Analyzing the cost of screening selectee and non-selectee baggage.
Virta, Julie L; Jacobson, Sheldon H; Kobza, John E
2003-10-01
Determining how to effectively operate security devices is as important to overall system performance as developing more sensitive security devices. In light of recent federal mandates for 100% screening of all checked baggage, this research studies the trade-offs between screening only selectee checked baggage and screening both selectee and non-selectee checked baggage for a single baggage screening security device deployed at an airport. This trade-off is represented using a cost model that incorporates the cost of the baggage screening security device, the volume of checked baggage processed through the device, and the outcomes that occur when the device is used. The cost model captures the cost of deploying, maintaining, and operating a single baggage screening security device over a one-year period. The study concludes that as excess baggage screening capacity is used to screen non-selectee checked bags, the expected annual cost increases, the expected annual cost per checked bag screened decreases, and the expected annual cost per expected number of threats detected in the checked bags screened increases. These results indicate that the marginal increase in security per dollar spent is significantly lower when non-selectee checked bags are screened than when only selectee checked bags are screened.
Internal Consistency Reliability of the Self-Report Antisocial Process Screening Device
ERIC Educational Resources Information Center
Poythress, Norman G.; Douglas, Kevin S.; Falkenbach, Diana; Cruise, Keith; Lee, Zina; Murrie, Daniel C.; Vitacco, Michael
2006-01-01
The self-report version of the Antisocial Process Screening Device (APSD) has become a popular measure for assessing psychopathic features in justice-involved adolescents. However, the internal consistency reliability of its component scales (Narcissism, Callous-Unemotional, and Impulsivity) has been questioned in several studies. This study…
NASA Astrophysics Data System (ADS)
Das, Sayantan; Mandal, Subhamoy; Das, Debnath; Malviya, Richa; Garud, Hrushikesh T.; Ray, Ajoy K.
2016-03-01
In this article we propose a point-of-care screening device for the detection and identification of malaria parasite, plasmodium vivax, plasmodium malaria, plasmodium oval and plasmodium falciparum with a time frame of 15-20 minute. In our device we can provide 97-98% sensitivity for each species as we are using traditional staining methods for detecting the parasites. In addition, as we are also quantifying the parasites, it is possible to provide an accurate estimate about the malarial stage of the patient. The image processing approach increases the total numbers of samples screened by reducing interventions of trained pathologists. This helps in reducing the delays in screening process arising from increased number of potential cases based on seasonal and local variations. The same reduces mortality rate by faster diagnosis and reduced false negative detections (i.e. increased sensitivity). The system can also be integrated with telemedicine platform to obtain inputs from medical practitioners at tertiary healthcare units for diagnostic decision making. Through this paper, we present the functional prototype of this device containing all the integrated parts. The prototype incorporates image acquisition, image processing, storage, multimedia transmission and reporting environment for a low cost PDA device. It is a portable device capable of scanning slides. The acquired image will be preprocessed and processed to get desired output. The device is capable of transmitting and storing pathological information to database placed in a distant pathological center for further consultation.
Recent trends in digital halftoning
NASA Astrophysics Data System (ADS)
Delabastita, Paul A.
1997-02-01
Screening is perhaps the oldest form of image processing. The word refers to the mechanical cross line screens that were used at the beginning of this century for the purpose of photomechanical reproduction. Later on, these mechanical screens were replaced by photographic contact screens that enabled significantly improved process control. In the early eighties, the optical screening on graphic arts scanners was replaced by a combination of laser optics and electronic screening. The algorithms, however, were still digital implementations of the original optical methods. The printing needs in the fast growing computer and software industry gave birth to a number of alternative printing technologies such as electrophotographic and inkjet printing. Originally these deices were only designed for printing text, but soon people started experimenting and using them for printing images. The relatively low spatial resolutions of these new devices however made complete review of 'the screening issue' necessary to achieve an acceptable image quality. In this paper a number of recent developments in screening technology are summarized. Special attention is given to the interaction that exists between a halftone screen and the printing devices on which they are rendered including the color mixing behavior. Improved screening techniques are presented that take advantage of modeling the physical behavior of the rendering device.
NASA Flexible Screen Propellant Management Device (PMD) Demonstration With Cryogenic Liquid
NASA Technical Reports Server (NTRS)
Wollen, Mark; Bakke, Victor; Baker, James
2012-01-01
While evaluating various options for liquid methane and liquid oxygen propellant management for lunar missions, Innovative Engineering Solutions (IES) conceived the flexible screen device as a potential simple alternative to conventional propellant management devices (PMD). An apparatus was designed and fabricated to test flexible screen devices in liquid nitrogen. After resolution of a number of issues (discussed in detail in the paper), a fine mesh screen (325 by 2300 wires per inch) spring return assembly was successfully tested. No significant degradation in the screen bubble point was observed either due to the screen stretching process or due to cyclic fatigue during testing. An estimated 30 to 50 deflection cycles, and approximately 3 to 5 thermal cycles, were performed on the final screen specimen, prior to and between formally recorded testing. These cycles included some "abusive" pressure cycling, where gas or liquid was driven through the screen at rates that produced differential pressures across the screen of several times the bubble point pressure. No obvious performance degradation or other changes were observed over the duration of testing. In summary, it is felt by the author that these simple tests validated the feasibility of the flexible screen PMD concept for use with cryogenic propellants.
Microfluidic cell chips for high-throughput drug screening
Chi, Chun-Wei; Ahmed, AH Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong
2016-01-01
The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell–drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers. PMID:27071838
Liu, Min; Zhang, Chunsun; Liu, Feifei
2015-09-03
In this work, we first introduce the fabrication of microfluidic cloth-based analytical devices (μCADs) using a wax screen-printing approach that is suitable for simple, inexpensive, rapid, low-energy-consumption and high-throughput preparation of cloth-based analytical devices. We have carried out a detailed study on the wax screen-printing of μCADs and have obtained some interesting results. Firstly, an analytical model is established for the spreading of molten wax in cloth. Secondly, a new wax screen-printing process has been proposed for fabricating μCADs, where the melting of wax into the cloth is much faster (∼5 s) and the heating temperature is much lower (75 °C). Thirdly, the experimental results show that the patterning effects of the proposed wax screen-printing method depend to a certain extent on types of screens, wax melting temperatures and melting time. Under optimized conditions, the minimum printing width of hydrophobic wax barrier and hydrophilic channel is 100 μm and 1.9 mm, respectively. Importantly, the developed analytical model is also well validated by these experiments. Fourthly, the μCADs fabricated by the presented wax screen-printing method are used to perform a proof-of-concept assay of glucose or protein in artificial urine with rapid high-throughput detection taking place on a 48-chamber cloth-based device and being performed by a visual readout. Overall, the developed cloth-based wax screen-printing and arrayed μCADs should provide a new research direction in the development of advanced sensor arrays for detection of a series of analytes relevant to many diverse applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Yao, Yong; Zhang, Chunsun
2016-10-01
A novel screen-printed microfluidic paper-based analytical device with all-carbon electrode-enabled electrochemical assay (SP-ACE-EC-μPAD) has been developed. The fabrication of these devices involved wax screen-printing, which was simple, low-cost and energy-efficient. The working, counter and reference electrodes were screen-printed using carbon ink on the patterned paper devices. Different wax screen-printing processes were examined and optimized, which led to an improved method with a shorter heating time (~5 s) and a lower heating temperature (75 °C). Different printing screens were examined, with a 300-mesh polyester screen yielding the highest quality wax screen-prints. The carbon electrodes were screen-printed on the μPADs and then examined using cyclic voltammetry. The analytical performance of the SP-ACE-EC-μPADs for the detection of glucose and uric acid in standard solutions was investigated. The results were reproducible, with a linear relationship [R(2) = 0.9987 (glucose) or 0.9997 (uric acid)] within the concentration range of interest, and with detection limits as low as 0.35 mM (glucose) and 0.08 mM (uric acid). To determine the clinical utility of the μPADs, chronoamperometry was used to analyze glucose and uric acid in real urine samples using the standard addition method. Our devices were able to detect the analytes of interest in complex real-world biological samples, and have the potential for use in a wide variety of applications.
Feng, Qianmei
2007-10-01
Federal law mandates that every checked bag at all commercial airports be screened by explosive detection systems (EDS), explosive trace detection systems (ETD), or alternative technologies. These technologies serve as critical components of airport security systems that strive to reduce security risks at both national and global levels. To improve the operational efficiency and airport security, emerging image-based technologies have been developed, such as dual-energy X-ray (DX), backscatter X-ray (BX), and multiview tomography (MVT). These technologies differ widely in purchasing cost, maintenance cost, operating cost, processing rate, and accuracy. Based on a mathematical framework that takes into account all these factors, this article investigates two critical issues for operating screening devices: setting specifications for continuous security responses by different technologies; and selecting technology or combination of technologies for efficient 100% baggage screening. For continuous security responses, specifications or thresholds are used for classifying threat items from nonthreat items. By investigating the setting of specifications on system security responses, this article assesses the risk and cost effectiveness of various technologies for both single-device and two-device systems. The findings provide the best selection of image-based technologies for both single-device and two-device systems. Our study suggests that two-device systems outperform single-device systems in terms of both cost effectiveness and accuracy. The model can be readily extended to evaluate risk and cost effectiveness of multiple-device systems for airport checked-baggage security screening.
1985-01-01
The NASA imaging processing technology, an advanced computer technique to enhance images sent to Earth in digital form by distant spacecraft, helped develop a new vision screening process. The Ocular Vision Screening system, an important step in preventing vision impairment, is a portable device designed especially to detect eye problems in children through the analysis of retinal reflexes.
Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J; Zhang, Yanliang
2016-09-12
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm(2) with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varghese, Tony; Hollar, Courtney; Richardson, Joseph
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less
Varghese, Tony; Hollar, Courtney; Richardson, Joseph; ...
2016-09-12
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstratemore » a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm 2 with 60°C temperature difference between the hot side and cold side. In conclusion, the highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications.« less
Varghese, Tony; Hollar, Courtney; Richardson, Joseph; Kempf, Nicholas; Han, Chao; Gamarachchi, Pasindu; Estrada, David; Mehta, Rutvik J.; Zhang, Yanliang
2016-01-01
Screen printing allows for direct conversion of thermoelectric nanocrystals into flexible energy harvesters and coolers. However, obtaining flexible thermoelectric materials with high figure of merit ZT through printing is an exacting challenge due to the difficulties to synthesize high-performance thermoelectric inks and the poor density and electrical conductivity of the printed films. Here, we demonstrate high-performance flexible films and devices by screen printing bismuth telluride based nanocrystal inks synthesized using a microwave-stimulated wet-chemical method. Thermoelectric films of several tens of microns thickness were screen printed onto a flexible polyimide substrate followed by cold compaction and sintering. The n-type films demonstrate a peak ZT of 0.43 along with superior flexibility, which is among the highest reported ZT values in flexible thermoelectric materials. A flexible thermoelectric device fabricated using the printed films produces a high power density of 4.1 mW/cm2 with 60 °C temperature difference between the hot side and cold side. The highly scalable and low cost process to fabricate flexible thermoelectric materials and devices demonstrated here opens up many opportunities to transform thermoelectric energy harvesting and cooling applications. PMID:27615036
NASA Astrophysics Data System (ADS)
Szelag, Bertrand; Abraham, Alexis; Brision, Stéphane; Gindre, Paul; Blampey, Benjamin; Myko, André; Olivier, Segolene; Kopp, Christophe
2017-05-01
Silicon photonic is becoming a reality for next generation communication system addressing the increasing needs of HPC (High Performance Computing) systems and datacenters. CMOS compatible photonic platforms are developed in many foundries integrating passive and active devices. The use of existing and qualified microelectronics process guarantees cost efficient and mature photonic technologies. Meanwhile, photonic devices have their own fabrication constraints, not similar to those of cmos devices, which can affect their performances. In this paper, we are addressing the integration of PN junction Mach Zehnder modulator in a 200mm CMOS compatible photonic platform. Implantation based device characteristics are impacted by many process variations among which screening layer thickness, dopant diffusion, implantation mask overlay. CMOS devices are generally quite robust with respect to these processes thanks to dedicated design rules. For photonic devices, the situation is different since, most of the time, doped areas must be carefully located within waveguides and CMOS solutions like self-alignment to the gate cannot be applied. In this work, we present different robust integration solutions for junction-based modulators. A simulation setup has been built in order to optimize of the process conditions. It consist in a Mathlab interface coupling process and device electro-optic simulators in order to run many iterations. Illustrations of modulator characteristic variations with process parameters are done using this simulation setup. Parameters under study are, for instance, X and Y direction lithography shifts, screening oxide and slab thicknesses. A robust process and design approach leading to a pn junction Mach Zehnder modulator insensitive to lithography misalignment is then proposed. Simulation results are compared with experimental datas. Indeed, various modulators have been fabricated with different process conditions and integration schemes. Extensive electro-optic characterization of these components will be presented.
Code of Federal Regulations, 2011 CFR
2011-07-01
... washing process which is designed and operated at all times such that the product is saturated with water. ... series of idlers and routed around a pulley at each end. Bucket elevator means a conveying device of... (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders...
Code of Federal Regulations, 2012 CFR
2012-07-01
... washing process which is designed and operated at all times such that the product is saturated with water. ... series of idlers and routed around a pulley at each end. Bucket elevator means a conveying device of... (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders...
Code of Federal Regulations, 2010 CFR
2010-07-01
... washing process which is designed and operated at all times such that the product is saturated with water. ... series of idlers and routed around a pulley at each end. Bucket elevator means a conveying device of... (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders...
Code of Federal Regulations, 2014 CFR
2014-07-01
... washing process which is designed and operated at all times such that the product is saturated with water. ... series of idlers and routed around a pulley at each end. Bucket elevator means a conveying device of... (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders...
Code of Federal Regulations, 2013 CFR
2013-07-01
... washing process which is designed and operated at all times such that the product is saturated with water. ... series of idlers and routed around a pulley at each end. Bucket elevator means a conveying device of... (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders...
Cryogenic Quenching Process for Electronic Part Screening
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.; Cressler, John
2011-01-01
The use of electronic parts at cryogenic temperatures (less than 100 C) for extreme environments is not well controlled or developed from a product quality and reliability point of view. This is in contrast to the very rigorous and well-documented procedures to qualify electronic parts for mission use in the 55 to 125 C temperature range. A similarly rigorous methodology for screening and evaluating electronic parts needs to be developed so that mission planners can expect the same level of high reliability performance for parts operated at cryogenic temperatures. A formal methodology for screening and qualifying electronic parts at cryogenic temperatures has been proposed. The methodology focuses on the base physics of failure of the devices at cryogenic temperatures. All electronic part reliability is based on the bathtub curve, high amounts of initial failures (infant mortals), a long period of normal use (random failures), and then an increasing number of failures (end of life). Unique to this is the development of custom screening procedures to eliminate early failures at cold temperatures. The ability to screen out defects will specifically impact reliability at cold temperatures. Cryogenic reliability is limited by electron trap creation in the oxide and defect sites at conductor interfaces. Non-uniform conduction processes due to process marginalities will be magnified at cryogenic temperatures. Carrier mobilities change by orders of magnitude at cryogenic temperatures, significantly enhancing the effects of electric field. Marginal contacts, impurities in oxides, and defects in conductor/conductor interfaces can all be magnified at low temperatures. The novelty is the use of an ultra-low temperature, short-duration quenching process for defect screening. The quenching process is designed to identify those defects that will precisely (and negatively) affect long-term, cryogenic part operation. This quenching process occurs at a temperature that is at least 25 C colder than the coldest expected operating temperature. This quenching process is the opposite of the standard burn-in procedure. Normal burn-in raises the temperature (and voltage) to activate quickly any possible manufacturing defects remaining in the device that were not already rejected at a functional test step. The proposed inverse burn-in or quenching process is custom-tailored to the electronic device being used. The doping profiles, materials, minimum dimensions, interfaces, and thermal expansion coefficients are all taken into account in determining the ramp rate, dwell time, and temperature.
Acoustical holographic recording with coherent optical read-out and image processing
NASA Astrophysics Data System (ADS)
Liu, H. K.
1980-10-01
New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.
Klatzky, Roberta L; Giudice, Nicholas A; Bennett, Christopher R; Loomis, Jack M
2014-01-01
Many developers wish to capitalize on touch-screen technology for developing aids for the blind, particularly by incorporating vibrotactile stimulation to convey patterns on their surfaces, which otherwise are featureless. Our belief is that they will need to take into account basic research on haptic perception in designing these graphics interfaces. We point out constraints and limitations in haptic processing that affect the use of these devices. We also suggest ways to use sound to augment basic information from touch, and we include evaluation data from users of a touch-screen device with vibrotactile and auditory feedback that we have been developing, called a vibro-audio interface.
Pilot production and testing of high efficiency wraparound contact solar cells
NASA Technical Reports Server (NTRS)
Gillanders, M.
1981-01-01
Modifications were made to the process sequence until a device capable of high performance and satisfactory processing yields could be fabricated on a production line. Pilot production resulted in a 2 x 4 cm screen printed dielectric wraparound contact solar cell with average 28 C, Air Mass Zero (AMO) conversion efficiencies of 14.2% and reasonable process yields. This high performance was obtained with two different back contact configurations, making the device acceptable for many applications.
Equivalence of Screen versus Print Reading Comprehension Depends on Task Complexity and Proficiency
ERIC Educational Resources Information Center
Lenhard, Wolfgang; Schroeders, Ulrich; Lenhard, Alexandra
2017-01-01
As reading and reading assessment become increasingly implemented on electronic devices, the question arises whether reading on screen is comparable with reading on paper. To examine potential differences, we studied reading processes on different proficiency and complexity levels. Specifically, we used data from the standardization sample of the…
Variable Shadow Screens for Imaging Optical Devices
NASA Technical Reports Server (NTRS)
Lu, Ed; Chretien, Jean L.
2004-01-01
Variable shadow screens have been proposed for reducing the apparent brightnesses of very bright light sources relative to other sources within the fields of view of diverse imaging optical devices, including video and film cameras and optical devices for imaging directly into the human eye. In other words, variable shadow screens would increase the effective dynamic ranges of such devices. Traditionally, imaging sensors are protected against excessive brightness by use of dark filters and/or reduction of iris diameters. These traditional means do not increase dynamic range; they reduce the ability to view or image dimmer features of an image because they reduce the brightness of all parts of an image by the same factor. On the other hand, a variable shadow screen would darken only the excessively bright parts of an image. For example, dim objects in a field of view that included the setting Sun or bright headlights could be seen more readily in a picture taken through a variable shadow screen than in a picture of the same scene taken through a dark filter or a narrowed iris. The figure depicts one of many potential variations of the basic concept of the variable shadow screen. The shadow screen would be a normally transparent liquid-crystal matrix placed in front of a focal-plane array of photodetectors in a charge-coupled-device video camera. The shadow screen would be placed far enough from the focal plane so as not to disrupt the focal-plane image to an unacceptable degree, yet close enough so that the out-of-focus shadows cast by the screen would still be effective in darkening the brightest parts of the image. The image detected by the photodetector array itself would be used as feedback to drive the variable shadow screen: The video output of the camera would be processed by suitable analog and/or digital electronic circuitry to generate a negative partial version of the image to be impressed on the shadow screen. The parts of the shadow screen in front of those parts of the image with brightness below a specified threshold would be left transparent; the parts of the shadow screen in front of those parts of the image where the brightness exceeded the threshold would be darkened by an amount that would increase with the excess above the threshold.
Metallic oxide switches using thick film technology
NASA Technical Reports Server (NTRS)
Patel, D. N.; Williams, L., Jr.
1974-01-01
Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.
High-Throughput, Motility-Based Sorter for Microswimmers such as C. elegans
Yuan, Jinzhou; Zhou, Jessie; Raizen, David M.; Bau, Haim H.
2015-01-01
Animal motility varies with genotype, disease, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method is implemented in a simple microfluidic device capable of sorting thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriches for known C. elegans motility mutants. Furthermore, using this device, we isolate low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates C. elegans sleep. By performing genetic complementation tests, we demonstrate that our motility-based sorting device efficiently isolates mutants for the same gene identified by tedious visual inspection of behavior on an agar surface. Therefore, our motility-based sorter is capable of performing high throughput gene discovery approaches to investigate fundamental biological processes. PMID:26008643
N-Screen Aware Multicriteria Hybrid Recommender System Using Weight Based Subspace Clustering
Ullah, Farman; Lee, Sungchang
2014-01-01
This paper presents a recommender system for N-screen services in which users have multiple devices with different capabilities. In N-screen services, a user can use various devices in different locations and time and can change a device while the service is running. N-screen aware recommendation seeks to improve the user experience with recommended content by considering the user N-screen device attributes such as screen resolution, media codec, remaining battery time, and access network and the user temporal usage pattern information that are not considered in existing recommender systems. For N-screen aware recommendation support, this work introduces a user device profile collaboration agent, manager, and N-screen control server to acquire and manage the user N-screen devices profile. Furthermore, a multicriteria hybrid framework is suggested that incorporates the N-screen devices information with user preferences and demographics. In addition, we propose an individual feature and subspace weight based clustering (IFSWC) to assign different weights to each subspace and each feature within a subspace in the hybrid framework. The proposed system improves the accuracy, precision, scalability, sparsity, and cold start issues. The simulation results demonstrate the effectiveness and prove the aforementioned statements. PMID:25152921
Real-Time Monitoring of Scada Based Control System for Filling Process
NASA Astrophysics Data System (ADS)
Soe, Aung Kyaw; Myint, Aung Naing; Latt, Maung Maung; Theingi
2008-10-01
This paper is a design of real-time monitoring for filling system using Supervisory Control and Data Acquisition (SCADA). The monitoring of production process is described in real-time using Visual Basic.Net programming under Visual Studio 2005 software without SCADA software. The software integrators are programmed to get the required information for the configuration screens. Simulation of components is expressed on the computer screen using parallel port between computers and filling devices. The programs of real-time simulation for the filling process from the pure drinking water industry are provided.
USDA-ARS?s Scientific Manuscript database
Many different screening devices and sampling methods have been used to detect the presence of naturally occurring Salmonella on commercially processed broiler carcasses. The objective of this study was to compare two commercial screening systems (BAX® and Roka®) to a standard cultural procedure use...
Filling of orbital fluid management systems
NASA Technical Reports Server (NTRS)
Merino, F.; Blatt, M. H.; Thies, N. C.
1978-01-01
A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.
NASA Astrophysics Data System (ADS)
Chang, Tien-Li; Chen, Zhao-Chi
2015-12-01
The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm2. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.
