Understanding how the roles of courtroom workgroup actors adapt under the new court model is foundational for effective implementation of these justice processes. PMID:23397430
Front-Stage Stars and Backstage Producers: The Role of Judges in Problem-Solving Courts().
Portillo, Shannon; Rudes, Danielle; Viglione, Jill; Nelson, Matthew; Taxman, Faye
2013-01-01
In problem-solving courts judges are no longer neutral arbitrators in adversarial justice processes. Instead, judges directly engage with court participants. The movement towards problem-solving court models emerges from a collaborative therapeutic jurisprudence framework. While most scholars argue judges are the central courtroom actors within problem-solving courts, we find judges are the stars front-stage, but play a more supporting role backstage. We use Goffman's front-stage-backstage framework to analyze 350 hours of ethnographic fieldwork within five problem-solving courts. Problem-solving courts are collaborative organizations with shifting leadership, based on forum. Understanding how the roles of courtroom workgroup actors adapt under the new court model is foundational for effective implementation of these justice processes.
Interference thinking in constructing students’ knowledge to solve mathematical problems
NASA Astrophysics Data System (ADS)
Jayanti, W. E.; Usodo, B.; Subanti, S.
2018-04-01
This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.
Schema Knowledge for Solving Arithmetic Story Problems: Some Affective Components.
ERIC Educational Resources Information Center
Marshall, Sandra P.
This report discusses the role of affect in cognitive processing. The importance of affect in processing mathematical information is described in the context of solving arithmetic story problems. Some ideas are offered about the way affective responses to mathematical problem solving situations influence the development, maintenance, and retrieval…
Persona-Based Journaling: Striving for Authenticity in Representing the Problem-Solving Process
ERIC Educational Resources Information Center
Liljedahl, Peter
2007-01-01
Students' mathematical problem-solving experiences are fraught with failed attempts, wrong turns, and partial successes that move in fits and jerks, oscillating between periods of inactivity, stalled progress, rapid advancement, and epiphanies. Students' problem-solving journals, however, do not always reflect this rather organic process. Without…
The Process of Solving Complex Problems
ERIC Educational Resources Information Center
Fischer, Andreas; Greiff, Samuel; Funke, Joachim
2012-01-01
This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…
The Future Problem Solving Program.
ERIC Educational Resources Information Center
Crabbe, Anne B.
1989-01-01
Describes the Future Problem Solving Program, in which students from the U.S. and around the world are tackling some complex challenges facing society, ranging from acid rain to terrorism. The program uses a creative problem solving process developed for business and industry. A sixth-grade toxic waste cleanup project illustrates the process.…
The semantic system is involved in mathematical problem solving.
Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng
2018-02-01
Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.
The Place of Problem Solving in Contemporary Mathematics Curriculum Documents
ERIC Educational Resources Information Center
Stacey, Kaye
2005-01-01
This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…
ERIC Educational Resources Information Center
Karatas, Ilhan; Baki, Adnan
2013-01-01
Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…
ERIC Educational Resources Information Center
Wasserstein-Warnet, Marc M.
2000-01-01
Asserts that traditional strategies of problem-solving are inadequate and that a new method is needed. Suggests four ways to redirect attention in problem solving: overcoming an instant or linear perception of time, interacting between the problem's components and its whole, searching for the meaning or sense of a problem, and studying the…
Vandermorris, Susan; Sheldon, Signy; Winocur, Gordon; Moscovitch, Morris
2013-11-01
The relationship of higher order problem solving to basic neuropsychological processes likely depends on the type of problems to be solved. Well-defined problems (e.g., completing a series of errands) may rely primarily on executive functions. Conversely, ill-defined problems (e.g., navigating socially awkward situations) may, in addition, rely on medial temporal lobe (MTL) mediated episodic memory processes. Healthy young (N = 18; M = 19; SD = 1.3) and old (N = 18; M = 73; SD = 5.0) adults completed a battery of neuropsychological tests of executive and episodic memory function, and experimental tests of problem solving. Correlation analyses and age group comparisons demonstrated differential contributions of executive and autobiographical episodic memory function to well-defined and ill-defined problem solving and evidence for an episodic simulation mechanism underlying ill-defined problem solving efficacy. Findings are consistent with the emerging idea that MTL-mediated episodic simulation processes support the effective solution of ill-defined problems, over and above the contribution of frontally mediated executive functions. Implications for the development of intervention strategies that target preservation of functional independence in older adults are discussed.
The Research of Improving the Particleboard Glue Dosing Process Based on TRIZ Analysis
NASA Astrophysics Data System (ADS)
Yu, Huiling; Fan, Delin; Zhang, Yizhuo
This research creates a design methodology by synthesizing the Theory of Inventive Problem Solving (TRIZ) and cascade control based on Smith predictor. The particleboard glue supplying and dosing system case study defines the problem and the solution using the methodology proposed in the paper. Status difference existing in the gluing dosing process of particleboard production usually causes gluing volume inaccurately. In order to solve the problem above, we applied the TRIZ technical contradiction and inventive principle to improve the key process of particleboard production. The improving method mapped inaccurate problem to TRIZ technical contradiction, the prior action proposed Smith predictor as the control algorithm in the glue dosing system. This research examines the usefulness of a TRIZ based problem-solving process designed to improve the problem-solving ability of users in addressing difficult or reoccurring problems and also testify TRIZ is practicality and validity. Several suggestions are presented on how to approach this problem.
Facilitating Case Reuse during Problem Solving in Algebra-Based Physics
ERIC Educational Resources Information Center
Mateycik, Frances Ann
2010-01-01
This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…
Enhancing Students' Problem-Solving Skills through Context-Based Learning
ERIC Educational Resources Information Center
Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi
2015-01-01
Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…
Processes involved in solving mathematical problems
NASA Astrophysics Data System (ADS)
Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra
2018-04-01
This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.
ERIC Educational Resources Information Center
Lin, Wei-Lun; Lien, Yunn-Wen
2013-01-01
This study examined how working memory plays different roles in open-ended versus closed-ended creative problem-solving processes, as represented by divergent thinking tests and insight problem-solving tasks. With respect to the analysis of different task demands and the framework of dual-process theories, the hypothesis was that the idea…
ERIC Educational Resources Information Center
Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen
2009-01-01
In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…
Writing to Learn Statistics in an Advanced Placement Statistics Course
ERIC Educational Resources Information Center
Northrup, Christian Glenn
2012-01-01
This study investigated the use of writing in a statistics classroom to learn if writing provided a rich description of problem-solving processes of students as they solved problems. Through analysis of 329 written samples provided by students, it was determined that writing provided a rich description of problem-solving processes and enabled…
Against All Odds: Problem-Solving Strategies and Behavioural Characteristics of Novice Students
ERIC Educational Resources Information Center
Chang, Pei-Fen; Lin, Miao-Chen
2015-01-01
This study investigates problem-solving difficulties of novices in a classroom setting, using a German instructional tool, the Fischertechnik kit of approximately 400 parts. In order to analyse the students' thinking processes as they solved the problems, verbal protocol analysis (VPA) was used to record the students'' thinking processes and…
ERIC Educational Resources Information Center
Lin, Shih-Yin; Singh, Chandralekha
2015-01-01
It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong…
Analysis of mathematical problem-solving ability based on metacognition on problem-based learning
NASA Astrophysics Data System (ADS)
Mulyono; Hadiyanti, R.
2018-03-01
Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.
Psychosocial dimensions of solving an indoor air problem.
Lahtinen, Marjaana; Huuhtanen, Pekka; Kähkönen, Erkki; Reijula, Kari
2002-03-01
This investigation focuses on the psychological and social dimensions of managing and solving indoor air problems. The data were collected in nine workplaces by interviews (n = 85) and questionnaires (n = 375). Indoor air problems in office environments have traditionally utilized industrial hygiene or technical expertise. However, indoor air problems at workplaces are often more complex issues to solve. Technical questions are inter-related with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the solving process are also put to the test. In the present study, the interviewees were very critical of the process of solving the indoor air problem. The responsibility for coordinating the problem-managing process was generally considered vague, as were the roles and functions of the various parties. Communication problems occurred and rumors about the indoor air problem circulated widely. Conflicts were common, complicating the process in several ways. The research focused on examining different ways of managing and resolving an indoor air problem. In addition, reference material on the causal factors of the indoor air problem was also acquired. The study supported the hypothesis that psychosocial factors play a significant role in indoor air problems.
Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.
2014-01-01
This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804
Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C
2014-01-01
This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…
Problem Solving: How Can We Help Students Overcome Cognitive Difficulties
ERIC Educational Resources Information Center
Cardellini, Liberato
2014-01-01
The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…
NASA Astrophysics Data System (ADS)
Ebomoyi, Josephine Itota
The objectives of this study were as follows: (1) Determine the relationship between learning strategies and performance in problem solving, (2) Explore the role of a student's declared major on performance in problem solving, (3) Understand the decision making process of high and low achievers during problem solving. Participants (N = 65) solved problems using the Interactive multimedia exercise (IMMEX) software. All participants not only solved "Microquest," which focuses on cellular processes and mode of action of antibiotics, but also "Creeping Crud," which focuses on the cause, origin and transmission of diseases. Participants also responded to the "Motivated Strategy Learning Questionnaire" (MSLQ). Hierarchical multiple regression was used for analysis with GPA (Gracie point average) as a control. There were 49 (78.6%) that successfully solved "Microquest" while 52 (82.5%) successfully solved "Creeping Crud". Metacognitive self regulation strategy was significantly (p < .10) related to ability to solve "Creeping Crud". Peer learning strategy showed a positive significant (p < .10) relationship with scores obtained from solving "Creeping Crud". Students' declared major made a significant (p < .05) difference on the ability to solve "Microquest". A subset (18) volunteered for a think aloud method to determine decision-making process. High achievers used fewer steps, and had more focused approach than low achievers. Common strategies and attributes included metacognitive skills, writing to keep track, using prior knowledge. Others included elements of frustration/confusion and self-esteem problems. The implications for educational and relevance to real life situations are discussed.
Pre-service mathematics teachers’ ability in solving well-structured problem
NASA Astrophysics Data System (ADS)
Paradesa, R.
2018-01-01
This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.
On the Analysis of Two-Person Problem Solving Protocols.
ERIC Educational Resources Information Center
Schoenfeld, Alan H.
Methodological issues in the use of protocol analysis for research into human problem solving processes are examined through a case study in which two students were videotaped as they worked together to solve mathematical problems "out loud." The students' chosen strategic or executive behavior in examining and solving a problem was…
Internet Computer Coaches for Introductory Physics Problem Solving
ERIC Educational Resources Information Center
Xu Ryan, Qing
2013-01-01
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…
Teaching Social Problem Solving to Individuals with Mental Retardation
ERIC Educational Resources Information Center
Crites, Steven A.; Dunn, Caroline
2004-01-01
The purpose of this study was to determine effectiveness of a problem-solving curriculum for transition-age students with mental retardation. The interactive training program Solving Your Problems (Browning, n.d.) was used to teach a five-step process for solving problems. Results indicate participants in the training group were able to use the…
The Microcomputer--A Problem Solving Tool.
ERIC Educational Resources Information Center
Hoelscher, Karen J.
Designed to assist teachers in using the microcomputer as a tool to teach problem solving strategies, this document is divided into two sections: the first introduces the concept of problem solving as a thinking process, and suggests means by which a teacher can become an effective guide for the learning of problem solving skills; the second…
Working Memory Components as Predictors of Children's Mathematical Word Problem Solving
ERIC Educational Resources Information Center
Zheng, Xinhua; Swanson, H. Lee; Marcoulides, George A.
2011-01-01
This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N = 310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM,…
Independence Pending: Teacher Behaviors Preceding Learner Problem Solving
ERIC Educational Resources Information Center
Roesler, Rebecca A.
2017-01-01
The purposes of the present study were to identify the teacher behaviors that preceded learners' active participation in solving musical and technical problems and describe learners' roles in the problem-solving process. I applied an original model of problem solving to describe the behaviors of teachers and students in 161 rehearsal frames…
Engineering design: A cognitive process approach
NASA Astrophysics Data System (ADS)
Strimel, Greg Joseph
The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.
NASA Astrophysics Data System (ADS)
Kuncoro, K. S.; Junaedi, I.; Dwijanto
2018-03-01
This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.
Performance in Mathematical Problem Solving as a Function of Comprehension and Arithmetic Skills
ERIC Educational Resources Information Center
Voyer, Dominic
2011-01-01
Many factors influence a student's performance in word (or textbook) problem solving in class. Among them is the comprehension process the pupils construct during their attempt to solve the problem. The comprehension process may include some less formal representations, based on pupils' real-world knowledge, which support the construction of a…
A Descriptive Study of a Building-Based Team Problem-Solving Process
ERIC Educational Resources Information Center
Brewer, Alexander B.
2010-01-01
The purpose of this study was to empirically evaluate Building-Based Teams for General Education Intervention or BBT for GEI. BBT for GEI is a team problem-solving process designed to assist schools in conducting research-based interventions in the general education setting. Problem-solving teams are part of general education and provide support…
Working in Dyads and Alone: Examining Process Variables in Solving Insight Problems
ERIC Educational Resources Information Center
Tidikis, Viktoria; Ash, Ivan K.
2013-01-01
This study investigated the effects of working in dyads and their associated gender composition on performance (solution rate and time) and process variables (number of impasses, number of passed solutions, and number of problem solving suggestions and interactions) in a set of classic insight problem solving tasks. Two types of insight problems…
NASA Astrophysics Data System (ADS)
Purwoko, Saad, Noor Shah; Tajudin, Nor'ain Mohd
2017-05-01
This study aims to: i) develop problem solving questions of Linear Equations System of Two Variables (LESTV) based on levels of IPT Model, ii) explain the level of students' skill of information processing in solving LESTV problems; iii) explain students' skill in information processing in solving LESTV problems; and iv) explain students' cognitive process in solving LESTV problems. This study involves three phases: i) development of LESTV problem questions based on Tessmer Model; ii) quantitative survey method on analyzing students' skill level of information processing; and iii) qualitative case study method on analyzing students' cognitive process. The population of the study was 545 eighth grade students represented by a sample of 170 students of five Junior High Schools in Hilir Barat Zone, Palembang (Indonesia) that were chosen using cluster sampling. Fifteen students among them were drawn as a sample for the interview session with saturated information obtained. The data were collected using the LESTV problem solving test and the interview protocol. The quantitative data were analyzed using descriptive statistics, while the qualitative data were analyzed using the content analysis. The finding of this study indicated that students' cognitive process was just at the step of indentifying external source and doing algorithm in short-term memory fluently. Only 15.29% students could retrieve type A information and 5.88% students could retrieve type B information from long-term memory. The implication was the development problems of LESTV had validated IPT Model in modelling students' assessment by different level of hierarchy.
Complex collaborative problem-solving processes in mission control.
Fiore, Stephen M; Wiltshire, Travis J; Oglesby, James M; O'Keefe, William S; Salas, Eduardo
2014-04-01
NASA's Mission Control Center (MCC) is responsible for control of the International Space Station (ISS), which includes responding to problems that obstruct the functioning of the ISS and that may pose a threat to the health and well-being of the flight crew. These problems are often complex, requiring individuals, teams, and multiteam systems, to work collaboratively. Research is warranted to examine individual and collaborative problem-solving processes in this context. Specifically, focus is placed on how Mission Control personnel-each with their own skills and responsibilities-exchange information to gain a shared understanding of the problem. The Macrocognition in Teams Model describes the processes that individuals and teams undertake in order to solve problems and may be applicable to Mission Control teams. Semistructured interviews centering on a recent complex problem were conducted with seven MCC professionals. In order to assess collaborative problem-solving processes in MCC with those predicted by the Macrocognition in Teams Model, a coding scheme was developed to analyze the interview transcriptions. Findings are supported with excerpts from participant transcriptions and suggest that team knowledge-building processes accounted for approximately 50% of all coded data and are essential for successful collaborative problem solving in mission control. Support for the internalized and externalized team knowledge was also found (19% and 20%, respectively). The Macrocognition in Teams Model was shown to be a useful depiction of collaborative problem solving in mission control and further research with this as a guiding framework is warranted.
Collaborative problem solving with a total quality model.
Volden, C M; Monnig, R
1993-01-01
A collaborative problem-solving system committed to the interests of those involved complies with the teachings of the total quality management movement in health care. Deming espoused that any quality system must become an integral part of routine activities. A process that is used consistently in dealing with problems, issues, or conflicts provides a mechanism for accomplishing total quality improvement. The collaborative problem-solving process described here results in quality decision-making. This model incorporates Ishikawa's cause-and-effect (fishbone) diagram, Moore's key causes of conflict, and the steps of the University of North Dakota Conflict Resolution Center's collaborative problem solving model.
ERIC Educational Resources Information Center
Ozdemir, S.; Reis, Z. Ayvaz
2013-01-01
Mathematics is an important discipline, providing crucial tools, such as problem solving, to improve our cognitive abilities. In order to solve a problem, it is better to envision and represent through multiple means. Multiple representations can help a person to redefine a problem with his/her own words in that envisioning process. Dynamic and…
A meta-heuristic method for solving scheduling problem: crow search algorithm
NASA Astrophysics Data System (ADS)
Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi
2018-04-01
Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.
Hoskinson, A-M; Caballero, M D; Knight, J K
2013-06-01
If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.
ERIC Educational Resources Information Center
Ruh, Nina; Rahm, Benjamin; Unterrainer, Josef M.; Weiller, Cornelius; Kaller, Christoph P.
2012-01-01
In a companion study, eye-movement analyses in the Tower of London task (TOL) revealed independent indicators of functionally separable cognitive processes during problem solving, with processes of building up an internal representation of the problem preceding actual planning processes. These results imply that processes of internalization and…
Are Middle School Mathematics Teachers Able to Solve Word Problems without Using Variable?
ERIC Educational Resources Information Center
Gökkurt Özdemir, Burçin; Erdem, Emrullah; Örnek, Tugba; Soylu, Yasin
2018-01-01
Many people consider problem solving as a complex process in which variables such as "x," "y" are used. Problems may not be solved by only using "variable." Problem solving can be rationalized and made easier using practical strategies. When especially the development of children at younger ages is considered, it is…
Chen, Zhe; Honomichl, Ryan; Kennedy, Diane; Tan, Enda
2016-06-01
The present study examines 5- to 8-year-old children's relation reasoning in solving matrix completion tasks. This study incorporates a componential analysis, an eye-tracking method, and a microgenetic approach, which together allow an investigation of the cognitive processing strategies involved in the development and learning of children's relational thinking. Developmental differences in problem-solving performance were largely due to deficiencies in engaging the processing strategies that are hypothesized to facilitate problem-solving performance. Feedback designed to highlight the relations between objects within the matrix improved 5- and 6-year-olds' problem-solving performance, as well as their use of appropriate processing strategies. Furthermore, children who engaged the processing strategies early on in the task were more likely to solve subsequent problems in later phases. These findings suggest that encoding relations, integrating rules, completing the model, and generalizing strategies across tasks are critical processing components that underlie relational thinking. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Integrating Computers into the Problem-Solving Process.
ERIC Educational Resources Information Center
Lowther, Deborah L.; Morrison, Gary R.
2003-01-01
Asserts that within the context of problem-based learning environments, professors can encourage students to use computers as problem-solving tools. The ten-step Integrating Technology for InQuiry (NteQ) model guides professors through the process of integrating computers into problem-based learning activities. (SWM)
ERIC Educational Resources Information Center
Krawec, Jennifer; Huang, Jia; Montague, Marjorie; Kressler, Benikia; de Alba, Amanda Melia
2013-01-01
This study investigated the effectiveness of "Solve It!" instruction on students' knowledge of math problem-solving strategies. "Solve It!" is a cognitive strategy intervention designed to improve the math problem solving of middle school students with learning disabilities (LD). Participants included seventh- and eighth-grade…
Spontaneous gestures influence strategy choices in problem solving.
Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro
2011-09-01
Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.
Embedding Game-Based Problem-Solving Phase into Problem-Posing System for Mathematics Learning
ERIC Educational Resources Information Center
Chang, Kuo-En; Wu, Lin-Jung; Weng, Sheng-En; Sung, Yao-Ting
2012-01-01
A problem-posing system is developed with four phases including posing problem, planning, solving problem, and looking back, in which the "solving problem" phase is implemented by game-scenarios. The system supports elementary students in the process of problem-posing, allowing them to fully engage in mathematical activities. In total, 92 fifth…
Lenguaje y Proceso de Pensamiento (Language and Thought Processes)
ERIC Educational Resources Information Center
Rimoldi, H. J. A.
1978-01-01
Thought processes as they are observed during problem solving are discussed. A theoretical framework is designed to establish the correspondence between the tactics the subjects use to solve problems and thinking processes. (NCR)
Addressing Society's Problems in a Global Studies Class.
ERIC Educational Resources Information Center
Pesce, Louis; And Others
1996-01-01
Describes the adaptation of the Future Problem-Solving Process (FPS) in a global studies class. The process applies state-of-the-art critical thinking and problem solving to unstable areas such as the Middle East and the former Soviet Union. Includes handouts directing the students through the process. (MJP)
Problem Solving Process Research of Everyone Involved in Innovation Based on CAI Technology
NASA Astrophysics Data System (ADS)
Chen, Tao; Shao, Yunfei; Tang, Xiaowo
It is very important that non-technical department personnel especially bottom line employee serve as innovators under the requirements of everyone involved in innovation. According the view of this paper, it is feasible and necessary to build everyone involved in innovation problem solving process under Total Innovation Management (TIM) based on the Theory of Inventive Problem Solving (TRIZ). The tools under the CAI technology: How TO mode and science effects database could be very useful for all employee especially non-technical department and bottom line for innovation. The problem solving process put forward in the paper focus on non-technical department personnel especially bottom line employee for innovation.
Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes
Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.
2017-01-01
Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. PMID:28389109
Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.
Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G
2017-08-01
To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Treffinger, Donald J.; Selby, Edwin C.; Isaksen, Scott G.
2008-01-01
More than five decades of research and development have focused on making the Creative Problem Solving process and tools accessible across a wide range of ages and contexts. Recent evidence indicates that when individuals, in both school and corporate settings, understand their own style of problem solving, they are able to learn and apply process…
Iglesias-Sarmiento, Valentín; Deaño, Manuel; Alfonso, Sonia; Conde, Ángeles
2017-02-01
The purpose of this study was to examine the contribution of cognitive functioning to arithmetic problem solving and to explore the cognitive profiles of children with attention deficit and/or hyperactivity disorder (ADHD) and with mathematical learning disabilities (MLD). The sample was made up of a total of 90 students of 4th, 5th, and 6th grade organized in three: ADHD (n=30), MLD (n=30) and typically achieving control (TA; n=30) group. Assessment was conducted in two sessions in which the PASS processes and arithmetic problem solving were evaluated. The ADHD group's performance in planning and attention was worse than that of the control group. Children with MLD obtained poorer results than the control group in planning and simultaneous and successive processing. Executive processes predicted arithmetic problem solving in the ADHD group whereas simultaneous processing was the unique predictor in the MLD sample. Children with ADHD and with MLD showed characteristic cognitive profiles. Groups' problem-solving performance can be predicted from their cognitive functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.
McMain, Shelley; Links, Paul S; Guimond, Tim; Wnuk, Susan; Eynan, Rahel; Bergmans, Yvonne; Warwar, Serine
2013-01-01
This exploratory study examined specific emotion processes and cognitive problem-solving processes in individuals with borderline personality disorder (BPD), and assessed the relationship of these changes to treatment outcome. Emotion and cognitive problem-solving processes were assessed using the Toronto Alexithymia Scale, the Linguistic Inquiry Word Count, the Derogatis Affect Balance Scale, and the Problem Solving Inventory. Participants who showed greater improvements in affect balance, problem solving, and the ability to identify and describe emotions showed greater improvements on treatment outcome, with affect balance remaining statistically significant under the most conservative conditions. The results provide preliminary evidence to support the theory that specific improvements in emotion and cognitive processes are associated with positive treatment outcomes (symptom distress, interpersonal functioning) in BPD. The implications for treatment are discussed.
Characterising the Cognitive Processes in Mathematical Investigation
ERIC Educational Resources Information Center
Yeo, Joseph B. W.; Yeap, Ban Har
2010-01-01
Many educators believe that mathematical investigation involves both problem posing and problem solving, but some teachers have taught their students to investigate during problem solving. The confusion about the relationship between investigation and problem solving may affect how teachers teach their students and how researchers conduct their…
ERIC Educational Resources Information Center
Chang, C.-J.; Chang, M.-H.; Liu, C.-C.; Chiu, B.-C.; Fan Chiang, S.-H.; Wen, C.-T.; Hwang, F.-K.; Chao, P.-Y.; Chen, Y.-L.; Chai, C.-S.
2017-01-01
Researchers have indicated that the collaborative problem-solving space afforded by the collaborative systems significantly impact the problem-solving process. However, recent investigations into collaborative simulations, which allow a group of students to jointly manipulate a problem in a shared problem space, have yielded divergent results…
Problem Finding in Professional Learning Communities: A Learning Study Approach
ERIC Educational Resources Information Center
Tan, Yuen Sze Michelle; Caleon, Imelda Santos
2016-01-01
This study marries collaborative problem solving and learning study in understanding the onset of a cycle of teacher professional development process within school-based professional learning communities (PLCs). It aimed to explore how a PLC carried out collaborative problem finding--a key process involved in collaborative problem solving--that…
ERIC Educational Resources Information Center
Castellan, N. John, Jr., Ed.; And Others
The conference papers in this collection emphasize the theoretical significance of their authors' work in the areas of mathematical and cognitive psychology. Major topics considered include facilitation of problem solving; psychological differences among problem isomorphs; the process of understanding in problem solving; processing information for…
A Rubric for Assessing Students' Experimental Problem-Solving Ability
ERIC Educational Resources Information Center
Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.
2012-01-01
The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…
Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.
2013-01-01
If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623
Case-based reasoning in design: An apologia
NASA Technical Reports Server (NTRS)
Pulaski, Kirt
1990-01-01
Three positions are presented and defended: the process of generating solutions in problem solving is viewable as a design task; case-based reasoning is a strong method of problem solving; and a synergism exists between case-based reasoning and design problem solving.
A Cognitive Information Processing Approach to Employment Problem Solving and Decision Making.
ERIC Educational Resources Information Center
Sampson, James P., Jr.; Lenz, Janet G.; Reardon, Robert C.; Peterson, Gary W.
1999-01-01
Applies a cognitive information processing approach to the specific process of employment problem solving and decision making. Definitions and accompanying employment examples are followed by an exploration of the nature of employment problems. Examples of positive and negative cognitions that have an impact on the effectiveness of employment…
ERIC Educational Resources Information Center
Rimoldi, Horacio J. A.; And Others
A technique using information and decision-making theories to evaluate problem solving tactics is presented. In problem solving, the process of solution is evaluated by investigating the questions that the subject doing the problem solving asks. The sequence of questions asked is called a tactic. It is assumed that: (1) tactics are the observable…
ERIC Educational Resources Information Center
van Velzen, Joke H.
2017-01-01
The solving of reasoning problems in first language (L1) education can produce an understanding of language, and student autonomy in language problem solving, both of which are contemporary goals in senior high school education. The purpose of this study was to obtain a better understanding of senior high school students' knowledge of the language…
Kolesnikova, Jelena; Miezitis, Solveiga; Osis, Guntars
2013-08-01
Drug-addicted patients exhibit various personality disorders that interfere with their adaptation to society, as well as their ability to participate in the rehabilitation process. The Latvian Rehabilitation Programme for drug addicts includes social problem-solving training to help patients reintegrate into society. However, the role of personality disorders has not been investigated in relation to this process. The aim of the study is to assess whether personality disorders predict changes in dimensions of social problem-solving after 6 months of rehabilitation for drug-addicted patients. The sample of this study consists of 31 drug-addicted patients from the Latvian rehabilitation centres aged 21-35 (females 21%, males 79%). Two inventories are used: the Social Problem-Solving Inventory--Revised (SPSI-R) and Millon(TM) Clinical Multiaxial Inventory--III (MCMI-III) adapted into Russian. Results of the study indicated that some MCMI-III personality disorders (Schizoid and Histrionic) negatively predicted SPSI-R Positive problem orientation, and narcissistic disorder positively predicted SPSI-R Avoidance style after 6 months in the Latvian Rehabilitation Programme. The other personality disorders did not predict social problem-solving dimensions. The results of the study suggest that some personality disorders are related to changes in social problem-solving dimensions for drug-addicted patients. Hence, it is important to consider the implications of particular personality disorders to facilitate the implementation of social problem-solving rehabilitation programmes.
Superintendents' Group Problem-Solving Processes.
ERIC Educational Resources Information Center
Leithwood, Kenneth; And Others
Findings of a study that examined the collaborative problem-solving processes used by superintendents are presented in this paper. Based on information processing theory, the study utilizes a model composed of the following components: interpretation; goals; principles and values; constraints; solution processes; and mood. Data were derived from…
Evaluating Students' Beliefs in Problem Solving Process: A Case Study
ERIC Educational Resources Information Center
Ozturk, Tugba; Guven, Bulent
2016-01-01
Problem solving is not simply a process that ends when an answer is found; it is a scientific process that evolves from understanding the problem to evaluating the solution. This process is affected by several factors. Among these, one of the most substantial is belief. The purpose of this study was to evaluate the beliefs of high school students…
ERIC Educational Resources Information Center
Mason, Andrew J.; Singh, Chandralekha
2016-01-01
Students must learn effective problem solving strategies in order to develop expertise in physics. Effective problem solving strategies include a conceptual analysis of the problem followed by planning of the solution, and then implementation, evaluation, and reflection upon the process. Research suggests that converting a problem from the initial…
A Problem-Solving Conceptual Framework and Its Implications in Designing Problem-Posing Tasks
ERIC Educational Resources Information Center
Singer, Florence Mihaela; Voica, Cristian
2013-01-01
The links between the mathematical and cognitive models that interact during problem solving are explored with the purpose of developing a reference framework for designing problem-posing tasks. When the process of solving is a successful one, a solver successively changes his/her cognitive stances related to the problem via transformations that…
A Coding Scheme for Analysing Problem-Solving Processes of First-Year Engineering Students
ERIC Educational Resources Information Center
Grigg, Sarah J.; Benson, Lisa C.
2014-01-01
This study describes the development and structure of a coding scheme for analysing solutions to well-structured problems in terms of cognitive processes and problem-solving deficiencies for first-year engineering students. A task analysis approach was used to assess students' problem solutions using the hierarchical structure from a…
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-06-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).