Screen printed passive components for flexible power electronics
NASA Astrophysics Data System (ADS)
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-10-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
Screen printed passive components for flexible power electronics
Ostfeld, Aminy E.; Deckman, Igal; Gaikwad, Abhinav M.; Lochner, Claire M.; Arias, Ana C.
2015-01-01
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components—inductors, capacitors, and resistors—perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application. PMID:26514331
Screen printed passive components for flexible power electronics.
Ostfeld, Aminy E; Deckman, Igal; Gaikwad, Abhinav M; Lochner, Claire M; Arias, Ana C
2015-10-30
Additive and low-temperature printing processes enable the integration of diverse electronic devices, both power-supplying and power-consuming, on flexible substrates at low cost. Production of a complete electronic system from these devices, however, often requires power electronics to convert between the various operating voltages of the devices. Passive components-inductors, capacitors, and resistors-perform functions such as filtering, short-term energy storage, and voltage measurement, which are vital in power electronics and many other applications. In this paper, we present screen-printed inductors, capacitors, resistors and an RLC circuit on flexible plastic substrates, and report on the design process for minimization of inductor series resistance that enables their use in power electronics. Printed inductors and resistors are then incorporated into a step-up voltage regulator circuit. Organic light-emitting diodes and a flexible lithium ion battery are fabricated and the voltage regulator is used to power the diodes from the battery, demonstrating the potential of printed passive components to replace conventional surface-mount components in a DC-DC converter application.
Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H; Watkins, Scott E; Kim, Dong-Yu; Vak, Doojin
2016-02-08
We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%.
Jung, Yen-Sook; Hwang, Kyeongil; Scholes, Fiona H.; Watkins, Scott E.; Kim, Dong-Yu; Vak, Doojin
2016-01-01
We report a spray deposition technique as a screening tool for solution processed solar cells. A dual-feed spray nozzle is introduced to deposit donor and acceptor materials separately and to form blended films on substrates in situ. Using a differential pump system with a motorised spray nozzle, the effect of film thickness, solution flow rates and the blend ratio of donor and acceptor materials on device performance can be found in a single experiment. Using this method, polymer solar cells based on poly(3-hexylthiophene) (P3HT):(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) are fabricated with numerous combinations of thicknesses and blend ratios. Results obtained from this technique show that the optimum ratio of materials is consistent with previously reported values confirming this technique is a very useful and effective screening method. This high throughput screening method is also used in a single-feed configuration. In the single-feed mode, methylammonium iodide solution is deposited on lead iodide films to create a photoactive layer of perovskite solar cells. Devices featuring a perovskite layer fabricated by this spray process demonstrated a power conversion efficiencies of up to 7.9%. PMID:26853266
21 CFR 886.1810 - Tangent screen (campimeter).
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Identification. A tangent screen (campimeter) is an AC-powered or battery-powered device that is a large square... a patient's visual field. This generic type of device includes projection tangent screens, target... (general controls). The AC-powered device and the battery-powered device are exempt from the premarket...
21 CFR 886.1810 - Tangent screen (campimeter).
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Identification. A tangent screen (campimeter) is an AC-powered or battery-powered device that is a large square... a patient's visual field. This generic type of device includes projection tangent screens, target... (general controls). The AC-powered device and the battery-powered device are exempt from the premarket...
21 CFR 886.1810 - Tangent screen (campimeter).
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Identification. A tangent screen (campimeter) is an AC-powered or battery-powered device that is a large square... a patient's visual field. This generic type of device includes projection tangent screens, target... (general controls). The AC-powered device and the battery-powered device are exempt from the premarket...
21 CFR 886.1810 - Tangent screen (campimeter).
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Identification. A tangent screen (campimeter) is an AC-powered or battery-powered device that is a large square... a patient's visual field. This generic type of device includes projection tangent screens, target... (general controls). The AC-powered device and the battery-powered device are exempt from the premarket...
Photosensitive space charge limited current in screen printed CdTe thin films
NASA Astrophysics Data System (ADS)
Vyas, C. U.; Pataniya, Pratik; Zankat, Chetan K.; Patel, Alkesh B.; Pathak, V. M.; Patel, K. D.; Solanki, G. K.
2018-05-01
Group II-VI Compounds have emerged out as most suitable in the class of photo sensitive material. They represent a strong position in terms of their applications in the field of detectors as well as photo voltaic devices. Cadmium telluride is the prime member of this Group, because of high acceptance of this material as active component in opto-electronic devices. In this paper we report preparation and characterization of CdTe thin films by using a most economical screen printing technique in association with sintering at 510°C temperature. Surface morphology and smoothness are prime parameters of any deposited to be used as an active region of devices. Thus, we studied of the screen printed thin film by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM) for this purpose. However, growth processes induced intrinsic defects in fabricated films work as charge traps and affect the conduction process significantly. So the conduction mechanism of deposited CdTe thin film is studied under dark as well as illuminated conditions. It is found that the deposited films showed the space charge limited conduction (SCLC) mechanism and hence various parameters of space charge limited conduction (SCLC) of CdTe film were evaluated and discussed and the photo responsive resistance is also presented in this paper.
Sample-to-answer palm-sized nucleic acid testing device towards low-cost malaria mass screening.
Choi, Gihoon; Prince, Theodore; Miao, Jun; Cui, Liwang; Guan, Weihua
2018-05-19
The effectiveness of malaria screening and treatment highly depends on the low-cost access to the highly sensitive and specific malaria test. We report a real-time fluorescence nucleic acid testing device for malaria field detection with automated and scalable sample preparation capability. The device consists a compact analyzer and a disposable microfluidic reagent compact disc. The parasite DNA sample preparation and subsequent real-time LAMP detection were seamlessly integrated on a single microfluidic compact disc, driven by energy efficient non-centrifuge based magnetic field interactions. Each disc contains four parallel testing units which could be configured either as four identical tests or as four species-specific tests. When configured as species-specific tests, it could identify two of the most life-threatening malaria species (P. falciparum and P. vivax). The NAT device is capable of processing four samples simultaneously within 50 min turnaround time. It achieves a detection limit of ~0.5 parasites/µl for whole blood, sufficient for detecting asymptomatic parasite carriers. The combination of the sensitivity, specificity, cost, and scalable sample preparation suggests the real-time fluorescence LAMP device could be particularly useful for malaria screening in the field settings. Copyright © 2018 Elsevier B.V. All rights reserved.
Radiation sensitive area detection device and method
NASA Technical Reports Server (NTRS)
Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)
1991-01-01
A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.
Lifetime evaluation of large format CMOS mixed signal infrared devices
NASA Astrophysics Data System (ADS)
Linder, A.; Glines, Eddie
2015-09-01
New large scale foundry processes continue to produce reliable products. These new large scale devices continue to use industry best practice to screen for failure mechanisms and validate their long lifetime. The Failure-in-Time analysis in conjunction with foundry qualification information can be used to evaluate large format device lifetimes. This analysis is a helpful tool when zero failure life tests are typical. The reliability of the device is estimated by applying the failure rate to the use conditions. JEDEC publications continue to be the industry accepted methods.
Screen Time: Alumni Magazines Have Their Designs on Mobile Devices
ERIC Educational Resources Information Center
Walker, Theresa
2011-01-01
Alumni magazines have their designs on mobile devices. The efforts are tied together, no matter the platform, by a desire for the magazine to be where its readers are and a spirit of experimentation that is akin to what is happening with social media. None of the magazine editors went into this process with any numerical expectations for…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-14
..., battery powered device with a semiconductor sensor. (2) Alcohol Countermeasure Systems Corp., submitted...-0062] Highway Safety Programs; Conforming Products List of Screening Devices To Measure Alcohol in... Screening Devices to Measure Alcohol in Bodily Fluids dated, March 31, 2008 (73 FR 16956). DATES: Effective...
NASA Technical Reports Server (NTRS)
Holzhausen, K. P.; Gaertner, K. P.
1985-01-01
A significant problem concerning the integration of display and switching functions is related to the fact that numerous informative data which have to be processed by man must be read from only a few display devices. A satisfactory ergonomic design of integrated display devices and keyboards is in many cases difficult, because not all functions which can be displayed and selected are simultaneously available. A technical solution which provides an integration of display and functional elements on the basis of the highest flexibility is obtained by using a cathode ray tube with a touch-sensitive screen. The employment of an integrated data input/output system is demonstrated for the cases of onboard and ground-based flight control. Ergonomic studies conducted to investigate the suitability of an employment of touch-sensitive screens are also discussed.
Video Browsing on Handheld Devices
NASA Astrophysics Data System (ADS)
Hürst, Wolfgang
Recent improvements in processing power, storage space, and video codec development enable users now to playback video on their handheld devices in a reasonable quality. However, given the form factor restrictions of such a mobile device, screen size still remains a natural limit and - as the term "handheld" implies - always will be a critical resource. This is not only true for video but any data that is processed on such devices. For this reason, developers have come up with new and innovative ways to deal with large documents in such limited scenarios. For example, if you look at the iPhone, innovative techniques such as flicking have been introduced to skim large lists of text (e.g. hundreds of entries in your music collection). Automatically adapting the zoom level to, for example, the width of table cells when double tapping on the screen enables reasonable browsing of web pages that have originally been designed for large, desktop PC sized screens. A multi touch interface allows you to easily zoom in and out of large text documents and images using two fingers. In the next section, we will illustrate that advanced techniques to browse large video files have been developed in the past years, as well. However, if you look at state-of-the-art video players on mobile devices, normally just simple, VCR like controls are supported (at least at the time of this writing) that only allow users to just start, stop, and pause video playback. If supported at all, browsing and navigation functionality is often restricted to simple skipping of chapters via two single buttons for backward and forward navigation and a small and thus not very sensitive timeline slider.
Lee, Dennis; Barnes, Stephen
2010-01-01
The need for new pharmacological agents is unending. Yet the drug discovery process has changed substantially over the past decade and continues to evolve in response to new technologies. There is presently a high demand to reduce discovery time by improving specific lab disciplines and developing new technology platforms in the area of cell-based assay screening. Here we present the developmental concept and early stage testing of the Ab-Sniffer, a novel fiber optic fluorescence device for high-throughput cytotoxicity screening using an immobilized whole cell approach. The fused silica fibers are chemically functionalized with biotin to provide interaction with fluorescently labeled, streptavidin functionalized alginate-chitosan microspheres. The microspheres are also functionalized with Concanavalin A to facilitate binding to living cells. By using lymphoma cells and rituximab in an adaptation of a well-known cytotoxicity protocol we demonstrate the utility of the Ab-Sniffer for functional screening of potential drug compounds rather than indirect, non-functional screening via binding assay. The platform can be extended to any assay capable of being tied to a fluorescence response including multiple target cells in each well of a multi-well plate for high-throughput screening.
Ullah, Farman; Sarwar, Ghulam; Lee, Sungchang
2014-01-01
We propose a network and visual quality aware N-Screen content recommender system. N-Screen provides more ways than ever before to access multimedia content through multiple devices and heterogeneous access networks. The heterogeneity of devices and access networks present new questions of QoS (quality of service) in the realm of user experience with content. We propose, a recommender system that ensures a better visual quality on user's N-screen devices and the efficient utilization of available access network bandwidth with user preferences. The proposed system estimates the available bandwidth and visual quality on users N-Screen devices and integrates it with users preferences and contents genre information to personalize his N-Screen content. The objective is to recommend content that the user's N-Screen device and access network are capable of displaying and streaming with the user preferences that have not been supported in existing systems. Furthermore, we suggest a joint matrix factorization approach to jointly factorize the users rating matrix with the users N-Screen device similarity and program genres similarity. Finally, the experimental results show that we also enhance the prediction and recommendation accuracy, sparsity, and cold start issues. PMID:24982999
Ghaemi, Reza; Selvaganapathy, Ponnambalam R
Drug discovery is a long and expensive process, which usually takes 12-15 years and could cost up to ~$1 billion. Conventional drug discovery process starts with high throughput screening and selection of drug candidates that bind to specific target associated with a disease condition. However, this process does not consider whether the chosen candidate is optimal not only for binding but also for ease of administration, distribution in the body, effect of metabolism and associated toxicity if any. A holistic approach, using model organisms early in the drug discovery process to select drug candidates that are optimal not only in binding but also suitable for administration, distribution and are not toxic is now considered as a viable way for lowering the cost and time associated with the drug discovery process. However, the conventional drug discovery assays using Drosophila are manual and required skill operator, which makes them expensive and not suitable for high-throughput screening. Recently, microfluidics has been used to automate many of the operations (e.g. sorting, positioning, drug delivery) associated with the Drosophila drug discovery assays and thereby increase their throughput. This review highlights recent microfluidic devices that have been developed for Drosophila assays with primary application towards drug discovery for human diseases. The microfluidic devices that have been reviewed in this paper are categorized based on the stage of the Drosophila that have been used. In each category, the microfluidic technologies behind each device are described and their potential biological applications are discussed.
21 CFR 892.1960 - Radiographic intensifying screen.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic intensifying screen. 892.1960 Section 892.1960 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1960 Radiographic intensifying screen...
NASA Astrophysics Data System (ADS)
Chung, Daehan; Gray, Bonnie L.
2017-11-01
We present a simple, fast, and inexpensive new printing-based fabrication process for flexible and wearable microfluidic channels and devices. Microfluidic devices are fabricated on textiles (fabric) for applications in clothing-based wearable microfluidic sensors and systems. The wearable and flexible microfluidic devices are comprised of water-insoluable screen-printable plastisol polymer. Sheets of paper are used as sacrificial substrates for multiple layers of polymer on the fabric’s surface. Microfluidic devices can be made within a short time using simple processes and inexpensive equipment that includes a laser cutter and a thermal laminator. The fabrication process is characterized to demonstrate control of microfluidic channel thickness and width. Film thickness smaller than 100 micrometers and lateral dimensions smaller than 150 micrometers are demonstrated. A flexible microfluidic mixer is also developed on fabric and successfully tested on both flat and curved surfaces at volumetric flow rates ranging from 5.5-46 ml min-1.
Peng, Sean X; Cousineau, Martin; Juzwin, Stephen J; Ritchie, David M
2006-01-01
A novel 96-well screen filter plate (patent pending) has been invented to eliminate a time-consuming and labor-intensive step in preparation of in vivo study samples--to remove blood or plasma clots. These clots plug the pipet tips during a manual or automated sample-transfer step causing inaccurate pipetting or total pipetting failure. Traditionally, these blood and plasma clots are removed by picking them out manually one by one from each sample tube before any sample transfer can be made. This has significantly slowed the sample preparation process and has become a bottleneck for automated high-throughput sample preparation using robotic liquid handlers. Our novel screen filter plate was developed to solve this problem. The 96-well screen filter plate consists of 96 stainless steel wire-mesh screen tubes connected to the 96 openings of a top plate so that the screen filter plate can be readily inserted into a 96-well sample storage plate. Upon insertion, the blood and plasma clots are excluded from entering the screen tube while clear sample solutions flow freely into it. In this way, sample transfer can be easily completed by either manual or automated pipetting methods. In this report, three structurally diverse compounds were selected to evaluate and validate the use of the screen filter plate. The plasma samples of these compounds were transferred and processed in the presence and absence of the screen filter plate and then analyzed by LC-MS/MS methods. Our results showed a good agreement between the samples prepared with and without the screen filter plate, demonstrating the utility and efficiency of this novel device for preparation of blood and plasma samples. The device is simple, easy to use, and reusable. It can be employed for sample preparation of other biological fluids that contain floating particulates or aggregates.
Summer 2017 Microfluidics Research Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcculloch, Quinn
Liquid-liquid Extraction (LLE), also known as solvent extraction, represents a large subset of chemistry where one or more solutes are transferred across an interface between two immiscible liquids. This type of chemistry is used in industrial scale processes to purify solvents, refine ore, process petroleum, treat wastewater, and much more. Although LLE has been successfully employed at the macroscale, where many liters/kgs of species are processed at large flow rates, LLE stands to benefit from lab-on-a-chip technology, where reactions take place quickly and efficiently at the microscale. A device, called a screen contactor, has been invented at Los Alamos Nationalmore » Laboratory (LANL) to perform solvent extraction at the microscale. This invention has been submitted to LANL’s Feynman Center for Innovation, and has been filed for provisional patent under U.S. Patent Application No. 62/483,107 1. The screen contactor consists of a housing that contains two different screen materials, flametreated stainless steel and polyether ether ketone (PEEK) thermoplastic, that are uniquely wetted by either an aqueous or an organic liquid phase, respectively. Liquids in this device flow longitudinally through the screens. The fine pore size of the screens (tens of microns) provide large capillary/adhesional forces while maintaining small hydraulic pressure drops. These physical characteristics are paramount to efficient microscale liquid phase separation. To demonstrate mass transfer using the screen contactor, a well-known chemical system 2 consisting of water and n-decane as solvents and trimethylamine (TEA) as a solute was selected. TEA is basic in water so its concentration can easily be quantified using a digital pH meter and an experimentally determined base dissociation constant. Characterization of this solvent system and its behavior in the screen contactor have been the focus of my research activities this summer. In the following sections, I have detailed experimental results that have been gathered.« less
Two-Way Radio Modem Data Transfer for Newborn Hearing Screening Devices.
Matulat, Peter; Lepper, Ingo; Böttcher, Peter; Parfitt, Ross; Oswald, Hans; Am Zehnhoff-Dinnesen, Antoinette; Deuster, Dirk
2017-01-01
The success of a newborn hearing screening program depends on successful tracking and follow-up to ensure that children who have had positive screening results in the first few days of life receive appropriate and timely diagnostic and intervention services. The easy availability, through a suitable infrastructure, of the data necessary for the tracking, diagnosis, and care of children concerned is a major key to enhancing the quality and efficiency of newborn hearing screening programs. Two systems for the automated two-way transmission of newborn hearing screening and configuration data, based on mobile communication technology, for the screening devices MADSEN AccuScreen ® and Natus Echo-Screen ® were developed and tested in a field study. Radio modem connections were compared with conventional analogue modem transmissions from Natus Echo-Screen devices for duration, transmission rate, number of lost connections, and frequency of use. The average session duration was significantly lower with the MADSEN AccuScreen (12 s) and Natus Echo-Screen both with radio modem (15 s) than the Natus Echo-Screen with analogue modem (108 s). The transmission rate was significantly higher (898 and 1,758 vs. 181 bytes/s) for the devices with radio modems. Both radio modem devices had significantly lower rates of broken connections after initial connection (2.1 and 0.9 vs. 5.5%). An increase in the frequency of data transmission from the clinics with mobile radio devices was found. The use of mobile communication technology in newborn hearing screening devices offers improvements in the average session duration, transmission rate, and reliability of the connection over analogue solutions. We observed a behavioral change in clinical staff using the new technology: the data exchange with the tracking center is more often used. The requirements for on-site support were reduced. These savings outweigh the small increase in costs for the Internet service provider.
Exploiting spatio-temporal characteristics of human vision for mobile video applications
NASA Astrophysics Data System (ADS)
Jillani, Rashad; Kalva, Hari
2008-08-01
Video applications on handheld devices such as smart phones pose a significant challenge to achieve high quality user experience. Recent advances in processor and wireless networking technology are producing a new class of multimedia applications (e.g. video streaming) for mobile handheld devices. These devices are light weight and have modest sizes, and therefore very limited resources - lower processing power, smaller display resolution, lesser memory, and limited battery life as compared to desktop and laptop systems. Multimedia applications on the other hand have extensive processing requirements which make the mobile devices extremely resource hungry. In addition, the device specific properties (e.g. display screen) significantly influence the human perception of multimedia quality. In this paper we propose a saliency based framework that exploits the structure in content creation as well as the human vision system to find the salient points in the incoming bitstream and adapt it according to the target device, thus improving the quality of new adapted area around salient points. Our experimental results indicate that the adaptation process that is cognizant of video content and user preferences can produce better perceptual quality video for mobile devices. Furthermore, we demonstrated how such a framework can affect user experience on a handheld device.
Screening the Hanford tanks for trapped gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, P.
1995-10-01
The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology ismore » not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.« less
Qureshi, Ai; Connelly, B; Abbott, Ei; Maland, E; Kim, J; Blake, J
2012-08-01
The availability of internet connectivity and mobile application software used by low-power handheld devices makes smart phones of unique value in time-sensitive clinical trials. Trial-specific applications can be downloaded by investigators from various mobile software distribution platforms or web applications delivered over HTTP. The Antihypertensive Treatment in Acute Cerebral Hemorrhage (ATACH) II investigators in collaboration with MentorMate released the ATACH-II Patient Recruitment mobile application available on iPhone, Android, and Blackberry in 2011. The mobile application provides tools for pre-screening, assessment of eligibility, and randomization of patients. Since the release of ATACH-II mobile application, the CLEAR-IVH (Clot Lysis Evaluating Accelerated Resolution of Intraventricular Hemorrhage) trial investigators have also adopted such a mobile application. The video-conferencing capabilities of the most recent mobile devices open up additional opportunities to involve central coordinating centers in the recruitment process in real time.
Silva, R; Dow, P; Dubay, R; Lissandrello, C; Holder, J; Densmore, D; Fiering, J
2017-09-01
Acoustic manipulation has emerged as a versatile method for microfluidic separation and concentration of particles and cells. Most recent demonstrations of the technology use piezoelectric actuators to excite resonant modes in silicon or glass microchannels. Here, we focus on acoustic manipulation in disposable, plastic microchannels in order to enable a low-cost processing tool for point-of-care diagnostics. Unfortunately, the performance of resonant acoustofluidic devices in plastic is hampered by a lack of a predictive model. In this paper, we build and test a plastic blood-bacteria separation device informed by a design of experiments approach, parametric rapid prototyping, and screening by image-processing. We demonstrate that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82%, while maintaining equivalent separation performance and resolution when compared to the previously published plastic acoustofluidic separation device.
Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis.
Song, Jonathan W; Bazou, Despina; Munn, Lance L
2012-08-01
Here we describe a microfluidic device that accurately reproduces the dynamics of vascular anastomosis, the process by which vascular sprouts connect to achieve perfusion during angiogenesis. The micro-device features two parallel endothelial cell-lined vessel analogues separated by a 300 μm wide collagenous matrix into which the vessels can sprout and form perfused bridging connections. By accurately recapitulating anastomosis in vitro, the device will enable a new generation of studies of the mechanisms of angiogenesis and provide a novel and practical platform for drug screening.
Tablet PC interaction with digital micromirror device (DMD)
NASA Astrophysics Data System (ADS)
Refai, Hakki H.; Dahshan, Mostafa H.; Sluss, James J., Jr.
2007-02-01
Digital light processing (DLP) is an innovative display technology that uses an optical switch array, known as a digital micromirror device (DMD), which allows digital control of light. To date, DMDs have been used primarily as high-speed spatial light modulators for projector applications. A tablet PC is a notebook or slate-shaped mobile PC. Its touch screen or digitizing tablet technology allows the user to operate the notebook with a stylus or digital pen instead of using a keyboard or mouse. In this paper, we describe an interface solution that translates any sketch on the tablet PC screen to an identical mirror-copy over the cross-section of the DMD micromirrors such that the image of the sketch can be projected onto a special screen. An algorithm has been created to control each single micromirror of the hundreds of thousands of micromirrors that cover the DMD surface. We demonstrate the successful application of a DMD to a high-speed two-dimensional (2D) scanning environment, acquiring the data from the tablet screen and launching its contents to the projection screen; with very high accuracy up to 13.68 μm x 13.68 μm of mirror pitch.
Smaradottir, Berglind; Håland, Jarle; Martinez, Santiago
2017-01-01
A mobile device's touchscreen allows users to use a choreography of hand gestures to interact with the user interface. A screen reader on a mobile device is designed to support the interaction of visually disabled users while using gestures. This paper presents an evaluation of VoiceOver, a screen reader in Apple Inc. products. The evaluation was a part of the research project "Visually impaired users touching the screen - a user evaluation of assistive technology".
Andriod Device-Based Cervical Cancer Screening for Resource-Poor Settings.
Kudva, Vidya; Prasad, Keerthana; Guruvare, Shyamala
2018-05-18
Visual inspection with acetic acid (VIA) is an effective, affordable and simple test for cervical cancer screening in resource-poor settings. But considerable expertise is needed to differentiate cancerous lesions from normal lesions, which is lacking in developing countries. Many studies have attempted automation of cervical cancer detection from cervix images acquired during the VIA process. These studies used images acquired through colposcopy or cervicography. However, colposcopy is expensive and hence is not feasible as a screening tool in resource-poor settings. Cervicography uses a digital camera to acquire cervix images which are subsequently sent to experts for evaluation. Hence, cervicography does not provide a real-time decision of whether the cervix is normal or not, during the VIA examination. In case the cervix is found to be abnormal, the patient may be referred to a hospital for further evaluation using Pap smear and/or biopsy. An android device with an inbuilt app to acquire images and provide instant results would be an obvious choice in resource-poor settings. In this paper, we propose an algorithm for analysis of cervix images acquired using an android device, which can be used for the development of decision support system to provide instant decision during cervical cancer screening. This algorithm offers an accuracy of 97.94%, a sensitivity of 99.05% and specificity of 97.16%.
Screen Channel Liquid Acquisition Devices for Cryogenic Propellants
NASA Technical Reports Server (NTRS)
Chato, David J.; Kudlac, Maureen T.
2005-01-01
This paper describes an on-going project to study the application screen channel liquid acquisition devices to cryogenic propellant systems. The literature of screen liquid acquisition devices is reviewed for prior cryogenic experience. Test programs and apparatus are presented to study these devices. Preliminary results are shown demonstrating bubble points for 200 x 1400 wires per inch and 325 x 2300 wires per inch Dutch twill screens. The 200 x 1400 screen has a bubble point of 15.8 inches of water in isopropyl alcohol and 6.6 inches of water in liquid nitrogen. The 325 x 2300 screen has a bubble point of 24.5 inches of water in isopropyl alcohol, 10.7 inches of water in liquid nitrogen, and 1.83 inches of water in liquid hydrogen. These values are found to be in good agreement with the results reported in the literature.
Mak, Yim Wah; Wu, Cynthia Sau Ting; Hui, Donna Wing Shun; Lam, Siu Ping; Tse, Hei Yin; Yu, Wing Yan; Wong, Ho Ting
2014-10-28
Screen viewing is considered to have adverse impacts on the sleep of adolescents. Although there has been a considerable amount of research on the association between screen viewing and sleep, most studies have focused on specific types of screen viewing devices such as televisions and computers. The present study investigated the duration with which currently prevalent screen viewing devices (including televisions, personal computers, mobile phones, and portable video devices) are viewed in relation to sleep duration, sleep quality, and daytime sleepiness among Hong Kong adolescents (N = 762). Television and computer viewing remain prevalent, but were not correlated with sleep variables. Mobile phone viewing was correlated with all sleep variables, while portable video device viewing was shown to be correlated only with daytime sleepiness. The results demonstrated a trend of increase in the prevalence and types of screen viewing and their effects on the sleep patterns of adolescents.
Ultra-slim flexible glass for roll-to-roll electronic device fabrication
NASA Astrophysics Data System (ADS)
Garner, Sean; Glaesemann, Scott; Li, Xinghua
2014-08-01
As displays and electronics evolve to become lighter, thinner, and more flexible, the choice of substrate continues to be critical to their overall optimization. The substrate directly affects improvements in the designs, materials, fabrication processes, and performance of advanced electronics. With their inherent benefits such as surface quality, optical transmission, hermeticity, and thermal and dimensional stability, glass substrates enable high-quality and long-life devices. As substrate thicknesses are reduced below 200 μm, ultra-slim flexible glass continues to provide these inherent benefits to high-performance flexible electronics such as displays, touch sensors, photovoltaics, and lighting. In addition, the reduction in glass thickness also allows for new device designs and high-throughput, continuous manufacturing enabled by R2R processes. This paper provides an overview of ultra-slim flexible glass substrates and how they enable flexible electronic device optimization. Specific focus is put on flexible glass' mechanical reliability. For this, a combination of substrate design and process optimizations has been demonstrated that enables R2R device fabrication on flexible glass. Demonstrations of R2R flexible glass processes such as vacuum deposition, photolithography, laser patterning, screen printing, slot die coating, and lamination have been made. Compatibility with these key process steps has resulted in the first demonstration of a fully functional flexible glass device fabricated completely using R2R processes.
Heil, John R; Nordeste, Ricardo F; Charles, Trevor C
2011-04-01
Here we report a simple cost-effective device for screening colonies on plates for expression of the monomeric red fluorescent protein mRFP1 and the fluorescent dye Nile red. This device can be built from any simple light source, in our case a Quebec Colony Counter, and cost-effective theatre gels. The device can be assembled in as little as 20 min, and it produces excellent results when screening a large number of colonies.
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses.
Montenegro-Burke, J Rafael; Phommavongsay, Thiery; Aisporna, Aries E; Huan, Tao; Rinehart, Duane; Forsberg, Erica; Poole, Farris L; Thorgersen, Michael P; Adams, Michael W W; Krantz, Gregory; Fields, Matthew W; Northen, Trent R; Robbins, Paul D; Niedernhofer, Laura J; Lairson, Luke; Benton, H Paul; Siuzdak, Gary
2016-10-04
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process. Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses
2016-01-01
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process. Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism. PMID:27560777
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses
Montenegro-Burke, J. Rafael; Phommavongsay, Thiery; Aisporna, Aries E.; ...
2016-08-25
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process.more » Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.« less
Smartphone Analytics: Mobilizing the Lab into the Cloud for Omic-Scale Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montenegro-Burke, J. Rafael; Phommavongsay, Thiery; Aisporna, Aries E.
Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process.more » Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.« less
NASA Technical Reports Server (NTRS)
Cady, E. C.
1977-01-01
A design analysis, is developed based on experimental data, to predict the effects of transient flow and pressure surges (caused either by valve or pump operation, or by boiling of liquids in warm lines) on the retention performance of screen acquisition systems. A survey of screen liquid acquisition system applications was performed to determine appropriate system environment and classification. A screen model was developed which assumed that the screen device was a uniformly distributed composite orthotropic structure, and which accounted for liquid inflow/outflow, gas ingestion quality, screen stress, and liquid spill. A series of 177 tests using 13 specimens (5 screen meshes, 4 screen device construction/backup methods, and 2 orientations) with three test fluids (isopropyl alcohol, Freon 114, and LH2) provided data which verified important features of the screen model and resulted in a design tool which could accurately predict the transient startup performance acquisition devices.
Interaction devices for hands-on desktop design
NASA Astrophysics Data System (ADS)
Ju, Wendy; Madsen, Sally; Fiene, Jonathan; Bolas, Mark T.; McDowall, Ian E.; Faste, Rolf
2003-05-01
Starting with a list of typical hand actions - such as touching or twisting - a collection of physical input device prototypes was created to study better ways of engaging the body and mind in the computer aided design process. These devices were interchangeably coupled with a graphics system to allow for rapid exploration of the interplay between the designer's intent, body motions, and the resulting on-screen design. User testing showed that a number of key considerations should influence the future development of such devices: coupling between the physical and virtual worlds, tactile feedback, and scale. It is hoped that these explorations contribute to the greater goal of creating user interface devices that increase the fluency, productivity and joy of computer-augmented design.
NASA Astrophysics Data System (ADS)
Giacalone, Philip L.
1993-06-01
The design of the Intelsat VII surface tension propellant management device (PMD) (an all-welded assembly consisting of about 100 individual components) was developed using a modular design approach that allowed the complex PMD assembly to be divided into smaller modules. The modular approach reduces manufacturing-related technical and schedule risks and allows many components and assemblies to be processed in parallel, while also facilitating the incorporation of quality assurance tests at all critical PMD subassembly levels. The baseline PMD assembly is made from titanium and stainless steel materials. In order to obtain a 100 percent titanium PMD, a new, state-of-the-art fine mesh titanium screen material was developed, tested, and qualified for use as an alternaltive to the stainless steel screen material. The Ti based screen material demonstrated a high level of bubble point performance. It was integrated into a PMD assembly and was successfully qualification tested at the tank assembly level.
Double-heterojunction nanorod light-responsive LEDs for display applications.
Oh, Nuri; Kim, Bong Hoon; Cho, Seong-Yong; Nam, Sooji; Rogers, Steven P; Jiang, Yiran; Flanagan, Joseph C; Zhai, You; Kim, Jae-Hwan; Lee, Jungyup; Yu, Yongjoon; Cho, Youn Kyoung; Hur, Gyum; Zhang, Jieqian; Trefonas, Peter; Rogers, John A; Shim, Moonsub
2017-02-10
Dual-functioning displays, which can simultaneously transmit and receive information and energy through visible light, would enable enhanced user interfaces and device-to-device interactivity. We demonstrate that double heterojunctions designed into colloidal semiconductor nanorods allow both efficient photocurrent generation through a photovoltaic response and electroluminescence within a single device. These dual-functioning, all-solution-processed double-heterojunction nanorod light-responsive light-emitting diodes open feasible routes to a variety of advanced applications, from touchless interactive screens to energy harvesting and scavenging displays and massively parallel display-to-display data communication. Copyright © 2017, American Association for the Advancement of Science.
Power spectrum analysis for defect screening in integrated circuit devices
Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.
2011-12-01
A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.
Vreugdenburg, Thomas D; Laurence, Caroline O; Willis, Cameron D; Mundy, Linda; Hiller, Janet E
2014-09-01
To describe the nature and frequency of information presented on direct-to-consumer websites for emerging breast cancer imaging devices. Content analysis of Australian website advertisements from 2 March 2011 to 30 March 2012, for three emerging breast cancer imaging devices: digital infrared thermal imaging, electrical impedance scanning and electronic palpation imaging. Type of imaging offered, device safety, device performance, application of device, target population, supporting evidence and comparator tests. Thirty-nine unique Australian websites promoting a direct-to-consumer breast imaging device were identified. Despite a lack of supporting evidence, 22 websites advertised devices for diagnosis, 20 advertised devices for screening, 13 advertised devices for prevention and 13 advertised devices for identifying breast cancer risk factors. Similarly, advertised ranges of diagnostic sensitivity (78%-99%) and specificity (44%-91%) were relatively high compared with published literature. Direct comparisons with conventional screening tools that favoured the new device were highly prominent (31 websites), and one-third of websites (12) explicitly promoted their device as a suitable alternative. Australian websites for emerging breast imaging devices, which are also available internationally, promote the use of such devices as safe and effective solutions for breast cancer screening and diagnosis in a range of target populations. Many of these claims are not supported by peer-reviewed evidence, raising questions about the manner in which these devices and their advertising material are regulated, particularly when they are promoted as direct alternatives to established screening interventions.
NASA Technical Reports Server (NTRS)
1993-01-01
The Visi Screen OSS-C, marketed by Vision Research Corporation, incorporates image processing technology originally developed by Marshall Space Flight Center. Its advantage in eye screening is speed. Because it requires no response from a subject, it can be used to detect eye problems in very young children. An electronic flash from a 35 millimeter camera sends light into a child's eyes, which is reflected back to the camera lens. The photorefractor then analyzes the retinal reflexes generated and produces an image of the child's eyes, which enables a trained observer to identify any defects. The device is used by pediatricians, day care centers and civic organizations that concentrate on children with special needs.
Nerenz, Robert D; Song, Haowei; Gronowski, Ann M
2014-04-01
The predominant hCG variant in urine, hCG β core fragment (hCGβcf), has been demonstrated to cause false-negative results in qualitative point-of-care (POC) hCG devices. This is a major concern for healthcare professionals using POC pregnancy tests. We developed a screening method to evaluate qualitative POC hCG devices for their susceptibility to inhibition by hCGβcf. Using this method, we evaluated the performance of 11 commonly used devices. A wide range of purified hCG and hCGβcf concentrations were mixed and tested on 2 POC devices. By use of those results, a screening method was defined and 9 additional POC devices were evaluated. Two solutions containing (a) 500 pmol/L (171 IU/L) intact hCG with 0 pmol/L hCGβcf and (b) 500 pmol/L intact hCG with 500 000 pmol/L hCGβcf were used to screen all POC devices. The OSOM and Cen-Med Elite devices were found to be most susceptible to false-negative results due to hCGβcf. The BC Icon 20 and the Alere were the least susceptible. The remaining 7 were moderately affected. Devices that gave the strongest signal with hCGβcf alone were those that were least likely to show a hook effect. The screening method put forth here can be used by device users and manufacturers to evaluate POC devices for inhibition by hCGβcf. Of 11 devices evaluated, only 2 have been identified that exhibit minimal to no susceptibility to hCGβcf.
High-Throughput, Motility-Based Sorter for Microswimmers and Gene Discovery Platform
NASA Astrophysics Data System (ADS)
Yuan, Jinzhou; Raizen, David; Bau, Haim
2015-11-01
Animal motility varies with genotype, disease progression, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method was implemented in a simple microfluidic device capable of sorting many thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriched for known C. elegans motility mutants. Furthermore, using this device, we isolated low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates sleep-like quiescence in C. elegans. Subsequent genomic sequencing led to the identification of a flp-13-suppressor gene. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.
Evaluation of Adaptive Subdivision Method on Mobile Device
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Isa, Siti Aida Mohd; Rehman, Amjad; Saba, Tanzila
2013-06-01
Recently, there are significant improvements in the capabilities of mobile devices; but rendering large 3D object is still tedious because of the constraint in resources of mobile devices. To reduce storage requirement, 3D object is simplified but certain area of curvature is compromised and the surface will not be smooth. Therefore a method to smoother selected area of a curvature is implemented. One of the popular methods is adaptive subdivision method. Experiments are performed using two data with results based on processing time, rendering speed and the appearance of the object on the devices. The result shows a downfall in frame rate performance due to the increase in the number of triangles with each level of iteration while the processing time of generating the new mesh also significantly increase. Since there is a difference in screen size between the devices the surface on the iPhone appears to have more triangles and more compact than the surface displayed on the iPad. [Figure not available: see fulltext.
SkinScan©: A PORTABLE LIBRARY FOR MELANOMA DETECTION ON HANDHELD DEVICES
Wadhawan, Tarun; Situ, Ning; Lancaster, Keith; Yuan, Xiaojing; Zouridakis, George
2011-01-01
We have developed a portable library for automated detection of melanoma termed SkinScan© that can be used on smartphones and other handheld devices. Compared to desktop computers, embedded processors have limited processing speed, memory, and power, but they have the advantage of portability and low cost. In this study we explored the feasibility of running a sophisticated application for automated skin cancer detection on an Apple iPhone 4. Our results demonstrate that the proposed library with the advanced image processing and analysis algorithms has excellent performance on handheld and desktop computers. Therefore, deployment of smartphones as screening devices for skin cancer and other skin diseases can have a significant impact on health care delivery in underserved and remote areas. PMID:21892382
Mak, Yim Wah; Wu, Cynthia Sau Ting; Hui, Donna Wing Shun; Lam, Siu Ping; Tse, Hei Yin; Yu, Wing Yan; Wong, Ho Ting
2014-01-01
Screen viewing is considered to have adverse impacts on the sleep of adolescents. Although there has been a considerable amount of research on the association between screen viewing and sleep, most studies have focused on specific types of screen viewing devices such as televisions and computers. The present study investigated the duration with which currently prevalent screen viewing devices (including televisions, personal computers, mobile phones, and portable video devices) are viewed in relation to sleep duration, sleep quality, and daytime sleepiness among Hong Kong adolescents (N = 762). Television and computer viewing remain prevalent, but were not correlated with sleep variables. Mobile phone viewing was correlated with all sleep variables, while portable video device viewing was shown to be correlated only with daytime sleepiness. The results demonstrated a trend of increase in the prevalence and types of screen viewing and their effects on the sleep patterns of adolescents. PMID:25353062
NASA Technical Reports Server (NTRS)
Jurns, John M.; McQuillen, John B.; Gaby, Joseph D., Jr.; Sinacore, Steven A., Jr.
2009-01-01
Liquid acquisition devices (LADs) can be utilized within a propellant tank in space to deliver single-phase liquid to the engine in low gravity. One type of liquid acquisition device is a screened gallery whereby a fine mesh screen acts as a 'bubble filter' and prevents the gas bubbles from passing through until a crucial pressure differential condition across the screen, called the bubble point, is reached. This paper presents data for LAD bubble point data in liquid methane (LCH4) for stainless steel Dutch twill screens with mesh sizes of 325 by 2300. These tests represent the first known nonproprietary effort to collect bubble point data for LCH4.
Irradiate-anneal screening of total dose effects in semiconductor devices
NASA Technical Reports Server (NTRS)
Stanley, A. G.; Price, W. E.
1976-01-01
Judicious choice of radiation dose and parameter change acceptance criteria, absence of anomalous anneal phenomena, and absence of anomalous reirradiation effects are recognized as essential for a successful irradiation-anneal (IRAN) screening procedure to ensure that no device will fall, upon reirradiation, above parametric limits assigned for the worst case application. Reirradiation and irradiation-anneal behavior of various semiconductor devices are compared and those that do not lend themselves to IRAN screening are singled out. Information needed to judge the suitability of an IRAN type screening program is detailed. Reasons for success of the limited IRAN screening of flight parts for the Mariner Jupiter/Saturn (MJS '77) spacecraft are indicated.
Microelectroporation device for genomic screening
Perroud, Thomas D.; Renzi, Ronald F.; Negrete, Oscar; Claudnic, Mark R.
2014-09-09
We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.
1993-02-14
screening and significantly larger than that of majority electrons. plasmon-phonon coupling in the two-band hole sys - C! Later, Monte-Carlo simulations of...potential application to other laser sys - versus drive current for three cases; a nonlasing device tems as well. with no gain saturation, gain saturation...SAKU1, K,, HASEGAWA, T., FUSE, T., SMITA. T., ARITOME, S., WATA- were identically processed as the type A devices except for a NABE , $., 0HUCHI. K
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Films of cadmium sulfide and cadmium telluride have been produced by screen printing and sintering. Cadmium sulfide films ten microns thick had a resistivity in the 10 ohm-cm range. A technique was developed for forming a cadmium telluride layer on top of a cadmium sulfide layer. Process control and device preparation are areas requiring further study.
Measurement of Visual Reaction Times Using Hand-held Mobile Devices
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Arsintescu, Lucia; Flynn-Evans, Erin
2015-01-01
Modern mobile devices provide a convenient platform for collecting research data in the field. But,because the working of these devices is often cloaked behind multiple layers of proprietary system software, it can bedifficult to assess the accuracy of the data they produce, particularly in the case of timing. We have been collecting datain a simple visual reaction time experiment, as part of a fatigue testing protocol known as the Psychomotor Vigilance Test (PVT). In this protocol, subjects run a 5-minute block consisting of a sequence of trials in which a visual stimulus appears after an unpredictable variable delay. The subject is required to tap the screen as soon as possible after the appearance of the stimulus. In order to validate the reaction times reported by our program, we had subjects perform the task while a high-speed video camera recorded both the display screen, and a side view of the finger (observed in a mirror). Simple image-processing methods were applied to determine the frames in which the stimulus appeared and disappeared, and in which the finger made and broke contact with the screen. The results demonstrate a systematic delay between the initial contact by the finger and the detection of the touch by the software, having a value of 80 +- 20 milliseconds.
Kietrys, David M; Gerg, Michael J; Dropkin, Jonathan; Gold, Judith E
2015-09-01
This study aimed to determine the effects of input device type, texting style, and screen size on upper extremity and trapezius muscle activity and cervical posture during a short texting task in college students. Users of a physical keypad produced greater thumb, finger flexor, and wrist extensor muscle activity than when texting with a touch screen device of similar dimensions. Texting on either device produced greater wrist extensor muscle activity when texting with 1 hand/thumb compared with both hands/thumbs. As touch screen size increased, more participants held the device on their lap, and chose to use both thumbs less. There was also a trend for greater finger flexor, wrist extensor, and trapezius muscle activity as touch screen size increased, and for greater cervical flexion, although mean differences for cervical flexion were small. Future research can help inform whether the ergonomic stressors observed during texting are associated with musculoskeletal disorder risk. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Hausleiter, Jörg; Braun, Daniel; Orban, Mathias; Latib, Azeem; Lurz, Philipp; Boekstegers, Peter; von Bardeleben, Ralph Stephan; Kowalski, Marek; Hahn, Rebecca T; Maisano, Francesco; Hagl, Christian; Massberg, Steffen; Nabauer, Michael
2018-04-24
Severe tricuspid regurgitation (TR) has long been neglected despite its well known association with mortality. While surgical mortality rates remain high in isolated tricuspid valve surgery, interventional TR repair is rapidly evolving as an alternative to cardiac surgery in selected patients at high surgical risk. Currently, interventional edge-to-edge repair is the most frequently applied technique for TR repair even though the device has not been developed for this particular indication. Due to the inherent differences in tricuspid and mitral valve anatomy and pathology, percutaneous repair of the tricuspid valve is challenging due to a variety of factors including the complexity and variability of tricuspid valve anatomy, echocardiographic visibility of the valve leaflets, and device steering to the tricuspid valve. Furthermore, it remains to be clarified which patients are suitable for a percutaneous tricuspid repair and which features predict a successful procedure. On the basis of the available experience, we describe criteria for patient selection including morphological valve features, a standardized process for echocardiographic screening, and a strategy for clip placement. These criteria will help to achieve standardization of valve assessment and the procedural approach, and to further develop interventional tricuspid valve repair using either currently available devices or dedicated tricuspid edge-to-edge repair devices in the future. In summary, this manuscript will provide guidance for patient selection and echocardiographic screening when considering edge-to-edge repair for severe TR.