Tour of a simple trigonometry problem
NASA Astrophysics Data System (ADS)
Poon, Kin-Keung
2012-06-01
This article focuses on a simple trigonometric problem that generates a strange phenomenon when different methods are applied to tackling it. A series of problem-solving activities are discussed, so that students can be alerted that the precision of diagrams is important when solving geometric problems. In addition, the problem-solving plan was implemented in a high school and the results indicated that students are relatively weak in problem-solving abilities but they understand and appreciate the thinking process in different stages and steps of the activities.
ERIC Educational Resources Information Center
Leikin, Roza; Waisman, Ilana; Leikin, Mark
2016-01-01
We asked: "What are the similarities and differences in mathematical processing associated with solving learning-based and insight-based problems?" To answer this question, the ERP research procedure was employed with 69 male adolescent subjects who solved specially designed insight-based and learning-based tests. Solutions of…
ERIC Educational Resources Information Center
Hegde, Balasubrahmanya; Meera, B. N.
2012-01-01
A perceived difficulty is associated with physics problem solving from a learner's viewpoint, arising out of a multitude of reasons. In this paper, we have examined the microstructure of students' thought processes during physics problem solving by combining the analysis of responses to multiple-choice questions and semistructured student…
NASA Astrophysics Data System (ADS)
Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu
2015-12-01
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
Socratic Problem-Solving in the Business World
ERIC Educational Resources Information Center
Peterson, Evan
2009-01-01
Accurate and effective decision-making is one of the most essential skills necessary for organizational success. The problem-solving process provides a systematic means of effectively recognizing, analyzing, and solving a dilemma. The key element in this process is critical analysis of the situation, which can be executed by a taking a Socratic…
Students’ difficulties in probabilistic problem-solving
NASA Astrophysics Data System (ADS)
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-03-01
There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.
Problem solving using soft systems methodology.
Land, L
This article outlines a method of problem solving which considers holistic solutions to complex problems. Soft systems methodology allows people involved in the problem situation to have control over the decision-making process.
What's the Right Answer? Team Problem-Solving in Environments of Uncertainty
ERIC Educational Resources Information Center
Jameson, Daphne A.
2009-01-01
Whether in the workplace or the classroom, many teams approach problem-solving as a search for certainty--even though certainty rarely exists in business. This search for the one right answer to a problem creates unrealistic expectations and often undermines teams' effectiveness. To help teams manage their problem-solving process and communication…
ERIC Educational Resources Information Center
King, James C.
1988-01-01
This pamphlet discusses group problem solving in schools. Its point of departure is that teachers go at problems from a number of different directions and that principals need to capitalize on those differences and bring a whole range of skills and perceptions to the problem-solving process. Rather than trying to get everyone to think alike,…
Development and validation of a physics problem-solving assessment rubric
NASA Astrophysics Data System (ADS)
Docktor, Jennifer Lynn
Problem solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving throughout the educational system, there is no standard way to evaluate written problem solving that is valid, reliable, and easy to use. Most tests of problem solving performance given in the classroom focus on the correctness of the end result or partial results rather than the quality of the procedures and reasoning leading to the result, which gives an inadequate description of a student's skills. A more detailed and meaningful measure is necessary if different curricular materials or pedagogies are to be compared. This measurement tool could also allow instructors to diagnose student difficulties and focus their coaching. It is important that the instrument be applicable to any problem solving format used by a student and to a range of problem types and topics typically used by instructors. Typically complex processes such as problem solving are assessed by using a rubric, which divides a skill into multiple quasi-independent categories and defines criteria to attain a score in each. This dissertation describes the development of a problem solving rubric for the purpose of assessing written solutions to physics problems and presents evidence for the validity, reliability, and utility of score interpretations on the instrument.
NASA Technical Reports Server (NTRS)
Gomez, Fernando
1989-01-01
It is shown how certain kinds of domain independent expert systems based on classification problem-solving methods can be constructed directly from natural language descriptions by a human expert. The expert knowledge is not translated into production rules. Rather, it is mapped into conceptual structures which are integrated into long-term memory (LTM). The resulting system is one in which problem-solving, retrieval and memory organization are integrated processes. In other words, the same algorithm and knowledge representation structures are shared by these processes. As a result of this, the system can answer questions, solve problems or reorganize LTM.
A Cognitive Model for Problem Solving in Computer Science
ERIC Educational Resources Information Center
Parham, Jennifer R.
2009-01-01
According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…
Cognitive Predictors of Everyday Problem Solving across the Lifespan.
Chen, Xi; Hertzog, Christopher; Park, Denise C
2017-01-01
An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.
ERIC Educational Resources Information Center
Mwei, Philip K.
2017-01-01
The concept of mathematical problem solving is an important mathematical process in mathematics curricula of education systems worldwide. These math curricula demand that learners are exposed to authentic problems that foster successful problem solving. To attain this very important goal, there must be mathematics teachers well versed in content…
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Singh, Chandralekha
2018-01-01
An appropriate diagram is a required element of a solution building process in physics problem solving and it can transform a given problem into a representation that is easier to exploit for solving the problem. A major focus while helping introductory physics students learn problem solving is to help them appreciate that drawing diagrams facilitates problem solving. We conducted an investigation in which two different interventions were implemented during recitation quizzes throughout the semester in a large enrolment, algebra-based introductory physics course. Students were either (1) asked to solve problems in which the diagrams were drawn for them or (2) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed a rubric to score the problem solving performance of students in different intervention groups. We investigated two problems involving electric field and electric force and found that students who drew productive diagrams were more successful problem solvers and that a higher level of relevant detail in a student’s diagram corresponded to a better score. We also conducted think-aloud interviews with nine students who were at the time taking an equivalent introductory algebra-based physics course in order to gain insight into how drawing diagrams affects the problem solving process. These interviews supported some of the interpretations of the quantitative results. We end by discussing instructional implications of the findings.
A Procedure for Studying the Cognitive Processes Used During Problem Solving: An Exploratory Study.
ERIC Educational Resources Information Center
Lester, Frank K., Jr.
This study explores the potential effectiveness of a new procedure for identifying and studying certain of the cognitive processes used during problem solving. The procedure is used in an attempt to categorize the types of conceptual thinking problem solvers employ, to study trial-and-error behavior, and to investigate problem solvers' abilities…
Hoppmann, Christiane A; Blanchard-Fields, Fredda
2011-09-01
Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.
Mathematical Problem Solving through Sequential Process Analysis
ERIC Educational Resources Information Center
Codina, A.; Cañadas, M. C.; Castro, E.
2015-01-01
Introduction: The macroscopic perspective is one of the frameworks for research on problem solving in mathematics education. Coming from this perspective, our study addresses the stages of thought in mathematical problem solving, offering an innovative approach because we apply sequential relations and global interrelations between the different…
ERIC Educational Resources Information Center
Clark, Kathleen; James, Alex; Montelle, Clemency
2014-01-01
The ability to address and solve problems in minimally familiar contexts is the core business of research mathematicians. Recent studies have identified key traits and techniques that individuals exhibit while problem solving, and revealed strategies and behaviours that are frequently invoked in the process. We studied advanced calculus students…
Cognitive development in introductory physics: A research-based approach to curriculum reform
NASA Astrophysics Data System (ADS)
Teodorescu, Raluca Elena
This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.
Problem Solving in Electricity.
ERIC Educational Resources Information Center
Caillot, Michel; Chalouhi, Elias
Two studies were conducted to describe how students perform direct current (D-C) circuit problems. It was hypothesized that problem solving in the electricity domain depends largely on good visual processing of the circuit diagram and that this processing depends on the ability to recognize when two or more electrical components are in series or…
Process Inquiry: Analysis of Oral Problem-Solving Skills in Mathematics of Engineering Students
ERIC Educational Resources Information Center
Trance, Naci John C.
2013-01-01
This paper presents another effort in determining the difficulty of engineering students in terms of solving word problems. Students were presented with word problems in algebra. Then, they were asked to solve the word problems orally; that is, before they presented their written solutions, they were required to explain how they understood the…
Models of human problem solving - Detection, diagnosis, and compensation for system failures
NASA Technical Reports Server (NTRS)
Rouse, W. B.
1983-01-01
The role of the human operator as a problem solver in man-machine systems such as vehicles, process plants, transportation networks, etc. is considered. Problem solving is discussed in terms of detection, diagnosis, and compensation. A wide variety of models of these phases of problem solving are reviewed and specifications for an overall model outlined.
ERIC Educational Resources Information Center
Wareham, Todd
2017-01-01
In human problem solving, there is a wide variation between individuals in problem solution time and success rate, regardless of whether or not this problem solving involves insight. In this paper, we apply computational and parameterized analysis to a plausible formalization of extended representation change theory (eRCT), an integration of…
NASA Astrophysics Data System (ADS)
Safadi, Rafi'; Safadi, Ekhlass; Meidav, Meir
2017-01-01
This study compared students’ learning in troubleshooting and problem solving activities. The troubleshooting activities provided students with solutions to conceptual problems in the form of refutation texts; namely, solutions that portray common misconceptions, refute them, and then present the accepted scientific ideas. They required students to individually diagnose these solutions; that is, to identify the erroneous and correct parts of the solutions and explain in what sense they differed, and later share their work in whole class discussions. The problem solving activities required the students to individually solve these same problems, and later share their work in whole class discussions. We compared the impact of the individual work stage in the troubleshooting and problem solving activities on promoting argumentation in the subsequent class discussions, and the effects of these activities on students’ engagement in self-repair processes; namely, in learning processes that allowed the students to self-repair their misconceptions, and by extension on advancing their conceptual knowledge. Two 8th grade classes studying simple electric circuits with the same teacher took part. One class (28 students) carried out four troubleshooting activities and the other (31 students) four problem solving activities. These activities were interwoven into a twelve lesson unit on simple electric circuits that was spread over a period of 2 months. The impact of the troubleshooting activities on students’ conceptual knowledge was significantly higher than that of the problem solving activities. This result is consistent with the finding that the troubleshooting activities engaged students in self-repair processes whereas the problem solving activities did not. The results also indicated that diagnosing solutions to conceptual problems in the form of refutation texts, as opposed to solving these same problems, apparently triggered argumentation in subsequent class discussions, even though the teacher was unfamiliar with the best ways to conduct argumentative classroom discussions. We account for these results and suggest possible directions for future research.
False memories from survival processing make better primes for problem-solving.
Garner, Sarah R; Howe, Mark L
2014-01-01
Previous research has demonstrated that participants remember significantly more survival-related information and more information that is processed for its survival relevance. Recent research has also shown that survival materials and processing result in more false memories, ones that are adaptive inasmuch as they prime solutions to insight-based problems. Importantly, false memories for survival-related information facilitate problem solving more than false memories for other types of information. The present study explores this survival advantage using an incidental rather than intentional memory task. Here participants rated information either in the context of its importance to a survival-processing scenario or to moving to a new house. Following this, participants solved a number of compound remote associate tasks (CRATs), half of which had the solution primed by false memories that were generated during the processing task. Results showed that (a) CRATs were primed by false memories in this incidental task, with participants solving significantly more CRATs when primed than when unprimed, (b) this effect was greatest when participants rated items for survival than moving, and (c) processing items for a survival scenario improved overall problem-solving performance even when specific problems themselves were not primed. Results are discussed with regard to adaptive theories of memory.
Cognitive Predictors of Everyday Problem Solving across the Lifespan
Chen, Xi; Hertzog, Christopher; Park, Denise C.
2017-01-01
Background An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. Objectives The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT; [1]). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Method Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24–93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on the Everyday Problems Test. Results Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of fifty. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. Conclusion This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. PMID:28273664
Toward Theory-Based Instruction in Scientific Problem Solving.
ERIC Educational Resources Information Center
Heller, Joan I.; And Others
Several empirical and theoretical analyses related to scientific problem-solving are reviewed, including: detailed studies of individuals at different levels of expertise, and computer models simulating some aspects of human information processing during problem solving. Analysis of these studies has revealed many facets about the nature of the…
Problem Solving and the Development of Expertise in Management.
ERIC Educational Resources Information Center
Lash, Fredrick B.
This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…
Visual Attention Modulates Insight versus Analytic Solving of Verbal Problems
ERIC Educational Resources Information Center
Wegbreit, Ezra; Suzuki, Satoru; Grabowecky, Marcia; Kounios, John; Beeman, Mark
2012-01-01
Behavioral and neuroimaging findings indicate that distinct cognitive and neural processes underlie solving problems with sudden insight. Moreover, people with less focused attention sometimes perform better on tests of insight and creative problem solving. However, it remains unclear whether different states of attention, within individuals,…
ERIC Educational Resources Information Center
Koichu, Boris
2010-01-01
This article discusses an issue of inserting mathematical knowledge within the problem-solving processes. Relatively advanced mathematical knowledge is defined in terms of "three mathematical worlds"; relatively advanced problem-solving behaviours are defined in terms of taxonomies of "proof schemes" and "heuristic behaviours". The relationships…
Teaching Evidence-based Medicine Using Literature for Problem Solving.
ERIC Educational Resources Information Center
Mottonen, Merja; Tapanainen, Paivi; Nuutinen, Matti; Rantala, Heikki; Vainionpaa, Leena; Uhari, Matti
2001-01-01
Evidence-based medicine--the process of using research findings systematically as the basis for clinical decisions--can be taught using problem-solving teaching methods. Evaluates whether it was possible to motivate students to use the original literature by giving them selected patient problems to solve. (Author/ASK)
The Influence of English-Korean Bilingualism in Solving Mathematics Word Problems.
ERIC Educational Resources Information Center
Whang, Woo-Hyung
1996-01-01
Purposeful sampling was used to select six English-Korean bilingual students to investigate language difficulties and cognitive processes in solving mathematics word problems. These six case studies revealed distinct patterns of difficulties in solving problems written in English and Korean, especially for students in transition stage. (Author/KMC)
Problem Solving Under Time-Constraints.
ERIC Educational Resources Information Center
Richardson, Michael; Hunt, Earl
A model of how automated and controlled processing can be mixed in computer simulations of problem solving is proposed. It is based on previous work by Hunt and Lansman (1983), who developed a model of problem solving that could reproduce the data obtained with several attention and performance paradigms, extending production-system notation to…
Creativity and Insight in Problem Solving
ERIC Educational Resources Information Center
Golnabi, Laura
2016-01-01
This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…
Aiding the search: Examining individual differences in multiply-constrained problem solving.
Ellis, Derek M; Brewer, Gene A
2018-07-01
Understanding and resolving complex problems is of vital importance in daily life. Problems can be defined by the limitations they place on the problem solver. Multiply-constrained problems are traditionally examined with the compound remote associates task (CRAT). Performance on the CRAT is partially dependent on an individual's working memory capacity (WMC). These findings suggest that executive processes are critical for problem solving and that there are reliable individual differences in multiply-constrained problem solving abilities. The goals of the current study are to replicate and further elucidate the relation between WMC and CRAT performance. To achieve these goals, we manipulated preexposure to CRAT solutions and measured WMC with complex-span tasks. In Experiment 1, we report evidence that preexposure to CRAT solutions improved problem solving accuracy, WMC was correlated with problem solving accuracy, and that WMC did not moderate the effect of preexposure on problem solving accuracy. In Experiment 2, we preexposed participants to correct and incorrect solutions. We replicated Experiment 1 and found that WMC moderates the effect of exposure to CRAT solutions such that high WMC participants benefit more from preexposure to correct solutions than low WMC (although low WMC participants have preexposure benefits as well). Broadly, these results are consistent with theories of working memory and problem solving that suggest a mediating role of attention control processes. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Zou, Xueli
In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.
Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.
2016-01-01
The purpose of this study was to examine child-level pathways in development of pre-algebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of grade 2; calculation accuracy and calculation fluency at end of grade 2; and pre-algebraic knowledge and word-problem solving at end of grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than pre-algebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students’ foundational mathematics skills or cognitive processes. PMID:27786534
ERIC Educational Resources Information Center
Bogard, Treavor; Liu, Min; Chiang, Yueh-hui Vanessa
2013-01-01
This multiple-case study examined how advanced learners solved a complex problem, focusing on how their frequency and application of cognitive processes contributed to differences in performance outcomes, and developing a mental model of a problem. Fifteen graduate students with backgrounds related to the problem context participated in the study.…
Are middle school mathematics teachers able to solve word problems without using variable?
NASA Astrophysics Data System (ADS)
Gökkurt Özdemir, Burçin; Erdem, Emrullah; Örnek, Tuğba; Soylu, Yasin
2018-01-01
Many people consider problem solving as a complex process in which variables such as x, y are used. Problems may not be solved by only using 'variable.' Problem solving can be rationalized and made easier using practical strategies. When especially the development of children at younger ages is considered, it is obvious that mathematics teachers should solve problems through concrete processes. In this context, middle school mathematics teachers' skills to solve word problems without using variables were examined in the current study. Through the case study method, this study was conducted with 60 middle school mathematics teachers who have different professional experiences in five provinces in Turkey. A test consisting of five open-ended word problems was used as the data collection tool. The content analysis technique was used to analyze the data. As a result of the analysis, it was seen that the most of the teachers used trial-and-error strategy or area model as the solution strategy. On the other hand, the teachers who solved the problems using variables such as x, a, n or symbols such as Δ, □, ○, * and who also felt into error by considering these solutions as without variable were also seen in the study.
Bulfone, Giampiera; Galletti, Caterina; Vellone, Ercole; Zanini, Antonietta; Quattrin, Rosanna
2008-01-01
The process nurses adopt to solve the patients' problems is known as "Problem Solving" in the literature. Problem Solving Abilities include Diagnostic Reasoning, Prognostic Judgment and Decision Making. Nursing students apply the Problem Solving to the Nursing Process that is the mental and operative approach that nurses use to plan the nursing care. The purpose of the present study is to examine if there is a positive relationship between the number of Educational Tutorial Strategies (Briefing, Debriefing and Discussion according to the Objective Structured Clinical Examination Methodology) used for nursing students and their learning of Problem Solving Abilities (Diagnostic Reasoning, Prognostic Judgment and Decision Making). The study design was retrospective, descriptive and comparative. The Problem Solving Instrument, specifically developed for this study and proved for its reliability and validity, was used to collect the data from a sample of 106 nursing care plans elaborated by the second-year students of the Bachelor Degree in Nursing of the University of Udine. Nursing care plans were elaborated during three times consecutively, after students had participated in different Educational Tutorial Strategies. Results showed that the more the students took part in a higher number of Educational Tutorial Strategies the more they significantly increased their Problem Solving Abilities. The results demonstrate that it is important to use Educational Tutorial Strategies in the nursing education to teach skills.
Task-Analytic Design of Graphic Presentations
1990-05-18
important premise of Larkin and Simon’s work is that, when comparing alternative presentations, it is fruitful to characterize graphic-based problem solving...using the same information-processing models used to help understand problem solving using other representations [Newell and Simon, 19721...luring execution of graphic presentation- 4 based problem -solving procedures. Chapter 2 reviews other work related to the problem of designing graphic
Social Problem Solving as a Predictor of Well-Being in Adolescents and Young Adults
ERIC Educational Resources Information Center
Siu, Andrew M. H.; Shek, Daniel T. L.
2010-01-01
Social problem solving is the cognitive-affective-behavioral process by which people attempt to resolve real-life problems in a social environment, and is of key importance in the management of emotions and well-being. This paper reviews a series of studies on social problem solving conducted by the authors. First, we developed and validated the…
The Design Process in the Art Classroom: Building Problem Solving Skills for Life and Careers
ERIC Educational Resources Information Center
Vande Zande, Robin; Warnock, Lauren; Nikoomanesh, Barbara; Van Dexter, Kurt
2014-01-01
Problem solving is essential to everyone's life. People survive if they are nourished, sheltered, and protected--and they construct ways to obtain nourishment, shelter, and protection through problem solving. Though problems vary in complexity--survival at the one end and the pursuit of comfort at the other--we are reliant on our ability to…
ERIC Educational Resources Information Center
Garey, Robert W.
The Randolph, New Jersey Intermediate School updated its industrial arts program to reflect the challenges and work force of the Twentieth Century in which students apply a design/problem-solving process to solve real-world problems. In the laboratory portion of the program, students circulate between workstations to define problems, complete…
Reasoning Processes Used by Paramedics to Solve Clinical Problems
ERIC Educational Resources Information Center
Alexander, Melissa
2009-01-01
The purpose of this exploratory qualitative study was to determine the reasoning processes used by paramedics to solve clinical problems. Existing research documents concern over the accuracy of paramedics' clinical decision-making, but no research was found that examines the cognitive processes by which paramedics make either faulty or accurate…
The effect of problem structure on problem-solving: an fMRI study of word versus number problems.
Newman, Sharlene D; Willoughby, Gregory; Pruce, Benjamin
2011-09-02
It has long been thought that word problems are more difficult to solve than number/equation problems. However, recent findings have begun to bring this broadly believed idea into question. The current study examined the processing differences between these two types of problems. The behavioral results presented here failed to show an overwhelming advantage for number problems. In fact, there were more errors for the number problems than the word problems. The neuroimaging results reported demonstrate that there is significant overlap in the processing of what, on the surface, appears to be completely different problems that elicit different problem-solving strategies. Word and number problems rely on a general network responsible for problem-solving that includes the superior posterior parietal cortex, the horizontal segment of the intraparietal sulcus which is hypothesized to be involved in problem representation and calculation as well as the regions that have been linked to executive aspects of working memory such as the pre-SMA and basal ganglia. While overlap was observed, significant differences were also found primarily in language processing regions such as Broca's and Wernicke's areas for the word problems and the horizontal segment of the intraparietal sulcus for the number problems. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jolly, Anju B.
The purpose of this study was to analyze the relationship of concept mapping to science problem solving in sixth grade elementary school children. The study proposes to determine whether the students' ability to perform higher cognitive processes was a predictor of students' performance in solving problems in science and whether gender and socioeconomic status are related to performance in solving problems. Two groups participated in the study. Both groups were given a pre-test of higher cognitive ability--the Ross Test of Higher Cognitive Ability. One group received instruction on a science unit of study in concept mapping format and the other group received instruction in traditional format. The instruction lasted approximately 4 weeks. Both groups were given a problem-solving post-test. A comparison of post-test means was done using Analysis of Covariance (ANCOVA) as the statistical procedure with scores on the test of higher cognitive ability as the covariate. Also, Multiple Regression was performed to analyze the influence of participants' gender and socioeconomic status on their performance in solving problems. Results from the analysis of covariance showed that the group receiving instruction in the concept mapping format performed significantly better than the group receiving instruction in traditional format. Also the Ross Test of Higher Cognitive Processes emerged to be a predictor of performance on problem solving. There was no significant difference in the analysis of the performance of males and females. No pattern emerged regarding the influence of socioeconomic status on problem solving performance. In conclusion, the study showed that concept mapping improved problem solving in the classroom, and that gender and socioeconomic status are not predictors of student success in problem solving.
Cognitive constraints on high school students' representations of real environmental problems
NASA Astrophysics Data System (ADS)
Barnes, Ervin Kenneth
One class of juniors and seniors was studied through one semester in the investigation of how students think about, learn from, and solve real environmental problems. The intention was to listen to student voices while researching the features of their representations of these problems, the beliefs they held (tenets), the cognitive processes they employed, and the principles of science, ecology, problem solving, and ethics they held as tenets. The focus was upon two self-selected groups as they perceived, engaged, analyzed, and proposed solutions for problems. Analysis of the student representations involved interpretation of the features to include both the perspective tenets and the envisioning processes. These processes included the intentive and attentive constraints as tenet acquisition and volitive and agential constraints as tenet affirmation. The perspective tenets included a variety of conceptual (basic science, ecological, ethical, and problem-solving) constraints as well as ontological, epistemological, and other cultural (role, status, power, and community) constraints. The perspective tenets were interpreted thematically including the ways populations of people cause and care about environmental problems, the magnitude of environmental problems and the science involved, the expectations and limitations students perceive for themselves, and the importance of community awareness and cooperation to addressing these problems. Some of these tenets were interpreted to be principles in that they were rules that were accepted by some people as true. The perspective tenets, along with the envisioning processes, were perceived to be the constraints that determined the environmental problems and limited the solution possibilities. The students thought about environmental problems in mature and principled ways using a repertoire of cognitive processes. They learned from them as they acquired and affirmed tenets. They solved them through personal choices and efforts to increase community awareness. The ways students think about, learn from, and solve real environmental problems were all constrained by the perspective tenets (including cultural tenets of role, status, and power) and envisioning processes. It was concluded that students need help from the community to go further in solving these real environmental problems.
Six Sigma Approach to Improve Stripping Quality of Automotive Electronics Component – a case study
NASA Astrophysics Data System (ADS)
Razali, Noraini Mohd; Murni Mohamad Kadri, Siti; Con Ee, Toh
2018-03-01
Lacking of problem solving skill techniques and cooperation between support groups are the two obstacles that always been faced in actual production line. Inadequate detail analysis and inappropriate technique in solving the problem may cause the repeating issues which may give impact to the organization performance. This study utilizes a well-structured six sigma DMAIC with combination of other problem solving tools to solve product quality problem in manufacturing of automotive electronics component. The study is concentrated at the stripping process, a critical process steps with highest rejection rate that contribute to the scrap and rework performance. The detail analysis is conducted in the analysis phase to identify the actual root cause of the problem. Then several improvement activities are implemented and the results show that the rejection rate due to stripping defect decrease tremendously and the process capability index improved from 0.75 to 1.67. This results prove that the six sigma approach used to tackle the quality problem is substantially effective.
Investigating the role of future thinking in social problem solving.
Noreen, Saima; Whyte, Katherine E; Dritschel, Barbara
2015-03-01
There is well-established evidence that both rumination and depressed mood negatively impact the ability to solve social problems. A preliminary stage of the social problem solving process may be the process of catapulting oneself forward in time to think about the consequences of a problem before attempting to solve it. The aim of the present study was to examine how thinking about the consequences of a social problem being resolved or unresolved prior to solving it influences the solution of the problem as a function of levels of rumination and dysphoric mood. Eighty six participants initially completed the Beck Depression Inventory- II (BDI-II) and the Ruminative Response Scale (RRS). They were then presented with six social problems and generated consequences for half of the problems being resolved and half of the problems remaining unresolved. Participants then solved some of the problems, and following a delay, were asked to recall all of the consequences previously generated. Participants reporting higher levels of depressed mood and rumination were less effective at generating problem solutions. Specifically, those reporting higher levels of rumination produced less effective solutions for social problems that they had previously generated unresolved than resolved consequences. We also found that individuals higher in rumination, irrespective of depressed mood recalled more of the unresolved consequences in a subsequent memory test. As participants did not solve problems for scenarios where no consequences were generated, no baseline measure of problem solving was obtained. Our results suggest thinking about the consequences of a problem remaining unresolved may impair the generation of effective solutions in individuals with higher levels of rumination. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hinault, T; Lemaire, P
2016-01-01
In this review, we provide an overview of how age-related changes in executive control influence aging effects in arithmetic processing. More specifically, we consider the role of executive control in strategic variations with age during arithmetic problem solving. Previous studies found that age-related differences in arithmetic performance are associated with strategic variations. That is, when they accomplish arithmetic problem-solving tasks, older adults use fewer strategies than young adults, use strategies in different proportions, and select and execute strategies less efficiently. Here, we review recent evidence, suggesting that age-related changes in inhibition, cognitive flexibility, and working memory processes underlie age-related changes in strategic variations during arithmetic problem solving. We discuss both behavioral and neural mechanisms underlying age-related changes in these executive control processes. © 2016 Elsevier B.V. All rights reserved.
Liu, Mengting; Amey, Rachel C; Forbes, Chad E
2017-12-01
When individuals are placed in stressful situations, they are likely to exhibit deficits in cognitive capacity over and above situational demands. Despite this, individuals may still persevere and ultimately succeed in these situations. Little is known, however, about neural network properties that instantiate success or failure in both neutral and stressful situations, particularly with respect to regions integral for problem-solving processes that are necessary for optimal performance on more complex tasks. In this study, we outline how hidden Markov modeling based on multivoxel pattern analysis can be used to quantify unique brain states underlying complex network interactions that yield either successful or unsuccessful problem solving in more neutral or stressful situations. We provide evidence that brain network stability and states underlying synchronous interactions in regions integral for problem-solving processes are key predictors of whether individuals succeed or fail in stressful situations. Findings also suggested that individuals utilize discriminate neural patterns in successfully solving problems in stressful or neutral situations. Findings overall highlight how hidden Markov modeling can provide myriad possibilities for quantifying and better understanding the role of global network interactions in the problem-solving process and how the said interactions predict success or failure in different contexts.
Introduction to Problem Solving: Strategies for the Elementary Math Classroom.
ERIC Educational Resources Information Center
O'Connell, Susan
This book is designed to help better understand problem-solving instruction. It presents information on helping students understand the problem-solving process as well as information on teaching specific strategies, including: Choose an Operation; Find a Pattern; Make a Table; Make an Organized List; Draw a Picture or Diagram; Guess, Check, and…
How Instructional Design Experts Use Knowledge and Experience to Solve Ill-Structured Problems
ERIC Educational Resources Information Center
Ertmer, Peggy A.; Stepich, Donald A.; York, Cindy S.; Stickman, Ann; Wu, Xuemei (Lily); Zurek, Stacey; Goktas, Yuksel
2008-01-01
This study examined how instructional design (ID) experts used their prior knowledge and previous experiences to solve an ill-structured instructional design problem. Seven experienced designers used a think-aloud procedure to articulate their problem-solving processes while reading a case narrative. Results, presented in the form of four…
The Role of the Updating Function in Solving Arithmetic Word Problems
ERIC Educational Resources Information Center
Mori, Kanetaka; Okamoto, Masahiko
2017-01-01
We investigated how the updating function supports the integration process in solving arithmetic word problems. In Experiment 1, we measured reading time, that is, translation and integration times, when undergraduate and graduate students (n = 78) were asked to solve 2 types of problems: those containing only necessary information and those…
Skills and Dispositions for Creative Problem Solving during the Artmaking Process
ERIC Educational Resources Information Center
Pitri, Eliza
2013-01-01
In this article, Eliza Pitri states, "when allowed to make and explain their own choices, students develop invaluable creative problem-solving skills." Opportunities for such critical thinking abound in the art classroom. The importance of identifying how skills and dispositions related to creative problem solving are expressed in a…
ERIC Educational Resources Information Center
National Education Association, Washington, DC. Project on Utilization of Inservice Education R & D Outcomes.