Cost and detection rate of glaucoma screening with imaging devices in a primary care center
Anton, Alfonso; Fallon, Monica; Cots, Francesc; Sebastian, María A; Morilla-Grasa, Antonio; Mojal, Sergi; Castells, Xavier
2017-01-01
Purpose To analyze the cost and detection rate of a screening program for detecting glaucoma with imaging devices. Materials and methods In this cross-sectional study, a glaucoma screening program was applied in a population-based sample randomly selected from a population of 23,527. Screening targeted the population at risk of glaucoma. Examinations included optic disk tomography (Heidelberg retina tomograph [HRT]), nerve fiber analysis, and tonometry. Subjects who met at least 2 of 3 endpoints (HRT outside normal limits, nerve fiber index ≥30, or tonometry ≥21 mmHg) were referred for glaucoma consultation. The currently established (“conventional”) detection method was evaluated by recording data from primary care and ophthalmic consultations in the same population. The direct costs of screening and conventional detection were calculated by adding the unit costs generated during the diagnostic process. The detection rate of new glaucoma cases was assessed. Results The screening program evaluated 414 subjects; 32 cases were referred for glaucoma consultation, 7 had glaucoma, and 10 had probable glaucoma. The current detection method assessed 677 glaucoma suspects in the population, of whom 29 were diagnosed with glaucoma or probable glaucoma. Glaucoma screening and the conventional detection method had detection rates of 4.1% and 3.1%, respectively, and the cost per case detected was 1,410 and 1,435€, respectively. The cost of screening 1 million inhabitants would be 5.1 million euros and would allow the detection of 4,715 new cases. Conclusion The proposed screening method directed at population at risk allows a detection rate of 4.1% and a cost of 1,410 per case detected. PMID:28243057
Zeolite-based Impedimetric Gas Sensor Device in Low-cost Technology for Hydrocarbon Gas Detection
Reiß, Sebastian; Hagen, Gunter; Moos, Ralf
2008-01-01
Due to increasing environmental concerns the need for inexpensive selective gas sensors is increasing. This work deals with transferring a novel zeolite-based impedimetric hydrocarbon gas sensor principle, which has been originally manufactured in a costly combination of photolithography, thin-film processes, and thick-film processes to a low-cost technology comprising only thick-film processes and one electroplating step. The sensing effect is based on a thin chromium oxide layer between the interdigital electrodes and a Pt-loaded ZSM-5 zeolite film. When hydrocarbons are present in the sensor ambient, the electrical sensor impedance increases strongly and selectively. In the present work, the chromium oxide film is electroplated on Au screen-printed interdigital electrodes and then oxidized to Cr2O3. The electrode area is covered with the screen-printed zeolite. The sensor device is self-heated utilizing a planar platinum heater on the backside. The best sensor performance is obtained at a frequency of 3 Hz at around 350 °C. The good selectivity of the original sensor setup could be confirmed, but a strong cross-sensitivity to ammonia occurs, which might prohibit its original intention for use in automotive exhausts. PMID:27873966
Bubble Point Measurements with Liquid Methane of a Screen Capillary Liquid Acquisition Device
NASA Technical Reports Server (NTRS)
Jurns, John M.; McQuillen, John B.
2009-01-01
Liquid acquisition devices (LADs) can be utilized within a propellant tank in space to deliver single-phase liquid to the engine in low gravity. One type of liquid acquisition device is a screened gallery whereby a fine mesh screen acts as a bubble filter and prevents the gas bubbles from passing through until a crucial pressure differential condition across the screen, called the bubble point, is reached. This paper presents data for LAD bubble point data in liquid methane (LCH4) for stainless steel Dutch twill screens with mesh sizes of 325 by 2300 and 200 by 1400 wires per inch. Data is presented for both saturated and sub-cooled LCH4, and is compared with predicted values.
21 CFR 866.2420 - Oxidase screening test for gonorrhea.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase...
21 CFR 866.2420 - Oxidase screening test for gonorrhea.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase...
21 CFR 866.2420 - Oxidase screening test for gonorrhea.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase...
21 CFR 866.2420 - Oxidase screening test for gonorrhea.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase...
21 CFR 866.2420 - Oxidase screening test for gonorrhea.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxidase screening test for gonorrhea. 866.2420 Section 866.2420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2420 Oxidase...
Quantitative optical scanning tests of complex microcircuits
NASA Technical Reports Server (NTRS)
Erickson, J. J.
1980-01-01
An approach for the development of the optical scanner as a screening inspection instrument for microcircuits involves comparing the quantitative differences in photoresponse images and then correlating them with electrical parameter differences in test devices. The existing optical scanner was modified so that the photoresponse data could be recorded and subsequently digitized. A method was devised for applying digital image processing techniques to the digitized photoresponse data in order to quantitatively compare the data. Electrical tests were performed and photoresponse images were recorded before and following life test intervals on two groups of test devices. Correlations were made between differences or changes in the electrical parameters of the test devices.
System theory in medical diagnostic devices: an overview.
Baura, Gail D
2006-01-01
Medical diagnostics refers to testing conducted either in vitro or in vivo to provide critical health care information for risk assessment, early diagnosis, treatment, or disease management. Typical in vivo diagnostic tests include the computed tomography scan, magnetic resonance imaging, and blood pressure screening. Typical in vitro diagnostic tests include cholesterol, Papanicolaou smear, and conventional glucose monitoring tests. Historically, devices associated with both types of diagnostics have used heuristic curve fitting during signal analysis. However, since the early 1990s, a few enterprising engineers and physicians have used system theory to improve their core processing for feature detection and system identification. Current applications include automated Pap smear screening for detection of cervical cancer and diagnosis of Alzheimer's disease. Future applications, such as disease prediction before symptom onset and drug treatment customization, have been catalyzed by the Human Genome Project.
Burke, Daniel; Linder, Susan; Hirsch, Joshua; Dey, Tanujit; Kana, Daniel; Ringenbach, Shannon; Schindler, David; Alberts, Jay
2017-10-01
Information processing is typically evaluated using simple reaction time (SRT) and choice reaction time (CRT) paradigms in which a specific response is initiated following a given stimulus. The measurement of reaction time (RT) has evolved from monitoring the timing of mechanical switches to computerized paradigms. The proliferation of mobile devices with touch screens makes them a natural next technological approach to assess information processing. The aims of this study were to determine the validity and reliability of using of a mobile device (Apple iPad or iTouch) to accurately measure RT. Sixty healthy young adults completed SRT and CRT tasks using a traditional test platform and mobile platforms on two occasions. The SRT was similar across test modality: 300, 287, and 280 milliseconds (ms) for the traditional, iPad, and iTouch, respectively. The CRT was similar within mobile devices, though slightly faster on the traditional: 359, 408, and 384 ms for traditional, iPad, and iTouch, respectively. Intraclass correlation coefficients ranged from 0.79 to 0.85 for SRT and from 0.75 to 0.83 for CRT. The similarity and reliability of SRT across platforms and consistency of SRT and CRT across test conditions indicate that mobile devices provide the next generation of assessment platforms for information processing.
Bramlage, Peter; Deutsch, Cornelia; Krüger, Ralf; Wolf, Andreas; Müller, Peter; Zwingers, Thomas; Beime, Beate; Mengden, Thomas
2014-01-01
The aim of the present study was to validate the custo screen 400 ambulatory blood pressure-monitoring (ABPM) device according to the 2010 International Protocol revision of the European Society of Hypertension (ESH-IP). The device can be used for ABPM for up to 72 hours. Systolic and diastolic blood pressure (SBP and DBP, respectively) were sequentially measured in 33 adult subjects (13 males and 20 females) and compared with a standard mercury sphygmomanometer (two observers). A total of 99 comparison pairs were obtained. The custo screen 400 met the requirements of parts 1 and 2 of the ESH-IP revision 2010. The mean difference between the device and reference sphygmomanometer readings was -0.5±4.5 mmHg for SBP and -0.1±3.3 mmHg for DBP. All but one measurement were within the absolute difference of 10 mmHg between the device and the observers for SBP and DBP. The number of absolute differences between the device and the observers within a range of 5 mmHg was 84 of 99 readings for SBP, and 93 of 99 readings for DBP. The custo screen 400 ABPM device met the requirements of the 2010 ESH-IP revision, and hence can be recommended for ABPM in adults. To our knowledge, the custo screen 400 is the first device to pass the revised ESH-IP 2010.
Bramlage, Peter; Deutsch, Cornelia; Krüger, Ralf; Wolf, Andreas; Müller, Peter; Zwingers, Thomas; Beime, Beate; Mengden, Thomas
2014-01-01
Objective The aim of the present study was to validate the custo screen 400 ambulatory blood pressure-monitoring (ABPM) device according to the 2010 International Protocol revision of the European Society of Hypertension (ESH-IP). The device can be used for ABPM for up to 72 hours. Materials and methods Systolic and diastolic blood pressure (SBP and DBP, respectively) were sequentially measured in 33 adult subjects (13 males and 20 females) and compared with a standard mercury sphygmomanometer (two observers). A total of 99 comparison pairs were obtained. Results The custo screen 400 met the requirements of parts 1 and 2 of the ESH-IP revision 2010. The mean difference between the device and reference sphygmomanometer readings was −0.5±4.5 mmHg for SBP and −0.1±3.3 mmHg for DBP. All but one measurement were within the absolute difference of 10 mmHg between the device and the observers for SBP and DBP. The number of absolute differences between the device and the observers within a range of 5 mmHg was 84 of 99 readings for SBP, and 93 of 99 readings for DBP. Conclusion The custo screen 400 ABPM device met the requirements of the 2010 ESH-IP revision, and hence can be recommended for ABPM in adults. To our knowledge, the custo screen 400 is the first device to pass the revised ESH-IP 2010. PMID:24868162
QR Codes in Higher Ed: Fad or Functional Tool?
ERIC Educational Resources Information Center
Gradel, Kathleen; Edson, Alden J.
2013-01-01
As higher education grapples with addressing the 21st century needs of learners, technology is a pervasive concern. Waters (2012) painted a picture of three historical "screens," namely the television screen, the computer monitor, and today's mobile device screen. As mobile devices become increasingly commonplace in the workplace and on the…
Improving Science Communication with Responsive Web Design
NASA Astrophysics Data System (ADS)
Hilverda, M.
2013-12-01
Effective science communication requires clarity in both content and presentation. Content is increasingly being viewed via the Web across a broad range of devices, which can vary in screen size, resolution, and pixel density. Readers access the same content from desktop computers, tablets, smartphones, and wearable computing devices. Creating separate presentation formats optimized for each device is inefficient and unrealistic as new devices continually enter the marketplace. Responsive web design is an approach that puts content first within a presentation design that responds automatically to its environment. This allows for one platform to be maintained that can be used effectively for every screen. The layout adapts to screens of all sizes ensuring easy viewing of content for readers regardless of their device. Responsive design is accomplished primarily by the use of media queries within style sheets, which allows for changes to layout properties to be defined based on media types (i.e. screen, print) and resolution. Images and other types of multimedia can also be defined to scale automatically to fit different screen dimensions, although some media types require additional effort for proper implementation. Hardware changes, such as high pixel density screens, also present new challenges for effective presentation of content. High pixel density screens contain a greater number of pixels within a screen area increasing the pixels per inch (PPI) compared to standard screens. The result is increased clarity for text and vector media types, but often decreased clarity for standard resolution raster images. Media queries and other custom solutions can assist by specifying higher resolution images for high pixel density screens. Unfortunately, increasing image resolution results in significantly more data being transferred to the device. Web traffic on mobile devices such as smartphones and tablets is on a steady growth trajectory and many mobile devices around the world use low-bandwidth connections. Communicating science effectively includes efficient delivery of the information to the reader. To meet this criteria, responsive designs should also incorporate "mobile first" elements such as serving ideal image sizes (a low resolution cell phone does not need to receive a large desktop image) and a focus on fast, readable content delivery. The technical implementation of responsive web design is constantly changing as new web standards and approaches become available. However, fundamental design principles such as grid layouts, clear typography, and proper use of white space should be an important part of content delivery within any responsive design. This presentation will discuss current responsive design approaches for improving scientific communication across multiple devices, operating systems, and bandwidth capacities. The presentation will also include example responsive designs for scientific papers and websites. Implementing a responsive design approach with a focus on content and fundamental design principles is an important step to ensuring scientific information remains clear and accessible as screens and devices continue to evolve.
How should hearing screening tests be offered?
Koopman, Jan; Davey, Elizabeth; Thomas, Neil; Wittkop, Thomas; Verschuure, Hans
2008-05-01
This paper deals with the question of how the general public should be addressed when offering hearing screening. Postal-based questionnaires in the United Kingdom, Germany, and The Netherlands were sent to users of hearing devices, those that are in the process of obtaining one, or those that have indicated that they have special interest in hearing. Results of the survey indicated that respondents were enthusiastic about the idea of being able to carry out hearing self-screening tests via the internet, telephone, or questionnaires. A questionnaire as a method to screen on hearing was generally preferred above using the internet, which was preferred over using the telephone for the test. About 27% of the respondents indicated to use exclusively one method. Most respondents indicated that either method provided would be of interest (41%), 17% indicated not to be interested in conducting screening tests using the internet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copping, Andrea E.; Blake, Kara M.; Anderson, Richard M.
2011-09-01
Potential environmental effects of marine and hydrokinetic (MHK) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between MHK installations and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. As a first step in developing the Pacific Northwest National Laboratory (PNNL) Environmental Risk Evaluation System (ERES), PNNL scientists conducted a preliminary risk screening analysis on three initial MHK cases.more » During FY 2011, two additional cases were added: a tidal project in the Gulf of Maine using Ocean Renewable Power Company TidGenTM turbines and a wave project planned for the coast of Oregon using Aquamarine Oyster surge devices. Through an iterative process, the screening analysis revealed that top-tier stressors in the two FY 2011 cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device (e.g., habitat alteration). Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted in early FY 2012. The ERES screening analysis provides an analysis of vulnerability of environmental receptors to stressors associated with MHK installations, probability analysis is needed to determine specific risk levels to receptors. “Risk” has two components: (1) The likelihood, or “probability”, of the occurrence of a given interaction or event, and (2) the potential “consequence” if that interaction or event were to occur. During FY 2011, the ERES screening analysis focused primarily on the second component of risk, “consequence”, with focused probability analysis for interactions where data was sufficient for probability modeling. Consequence analysis provides an assessment of vulnerability of environmental receptors to stressors associated with MHK installations. Probability analysis is needed to determine specific risk levels to receptors and requires significant data inputs to drive risk models. During FY 2011, two stressor-receptor interactions were examined for the probability of occurrence. The two interactions (spill probability due to an encounter between a surface vessel and an MHK device; and toxicity from anti-biofouling paints on MHK devices) were seen to present relatively low risks to marine and freshwater receptors of greatest concern in siting and permitting MHK devices. A third probability analysis was scoped and initial steps taken to understand the risk of encounter between marine animals and rotating turbine blades. This analysis will be completed in FY 2012.« less
ERIC Educational Resources Information Center
Benning, Stephen D.; Patrick, Christopher J.; Salekin, Randall T.; Leistico, Anne-Marie R.
2005-01-01
Psychopathy has been conceptualized as a personality disorder with distinctive interpersonal-affective and behavioral deviance features. The authors examine correlates of the factors of the Psychopathic Personality Inventory (PPI), Self-Report Psychopathy-II (SRP-II) scale, and Antisocial Process Screening Device (APSD) to understand similarities…
Effect of Vibration on Retention Characteristics of Screen Acquisition Systems
NASA Technical Reports Server (NTRS)
Tegart, J. R.; Park, A. C.
1977-01-01
An analytical and experimental investigation of the effect of vibration on the retention characteristics of screen acquisition systems was performed. The functioning of surface tension devices using fine-mesh screens requires that the pressure differential acting on the screen be less than its pressure retention capability. When exceeded, screen breakdown will occur and gas-free expulsion of propellant will no longer be possible. An analytical approach to predicting the effect of vibration was developed. This approach considers the transmission of the vibration to the screens of the device and the coupling of the liquid and the screen in establishing the screen response. A method of evaluating the transient response of the gas/liquid interface within the screen was also developed.
NASA Astrophysics Data System (ADS)
Olivares-Amaya, Roberto; Hachmann, Johannes; Amador-Bedolla, Carlos; Daly, Aidan; Jinich, Adrian; Atahan-Evrenk, Sule; Boixo, Sergio; Aspuru-Guzik, Alán
2012-02-01
Organic photovoltaic devices have emerged as competitors to silicon-based solar cells, currently reaching efficiencies of over 9% and offering desirable properties for manufacturing and installation. We study conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices with a molecular library motivated by experimental feasibility. We use quantum mechanics and a distributed computing approach to explore this vast molecular space. We will detail the screening approach starting from the generation of the molecular library, which can be easily extended to other kinds of molecular systems. We will describe the screening method for these materials which ranges from descriptor models, ubiquitous in the drug discovery community, to eventually reaching first principles quantum chemistry methods. We will present results on the statistical analysis, based principally on machine learning, specifically partial least squares and Gaussian processes. Alongside, clustering methods and the use of the hypergeometric distribution reveal moieties important for the donor materials and allow us to quantify structure-property relationships. These efforts enable us to accelerate materials discovery in organic photovoltaics through our collaboration with experimental groups.
A Review of the Use of Touch-Screen Mobile Devices by People with Developmental Disabilities
ERIC Educational Resources Information Center
Stephenson, Jennifer; Limbrick, Lisa
2015-01-01
This article presents a review of the research on the use of mobile touch-screen devices such as PDAs, iPod Touches, iPads and smart phones by people with developmental disabilities. Most of the research has been on very basic use of the devices as speech generating devices, as a means of providing video, pictorial and/or audio self-prompting and…
Foerster, Rebecca M.; Poth, Christian H.; Behler, Christian; Botsch, Mario; Schneider, Werner X.
2016-01-01
Neuropsychological assessment of human visual processing capabilities strongly depends on visual testing conditions including room lighting, stimuli, and viewing-distance. This limits standardization, threatens reliability, and prevents the assessment of core visual functions such as visual processing speed. Increasingly available virtual reality devices allow to address these problems. One such device is the portable, light-weight, and easy-to-use Oculus Rift. It is head-mounted and covers the entire visual field, thereby shielding and standardizing the visual stimulation. A fundamental prerequisite to use Oculus Rift for neuropsychological assessment is sufficient test-retest reliability. Here, we compare the test-retest reliabilities of Bundesen’s visual processing components (visual processing speed, threshold of conscious perception, capacity of visual working memory) as measured with Oculus Rift and a standard CRT computer screen. Our results show that Oculus Rift allows to measure the processing components as reliably as the standard CRT. This means that Oculus Rift is applicable for standardized and reliable assessment and diagnosis of elementary cognitive functions in laboratory and clinical settings. Oculus Rift thus provides the opportunity to compare visual processing components between individuals and institutions and to establish statistical norm distributions. PMID:27869220
Foerster, Rebecca M; Poth, Christian H; Behler, Christian; Botsch, Mario; Schneider, Werner X
2016-11-21
Neuropsychological assessment of human visual processing capabilities strongly depends on visual testing conditions including room lighting, stimuli, and viewing-distance. This limits standardization, threatens reliability, and prevents the assessment of core visual functions such as visual processing speed. Increasingly available virtual reality devices allow to address these problems. One such device is the portable, light-weight, and easy-to-use Oculus Rift. It is head-mounted and covers the entire visual field, thereby shielding and standardizing the visual stimulation. A fundamental prerequisite to use Oculus Rift for neuropsychological assessment is sufficient test-retest reliability. Here, we compare the test-retest reliabilities of Bundesen's visual processing components (visual processing speed, threshold of conscious perception, capacity of visual working memory) as measured with Oculus Rift and a standard CRT computer screen. Our results show that Oculus Rift allows to measure the processing components as reliably as the standard CRT. This means that Oculus Rift is applicable for standardized and reliable assessment and diagnosis of elementary cognitive functions in laboratory and clinical settings. Oculus Rift thus provides the opportunity to compare visual processing components between individuals and institutions and to establish statistical norm distributions.
Mothers' views of their preschool child's screen-viewing behaviour: a qualitative study.
Bentley, Georgina F; Turner, Katrina M; Jago, Russell
2016-08-04
Research on screen-viewing in preschool children has predominantly focused on television viewing. The rapid development of mobile devices (e.g. tablets, smart phones and e-readers) and the increase in their use by preschool children means there is a need to understand how and why these devices are used by this age group. The aim of this study was to explore mothers' views of their preschool children's screen viewing behaviour (including mobile devices) and investigate how preschool children use different screen-viewing devices. One-to-one, semi-structured interviews with mothers of preschool children (aged between 2 and 4 years old). Mothers were recruited through preschools, nurseries, and mother and toddler groups located within four areas of varying socio-economic status within Bristol, UK. Data were analysed thematically using a framework approach. Twenty-six mothers were interviewed. Mobile devices were regularly used as a form of screen-viewing for most children but were used on an ad hoc basis rather than being a habitual activity. The reasons and influences of mobile device use described by mothers were similar to that of television viewing. However, the portability of mobile devices meant that they were often used outside of the home as a distraction tool. Their multi-functionality meant that they could be used as a portable television, or for purposeful learning through educational games and applications. Some mothers showed concerns over mobile device use by their child, whilst others felt it was an important and useful educational tool. Although the majority of mothers felt they needed to set rules and restrictions for mobile device use, many mothers felt that they are also a necessary and unavoidable part of life. Mothers in this study suggested that mobile device use by preschool children is common. More research is needed to determine the impact of mobile device use in preschool children, how much time preschool children spend using mobile devices and which activities their use may be replacing.
Microfluidics: an enabling screening technology for enhanced oil recovery (EOR).
Lifton, Victor A
2016-05-21
Oil production is a critical industrial process that affects the entire world population and any improvements in its efficiency while reducing its environmental impact are of utmost societal importance. The paper reviews recent applications of microfluidics and microtechnology to study processes of oil extraction and recovery. It shows that microfluidic devices can be useful tools in investigation and visualization of such processes used in the oil & gas industry as fluid propagation, flooding, fracturing, emulsification and many others. Critical macro-scale processes that define oil extraction and recovery are controlled by the micro-scale processes based on wetting, adhesion, surface tension, colloids and other concepts of microfluidics. A growing number of research efforts demonstrates that microfluidics is becoming, albeit slowly, an accepted methodology in this area. We propose several areas of development where implementation of microfluidics may bring about deeper understanding and hence better control over the processes of oil recovery based on fluid propagation, droplet generation, wettability control. Studies of processes such as hydraulic fracturing, sand particle propagation in porous networks, high throughput screening of chemicals (for example, emulsifiers and surfactants) in microfluidic devices that simulate oil reservoirs are proposed to improve our understanding of these complicated physico-chemical systems. We also discuss why methods of additive manufacturing (3D printing) should be evaluated for quick prototyping and modification of the three-dimensional structures replicating natural oil-bearing rock formations for studies accessible to a wider audience of researchers.
Liquid Acquisition Device Design Sensitivity Study
NASA Technical Reports Server (NTRS)
VanDyke, M. K.; Hastings, L. J.
2012-01-01
In-space propulsion often necessitates the use of a capillary liquid acquisition device (LAD) to assure that gas-free liquid propellant is available to support engine restarts in microgravity. If a capillary screen-channel device is chosen, then the designer must determine the appropriate combination screen mesh and channel geometry. A screen mesh selection which results in the smallest LAD width when compared to any other screen candidate (for a constant length) is desirable; however, no best screen exists for all LAD design requirements. Flow rate, percent fill, and acceleration are the most influential drivers for determining screen widths. Increased flow rates and reduced percent fills increase the through-the-screen flow pressure losses, which drive the LAD to increased widths regardless of screen choice. Similarly, increased acceleration levels and corresponding liquid head pressures drive the screen mesh selection toward a higher bubble point (liquid retention capability). After ruling out some screens on the basis of acceleration requirements alone, candidates can be identified by examining screens with small flow-loss-to-bubble point ratios for a given condition (i.e., comparing screens at certain flow rates and fill levels). Within the same flow rate and fill level, the screen constants inertia resistance coefficient, void fraction, screen pore or opening diameter, and bubble point can become the driving forces in identifying the smaller flow-loss-to-bubble point ratios.
A Combined Fabrication and Instrumentation Platform for Sample Preparation.
Guckenberger, David J; Thomas, Peter C; Rothbauer, Jacob; LaVanway, Alex J; Anderson, Meghan; Gilson, Dan; Fawcett, Kevin; Berto, Tristan; Barrett, Kevin; Beebe, David J; Berry, Scott M
2014-06-01
While potentially powerful, access to molecular diagnostics is substantially limited in the developing world. Here we present an approach to reduced cost molecular diagnostic instrumentation that has the potential to empower developing world communities by reducing costs through streamlining the sample preparation process. In addition, this instrument is capable of producing its own consumable devices on demand, reducing reliance on assay suppliers. Furthermore, this instrument is designed with an "open" architecture, allowing users to visually observe the assay process and make modifications as necessary (as opposed to traditional "black box" systems). This open environment enables integration of microfluidic fabrication and viral RNA purification onto an easy-to-use modular system via the use of interchangeable trays. Here we employ this system to develop a protocol to fabricate microfluidic devices and then use these devices to isolate viral RNA from serum for the measurement of human immunodeficiency virus (HIV) viral load. Results obtained from this method show significantly reduced error compared with similar nonautomated sample preparation processes. © 2014 Society for Laboratory Automation and Screening.
Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F
2006-09-01
This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.
Koroglu, Mehmet; Gunal, Selami; Yildiz, Fatma; Savas, Mehtap; Ozer, Ali; Altindis, Mustafa
2015-12-30
Touch-screen mobile phones/devices (TMPs/Ds) are increasingly used in hospitals. They may act as a mobile reservoir for microbial pathogens. The rates of microbial contamination of TMPs/Ds and keypad mobile phones (KMPs) with respect to different variables including use by healthcare workers (HCWs)/non-HCWs and the demographic characteristics of users were investigated. A total of 205 mobile phones/devices were screened for microbial contamination: 76 devices belonged to HCWs and 129 devices belonged to the non-HCW group. By rubbing swabs to front screen, back, keypad, and metallic surfaces of devices, 444 samples were collected. Of 205 mobile phones/devices, 143 (97.9%) of the TMPs/Ds and 58 (98.3%) of the KMPs were positive for microbial contamination, and there were no significant differences in contamination rates between these groups, although TMPs/Ds had significantly higher microbial load than KMPs (p <0.05). The significant difference in this analysis was attributable to the screen size of mobile phones ≥ 5". Microbial contamination rates increased significantly as phone size increased (p <0.05). Higher numbers of coagulase-negative Staphylococci (CNS) were isolated from KMPs than TMPs/Ds (p = 0.049). The incidence of Enterococcus spp. was higher on the KMPs of HCWs, and methicillin resistant CNS was higher from the TMPs/Ds of non-HCWs (p <0.05). Isolation of CNS, Streptococcus spp. and Escherichia coli was higher from the TMPs/Ds of HCWs (p <0.05). We found no significant difference between TMP/Ds and KMPs in terms of microbial contamination, but TMP/Ds harboured more colonies and total microbial counts increased with screen size.
Wibirama, Sunu; Nugroho, Hanung A
2017-07-01
Mobile devices addiction has been an important research topic in cognitive science, mental health, and human-machine interaction. Previous works observed mobile device addiction by logging mobile devices activity. Although immersion has been linked as a significant predictor of video game addiction, investigation on addiction factors of mobile device with behavioral measurement has never been done before. In this research, we demonstrated the usage of eye tracking to observe effect of screen size on experience of immersion. We compared subjective judgment with eye movements analysis. Non-parametric analysis on immersion score shows that screen size affects experience of immersion (p<;0.05). Furthermore, our experimental results suggest that fixational eye movements may be used as an indicator for future investigation of mobile devices addiction. Our experimental results are also useful to develop a guideline as well as intervention strategy to deal with smartphone addiction.
Morelli, Lidia; Andreasen, Sune Zoëga; Jendresen, Christian Bille; Nielsen, Alex Toftgaard; Emnéus, Jenny; Zór, Kinga; Boisen, Anja
2017-11-20
During the last few decades, great advances have been reached in high-throughput design and building of genetically engineered microbial strains, leading to a need for fast and reliable screening methods. We developed and optimized a microfluidic supported liquid membrane (SLM) extraction device and combined it with surface enhanced Raman scattering (SERS) sensing for the screening of a biological process, namely for the quantification of a bacterial secondary metabolite, p-coumaric acid (pHCA), produced by Escherichia coli. The microfluidic device proved to be robust and reusable, enabling efficient removal of interfering compounds from the real samples, reaching more than 13-fold up-concentration of the donor at 10 μL min -1 flow rate. With this method, we quantified pHCA directly from the bacterial supernatant, distinguishing between various culture conditions based on the pHCA production yield. The obtained data showed good correlation with HPLC analysis.
Rapid Assessment of Contrast Sensitivity with Mobile Touch-screens
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2013-01-01
The availability of low-cost high-quality touch-screen displays in modern mobile devices has created opportunities for new approaches to routine visual measurements. Here we describe a novel method in which subjects use a finger swipe to indicate the transition from visible to invisible on a grating which is swept in both contrast and frequency. Because a single image can be swiped in about a second, it is practical to use a series of images to zoom in on particular ranges of contrast or frequency, both to increase the accuracy of the measurements and to obtain an estimate of the reliability of the subject. Sensitivities to chromatic and spatio-temporal modulations are easily measured using the same method. We will demonstrate a prototype for Apple Computer's iPad-iPod-iPhone family of devices, implemented using an open-source scripting environment known as QuIP (QUick Image Processing,
Gupta, Nishi; Chawla, Neeraj; Gupta, Digant; Dhawan, Nidhi; Janaki, Vidya R
2017-07-01
Chronic otitis media is a major contributor to acquired hearing loss in developing countries. Developing countries such as India, with huge populations and poor health infrastructures, have always felt the shortage of trained specialists who can provide quality care to meet the enormous demand for treatment of this disease. This pilot study assessed the feasibility of empowering trained health workers equipped with ENTraview, a store-and-forward telemedicine device that integrates a camera- enabled smart phone with an otoscope. This device allows the screening of otology patients within the community. Three months of extensive training was provided to five community health workers on primary ear and hearing care, including training on the use of the ENTraview device. Community otology screenings were conducted to triage otology patients and provide them with specialized ENT care at a tertiary hospital. In the initial 6 months of the project, 45 screening camps were organized, which screened 3,000 patients free of cost. Of these 3,000 screened patients, 54% (1,619) were referred for ENT consultation and 215 patients reported. Nearly 50% (103) of the 215 reporting patients required surgical intervention, and 29 patients underwent surgery. Reaching out to the community by remote screening of ear diseases by trained technicians with a telemedicine device seems to be an effective and cost-effective way to triage patients with otologic pathologies.
Pointing Device Performance in Steering Tasks.
Senanayake, Ransalu; Goonetilleke, Ravindra S
2016-06-01
Use of touch-screen-based interactions is growing rapidly. Hence, knowing the maneuvering efficacy of touch screens relative to other pointing devices is of great importance in the context of graphical user interfaces. Movement time, accuracy, and user preferences of four pointing device settings were evaluated on a computer with 14 participants aged 20.1 ± 3.13 years. It was found that, depending on the difficulty of the task, the optimal settings differ for ballistic and visual control tasks. With a touch screen, resting the arm increased movement time for steering tasks. When both performance and comfort are considered, whether to use a mouse or a touch screen for person-computer interaction depends on the steering difficulty. Hence, a input device should be chosen based on the application, and should be optimized to match the graphical user interface. © The Author(s) 2016.
Virtual Environment TBI Screen (VETS)
2014-10-01
balance challenges performed on a modified Wii Balance Board . Implementation of this device will enhance current approaches in TBI and mild TBI (i.e...TBI) screen (VETS) device in measuring standing balance . This system consists of software, a Wii balance board , and a large screen television that...Validate Wii ™ Balance Board relative to NeuroCom forceplate ! Running Wii Balance Board validation protocol. ! Milestone Achieved:
Improvement of screening methods for silicon planar semiconductor devices
NASA Technical Reports Server (NTRS)
Berger, W. M.
1972-01-01
The results of the program for the development of a more sensitive method for selecting silicon planar semiconductor devices for long life applications are reported. The manufacturing technologies (MOS and Bipolar) are discussed along with the screening procedures developed as a result of the tests and evaluations, and the effectiveness of the MOS and Bilayer screening procedures are evaluated.
NASA Astrophysics Data System (ADS)
Rohde, Christopher B.; Zeng, Fei; Gilleland, Cody; Samara, Chrysanthi; Yanik, Mehmet F.
2009-02-01
In recent years, the advantages of using small invertebrate animals as model systems for human disease have become increasingly apparent and have resulted in three Nobel Prizes in medicine or chemistry during the last six years for studies conducted on the nematode Caenorhabditis elegans (C. elegans). The availability of a wide array of species-specific genetic techniques, along with the transparency of the worm and its ability to grow in minute volumes make C. elegans an extremely powerful model organism. We present a suite of technologies for complex high-throughput whole-animal genetic and drug screens. We demonstrate a high-speed microfluidic sorter that can isolate and immobilize C. elegans in a well-defined geometry, an integrated chip containing individually addressable screening chambers for incubation and exposure of individual animals to biochemical compounds, and a device for delivery of compound libraries in standard multiwell plates to microfluidic devices. The immobilization stability obtained by these devices is comparable to that of chemical anesthesia and the immobilization process does not affect lifespan, progeny production, or other aspects of animal health. The high-stability enables the use of a variety of key optical techniques. We use this to demonstrate femtosecond-laser nanosurgery and three-dimensional multiphoton microscopy. Used alone or in various combinations these devices facilitate a variety of high-throughput assays using whole animals, including mutagenesis and RNAi and drug screens at subcellular resolution, as well as high-throughput high-precision manipulations such as femtosecond-laser nanosurgery for large-scale in vivo neural degeneration and regeneration studies.
An ECG ambulatory system with mobile embedded architecture for ST-segment analysis.
Miranda-Cid, Alejandro; Alvarado-Serrano, Carlos
2010-01-01
A prototype of a ECG ambulatory system for long term monitoring of ST segment of 3 leads, low power, portability and data storage in solid state memory cards has been developed. The solution presented is based in a mobile embedded architecture of a portable entertainment device used as a tool for storage and processing of bioelectric signals, and a mid-range RISC microcontroller, PIC 16F877, which performs the digitalization and transmission of ECG. The ECG amplifier stage is a low power, unipolar voltage and presents minimal distortion of the phase response of high pass filter in the ST segment. We developed an algorithm that manages access to files through an implementation for FAT32, and the ECG display on the device screen. The records are stored in TXT format for further processing. After the acquisition, the system implemented works as a standard USB mass storage device.
Touch-screen technology usage in toddlers.
Ahearne, Caroline; Dilworth, Sinead; Rollings, Rachel; Livingstone, Vicki; Murray, Deirdre
2016-02-01
To establish the prevalence and patterns of use of touch-screen technologies in the toddler population. Parental questionnaires were completed for children aged 12 months to 3 years examining access to touch-screen devices and ability to perform common forms of interaction with touch-screen technologies. The 82 questionnaires completed on typically developing children revealed 71% of toddlers had access to touch-screen devices for a median of 15 min (IQR: 9.375-26.25) per day. By parental report, 24 months was the median age of ability to swipe (IQR: 19.5-30.5), unlock (IQR: 20.5-31.5) and active looking for touch-screen features (IQR: 22-30.5), while 25 months (IQR: 21-31.25) was the median age of ability to identify and use specific touch-screen features. Overall, 32.8% of toddlers could perform all four skills. From 2 years of age toddlers have the ability to interact purposefully with touch-screen devices and demonstrate a variety of common skills required to utilise touch-screen technology. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Aziz, M A; Imteaz, M A; Huda, Nazmul; Naser, J
2014-01-01
After heavy rainfall, sewer overflow spills to receiving water bodies cause serious concern for the environment, aesthetics and public health. To overcome these problems this study investigated a new self-cleansing sewer overflow screening device. The device has a sewer overflow chamber, a rectangular tank and a slotted ogee weir to capture the gross pollutants. To design an efficient screening device a numerical computational fluid dynamic (CFD) model was used. A plausibility check of the CFD model was done using a one-dimensional analytical model. Results showed that an inlet parallel to the weir ensured better self-cleansing than an inlet perpendicular to the weir. Perforations should be at the bottom of the weir to get increased velocity and shear stress to create a favourable self-cleaning effect of the screening device. Increasing inlet length from 0.3 to 1.5 m reduced wave reflection up to 10%, which increased flow uniformity downstream and improved self-cleansing effect. The orientation of the ogee weir with the rectangular tank was found most uniform with a 1:3 (horizontal:vertical) slope. These results will help to maximise functional efficiency of the new sewer overflow screening device. Otherwise it would be too expensive to alter after installation and at times difficult to customise accordingly to existing urban drainage systems.
Huang, Kuo-Sen; Mark, David; Gandenberger, Frank Ulrich
2006-01-01
The plate::vision is a high-throughput multimode reader capable of reading absorbance, fluorescence, fluorescence polarization, time-resolved fluorescence, and luminescence. Its performance has been shown to be quite comparable with other readers. When the reader is integrated into the plate::explorer, an ultrahigh-throughput screening system with event-driven software and parallel plate-handling devices, it becomes possible to run complicated assays with kinetic readouts in high-density microtiter plate formats for high-throughput screening. For the past 5 years, we have used the plate::vision and the plate::explorer to run screens and have generated more than 30 million data points. Their throughput, performance, and robustness have speeded up our drug discovery process greatly.
Kenney, Erica L; Gortmaker, Steven L
2017-03-01
To quantify the relationships between youth use of television (TV) and other screen devices, including smartphones and tablets, and obesity risk factors. TV and other screen device use, including smartphones, tablets, computers, and/or videogames, was self-reported by a nationally representative, cross-sectional sample of 24 800 US high school students (2013-2015 Youth Risk Behavior Surveys). Students also reported on health behaviors including sugar-sweetened beverage (SSB) intake, physical activity, sleep, and weight and height. Sex-stratified logistic regression models, adjusting for the sampling design, estimated associations between TV and other screen device use and SSB intake, physical activity, sleep, and obesity. Approximately 20% of participants used other screen devices for ≥5 hours daily. Watching TV ≥5 hours daily was associated with daily SSB consumption (aOR = 2.72, 95% CI: 2.23, 3.32) and obesity (aOR = 1.78, 95% CI: 1.40, 2.27). Using other screen devices ≥5 hours daily was associated with daily SSB consumption (aOR = 1.98, 95% CI: 1.69, 2.32), inadequate physical activity (aOR = 1.94, 95% CI: 1.69, 2.25), and inadequate sleep (aOR = 1.79, 95% CI: 1.54, 2.08). Using smartphones, tablets, computers, and videogames is associated with several obesity risk factors. Although further study is needed, families should be encouraged to limit both TV viewing and newer screen devices. Copyright © 2016 Elsevier Inc. All rights reserved.
The Utility of the Child and Adolescent Psychopathy Construct in Hong Kong, China
ERIC Educational Resources Information Center
Fung, Annis Lai-Chu; Gao, Yu; Raine, Adrian
2010-01-01
This cross-sectional study examined the nature of child and adolescent psychopathy using the Antisocial Process Screening Device (APSD) in 3,675 schoolchildren (ages 11-16) in Hong Kong, China. A confirmatory factor analysis observed a good fit for the three-factor model (callous-unemotional, impulsivity, narcissism) of APSD, with boys scoring…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... Evaluation and testing within a risk management process 2-100 ASTM E1372-95 (2003) Standard Test Method...) Standard Title, Type of Test Method for Agar Diffusion Cell standard , Relevant Culture Screening for... Biological evaluation of medical devices - Office(s) and Part 3: Tests for genotoxicity, Division(s...
Psychopathic Traits in Youth: Is There Evidence for Primary and Secondary Subtypes?
ERIC Educational Resources Information Center
Lee, Zina; Salekin, Randall T.; Iselin, Anne-Marie R.
2010-01-01
The current study employed model-based cluster analysis in a sample of male adolescent offenders (n = 94) to examine subtypes based on psychopathic traits and anxiety. Using the Psychopathy Checklist: Youth Version (PCL:YV; Forth et al. 2003) and the self-report Antisocial Process Screening Device (APSD; Caputo et al. 1999), analyses identified…
NASA Technical Reports Server (NTRS)
Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor); Kolosowsky, Aleksandra (Inventor)
2006-01-01
A modular and scalable seamless tiled display apparatus includes multiple display devices, a screen, and multiple lens assemblies. Each display device is subdivided into multiple sections, and each section is configured to display a sectional image. One of the lens assemblies is optically coupled to each of the sections of each of the display devices to project the sectional image displayed on that section onto the screen. The multiple lens assemblies are configured to merge the projected sectional images to form a single tiled image. The projected sectional images may be merged on the screen by magnifying and shifting the images in an appropriate manner. The magnification and shifting of these images eliminates any visual effect on the tiled display that may result from dead-band regions defined between each pair of adjacent sections on each display device, and due to gaps between multiple display devices.
Superconductivity devices: Commercial use of space
NASA Technical Reports Server (NTRS)
Haertling, Gene; Furman, Eugene; Hsi, Chi-Shiung; Li, Guang
1993-01-01
The processing and screen printing of the superconducting BSCCO and 123 YBCO materials on substrates is described. The resulting superconducting properties and the use of these materials as possible electrode materials for ferroelectrics at 77 K are evaluated. Also, work performed in the development of solid-state electromechanical actuators is reported. Specific details include the fabrication and processing of high strain PBZT and PLZT electrostrictive materials, the development of PSZT and PMN-based ceramics, and the testing and evaluation of these electrostrictive materials. Finally, the results of studies on a new processing technology for preparing piezoelectric and electrostrictive ceramic materials are summarized. The process involves a high temperature chemical reduction which leads to an internal pre-stressing of the oxide wafer. These reduced and internally biased oxide wafers (RAINBOW) can produce bending-mode actuator devices which possess a factor of ten more displacement and load bearing capacity than present-day benders.
Holographic diffuser by use of a silver halide sensitized gelatin process
NASA Astrophysics Data System (ADS)
Kim, Sun Il; Choi, Yoon Sun; Ham, Yong Nam; Park, Chong Yun; Kim, Jong Man
2003-05-01
Diffusers play an important role in liquid-crystal display (LCD) application as a beam-shaping device, a brightness homogenizer, a light-scattering device, and an imaging screen. The transmittance and diffusing angle of the diffusers are the critical aspects for the applications to the LCD. The holographic diffusers by use of various processing methods have been investigated. The diffusing characteristics of different diffusing materials and processing methods have been evaluated and compared. The micro-structures of holographic diffusers have been investigated by use of using scanning electron microscopy. The holographic diffusers by use of the silver halide sensitized gelatin (SHSG) method have the structural merits for the improvement of the quality of diffusers. The features of holographic diffuser were exceptional in terms of transmittance and diffusing angle. The replication method by use of the SHSG process can be directly used for the manufacturing of diffusers for the display application.
Chen, Yi-Chun; Liu, Kan; Shen, Clifton Kwang-Fu; van Dam, R. Michael
2017-01-01
Microscopic droplets or slugs of mixed reagents provide a convenient platform for performing large numbers of isolated biochemical or chemical reactions for many screening and optimization applications. Myriad microfluidic approaches have emerged for creating droplets or slugs with controllable size and composition, generally using an immiscible carrier fluid to assist with the formation or merging processes. We report a novel device for generation of liquid slugs in air when the use of a carrier liquid is not compatible with the application. The slug generator contains two adjacent chambers, each of which has a volume that can be digitally adjusted by closing selected microvalves. Reagents are filled into the two chambers, merged together into a contiguous liquid slug, ejected at the desired time from the device using gas pressure, and mixed by flowing in a downstream channel. Programmable size and composition of slugs is achieved by dynamically adjusting the volume of each chamber prior to filling. Slug formation in this fashion is independent of fluid properties and can easily be scaled to mix larger numbers of reagents. This device has already been used to screen monomer ratios in supramolecular nanoparticle assembly and radiolabeling conditions of engineered antibodies, and here we provide a detailed description of the underlying device. PMID:29167603
Young Children Learning from Touch Screens: Taking a Wider View
Lovato, Silvia B.; Waxman, Sandra R.
2016-01-01
Touch screen devices such as smartphones and tablets are now ubiquitous in the lives of American children. These devices permit very young children to engage interactively in an intuitive fashion with actions as simple as touching, swiping and pinching. Yet, we know little about the role these devices play in very young children’s lives or their impact on early learning and development. Here we focus on two areas in which existing research sheds some light on these issues with children under 3 years of age. The first measures transfer of learning, or how well children use information learned from screens to reason about events off-screen, using object retrieval and word learning tasks. The second measures the impact of interactive screens on parent-child interactions and story comprehension during reading time. More research is required to clarify the pedagogical potential and pitfalls of touch screens for infants and very young children, especially research focused on capabilities unique to touch screens and on the social and cultural contexts in which young children use them. PMID:27486421
Screenable contact structure and method for semiconductor devices
Ross, Bernd
1980-08-26
An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.