The workshop instructional materials described here are designed to try out a systematic problem solving process as a way of working toward improvements in the school setting. Topics include diagnosis using force field technique, small group dynamics, planning for action, and planning a RUPS (Research Using Problem Solving) project. This…
Problem Solving in Social Studies: Concepts and Critiques.
ERIC Educational Resources Information Center
Van Sickle, Ronald L.; Hoge, John D.
Recent developments in the field of cognitive psychology, particularly in the area of information processing, have shed light on the way people think in order to make decisions and solve problems. In addition, cooperative learning research has provided evidence of the effectiveness of cooperatively structured group work aimed at problem solving.…
Teachers Beliefs in Problem Solving in Rural Malaysian Secondary Schools
ERIC Educational Resources Information Center
Palraj, Shalini; DeWitt, Dorothy; Alias, Norlidah
2017-01-01
Problem solving is the highest level of cognitive skill. However, this skill seems to be lacking among secondary school students. Teachers' beliefs influence the instructional strategies used for students' learning. Hence, it is important to understand teachers' beliefs so as to improve the processes for teaching problem solving. The purpose of…
The Evolution of a Flipped Classroom: Evidence-Based Recommendations
ERIC Educational Resources Information Center
Velegol, Stephanie Butler; Zappe, Sarah E.; Mahoney, Emily
2015-01-01
Engineering students benefit from an active and interactive classroom environment where they can be guided through the problem solving process. Typically faculty members spend class time presenting the technical content required to solve problems, leaving students to apply this knowledge and problem solve on their own at home. There has recently…
Artificial intelligence, expert systems, computer vision, and natural language processing
NASA Technical Reports Server (NTRS)
Gevarter, W. B.
1984-01-01
An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.
Students' Ability to Solve Process-Diagram Problems in Secondary Biology Education
ERIC Educational Resources Information Center
Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert
2015-01-01
Process diagrams are important tools in biology for explaining processes such as protein synthesis, compound cycles and the like. The aim of the present study was to measure the ability to solve process-diagram problems in biology and its relationship with prior knowledge, spatial ability and working memory. For this purpose, we developed a test…
NASA Astrophysics Data System (ADS)
Mushlihuddin, R.; Nurafifah; Irvan
2018-01-01
The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.
Warren, David E.; Kurczek, Jake; Duff, Melissa C.
2016-01-01
Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N=5) and healthy normal comparison participants (N=5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. PMID:27010751
ERIC Educational Resources Information Center
Matthews, Paul G.; Atkinson, Richard C.
This paper reports an experiment designed to test theoretical relations among fast problem solving, more complex and slower problem solving, and research concerning fundamental memory processes. Using a cathode ray tube, subjects were presented with propositions of the form "Y is in list X" which they memorized. In later testing they were asked to…
ERIC Educational Resources Information Center
Nunokawa, Kazuhiko
2004-01-01
The purpose of this paper was to investigate how it becomes possible for solvers to make drawings to advance their problem solving processes, in order to understand the use of drawings in mathematical problem solving more deeply. For this purpose, three examples in which drawings made by the solver played a critical role in the solutions have been…
ERIC Educational Resources Information Center
Robert, Nicole D.; LeFevre, Jo-Anne
2013-01-01
Does solving subtraction problems with negative answers (e.g., 5-14) require different cognitive processes than solving problems with positive answers (e.g., 14-5)? In a dual-task experiment, young adults (N=39) combined subtraction with two working memory tasks, verbal memory and visual-spatial memory. All of the subtraction problems required…
ERIC Educational Resources Information Center
Reusser, Kurt; And Others
The main concern of this paper is on the psychological processes of how students understand and solve mathematical word problems, and on how this knowledge can be applied to computer-based tutoring. It is argued that only a better understanding of the psychological requirements for understanding and solving those problems will lead to…
NASA Astrophysics Data System (ADS)
Hobri; Suharto; Rifqi Naja, Ahmad
2018-04-01
This research aims to determine students’ creative thinking level in problem solving based on NCTM in function subject. The research type is descriptive with qualitative approach. Data collection methods which were used are test and interview. Creative thinking level in problem solving based on NCTM indicators consists of (1) Make mathematical model from a contextual problem and solve the problem, (2) Solve problem using various possible alternatives, (3) Find new alternative(s) to solve the problem, (4) Determine the most efficient and effective alternative for that problem, (5) Review and correct mistake(s) on the process of problem solving. Result of the research showed that 10 students categorized in very satisfying level, 23 students categorized in satisfying level and 1 students categorized in less satisfying level. Students in very satisfying level meet all indicators, students in satisfying level meet first, second, fourth, and fifth indicator, while students in less satisfying level only meet first and fifth indicator.
Good practices in managing work-related indoor air problems: a psychosocial perspective.
Lahtinen, Marjaana; Huuhtanen, Pekka; Vähämäki, Kari; Kähkönen, Erkki; Mussalo-Rauhamaa, Helena; Reijula, Kari
2004-07-01
Indoor air problems at workplaces are often exceedingly complex. Technical questions are interrelated with the dynamics of the work community, and the cooperation and interaction skills of the parties involved in the problem solving process are also put to the test. The objective of our study was to analyze the process of managing and solving indoor air problems from a psychosocial perspective. This collective case study was based on data from questionnaires, interviews and various documentary materials. Technical inspections of the buildings and indoor air measurements were also carried out. The following four factors best differentiated successful cases from impeded cases: extensive multiprofessional collaboration and participative action, systematic action and perseverance, investment in information and communication, and process thinking and learning. The study also proposed a theoretical model for the role of the psychosocial work environment in indoor air problems. The expertise related to social and human aspects of problem solving plays a significant role in solving indoor air problems. Failures to properly handle these aspects may lead to resources being wasted and result in a problematic situation becoming stagnant or worse. Copyright 2004 Wiley-Liss, Inc.
The Reference Process and the Philosophy of Karl Popper.
ERIC Educational Resources Information Center
Neill, S. D.
1985-01-01
Two aspects of Karl Popper's philosophy are applied to reference process: process is viewed as series of problem-solving situations amenable to analysis using Popper's problem-solving schema. Reference interview is analyzed in context of Popper's postulate that books contain autonomous world of ideas existing apart from mind of knower. (30…
Transition Process of Procedural to Conceptual Understanding in Solving Mathematical Problems
ERIC Educational Resources Information Center
Fatqurhohman
2016-01-01
This article aims to describe the transition process from procedural understanding to conceptual understanding in solving mathematical problems. Subjects in this study were three students from 20 fifth grade students of SDN 01 Sumberberas Banyuwangi selected based on the results of the students' answers. The transition process from procedural to…
Complex Problem Solving: What It Is and What It Is Not
Dörner, Dietrich; Funke, Joachim
2017-01-01
Computer-simulated scenarios have been part of psychological research on problem solving for more than 40 years. The shift in emphasis from simple toy problems to complex, more real-life oriented problems has been accompanied by discussions about the best ways to assess the process of solving complex problems. Psychometric issues such as reliable assessments and addressing correlations with other instruments have been in the foreground of these discussions and have left the content validity of complex problem solving in the background. In this paper, we return the focus to content issues and address the important features that define complex problems. PMID:28744242
ERIC Educational Resources Information Center
Swanson, H. Lee
2011-01-01
The role of working memory (WM) in children's growth in mathematical problem solving was examined in a longitudinal study of children (N = 127). A battery of tests was administered that assessed problem solving, achievement, WM, and cognitive processing (inhibition, speed, phonological coding) in Grade 1 children, with follow-up testing in Grades…
Solving L-L Extraction Problems with Excel Spreadsheet
ERIC Educational Resources Information Center
Teppaitoon, Wittaya
2016-01-01
This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…
The Effects of Polya's Heuristic and Diary Writing on Children's Problem Solving
ERIC Educational Resources Information Center
Hensberry, Karina K. R.; Jacobbe, Tim
2012-01-01
This paper presents the results of a study that aimed at increasing students' problem-solving skills. Polya's (1985) heuristic for problem solving was used and students were required to articulate their thought processes through the use of a structured diary. The diary prompted students to answer questions designed to engage them in the phases of…
ERIC Educational Resources Information Center
Epstein, Baila
2016-01-01
Background: Clinical problem-solving is fundamental to the role of the speech-language pathologist in both the diagnostic and treatment processes. The problem-solving often involves collaboration with clients and their families, supervisors, and other professionals. Considering the importance of cooperative problem-solving in the profession,…
Interactive Computer Based Assessment Tasks: How Problem-Solving Process Data Can Inform Instruction
ERIC Educational Resources Information Center
Zoanetti, Nathan
2010-01-01
This article presents key steps in the design and analysis of a computer based problem-solving assessment featuring interactive tasks. The purpose of the assessment is to support targeted instruction for students by diagnosing strengths and weaknesses at different stages of problem-solving. The first focus of this article is the task piloting…
Collective Problem-Solving: The Role of Self-Efficacy, Skill, and Prior Knowledge
ERIC Educational Resources Information Center
Geifman, Dorit; Raban, Daphne R.
2015-01-01
Self-efficacy is essential to learning but what happens when learning is done as a result of a collective process? What is the role of individual self-efficacy in collective problem solving? This research examines the manifestation of self-efficacy in prediction markets that are configured as collective problem-solving platforms and whether…
ERIC Educational Resources Information Center
Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi
2012-01-01
In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…
ERIC Educational Resources Information Center
Currie-Rubin, Rachel
2012-01-01
This dissertation examines the problem-solving processes of seven graduate student novices enrolled in a course in educational assessment and ten educational assessment experts. Using Jonassen's (1997) ill- and well-structured problem-solving frameworks, I analyze think-aloud protocols of experts and novices as they examine ill-structured…
Indoor Air Quality Problem Solving Tool
Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.
ERIC Educational Resources Information Center
Draze, Dianne; Palouda, Annelise
This book presents information about 10 areas of design, with the main emphasis on graphic design. One section presents the creative problem solving process and provides practice in using this process to solve design problems. Students are given a glimpse of other areas of design, including fashion, industrial, architectural, decorative,…
Fuchs, Lynn S; Gilbert, Jennifer K; Powell, Sarah R; Cirino, Paul T; Fuchs, Douglas; Hamlett, Carol L; Seethaler, Pamela M; Tolar, Tammy D
2016-12-01
The purpose of this study was to examine child-level pathways in development of prealgebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early calculation, word-problem, and number knowledge at start of Grade 2; calculation accuracy and calculation fluency at end of Grade 2; and prealgebraic knowledge and word-problem solving at end of Grade 4. Important similarities in pathways were identified, but path analysis also indicated that language comprehension is more critical for later word-problem solving than prealgebraic knowledge. We conclude that pathways in development of these forms of 4th-grade mathematics performance are more alike than different, but demonstrate the need to fine-tune instruction for strands of the mathematics curriculum in ways that address individual students' foundational mathematics skills or cognitive processes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic
NASA Astrophysics Data System (ADS)
Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.
2018-05-01
Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.
Analytical derivation: An epistemic game for solving mathematically based physics problems
NASA Astrophysics Data System (ADS)
Bajracharya, Rabindra R.; Thompson, John R.
2016-06-01
Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.
The application of artificial intelligence techniques to large distributed networks
NASA Technical Reports Server (NTRS)
Dubyah, R.; Smith, T. R.; Star, J. L.
1985-01-01
Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.
ERIC Educational Resources Information Center
Swanson, H. Lee; Beebe-Frankenberger, Margaret
2004-01-01
This study identified cognitive processes that underlie individual differences in working memory (WM) and mathematical problem-solution accuracy in elementary school children at risk and not at risk for serious math difficulties (SMD). A battery of tests was administered that assessed problem solving, achievement, and cognitive processing in…
ERIC Educational Resources Information Center
Marran, James F.; Rogan, Donald V.
Synectics is a method of creative problem solving through the use of metaphor and apparent irrelevancy developed by William J. J. Gordon. The process involves rational knowledge of the problem to be solved, irrational improvisations that lead to fertile associations creating new approaches to the problem, and euphoric state that is essential in…
Sheldon, S; Vandermorris, S; Al-Haj, M; Cohen, S; Winocur, G; Moscovitch, M
2015-02-01
It is well accepted that the medial temporal lobes (MTL), and the hippocampus specifically, support episodic memory processes. Emerging evidence suggests that these processes also support the ability to effectively solve ill-defined problems which are those that do not have a set routine or solution. To test the relation between episodic memory and problem solving, we examined the ability of individuals with single domain amnestic mild cognitive impairment (aMCI), a condition characterized by episodic memory impairment, to solve ill-defined social problems. Participants with aMCI and age and education matched controls were given a battery of tests that included standardized neuropsychological measures, the Autobiographical Interview (Levine et al., 2002) that scored for episodic content in descriptions of past personal events, and a measure of ill-defined social problem solving. Corroborating previous findings, the aMCI group generated less episodically rich narratives when describing past events. Individuals with aMCI also generated less effective solutions when solving ill-defined problems compared to the control participants. Correlation analyses demonstrated that the ability to recall episodic elements from autobiographical memories was positively related to the ability to effectively solve ill-defined problems. The ability to solve these ill-defined problems was related to measures of activities of daily living. In conjunction with previous reports, the results of the present study point to a new functional role of episodic memory in ill-defined goal-directed behavior and other non-memory tasks that require flexible thinking. Our findings also have implications for the cognitive and behavioural profile of aMCI by suggesting that the ability to effectively solve ill-defined problems is related to sustained functional independence. Copyright © 2015 Elsevier Ltd. All rights reserved.
An episodic specificity induction enhances means-end problem solving in young and older adults.
Madore, Kevin P; Schacter, Daniel L
2014-12-01
Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction-brief training in recollecting details of past experiences-enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem-solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem-solving task, as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the 3 tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the 3 tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem-solving performance of older adults can benefit from a specificity induction as much as that of young adults. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
An episodic specificity induction enhances means-end problem solving in young and older adults
Madore, Kevin P.; Schacter, Daniel L.
2014-01-01
Episodic memory plays an important role not only in remembering past experiences, but also in constructing simulations of future experiences and solving means-end social problems. We recently found that an episodic specificity induction- brief training in recollecting details of past experiences- enhances performance of young and older adults on memory and imagination tasks. Here we tested the hypothesis that this specificity induction would also positively impact a means-end problem solving task on which age-related changes have been linked to impaired episodic memory. Young and older adults received the specificity induction or a control induction before completing a means-end problem solving task as well as memory and imagination tasks. Consistent with previous findings, older adults provided fewer relevant steps on problem solving than did young adults, and their responses also contained fewer internal (i.e., episodic) details across the three tasks. There was no difference in the number of other (e.g., irrelevant) steps on problem solving or external (i.e., semantic) details generated on the three tasks as a function of age. Critically, the specificity induction increased the number of relevant steps and internal details (but not other steps or external details) that both young and older adults generated in problem solving compared with the control induction, as well as the number of internal details (but not external details) generated for memory and imagination. Our findings support the idea that episodic retrieval processes are involved in means-end problem solving, extend the range of tasks on which a specificity induction targets these processes, and show that the problem solving performance of older adults can benefit from a specificity induction as much as that of young adults. PMID:25365688
ERIC Educational Resources Information Center
van Gog, Tamara; Paas, Fred; Merrienboer, Jeroen J. G.; Witte, Puk
2005-01-01
This study investigated the amounts of problem-solving process information ("action," "why," "how," and "metacognitive") elicited by means of concurrent, retrospective, and cued retrospective reporting. In a within-participants design, 26 participants completed electrical circuit troubleshooting tasks under different reporting conditions. The…
The Emotional Dimensions of the Problem-Solving Process.
ERIC Educational Resources Information Center
Hill, Barbara; And Others
1979-01-01
Predictable affective responses are evoked during each phase of a group or organizational problem-solving process. With the needs assessment phase come hope and energy; with goal-setting, confusion and dissatisfaction; with action planning, involvement and accomplishment; with implementation, "stage fright" and joy; with evaluation, pride or…
A Collaborative Problem-Solving Process through Environmental Field Studies
ERIC Educational Resources Information Center
Kim, Mijung; Tan, Hoe Teck
2013-01-01
This study explored and documented students' responses to opportunities for collective knowledge building and collaboration in a problem-solving process within complex environmental challenges and pressing issues with various dimensions of knowledge and skills. Middle-school students ("n" =?16; age 14) and high-school students…
Problem Solving Teams in a Total Quality Management Environment.
ERIC Educational Resources Information Center
Towler, Constance F.
1993-01-01
Outlines the problem-solving team training process used at Harvard University (Massachusetts), including the size and formation of teams, roles, and time commitment. Components of the process are explained, including introduction to Total Quality Management (TQM), customer satisfaction, meeting management, Parker Team Player Survey, interactive…
Studies of Visual Attention in Physics Problem Solving
ERIC Educational Resources Information Center
Madsen, Adrian M.
2013-01-01
The work described here represents an effort to understand and influence visual attention while solving physics problems containing a diagram. Our visual system is guided by two types of processes--top-down and bottom-up. The top-down processes are internal and determined by ones prior knowledge and goals. The bottom-up processes are external and…
ERIC Educational Resources Information Center
Aydogdu, Bülent; Erkol, Mehmet; Erten, Nuran
2014-01-01
Individuals benefit from science process skills while trying to solve problems through research (Bagci-Kiliç, 2003). To solve these problems individuals must acquire sufficient science process skills. Teachers must be able to understand these skills so that students can obtain the required proficiency (Mutisya, Rotich & Rotich, 2013). This…
ERIC Educational Resources Information Center
Derry, Sharon; And Others
This study examined ways in which two independent variables, peer collaboration and the use of a specific tool (the TAPS interface), work together and individually to shape students' problem-solving processes. More specifically, the researchers were interested in determining how collaboration and TAPS use cause metacognitive processes to differ…
Dubow, E F; Tisak, J
1989-12-01
This study investigated the relation between stressful life events and adjustment in elementary school children, with particular emphasis on the potential main and stress-buffering effects of social support and social problem-solving skills. Third through fifth graders (N = 361) completed social support and social problem-solving measures. Their parents provided ratings of stress in the child's environment and ratings of the child's behavioral adjustment. Teachers provided ratings of the children's behavioral and academic adjustment. Hierarchical multiple regressions revealed significant stress-buffering effects for social support and problem-solving skills on teacher-rated behavior problems, that is, higher levels of social support and problem-solving skills moderated the relation between stressful life events and behavior problems. A similar stress-buffering effect was found for problem-solving skills on grade-point average and parent-rated behavior problems. In terms of children's competent behaviors, analyses supported a main effect model of social support and problem-solving. Possible processes accounting for the main and stress-buffering effects are discussed.
Hao, Xin; Cui, Shuai; Li, Wenfu; Yang, Wenjing; Qiu, Jiang; Zhang, Qinglin
2013-10-09
Insight can be the first step toward creating a groundbreaking product. As evident in anecdotes and major inventions in history, heuristic events (heuristic prototypes) prompted inventors to acquire insight when solving problems. Bionic imitation in scientific innovation is an example of this kind of problem solving. In particular, heuristic prototypes (e.g., the lotus effect; the very high water repellence exhibited by lotus leaves) help solve insight problems (e.g., non-stick surfaces). We speculated that the biological functional feature of prototypes is a critical factor in inducing insightful scientific problem solving. In this functional magnetic resonance imaging (fMRI) study, we selected scientific innovation problems and utilized "learning prototypes-solving problems" two-phase paradigm to test the supposition. We also explored its neural mechanisms. Functional MRI data showed that the activation of the middle temporal gyrus (MTG, BA 37) and the middle occipital gyrus (MOG, BA 19) were associated with the highlighted functional feature condition. fMRI data also indicated that the MTG (BA 37) could be responsible for the semantic processing of functional features and for the formation of novel associations based on related functions. In addition, the MOG (BA 19) could be involved in the visual imagery of formation and application of function association between the heuristic prototype and problem. Our findings suggest that both semantic processing and visual imagery could be crucial components underlying scientific problem solving. © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Miron-Spektor, Ella; Efrat-Treister, Dorit; Rafaeli, Anat; Schwarz-Cohen, Orit
2011-01-01
The authors examine whether and how observing anger influences thinking processes and problem-solving ability. In 3 studies, the authors show that participants who listened to an angry customer were more successful in solving analytic problems, but less successful in solving creative problems compared with participants who listened to an…
ERIC Educational Resources Information Center
White, Tobin
2009-01-01
This paper introduces an applied problem-solving task, set in the context of cryptography and embedded in a network of computer-based tools. This designed learning environment engaged students in a series of collaborative problem-solving activities intended to introduce the topic of functions through a set of linked representations. In a…
A Descriptive Model of Information Problem Solving while Using Internet
ERIC Educational Resources Information Center
Brand-Gruwel, Saskia; Wopereis, Iwan; Walraven, Amber
2009-01-01
This paper presents the IPS-I-model: a model that describes the process of information problem solving (IPS) in which the Internet (I) is used to search information. The IPS-I-model is based on three studies, in which students in secondary and (post) higher education were asked to solve information problems, while thinking aloud. In-depth analyses…
NASA Astrophysics Data System (ADS)
Rahmawati; Rustaman, Nuryani Y.; Hamidah, Ida; Rusdiana, Dadi
2017-02-01
The aim of this study was to explore the use of assessment strategy which can measure problem solving skills of pre-service teachers based on their cognitive style in basic physics course. The sample consisted of 95 persons (male = 15, female = 75). This study used an exploratory research with observation techniques by interview, questionnaire, and test. The results indicated that the lecturer only used paper-pencil test assessment strategy to measure pre-service teachers’ achievement and also used conventional learning strategy. It means that the lecturer did not measure pre-services’ thinking process in learning, like problem solving skills. One of the factors which can influence student problem solving skills is cognitive style as an internal factor. Field Dependent (FD) and Field Independent (FI) are two cognitive styles which were measured with using Group Embedded Figure Test (GEFT) test. The result showed that 82% of pre-service teachers were FD cognitive style and only 18% of pre-service teachers had FI cognitive style. Furthermore, these findings became the fundamental design to develop a problem solving assessment model to measure pre-service teachers’ problem solving skills and process in basic physics course.
Cognitive Processes in Problem Solving via Think-Aloud and Interview Analysis.
ERIC Educational Resources Information Center
Folger, Terre; And Others
Researchers examined data from perceptual instruments administered to participants (36 undergraduate education students) during and following problem solving sessions. Think-aloud and interview analysis resulted in combining examination of the problems with the motivations and perceptions of the problem solvers. The nonemergent qualitative design…
Neural Activity When People Solve Verbal Problems with Insight
Bowden, Edward M; Haberman, Jason; Frymiare, Jennifer L; Arambel-Liu, Stella; Greenblatt, Richard; Reber, Paul J
2004-01-01
People sometimes solve problems with a unique process called insight, accompanied by an “Aha!” experience. It has long been unclear whether different cognitive and neural processes lead to insight versus noninsight solutions, or if solutions differ only in subsequent subjective feeling. Recent behavioral studies indicate distinct patterns of performance and suggest differential hemispheric involvement for insight and noninsight solutions. Subjects solved verbal problems, and after each correct solution indicated whether they solved with or without insight. We observed two objective neural correlates of insight. Functional magnetic resonance imaging (Experiment 1) revealed increased activity in the right hemisphere anterior superior temporal gyrus for insight relative to noninsight solutions. The same region was active during initial solving efforts. Scalp electroencephalogram recordings (Experiment 2) revealed a sudden burst of high-frequency (gamma-band) neural activity in the same area beginning 0.3 s prior to insight solutions. This right anterior temporal area is associated with making connections across distantly related information during comprehension. Although all problem solving relies on a largely shared cortical network, the sudden flash of insight occurs when solvers engage distinct neural and cognitive processes that allow them to see connections that previously eluded them. PMID:15094802
Solving Tommy's Writing Problems.
ERIC Educational Resources Information Center
Burdman, Debra
1986-01-01
The article describes an approach by which word processing helps to solve some of the writing problems of learning disabled students. Aspects considered include prewriting, drafting, revising, and completing the story. (CL)
AI tools in computer based problem solving
NASA Technical Reports Server (NTRS)
Beane, Arthur J.
1988-01-01
The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.
NASA Astrophysics Data System (ADS)
Hananto, R. B.; Kusmayadi, T. A.; Riyadi
2018-05-01
The research aims to identify the critical thinking process of students in solving geometry problems. The geometry problem selected in this study was the building of flat side room (cube). The critical thinking process was implemented to visual, auditory and kinesthetic learning styles. This research was a descriptive analysis research using qualitative method. The subjects of this research were 3 students selected by purposive sampling consisting of visual, auditory, and kinesthetic learning styles. Data collection was done through test, interview, and observation. The results showed that the students' critical thinking process in identifying and defining steps for each learning style were similar in solving problems. The critical thinking differences were seen in enumerate, analyze, list, and self-correct steps. It was also found that critical thinking process of students with kinesthetic learning style was better than visual and auditory learning styles.
Problem Analysis: Examining the Selection and Evaluation of Data during Problem-Solving Consultation
ERIC Educational Resources Information Center
Newell, Markeda L.; Newell, Terrance S.
2011-01-01
The purpose of this study was to analyze how school psychologists engaged in problem analysis during problem-solving consultation. Five aspects of the problem analysis process were examined: 1) the types of questions participants asked during problem identification, 2) the types of data participants requested, 3) the frequency of requests for each…
Solving multiconstraint assignment problems using learning automata.
Horn, Geir; Oommen, B John
2010-02-01
This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the pioneering LA solutions to this problem, unequivocally demonstrates that LA can play an important role in solving complex combinatorial and integer optimization problems.
Måseide, Per
2006-01-01
Ethnographic research was conducted in the thoracic ward of a Norwegian university hospital in order to study collaborative medical problem solving. As a general principle, evidence-based medicine is supposed to lead the process of medical problem solving. However, medical problem solving also requires evidence of a different kind. This is the more concrete form of evidence, such as X rays and other representations, that guides medical practice and makes sure that decisions are grounded in sound empirical facts and knowledge. In medicine, 'evidence' is on the one hand an abstract category; on the other hand, it is a tool that is practically enacted during the problem-solving work. Medical evidence does not 'show itself'. As such it has an emergent quality. Medical evidence has to be established and made practically useful in the collaborative settings by the participants in order to make conclusions about diagnoses and treatment. Hence, evidence is an interactional product; it is discursively generated and its applicability requires discourse. In addition, the production of medical evidence requires more than medical discourse and professional considerations. This paper looks at the production processes and use of medical evidence and the ambiguous meaning of this term in practical medicine.
Warren, David E; Kurczek, Jake; Duff, Melissa C
2016-07-01
Creativity relies on a diverse set of cognitive processes associated with distinct neural correlates, and one important aspect of creativity, divergent thinking, has been associated with the hippocampus. However, hippocampal contributions to another important aspect of creativity, convergent problem solving, have not been investigated. We tested the necessity of hippocampus for convergent problem solving using a neuropsychological method. Participants with amnesia due to hippocampal damage (N = 5) and healthy normal comparison participants (N = 5) were tested using a task that promoted solutions based on existing knowledge (Bowden and Jung-Beeman, 2003). During each trial, participants were given a list of three words (e.g., fly, man, place) and asked to respond with a word that could be combined with each of the three words (e.g., fire). The amnesic group produced significantly fewer correct responses than the healthy comparison group. These findings indicate that the hippocampus is necessary for normal convergent problem solving and that changes in the status of the hippocampus should affect convergent problem solving in the context of creative problem-solving across short intervals. This proposed contribution of the hippocampus to convergent problem solving is consistent with an expanded perspective on hippocampal function that acknowledges its role in cognitive processes beyond declarative memory. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah
2015-01-01
Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. The participants consisted of 500 undergraduate students from Malaysian public universities. Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation.
Improving the learning of clinical reasoning through computer-based cognitive representation.
Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A
2014-01-01
Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.
Improving the learning of clinical reasoning through computer-based cognitive representation
Wu, Bian; Wang, Minhong; Johnson, Janice M.; Grotzer, Tina A.
2014-01-01
Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students’ learning products from the beginning to the end of the study, consistent with students’ report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction. PMID:25518871
Improving the learning of clinical reasoning through computer-based cognitive representation.
Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A
2014-01-01
Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.
The Characteristic of the Process of Students' Metacognition in Solving Calculus Problems
ERIC Educational Resources Information Center
Purnomo, Dwi; Nusantara, Toto; Subanji; Rahardjo, Swasono
2017-01-01
This article is the result of research aims to describe the patterns and characteristics of the process of metacognition student of mathematics in solving calculus problems. Description was done by looking at changes in "awareness," "evaluation," and "regulation" as components of metacognition. The changes in…
ERIC Educational Resources Information Center
Nitschke, Kai; Ruh, Nina; Kappler, Sonja; Stahl, Christoph; Kaller, Christoph P.
2012-01-01
Understanding the functional neuroanatomy of planning and problem solving may substantially benefit from better insight into the chronology of the cognitive processes involved. Based on the assumption that regularities in cognitive processing are reflected in overtly observable eye-movement patterns, here we recorded eye movements while…
ERIC Educational Resources Information Center
Maughan, George R.
2007-01-01
This qualitative research examines the cognitive processes embedded in self-explanations of automobile and motorcycle service technicians performing troubleshooting tasks and solving technical problems. In-depth interviews were conducted with twelve service technicians who have obtained the designation of "master technician" or equivalent within…
Sciencewise: Discovering Scientific Process through Problem Solving. Book 2.
ERIC Educational Resources Information Center
Holley, Dennis
This book of activities uses problem solving to help students develop the basic science process skills of observing, predicting, designing/experimenting, eliminating, and drawing conclusions. The activities are divided into two sections: Dynamo Demos and Creative Challenges. The teacher-led Dynamo Demos help students to develop science process…
Sciencewise: Discovering Scientific Process through Problem Solving. Book 1.
ERIC Educational Resources Information Center
Holley, Dennis
This book of activities uses problem solving to help students develop the basic science process skills of observing, predicting, designing/experimenting, eliminating, and drawing conclusions. The activities are divided into two sections: Dynamo Demos and Creative Challenges. The teacher-led Dynamo Demos help students to develop science process…
Students’ Algebraic Reasonsing In Solving Mathematical Problems With Adversity Quotient
NASA Astrophysics Data System (ADS)
Aryani, F.; Amin, S. M.; Sulaiman, R.