Caban-Martinez, Alberto J; Clarke, Tainya C; Davila, Evelyn P; Fleming, Lora E; Lee, David J
2011-04-01
Novel low-cost approaches for conducting rapid health assessments and health promotion interventions among underserved worker groups are needed. Recruitment and participation of construction workers is particularly challenging due to their often transient periods of work at any one construction site, and their limited time during work to participate in such studies. In the present methodology report, we discuss the experience, advantages and disadvantages of using touch screen handheld devices for the collection of field data from a largely underserved worker population. In March 2010, a workplace-centered pilot study to examine the feasibility of using a handheld personal device for the rapid health assessment of construction workers in two South Florida Construction sites was undertaken. A 45-item survey instrument, including health-related questions on tobacco exposure, workplace safety practices, musculoskeletal disorders and health symptoms, was programmed onto Apple iPod Touch® devices. Language sensitive (English and Spanish) recruitment scripts, verbal consent forms, and survey questions were all preloaded onto the handheld devices. The experience (time to survey administration and capital cost) of the handheld administration method was recorded and compared to approaches available in the extant literature. Construction workers were very receptive to the recruitment, interview and assessment processes conducted through the handheld devices. Some workers even welcomed the opportunity to complete the questionnaire themselves using the touch screen handheld device. A list of advantages and disadvantages emerged from this experience that may be useful in the rapid health assessment of underserved populations working in a variety of environmental and occupational health settings. Handheld devices, which are relatively inexpensive, minimize survey response error, and allow for easy storage of data. These technological research modalities are useful in the collection and assessment of environmental and occupational research data.
Toward the integration of optical sensors in smartphone screens using femtosecond laser writing.
Lapointe, Jerome; Parent, Francois; de Lima Filho, Elton Soares; Loranger, Sébastien; Kashyap, Raman
2015-12-01
We demonstrate a new type of sensor incorporated directly into Corning Gorilla glass, an ultraresistant glass widely used in the screen of popular devices such as smartphones, tablets, and smart watches. Although physical space is limited in portable devices, the screens have been so far neglected in regard to functionalization. Our proof-of-concept shows a new niche for photonics device development, in which the screen becomes an active component integrated into the device. The sensor itself is a near-surface waveguide, sensitive to refractive index changes, enabling the analysis of liquids directly on the screen of a smartphone, without the need for any add-ons, thus opening this part of the device to advanced functionalization. The primary function of the screen is unaffected, since the sensor and waveguide are effectively invisible to the naked eye. We fabricated a waveguide just below the glass surface, directly written without any surface preparation, in which the change in refractive index on the surface-air interface changes the light guidance, thus the transmission of light. This work reports on sensor fabrication, using a femtosecond pulsed laser, and the light-interaction model of the beam propagating at the surface is discussed and compared with experimental measurement for refractive indexes in the range 1.3-1.7. A new and improved model, including input and output reflections due to the effective mode index change, is also proposed and yields a better match with our experimental measurements and also with previous measurements reported in the literature.
Bosgraaf, Remko P; Ketelaars, Pleun J W; Verhoef, Viola M J; Massuger, Leon F A G; Meijer, Chris J L M; Melchers, Willem J G; Bekkers, Ruud L M
2014-07-01
High attendance rates in cervical screening are essential for effective cancer prevention. Offering HPV self-sampling to non-responders increases participation rates. The objectives of this study were to determine why non-responders do not attend regular screening, and why they do or do not participate when offered a self-sampling device. A questionnaire study was conducted in the Netherlands from October 2011 to December 2012. A total of 35,477 non-responders were invited to participate in an HPV self-sampling study; 5347 women did opt out. Finally, 30,130 women received a questionnaire and self-sampling device. The analysis was based on 9484 returned questionnaires (31.5%) with a self-sample specimen, and 682 (2.3%) without. Among women who returned both, the main reason for non-attendance to cervical screening was that they forgot to schedule an appointment (3068; 32.3%). The most important reason to use the self-sampling device was the opportunity to take a sample in their own time-setting (4763; 50.2%). A total of 30.9% of the women who did not use the self-sampling device preferred after all to have a cervical smear taken instead. Organisational barriers are the main reason for non-attendance in regular cervical screening. Important reasons for non-responders to the regular screening to use a self-sampling device are convenience and self-control. Copyright © 2014 Elsevier Inc. All rights reserved.
Field test of on-site drug detection devices
DOT National Transportation Integrated Search
2000-10-01
This NHTSA-sponsored study reports the findings of a field evaluation of five on-site drug screening devices used by law enforcement to screen for illicit drugs among drivers suspected of driving under the influence (DUI) of alcohol or other drugs. I...
Effects of Aging and Domain Knowledge on Usability in Small Screen Devices for Diabetes Patients
NASA Astrophysics Data System (ADS)
Calero Valdez, André; Ziefle, Martina; Horstmann, Andreas; Herding, Daniel; Schroeder, Ulrik
Technology acceptance has become a key concept for the successful rollout of technical devices. Though the concept is intensively studied for nearly 20 years now, still, many open questions remain. This especially applies to technology acceptance of older users, which are known to be very sensitive to suboptimal interfaces and show considerable reservations towards the usage of new technology. Mobile small screen technology increasingly penetrates health care and medical applications. This study investigates impacts of aging, technology expertise and domain knowledge on user interaction using the example of diabetes. For this purpose user effectiveness and efficiency have been measured on a simulated small screen device and related to user characteristics, showing that age and technology expertise have a big impact on usability of the device. Furthermore, impacts of user characteristics and success during the trial on acceptance of the device were surveyed and analyzed.
Effects of input device and motion type on a cursor-positioning task.
Yau, Yi-Jan; Hwang, Sheue-Ling; Chao, Chin-Jung
2008-02-01
Many studies have investigated the performance of using nonkey-board input devices under static situations, but few have considered the effects of motion type on manipulating these input devices. In this study comparison of 12 mens' performance using four input devices (three trackballs: currently used, trackman wheel, and erectly held trackballs, as well as a touch screen) under five motion types of static, heave, roll, pitch, and random movements was conducted. The input device and motion type significantly affected movement speed and accuracy, and their interaction significantly affected the movement speed. The touch screen was the fastest but the least accurate input device. The erectly held trackball was the slowest, whereas the error rate of the currently used trackball was the lowest. Impairments of the random motion on movement time and error rate were larger than those of other motion types. Considering objective and subjective evaluations, the trackman wheel and currently used trackball were more efficient in operation than the erectly held trackball and touch screen under the motion environments.
Workshop on imaging science development for cancer prevention and preemption.
Kelloff, Gary J; Sullivan, Daniel C; Baker, Houston; Clarke, Lawrence P; Nordstrom, Robert; Tatum, James L; Dorfman, Gary S; Jacobs, Paula; Berg, Christine D; Pomper, Martin G; Birrer, Michael J; Tempero, Margaret; Higley, Howard R; Petty, Brenda Gumbs; Sigman, Caroline C; Maley, Carlo; Sharma, Prateek; Wax, Adam; Ginsberg, Gregory G; Dannenberg, Andrew J; Hawk, Ernest T; Messing, Edward M; Grossman, H Barton; Harisinghani, Mukesh; Bigio, Irving J; Griebel, Donna; Henson, Donald E; Fabian, Carol J; Ferrara, Katherine; Fantini, Sergio; Schnall, Mitchell D; Zujewski, Jo Anne; Hayes, Wendy; Klein, Eric A; DeMarzo, Angelo; Ocak, Iclal; Ketterling, Jeffrey A; Tempany, Clare; Shtern, Faina; Parnes, Howard L; Gomez, Jorge; Srivastava, Sudhir; Szabo, Eva; Lam, Stephen; Seibel, Eric J; Massion, Pierre; McLennan, Geoffrey; Cleary, Kevin; Suh, Robert; Burt, Randall W; Pfeiffer, Ruth M; Hoffman, John M; Roy, Hemant K; Wang, Thomas; Limburg, Paul J; El-Deiry, Wafik S; Papadimitrakopoulou, Vali; Hittelman, Walter N; MacAulay, Calum; Veltri, Robert W; Solomon, Diane; Jeronimo, Jose; Richards-Kortum, Rebecca; Johnson, Karen A; Viner, Jaye L; Stratton, Steven P; Rajadhyaksha, Milind; Dhawan, Atam
2007-01-01
The concept of intraepithelial neoplasm (IEN) as a near-obligate precursor of cancers has generated opportunities to examine drug or device intervention strategies that may reverse or retard the sometimes lengthy process of carcinogenesis. Chemopreventive agents with high therapeutic indices, well-monitored for efficacy and safety, are greatly needed, as is development of less invasive or minimally disruptive visualization and assessment methods to safely screen nominally healthy but at-risk patients, often for extended periods of time and at repeated intervals. Imaging devices, alone or in combination with anticancer drugs, may also provide novel interventions to treat or prevent precancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copping, Andrea E.; Hanna, Luke A.
2011-11-01
Potential environmental effects of offshore wind (OSW) energy development are not well understood, and yet regulatory agencies are required to make decisions in spite of substantial uncertainty about environmental impacts and their long-term consequences. An understanding of risks associated with interactions between OSW installations and avian and aquatic receptors, including animals, habitats, and ecosystems, can help define key uncertainties and focus regulatory actions and scientific studies on interactions of most concern. During FY 2011, Pacific Northwest National Laboratory (PNNL) scientists adapted and applied the Environmental Risk Evaluation System (ERES), first developed to examine the effects of marine and hydrokinetic energymore » devices on aquatic environments, to offshore wind development. PNNL scientists conducted a risk screening analysis on two initial OSW cases: a wind project in Lake Erie and a wind project off the Atlantic coast of the United States near Atlantic City, New Jersey. The screening analysis revealed that top-tier stressors in the two OSW cases were the dynamic effects of the device (e.g., strike), accidents/disasters, and effects of the static physical presence of the device, such as alterations in bottom habitats. Receptor interactions with these stressors at the highest tiers of risk were dominated by threatened and endangered animals. Risk to the physical environment from changes in flow regime also ranked high. Peer review of this process and results will be conducted during FY 2012. The ERES screening analysis provides an assessment of the vulnerability of environmental receptors to stressors associated with OSW installations; a probability analysis is needed to determine specific risk levels to receptors. As more data become available that document effects of offshore wind farms on specific receptors in U.S. coastal and Great Lakes waters, probability analyses will be performed.« less
ERIC Educational Resources Information Center
Dadds, Mark R.; Fraser, Jenny; Frost, Aaron; Hawes, David J.
2005-01-01
The psychometric and predictive validity of callous-unemotional (CU) traits as an early precursor of conduct disorder and antisocial behavior were assessed. A community sample of children (4-9 years of age) were tested 12 months apart with the Antisocial Process Screening Device (APSD; P. J. Frick & R. D. Hare, 2002), a measure of early signs of…
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D; Duvenaud, David; Maclaurin, Dougal; Blood-Forsythe, Martin A; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P; Aspuru-Guzik, Alán
2016-10-01
Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.
NASA Astrophysics Data System (ADS)
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Duvenaud, David; MacLaurin, Dougal; Blood-Forsythe, Martin A.; Chae, Hyun Sik; Einzinger, Markus; Ha, Dong-Gwang; Wu, Tony; Markopoulos, Georgios; Jeon, Soonok; Kang, Hosuk; Miyazaki, Hiroshi; Numata, Masaki; Kim, Sunghan; Huang, Wenliang; Hong, Seong Ik; Baldo, Marc; Adams, Ryan P.; Aspuru-Guzik, Alán
2016-10-01
Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.
To twist, roll, stroke or poke? A study of input devices for menu navigation in the cockpit.
Stanton, Neville A; Harvey, Catherine; Plant, Katherine L; Bolton, Luke
2013-01-01
Modern interfaces within the aircraft cockpit integrate many flight management system (FMS) functions into a single system. The success of a user's interaction with an interface depends upon the optimisation between the input device, tasks and environment within which the system is used. In this study, four input devices were evaluated using a range of Human Factors methods, in order to assess aspects of usability including task interaction times, error rates, workload, subjective usability and physical discomfort. The performance of the four input devices was compared using a holistic approach and the findings showed that no single input device produced consistently high performance scores across all of the variables evaluated. The touch screen produced the highest number of 'best' scores; however, discomfort ratings for this device were high, suggesting that it is not an ideal solution as both physical and cognitive aspects of performance must be accounted for in design. This study evaluated four input devices for control of a screen-based flight management system. A holistic approach was used to evaluate both cognitive and physical performance. Performance varied across the dependent variables and between the devices; however, the touch screen produced the largest number of 'best' scores.
Delfino, Leandro D; Dos Santos Silva, Diego A; Tebar, William R; Zanuto, Edner F; Codogno, Jamile S; Fernandes, Rômulo A; Christofaro, Diego G
2018-03-01
Sedentary behaviors in adolescents are associated with using screen devices, analyzed as the total daily time in television viewing, using the computer and video game. However, an independent and clustered analysis of devices allows greater understanding of associations with physical inactivity domains and eating habits in adolescents. Sample of adolescents aged 10-17 years (N.=1011) from public and private schools, randomly selected. The use of screen devices was measured by hours per week spent in each device: TV, computer, videogames and mobile phone/tablet. Physical inactivity domains (school, leisure and sports), eating habits (weekly food consumption frequency) and socioeconomic status were assessed by questionnaire. The prevalence of high use of mobile phone/tablet was 70% among adolescents, 63% showed high use of TV or computer and 24% reported high use of videogames. High use of videogames was greater among boys and high use of mobile phone/tablet was higher among girls. Significant associations of high use of TV (OR=1.43, 95% CI: 1.04-1.99), computer (OR=1.44, 95% CI: 1.03-2.02), videogames (OR=1.65, 95% CI: 1.13-2.69) and consumption of snacks were observed. High use of computer was associated with fried foods consumption (OR=1.32, 95% CI: 1.01-1.75) and physical inactivity (OR=1.41, 95% CI: 1.03-1.95). Mobile phone was associated with consumption of sweets (OR=1.33, 95% CI: 1.00-1.80). Cluster using screen devices showed associations with high consumption of snacks, fried foods and sweets, even after controlling for confounding variables. The high use of screen devices was associated with high consumption of snacks, fried foods, sweets and physical inactivity in adolescents.
Noah, Benjamin; Li, Jingwen; Rothrock, Ling
2017-10-01
The objectives of this study were to test the effect of interaction device on performance in a process control task (managing a tank farm). The study compared the following two conditions: a) 4K-resolution 55" screen with a 21" touchscreen versus b) 4K-resolution 55″ screen with keyboard/mouse. The touchscreen acted both as an interaction device for data entry and navigation and as an additional source of information. A within-subject experiment was conducted among 20 college engineering students. A primary task of preventing tanks from overfilling as well as a secondary task of manual logging with situation awareness questions were designed for the study. Primary Task performance (including tank level at discharge, number of tank discharged and performance score), Secondary Task Performance (including Tank log count, performance score), system interaction times, subjective workload, situation awareness questionnaire, user experience survey regarding usability and condition comparison were used as the measures. Parametric data resulted in two metrics statistically different means between the two conditions: The 4K-keyboard condition resulted in faster Detection + Navigation time compared to the 4K-touchscreen condition, by about 2 s, while participants within the 4K-touchscreen condition were about 2 s faster in data entry than in the 4K-keyboard condition. No significant results were found for: performance on the secondary task, situation awareness, and workload. Additionally, no clear significant differences were found in the non-parametric data analysis. However, participants showed a slight preference for the 4K-touchscreen condition compared to the 4K-keyboard condition in subjective responses in comparing the conditions. Introducing the touchscreen as an additional/alternative input device showed to have an effect in interaction times, which suggests that proper design considerations need to be made. While having values shown on the interaction device provides value, a potential issue of visual distraction exists when having an additional visual display. The allocation of visual attention between primary displays and the touchscreen should be further investigated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Three-dimensional hologram display system
NASA Technical Reports Server (NTRS)
Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)
2009-01-01
The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, M.T.; Butler, H.M.; Gupton, E.D.
The UCC-ND Employee Identification Badge contains an indium foil disc that is intended for use as a dosimetry screening device in the event of a criticality accident. While it is recognized that indium is not a precise mixed neutron-gamma dosimeter, its activation by neutrons provides adequate means for separating potentially exposed persons into three groups. These groups are: (1) personnel exposed below annual dose limits, (2) personnel exposed above annual dose limits but below 25 rem, and (3) personnel exposed above 25 rem. This screening procedure is designed to facilitate dosimeter processing in order to meet regulatory reporting requirements. Amore » quick method of interpreting induced activity measurements is presented and discussed.« less
Hale, Lauren; Kirschen, Gregory W; LeBourgeois, Monique K; Gradisar, Michael; Garrison, Michelle M; Montgomery-Downs, Hawley; Kirschen, Howard; McHale, Susan M; Chang, Anne-Marie; Buxton, Orfeu M
2018-04-01
With the widespread use of portable electronic devices and the normalization of screen media devices in the bedroom, insufficient sleep has become commonplace. In a recent literature review, 90% of included studies found an association between screen media use and delayed bedtime and/or decreased total sleep time. This pervasive phenomenon of pediatric sleep loss has widespread implications. There is a need for basic, translational, and clinical research examining the effects of screen media on sleep loss and health consequences in children and adolescents to educate and motivate clinicians, teachers, parents and youth themselves to foster healthy sleep habits. Copyright © 2017 Elsevier Inc. All rights reserved.
Spatially resolving density-dependent screening around a single charged atom in graphene
NASA Astrophysics Data System (ADS)
Wong, Dillon; Corsetti, Fabiano; Wang, Yang; Brar, Victor W.; Tsai, Hsin-Zon; Wu, Qiong; Kawakami, Roland K.; Zettl, Alex; Mostofi, Arash A.; Lischner, Johannes; Crommie, Michael F.
2017-05-01
Electrons in two-dimensional graphene sheets behave as interacting chiral Dirac fermions and have unique screening properties due to their symmetry and reduced dimensionality. By using a combination of scanning tunneling spectroscopy measurements and theoretical modeling we have characterized how graphene's massless charge carriers screen individual charged calcium atoms. A backgated graphene device configuration has allowed us to directly visualize how the screening length for this system can be tuned with carrier density. Our results provide insight into electron-impurity and electron-electron interactions in a relativistic setting with important consequences for other graphene-based electronic devices.
Combinatorial fabrication and screening of organic light-emitting device arrays
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth; Zhou, Zhaoqun
2007-11-01
The combinatorial fabrication and screening of 2-dimensional (2-d) small molecular UV-violet organic light-emitting device (OLED) arrays, 1-d blue-to-red arrays, 1-d intense white OLED libraries, 1-d arrays to study Förster energy transfer in guest-host OLEDs, and 2-d arrays to study exciplex emission from OLEDs is described. The results demonstrate the power of combinatorial approaches for screening OLED materials and configurations, and for studying their basic properties.
Wang, Jing; Zheng, Meizhu; Chen, Lina; Liu, Zhiqiang; Zhang, Yuchi; Liu, Chun-Ming; Liu, Shu
2016-11-01
Hydroxyl radicals are the most reactive free radical of human body, a strong contributor to tissue damage. In this study, liquid chromatography coupled to electrospray ionization mass spectrometry was applied to screen and identify hydroxyl radical scavengers from the total flavonoids of Ginkgo biloba leaves, and high-performance counter current chromatography was used to separate and isolate the active compounds. Furthermore, molecular devices were used to determine hydroxyl radical scavenging activities of the obtained hydroxyl radical scavengers and other flavonoids from G. biloba leaves. As a result, six compounds were screened as hydroxyl radical scavengers, but only three flavonoids, namely, rutin, cosmos glycosides and apigenin-7-O-Glu-4'-O-Rha, were isolated successfully from total flavonoids by high-performance counter current chromatography. The purities of the three obtained compounds were over 90%, respectively, as determined by liquid chromatography. Molecular devices with 96-well microplates evaluation indicated that the 50% scavenging concentration values of screened compounds were lower than that of other flavonoids, they performed greater hydroxyl radical scavenging activity, and the evaluation effects were consistent with the liquid chromatography with mass spectrometry screening results. Therefore, chromatography combined with molecular devices is a feasible and an efficient method for systematic screening, identification, isolation, and evaluation of bioactive components in mixture of botanical medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Public health advocacy in action: the case of unproven breast cancer screening in Australia.
Johnson, Rebecca S; Croager, Emma J; Kameron, Caitlin B; Pratt, Iain S; Vreugdenburg, Thomas D; Slevin, Terry
2016-09-30
In recent years, nonmammographic breast imaging devices, such as thermography, electrical impedance scanning and elastography, have been promoted directly to consumers, which has captured the attention of governments, researchers and health organisations. These devices are not supported by evidence and risk undermining existing mammographic breast cancer screening services. During a 5-year period, Cancer Council Western Australia (CCWA) used strategic research combined with legal, policy and media advocacy to contest claims that these devices were proven alternatives to mammography for breast cancer screening. The campaign was successful because it had input from people with public health, academic, clinical and legal backgrounds, and took advantage of existing legal and regulatory avenues. CCWA's experience provides a useful advocacy model for public health practitioners who are concerned about unsafe consumer products, unproven medical devices, and misleading health information and advertising.
Assessing mouse alternatives to access to computer: a case study of a user with cerebral palsy.
Pousada, Thais; Pareira, Javier; Groba, Betania; Nieto, Laura; Pazos, Alejandro
2014-01-01
The purpose of this study is to describe the process of assessment of three assistive devices to meet the needs of a woman with cerebral palsy (CP) in order to provide her with computer access and use. The user has quadriplegic CP, with anarthria, using a syllabic keyboard. Devices were evaluated through a three-step approach: (a) use of a questionnaire to preselect potential assistive technologies, (b) use of an eTAO tool to determine the effectiveness of each devised, and (c) a conducting semi-structured interview to obtain qualitative data. Touch screen, joystick, and trackball were the preselected devices. The best device that met the user's needs and priorities was joystick. The finding was corroborated by both the eTAO tool and the semi-structured interview. Computers are a basic form of social participation. It is important to consider the special needs and priorities of users and to try different devices when undertaking a device-selection process. Environmental and personal factors have to be considered, as well. This leads to a need to evaluate new tools in order to provide the appropriate support. The eTAO could be a suitable instrument for this purpose. Additional research is also needed to understand how to better match devices with different user populations and how to comprehensively evaluate emerging technologies relative to users with disabilities.
Capillary device refilling. [liquid rocket propellant tank tests
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Merino, F.; Symons, E. P.