2018-01-01
Algebraic reasoning is a process in which students generalize mathematical ideas from a set of particular instances and express them in increasingly formal and age-appropriate ways. Using problem solving approach to develop algebraic reasoning of mathematics may enhace the long-term learning trajectory of the majority students. The purpose of this research was to describe the algebraic reasoning of quitter, camper, and climber junior high school students in solving mathematical problems. This research used qualitative descriptive method. Subjects were determined by purposive sampling. The technique of collecting data was done by task-based interviews.The results showed that the algebraic reasoning of three students in the process of pattern seeking by identifying the things that are known and asked in a similar way. But three students found the elements of pattern recognition in different ways or method. So, they are generalize the problem of pattern formation with different ways. The study of algebraic reasoning and problem solving can be a learning paradigm in the improve students’ knowledge and skills in algebra work. The goal is to help students’ improve academic competence, develop algebraic reasoning in problem solving.
ERIC Educational Resources Information Center
Finegold, M.; Mass, R.
1985-01-01
Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)
Holmberg, Leif
2007-11-01
A health-care organization simultaneously belongs to two different institutional value patterns: a professional and an administrative value pattern. At the administrative level, medical problem-solving processes are generally perceived as the efficient application of familiar chains of activities to well-defined problems; and a low task uncertainty is therefore assumed at the work-floor level. This assumption is further reinforced through clinical pathways and other administrative guidelines. However, studies have shown that in clinical practice such administrative guidelines are often considered inadequate and difficult to implement mainly because physicians generally perceive task uncertainty to be high and that the guidelines do not cover the scope of encountered deviations. The current administrative level guidelines impose uniform structural features that meet the requirement for low task uncertainty. Within these structural constraints, physicians must organize medical problem-solving processes to meet any task uncertainty that may be encountered. Medical problem-solving processes with low task uncertainty need to be organized independently of processes with high task uncertainty. Each process must be evaluated according to different performance standards and needs to have autonomous administrative guideline models. Although clinical pathways seem appropriate when there is low task uncertainty, other kinds of guidelines are required when the task uncertainty is high.
ERIC Educational Resources Information Center
Capobianco, Brenda M.; Tyrie, Nancy
2009-01-01
In a unique school-university partnership, methods students collaborated with fifth graders to use the engineering design process to build their problem-solving skills. By placing the problem in the context of a client having particular needs, the problem took on a real-world appeal that students found intriguing and inviting. In this article, the…
Collaborative Problem Solving in Shared Space
ERIC Educational Resources Information Center
Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk
2015-01-01
The purpose of this study was to examine collaborative problem solving in a shared virtual space. The main question asked was: How will the performance and processes differ between collaborative problem solvers and independent problem solvers over time? A total of 104 university students (63 female and 41 male) participated in an experimental…
A testable theory of problem solving courts: Avoiding past empirical and legal failures.
Wiener, Richard L; Winick, Bruce J; Georges, Leah Skovran; Castro, Anthony
2010-01-01
Recent years have seen a proliferation of problem solving courts designed to rehabilitate certain classes of offenders and thereby resolve the underlying problems that led to their court involvement in the first place. Some commentators have reacted positively to these courts, considering them an extension of the philosophy and logic of Therapeutic Jurisprudence, but others show concern that the discourse surrounding these specialty courts has not examined their process or outcomes critically enough. This paper examines that criticism from historical and social scientific perspectives. The analysis culminates in a model that describes how offenders are likely to respond to the process as they engage in problem solving court programs and the ways in which those courts might impact subsequent offender conduct. This Therapeutic Jurisprudence model of problem solving courts draws heavily on social cognitive psychology and more specifically on theories of procedural justice, motivation, and anticipated emotion to offer an explanation of how offenders respond to these programs. We offer this model as a lens through which social scientists can begin to address the concern that there is not enough critical analysis of the process and outcome of these courts. Applying this model to specialty courts constitutes an important step in critically examining the contribution of problem solving courts. Copyright © 2010 Elsevier Ltd. All rights reserved.
Is self-generated thought a means of social problem solving?
Ruby, Florence J. M.; Smallwood, Jonathan; Sackur, Jerome; Singer, Tania
2013-01-01
Appropriate social problem solving constitutes a critical skill for individuals and may rely on processes important for self-generated thought (SGT). The aim of the current study was to investigate the link between SGT and social problem solving. Using the Means-End Problem Solving task (MEPS), we assessed participants' abilities to resolve daily social problems in terms of overall efficiency and number of relevant means they provided to reach the given solution. Participants also performed a non-demanding choice reaction time task (CRT) and a moderately-demanding working memory task (WM) as a context in which to measure their SGT (assessed via thought sampling). We found that although overall SGT was associated with lower MEPS efficiency, it was also associated with higher relevant means, perhaps because both depend on the capacity to generate cognition that is independent from the hear and now. The specific content of SGT did not differentially predict individual differences in social problem solving, suggesting that the relationship may depend on SGT regardless of its content. In addition, we also found that performance at the WM but not the CRT was linked to overall better MEPS performance, suggesting that individuals good at social processing are also distinguished by their capacity to constrain attention to an external task. Our results provide novel evidence that the capacity for SGT is implicated in the process by which solutions to social problems are generated, although optimal problem solving may be achieved by individuals who display a suitable balance between SGT and cognition derived from perceptual input. PMID:24391621
Analysis of problem solving skill in learning biology at senior high school of Surakarta
NASA Astrophysics Data System (ADS)
Rahmawati, D.; Sajidan; Ashadi
2018-04-01
Problem solving is a critical component of comprehensive learning in 21st century. Problem solving is defined as a process used to obtain the best answer from a problem. Someone who can solve the problem is called a problem solver. Problem solver obtains many benefits in the future and has a chance to be an innovator, such as be an innovative entrepreneur, modify behavior, improve creativity, and cognitive skills. The goal of this research is to analyze problem solving skills of students in Senior High School Surakarta in learning Biology. Participants of this research were students of grade 12 SMA (Senior High School) N Surakarta. Data is collected by using multiple choice questions base on analysis problem solving skills on Mourtus. The result of this research showed that the percentage of defining problem was 52.38%, exploring the problem was 53.28%, implementing the solution was 50.71% for 50.08% is moderate, while the percentage of designing the solution was 34.42%, and evaluating was low for 39.24%. Based on the result showed that the problem solving skills of students in SMAN Surakarta was Low.
NASA Astrophysics Data System (ADS)
Palacio-Cayetano, Joycelin
"Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.
NASA Astrophysics Data System (ADS)
Delahunty, Thomas; Seery, Niall; Lynch, Raymond
2018-04-01
Currently, there is significant interest being directed towards the development of STEM education to meet economic and societal demands. While economic concerns can be a powerful driving force in advancing the STEM agenda, care must be taken that such economic imperative does not promote research approaches that overemphasize pragmatic application at the expense of augmenting the fundamental knowledge base of the discipline. This can be seen in the predominance of studies investigating problem solving approaches and procedures, while neglecting representational and conceptual processes, within the literature. Complementing concerns about STEM graduates' problem solving capabilities, raised within the pertinent literature, this paper discusses a novel methodological approach aimed at investigating the cognitive elements of problem conceptualization. The intention is to demonstrate a novel method of data collection that overcomes some of the limitations cited in classic problem solving research while balancing a search for fundamental understanding with the possibility of application. The methodology described in this study employs an electroencephalographic (EEG) headset, as part of a mixed methods approach, to gather objective evidence of students' cognitive processing during problem solving epochs. The method described provides rich evidence of students' cognitive representations of problems during episodes of applied reasoning. The reliability and validity of the EEG method is supported by the stability of the findings across the triangulated data sources. The paper presents a novel method in the context of research within STEM education and demonstrates an effective procedure for gathering rich evidence of cognitive processing during the early stages of problem conceptualization.
Extrusion Process by Finite Volume Method Using OpenFoam Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos Martins, Marcelo; Tonini Button, Sergio; Divo Bressan, Jose
The computational codes are very important tools to solve engineering problems. In the analysis of metal forming process, such as extrusion, this is not different because the computational codes allow analyzing the process with reduced cost. Traditionally, the Finite Element Method is used to solve solid mechanic problems, however, the Finite Volume Method (FVM) have been gaining force in this field of applications. This paper presents the velocity field and friction coefficient variation results, obtained by numerical simulation using the OpenFoam Software and the FVM to solve an aluminum direct cold extrusion process.
ERIC Educational Resources Information Center
Rimoldi, Horacio J. A.
The study of problem solving is made through the analysis of the process that leads to the final answer. The type of information obtained through the study of the process is compared with the information obtained by studying the final answer. The experimental technique used permits to identify the sequence of questions (tactics) that subjects ask…
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Gilbert, Jennifer K.; Powell, Sarah R.; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Seethaler, Pamela M.; Tolar, Tammy D.
2016-01-01
The purpose of this study was to examine child-level pathways in development of prealgebraic knowledge versus word-problem solving, while evaluating the contribution of calculation accuracy and fluency as mediators of foundational skills/processes. Children (n = 962; mean 7.60 years) were assessed on general cognitive processes and early…
ERIC Educational Resources Information Center
Rosenzweig, Carly; Krawec, Jennifer; Montague, Marjorie
2011-01-01
The purpose of the study was to investigate the metacognitive abilities of students with LD as they engage in math problem solving and to determine processing differences between these students and their low- and average-achieving peers (n = 73). Students thought out loud as they solved three math problems of increasing difficulty. Protocols were…
ERIC Educational Resources Information Center
Bayazit, Ibrahim
2013-01-01
This study scrutinises approaches and thinking processes displayed by the elementary school students when solving real-world problems. It employed a qualitative inquiry to produce rich and realistic data about the case at hand. The research sample included 116 students. The data were obtained from written exam and semistructured interviews, and…
The Students Decision Making in Solving Discount Problem
ERIC Educational Resources Information Center
Abdillah; Nusantara, Toto; Subanji; Susanto, Hery; Abadyo
2016-01-01
This research is reviewing students' process of decision making intuitively, analytically, and interactively. The research done by using discount problem which specially created to explore student's intuition, analytically, and interactively. In solving discount problems, researcher exploring student's decision in determining their attitude which…
Analysis of the Efficacy of an Intervention to Improve Parent-Adolescent Problem Solving
Semeniuk, Yulia Yuriyivna; Brown, Roger L.; Riesch, Susan K.
2016-01-01
We conducted a two-group longitudinal partially nested randomized controlled trial to examine whether young adolescent youth-parent dyads participating in Mission Possible: Parents and Kids Who Listen, in contrast to a comparison group, would demonstrate improved problem solving skill. The intervention is based on the Circumplex Model and Social Problem Solving Theory. The Circumplex Model posits that families who are balanced, that is characterized by high cohesion and flexibility and open communication, function best. Social Problem Solving Theory informs the process and skills of problem solving. The Conditional Latent Growth Modeling analysis revealed no statistically significant differences in problem solving among the final sample of 127 dyads in the intervention and comparison groups. Analyses of effect sizes indicated large magnitude group effects for selected scales for youth and dyads portraying a potential for efficacy and identifying for whom the intervention may be efficacious if study limitations and lessons learned were addressed. PMID:26936844
ERIC Educational Resources Information Center
Sternberg, Robert J.
1979-01-01
An information-processing framework is presented for understanding intelligence. Two levels of processing are discussed: the steps involved in solving a complex intellectual task, and higher-order processes used to decide how to solve the problem. (MH)
Cross-national comparisons of complex problem-solving strategies in two microworlds.
Güss, C Dominik; Tuason, Ma Teresa; Gerhard, Christiane
2010-04-01
Research in the fields of complex problem solving (CPS) and dynamic decision making using microworlds has been mainly conducted in Western industrialized countries. This study analyzes the CPS process by investigating thinking-aloud protocols in five countries. Participants were 511 students from Brazil, Germany, India, the Philippines, and the United States who worked on two microworlds. On the basis of cultural-psychological theories, specific cross-national differences in CPS strategies were hypothesized. Following theories of situatedness of cognition, hypotheses about the specific frequency of problem-solving strategies in the two microworlds were developed. Results of the verbal protocols showed (a) modification of the theoretical CPS model, (b) task dependence of CPS strategies, and (c) cross-national differences in CPS strategies. Participants' CPS processes were particularly influenced by country-specific problem-solving strategies. Copyright © 2009 Cognitive Science Society, Inc.
Lee, Dong-Gwi; Park, Hyun-Joo; Heppner, Mary J
2009-12-01
Using Heppner, et al.'s data from 2004, this study tested career counseling clients in the United States on problem-solving appraisal scores and career-related variables. A cross-lagged panel design with structural equation modeling was used. Results supported the link between clients' precounseling problem-solving appraisal scores and career outcome. This finding held for career decision-making, but not for vocational identity. The study provided further support for Heppner, et al.'s findings, highlighting the influential role of clients' problem-solving appraisals in advancing their career decision-making processes.
ERIC Educational Resources Information Center
Swanson, H. Lee
1982-01-01
An information processing approach to the assessment of learning disabled students' intellectual performance is presented. The model is based on the assumption that intelligent behavior is comprised of a variety of problem- solving strategies. An account of child problem solving is explained and illustrated with a "thinking aloud" protocol.…
ERIC Educational Resources Information Center
Bullock-Yowell, Emily; Katz, Sheba P.; Reardon, Robert C.; Peterson, Gary W.
2012-01-01
The respective roles of social cognitive career theory and cognitive information processing in career exploratory behavior were analyzed. A verified path model shows cognitive information processing theory's negative career thoughts inversely predict social cognitive career theory's career problem-solving self-efficacy, which predicts career…
ERIC Educational Resources Information Center
Cho, Seokhee; Lin, Chia-Yi
2011-01-01
Predictive relationships among perceived family processes, intrinsic and extrinsic motivation, incremental beliefs about intelligence, confidence in intelligence, and creative problem-solving practices in mathematics and science were examined. Participants were 733 scientifically talented Korean students in fourth through twelfth grades as well as…
Action Research and Response to Intervention: Bridging the Discourse Divide
ERIC Educational Resources Information Center
Little, Mary E.
2012-01-01
The purpose of this article is to define and clarify the process of instructional problem-solving using assessment data within action research (AR) and Response to Intervention (RtI). Similarities between AR and RtI are defined and compared. Lastly, specific resources and examples of the instructional problem-solving process of AR within…
An Experimental Investigation Utilizing the Computer as a Tool for Stimulating Reasoning Skills.
ERIC Educational Resources Information Center
White, Kathy B.; Collins, Rosann Webb
1983-01-01
Reports investigation of the first phase of problem solving, i.e., the awareness of mental operations, which uses cognitive process instruction to focus student attention on their thinking processes. Evaluation of students' ability to recall componential operations involved in familiar tasks indicates improvement in problem solving is an…
ERIC Educational Resources Information Center
Jalan, Sukoriyanto; Nusantara, Toto; Subanji, Subanji; Chandra, Tjang Daniel
2016-01-01
This study aims to explain the thinking process of students in solving combination problems considered from assimilation and accommodation frameworks. This research used a case study approach by classifying students into three categories of capabilities namely high, medium and low capabilities. From each of the ability categories, one student was…
Grading Homework to Emphasize Problem-Solving Process Skills
ERIC Educational Resources Information Center
Harper, Kathleen A.
2012-01-01
This article describes a grading approach that encourages students to employ particular problem-solving skills. Some strengths of this method, called "process-based grading," are that it is easy to implement, requires minimal time to grade, and can be used in conjunction with either an online homework delivery system or paper-based homework.
Cognitive Science and Instructional Technology: Improvements in Higher Order Thinking Strategies.
ERIC Educational Resources Information Center
Tennyson, Robert D.
This paper examines the cognitive processes associated with higher-order thinking strategies--i.e., cognitive processes directly associated with the employment of knowledge in the service of problem solving and creativity--in order to more clearly define a prescribed instructional method to improve problem-solving skills. The first section of the…
Worry in Children: Changing Associations with Fear, Thinking, and Problem-Solving
ERIC Educational Resources Information Center
Carr, Imogen; Szabó, Marianna
2015-01-01
Worry in adults has been conceptualized as a thinking process involving problem-solving attempts about anticipated negative outcomes. This process is related to, though distinct from, fear. Previous research suggested that compared to adults, children's experience of worry is less strongly associated with thinking and more closely related to fear.…
Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction
ERIC Educational Resources Information Center
Muller, Orna; Haberman, Bruria
2008-01-01
Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…
The Prehistory of Discovery: Precursors of Representational Change in Solving Gear System Problems.
ERIC Educational Resources Information Center
Dixon, James A.; Bangert, Ashley S.
2002-01-01
This study investigated whether the process of representational change undergoes developmental change or different processes occupy different niches in the course of knowledge acquisition. Subjects--college, third-, and sixth-grade students--solved gear system problems over two sessions. Findings indicated that for all grades, discovery of the…
Knowledge Intensive Programming: A New Educational Computing Environment.
ERIC Educational Resources Information Center
Seidman, Robert H.
1990-01-01
Comparison of the process of problem solving using a conventional procedural computer programing language (e.g., BASIC, Logo, Pascal), with the process when using a logic programing language (i.e., Prolog), focuses on the potential of the two types of programing languages to facilitate the transfer of problem-solving skills, cognitive development,…
ERIC Educational Resources Information Center
Whitman, Neal
Courses designed to teach problem-solving and creativity, which are relatively new additions to college curricula, are discussed, along with their intellectual foundations and research on these two processes. The teaching of these processes involves the following course goals: teaching a specific subject, generally useful skills, and professional…
Perceptual Salience and Children's Multidimensional Problem Solving
ERIC Educational Resources Information Center
Odom, Richard D.; Corbin, David W.
1973-01-01
Uni- and multidimensional processing of 6- to 9-year olds was studied using recall tasks in which an array of stimuli was reconstructed to match a model array. Results indicated that both age groups were able to solve multidimensional problems, but that solution rate was retarded by the unidimensional processing of highly salient dimensions.…
Deep Learning towards Expertise Development in a Visualization-Based Learning Environment
ERIC Educational Resources Information Center
Yuan, Bei; Wang, Minhong; Kushniruk, Andre W.; Peng, Jun
2017-01-01
With limited problem-solving capability and practical experience, novices have difficulties developing expert-like performance. It is important to make the complex problem-solving process visible to learners and provide them with necessary help throughout the process. This study explores the design and effects of a model-based learning approach…
Environmental Pollution: Is There Enough Public Concern to Lead to Action?
ERIC Educational Resources Information Center
Sharma, Navin C.; And Others
1975-01-01
Research indicates that the impetus to solve pollution problems may have to come from processes outside the realm of ordinary problem solving institutions. Mass media exposure and involvement in the political process are ineffective in generating antipollution sentiment. "Grass roots" movements based on informal communication may emerge to combat…
Nyamsuren, Enkhbold; Taatgen, Niels A
2013-01-01
Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving.
The Effect of Visual Representation Style in Problem-Solving: A Perspective from Cognitive Processes
Nyamsuren, Enkhbold; Taatgen, Niels A.
2013-01-01
Using results from a controlled experiment and simulations based on cognitive models, we show that visual presentation style can have a significant impact on performance in a complex problem-solving task. We compared subject performances in two isomorphic, but visually different, tasks based on a card game of SET. Although subjects used the same strategy in both tasks, the difference in presentation style resulted in radically different reaction times and significant deviations in scanpath patterns in the two tasks. Results from our study indicate that low-level subconscious visual processes, such as differential acuity in peripheral vision and low-level iconic memory, can have indirect, but significant effects on decision making during a problem-solving task. We have developed two ACT-R models that employ the same basic strategy but deal with different presentations styles. Our ACT-R models confirm that changes in low-level visual processes triggered by changes in presentation style can propagate to higher-level cognitive processes. Such a domino effect can significantly affect reaction times and eye movements, without affecting the overall strategy of problem solving. PMID:24260415
ERIC Educational Resources Information Center
Lin, John J. H.; Lin, Sunny S. J.
2018-01-01
To deepen our understanding of those aspects of problems that cause the most difficulty for solvers, this study integrated eye-tracking with handwriting devices to investigate problem solvers' online processes while solving geometry problems. We are interested in whether the difference between successful and unsuccessful solvers can be identified…
Eye-Tracking Study of Complexity in Gas Law Problems
ERIC Educational Resources Information Center
Tang, Hui; Pienta, Norbert
2012-01-01
This study, part of a series investigating students' use of online tools to assess problem solving, uses eye-tracking hardware and software to explore the effect of problem difficulty and cognitive processes when students solve gas law word problems. Eye movements are indices of cognition; eye-tracking data typically include the location,…
ERIC Educational Resources Information Center
Ge, Xun; Law, Victor; Huang, Kun
2016-01-01
One of the goals for problem-based learning (PBL) is to promote self-regulation. Although self-regulation has been studied extensively, its interrelationships with ill-structured problem solving have been unclear. In order to clarify the interrelationships, this article proposes a conceptual framework illustrating the iterative processes among…
The Structure of Ill-Structured (and Well-Structured) Problems Revisited
ERIC Educational Resources Information Center
Reed, Stephen K.
2016-01-01
In his 1973 article "The Structure of ill structured problems", Herbert Simon proposed that solving ill-structured problems could be modeled within the same information-processing framework developed for solving well-structured problems. This claim is reexamined within the context of over 40 years of subsequent research and theoretical…
Rumination decreases parental problem-solving effectiveness in dysphoric postnatal mothers.
O'Mahen, Heather A; Boyd, Alex; Gashe, Caroline
2015-06-01
Postnatal depression is associated with poorer parenting quality, but there are few studies examining maternal-specific cognitive processes that may impact on parenting quality. In this study, we examined the impact of rumination on parental problem-solving effectiveness in dysphoric and non-dysphoric postnatal mothers. Fifty-nine mothers with a infant aged 12 months and under, 20 of whom had a Beck Depression Score II (BDI-II) score ≥ 14, and 39 who scored less than 14 on the BDI-II were randomly assigned to either a rumination or distraction condition. Problem-solving effectiveness was assessed post-induction with the "Postnatal Parental Problem-Solving Task" (PPST), which was adapted from the Means Ends Problem-solving task. Parental problem-solving confidence was also assessed. Dysphoric ruminating mothers exhibited poorer problem-solving effectiveness and poorer confidence regarding their problem-solving compared to dysphoric distracting, non-dysphoric distracting, and non-dysphoric ruminating mothers. A self-report measure of depressed mood was used. Rumination may be a key mechanism associated with both depressive mood and maternal parenting quality during the postnatal period. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moryakov, A. V., E-mail: sailor@yauza.ru; Pylyov, S. S.
This paper presents the formulation of the problem and the methodical approach for solving large systems of linear differential equations describing nonstationary processes with the use of CUDA technology; this approach is implemented in the ANGEL program. Results for a test problem on transport of radioactive products over loops of a nuclear power plant are given. The possibilities for the use of the ANGEL program for solving various problems that simulate arbitrary nonstationary processes are discussed.
Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making
NASA Astrophysics Data System (ADS)
Modir, Bahar
In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I will lay out a new theoretical framework based in epistemic framing that separates the problem solving space into four frames divided along two axes. The first axis models students' framing in math and physics, expanded through the second axis of conceptual problem solving and algorithmic problem solving. I use this framework to show how students navigate problem solving. Lastly, I will use this developed framework to interpret existing difficulties in quantum mechanics.
Is Word-Problem Solving a Form of Text Comprehension?
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.
2015-01-01
This study's hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of…
ERIC Educational Resources Information Center
Seyhan, Hatice Güngör
2015-01-01
This study was conducted with 98 prospective science teachers, who were composed of 50 prospective teachers that had participated in problem-solving applications and 48 prospective teachers who were taught within a more researcher-oriented teaching method in science laboratories. The first aim of this study was to determine the levels of…
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
A Confidant Support and Problem Solving Model of Divorced Fathers’ Parenting
DeGarmo, David S.; Forgatch, Marion S.
2011-01-01
This study tested a hypothesized social interaction learning (SIL) model of confidant support and paternal parenting. The latent growth curve analysis employed 230 recently divorced fathers, of which 177 enrolled support confidants, to test confidant support as a predictor of problem solving outcomes and problem solving outcomes as predictors of change in fathers’ parenting. Fathers’ parenting was hypothesized to predict growth in child behavior. Observational measures of support behaviors and problem solving outcomes were obtained from structured discussions of personal and parenting issues faced by the fathers. Findings replicated and extended prior cross-sectional studies with divorced mothers and their confidants. Confidant support predicted better problem solving outcomes, problem solving predicted more effective parenting, and parenting in turn predicted growth in children’s reduced total problem behavior T scores over 18 months. Supporting a homophily perspective, fathers’ antisociality was associated with confidant antisociality but only fathers’ antisociality influenced the support process model. Intervention implications are discussed regarding SIL parent training and social support. PMID:21541814
A Cognitive Simulator for Learning the Nature of Human Problem Solving
NASA Astrophysics Data System (ADS)
Miwa, Kazuhisa
Problem solving is understood as a process through which states of problem solving are transferred from the initial state to the goal state by applying adequate operators. Within this framework, knowledge and strategies are given as operators for the search. One of the most important points of researchers' interest in the domain of problem solving is to explain the performance of problem solving behavior based on the knowledge and strategies that the problem solver has. We call the interplay between problem solvers' knowledge/strategies and their behavior the causal relation between mental operations and behavior. It is crucially important, we believe, for novice learners in this domain to understand the causal relation between mental operations and behavior. Based on this insight, we have constructed a learning system in which learners can control mental operations of a computational agent that solves a task, such as knowledge, heuristics, and cognitive capacity, and can observe its behavior. We also introduce this system to a university class, and discuss which findings were discovered by the participants.
A confidant support and problem solving model of divorced fathers' parenting.
Degarmo, David S; Forgatch, Marion S
2012-03-01
This study tested a hypothesized social interaction learning (SIL) model of confidant support and paternal parenting. The latent growth curve analysis employed 230 recently divorced fathers, of which 177 enrolled support confidants, to test confidant support as a predictor of problem solving outcomes and problem solving outcomes as predictors of change in fathers' parenting. Fathers' parenting was hypothesized to predict growth in child behavior. Observational measures of support behaviors and problem solving outcomes were obtained from structured discussions of personal and parenting issues faced by the fathers. Findings replicated and extended prior cross-sectional studies with divorced mothers and their confidants. Confidant support predicted better problem solving outcomes, problem solving predicted more effective parenting, and parenting in turn predicted growth in children's reduced total problem behavior T scores over 18 months. Supporting a homophily perspective, fathers' antisociality was associated with confidant antisociality but only fathers' antisociality influenced the support process model. Intervention implications are discussed regarding SIL parent training and social support.
Physics: Quantum problems solved through games
NASA Astrophysics Data System (ADS)
Maniscalco, Sabrina
2016-04-01
Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210
Photoreactors for Solving Problems of Environmental Pollution
NASA Astrophysics Data System (ADS)
Tchaikovskaya, O. N.; Sokolova, I. V.
2015-04-01
Designs and physical aspects of photoreactors, their capabilities for a study of kinetics and mechanisms of processes proceeding under illumination with light, as well as application of photoreactors for solving various applied problem are discussed.
NASA Astrophysics Data System (ADS)
Weatherwax Scott, Caroline; Tsareff, Christopher R.
1990-06-01
One of the main goals of process engineering in the semiconductor industry is to improve wafer fabrication productivity and throughput. Engineers must work continuously toward this goal in addition to performing sustaining and development tasks. To accomplish these objectives, managers must make efficient use of engineering resources. One of the tools being used to improve efficiency is the diagnostic expert system. Expert systems are knowledge based computer programs designed to lead the user through the analysis and solution of a problem. Several photolithography diagnostic expert systems have been implemented at the Hughes Technology Center to provide a systematic approach to process problem solving. This systematic approach was achieved by documenting cause and effect analyses for a wide variety of processing problems. This knowledge was organized in the form of IF-THEN rules, a common structure for knowledge representation in expert system technology. These rules form the knowledge base of the expert system which is stored in the computer. The systems also include the problem solving methodology used by the expert when addressing a problem in his area of expertise. Operators now use the expert systems to solve many process problems without engineering assistance. The systems also facilitate the collection of appropriate data to assist engineering in solving unanticipated problems. Currently, several expert systems have been implemented to cover all aspects of the photolithography process. The systems, which have been in use for over a year, include wafer surface preparation (HMDS), photoresist coat and softbake, align and expose on a wafer stepper, and develop inspection. These systems are part of a plan to implement an expert system diagnostic environment throughout the wafer fabrication facility. In this paper, the systems' construction is described, including knowledge acquisition, rule construction, knowledge refinement, testing, and evaluation. The roles played by the process engineering expert and the knowledge engineer are discussed. The features of the systems are shown, particularly the interactive quality of the consultations and the ease of system use.
Abdollahi, Abbas; Talib, Mansor Abu; Yaacob, Siti Nor; Ismail, Zanariah
2015-01-01
Objectives Recent evidence suggests that suicidal ideation is increased among university students, it is essential to increase our knowledge concerning the etiology of suicidal ideation among university students. This study was conducted to examine the relationships between problem-solving skills appraisal, hardiness, and suicidal ideation among university students. In addition, this study was conducted to examine problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) as a potential mediator between hardiness and suicidal ideation. Methods The participants consisted of 500 undergraduate students from Malaysian public universities. Results Structural Equation Modelling (SEM) estimated that undergraduate students with lower hardiness, poor problem-solving confidence, external personal control of emotion, and avoiding style was associated with higher suicidal ideation. Problem-solving skills appraisal (including the three components of problem-solving confidence, approach-avoidance style, and personal control of emotion) partially mediated the relationship between hardiness and suicidal ideation. Conclusion These findings underline the importance of studying mediating processes that explain how hardiness affects suicidal ideation. PMID:25830229
Insight and analysis problem solving in microbes to machines.
Clark, Kevin B
2015-11-01
A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. Copyright © 2015 Elsevier Ltd. All rights reserved.
Innovation and problem solving: a review of common mechanisms.
Griffin, Andrea S; Guez, David
2014-11-01
Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.
van Horik, Jayden O; Madden, Joah R
2016-04-01
Rates of innovative foraging behaviours and success on problem-solving tasks are often used to assay differences in cognition, both within and across species. Yet the cognitive features of some problem-solving tasks can be unclear. As such, explanations that attribute cognitive mechanisms to individual variation in problem-solving performance have revealed conflicting results. We investigated individual consistency in problem-solving performances in captive-reared pheasant chicks, Phasianus colchicus , and addressed whether success depends on cognitive processes, such as trial-and-error associative learning, or whether performances may be driven solely via noncognitive motivational mechanisms, revealed through subjects' willingness to approach, engage with and persist in their interactions with an apparatus, or via physiological traits such as body condition. While subjects' participation and success were consistent within the same problems and across similar tasks, their performances were inconsistent across different types of task. Moreover, subjects' latencies to approach each test apparatus and their attempts to access the reward were not repeatable across trials. Successful individuals did not improve their performances with experience, nor were they consistent in their techniques in repeated presentations of a task. However, individuals that were highly motivated to enter the experimental chamber were more likely to participate. Successful individuals were also faster to approach each test apparatus and more persistent in their attempts to solve the tasks than unsuccessful individuals. Our findings therefore suggest that individual differences in problem-solving success can arise from inherent motivational differences alone and hence be achieved without inferring more complex cognitive processes.
van Horik, Jayden O.; Madden, Joah R.
2016-01-01
Rates of innovative foraging behaviours and success on problem-solving tasks are often used to assay differences in cognition, both within and across species. Yet the cognitive features of some problem-solving tasks can be unclear. As such, explanations that attribute cognitive mechanisms to individual variation in problem-solving performance have revealed conflicting results. We investigated individual consistency in problem-solving performances in captive-reared pheasant chicks, Phasianus colchicus, and addressed whether success depends on cognitive processes, such as trial-and-error associative learning, or whether performances may be driven solely via noncognitive motivational mechanisms, revealed through subjects' willingness to approach, engage with and persist in their interactions with an apparatus, or via physiological traits such as body condition. While subjects' participation and success were consistent within the same problems and across similar tasks, their performances were inconsistent across different types of task. Moreover, subjects' latencies to approach each test apparatus and their attempts to access the reward were not repeatable across trials. Successful individuals did not improve their performances with experience, nor were they consistent in their techniques in repeated presentations of a task. However, individuals that were highly motivated to enter the experimental chamber were more likely to participate. Successful individuals were also faster to approach each test apparatus and more persistent in their attempts to solve the tasks than unsuccessful individuals. Our findings therefore suggest that individual differences in problem-solving success can arise from inherent motivational differences alone and hence be achieved without inferring more complex cognitive processes. PMID:27122637
NASA Astrophysics Data System (ADS)
Shorikov, A. F.
2017-10-01
In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we propose a mathematical model in the form of two-level hierarchical minimax program control problem of the final state of this process with incomplete information. For solving of its problem we constructed the common algorithm that has a form of a recurrent procedure of solving a linear programming and a finite optimization problems.
Focus group discussion in mathematical physics learning
NASA Astrophysics Data System (ADS)
Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.
2018-03-01
The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.
The Influence of Different Representations on Solving Concentration Problems at Elementary School
NASA Astrophysics Data System (ADS)
Liu, Chia-Ju; Shen, Ming-Hsun
2011-10-01
This study investigated the students' learning process of the concept of concentration at the elementary school level in Taiwan. The influence of different representational types on the process of proportional reasoning was also explored. The participants included nineteen third-grade and eighteen fifth-grade students. Eye-tracking technology was used in conducting the experiment. The materials were adapted from Noelting's (1980a) "orange juice test" experiment. All problems on concentration included three stages (the intuitive, the concrete operational, and the formal operational), and each problem was displayed in iconic and symbolic representations. The data were collected through eye-tracking technology and post-test interviews. The results showed that the representational types influenced students' solving of concentration problems. Furthermore, the data on eye movement indicated that students used different strategies or rules to solve concentration problems at the different stages of the problems with different representational types. This study is intended to contribute to the understanding of elementary school students' problem-solving strategies and the usability of eye-tracking technology in related studies.
Cross-Cultural Study of Cognitive and Metacognitive Processes during Math Problem Solving
ERIC Educational Resources Information Center
Cozza, Barbara; Oreshkina, Maria
2013-01-01
The purpose of this qualitative study was: (a) to explore the cognitive and metacognitive processes of mathematics problem-solving discourse of 10-year-old students in Russia, Spain, Hungary, and the United States; and (b) to explore the patterns of social interactions during small group work. Data were analyzed using a cognitive/metacognitive…
8-Step Model Drawing: Singapore's Best Problem-Solving MATH Strategies
ERIC Educational Resources Information Center
Hogan, Bob; Forsten, Char
2007-01-01
In this book, Bob Hogan and Char Forsten introduce American mathematics educators to the model drawing process adapted from the much-acclaimed Singapore approach. They explain what model drawing is and why it's such an effective problem-solving tool. They show exactly how teachers can guide their students through the process, tell which key points…
ERIC Educational Resources Information Center
Stamovlasis, Dimitrios; Tsaparlis, Georgios
2012-01-01
In this study, we test an information-processing model (IPM) of problem solving in science education, namely the working memory overload model, by applying catastrophe theory. Changes in students' achievement were modeled as discontinuities within a cusp catastrophe model, where working memory capacity was implemented as asymmetry and the degree…
An Onto-Semiotic Analysis of Combinatorial Problems and the Solving Processes by University Students
ERIC Educational Resources Information Center
Godino, Juan D.; Batanero, Carmen; Roa, Rafael
2005-01-01
In this paper we describe an ontological and semiotic model for mathematical knowledge, using elementary combinatorics as an example. We then apply this model to analyze the solving process of some combinatorial problems by students with high mathematical training, and show its utility in providing a semiotic explanation for the difficulty of…
ERIC Educational Resources Information Center
Muis, Krista R.; Psaradellis, Cynthia; Chevrier, Marianne; Di Leo, Ivana; Lajoie, Susanne P.
2016-01-01
We developed an intervention based on the learning by teaching paradigm to foster self-regulatory processes and better learning outcomes during complex mathematics problem solving in a technology-rich learning environment. Seventy-eight elementary students were randomly assigned to 1 of 2 conditions: learning by preparing to teach, or learning for…
ERIC Educational Resources Information Center
Jahreie, Cecilie Flo
2010-01-01
This article examines the way student teachers make sense of conceptual tools when writing cases. In order to understand the problem-solving process, an analysis of the interactions is conducted. The findings show that transforming practical experiences into theoretical reflection is not a straightforward matter. To be able to elaborate on the…
Using a Semantic Diagram to Structure a Collaborative Problem Solving Process in the Classroom
ERIC Educational Resources Information Center
Cai, Huiying; Lin, Lin; Gu, Xiaoqing
2016-01-01
This study provides an in-depth look into the implementation process of visualization-based tools for structuring collaborative problem solving (CPS) in the classroom. A visualization-based learning platform--the semantic diagram for structuring CPS in a real classroom was designed and implemented. Metafora, the preliminary vehicle of the semantic…
ERIC Educational Resources Information Center
Fazio, Frank; Moser, Gene W.
A probabilistic model (see SE 013 578) describing information processing during the cognitive tasks of recall and problem solving was tested, refined, and developed by testing graduate students on a number of tasks which combined oral, written, and overt "input" and "output" modes in several ways. In a verbal chain one subject…
ERIC Educational Resources Information Center
McLennan, Natasha A.; Arthur, Nancy
1999-01-01
Outlines an expanded framework of the Cognitive Information Processing (CIP) approach to career problem solving and decision making for career counseling with women. Addresses structural and individual barriers in women's career development and provides practical suggestions for applying and evaluating the CIP approach in career counseling.…
How did you guess? Or, what do multiple-choice questions measure?
Cox, K R
1976-06-05
Multiple-choice questions classified as requiring problem-solving skills have been interpreted as measuring problem-solving skills within students, with the implicit hypothesis that questions needing an increasingly complex intellectual process should present increasing difficulty to the student. This hypothesis was tested in a 150-question paper taken by 721 students in seven Australian medical schools. No correlation was observed between difficulty and assigned process. Consequently, the question-answering process was explored with a group of final-year students. Anecdotal recall by students gave heavy weight to knowledge rather than problem solving in answering these questions. Assignment of the 150 questions to the classification by three teachers and six students showed their congruence to be a little above random probability.
On Creativity: A Case Study of Military Innovation
2015-09-01
HSI theses, it does not aim to define or refine the HSI process, nor does it seek to demonstrate how aspects of a problem pertain to or influence...Neuroscientists have found that the brain operates in both an externally focused, goal-directed mode, solving problems by the use of known patterns, and an...The entire brain is active when engaged in creative problem solving. During the creative process, an increase of new neurological connections between
Towards the Construction of a Framework to Deal with Routine Problems to Foster Mathematical Inquiry
ERIC Educational Resources Information Center
Santos-Trigo, Manuel; Camacho-Machin, Matias
2009-01-01
To what extent does the process of solving textbook problems help students develop a way of thinking that is consistent with mathematical practice? Can routine problems be transformed into problem solving activities that promote students' mathematical reflection? These questions are used to outline and discuss features of an inquiry framework…
The Process of Probability Problem Solving: Use of External Visual Representations
ERIC Educational Resources Information Center
Zahner, Doris; Corter, James E.
2010-01-01
We investigate the role of external inscriptions, particularly those of a spatial or visual nature, in the solution of probability word problems. We define a taxonomy of external visual representations used in probability problem solving that includes "pictures," "spatial reorganization of the given information," "outcome listings," "contingency…
ERIC Educational Resources Information Center
Shore, Felice S.; Pascal, Matthew
2008-01-01
This article describes several distinct approaches taken by preservice elementary teachers to solving a classic rate problem. Their approaches incorporate a variety of mathematical concepts, ranging from proportions to infinite series, and illustrate the power of all five NCTM Process Standards. (Contains 8 figures.)
Students' Activity in Computer-Supported Collaborative Problem Solving in Mathematics
ERIC Educational Resources Information Center
Hurme, Tarja-riitta; Jarvela, Sanna
2005-01-01
The purpose of this study was to analyse secondary school students' (N = 16) computer-supported collaborative mathematical problem solving. The problem addressed in the study was: What kinds of metacognitive processes appear during computer-supported collaborative learning in mathematics? Another aim of the study was to consider the applicability…
Cognitive Principles of Problem Solving and Instruction. Final Report.
ERIC Educational Resources Information Center
Greeno, James G.; And Others
Research in this project studied cognitive processes involved in understanding and solving problems used in instruction in the domain of mathematics, and explored implications of these cognitive analyses for the design of instruction. Three general issues were addressed: knowledge required for understanding problems, knowledge of the conditions…
Peeling Onions: Some Tools and a Recipe for Solving Ethical Dilemmas.
ERIC Educational Resources Information Center
Gordon, Joan Claire
1993-01-01
Presents a process for solving ethical dilemmas: define the problem; identify facts; determine values; "slice" the problem different ways--duties, virtues, rights, and common good; rank ethical considerations; consult colleagues; and take action. (SK)
Metaphor and analogy in everyday problem solving.
Keefer, Lucas A; Landau, Mark J
2016-11-01
Early accounts of problem solving focused on the ways people represent information directly related to target problems and possible solutions. Subsequent theory and research point to the role of peripheral influences such as heuristics and bodily states. We discuss how metaphor and analogy similarly influence stages of everyday problem solving: Both processes mentally map features of a target problem onto the structure of a relatively more familiar concept. When individuals apply this structure, they use a well-known concept as a framework for reasoning about real world problems and candidate solutions. Early studies found that analogy use helped people gain insight into novel problems. More recent research on metaphor goes further to show that activating mappings has subtle, sometimes surprising effects on judgment and reasoning in everyday problem solving. These findings highlight situations in which mappings can help or hinder efforts to solve problems. WIREs Cogn Sci 2016, 7:394-405. doi: 10.1002/wcs.1407 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Uniformity and nonuniformity of neural activities correlated to different insight problem solving.
Zhao, Q; Li, Y; Shang, X; Zhou, Z; Han, L
2014-06-13
Previous studies on the neural basis of insight reflected weak consistency except for the anterior cingulate cortex. The present work adopted the semantic and homophonic punny riddle to explore the uniformity and nonuniformity of neural activities correlated to different insight problem solving. Results showed that in the early period of insight solving, the semantic and homophonic punny riddles induced a common N350-500 over the central scalp. However, during -400 to 0 ms before the riddles were solved, the semantic punny riddles induced a positive event-related potential (ERP) deflection over the temporal cortex for retrieving the extensive semantic information, while the homophonic punny riddles induced a positive ERP deflection over the temporal cortex and a negative one in the left frontal cortex which might reflect the semantic and phonological information processing respectively. Our study indicated that different insight problem solving should have the same cognitive process of detecting cognitive conflicts, but have different ways to solve the conflicts. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Generic Tasks for Knowledge-Based Problem Solving: Extension and New Directions
1991-02-01
Report. i 3] D. Brown and B. Chandrasekaran. Design: An information processing level analy- sis. In Design Problem Solving: Knowledge Structures and...generic information processing tasks. In Proceedings of the Internaoional Joint Conference on Artificial Inte!lzjence. IJCAI, 1987. [181 B...Chandrasekaran. What kind of information processing is intelligence? a perspective I on ai paradigms and a proposal. In D. Partridge and Y. Wilks, editors
The NASA planning process, appendix D. [as useful planning approach for solving urban problems
NASA Technical Reports Server (NTRS)
Annett, H. A.
1973-01-01
The planning process is outlined which NASA used in making some fundamental post-Apollo decisions concerning the reuseable space shuttle and the orbiting laboratory. It is suggested that the basic elements and principles of the process, when combined, form a useful planning approach for solving urban problems. These elements and principles are defined along with the basic strengths of the planning model.
NASA Astrophysics Data System (ADS)
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-08-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.
ERIC Educational Resources Information Center
Arts, Jos A. R.; Gijselaers, Wim H.; Boshuizen, Henny P. A.
2006-01-01
The present study explores stages in managerial problem-solving skills of participants beginning with formal education, and continuing through the professional workplace setting. We studied nine different levels of expertise: from novice student groups, to graduates and expert groups. Participants were asked to diagnose and solve business cases.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moryakov, A. V., E-mail: sailor@orc.ru
2016-12-15
An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.
NASA Astrophysics Data System (ADS)
Chakroun, Mahmoud; Gogu, Grigore; Pacaud, Thomas; Thirion, François
2014-09-01
This study proposes an eco-innovative design process taking into consideration quality and environmental aspects in prioritizing and solving technical engineering problems. This approach provides a synergy between the Life Cycle Assessment (LCA), the nonquality matrix, the Theory of Inventive Problem Solving (TRIZ), morphological analysis and the Analytical Hierarchy Process (AHP). In the sequence of these tools, LCA assesses the environmental impacts generated by the system. Then, for a better consideration of environmental aspects, a new tool is developed, the non-quality matrix, which defines the problem to be solved first from an environmental point of view. The TRIZ method allows the generation of new concepts and contradiction resolution. Then, the morphological analysis offers the possibility of extending the search space of solutions in a design problem in a systematic way. Finally, the AHP identifies the promising solution(s) by providing a clear logic for the choice made. Their usefulness has been demonstrated through their application to a case study involving a centrifugal spreader with spinning discs.
Complex Problem Solving in Teams: The Impact of Collective Orientation on Team Process Demands.
Hagemann, Vera; Kluge, Annette
2017-01-01
Complex problem solving is challenging and a high-level cognitive process for individuals. When analyzing complex problem solving in teams, an additional, new dimension has to be considered, as teamwork processes increase the requirements already put on individual team members. After introducing an idealized teamwork process model, that complex problem solving teams pass through, and integrating the relevant teamwork skills for interdependently working teams into the model and combining it with the four kinds of team processes (transition, action, interpersonal, and learning processes), the paper demonstrates the importance of fulfilling team process demands for successful complex problem solving within teams. Therefore, results from a controlled team study within complex situations are presented. The study focused on factors that influence action processes, like coordination, such as emergent states like collective orientation, cohesion, and trust and that dynamically enable effective teamwork in complex situations. Before conducting the experiments, participants were divided by median split into two-person teams with either high ( n = 58) or low ( n = 58) collective orientation values. The study was conducted with the microworld C3Fire, simulating dynamic decision making, and acting in complex situations within a teamwork context. The microworld includes interdependent tasks such as extinguishing forest fires or protecting houses. Two firefighting scenarios had been developed, which takes a maximum of 15 min each. All teams worked on these two scenarios. Coordination within the team and the resulting team performance were calculated based on a log-file analysis. The results show that no relationships between trust and action processes and team performance exist. Likewise, no relationships were found for cohesion. Only collective orientation of team members positively influences team performance in complex environments mediated by action processes such as coordination within the team. The results are discussed in relation to previous empirical findings and to learning processes within the team with a focus on feedback strategies.
Complex Problem Solving in Teams: The Impact of Collective Orientation on Team Process Demands
Hagemann, Vera; Kluge, Annette
2017-01-01
Complex problem solving is challenging and a high-level cognitive process for individuals. When analyzing complex problem solving in teams, an additional, new dimension has to be considered, as teamwork processes increase the requirements already put on individual team members. After introducing an idealized teamwork process model, that complex problem solving teams pass through, and integrating the relevant teamwork skills for interdependently working teams into the model and combining it with the four kinds of team processes (transition, action, interpersonal, and learning processes), the paper demonstrates the importance of fulfilling team process demands for successful complex problem solving within teams. Therefore, results from a controlled team study within complex situations are presented. The study focused on factors that influence action processes, like coordination, such as emergent states like collective orientation, cohesion, and trust and that dynamically enable effective teamwork in complex situations. Before conducting the experiments, participants were divided by median split into two-person teams with either high (n = 58) or low (n = 58) collective orientation values. The study was conducted with the microworld C3Fire, simulating dynamic decision making, and acting in complex situations within a teamwork context. The microworld includes interdependent tasks such as extinguishing forest fires or protecting houses. Two firefighting scenarios had been developed, which takes a maximum of 15 min each. All teams worked on these two scenarios. Coordination within the team and the resulting team performance were calculated based on a log-file analysis. The results show that no relationships between trust and action processes and team performance exist. Likewise, no relationships were found for cohesion. Only collective orientation of team members positively influences team performance in complex environments mediated by action processes such as coordination within the team. The results are discussed in relation to previous empirical findings and to learning processes within the team with a focus on feedback strategies. PMID:29033886
Analysis of the Efficacy of an Intervention to Improve Parent-Adolescent Problem Solving.
Semeniuk, Yulia Yuriyivna; Brown, Roger L; Riesch, Susan K
2016-07-01
We conducted a two-group longitudinal partially nested randomized controlled trial to examine whether young adolescent youth-parent dyads participating in Mission Possible: Parents and Kids Who Listen, in contrast to a comparison group, would demonstrate improved problem-solving skill. The intervention is based on the Circumplex Model and Social Problem-Solving Theory. The Circumplex Model posits that families who are balanced, that is characterized by high cohesion and flexibility and open communication, function best. Social Problem-Solving Theory informs the process and skills of problem solving. The Conditional Latent Growth Modeling analysis revealed no statistically significant differences in problem solving among the final sample of 127 dyads in the intervention and comparison groups. Analyses of effect sizes indicated large magnitude group effects for selected scales for youth and dyads portraying a potential for efficacy and identifying for whom the intervention may be efficacious if study limitations and lessons learned were addressed. © The Author(s) 2016.
Formative feedback and scaffolding for developing complex problem solving and modelling outcomes
NASA Astrophysics Data System (ADS)
Frank, Brian; Simper, Natalie; Kaupp, James
2018-07-01
This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.
Hedne, Mikael R; Norman, Elisabeth; Metcalfe, Janet
2016-01-01
The focus of the current study is on intuitive feelings of insight during problem solving and the extent to which such feelings are predictive of successful problem solving. We report the results from an experiment (N = 51) that applied a procedure where the to-be-solved problems were 32 short (15 s) video recordings of magic tricks. The procedure included metacognitive ratings similar to the "warmth ratings" previously used by Metcalfe and colleagues, as well as confidence ratings. At regular intervals during problem solving, participants indicated the perceived closeness to the correct solution. Participants also indicated directly whether each problem was solved by insight or not. Problems that people claimed were solved by insight were characterized by higher accuracy and higher confidence than noninsight solutions. There was no difference between the two types of solution in warmth ratings, however. Confidence ratings were more strongly associated with solution accuracy for noninsight than insight trials. Moreover, for insight trials the participants were more likely to repeat their incorrect solutions on a subsequent recognition test. The results have implications for understanding people's metacognitive awareness of the cognitive processes involved in problem solving. They also have general implications for our understanding of how intuition and insight are related.
Hedne, Mikael R.; Norman, Elisabeth; Metcalfe, Janet
2016-01-01
The focus of the current study is on intuitive feelings of insight during problem solving and the extent to which such feelings are predictive of successful problem solving. We report the results from an experiment (N = 51) that applied a procedure where the to-be-solved problems were 32 short (15 s) video recordings of magic tricks. The procedure included metacognitive ratings similar to the “warmth ratings” previously used by Metcalfe and colleagues, as well as confidence ratings. At regular intervals during problem solving, participants indicated the perceived closeness to the correct solution. Participants also indicated directly whether each problem was solved by insight or not. Problems that people claimed were solved by insight were characterized by higher accuracy and higher confidence than noninsight solutions. There was no difference between the two types of solution in warmth ratings, however. Confidence ratings were more strongly associated with solution accuracy for noninsight than insight trials. Moreover, for insight trials the participants were more likely to repeat their incorrect solutions on a subsequent recognition test. The results have implications for understanding people's metacognitive awareness of the cognitive processes involved in problem solving. They also have general implications for our understanding of how intuition and insight are related. PMID:27630598
Managing Problems Before Problems Manage You.
Grigsby, Jim
2015-01-01
Every day we face problems, both personal and professional, and our initial reaction determines how well we solve those problems. Whether a problem is minor or major, short-term or lingering, there are techniques we can employ to help manage the problem and the problem-solving process. This article, based on my book Don't Tick Off The Gators! Managing Problems Before Problems Manage You, presents 12 different concepts for managing problems, not "cookie cutter" solutions, but different ideas that you can apply as they fit your circumstances.
Right frontal gamma and beta band enhancement while solving a spatial puzzle with insight.
Rosen, A; Reiner, M
2017-12-01
Solving a problem with an "a-ha" effect is known as insight. Unlike incremental problem solving, insight is sudden and unique, and the question about its distinct brain activity, intrigues many researchers. In this study, electroencephalogram signals were recorded from 12 right handed, human participants before (baseline) and while they solved a spatial puzzle known as the '10 coin puzzle' that could be solved incrementally or by insight. Participants responded as soon as they reached a solution and reported whether the process was incremental or by sudden insight. EEG activity was recorded from 19 scalp locations. We found significant differences between insight and incremental solvers in the Gamma and Beta 2 bands in frontal areas (F8) and in the alpha band in right temporal areas (T6). The right-frontal gamma indicates a process of restructuring which leads to an insight solution, in spatial problems, further suggesting a universal role of gamma in restructuring. These results further suggest that solving a spatial puzzle via insight requires exclusive brain areas and neurological-cognitive processes which may be important for meta-cognitive components of insight solutions, including attention and monitoring of the solution. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Leithwood, Kenneth; Steinbach, Rosanne
Findings of a study that examined the relationship between variations in patterns of school leadership and group problem-solving process are presented in this paper. Interviews were conducted at the beginning and end of the school year with 12 principals in British Columbia who had implemented the Primary Program. The initiative was designed to…
ERIC Educational Resources Information Center
Yildirim, Nilay
2013-01-01
This cross-case study examines the relationships between game design attributes and collaborative problem solving process in the context of multi-player video games. The following game design attributes: sensory stimuli elements, level of challenge, and presentation of game goals and rules were examined to determine their influence on game…
ERIC Educational Resources Information Center
Kozbelt, Aaron; Dexter, Scott; Dolese, Melissa; Meredith, Daniel; Ostrofsky, Justin
2015-01-01
We applied computer-based text analyses of regressive imagery to verbal protocols of individuals engaged in creative problem-solving in two domains: visual art (23 experts, 23 novices) and computer programming (14 experts, 14 novices). Percentages of words involving primary process and secondary process thought, plus emotion-related words, were…
ERIC Educational Resources Information Center
Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya
2013-01-01
The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…
Variational algorithms for nonlinear smoothing applications
NASA Technical Reports Server (NTRS)
Bach, R. E., Jr.
1977-01-01
A variational approach is presented for solving a nonlinear, fixed-interval smoothing problem with application to offline processing of noisy data for trajectory reconstruction and parameter estimation. The nonlinear problem is solved as a sequence of linear two-point boundary value problems. Second-order convergence properties are demonstrated. Algorithms for both continuous and discrete versions of the problem are given, and example solutions are provided.
Self-calibration of robot-sensor system
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu
1990-01-01
The process of finding the coordinate transformation between a robot and an external sensor system has been addressed. This calibration is equivalent to solving a nonlinear optimization problem for the parameters that characterize the transformation. A two-step procedure is herein proposed for solving the problem. The first step involves finding a nominal solution that is a good approximation of the final solution. A varational problem is then generated to replace the original problem in the next step. With the assumption that the variational parameters are small compared to unity, the problem that can be more readily solved with relatively small computation effort.
A mediational model of self-esteem and social problem-solving in anorexia nervosa.
Paterson, Gillian; Power, Kevin; Collin, Paula; Greirson, David; Yellowlees, Alex; Park, Katy
2011-01-01
Poor problem-solving and low self-esteem are frequently cited as significant factors in the development and maintenance of anorexia nervosa. The current study examines the multi-dimensional elements of these measures and postulates a model whereby self-esteem mediates the relationship between social problems-solving and anorexic pathology and considers the implications of this pathway. Fifty-five inpatients with a diagnosis of anorexia nervosa and 50 non-clinical controls completed three standardised multi-dimensional questionnaires pertaining to social problem-solving, self-esteem and eating pathology. Significant differences were yielded between clinical and non-clinical samples on all measures. Within the clinical group, elements of social problem-solving most significant to anorexic pathology were positive problem orientation, negative problem orientation and avoidance. Components of self-esteem most significant to anorexic pathology were eating, weight and shape concern but not eating restraint. The mediational model was upheld with social problem-solving impacting on anorexic pathology through the existence of low self-esteem. Problem orientation, that is, the cognitive processes of social problem-solving appear to be more significant than problem-solving methods in individuals with anorexia nervosa. Negative perceptions of eating, weight and shape appear to impact on low self-esteem but level of restriction does not. Finally, results indicate that self-esteem is a significant factor in the development and execution of positive or negative social problem-solving in individuals with anorexia nervosa by mediating the relationship between those two variables. Copyright © 2010 John Wiley & Sons, Ltd and Eating Disorders Association.
Internationalisation and Economic Growth: The Portuguese Case
ERIC Educational Resources Information Center
da Costa, Renato J. Lopes; António, Nélson J. Santos; Miguel, Maria Isabel
2017-01-01
Historically, a policy of enforcement in internationalisation processes is still seen by many as an approach to solve certain economic crises. However, Portugal's solution for this problem is part of a greater problem, namely trying to solve a European problem that has recently worsened and is largely uncontrolled. This paper aims to contribute,…
Reinventing the Wheel: Design and Problem Solving
ERIC Educational Resources Information Center
Blasetti, Sean M.
2010-01-01
This article describes a design problem that not only takes students through the technological design process, but it also provides them with real-world problem-solving experience as it relates to the manufacturing and engineering fields. It begins with a scenario placing the student as a custom wheel designer for an automotive manufacturing…
ERIC Educational Resources Information Center
Marino, John L., Jr.
2017-01-01
Information literacy describes expertise in information problem-solving. This expertise includes facility in several endeavors addressed by the information behavior literature, including information needs, seeking, and use. Definitions and descriptions of information literacy suggest that this expertise is broadly applicable to a variety of…
Students' Problem-Solving in Mechanics: Preference of a Process Based Model.
ERIC Educational Resources Information Center
Stavy, Ruth; And Others
Research in science and mathematics education has indicated that students often use inappropriate models for solving problems because they tend to mentally represent a problem according to surface features instead of referring to scientific concepts and features. The objective of the study reported in this paper was to determine whether 34 Israeli…
Collaboration, Multi-Tasking and Problem Solving Performance in Shared Virtual Spaces
ERIC Educational Resources Information Center
Lin, Lin; Mills, Leila A.; Ifenthaler, Dirk
2016-01-01
Collaborative problem-solving is often not a sequential process; instead, it can involve tasking switching or dual tasking (i.e., multitasking) activities in that the collaborators need to shift their attention between the targeted problems and the conversations they carry on with their collaborators. It is not known to what extent the…
Solving NP-Hard Problems with Physarum-Based Ant Colony System.
Liu, Yuxin; Gao, Chao; Zhang, Zili; Lu, Yuxiao; Chen, Shi; Liang, Mingxin; Tao, Li
2017-01-01
NP-hard problems exist in many real world applications. Ant colony optimization (ACO) algorithms can provide approximate solutions for those NP-hard problems, but the performance of ACO algorithms is significantly reduced due to premature convergence and weak robustness, etc. With these observations in mind, this paper proposes a Physarum-based pheromone matrix optimization strategy in ant colony system (ACS) for solving NP-hard problems such as traveling salesman problem (TSP) and 0/1 knapsack problem (0/1 KP). In the Physarum-inspired mathematical model, one of the unique characteristics is that critical tubes can be reserved in the process of network evolution. The optimized updating strategy employs the unique feature and accelerates the positive feedback process in ACS, which contributes to the quick convergence of the optimal solution. Some experiments were conducted using both benchmark and real datasets. The experimental results show that the optimized ACS outperforms other meta-heuristic algorithms in accuracy and robustness for solving TSPs. Meanwhile, the convergence rate and robustness for solving 0/1 KPs are better than those of classical ACS.
Multiobjective optimization approach: thermal food processing.
Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R
2009-01-01
The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field.
Examining problem solving in physics-intensive Ph.D. research
NASA Astrophysics Data System (ADS)
Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris
2017-12-01
Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students face and the strategies they use has implications for improving how we approach problem solving in undergraduate physics and physics education research.
Conceptual Comparison of Population Based Metaheuristics for Engineering Problems
Green, Paul
2015-01-01
Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes. PMID:25874265
Conceptual comparison of population based metaheuristics for engineering problems.
Adekanmbi, Oluwole; Green, Paul
2015-01-01
Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems. Several extensions of differential evolution have been adopted in solving constrained and nonconstrained multiobjective optimization problems, but in this study, the third version of generalized differential evolution (GDE) is used for solving practical engineering problems. GDE3 metaheuristic modifies the selection process of the basic differential evolution and extends DE/rand/1/bin strategy in solving practical applications. The performance of the metaheuristic is investigated through engineering design optimization problems and the results are reported. The comparison of the numerical results with those of other metaheuristic techniques demonstrates the promising performance of the algorithm as a robust optimization tool for practical purposes.