1980-01-01
An analytical and experimental study was conducted dealing with refilling start baskets (capillary devices) with settled fluid. A computer program was written to include dynamic pressure, screen wicking, multiple-screen barriers, standpipe screens, variable vehicle mass for computing vehicle acceleration, and calculation of tank outflow rate and vapor pullthrough height. An experimental apparatus was fabricated and tested to provide data for correlation with the analytical model; the test program was conducted in normal gravity using a scale-model capillary device and ethanol as the test fluid. The test data correlated with the analytical model; the model is a versatile and apparently accurate tool for predicting start basket refilling under actual mission conditions.
Park, Joseph P; Do, Minjae; Jin, Hyo-Eon; Lee, Seung-Wuk; Lee, Haeshin
2014-01-01
M13 bacteriophage (phage) was engineered for the use as a versatile template for preparing various nanostructured materials via genetic engineering coupled to enzymatic chemical conversions. First, we engineered the M13 phage to display TyrGluGluGlu (YEEE) on the pVIII coat protein and then enzymatically converted the Tyr residue to 3,4-dihydroxyl-l-phenylalanine (DOPA). The DOPA-displayed M13 phage could perform two functions: assembly and nucleation. The engineered phage assembles various noble metals, metal oxides, and semiconducting nanoparticles into one-dimensional arrays. Furthermore, the DOPA-displayed phage triggered the nucleation and growth of gold, silver, platinum, bimetallic cobalt-platinum, and bimetallic iron-platinum nanowires. This versatile phage template enables rapid preparation of phage-based prototype devices by eliminating the screening process, thus reducing effort and time.
A portable device for rapid nondestructive detection of fresh meat quality
NASA Astrophysics Data System (ADS)
Lin, Wan; Peng, Yankun
2014-05-01
Quality attributes of fresh meat influence nutritional value and consumers' purchasing power. In order to meet the demand of inspection department for portable device, a rapid and nondestructive detection device for fresh meat quality based on ARM (Advanced RISC Machines) processor and VIS/NIR technology was designed. Working principal, hardware composition, software system and functional test were introduced. Hardware system consisted of ARM processing unit, light source unit, detection probe unit, spectral data acquisition unit, LCD (Liquid Crystal Display) touch screen display unit, power unit and the cooling unit. Linux operating system and quality parameters acquisition processing application were designed. This system has realized collecting spectral signal, storing, displaying and processing as integration with the weight of 3.5 kg. 40 pieces of beef were used in experiment to validate the stability and reliability. The results indicated that prediction model developed using PLSR method using SNV as pre-processing method had good performance, with the correlation coefficient of 0.90 and root mean square error of 1.56 for validation set for L*, 0.95 and 1.74 for a*,0.94 and 0.59 for b*, 0.88 and 0.13 for pH, 0.79 and 12.46 for tenderness, 0.89 and 0.91 for water content, respectively. The experimental result shows that this device can be a useful tool for detecting quality of meat.
Display screen and method of manufacture therefor
NASA Technical Reports Server (NTRS)
Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor)
2002-01-01
A screen assembly that combines an angle re-distributing prescreen with a conventional diffusion screen. The prescreen minimizes or eliminates the sensitivity of the screen assembly to projector location. The diffusion screen provides other desirable screen characteristics. Compatible screen structures, along with methods for fabricating high resolution prescreens and methods and devices for maintaining the desired relationship between the prescreen and the diffusion screen are contemplated.
Screenometer: a device for sampling vegetative screening in forested areas
Victor A. Rudis
1985-01-01
A-device for estimating the degree to which vegetation and other obstructions screen forested areas has been adapted to an extensive sampling design for forest surveys. Procedures are recommended to assure that uniform measurements can be made. Examination of sources of sampling variation (observers, points within sampled locations, series of observations within points...
Electronic Device of Didactic and Electrometric Interest for the Study of RLC Circuits.
ERIC Educational Resources Information Center
Rodriguez, Angel L. Perez; And Others
1979-01-01
Presents a method of studying RLC circuits with the help of the oscilloscope in the XYZ mode, complemented by an electronic device which generates a marker-trace on the screen and which is used to measure frequencies without the need of a reference point on the screen. (Author/GA)
Affinity+: Semi-Structured Brainstorming on Large Displays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burtner, Edwin R.; May, Richard A.; Scarberry, Randall E.
2013-04-27
Affinity diagraming is a powerful method for encouraging and capturing lateral thinking in a group environment. The Affinity+ Concept was designed to improve the collaborative brainstorm process through the use of large display surfaces in conjunction with mobile devices like smart phones and tablets. The system works by capturing the ideas digitally and allowing users to sort and group them on a large touch screen manually. Additionally, Affinity+ incorporates theme detection, topic clustering, and other processing algorithms that help bring structured analytic techniques to the process without requiring explicit leadership roles and other overhead typically involved in these activities.
Ahmad, Husna Azyan Binti; El-Badawy, Ismail M; Singh, Om Prakash; Hisham, Rozana Binti; Malarvili, M B
2018-04-27
Fetal heart rate (FHR) monitoring device is highly demanded to assess the fetus health condition in home environments. Conventional standard devices such as ultrasonography and cardiotocography are expensive, bulky and uncomfortable and consequently not suitable for long-term monitoring. Herein, we report a device that can be used to measure fetal heart rate in clinical and home environments. The proposed device measures and displays the FHR on a screen liquid crystal display (LCD). The device consists of hardware that comprises condenser microphone sensor, signal conditioning, microcontroller and LCD, and software that involves the algorithm used for processing the conditioned fetal heart signal prior to FHR display. The device's performance is validated based on analysis of variance (ANOVA) test. FHR data was recorded from 22 pregnant women during the 17th to 37th week of gestation using the developed device and two standard devices; AngelSounds and Electronic Stethoscope. The results show that F-value (1.5) is less than F, (3.1) and p-value (p> 0.05). Accordingly, there is no significant difference between the mean readings of the developed and existing devices. Hence, the developed device can be used for monitoring FHR in clinical and home environments.
Multivariate spatiotemporal visualizations for mobile devices in Flyover Country
NASA Astrophysics Data System (ADS)
Loeffler, S.; Thorn, R.; Myrbo, A.; Roth, R.; Goring, S. J.; Williams, J.
2017-12-01
Visualizing and interacting with complex multivariate and spatiotemporal datasets on mobile devices is challenging due to their smaller screens, reduced processing power, and limited data connectivity. Pollen data require visualizing pollen assemblages spatially, temporally, and across multiple taxa to understand plant community dynamics through time. Drawing from cartography, information visualization, and paleoecology, we have created new mobile-first visualization techniques that represent multiple taxa across many sites and enable user interaction. Using pollen datasets from the Neotoma Paleoecology Database as a case study, the visualization techniques allow ecological patterns and trends to be quickly understood on a mobile device compared to traditional pollen diagrams and maps. This flexible visualization system can be used for datasets beyond pollen, with the only requirements being point-based localities and multiple variables changing through time or depth.
3D image processing architecture for camera phones
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Goma, Sergio R.; Aleksic, Milivoje
2011-03-01
Putting high quality and easy-to-use 3D technology into the hands of regular consumers has become a recent challenge as interest in 3D technology has grown. Making 3D technology appealing to the average user requires that it be made fully automatic and foolproof. Designing a fully automatic 3D capture and display system requires: 1) identifying critical 3D technology issues like camera positioning, disparity control rationale, and screen geometry dependency, 2) designing methodology to automatically control them. Implementing 3D capture functionality on phone cameras necessitates designing algorithms to fit within the processing capabilities of the device. Various constraints like sensor position tolerances, sensor 3A tolerances, post-processing, 3D video resolution and frame rate should be carefully considered for their influence on 3D experience. Issues with migrating functions such as zoom and pan from the 2D usage model (both during capture and display) to 3D needs to be resolved to insure the highest level of user experience. It is also very important that the 3D usage scenario (including interactions between the user and the capture/display device) is carefully considered. Finally, both the processing power of the device and the practicality of the scheme needs to be taken into account while designing the calibration and processing methodology.
Leeson, Cory E; Weaver, Robert A; Bissell, Taylor; Hoyer, Rachel; McClain, Corinne; Nelson, Douglas A; Samosky, Joseph T
2012-01-01
We have enhanced a common medical device, the chest tube drainage container, with electronic sensing of fluid volume, automated detection of critical alarm conditions and the ability to automatically send alert text messages to a nurse's cell phone. The PleurAlert system provides a simple touch-screen interface and can graphically display chest tube output over time. Our design augments a device whose basic function dates back 50 years by adding technology to automate and optimize a monitoring process that can be time consuming and inconvenient for nurses. The system may also enhance detection of emergency conditions and speed response time.
Clinical and psychological effects of excessive screen time on children.
Domingues-Montanari, Sophie
2017-04-01
Over recent years, screen time has become a more complicated concept, with an ever-expanding variety of electronic media devices available throughout the world. Television remains the predominant type of screen-based activity among children. However, computer use, video games and ownership of devices, such as tablets and smart phones, are occurring from an increasingly young age. Screen time, in particular, television viewing, has been negatively associated with the development of physical and cognitive abilities, and positively associated with obesity, sleep problems, depression and anxiety. The physiological mechanisms that underlie the adverse health outcomes related to screen time and the relative contributions of different types of screen and media content to specific health outcomes are unclear. This review discusses the positive and negative effects of screen time on the physiological and psychological development of children. Furthermore, recommendations are offered to parents and clinicians. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).
FPGA-based sleep apnea screening device for home monitoring.
Al-Ashmouny, K haledM; Hamed, Hisham M; Morsy, Ahmed A
2006-01-01
We present the hardware design of an FPGA-based portable device for home screening of sleep apnea syndromes. The device is simple to use, inexpensive, and uses only three signals, namely the nasal air flow and the thorax and abdomen effort signals. The device hardware stores data of overnight sleep on a Secure Digital card. At the clinic, the sleep specialist reads in the stored data and uses an algorithm for the detection and classification of sleep apnea. The device is fairly low-cost and may help spread the ability to diagnose more cases of sleep apnea. Most sleep apnea cases currently go undiagnosed because of cost and practicality limitations of overnight polysomnography at sleep labs.
Technology for the Next-Generation-Mobile User Experience
NASA Astrophysics Data System (ADS)
Delagi, Greg
The current mobile-handset market is a vital and growing one, being driven by technology advances, including increased bandwidth and processing performance, as well as reduced power consumption and improved screen technologies. The 3G/4G handsets of today are multimedia internet devices with increased screen size, HD video and gaming, interactive touch screens, HD camera and camcorders, as well as incredible social, entertainment, and productivity applications. While mobile-technology advancements to date have made us more social in many ways, new advancements over the next decade will bring us to the next level, allowing mobile users to experience new types of "virtual" social interactions with all the senses. The mobile handsets of the future will be smart autonomous-lifestyle devices with a multitude of incorporated sensors, applications and display options, all designed to make your life easier and more productive! With future display media, including 3D imaging, virtual interaction and conferencing will be possible, making every call feel like you are in the same room, providing an experience far beyond today's video conferencing technology. 3D touch-screen with integrated image-projection technologies will work in conjunction with gesturing to bring a new era of intuitive mobile device applications, interaction, and information sharing. Looking to the future, there are many challenges to be faced in delivering a smart mobile companion device that will meet the user demands. One demand will be for the availability of new and compelling services, and features on the "mobile companion". These mobile companions will be more than just Internet devices, and will function as on-the-go workstations, allowing users to function as if they were sitting in front of their computer in the office or at home. The massive amounts of data that will be transmitted through, to and from these mobile companions will require immense improvements in system performance, including specialized circuits, highly parallel architectures, and new packaging design. Another concern of the smart-mobile-companion user will be that their device is able to deliver an always-on, always-aware environment in a way that is completely seamless and transparent. These handsets will automatically determine the best and most appropriate modem link from the multiple choices on the device, including WiFi, LTE, 5G, and mmWave, based on which link will optimize performance, battery life, and network charges to deliver the best possible user experience. In the future, adaptive connectivity will require many different solutions, including the standard modem technologies of today, as well as new machine-machine interfaces and body-area-networks. All of the new and exciting applications and features of these mobile-companion devices are going to require additional energy due to added computational requirements. However, a gap in energy efficiency is quickly developing between the energy that can be delivered by today's battery technologies, and the energy needed to deliver all-day operation or 2-day always-on standby without a recharge. New innovations ranging from low-voltage digital and analog circuits, non-volatile memory, and adaptive power management, to energy harvesting, will be needed to further improve the battery life of these mobile companion devices. Increased bandwidth combined with decreased latency, higher power efficiency, energy harvesting, massive multimedia processing, and new interconnect technologies will all work together to revolutionize how we interact with our smart-companion devices. The implementation challenges in bringing these technologies to market may seem daunting and numerous at first, but with the strong collaboration in research and development from universities, government agencies, and corporations, the smart-mobile-companion devices of the future will likely become reality within 5 years!
Screening and classification of ceramic powders
NASA Technical Reports Server (NTRS)
Miwa, S.
1983-01-01
A summary is given of the classification technology of ceramic powders. Advantages and disadvantages of the wet and dry screening and classification methods are discussed. Improvements of wind force screening devices are described.
Evaluation of the on-site immunoassay drug-screening device Triage-TOX in routine forensic autopsy.
Tominaga, Mariko; Michiue, Tomomi; Maeda, Hitoshi
2015-11-01
Instrumental identification of drugs with quantification is essential in forensic toxicology, while on-site immunoassay urinalysis drug-screening devices conveniently provide preliminary information when adequately used. However, suitable or sufficient urine specimens are not always available. The present study evaluated the efficacy of a new on-site immunoassay drug-screening device Triage-TOX (Alere Inc., San Diego, CA, USA), which has recently been developed to provide objective data on the one-step automated processor, using 51 urine and 19 pericardial fluid samples from 66 forensic autopsy cases, compared with Triage-Drug of Abuse (DOA) and Monitect-9. For benzodiazepines, the positive predictive value and specificity of Triage-TOX were higher than those of Triage-DOA; however, sensitivity was higher with Monitect-9, despite frequent false-positives. The results for the other drugs with the three devices also included a few false-negatives and false-positives. These observations indicate the applicability of Triage-TOX in preliminary drug screening using urine or alternative materials in routine forensic autopsy, when a possible false-negative is considered, especially for benzodiazepines, providing objective information; however, the combined use of another device such as Monitect-9 can help minimize misinterpretation prior to instrumental analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen
2014-12-01
Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.
From One to Many Boxes: Mobile Devices as Primary and Secondary Screens
NASA Astrophysics Data System (ADS)
Cesar, Pablo; Knoche, Hendrik; Bulterman, Dick C. A.
This chapter looks at the current changing habits on audiovisual content consumption at home, with special focus on potential uses of mobile devices. Standard television plus a remote control impose a use that is too coarse to support the various personal needs of people, while mobile devices open new possibilities from engagement and immersion into content and deliberately controlled disengagement with others to providing a screen that can be offered to include others in sharing experiences in a huddled setting.
Eitzen, Abby; Finlayson, Marcia; Carolan-Laing, Leanne; Nacionales, Arthur Junn; Walker, Christie; O'Connor, Josephine; Asano, Miho; Coote, Susan
2017-08-01
The purpose of this study was to identify potential items for an observational screening tool to assess safe, effective and appropriate walking aid use among people with multiple sclerosis (MS). Such a tool is needed because of the association between fall risk and mobility aid use in this population. Four individuals with MS were videotaped using a one or two straight canes, crutches or a rollator in different settings. Seventeen health care professionals from Canada, Ireland and the United States were recruited, and viewed the videos, and were then interviewed about the use of the devices by the individuals in the videos. Interview questions addressed safety, effectiveness and appropriateness of the device in the setting. Data were analyzed qualitatively. Coding consistency across raters was evaluated and confirmed. Nineteen codes were identified as possible items for the screening tool. The most frequent issues raised regardless of setting and device were "device used for duration/abandoned", "appropriate device", "balance and stability", "device technique", "environmental modification" and "hands free." With the identification of a number of potential tool items, researchers can now move forward with the development of the tool. This will involve consultation with both healthcare professionals and people with MS. Implications for rehabilitation Falls among people with multiple sclerosis are associated with mobility device use and use of multiple devices is associated with greater falls risk. The ability to assess for safe, effective and efficient use of walking aids is therefore important, no tools currently exist for this purpose. The codes arising from this study will be used to develop a screening tool for safe, effective and efficient walking aid use with the aim of reducing falls risk.
High-Performance Screen-Printed Thermoelectric Films on Fabrics.
Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; Ko, Dong-Su; Kim, Hyun-Sik; Kim, Sang Il; Yin, Lu; Schlossberg, Sarah M; Cui, Shuang; You, Jung-Min; Kwon, Soonshin; Zheng, Jianlin; Wang, Joseph; Chen, Renkun
2017-08-04
Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screen-printing of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5 Sb 1.5 Te 3 or n-type Bi 2 Te 2.7 Se 0.3 ), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscosity for printability at a very small concentration (0.45-0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.
Handheld ultrasound array imaging device
NASA Astrophysics Data System (ADS)
Hwang, Juin-Jet; Quistgaard, Jens
1999-06-01
A handheld ultrasound imaging device, one that weighs less than five pounds, has been developed for diagnosing trauma in the combat battlefield as well as a variety of commercial mobile diagnostic applications. This handheld device consists of four component ASICs, each is designed using the state of the art microelectronics technologies. These ASICs are integrated with a convex array transducer to allow high quality imaging of soft tissues and blood flow in real time. The device is designed to be battery driven or ac powered with built-in image storage and cineloop playback capability. Design methodologies of a handheld device are fundamentally different to those of a cart-based system. As system architecture, signal and image processing algorithm as well as image control circuit and software in this device is deigned suitably for large-scale integration, the image performance of this device is designed to be adequate to the intent applications. To elongate the battery life, low power design rules and power management circuits are incorporated in the design of each component ASIC. The performance of the prototype device is currently being evaluated for various applications such as a primary image screening tool, fetal imaging in Obstetrics, foreign object detection and wound assessment for emergency care, etc.
Oosterhout, Stefan D.; Braunecker, Wade A.; Owczarczyk, Zbyslaw R.; ...
2017-04-27
The morphology of the bulk heterojunction absorber layer in an organic photovoltaic (OPV) device has a profound effect on the electrical properties and efficiency of the device. Previous work has consistently demonstrated that the solubilizing side-chains of the donor material affect these properties and device performance in a non-trivial way. Here, using Time-Resolved Microwave Conductivity (TRMC), we show by direct measurements of carrier lifetimes that the choice of side chains can also make a substantial difference in photocarrier dynamics. We have previously demonstrated a correlation between peak photoconductance measured by TRMC and device efficiencies; here, we demonstrate that TRMC photocarriermore » dynamics have an important bearing on device performance in a case study of devices made from donor materials with linear vs. branched side-chains and with variable active layer thicknesses. We use Grazing-Incidence Wide Angle X-ray Scattering to elucidate the cause of the different carrier lifetimes as a function of different aggregation behavior in the polymers. Consequently, the results help establish TRMC as a technique for screening OPV donor materials whose devices maintain performance in thick active layers (>250 nm) designed to improve light harvesting, film reproducibility, and ease of processing.« less
Enerly, Espen; Bonde, Jesper; Schee, Kristina; Pedersen, Helle; Lönnberg, Stefan; Nygård, Mari
2016-01-01
Increasing attendance to screening offers the best potential for improving the effectiveness of well-established cervical cancer screening programs. Self-sampling at home for human papillomavirus (HPV) testing as an alternative to a clinical sampling can be a useful policy to increase attendance. To determine whether self-sampling improves screening attendance for women who do not regularly attend the Norwegian Cervical Cancer Screening Programme (NCCSP), 800 women aged 25–69 years in the Oslo area who were due to receive a 2nd reminder to attend regular screening were randomly selected and invited to be part of the intervention group. Women in this group received one of two self-sampling devices, Evalyn Brush or Delphi Screener. To attend screening, women in the intervention group had the option of using the self-sampling device (self-sampling subgroup) or visiting their physician for a cervical smear. Self-sampled specimens were split and analyzed for the presence of high-risk (hr) HPV by the CLART® HPV2 test and the digene® Hybrid Capture (HC)2 test. The control group consisted of 2593 women who received a 2nd reminder letter according to the current guidelines of the NCCSP. The attendance rates were 33.4% in the intervention group and 23.2% in the control group, with similar attendance rates for both self-sampling devices. Women in the self-sampling subgroup responded favorably to both self-sampling devices and cited not remembering receiving a call for screening as the most dominant reason for previous non-attendance. Thirty-two of 34 (94.1%) hrHPV-positive women in the self-sampling subgroup attended follow-up. In conclusion, self-sampling increased attendance rates and was feasible and well received. This study lends further support to the proposal that self-sampling may be a valuable alternative for increasing cervical cancer screening coverage in Norway. PMID:27073929
Enerly, Espen; Bonde, Jesper; Schee, Kristina; Pedersen, Helle; Lönnberg, Stefan; Nygård, Mari
2016-01-01
Increasing attendance to screening offers the best potential for improving the effectiveness of well-established cervical cancer screening programs. Self-sampling at home for human papillomavirus (HPV) testing as an alternative to a clinical sampling can be a useful policy to increase attendance. To determine whether self-sampling improves screening attendance for women who do not regularly attend the Norwegian Cervical Cancer Screening Programme (NCCSP), 800 women aged 25-69 years in the Oslo area who were due to receive a 2nd reminder to attend regular screening were randomly selected and invited to be part of the intervention group. Women in this group received one of two self-sampling devices, Evalyn Brush or Delphi Screener. To attend screening, women in the intervention group had the option of using the self-sampling device (self-sampling subgroup) or visiting their physician for a cervical smear. Self-sampled specimens were split and analyzed for the presence of high-risk (hr) HPV by the CLART® HPV2 test and the digene® Hybrid Capture (HC)2 test. The control group consisted of 2593 women who received a 2nd reminder letter according to the current guidelines of the NCCSP. The attendance rates were 33.4% in the intervention group and 23.2% in the control group, with similar attendance rates for both self-sampling devices. Women in the self-sampling subgroup responded favorably to both self-sampling devices and cited not remembering receiving a call for screening as the most dominant reason for previous non-attendance. Thirty-two of 34 (94.1%) hrHPV-positive women in the self-sampling subgroup attended follow-up. In conclusion, self-sampling increased attendance rates and was feasible and well received. This study lends further support to the proposal that self-sampling may be a valuable alternative for increasing cervical cancer screening coverage in Norway.
Passive gas separator and accumulator device
Choe, H.; Fallas, T.T.
1994-08-02
A separation device employing a gas separation filter and swirler vanes for separating gas from a gas-liquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use. 3 figs.
Passive gas separator and accumulator device
Choe, Hwang; Fallas, Thomas T.