Pattern-set generation algorithm for the one-dimensional multiple stock sizes cutting stock problem
NASA Astrophysics Data System (ADS)
Cui, Yaodong; Cui, Yi-Ping; Zhao, Zhigang
2015-09-01
A pattern-set generation algorithm (PSG) for the one-dimensional multiple stock sizes cutting stock problem (1DMSSCSP) is presented. The solution process contains two stages. In the first stage, the PSG solves the residual problems repeatedly to generate the patterns in the pattern set, where each residual problem is solved by the column-generation approach, and each pattern is generated by solving a single large object placement problem. In the second stage, the integer linear programming model of the 1DMSSCSP is solved using a commercial solver, where only the patterns in the pattern set are considered. The computational results of benchmark instances indicate that the PSG outperforms existing heuristic algorithms and rivals the exact algorithm in solution quality.
Multi-Target Tracking via Mixed Integer Optimization
2016-05-13
solving these two problems separately, however few algorithms attempt to solve these simultaneously and even fewer utilize optimization. In this paper we...introduce a new mixed integer optimization (MIO) model which solves the data association and trajectory estimation problems simultaneously by minimizing...Kalman filter [5], which updates the trajectory estimates before the algorithm progresses forward to the next scan. This process repeats sequentially
Wang, Xiaofeng; Abrahamsson, Pekka
2014-01-01
For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint. PMID:24688866
Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka
2014-01-01
For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.
Internet computer coaches for introductory physics problem solving
NASA Astrophysics Data System (ADS)
Xu Ryan, Qing
The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.
Search and Coherence-Building in Intuition and Insight Problem Solving.
Öllinger, Michael; von Müller, Albrecht
2017-01-01
Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes.
Search and Coherence-Building in Intuition and Insight Problem Solving
Öllinger, Michael; von Müller, Albrecht
2017-01-01
Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes. PMID:28611702
Assessing Algebraic Solving Ability: A Theoretical Framework
ERIC Educational Resources Information Center
Lian, Lim Hooi; Yew, Wun Thiam
2012-01-01
Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…
Inquiry-based problem solving in introductory physics
NASA Astrophysics Data System (ADS)
Koleci, Carolann
What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).
NASA Astrophysics Data System (ADS)
Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.
2015-12-01
The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.
Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J; Wilson, Timothy D
2014-01-01
The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among learners beyond the classification of spatial visualization ability alone, and help elucidate what, if anything, high- and low-spatial visualization ability learners do differently while solving spatial anatomy task problems. Forty-two students completed a standardized measure of spatial visualization ability, a novel spatial anatomy task, and a questionnaire involving personal self-analysis of the processes and strategies used while performing the spatial anatomy task. Strategy reports revealed that there were different ways students approached answering the spatial anatomy task problems. However, chi-square test analyses established that differences in problem-solving strategies did not contribute to differences in task performance. Therefore, underlying spatial visualization ability is the main source of variation in spatial anatomy task performance, irrespective of strategy. In addition to scoring higher and spending less time on the anatomy task, participants with high spatial visualization ability were also more accurate when solving the task problems. © 2013 American Association of Anatomists.
A dynamic model of functioning of a bank
NASA Astrophysics Data System (ADS)
Malafeyev, Oleg; Awasthi, Achal; Zaitseva, Irina; Rezenkov, Denis; Bogdanova, Svetlana
2018-04-01
In this paper, we analyze dynamic programming as a novel approach to solve the problem of maximizing the profits of a bank. The mathematical model of the problem and the description of bank's work is described in this paper. The problem is then approached using the method of dynamic programming. Dynamic programming makes sure that the solutions obtained are globally optimal and numerically stable. The optimization process is set up as a discrete multi-stage decision process and solved with the help of dynamic programming.
King, Michael S
2008-12-01
Increasingly courts are using new approaches that promote a more comprehensive resolution of legal problems, minimise any negative effects that legal processes have on participant wellbeing and/or that use legal processes to promote participant wellbeing. Therapeutic jurisprudence, restorative justice, mediation and problem-solving courts are examples. This article suggests a model for the use of these processes in the coroner's court to minimise negative effects of coroner's court processes on the bereaved and to promote a more comprehensive resolution of matters at issue, including the determination of the cause of death and the public health and safety promotion role of the coroner.
Creativity: Creativity in Complex Military Systems
2017-05-25
generation later in the problem-solving process. The design process is an alternative problem-solving framework individuals or groups use to orient...no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control ...the potential of their formations. 15. SUBJECT TERMS Creativity, Divergent Thinking, Design , Systems Thinking, Operational Art 16. SECURITY
Fuchs, Lynn S.; Fuchs, Douglas; Hamlett, Carol L.; Lambert, Warren; Stuebing, Karla; Fletcher, Jack M.
2009-01-01
The purpose of this study was to explore patterns of difficulty in 2 domains of mathematical cognition: computation and problem solving. Third graders (n = 924; 47.3% male) were representatively sampled from 89 classrooms; assessed on computation and problem solving; classified as having difficulty with computation, problem solving, both domains, or neither domain; and measured on 9 cognitive dimensions. Difficulty occurred across domains with the same prevalence as difficulty with a single domain; specific difficulty was distributed similarly across domains. Multivariate profile analysis on cognitive dimensions and chi-square tests on demographics showed that specific computational difficulty was associated with strength in language and weaknesses in attentive behavior and processing speed; problem-solving difficulty was associated with deficient language as well as race and poverty. Implications for understanding mathematics competence and for the identification and treatment of mathematics difficulties are discussed. PMID:20057912
Development of Mastery during Adolescence: The Role of Family Problem Solving*
Conger, Katherine Jewsbury; Williams, Shannon Tierney; Little, Wendy M.; Masyn, Katherine E.; Shebloski, Barbara
2009-01-01
A sense of mastery is an important component of psychological health and well-being across the life-span; however, relatively little is known about the development of mastery during childhood and adolescence. Utilizing prospective, longitudinal data from 444 adolescent sibling pairs and their parents, our conceptual model proposes that family SES in the form of parental education promotes effective family problem solving which, in turn, fosters adolescent mastery. Results show: (1) a significant increase in mastery for younger and older siblings, (2) parental education promoted effective problem solving between parents and adolescents and between siblings but not between the parents themselves, and (3) all forms of effective family problem solving predicted greater adolescent mastery. Parental education had a direct effect on adolescent mastery as well as the hypothesized indirect effect through problem solving effectiveness, suggesting both a social structural and social process influence on the development of mastery during adolescence. PMID:19413137
Categorization and analysis of explanatory writing in mathematics
NASA Astrophysics Data System (ADS)
Craig, Tracy S.
2011-10-01
The aim of this article is to present a scheme for coding and categorizing students' written explanations of mathematical problem-solving activities. The scheme was used successfully within a study project carried out to determine whether student problem-solving behaviour could be positively affected by writing explanatory strategies to mathematical problem-solving processes. The rationale for the study was the recognized importance of mathematical problem-solving, the widely acknowledged challenge of teaching problem-solving skills directly and the evidence in the literature that writing in mathematics provides a tool for learning. The study was carried out in a first-year mathematics course at the University of Cape Town, South Africa. Students' written submissions were categorized and analysed through use of an adaptation of a journal entry classification scheme. The scheme successfully observed positive changes over the experimental period in students' level of engagement with the mathematical material and with their stance towards knowledge.
Solution mechanism guide: implementing innovation within a research & development organization.
Keeton, Kathryn E; Richard, Elizabeth E; Davis, Jeffrey R
2014-10-01
In order to create a culture more open to novel problem-solving mechanisms, NASA's Human Health and Performance Directorate (HH&P) created a strategic knowledge management tool that educates employees about innovative problem-solving techniques, the Solution Mechanism Guide (SMG). The SMG is a web-based, interactive guide that leverages existing and innovative problem-solving methods and presents this information as a unique user experience so that the employee is empowered to make the best decision about which problem-solving tool best meets their needs. By integrating new and innovative methods with existing problem solving tools, the SMG seamlessly introduces open innovation and collaboration concepts within HH&P to more effectively address human health and performance risks. This commentary reviews the path of creating a more open and innovative culture within HH&P and the process and development steps that were taken to develop the SMG.
Development of mastery during adolescence: the role of family problem-solving.
Conger, Katherine Jewsbury; Williams, Shannon Tierney; Little, Wendy M; Masyn, Katherine E; Shebloski, Barbara
2009-03-01
A sense of mastery is an important component of psychological health and wellbeing across the life-span; however relatively little is known about the development of mastery during childhood and adolescence. Utilizing prospective, longitudinal data from 444 adolescent sibling pairs and their parents, our conceptual model proposes that family socioeconomic status (SES) in the form of parental education promotes effective family problem-solving, which, in turn, fosters adolescent mastery. Results show: (1) a significant increase in mastery for younger and older siblings, (2) parental education promoted effective problem-solving between parents and adolescents and between siblings but not between the parents themselves, and (3) all forms of effective family problem-solving predicted greater adolescent mastery. Parental education had a direct effect on adolescent mastery as well as the hypothesized indirect effect through problem-solving effectiveness, suggesting both a social structural and social process influence on the development of mastery during adolescence.
Mamykina, Lena; Heitkemper, Elizabeth M; Smaldone, Arlene M; Kukafka, Rita; Cole-Lewis, Heather; Davidson, Patricia G; Mynatt, Elizabeth D; Tobin, Jonathan N; Cassells, Andrea; Goodman, Carrie; Hripcsak, George
2016-01-01
To investigate subjective experiences and patterns of engagement with a novel electronic tool for facilitating reflection and problem solving for individuals with type 2 diabetes, Mobile Diabetes Detective (MoDD). In this qualitative study, researchers conducted semi-structured interviews with individuals from economically disadvantaged communities and ethnic minorities who are participating in a randomized controlled trial of MoDD. The transcripts of the interviews were analyzed using inductive thematic analysis; usage logs were analyzed to determine how actively the study participants used MoDD. Fifteen participants in the MoDD randomized controlled trial were recruited for the qualitative interviews. Usage log analysis showed that, on average, during the 4 weeks of the study, the study participants logged into MoDD twice per week, reported 120 blood glucose readings, and set two behavioral goals. The qualitative interviews suggested that individuals used MoDD to follow the steps of the problem-solving process, from identifying problematic blood glucose patterns, to exploring behavioral triggers contributing to these patterns, to selecting alternative behaviors, to implementing these behaviors while monitoring for improvements in glycemic control. This qualitative study suggested that informatics interventions for reflection and problem solving can provide structured scaffolding for facilitating these processes by guiding users through the different steps of the problem-solving process and by providing them with context-sensitive evidence and practice-based knowledge related to diabetes self-management on each of those steps. This qualitative study suggested that MoDD was perceived as a useful tool in engaging individuals in self-monitoring, reflection, and problem solving. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Robotics Projects and Learning Concepts in Science, Technology and Problem Solving
ERIC Educational Resources Information Center
Barak, Moshe; Zadok, Yair
2009-01-01
This paper presents a study about learning and the problem solving process identified among junior high school pupils participating in robotics projects in the Lego Mindstorm environment. The research was guided by the following questions: (1) How do pupils come up with inventive solutions to problems in the context of robotics activities? (2)…
ERIC Educational Resources Information Center
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-01-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…
Update: Guidelines for Effective Facilitation of Creative Problem Solving. Part 2.
ERIC Educational Resources Information Center
Firestien, Roger L.; Treffinger, Donald J.
1989-01-01
In this second article of a series, the first three stages of the CPS (Creative Problem Solving) process are described and several facilitation techniques that can be used in each stage are discussed. The three stages discussed (Mess-Finding, Data-Finding, and Problem-Finding) each involve a creative thought and a critical thought phase. (JDD)
ERIC Educational Resources Information Center
Yates, Jennifer L.
2011-01-01
The purpose of this research study was to explore the process of learning and development of problem solving skills in radiologic technologists. The researcher sought to understand the nature of difficult problems encountered in clinical practice, to identify specific learning practices leading to the development of professional expertise, and to…
ERIC Educational Resources Information Center
Bukova-Guzel, Esra
2011-01-01
This study examines the approaches displayed by pre-service mathematics teachers in their experiences of constructing mathematical modelling problems and the extent to which they perform the modelling process when solving the problems they construct. This case study was carried out with 35 pre-service teachers taking the Mathematical Modelling…
NASA Astrophysics Data System (ADS)
Maries, Alexandru; Singh, Chandralekha
2018-06-01
Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i) asked to solve problems in which the diagrams were drawn for them or (ii) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere) and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.
Insight into the ten-penny problem: guiding search by constraints and maximization.
Öllinger, Michael; Fedor, Anna; Brodt, Svenja; Szathmáry, Eörs
2017-09-01
For a long time, insight problem solving has been either understood as nothing special or as a particular class of problem solving. The first view implicates the necessity to find efficient heuristics that restrict the search space, the second, the necessity to overcome self-imposed constraints. Recently, promising hybrid cognitive models attempt to merge both approaches. In this vein, we were interested in the interplay of constraints and heuristic search, when problem solvers were asked to solve a difficult multi-step problem, the ten-penny problem. In three experimental groups and one control group (N = 4 × 30) we aimed at revealing, what constraints drive problem difficulty in this problem, and how relaxing constraints, and providing an efficient search criterion facilitates the solution. We also investigated how the search behavior of successful problem solvers and non-solvers differ. We found that relaxing constraints was necessary but not sufficient to solve the problem. Without efficient heuristics that facilitate the restriction of the search space, and testing the progress of the problem solving process, the relaxation of constraints was not effective. Relaxing constraints and applying the search criterion are both necessary to effectively increase solution rates. We also found that successful solvers showed promising moves earlier and had a higher maximization and variation rate across solution attempts. We propose that this finding sheds light on how different strategies contribute to solving difficult problems. Finally, we speculate about the implications of our findings for insight problem solving.
Safari, Yahya; Meskini, Habibeh
2016-01-01
Background: Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students’ problem solving skills. Methods: The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. Results: The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students’ mean scores in terms of gender and major. Conclusion: Since metacognitive instruction has positive effects on students’ problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students. PMID:26234970
Safari, Yahya; Meskini, Habibeh
2015-05-17
Learning requires application of such processes as planning, supervision, monitoring and reflection that are included in the metacognition. Studies have shown that metacognition is associated with problem solving skills. The current research was conducted to investigate the impact of metacognitive instruction on students' problem solving skills. The study sample included 40 students studying in the second semester at Kermanshah University of Medical Sciences, 2013-2014. They were selected through convenience sampling technique and were randomly assigned into two equal groups of experimental and control. For the experimental group, problem solving skills were taught through metacognitive instruction during ten two-hour sessions and for the control group, problem solving skills were taught via conventional teaching method. The instrument for data collection included problem solving inventory (Heppner, 1988), which was administered before and after instruction. The validity and reliability of the questionnaire had been previously confirmed. The collected data were analyzed by descriptive statistics, mean and standard deviation and the hypotheses were tested by t-test and ANCOVA. The findings of the posttest showed that the total mean scores of problem solving skills in the experimental and control groups were 151.90 and 101.65, respectively, indicating a significant difference between them (p<0.001). This difference was also reported to be statistically significant between problem solving skills and its components, including problem solving confidence, orientation-avoidance coping style and personal control (p<0.001). No significant difference, however, was found between the students' mean scores in terms of gender and major. Since metacognitive instruction has positive effects on students' problem solving skills and is required to enhance academic achievement, metacognitive strategies are recommended to be taught to the students.
Testing the effectiveness of problem-based learning with learning-disabled students in biology
NASA Astrophysics Data System (ADS)
Guerrera, Claudia Patrizia
The purpose of the present study was to investigate the effects of problem-based learning (PBL) with learning-disabled (LD) students. Twenty-four students (12 dyads) classified as LD and attending a school for the learning-disabled participated in the study. Students engaged in either a computer-based environment involving BioWorld, a hospital simulation designed to teach biology students problem-solving skills, or a paper-and-pencil version based on the computer program. A hybrid model of learning was adopted whereby students were provided with direct instruction on the digestive system prior to participating in a problem-solving activity. Students worked in dyads and solved three problems involving the digestive system in either a computerized or a paper-and-pencil condition. The experimenter acted as a coach to assist students throughout the problem-solving process. A follow-up study was conducted, one month later, to measure the long-term learning gains. Quantitative and qualitative methods were used to analyze three types of data: process data, outcome data, and follow-up data. Results from the process data showed that all students engaged in effective collaboration and became more systematic in their problem solving over time. Findings from the outcome and follow-up data showed that students in both treatment conditions, made both learning and motivational gains and that these benefits were still evident one month later. Overall, results demonstrated that the computer facilitated students' problem solving and scientific reasoning skills. Some differences were noted in students' collaboration and the amount of assistance required from the coach in both conditions. Thus, PBL is an effective learning approach with LD students in science, regardless of the type of learning environment. These results have implications for teaching science to LD students, as well as for future designs of educational software for this population.
Conjecturing via analogical reasoning constructs ordinary students into like gifted student
NASA Astrophysics Data System (ADS)
Supratman; Ratnaningsih, N.; Ryane, S.
2017-12-01
The purpose of this study is to reveal the development of knowledge of ordinary students to be like gifted students in the classroom based on Piaget's theory. In exposing it, students are given an open problem of classical analogy. Researchers explore students who conjecture via analogical reasoning in problem solving. Of the 32 students, through the method of think out loud and the interview was completed: 25 students conjecture via analogical reasoning. Of the 25 students, all of them have almost the same character in problem solving/knowledge construction. For that, a student is taken to analyze the thinking process while solving the problem/construction of knowledge based on Piaget's theory. Based on Piaget's theory in the development of the same knowledge, gifted students and ordinary students have similar structures in final equilibrium. They begin processing: assimilation and accommodation of problem, strategies, and relationships.
Fung, Wenson; Swanson, H Lee
2017-07-01
The purpose of this study was to assess whether the differential effects of working memory (WM) components (the central executive, phonological loop, and visual-spatial sketchpad) on math word problem-solving accuracy in children (N = 413, ages 6-10) are completely mediated by reading, calculation, and fluid intelligence. The results indicated that all three WM components predicted word problem solving in the nonmediated model, but only the storage component of WM yielded a significant direct path to word problem-solving accuracy in the fully mediated model. Fluid intelligence was found to moderate the relationship between WM and word problem solving, whereas reading, calculation, and related skills (naming speed, domain-specific knowledge) completely mediated the influence of the executive system on problem-solving accuracy. Our results are consistent with findings suggesting that storage eliminates the predictive contribution of executive WM to various measures Colom, Rebollo, Abad, & Shih (Memory & Cognition, 34: 158-171, 2006). The findings suggest that the storage component of WM, rather than the executive component, has a direct path to higher-order processing in children.
Hauser, Tobias U; Rütsche, Bruno; Wurmitzer, Karoline; Brem, Silvia; Ruff, Christian C; Grabner, Roland H
A small but increasing number of studies suggest that non-invasive brain stimulation by means of transcranial direct current stimulation (tDCS) can modulate arithmetic processes that are essential for higher-order mathematical skills and that are impaired in dyscalculic individuals. However, little is known about the neural mechanisms underlying such stimulation effects, and whether they are specific to cognitive processes involved in different arithmetic tasks. We addressed these questions by applying tDCS during simultaneous functional magnetic resonance imaging (fMRI) while participants were solving two types of complex subtraction problems: repeated problems, relying on arithmetic fact learning and problem-solving by fact retrieval, and novel problems, requiring calculation procedures. Twenty participants receiving left parietal anodal plus right frontal cathodal stimulation were compared with 20 participants in a sham condition. We found a strong cognitive and neural dissociation between repeated and novel problems. Repeated problems were solved more accurately and elicited increased activity in the bilateral angular gyri and medial plus lateral prefrontal cortices. Solving novel problems, in contrast, was accompanied by stronger activation in the bilateral intraparietal sulci and the dorsomedial prefrontal cortex. Most importantly, tDCS decreased the activation of the right inferior frontal cortex while solving novel (compared to repeated) problems, suggesting that the cathodal stimulation rendered this region unable to respond to the task-specific cognitive demand. The present study revealed that tDCS during arithmetic problem-solving can modulate the neural activity in proximity to the electrodes specifically when the current demands lead to an engagement of this area. Copyright © 2016 Elsevier Inc. All rights reserved.
Phases of learning: How skill acquisition impacts cognitive processing.
Tenison, Caitlin; Fincham, Jon M; Anderson, John R
2016-06-01
This fMRI study examines the changes in participants' information processing as they repeatedly solve the same mathematical problem. We show that the majority of practice-related speedup is produced by discrete changes in cognitive processing. Because the points at which these changes take place vary from problem to problem, and the underlying information processing steps vary in duration, the existence of such discrete changes can be hard to detect. Using two converging approaches, we establish the existence of three learning phases. When solving a problem in one of these learning phases, participants can go through three cognitive stages: Encoding, Solving, and Responding. Each cognitive stage is associated with a unique brain signature. Using a bottom-up approach combining multi-voxel pattern analysis and hidden semi-Markov modeling, we identify the duration of that stage on any particular trial from participants brain activation patterns. For our top-down approach we developed an ACT-R model of these cognitive stages and simulated how they change over the course of learning. The Solving stage of the first learning phase is long and involves a sequence of arithmetic computations. Participants transition to the second learning phase when they can retrieve the answer, thereby drastically reducing the duration of the Solving stage. With continued practice, participants then transition to the third learning phase when they recognize the problem as a single unit and produce the answer as an automatic response. The duration of this third learning phase is dominated by the Responding stage. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Allen, Arthur William
The purpose of this study was to examine the cognitive and psychological factors that either enhanced or inhibited Licensed Vocational Nurse (LVN) students' abilities to solve medication-dosage calculation problems. A causal-comparative approach was adopted for use in this study which encompassed aspects of both qualitative and quantitative data collection. A purposive, maximum-variation sample of 20 LVN students was chosen from among a self-selected population of junior college LVN students. The participants' views and feelings concerning their training and clinical experiences in medication administration was explored using a semi-structured interview. In addition, data revealing the students' actual competence at solving sample medication-dosage calculation problems was gathered using a talk-aloud protocol. Results indicated that few participants anticipated difficulty with medication-dosage calculations, yet many participants reported being lost during much of the medication-dosage problem solving instruction in class. While many participants (65%) were able to solve the medication-dosage problems, some (35%) of the participants were unable to correctly solve the problems. Successful students usually spent time analyzing the problem and planning a solution path, and they tended to solve the problem faster than did unsuccessful participants. Successful participants relied on a formula or a proportional statement to solve the problem. They recognized conversion problems as a two-step process and solved the problems in that fashion. Unsuccessful participants often went directly from reading the problem statement to attempts at implementing vague plans. Some unsuccessful participants finished quickly because they just gave up. Others spent considerable time backtracking by rereading the problem and participating in aimless exploration of the problem space. When unsuccessful participants tried to use a formula or a proportion, they were unsure of the formula's or the proportion's format. A few unsuccessful participants lacked an understanding of basic algebraic procedures and of metric measurements. Even participants who had great difficulty solving medication-dosage calculation problems could expeditiously solve more complex problems if the medication used in the problem was well known to them.
NASA Astrophysics Data System (ADS)
Terrell, Rosalind Stephanie
2001-12-01
Because paper-and-pencil testing provides limited knowledge about what students know about chemical phenomena, we have developed video-based demonstrations to broaden measurement of student learning. For example, students might be shown a video demonstrating equilibrium shifts. Two methods for viewing equilibrium shifts are changing the concentration of the reactants and changing the temperature of the system. The students are required to combine the data collected from the video and their knowledge of chemistry to determine which way the equilibrium shifts. Video-based demonstrations are important techniques for measuring student learning because they require students to apply conceptual knowledge learned in class to a specific chemical problem. This study explores how video-based demonstration assessment tasks affect problem-solving processes, test anxiety, chemistry anxiety and achievement in general chemistry students. Several instruments were used to determine students' knowledge about chemistry, students' test and chemistry anxiety before and after treatment. Think-aloud interviews were conducted to determine students' problem-solving processes after treatment. The treatment group was compared to a control group and a group watching video demonstrations. After treatment students' anxiety increased and achievement decreased. There were also no significant differences found in students' problem-solving processes following treatment. These negative findings may be attributed to several factors that will be explored in this study.
Penders, Bart; Vos, Rein; Horstman, Klasien
2009-11-01
Solving complex problems in large-scale research programmes requires cooperation and division of labour. Simultaneously, large-scale problem solving also gives rise to unintended side effects. Based upon 5 years of researching two large-scale nutrigenomic research programmes, we argue that problems are fragmented in order to be solved. These sub-problems are given priority for practical reasons and in the process of solving them, various changes are introduced in each sub-problem. Combined with additional diversity as a result of interdisciplinarity, this makes reassembling the original and overall goal of the research programme less likely. In the case of nutrigenomics and health, this produces a diversification of health. As a result, the public health goal of contemporary nutrition science is not reached in the large-scale research programmes we studied. Large-scale research programmes are very successful in producing scientific publications and new knowledge; however, in reaching their political goals they often are less successful.
A framework for solving ill-structured community problems
NASA Astrophysics Data System (ADS)
Keller, William Cotesworth
A multifaceted protocol for solving ill-structured community problems has been developed. It embodies the lessons learned from the past by refining and extending features of previous models from the systems thinkers, and the fields of behavioral decision making and creative problem solving. The protocol also embraces additional features needed to address the unique aspects of community decision situations. The essential elements of the protocol are participants from the community, a problem-solving process, a systems picture, a facilitator, a modified Delphi method of communications, and technical expertise. This interdisciplinary framework has been tested by a quasi experiment with a real world community problem (the high cost of electrical power on Long Island, NY). Results indicate the protocol can enable members of the community to understand a complicated, ill-structured problem and guide them to action to solve the issue. However, the framework takes time (over one year in the test case) and will be inappropriate for crises where quick action is needed.
Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.
Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P
2017-01-01
The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.
Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem
Amudhavel, J.; Pothula, Sujatha; Dhavachelvan, P.
2017-01-01
The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria. PMID:28473849
Antes, Alison L.; Thiel, Chase E.; Martin, Laura E.; Stenmark, Cheryl K.; Connelly, Shane; Devenport, Lynn D.; Mumford, Michael D.
2015-01-01
This study examined the role of reflection on personal cases for making ethical decisions with regard to new ethical problems. Participants assumed the position of a business manager in a hypothetical organization and solved ethical problems that might be encountered. Prior to making a decision for the business problems, participants reflected on a relevant ethical experience. The findings revealed that application of material garnered from reflection on a personal experience was associated with decisions of higher ethicality. However, whether the case was viewed as positive or negative, and whether the outcomes, process, or outcomes and processes embedded in the experience were examined, influenced the application of case material to the new problem. As expected, examining positive experiences and the processes involved in those positive experiences resulted in greater application of case material to new problems. Future directions and implications for understanding ethical decision-making are discussed. PMID:26257506
Work Strategies: The Development and Testing of a Model.
1986-03-01
strategies (e.g., Craik & Lockhart , 1972); hemispheric process - -7 ing differences (e.g., Seamon & Gazzaniga, 1973); problem-solving strategies (e.g...Charness, N. (1931). Aging and skilled problem solving. 3ournal of Experimental Psychology: General, 110, 21-38. Craik , F. I. \\., & Lockhart , R. S...1972). Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, L1, 671-684. 3ansereau, D. F., McDonald
ERIC Educational Resources Information Center
Brooks, Christopher Darren
2009-01-01
The purpose of this study was to investigate the effectiveness of process-oriented and product-oriented worked example strategies and the mediating effect of prior knowledge (high versus low) on problem solving and learner attitude in the domain of microeconomics. In addition, the effect of these variables on learning efficiency as well as the…
ERIC Educational Resources Information Center
Richards, Cameron
2015-01-01
The challenge of better reconciling individual and collective aspects of innovative problem-solving can be productively addressed to enhance the role of PBL as a key focus of the creative process in future higher education. This should involve "active learning" approaches supported by related processes of teaching, assessment and…
The Role of Mental Models in Learning to Program.
ERIC Educational Resources Information Center
Pirolli, Peter L.; Anderson, John R.
This study reports two experiments which indicate that the processes of providing subjects with insightful representations of example programs and guiding subjects through an "ideal" problem solving strategy facilitate learning. A production system model (GRAPES) has been developed that simulates problem-solving and learning in the…
Teaming to Teach the Information Problem-Solving Process.
ERIC Educational Resources Information Center
Sine, Lynn; Murphy, Becky
1992-01-01
Explains a problem-solving format developed by a school media specialist and first grade teacher that used the framework of Eisenberg and Berkowitz's "Big Six Skills" for library media programs. The application of the format to a science unit on the senses is described. (two references) (MES)
Problem Solving in Biology: A Methodology
ERIC Educational Resources Information Center
Wisehart, Gary; Mandell, Mark
2008-01-01
A methodology is described that teaches science process by combining informal logic and a heuristic for rating factual reliability. This system facilitates student hypothesis formation, testing, and evaluation of results. After problem solving with this scheme, students are asked to examine and evaluate arguments for the underlying principles of…
Use of Concept Profile Analysis to Identify Difficulties in Solving Science Problems.
ERIC Educational Resources Information Center
Gorodetsky, Malka; Hoz, Ron
1980-01-01
Proposed is a new method for analyzing how concepts are used in the process of problem solving in science. Through the use of a "thinking aloud" interview technique, 21 tenth-grade students worked with a problem concerning the boiling point of water at the Dead Sea. Interview protocols were analyzed to develop students' concept profiles.…
DORA-II Technical Adequacy Brief: Measuring the Process and Outcomes of Team Problem Solving
ERIC Educational Resources Information Center
Algozzine, Bob; Horner, Robert H.; Todd, Anne W.; Newton, J. Stephen; Algozzine, Kate; Cusumano, Dale
2014-01-01
School teams regularly meet to review academic and social problems of individual students, groups of students, or their school in general. While the need for problem solving and recommendations for how to do it are widely documented, there is very limited evidence reflecting the extent to which teams effectively engage in a systematic or effective…
ERIC Educational Resources Information Center
Chiu, Ming Ming
2008-01-01
The micro-time context of group processes (such as argumentation) can affect a group's micro-creativity (new ideas). Eighty high school students worked in groups of four on an algebra problem. Groups with higher mathematics grades showed greater micro-creativity, and both were linked to better problem solving outcomes. Dynamic multilevel analyses…
Application of Graph Theory in an Intelligent Tutoring System for Solving Mathematical Word Problems
ERIC Educational Resources Information Center
Nabiyev, Vasif V.; Çakiroglu, Ünal; Karal, Hasan; Erümit, Ali K.; Çebi, Ayça
2016-01-01
This study is aimed to construct a model to transform word "motion problems" in to an algorithmic form in order to be processed by an intelligent tutoring system (ITS). First; categorizing the characteristics of motion problems, second; suggesting a model for the categories were carried out. In order to solve all categories of the…
Problem of quality assurance during metal constructions welding via robotic technological complexes
NASA Astrophysics Data System (ADS)
Fominykh, D. S.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.
2018-05-01
The problem of minimizing the probability for critical combinations of events that lead to a loss in welding quality via robotic process automation is examined. The problem is formulated, models and algorithms for its solution are developed. The problem is solved by minimizing the criterion characterizing the losses caused by defective products. Solving the problem may enhance the quality and accuracy of operations performed and reduce the losses caused by defective product
Solving multi-objective optimization problems in conservation with the reference point method
Dujardin, Yann; Chadès, Iadine
2018-01-01
Managing the biodiversity extinction crisis requires wise decision-making processes able to account for the limited resources available. In most decision problems in conservation biology, several conflicting objectives have to be taken into account. Most methods used in conservation either provide suboptimal solutions or use strong assumptions about the decision-maker’s preferences. Our paper reviews some of the existing approaches to solve multi-objective decision problems and presents new multi-objective linear programming formulations of two multi-objective optimization problems in conservation, allowing the use of a reference point approach. Reference point approaches solve multi-objective optimization problems by interactively representing the preferences of the decision-maker with a point in the criteria (objectives) space, called the reference point. We modelled and solved the following two problems in conservation: a dynamic multi-species management problem under uncertainty and a spatial allocation resource management problem. Results show that the reference point method outperforms classic methods while illustrating the use of an interactive methodology for solving combinatorial problems with multiple objectives. The method is general and can be adapted to a wide range of ecological combinatorial problems. PMID:29293650
Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations
NASA Astrophysics Data System (ADS)
Sitompul, R. S. I.; Budayasa, I. K.; Masriyah
2018-01-01
This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.
Self-directed questions to improve students' ability in solving chemical problems
NASA Astrophysics Data System (ADS)
Sanjaya, Rahmat Eko; Muna, Khairiatul; Suharto, Bambang; Syahmani
2017-12-01
Students' ability in solving chemical problems is seen from their ability to solve chemicals' non-routine problems. It is due to learning faced directly on non-routine problems will generate a meaningful learning for students. Observations in Banjarmasin Public High School 1 (SMA Negeri 1 Banjarmasin) showed that students did not give the expected results when they were given the non-routine problems. Learning activities by emphasizing problem solving was implemented based on the existence of knowledge about cognition and regulation of cognition. Both of these elements are components of metacognition. The self-directed question is a strategy that involves metacognition in solving chemical problems. This research was carried out using classroom action research design in two cycles. Each cycle consists of four stages: planning, action, observation and reflection. The subjects were 34 students of grade XI-4 at majoring science (IPA) of SMA Negeri 1 Banjarmasin. The data were collected using tests of the students' ability in problem solving and non-tests instrument to know the process of implementation of the actions. Data were analyzed with descriptivequantitativeand qualitative analysis. The ability of students in solving chemical problems has increased from an average of 37.96 in cycle I became 61.83 in cycle II. Students' ability to solve chemical problems is viewed based on their ability to answer self-directed questions. Students' ability in comprehension questions increased from 73.04 in the cycle I became 96.32 in cycle II. Connection and strategic questions increased from 54.17 and 16.50 on cycle I became 63.73 and 55.23 on cycle II respectively. In cycle I, reflection questions were 26.96 and elevated into 36.27 in cycle II. The self-directed questions have the ability to help students to solve chemical problems through metacognition questions. Those questions guide students to find solutions in solving chemical problems.
ERIC Educational Resources Information Center
Tufte, Robert B., Jr.
2005-01-01
P.A.C.E.S. stands for Participation, Appearance, Cleanup, Engineering, and Safety. The author has traditionally used design briefs to set the limits on processes and materials to solve a given problem. The design brief brings out all kinds of "out of the box" thinking, with many correct answers to solve the problem. The P.A.C.E.S. rubric ties the…
Zhao, Jing; Zong, Haili
2018-01-01
In this paper, we propose parallel and cyclic iterative algorithms for solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators. We also combine the process of cyclic and parallel iterative methods and propose two mixed iterative algorithms. Our several algorithms do not need any prior information about the operator norms. Under mild assumptions, we prove weak convergence of the proposed iterative sequences in Hilbert spaces. As applications, we obtain several iterative algorithms to solve the multiple-set split equality problem.
Problem-Solving Phase Transitions During Team Collaboration.
Wiltshire, Travis J; Butner, Jonathan E; Fiore, Stephen M
2018-01-01
Multiple theories of problem-solving hypothesize that there are distinct qualitative phases exhibited during effective problem-solving. However, limited research has attempted to identify when transitions between phases occur. We integrate theory on collaborative problem-solving (CPS) with dynamical systems theory suggesting that when a system is undergoing a phase transition it should exhibit a peak in entropy and that entropy levels should also relate to team performance. Communications from 40 teams that collaborated on a complex problem were coded for occurrence of problem-solving processes. We applied a sliding window entropy technique to each team's communications and specified criteria for (a) identifying data points that qualify as peaks and (b) determining which peaks were robust. We used multilevel modeling, and provide a qualitative example, to evaluate whether phases exhibit distinct distributions of communication processes. We also tested whether there was a relationship between entropy values at transition points and CPS performance. We found that a proportion of entropy peaks was robust and that the relative occurrence of communication codes varied significantly across phases. Peaks in entropy thus corresponded to qualitative shifts in teams' CPS communications, providing empirical evidence that teams exhibit phase transitions during CPS. Also, lower average levels of entropy at the phase transition points predicted better CPS performance. We specify future directions to improve understanding of phase transitions during CPS, and collaborative cognition, more broadly. Copyright © 2017 Cognitive Science Society, Inc.
Write Is Right: Using Graphic Organizers to Improve Student Mathematical Problem Solving
ERIC Educational Resources Information Center
Zollman, Alan
2012-01-01
Teachers have used graphic organizers successfully in teaching the writing process. This paper describes graphic organizers and their potential mathematics benefits for both students and teachers, elucidates a specific graphic organizer adaptation for mathematical problem solving, and discusses results using the "four-corners-and-a-diamond"…
Cultivating Peace through Design Thinking: Problem Solving with PAST Foundation
ERIC Educational Resources Information Center
Deaner, Kat; McCreery-Kellert, Heather
2018-01-01
Design thinking is a methodology that emphasizes reasoning and decision-making as part of the problem-solving process. It is a structured framework for identifying challenges, gathering information, generating potential solutions, refining ideas, and testing solutions. Design thinking offers valuable skills that will serve students well as they…
Undergraduate Performance in Solving Ill-Defined Biochemistry Problems
ERIC Educational Resources Information Center
Sensibaugh, Cheryl A.; Madrid, Nathaniel J.; Choi, Hye-Jeong; Anderson, William L.; Osgood, Marcy P.
2017-01-01
With growing interest in promoting skills related to the scientific process, we studied performance in solving ill-defined problems demonstrated by graduating biochemistry majors at a public, minority-serving university. As adoption of techniques for facilitating the attainment of higher-order learning objectives broadens, so too does the need to…
Spatial Working Memory Is Necessary for Actions to Guide Thought
ERIC Educational Resources Information Center
Thomas, Laura E.
2013-01-01
Directed actions can play a causal role in cognition, shaping thought processes. What drives this cross-talk between action and thought? I investigated the hypothesis that representations in spatial working memory mediate interactions between directed actions and problem solving. Participants attempted to solve an insight problem while…
Cultural Differences in Social Interaction during Group Problem Solving.
ERIC Educational Resources Information Center
Gabrenya, William K., Jr.; Barba, Lourdes
Cross-cultural psychology has begun to analyze cultural differences on collectivism and the implications of these differences for social processes such as group productivity. This study examined natural social interaction during a problem-solving task that required discussion and the establishment of a consensus. The relationship of collectivist…
Fostering and Assessing Creativity in Technology Education
ERIC Educational Resources Information Center
Buelin-Biesecker, Jennifer Katherine
2012-01-01
This study compared the creative outcomes in student work resulting from two pedagogical approaches to creative problem solving activities. A secondary goal was to validate the Consensual Assessment Technique (CAT) as a means of assessing creativity. Linear models for problem solving and design processes serve as the current paradigm in classroom…
A Protocol-Analytic Study of Metacognition in Mathematical Problem Solving.
ERIC Educational Resources Information Center
Cai, Jinfa
1994-01-01
Metacognitive behaviors of subjects having high (n=2) and low (n=2) levels of mathematical experience were compared across four cognitive processes in mathematical problem solving: orientation, organization, execution, and verification. High-experience subjects engaged in self-regulation and spent more time on orientation and organization. (36…
Can False Memories Prime Problem Solutions?
ERIC Educational Resources Information Center
Howe, Mark L.; Garner, Sarah R.; Dewhurst, Stephen A.; Ball, Linden J.
2010-01-01
Previous research has suggested that false memories can prime performance on related implicit and explicit memory tasks. The present research examined whether false memories can also be used to prime higher order cognitive processes, namely, insight-based problem solving. Participants were asked to solve a number of compound remote associate task…
Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving
ERIC Educational Resources Information Center
Ayllón, María F.; Gómez, Isabel A.; Ballesta-Claver, Julio
2016-01-01
This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas), flexibility (range of ideas),…
Including Critical Thinking and Problem Solving in Physical Education
ERIC Educational Resources Information Center
Pill, Shane; SueSee, Brendan
2017-01-01
Many physical education curriculum frameworks include statements about the inclusion of critical inquiry processes and the development of creativity and problem-solving skills. The learning environment created by physical education can encourage or limit the application and development of the learners' cognitive resources for critical and creative…
Working Together: The Art of Consulting & Communicating.
ERIC Educational Resources Information Center
DeBoer, Anita
Productive learning occurs when educators work together to create new visions, analyze important issues, and evaluate outcomes. This book explores how educators can effectively engage in peer problem solving, focusing on three aspects of the process: (1) models for consulting with colleagues in problem solving; (2) communication skills necessary…
Modelling Mathematics Problem Solving Item Responses Using a Multidimensional IRT Model
ERIC Educational Resources Information Center
Wu, Margaret; Adams, Raymond
2006-01-01
This research examined students' responses to mathematics problem-solving tasks and applied a general multidimensional IRT model at the response category level. In doing so, cognitive processes were identified and modelled through item response modelling to extract more information than would be provided using conventional practices in scoring…
The "Iron Inventor": Using Creative Problem Solving to Spur Student Creativity
ERIC Educational Resources Information Center
Lee, Seung Hwan; Hoffman, K. Douglas
2014-01-01
Based on the popular television show the "Iron Chef," an innovative marketing activity called the "Iron Inventor" is introduced. Using the creative problem-solving approach and active learning techniques, the Iron Inventor facilitates student learning pertaining to the step-by-step processes of creating a new product and…
Use of Computer-Based Case Studies in a Problem-Solving Curriculum.
ERIC Educational Resources Information Center
Haworth, Ian S.; And Others
1997-01-01
Describes the use of three case studies, on computer, to enhance problem solving and critical thinking among doctoral pharmacy students in a physical chemistry course. Students are expected to use specific computer programs, spreadsheets, electronic mail, molecular graphics, word processing, online literature searching, and other computer-based…
Designing WebQuests to Support Creative Problem Solving
ERIC Educational Resources Information Center
Rubin, Jim
2013-01-01
WebQuests have been a popular alternative for collaborative group work that utilizes internet resources, but studies have questioned how effective they are in challenging students to use higher order thinking processes that involve creative problem solving. This article explains how different levels of inquiry relate to categories of learning…
Aspects of the Cognitive Model of Physics Problem Solving.
ERIC Educational Resources Information Center
Brekke, Stewart E.
Various aspects of the cognitive model of physics problem solving are discussed in detail including relevant cues, encoding, memory, and input stimuli. The learning process involved in the recognition of familiar and non-familiar sensory stimuli is highlighted. Its four components include selection, acquisition, construction, and integration. The…
ERIC Educational Resources Information Center
Carmeli, Abraham; Sheaffer, Zachary; Binyamin, Galy; Reiter-Palmon, Roni; Shimoni, Tali
2014-01-01
Previous research has pointed to the importance of transformational leadership in facilitating employees' creative outcomes. However, the mechanism by which transformational leadership cultivates employees' creative problem-solving capacity is not well understood. Drawing on theories of leadership, information processing and creativity,…
Young Children's Drawings in Problem Solving
ERIC Educational Resources Information Center
Bakar, Kamariah Abu; Way, Jennifer; Bobis, Janette
2016-01-01
This paper explores young children's drawings (6 years old) in early number and addition activities in Malaysia. Observation, informal interviews and analysis of drawings revealed two types of drawing, and gave insight into the transitional process required for children to utilise drawings in problem solving. We argue the importance of valuing and…
Performance modeling codes for the QuakeSim problem solving environment
NASA Technical Reports Server (NTRS)
Parker, J. W.; Donnellan, A.; Lyzenga, G.; Rundle, J.; Tullis, T.
2003-01-01
The QuakeSim Problem Solving Environment uses a web-services approach to unify and deploy diverse remote data sources and processing services within a browser environment. Here we focus on the high-performance crustal modeling applications that will be included in this set of remote but interoperable applications.
Problem-Solving Studies in Mathematics. Monograph Series.
ERIC Educational Resources Information Center
Harvey, John G., Ed.; Romberg, Thomas A., Ed.
This monograph focuses on educational research on the processes and natures of problem-solving activities in mathematics. The first chapter presents an overview to both the field and the document itself. All of the studies reported reflect interrelated investigations carried out at the University of Madison-Wisconsin, as partial fulfillments of…
Using Depth Intuition in Creative Problem Solving and Strategic Innovation.
ERIC Educational Resources Information Center
Markley, O. W.
1988-01-01
The article describes four step-by-step methods to sharpen intuitive capacities for problem-solving and innovation. Visionary and transpersonal knowledge processes are tapped to gain access to relatively deep levels of intuition. The methods are considered useful for overcoming internal blockages or resistance, developing organizational mission…
Conceptual Transformation and Cognitive Processes in Origami Paper Folding
ERIC Educational Resources Information Center
Tenbrink, Thora; Taylor, Holly A.
2015-01-01
Research on problem solving typically does not address tasks that involve following detailed and/or illustrated step-by-step instructions. Such tasks are not seen as cognitively challenging problems to be solved. In this paper, we challenge this assumption by analyzing verbal protocols collected during an Origami folding task. Participants…
Pre-Engineering Program. Introduction to Engineering. Advanced Engineering.
ERIC Educational Resources Information Center
Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum and Resource Center.
This guide contains information and hands-on activities to guide students through the problem-solving process needed in engineering (problem solving, presentation, and impact analysis) and information to help the instructor manage the program or courses in Virginia. Following an introduction, the guide contains a program description that supplies…
Improving Histopathology Laboratory Productivity: Process Consultancy and A3 Problem Solving.
Yörükoğlu, Kutsal; Özer, Erdener; Alptekin, Birsen; Öcal, Cem
2017-01-01
The ISO 17020 quality program has been run in our pathology laboratory for four years to establish an action plan for correction and prevention of identified errors. In this study, we aimed to evaluate the errors that we could not identify through ISO 17020 and/or solve by means of process consulting. Process consulting is carefully intervening in a group or team to help it to accomplish its goals. The A3 problem solving process was run under the leadership of a 'workflow, IT and consultancy manager'. An action team was established consisting of technical staff. A root cause analysis was applied for target conditions, and the 6-S method was implemented for solution proposals. Applicable proposals were activated and the results were rated by six-sigma analysis. Non-applicable proposals were reported to the laboratory administrator. A mislabelling error was the most complained issue triggering all pre-analytical errors. There were 21 non-value added steps grouped in 8 main targets on the fish bone graphic (transporting, recording, moving, individual, waiting, over-processing, over-transaction and errors). Unnecessary redundant requests, missing slides, archiving issues, redundant activities, and mislabelling errors were proposed to be solved by improving visibility and fixing spaghetti problems. Spatial re-organization, organizational marking, re-defining some operations, and labeling activities raised the six sigma score from 24% to 68% for all phases. Operational transactions such as implementation of a pathology laboratory system was suggested for long-term improvement. Laboratory management is a complex process. Quality control is an effective method to improve productivity. Systematic checking in a quality program may not always find and/or solve the problems. External observation may reveal crucial indicators about the system failures providing very simple solutions.
Physics students' approaches to learning and cognitive processes in solving physics problems
NASA Astrophysics Data System (ADS)
Bouchard, Josee
This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly physical intuition, even if it was only implemented for a short period of time. Other findings relate to the nature of the cognitive actions and activities that the students engage in when learning to solve electromagnetism problems in a PBL environment for the first time and the tutoring actions that guide students in this context.
Lesion mapping of social problem solving
Colom, Roberto; Paul, Erick J.; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H.
2014-01-01
Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion–symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. PMID:25070511
The solution of private problems for optimization heat exchangers parameters
NASA Astrophysics Data System (ADS)
Melekhin, A.
2017-11-01
The relevance of the topic due to the decision of problems of the economy of resources in heating systems of buildings. To solve this problem we have developed an integrated method of research which allows solving tasks on optimization of parameters of heat exchangers. This method decides multicriteria optimization problem with the program nonlinear optimization on the basis of software with the introduction of an array of temperatures obtained using thermography. The author have developed a mathematical model of process of heat exchange in heat exchange surfaces of apparatuses with the solution of multicriteria optimization problem and check its adequacy to the experimental stand in the visualization of thermal fields, an optimal range of managed parameters influencing the process of heat exchange with minimal metal consumption and the maximum heat output fin heat exchanger, the regularities of heat exchange process with getting generalizing dependencies distribution of temperature on the heat-release surface of the heat exchanger vehicles, defined convergence of the results of research in the calculation on the basis of theoretical dependencies and solving mathematical model.
Improving insight and non-insight problem solving with brief interventions.
Wen, Ming-Ching; Butler, Laurie T; Koutstaal, Wilma
2013-02-01
Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or 'ad hoc' goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention - self-affirmation (SA) - that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual-spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive- and social-psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours. © 2012 The British Psychological Society.
Clinical Reasoning Terms Included in Clinical Problem Solving Exercises?
Musgrove, John L.; Morris, Jason; Estrada, Carlos A.; Kraemer, Ryan R.
2016-01-01
Background Published clinical problem solving exercises have emerged as a common tool to illustrate aspects of the clinical reasoning process. The specific clinical reasoning terms mentioned in such exercises is unknown. Objective We identified which clinical reasoning terms are mentioned in published clinical problem solving exercises and compared them to clinical reasoning terms given high priority by clinician educators. Methods A convenience sample of clinician educators prioritized a list of clinical reasoning terms (whether to include, weight percentage of top 20 terms). The authors then electronically searched the terms in the text of published reports of 4 internal medicine journals between January 2010 and May 2013. Results The top 5 clinical reasoning terms ranked by educators were dual-process thinking (weight percentage = 24%), problem representation (12%), illness scripts (9%), hypothesis generation (7%), and problem categorization (7%). The top clinical reasoning terms mentioned in the text of 79 published reports were context specificity (n = 20, 25%), bias (n = 13, 17%), dual-process thinking (n = 11, 14%), illness scripts (n = 11, 14%), and problem representation (n = 10, 13%). Context specificity and bias were not ranked highly by educators. Conclusions Some core concepts of modern clinical reasoning theory ranked highly by educators are mentioned explicitly in published clinical problem solving exercises. However, some highly ranked terms were not used, and some terms used were not ranked by the clinician educators. Effort to teach clinical reasoning to trainees may benefit from a common nomenclature of clinical reasoning terms. PMID:27168884
Clinical Reasoning Terms Included in Clinical Problem Solving Exercises?
Musgrove, John L; Morris, Jason; Estrada, Carlos A; Kraemer, Ryan R
2016-05-01
Background Published clinical problem solving exercises have emerged as a common tool to illustrate aspects of the clinical reasoning process. The specific clinical reasoning terms mentioned in such exercises is unknown. Objective We identified which clinical reasoning terms are mentioned in published clinical problem solving exercises and compared them to clinical reasoning terms given high priority by clinician educators. Methods A convenience sample of clinician educators prioritized a list of clinical reasoning terms (whether to include, weight percentage of top 20 terms). The authors then electronically searched the terms in the text of published reports of 4 internal medicine journals between January 2010 and May 2013. Results The top 5 clinical reasoning terms ranked by educators were dual-process thinking (weight percentage = 24%), problem representation (12%), illness scripts (9%), hypothesis generation (7%), and problem categorization (7%). The top clinical reasoning terms mentioned in the text of 79 published reports were context specificity (n = 20, 25%), bias (n = 13, 17%), dual-process thinking (n = 11, 14%), illness scripts (n = 11, 14%), and problem representation (n = 10, 13%). Context specificity and bias were not ranked highly by educators. Conclusions Some core concepts of modern clinical reasoning theory ranked highly by educators are mentioned explicitly in published clinical problem solving exercises. However, some highly ranked terms were not used, and some terms used were not ranked by the clinician educators. Effort to teach clinical reasoning to trainees may benefit from a common nomenclature of clinical reasoning terms.
Assessing problem-solving skills in construction education with the virtual construction simulator
NASA Astrophysics Data System (ADS)
Castronovo, Fadi
The ability to solve complex problems is an essential skill that a construction and project manager must possess when entering the architectural, engineering, and construction industry. Such ability requires a mixture of problem-solving skills, ranging from lower to higher order thinking skills, composed of cognitive and metacognitive processes. These skills include the ability to develop and evaluate construction plans and manage the execution of such plans. However, in a typical construction program, introducing students to such complex problems can be a challenge, and most commonly the learner is presented with only part of a complex problem. To support this challenge, the traditional methodology of delivering design, engineering, and construction instruction has been going through a technological revolution, due to the rise of computer-based technology. For example, in construction classrooms, and other disciplines, simulations and educational games are being utilized to support the development of problem-solving skills. Previous engineering education research has illustrated the high potential that simulations and educational games have in engaging in lower and higher order thinking skills. Such research illustrated their capacity to support the development of problem-solving skills. This research presents evidence supporting the theory that educational simulation games can help with the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems. The educational simulation game employed in this study is the Virtual Construction Simulator (VCS). The VCS is a game developed to provide students in an engaging learning activity that simulates the planning and managing phases of a construction project. Assessment of the third iteration of the VCS(3) game has shown pedagogical value in promoting students' motivation and a basic understanding of construction concepts. To further evaluate the benefits on problem-solving skills, a new version of the VCS(4) was developed, with new building modules and assessment framework. The design and development of the VCS4 leveraged research in educational psychology, multimedia learning, human-computer interaction, and Building Information Modeling. In this dissertation the researcher aimed to evaluate the pedagogical value of the VCS4 in fostering problem-solving skills. To answer the research questions, a crossover repeated measures quasi-experiment was designed to assess the educational gains that the VCS can provide to construction education. A group of 34 students, attending a fourth-year construction course at a university in the United States was chosen to participate in the experiment. The three learning modules of the VCS were used, which challenged the students to plan and manage the construction process of a wooden pavilion, the steel erection of a dormitory, and the concrete placement of the same dormitory. Based on the results the researcher was able to provide evidence supporting the hypothesis that the chosen sample of construction students were able to gain and retain problem-solving skills necessary to solve complex construction simulation problems, no matter what the sequence with which these modules were played. In conclusion, the presented results provide evidence supporting the theory that educational simulation games can help the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems.
Novel technologies for the lost foam casting process
NASA Astrophysics Data System (ADS)
Jiang, Wenming; Fan, Zitian
2018-03-01
Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.
Problem solving of student with visual impairment related to mathematical literacy problem
NASA Astrophysics Data System (ADS)
Pratama, A. R.; Saputro, D. R. S.; Riyadi
2018-04-01
The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.
Characteristics of students in comparative problem solving
NASA Astrophysics Data System (ADS)
Irfan, M.; Sudirman; Rahardi, R.
2018-01-01
Often teachers provided examples and exercised to students with regard to comparative problems consisting of one quantity. In this study, the researchers gave the problem of comparison with the two quantities mixed. It was necessary to have a good understanding to solve this problem. This study aimed to determine whether students understand the comparison in depth and be able to solve the problem of non-routine comparison. This study used qualitative explorative methods, with researchers conducting in-depth interviews on subjects to explore the thinking process when solving comparative problems. The subject of this study was three students selected by purposive sampling of 120 students. From this research, researchers found there were three subjects with different characteristics, namely: subject 1, he did the first and second questions with methods of elimination and substitution (non-comparison); subject 2, he did the first question with the concept of comparison although the answer was wrong, and did the second question with the method of elimination and substitution (non-comparison); and subject 3, he did both questions with the concept of comparison. In the first question, he did wrong because he was unable to understand the problem, while on the second he did correctly. From the characteristics of the answers, the researchers divided into 3 groups based on thinking process, namely: blind-proportion, partial-proportion, and proportion thinking.
Graph cuts via l1 norm minimization.
Bhusnurmath, Arvind; Taylor, Camillo J
2008-10-01
Graph cuts have become an increasingly important tool for solving a number of energy minimization problems in computer vision and other fields. In this paper, the graph cut problem is reformulated as an unconstrained l1 norm minimization that can be solved effectively using interior point methods. This reformulation exposes connections between the graph cuts and other related continuous optimization problems. Eventually the problem is reduced to solving a sequence of sparse linear systems involving the Laplacian of the underlying graph. The proposed procedure exploits the structure of these linear systems in a manner that is easily amenable to parallel implementations. Experimental results obtained by applying the procedure to graphs derived from image processing problems are provided.
Facilitating Problem Framing in Project-Based Learning
ERIC Educational Resources Information Center
Svihla, Vanessa; Reeve, Richard
2016-01-01
While problem solving is a relatively well understood process, problem framing is less well understood, particularly with regard to supporting students to learn as they frame problems. Project-based learning classrooms are an ideal setting to investigate how teachers facilitate this process. Using participant observation, this study investigated…
Can microbes economically remove sulfur
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, J.L.
Researchers have reported that refiners who now rely on costly physic-chemical procedures to desulfurize petroleum will soon have an alternative microbial-enzyme-based approach to this process. This new approach is still under development and considerable number chemical engineering problems need to be solved before this process is ready for large-scale use. This paper reviews the several research projects dedicated solving the problems that keep a biotechnology-based alternative from competing with chemical desulfurization.
ERIC Educational Resources Information Center
Ladwig, Dennis J.
During the 1982-83 school year, a quality/performance circles system model was implemented at Lakeshore Technical Institute (LTI) to promote greater participation by staff in decision making and problem solving. All management staff at the college (N=45) were invited to participate in the process, and 39 volunteered. Non-management staff (N=240)…
ERIC Educational Resources Information Center
Stein, Martin; Burchartz, Birgit
2006-01-01
The Invisible Wall Project analyzes problem-solving processes of children in Grades 3 and 4 and Grades 8 and 9. The central idea of the research is to use sets of tasks that are all unsolvable, which means they have a goal that cannot be reached. The unsolvability, however, is of a kind that can be understood even by younger children. In our case,…
Learning in occupational transitions: a study of the process following job loss.
Hallqvist, Anders; Hydén, Lars-Christer
2012-01-01
This article examines how workers supported by outplacement services engage with an occupational transition through problem solving and learning. The participants were 23 mid-life redundant white collar workers with at least eight years in their sector, organization or occupation. The selected interviewees either participated in training to broaden their professional competence or did not make any such 'expansive' efforts. The study was based on narrative interviews, which enabled a detailed cross case examination of individuals' actions and choices and how the process unfolds over time. The results showed that people treat their job loss as a practical problem to be solved using various strategies. This problem-solving process is structured, with people passing similar crossroads defining particular challenges and opportunities giving people limited sets of choices. The results point to the significance of creativity and learning in occupational transitions.
Garrett, Adia J.; Mazzocco, Michèle M. M.; Baker, Linda
2009-01-01
Metacognition refers to knowledge about one’s own cognition. The present study was designed to assess metacognitive skills that either precede or follow task engagement, rather than the processes that occur during a task. Specifically, we examined prediction and evaluation skills among children with (n = 17) or without (n = 179) mathematics learning disability (MLD), from grades 2 to 4. Children were asked to predict which of several math problems they could solve correctly; later, they were asked to solve those problems. They were asked to evaluate whether their solution to each of another set of problems was correct. Children’s ability to evaluate their answers to math problems improved from grade 2 to grade 3, whereas there was no change over time in the children’s ability to predict which problems they could solve correctly. Children with MLD were less accurate than children without MLD in evaluating both their correct and incorrect solutions, and they were less accurate at predicting which problems they could solve correctly. However, children with MLD were as accurate as their peers in correctly predicting that they could not solve specific math problems. The findings have implications for the usefulness of children’s self-review during mathematics problem solving. PMID:20084181
How do Rumination and Social Problem Solving Intensify Depression? A Longitudinal Study.
Hasegawa, Akira; Kunisato, Yoshihiko; Morimoto, Hiroshi; Nishimura, Haruki; Matsuda, Yuko
2018-01-01
In order to examine how rumination and social problem solving intensify depression, the present study investigated longitudinal associations among each dimension of rumination and social problem solving and evaluated aspects of these constructs that predicted subsequent depression. A three-wave longitudinal study, with an interval of 4 weeks between waves, was conducted. Japanese university students completed the Beck Depression Inventory-Second Edition, Ruminative Responses Scale, Social Problem-Solving Inventory-Revised Short Version, and Interpersonal Stress Event Scale on three occasions 4 weeks apart ( n = 284 at Time 1, 198 at Time 2, 165 at Time 3). Linear mixed models were analyzed to test whether each variable predicted subsequent depression, rumination, and each dimension of social problem solving. Rumination and negative problem orientation demonstrated a mutually enhancing relationship. Because these two variables were not associated with interpersonal conflict during the subsequent 4 weeks, rumination and negative problem orientation appear to strengthen each other without environmental change. Rumination and impulsivity/carelessness style were associated with subsequent depressive symptoms, after controlling for the effect of initial depression. Because rumination and impulsivity/carelessness style were not concurrently and longitudinally associated with each other, rumination and impulsive/careless problem solving style appear to be independent processes that serve to intensify depression.
An electromagnetism-like metaheuristic for open-shop problems with no buffer
NASA Astrophysics Data System (ADS)
Naderi, Bahman; Najafi, Esmaeil; Yazdani, Mehdi
2012-12-01
This paper considers open-shop scheduling with no intermediate buffer to minimize total tardiness. This problem occurs in many production settings, in the plastic molding, chemical, and food processing industries. The paper mathematically formulates the problem by a mixed integer linear program. The problem can be optimally solved by the model. The paper also develops a novel metaheuristic based on an electromagnetism algorithm to solve the large-sized problems. The paper conducts two computational experiments. The first includes small-sized instances by which the mathematical model and general performance of the proposed metaheuristic are evaluated. The second evaluates the metaheuristic for its performance to solve some large-sized instances. The results show that the model and algorithm are effective to deal with the problem.
ERIC Educational Resources Information Center
Soares, Maria Tereza Carneiro; Moro, Maria Lucia Faria; Spinillo, Alina Galvao
2012-01-01
This study examines the relationship between the grasp of consciousness of the reasoning process in Grades 5 and 8 pupils from a public and a private school, and their performance in mathematical problems of Cartesian product. Forty-two participants aged from 10 to 16 solved four problems in writing and explained their solution procedures by…
Multiobjective optimization of temporal processes.
Song, Zhe; Kusiak, Andrew
2010-06-01
This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework.
Cheek, Cheryl; Piercy, Kathleen W; Kohlenberg, Meranda
2015-01-01
This study examined the ways in which individuals over 50 years old solved problems while volunteering in intensive humanitarian and disaster relief service. Thirty-seven men and women in the sample were sponsored by three religious organizations well known for providing humanitarian and disaster relief service. Semistructured interviews yielded data that were analyzed qualitatively, using McCracken's five-step process for analysis. We found that volunteers used three different abilities to solve problems: drawing upon experience to create strategies, maintaining emotional stability in the midst of trying circumstances, and applying strategies in a context-sensitive manner. These findings illustrate that these factors, which are comparable to those used in solving everyday problems, are unique in the way they are applied to intensive volunteering. The volunteers' sharing of knowledge, experience, and support with each other were also noticeable in their accounts of their service. This sharing contributed strongly to their sense of emotional stability and effectiveness in solving problems. © The Author(s) 2015.
Longest jobs first algorithm in solving job shop scheduling using adaptive genetic algorithm (GA)
NASA Astrophysics Data System (ADS)
Alizadeh Sahzabi, Vahid; Karimi, Iman; Alizadeh Sahzabi, Navid; Mamaani Barnaghi, Peiman
2012-01-01
In this paper, genetic algorithm was used to solve job shop scheduling problems. One example discussed in JSSP (Job Shop Scheduling Problem) and I described how we can solve such these problems by genetic algorithm. The goal in JSSP is to gain the shortest process time. Furthermore I proposed a method to obtain best performance on performing all jobs in shortest time. The method mainly, is according to Genetic algorithm (GA) and crossing over between parents always follows the rule which the longest process is at the first in the job queue. In the other word chromosomes is suggested to sorts based on the longest processes to shortest i.e. "longest job first" says firstly look which machine contains most processing time during its performing all its jobs and that is the bottleneck. Secondly, start sort those jobs which are belonging to that specific machine descending. Based on the achieved results," longest jobs first" is the optimized status in job shop scheduling problems. In our results the accuracy would grow up to 94.7% for total processing time and the method improved 4% the accuracy of performing all jobs in the presented example.
A Neural Dynamic Model Generates Descriptions of Object-Oriented Actions.
Richter, Mathis; Lins, Jonas; Schöner, Gregor
2017-01-01
Describing actions entails that relations between objects are discovered. A pervasively neural account of this process requires that fundamental problems are solved: the neural pointer problem, the binding problem, and the problem of generating discrete processing steps from time-continuous neural processes. We present a prototypical solution to these problems in a neural dynamic model that comprises dynamic neural fields holding representations close to sensorimotor surfaces as well as dynamic neural nodes holding discrete, language-like representations. Making the connection between these two types of representations enables the model to describe actions as well as to perceptually ground movement phrases-all based on real visual input. We demonstrate how the dynamic neural processes autonomously generate the processing steps required to describe or ground object-oriented actions. By solving the fundamental problems of neural pointing, binding, and emergent discrete processing, the model may be a first but critical step toward a systematic neural processing account of higher cognition. Copyright © 2017 The Authors. Topics in Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
NASA Astrophysics Data System (ADS)
Chan, Man Ching Esther; Clarke, David; Cao, Yiming
2018-03-01
Interactive problem solving and learning are priorities in contemporary education, but these complex processes have proved difficult to research. This project addresses the question "How do we optimise social interaction for the promotion of learning in a mathematics classroom?" Employing the logic of multi-theoretic research design, this project uses the newly built Science of Learning Research Classroom (ARC-SR120300015) at The University of Melbourne and equivalent facilities in China to investigate classroom learning and social interactions, focusing on collaborative small group problem solving as a way to make the social aspects of learning visible. In Australia and China, intact classes of local year 7 students with their usual teacher will be brought into the research classroom facilities with built-in video cameras and audio recording equipment to participate in purposefully designed activities in mathematics. The students will undertake a sequence of tasks in the social units of individual, pair, small group (typically four students) and whole class. The conditions for student collaborative problem solving and learning will be manipulated so that student and teacher contributions to that learning process can be distinguished. Parallel and comparative analyses will identify culture-specific interactive patterns and provide the basis for hypotheses about the learning characteristics underlying collaborative problem solving performance documented in the research classrooms in each country. The ultimate goals of the project are to generate, develop and test more sophisticated hypotheses for the optimisation of social interaction in the mathematics classroom in the interest of improving learning and, particularly, student collaborative problem solving.
Gaebelein, Claude J.; Grice, Gloria R.; Crannage, Andrew J.; Weck, Margaret A.; Hurd, Peter; Walter, Brenda; Duncan, Wendy
2013-01-01
Objective. To determine the feasibility of using a validated set of assessment rubrics to assess students’ critical-thinking and problem-solving abilities across a doctor of pharmacy (PharmD) curriculum. Methods. Trained faculty assessors used validated rubrics to assess student work samples for critical-thinking and problem-solving abilities. Assessment scores were collected and analyzed to determine student achievement of these 2 ability outcomes across the curriculum. Feasibility of the process was evaluated in terms of time and resources used. Results. One hundred sixty-one samples were assessed for critical thinking, and 159 samples were assessed for problem-solving. Rubric scoring allowed assessors to evaluate four 5- to 7-page work samples per hour. The analysis indicated that overall critical-thinking scores improved over the curriculum. Although low yield for problem-solving samples precluded meaningful data analysis, it was informative for identifying potentially needed curricular improvements. Conclusions. Use of assessment rubrics for program ability outcomes was deemed authentic and feasible. Problem-solving was identified as a curricular area that may need improving. This assessment method has great potential to inform continuous quality improvement of a PharmD program. PMID:24159207
Gleason, Brenda L; Gaebelein, Claude J; Grice, Gloria R; Crannage, Andrew J; Weck, Margaret A; Hurd, Peter; Walter, Brenda; Duncan, Wendy
2013-10-14
To determine the feasibility of using a validated set of assessment rubrics to assess students' critical-thinking and problem-solving abilities across a doctor of pharmacy (PharmD) curriculum. Trained faculty assessors used validated rubrics to assess student work samples for critical-thinking and problem-solving abilities. Assessment scores were collected and analyzed to determine student achievement of these 2 ability outcomes across the curriculum. Feasibility of the process was evaluated in terms of time and resources used. One hundred sixty-one samples were assessed for critical thinking, and 159 samples were assessed for problem-solving. Rubric scoring allowed assessors to evaluate four 5- to 7-page work samples per hour. The analysis indicated that overall critical-thinking scores improved over the curriculum. Although low yield for problem-solving samples precluded meaningful data analysis, it was informative for identifying potentially needed curricular improvements. Use of assessment rubrics for program ability outcomes was deemed authentic and feasible. Problem-solving was identified as a curricular area that may need improving. This assessment method has great potential to inform continuous quality improvement of a PharmD program.
Molnár, Gyöngyvér; Csapó, Benő
2018-01-01
The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3rd- to 12th-grade students (aged 9–18) in Hungarian schools (n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons. PMID:29593606
Molnár, Gyöngyvér; Csapó, Benő
2018-01-01
The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3 rd - to 12 th -grade students (aged 9-18) in Hungarian schools ( n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons.
NASA Technical Reports Server (NTRS)
Ferencz, Donald C.; Viterna, Larry A.
1991-01-01
ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.
Solving satisfiability problems using a novel microarray-based DNA computer.
Lin, Che-Hsin; Cheng, Hsiao-Ping; Yang, Chang-Biau; Yang, Chia-Ning
2007-01-01
An algorithm based on a modified sticker model accompanied with an advanced MEMS-based microarray technology is demonstrated to solve SAT problem, which has long served as a benchmark in DNA computing. Unlike conventional DNA computing algorithms needing an initial data pool to cover correct and incorrect answers and further executing a series of separation procedures to destroy the unwanted ones, we built solutions in parts to satisfy one clause in one step, and eventually solve the entire Boolean formula through steps. No time-consuming sample preparation procedures and delicate sample applying equipment were required for the computing process. Moreover, experimental results show the bound DNA sequences can sustain the chemical solutions during computing processes such that the proposed method shall be useful in dealing with large-scale problems.
ERIC Educational Resources Information Center
Carey, L. J.; Flower, Linda
This report examines the composing processes of expert writers to determine which cognitive processes in expository writing produce an opportunity for a creative response. The first section considers how the ill-defined nature of many writing problems and the cognitive processes experts use to solve these problems interact to provide an…
Professional Learning through the Collaborative Design of Problem-Solving Lessons
ERIC Educational Resources Information Center
Wake, Geoff; Swan, Malcolm; Foster, Colin
2016-01-01
This article analyses lesson study as a mode of professional learning, focused on the development of mathematical problem solving processes, using the lens of cultural-historical activity theory. In particular, we draw attention to two activity systems, the classroom system and the lesson-study system, and the importance of making artefacts…
ERIC Educational Resources Information Center
Kuzle, Ana
2012-01-01
In this paper, I report on preservice teachers' reflections and perceptions on their problem-solving process in a technological context. The purpose of the study was to investigate how preservice teachers experience working individually in a dynamic geometry environment and how these experiences affect their own mathematical activity when…
ERIC Educational Resources Information Center
Erdamar, Gurcu; Alpan, Gulgun
2013-01-01
This study aims to examine the development of preservice teachers' epistemological beliefs and problem solving skills in the process of teaching practice. Participants of this descriptive study were senior students from Gazi University's Faculty of Vocational Education ("n" = 189). They completed the Epistemological Belief Scale and…
Response Mode Effects on Computer Based Problem Solving. Report Series 1979.
ERIC Educational Resources Information Center
Brown, Bobby R.; Sustik, Joan M.
This response mode study attempts to determine whether different response modes are helpful or not in facilitating the thought process in a given problem solving situation. The Luchins Water Jar Test (WJT) used in this study illustrates the phenomena "Einstelling" (mechanization of response) because it does not require any specialized content…
Students' Use of Technological Tools for Verification Purposes in Geometry Problem Solving
ERIC Educational Resources Information Center
Papadopoulos, Ioannis; Dagdilelis, Vassilios
2008-01-01
Despite its importance in mathematical problem solving, verification receives rather little attention by the students in classrooms, especially at the primary school level. Under the hypotheses that (a) non-standard tasks create a feeling of uncertainty that stimulates the students to proceed to verification processes and (b) computational…
School Effectiveness: Problem-Solving and Managing Conflict.
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul.
This module discusses the theory and practice of school improvement and outlines a nine-step systematic problem-solving process for developing an action plan addressing school improvement goals. The first section describes a general model for the study of the school as a social system, as developed by Getzels and Thelen (1960). The second section…
Teaching to Teach (with) Game Design: Game Design and Learning Workshops for Preservice Teachers
ERIC Educational Resources Information Center
Akcaoglu, Mete; Kale, Ugur
2016-01-01
Engagement in game design tasks can help preservice teachers develop pedagogical and technical skills for teaching and promoting critical thinking and problem-solving skills. Through the design process, preservice teachers not only exercise critical-thinking and problem-solving skills, but also learn about an instructional method to support their…
Problem Solving Learning Environments and Assessment: A Knowledge Space Theory Approach
ERIC Educational Resources Information Center
Reimann, Peter; Kickmeier-Rust, Michael; Albert, Dietrich
2013-01-01
This paper explores the relation between problem solving learning environments (PSLEs) and assessment concepts. The general framework of evidence-centered assessment design is used to describe PSLEs in terms of assessment concepts, and to identify similarities between the process of assessment design and of PSLE design. We use a recently developed…
Assessing Problem Solving Competence through Inquiry-Based Teaching in School Science Education
ERIC Educational Resources Information Center
Zervas, Panagiotis; Sotiriou, Sofoklis; Tiemann, Rüdiger; Sampson, Demetrios G.
2015-01-01
Nowadays, there is a consensus that inquiry-based learning contributes to developing students' scientific literacy in schools. Inquiry-based teaching strategies are promoted for the development (among others) of the cognitive processes that cultivate problem solving (PS) competence. The build up of PS competence is a central objective for most…
ERIC Educational Resources Information Center
Egan, Thomas A.; Seidel, Janet C.
Evaluation of an ESEA Title III project, "An Inter-Disciplinary Problem Solving Approach to Environmental Education" located in Berks County, Pennsylvania, is offered in this interim report. The report is primarily concerned with the degree to which operational and management process objectives are being achieved in each of four…
Development of Critical Thinking with Metacognitive Regulation and Toulmin Model
ERIC Educational Resources Information Center
Gotoh, Yasushi
2017-01-01
Developing critical thinking is an important factor in education. In this study, the author defines critical thinking as the set of skills and dispositions which enable one to solve problems logically and to attempt to reflect autonomously by means of metacognitive regulation of one's own problem-solving processes. To identify the validity and…
Possibilities: A Framework for Modeling Students' Deductive Reasoning in Physics
ERIC Educational Resources Information Center
Gaffney, Jonathan David Housley
2010-01-01
Students often make errors when trying to solve qualitative or conceptual physics problems, and while many successful instructional interventions have been generated to prevent such errors, the process of deduction that students use when solving physics problems has not been thoroughly studied. In an effort to better understand that reasoning…
Development of Verbal Thinking and Problem-Solving among TshiVenda-Speaking Primary School Children
ERIC Educational Resources Information Center
Muthivhi, Azwihangwisi E.
2013-01-01
The paper presents findings of primary school children's performance on classification and generalisation tasks to demonstrate the fundamental connection between their verbal thinking processes and problem-solving, on the one hand, and the practical activities of their society and culture, on the other. The results reveal that, although children…
Development of Critical Thinking Self-Assessment System Using Wearable Device
ERIC Educational Resources Information Center
Gotoh, Yasushi
2015-01-01
In this research the author defines critical thinking as skills and dispositions which enable one to solve problems logically and to attempt to reflect autonomously by means of meta-cognitive activities on one's own problem-solving processes. The author focuses on providing meta-cognitive knowledge to help with self-assessment. To develop…
Students' Explanations in Complex Learning of Disciplinary Programming
ERIC Educational Resources Information Center
Vieira, Camilo
2016-01-01
Computational Science and Engineering (CSE) has been denominated as the third pillar of science and as a set of important skills to solve the problems of a global society. Along with the theoretical and the experimental approaches, computation offers a third alternative to solve complex problems that require processing large amounts of data, or…
Michael Eisenberg and Robert Berkowitz's Big6[TM] Information Problem-Solving Model.
ERIC Educational Resources Information Center
Carey, James O.
2003-01-01
Reviews the Big6 information problem-solving model. Highlights include benefits and dangers of the simplicity of the model; theories of instruction; testing of the model; the model as a process for completing research projects; and advice for school library media specialists considering use of the model. (LRW)
Gender Differences in Eye Movements in Solving Text-and-Diagram Science Problems
ERIC Educational Resources Information Center
Huang, Po-Sheng; Chen, Hsueh-Chih
2016-01-01
The main purpose of this study was to examine possible gender differences in how junior high school students integrate printed texts and diagrams while solving science problems. We proposed the response style hypothesis and the spatial working memory hypothesis to explain possible gender differences in the integration process. Eye-tracking…
ERIC Educational Resources Information Center
Rahman, Abdul; Ahmar, Ansari Saleh
2016-01-01
Several studies suggest that most students are not in the same level of development (Slavin, 2008). From concrete operation level to formal operation level, students experience lateness in the transition phase. Consequently, students feel difficulty in solving mathematics problems. Method research is a qualitatively descriptive-explorative…
Problem Solving and Emotional Education in Initial Primary Teacher Education
ERIC Educational Resources Information Center
Caballero, Ana; Blanco, Lorenzo J.; Guerrero, Eloisa
2011-01-01
Our work is based on two premises. The first is that affective factors (beliefs, attitudes, and emotions) influence teaching and learning mathematics, and problem solving in particular. The second is that initial teacher education is an important element in the process of improving overall educational practice. On this basis, our research group…
Failing to Learn: Towards a Unified Design Approach for Failure-Based Learning
ERIC Educational Resources Information Center
Tawfik, Andrew A.; Rong, Hui; Choi, Ikseon
2015-01-01
To date, many instructional systems are designed to support learners as they progress through a problem-solving task. Often these systems are designed in accordance with instructional design models that progress the learner efficiently through the problem-solving process. However, theories from various fields have discussed failure as a strategic…
Students' Usability Evaluation of a Web-Based Tutorial Program for College Biology Problem Solving
ERIC Educational Resources Information Center
Kim, H. S.; Prevost, L.; Lemons, P. P.
2015-01-01
The understanding of core concepts and processes of science in solving problems is important to successful learning in biology. We have designed and developed a Web-based, self-directed tutorial program, "SOLVEIT," that provides various scaffolds (e.g., prompts, expert models, visual guidance) to help college students enhance their…
The Effect of Simulation Games on the Learning of Computational Problem Solving
ERIC Educational Resources Information Center
Liu, Chen-Chung; Cheng, Yuan-Bang; Huang, Chia-Wen
2011-01-01
Simulation games are now increasingly applied to many subject domains as they allow students to engage in discovery processes, and may facilitate a flow learning experience. However, the relationship between learning experiences and problem solving strategies in simulation games still remains unclear in the literature. This study, thus, analyzed…
Wikis for a Collaborative Problem-Solving (CPS) Module for Secondary School Science
ERIC Educational Resources Information Center
DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah; Spector, Jonathan Michael
2017-01-01
Collaborative problem solving (CPS) can support online learning by enabling interactions for social and cognitive processes. Teachers may not have sufficient knowledge to support such interactions, so support needs to be designed into learning modules for this purpose. This study investigates to what extent an online module for teaching nutrition…
Tying Theory To Practice: Cognitive Aspects of Computer Interaction in the Design Process.
ERIC Educational Resources Information Center
Mikovec, Amy E.; Dake, Dennis M.
The new medium of computer-aided design requires changes to the creative problem-solving methodologies typically employed in the development of new visual designs. Most theoretical models of creative problem-solving suggest a linear progression from preparation and incubation to some type of evaluative study of the "inspiration." These…
Quickfire Challenges to Inspire Problem Solving
ERIC Educational Resources Information Center
Harper, Suzanne R.; Cox, Dana C.
2017-01-01
In the authors' attempts to incorporate problem solving into their mathematics courses, they have found that student ambition and creativity are often hampered by feelings of risk, as many students are conditioned to value a produced solution over the actual process of building one. Eliminating risk is neither possible nor desired. The challenge,…
ERIC Educational Resources Information Center
Nguyen, Ngan; Mulla, Ali; Nelson, Andrew J.; Wilson, Timothy D.
2014-01-01
The present study explored the problem-solving strategies of high- and low-spatial visualization ability learners on a novel spatial anatomy task to determine whether differences in strategies contribute to differences in task performance. The results of this study provide further insights into the processing commonalities and differences among…
MAUVE: A New Strategy for Solving and Grading Physics Problems
ERIC Educational Resources Information Center
Hill, Nicole Breanne
2016-01-01
MAUVE (magnitude, answer, units, variables, and equations) is a framework and rubric to help students and teachers through the process of clearly solving and assessing solutions to introductory physics problems. Success in introductory physics often derives from an understanding of units, a command over dimensional analysis, and good bookkeeping.…
Bonete, Saray; Calero, María Dolores; Fernández-Parra, Antonio
2015-05-01
Adults with Asperger syndrome show persistent difficulties in social situations which psychosocial treatments may address. Despite the multiple studies focusing on social skills interventions, only some have focused specifically on problem-solving skills and have not targeted workplace adaptation training in the adult population. This study describes preliminary data from a group format manual-based intervention, the Interpersonal Problem-Solving for Workplace Adaptation Programme, aimed at improving the cognitive and metacognitive process of social problem-solving skills focusing on typical social situations in the workplace based on mediation as the main strategy. A total of 50 adults with Asperger syndrome received the programme and were compared with a control group of typical development. The feasibility and effectiveness of the treatment were explored. Participants were assessed at pre-treatment and post-treatment on a task of social problem-solving skills and two secondary measures of socialisation and work profile using self- and caregiver-report. Using a variety of methods, the results showed that scores were significantly higher at post-treatment in the social problem-solving task and socialisation skills based on reports by parents. Differences in comparison to the control group had decreased after treatment. The treatment was acceptable to families and subject adherence was high. The Interpersonal Problem-Solving for Workplace Adaptation Programme appears to be a feasible training programme. © The Author(s) 2014.
Multitasking-Pascal extensions solve concurrency problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackie, P.H.
1982-09-29
To avoid deadlock (one process waiting for a resource than another process can't release) and indefinite postponement (one process being continually denied a resource request) in a multitasking-system application, it is possible to use a high-level development language with built-in concurrency handlers. Parallel Pascal is one such language; it extends standard Pascal via special task synchronizers: a new data type called signal, new system procedures called wait and send and a Boolean function termed awaited. To understand the language's use the author examines the problems it helps solve.
Problem Solving Model for Science Learning
NASA Astrophysics Data System (ADS)
Alberida, H.; Lufri; Festiyed; Barlian, E.
2018-04-01
This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.
NASA Technical Reports Server (NTRS)
Morris, N. M.; Rouse, W. B.; Fath, J. L.
1985-01-01
An experimental tool for the investigation of human problem-solving behavior is introduced. Production Levels and Network Troubleshooting (PLANT) is a computer-based process-control task which may be used to provide opportunities for subjects to control a dynamic system and diagnose, repair, and compensate for system failures. The task is described in detail, and experiments which have been conducted using PLANT are briefly discussed.
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.
1998-01-01
A key challenge in designing the new High Speed Civil Transport (HSCT) aircraft is determining a good match between the airframe and engine. Multidisciplinary design optimization can be used to solve the problem by adjusting parameters of both the engine and the airframe. Earlier, an example problem was presented of an HSCT aircraft with four mixed-flow turbofan engines and a baseline mission to carry 305 passengers 5000 nautical miles at a cruise speed of Mach 2.4. The problem was solved by coupling NASA Lewis Research Center's design optimization testbed (COMETBOARDS) with NASA Langley Research Center's Flight Optimization System (FLOPS). The computing time expended in solving the problem was substantial, and the instability of the FLOPS analyzer at certain design points caused difficulties. In an attempt to alleviate both of these limitations, we explored the use of two approximation concepts in the design optimization process. The two concepts, which are based on neural network and linear regression approximation, provide the reanalysis capability and design sensitivity analysis information required for the optimization process. The HSCT aircraft optimization problem was solved by using three alternate approaches; that is, the original FLOPS analyzer and two approximate (derived) analyzers. The approximate analyzers were calibrated and used in three different ranges of the design variables; narrow (interpolated), standard, and wide (extrapolated).
NASA Astrophysics Data System (ADS)
Izquierdo, Joaquín; Montalvo, Idel; Campbell, Enrique; Pérez-García, Rafael
2016-08-01
Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.
STEM education and Fermi problems
NASA Astrophysics Data System (ADS)
Holubova, Renata
2017-01-01
One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.
Revisiting software specification and design for large astronomy projects
NASA Astrophysics Data System (ADS)
Wiant, Scott; Berukoff, Steven
2016-07-01
The separation of science and engineering in the delivery of software systems overlooks the true nature of the problem being solved and the organization that will solve it. Use of a systems engineering approach to managing the requirements flow between these two groups as between a customer and contractor has been used with varying degrees of success by well-known entities such as the U.S. Department of Defense. However, treating science as the customer and engineering as the contractor fosters unfavorable consequences that can be avoided and opportunities that are missed. For example, the "problem" being solved is only partially specified through the requirements generation process since it focuses on detailed specification guiding the parties to a technical solution. Equally important is the portion of the problem that will be solved through the definition of processes and staff interacting through them. This interchange between people and processes is often underrepresented and under appreciated. By concentrating on the full problem and collaborating on a strategy for its solution a science-implementing organization can realize the benefits of driving towards common goals (not just requirements) and a cohesive solution to the entire problem. The initial phase of any project when well executed is often the most difficult yet most critical and thus it is essential to employ a methodology that reinforces collaboration and leverages the full suite of capabilities within the team. This paper describes an integrated approach to specifying the needs induced by a problem and the design of its solution.
NASA Astrophysics Data System (ADS)
Aurah, Catherine Muhonja
Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the outcomes and the processes of students' genetics problem-solving ability. Focus group interviews substantiated and supported findings from the quantitative instruments. The study was conducted in 17 high schools in Western Province, Kenya. A total of 2,138 high school students were purposively sampled. A sub-sample of 48 students participated in focus group interviews to understand their perspectives and experiences during the study so as to corroborate the quantitative data. Quantitative data were analyzed through descriptive statistics, zero-order correlations, 2 x 2 factorial ANOVA,, and sequential hierarchical multiple regressions. Qualitative data were transcribed, coded, and reported thematically. Results revealed metacognitive prompts had significant positive effects on student problem-solving ability independent of gender. Self-efficacy and metacognitive prompting significantly predicted genetics problem-solving ability. Gender differences were revealed, with girls outperforming boys on the genetics problem-solving test. Furthermore, self-efficacy moderated the relationship between metacognitive prompting and genetics problem-solving ability. This study established a foundation for instructional methods for biology teachers and recommendations are made for implementing metacognitive prompting in a problem-based learning environment in high schools and science teacher education programs in Kenya.
NASA Astrophysics Data System (ADS)
Prismana, R. D. E.; Kusmayadi, T. A.; Pramudya, I.
2018-04-01
The ability of solving problem is a part of the mathematic curriculum that is very important. Problem solving prefers the process and strategy that is done by students in solving a problem rather than the result. This learning concept in accordance with the stages on the revised bloom’s taxonomy. The revised Bloom’s Taxonomy has two dimensions, namely the dimension of cognitive process and the dimension of knowledge. Dimension of knowledge has four categories, but this study only restricted on two knowledge, conceptual knowledge and procedural knowledge. Dimensions of cognitive processes are categorized into six kinds, namely remembering, understanding, applying, analyzing, evaluating, and creating. Implementation of learning more emphasis on the role of students. Students must have their own belief in completing tasks called self-efficacy. This research is a qualitative research. This research aims to know the site of the students’ difficulty based on revised Bloom’s Taxonomy viewed from high self-efficacy. The results of the study stated the students with high self efficacy have difficulties site. They are evaluating conceptual knowledge, evaluating procedural knowledge, creating conceptual knowledge, and creating procedural knowledge. It could be the consideration of teachers in the teaching, so as to reduce the difficulties of learning in students.
Problem solving in the borderland between mathematics and physics
NASA Astrophysics Data System (ADS)
Jensen, Jens Højgaard; Niss, Martin; Jankvist, Uffe Thomas
2017-01-01
The article addresses the problématique of where mathematization is taught in the educational system, and who teaches it. Mathematization is usually not a part of mathematics programs at the upper secondary level, but we argue that physics teaching has something to offer in this respect, if it focuses on solving so-called unformalized problems, where a major challenge is to formalize the problems in mathematics and physics terms. We analyse four concrete examples of unformalized problems for which the formalization involves different order of mathematization and applying physics to the problem, but all require mathematization. The analysis leads to the formulation of a model by which we attempt to capture the important steps of the process of solving unformalized problems by means of mathematization and physicalization.
NASA Astrophysics Data System (ADS)
Castagnoli, Giuseppe
2017-05-01
The usual representation of quantum algorithms, limited to the process of solving the problem, is physically incomplete as it lacks the initial measurement. We extend it to the process of setting the problem. An initial measurement selects a problem setting at random, and a unitary transformation sends it into the desired setting. The extended representation must be with respect to Bob, the problem setter, and any external observer. It cannot be with respect to Alice, the problem solver. It would tell her the problem setting and thus the solution of the problem implicit in it. In the representation to Alice, the projection of the quantum state due to the initial measurement should be postponed until the end of the quantum algorithm. In either representation, there is a unitary transformation between the initial and final measurement outcomes. As a consequence, the final measurement of any ℛ-th part of the solution could select back in time a corresponding part of the random outcome of the initial measurement; the associated projection of the quantum state should be advanced by the inverse of that unitary transformation. This, in the representation to Alice, would tell her, before she begins her problem solving action, that part of the solution. The quantum algorithm should be seen as a sum over classical histories in each of which Alice knows in advance one of the possible ℛ-th parts of the solution and performs the oracle queries still needed to find it - this for the value of ℛ that explains the algorithm's speedup. We have a relation between retrocausality ℛ and the number of oracle queries needed to solve an oracle problem quantumly. All the oracle problems examined can be solved with any value of ℛ up to an upper bound attained by the optimal quantum algorithm. This bound is always in the vicinity of 1/2 . Moreover, ℛ =1/2 always provides the order of magnitude of the number of queries needed to solve the problem in an optimal quantum way. If this were true for any oracle problem, as plausible, it would solve the quantum query complexity problem.
Neural pathway in the right hemisphere underlies verbal insight problem solving.
Zhao, Q; Zhou, Z; Xu, H; Fan, W; Han, L
2014-01-03
Verbal insight problem solving means to break mental sets, to select the novel semantic information and to form novel, task-related associations. Although previous studies have identified the brain regions associated with these key processes, the interaction among these regions during insight is still unclear. In the present study, we explored the functional connectivity between the key regions during solving Chinese 'chengyu' riddles by using event-related functional magnetic resonance imaging. Results showed that both insight and noninsight solutions activated the bilateral inferior frontal gyri, middle temporal gyri and hippocampi, and these regions constituted a frontal to temporal to hippocampal neural pathway. Compared with noninsight solution, insight solution had a stronger functional connectivity between the inferior frontal gyrus and middle temporal gyrus in the right hemisphere. Our study reveals the neural pathway of information processing during verbal insight problem solving, and supports the right-hemisphere advantage theory of insight. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.