1994-01-01
A separation device employing a gas separation filter and swirler vanes for separating gas from a gasliquid mixture is provided. The cylindrical filter utilizes the principle that surface tension in the pores of the filter prevents gas bubbles from passing through. As a result, the gas collects in the interior region of the filter and coalesces to form larger bubbles in the center of the device. The device is particularly suited for use in microgravity conditions since the swirlers induce a centrifugal force which causes liquid to move from the inner region of the filter, pass the pores, and flow through the outlet of the device while the entrained gas is trapped by the filter. The device includes a cylindrical gas storage screen which is enclosed by the cylindrical gas separation filter. The screen has pores that are larger than those of the filters. The screen prevents larger bubbles that have been formed from reaching and interfering with the pores of the gas separation filter. The device is initially filled with a gas other than that which is to be separated. This technique results in separation of the gas even before gas bubbles are present in the mixture. Initially filling the device with the dissimilar gas and preventing the gas from escaping before operation can be accomplished by sealing the dissimilar gas in the inner region of the separation device with a ruptured disc which can be ruptured when the device is activated for use.
Lee-Rowland, Lauren M; Barry, Christopher T; Gillen, Christopher T A; Hansen, Laura K
2017-01-01
The current study examined the moderating influence that different aspects of narcissism have on the relation between callous-unemotional (CU) traits and aggression in a sample of 720 adolescents (500 males), ages 16-19 enrolled in a 22-week residential program. Findings from the two studies revealed that psychopathy-linked narcissism as assessed by the Antisocial Process Screening Device (APSD; Frick & Hare, 2001; Antisocial process screening device. Toronto: Multi-Health Systems.) and vulnerable narcissism as assessed using the Pathological Narcissism Inventory (PNI; Pincus et al., 2009; Initial construction and validation of the Pathological Narcissism Inventory. Psychological Assessment, 21, 365-379) significantly moderated the relation between CU traits and aggression in adolescents. Conversely, non-pathological narcissism assessed by the Narcissistic Personality Inventory for Children (NPIC; Barry, Frick, & Killian, 2003; The relation of narcissism and self-esteem to conduct problems in children. Journal of Clinical Child and Adolescent Psychology, 32, 139-152) and PNI grandiose narcissism did not significantly impact this relation. These results suggest that forms of narcissism most closely connected to internalizing problems combined with CU traits are associated with relatively heightened aggression in youth. The implications of these findings are discussed. Aggr. Behav. 43:14-25, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ugolini, Giovanni Stefano; Occhetta, Paola; Saccani, Alessandra; Re, Francesca; Krol, Silke; Rasponi, Marco; Redaelli, Alberto
2018-04-01
In vitro blood-brain barrier models are highly relevant for drug screening and drug development studies, due to the challenging task of understanding the transport mechanism of drug molecules through the blood-brain barrier towards the brain tissue. In this respect, microfluidics holds potential for providing microsystems that require low amounts of cells and reagent and can be potentially multiplexed for increasing the ease and throughput of the drug screening process. We here describe the design, development and validation of a microfluidic device for endothelial blood-brain barrier cell transport studies. The device comprises of two microstructured layers (top culture chamber and bottom collection chamber) sandwiching a porous membrane for the cell culture. Microstructured layers include two pairs of physical electrodes, embedded into the device layers by geometrically defined guiding channels with computationally optimized positions. These electrodes allow the use of commercial electrical measurement systems for monitoring trans-endothelial electrical resistance (TEER). We employed the designed device for performing preliminary assessment of endothelial barrier formation with murine brain endothelial cells (Br-bEnd5). Results demonstrate that cellular junctional complexes effectively form in the cultures (expression of VE-Cadherin and ZO-1) and that the TEER monitoring systems effectively detects an increase of resistance of the cultured cell layers indicative of tight junction formation. Finally, we validate the use of the described microsystem for drug transport studies demonstrating that Br-bEnd5 cells significantly hinder the transport of molecules (40 kDa and 4 kDa dextran) from the top culture chamber to the bottom collection chamber.
Screen printed UHF antennas on flexible substrates
NASA Astrophysics Data System (ADS)
Janeczek, Kamil; Młożniak, Anna; Kozioł, Grażyna; Araźna, Aneta; Jakubowska, Małgorzata; Bajurko, Paweł
2010-09-01
Printed electronics belongs to the most important developing electronics technologies. It provides new possibilities to produce low cost and large area devices. In its range several applications can be distinguished like printed batteries, OLED, biosensors, photovoltaic cells or RFID tags. In the presented investigation, antennas working in UHF frequency range were elaborated. It can be applied in the future for flexible RFID tags. To produce these antennas polymer paste with silver flakes was used. It was deposited on two flexible substrates (foil and photo paper) with screen printing techniques. After printing process surface profile, electrical and microwave parameters of performed antennas were measured using digital multimeter and network analyzer, relatively. Furthermore, a thickness of printed layers was measured.
Printing method for organic light emitting device lighting
NASA Astrophysics Data System (ADS)
Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Kim, Snag-Gi; Hong, Kyung-Jin; So, Soon-Yeol
2013-03-01
Organic Light Emitting Device (OLED) has a characteristic to change the electric energy into the light when the electric field is applied to the organic material. OLED is currently employed as a light source for the lighting tools because research has extensively progressed in the improvement of luminance, efficiency, and life time. OLED is widely used in the plate display device because of a simple manufacture process and high emitting efficiency. But most of OLED lighting projects were used the vacuum evaporator (thermal evaporator) with low molecular. Although printing method has lower efficiency and life time of OLED than vacuum evaporator method, projects of printing OLED actively are progressed because was possible to combine with flexible substrate and printing technology. Printing technology is ink-jet, screen printing and slot coating. This printing method allows for low cost and mass production techniques and large substrates. In this research, we have proposed inkjet printing for organic light-emitting devices has the dominant method of thick film deposition because of its low cost and simple processing. In this research, the fabrication of the passive matrix OLED is achieved by inkjet printing, using a polymer phosphorescent ink. We are measured optical and electrical characteristics of OLED.
Automated Processing of Plasma Samples for Lipoprotein Separation by Rate-Zonal Ultracentrifugation.
Peters, Carl N; Evans, Iain E J
2016-12-01
Plasma lipoproteins are the primary means of lipid transport among tissues. Defining alterations in lipid metabolism is critical to our understanding of disease processes. However, lipoprotein measurement is limited to specialized centers. Preparation for ultracentrifugation involves the formation of complex density gradients that is both laborious and subject to handling errors. We created a fully automated device capable of forming the required gradient. The design has been made freely available for download by the authors. It is inexpensive relative to commercial density gradient formers, which generally create linear gradients unsuitable for rate-zonal ultracentrifugation. The design can easily be modified to suit user requirements and any potential future improvements. Evaluation of the device showed reliable peristaltic pump accuracy and precision for fluid delivery. We also demonstrate accurate fluid layering with reduced mixing at the gradient layers when compared to usual practice by experienced laboratory personnel. Reduction in layer mixing is of critical importance, as it is crucial for reliable lipoprotein separation. The automated device significantly reduces laboratory staff input and reduces the likelihood of error. Overall, this device creates a simple and effective solution to formation of complex density gradients. © 2015 Society for Laboratory Automation and Screening.
NASA Technical Reports Server (NTRS)
Lamar, John E.; Landman, Drew; Swift, Russell S.; Parikh, Paresh C.
2007-01-01
Ships produce vortices and air-wakes while either underway or stationary in a wind. These flow fields can be detrimental to the conduction of air operations in that they can adversely impact the air vehicles and flight crews. There are potential solutions to these problems for both frigates/destroyers and carriers through the use of novel vortex flow or flow control devices. This appendix highlights several devices which may have application and points out that traditional wind-tunnel testing using smoke, laser-vapor screen, and Particle Image Velocimetry can be useful in sorting out the effectiveness of different devices.
A portable device for detecting fruit quality by diffuse reflectance Vis/NIR spectroscopy
NASA Astrophysics Data System (ADS)
Sun, Hongwei; Peng, Yankun; Li, Peng; Wang, Wenxiu
2017-05-01
Soluble solid content (SSC) is a major quality parameter to fruit, which has influence on its flavor or texture. Some researches on the on-line non-invasion detection of fruit quality were published. However, consumers desire portable devices currently. This study aimed to develop a portable device for accurate, real-time and nondestructive determination of quality factors of fruit based on diffuse reflectance Vis/NIR spectroscopy (520-950 nm). The hardware of the device consisted of four units: light source unit, spectral acquisition unit, central processing unit, display unit. Halogen lamp was chosen as light source. When working, its hand-held probe was in contact with the surface of fruit samples thus forming dark environment to shield the interferential light outside. Diffuse reflectance light was collected and measured by spectrometer (USB4000). ARM (Advanced RISC Machines), as central processing unit, controlled all parts in device and analyzed spectral data. Liquid Crystal Display (LCD) touch screen was used to interface with users. To validate its reliability and stability, 63 apples were tested in experiment, 47 of which were chosen as calibration set, while others as prediction set. Their SSC reference values were measured by refractometer. At the same time, samples' spectral data acquired by portable device were processed by standard normalized variables (SNV) and Savitzky-Golay filter (S-G) to eliminate the spectra noise. Then partial least squares regression (PLSR) was applied to build prediction models, and the best predictions results was achieved with correlation coefficient (r) of 0.855 and standard error of 0.6033° Brix. The results demonstrated that this device was feasible to quantitatively analyze soluble solid content of apple.
A Disposable Microfluidic Device with a Screen Printed Electrode for Mimicking Phase II Metabolism
Vasiliadou, Rafaela; Nasr Esfahani, Mohammad Mehdi; Brown, Nathan J.; Welham, Kevin J.
2016-01-01
Human metabolism is investigated using several in vitro methods. However, the current methodologies are often expensive, tedious and complicated. Over the last decade, the combination of electrochemistry (EC) with mass spectrometry (MS) has a simpler and a cheaper alternative to mimic the human metabolism. This paper describes the development of a disposable microfluidic device with a screen-printed electrode (SPE) for monitoring phase II GSH reactions. The proposed chip has the potential to be used as a primary screening tool, thus complementing the current in vitro methods. PMID:27598162
Performance, stability and operation voltage optimization of screen-printed aqueous supercapacitors
Lehtimäki, Suvi; Railanmaa, Anna; Keskinen, Jari; Kujala, Manu; Tuukkanen, Sampo; Lupo, Donald
2017-01-01
Harvesting micropower energy from the ambient environment requires an intermediate energy storage, for which printed aqueous supercapacitors are well suited due to their low cost and environmental friendliness. In this work, a systematic study of a large set of devices is used to investigate the effect of process variability and operating voltage on the performance and stability of screen printed aqueous supercapacitors. The current collectors and active layers are printed with graphite and activated carbon inks, respectively, and aqueous NaCl used as the electrolyte. The devices are characterized through galvanostatic discharge measurements for quantitative determination of capacitance and equivalent series resistance (ESR), as well as impedance spectroscopy for a detailed study of the factors contributing to ESR. The capacitances are 200–360 mF and the ESRs 7.9–12.7 Ω, depending on the layer thicknesses. The ESR is found to be dominated by the resistance of the graphite current collectors and is compatible with applications in low-power distributed electronics. The effects of different operating voltages on the capacitance, leakage and aging rate of the supercapacitors are tested, and 1.0 V found to be the optimal choice for using the devices in energy harvesting applications. PMID:28382962
Noise screen for attitude control system
NASA Technical Reports Server (NTRS)
Rodden, John J. (Inventor); Stevens, Homer D. (Inventor); Hong, David P. (Inventor); Hirschberg, Philip C. (Inventor)
2002-01-01
An attitude control system comprising a controller and a noise screen device coupled to the controller. The controller is adapted to control an attitude of a vehicle carrying an actuator system that is adapted to pulse in metered bursts in order to generate a control torque to control the attitude of the vehicle in response to a control pulse. The noise screen device is adapted to generate a noise screen signal in response to the control pulse that is generated when an input attitude error signal exceeds a predetermined deadband attitude level. The noise screen signal comprises a decaying offset signal that when combined with the attitude error input signal results in a net attitude error input signal away from the predetermined deadband level to reduce further control pulse generation.
High throughput screening of CO2 solubility in aqueous monoamine solutions.
Porcheron, Fabien; Gibert, Alexandre; Mougin, Pascal; Wender, Aurélie
2011-03-15
Post-combustion Carbon Capture and Storage technology (CCS) is viewed as an efficient solution to reduce CO(2) emissions of coal-fired power stations. In CCS, an aqueous amine solution is commonly used as a solvent to selectively capture CO(2) from the flue gas. However, this process generates additional costs, mostly from the reboiler heat duty required to release the carbon dioxide from the loaded solvent solution. In this work, we present thermodynamic results of CO(2) solubility in aqueous amine solutions from a 6-reactor High Throughput Screening (HTS) experimental device. This device is fully automated and designed to perform sequential injections of CO(2) within stirred-cell reactors containing the solvent solutions. The gas pressure within each reactor is monitored as a function of time, and the resulting transient pressure curves are transformed into CO(2) absorption isotherms. Solubility measurements are first performed on monoethanolamine, diethanolamine, and methyldiethanolamine aqueous solutions at T = 313.15 K. Experimental results are compared with existing data in the literature to validate the HTS device. In addition, a comprehensive thermodynamic model is used to represent CO(2) solubility variations in different classes of amine structures upon a wide range of thermodynamic conditions. This model is used to fit the experimental data and to calculate the cyclic capacity, which is a key parameter for CO(2) process design. Solubility measurements are then performed on a set of 50 monoamines and cyclic capacities are extracted using the thermodynamic model, to asses the potential of these molecules for CO(2) capture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul H.
2016-08-31
As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to reproducibly test promising candidates for high-performing PV devices. Many early-stage devices are prone to device shunting due to pinholes in the absorber layer, producing 'false-negative' results. Here, we demonstrate a device engineering solution toward a robust device architecture, using a two-step absorber deposition approach. We use tin sulfide (SnS) as a test absorber material. The SnS bulk is processed at high temperature (400 degrees C) to stimulate grain growth, followed by a much thinner, low-temperature (200 degrees C) absorber deposition. At a lowermore » process temperature, the thin absorber overlayer contains significantly smaller, densely packed grains, which are likely to provide a continuous coating and fill pinholes in the underlying absorber bulk. We compare this two-step approach to the more standard approach of using a semi-insulating buffer layer directly on top of the annealed absorber bulk, and we demonstrate a more than 3.5x superior shunt resistance Rsh with smaller standard error ..sigma..Rsh. Electron-beam-induced current (EBIC) measurements indicate a lower density of pinholes in the SnS absorber bulk when using the two-step absorber deposition approach. We correlate those findings to improvements in the device performance and device performance reproducibility.« less
Screening for Physical Problems in Classrooms for Severely Handicapped Students.
ERIC Educational Resources Information Center
Dever, Richard; Knapczyk, Dennis
1980-01-01
The authors present a screening device with which teachers of severely handicapped students may detect the presence of a physical problem. The screening approach covers vision, auditory problems, seizures, orthopedic problems, and pain. (CL)
Beime, Beate; Deutsch, Cornelia; Krüger, Ralf; Wolf, Andreas; Müller, Peter; Hammel, Gertrud; Bramlage, Peter
2017-05-01
The purpose of the study was to validate the ambulatory blood pressure monitoring (ABPM) device custo screen pediatric in children aged 3 to 12 years according to the International Protocol of the European Society of Hypertension (ESH-IP revision 2010). Thirty-three children were included and systolic and diastolic blood pressure measurements were performed according to the ESH-IP. The protocol was modified for children considering data from the German Health Interview and Examination Survey for Children and Adolescents (KIGGS). The custo screen pediatric met all the requirements of the ESH-IP. The mean difference between the test device and the reference was -1.4 ± 3.0 mmHg for systolic blood pressure (SBP) and -0.7 ± 3.2 mmHg for diastolic blood pressure (DBP). For SBP and DBP, all 99 measurements were within the absolute difference of 10 mmHg between the test device and the reference. As to part 2 of the protocol, for DBP in all subjects, two out of three measurements were within 5 mmHg between the device and the standard, whereas for SBP in 32 of 33 subjects, two out of three measurements were within this range. The custo screen pediatric met all criteria of the ESH-IP review 2010, modified for children from 3 to about 12 years, and can be recommended for ABPM in children. What is Known: • Validation of blood pressure measuring devices is essential to provide patients with an accurate blood pressure measuring device. • The majority of devices has not been validated in children. What is New: • Prior to the present validation, study protocol adjustments of ESH-IP review 2010 for children were defined according to German Health Interview and Examination Survey for Children and Adolescents 2013 (KIGGS). • The custo screen pediatric test device met all criteria of ESH-IP revision 2010, modified for children, and can be recommended for ABPM in children aged 3 to about 12 years.
Model-based error diffusion for high fidelity lenticular screening.
Lau, Daniel; Smith, Trebor
2006-04-17
Digital halftoning is the process of converting a continuous-tone image into an arrangement of black and white dots for binary display devices such as digital ink-jet and electrophotographic printers. As printers are achieving print resolutions exceeding 1,200 dots per inch, it is becoming increasingly important for halftoning algorithms to consider the variations and interactions in the size and shape of printed dots between neighboring pixels. In the case of lenticular screening where statistically independent images are spatially multiplexed together, ignoring these variations and interactions, such as dot overlap, will result in poor lenticular image quality. To this end, we describe our use of model-based error-diffusion for the lenticular screening problem where statistical independence between component images is achieved by restricting the diffusion of error to only those pixels of the same component image where, in order to avoid instabilities, the proposed approach involves a novel error-clipping procedure.
Classification of human pathogen bacteria for early screening using electronic nose
NASA Astrophysics Data System (ADS)
Zulkifli, Syahida Amani; Mohamad, Che Wan Syarifah Robiah; Abdullah, Abu Hassan
2017-10-01
This paper present human pathogen bacteria for early screening using electronic nose. Electronic nose (E-nose) known as gas sensor array is a device that analyze the odor measurement give the fast response and less time consuming for clinical diagnosis. Many bacterial pathogens could lead to life threatening infections. Accurate and rapid diagnosis is crucial for the successful management of these infections disease. The conventional method need more time to detect the growth of bacterial. Alternatively, the bacteria are Pseudomonas aeruginosa and Shigella cultured on different media agar can be detected and classifies according to the volatile compound in shorter time using electronic nose (E-nose). Then, the data from electronic nose (E-nose) is processed using statistical method which is principal component analysis (PCA). The study shows the capability of electronic nose (E-nose) for early screening for bacterial infection in human stomach.
Chavez, Pierre-François; Meeus, Joke; Robin, Florent; Schubert, Martin Alexander; Somville, Pascal
2018-01-01
The evaluation of drug–polymer miscibility in the early phase of drug development is essential to ensure successful amorphous solid dispersion (ASD) manufacturing. This work investigates the comparison of thermodynamic models, conventional experimental screening methods (solvent casting, quench cooling), and a novel atomization screening device based on their ability to predict drug–polymer miscibility, solid state properties (Tg value and width), and adequate polymer selection during the development of spray-dried amorphous solid dispersions (SDASDs). Binary ASDs of four drugs and seven polymers were produced at 20:80, 40:60, 60:40, and 80:20 (w/w). Samples were systematically analyzed using modulated differential scanning calorimetry (mDSC) and X-ray powder diffraction (XRPD). Principal component analysis (PCA) was used to qualitatively assess the predictability of screening methods with regards to SDASD development. Poor correlation was found between theoretical models and experimentally-obtained results. Additionally, the limited ability of usual screening methods to predict the miscibility of SDASDs did not guarantee the appropriate selection of lead excipient for the manufacturing of robust SDASDs. Contrary to standard approaches, our novel screening device allowed the selection of optimal polymer and drug loading and established insight into the final properties and performance of SDASDs at an early stage, therefore enabling the optimization of the scaled-up late-stage development. PMID:29518936
Ranak, M S A Noman; Azad, Saiful; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z
2017-01-01
Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)-a.k.a., Force Touch in Apple's MacBook, Apple Watch, ZTE's Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on-is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme.
Ranak, M. S. A. Noman; Nor, Nur Nadiah Hanim Binti Mohd; Zamli, Kamal Z.
2017-01-01
Due to recent advancements and appealing applications, the purchase rate of smart devices is increasing at a higher rate. Parallely, the security related threats and attacks are also increasing at a greater ratio on these devices. As a result, a considerable number of attacks have been noted in the recent past. To resist these attacks, many password-based authentication schemes are proposed. However, most of these schemes are not screen size independent; whereas, smart devices come in different sizes. Specifically, they are not suitable for miniature smart devices due to the small screen size and/or lack of full sized keyboards. In this paper, we propose a new screen size independent password-based authentication scheme, which also offers an affordable defense against shoulder surfing, brute force, and smudge attacks. In the proposed scheme, the Press Touch (PT)—a.k.a., Force Touch in Apple’s MacBook, Apple Watch, ZTE’s Axon 7 phone; 3D Touch in iPhone 6 and 7; and so on—is transformed into a new type of code, named Press Touch Code (PTC). We design and implement three variants of it, namely mono-PTC, multi-PTC, and multi-PTC with Grid, on the Android Operating System. An in-lab experiment and a comprehensive survey have been conducted on 105 participants to demonstrate the effectiveness of the proposed scheme. PMID:29084262
Effect of total shoulder replacements on airport security screening in the post-9/11 era.
Dines, Joshua S; Elkousy, Hussein; Edwards, T Bradley; Gartsman, Gary M; Dines, David M
2007-01-01
There are few reports in the literature on the effect of orthopaedic implants on airport security devices and none on shoulder arthroplasty implants after September 11, 2001. Since 9/11, airport security screening devices have become more sensitive in response to the increasing threat of terrorism. Often, patients with joint implants activate the metal detectors and are subsequently subjected to more intensive screening. We assess the effects of shoulder joint implants on different airport security devices and what effect the results had on passenger travel. In this study, 154 patients who had previously undergone shoulder replacement responded to a questionnaire regarding their travel experiences after 9/11. Of these, 85 had flown during the time period studied (47 men and 38 women; mean age, 67.8 years); 79 had traveled domestically (mean, 7 flights), and 22 had taken international flights (mean, 6.1 flights). The questionnaire addressed each patient's height/weight, the number of flight segments flown (domestic and international), the number of times that a patient activated the doorway alarm/wand alarm, and the effect of a card stating that the patient had joint replacement (when applicable). On average, patients with shoulder replacement traveling domestically activated the security gate 52% of the time. The average for international travel was 42%. Of the patients who flew both domestically and internationally, there was a high correlation of activation (R = 0.54). Twenty-six patients had multiple joint implants (mean, 2.8). Multiple joint implants caused increased alarm activation (P < .001). All patients reported that their travel was delayed during the instances of security activation. There was no statistically significant effect of body mass index, height, weight, age, or sex on security device activation. Of the patients, 71% were told by their doctor that the shoulder replacement may activate security devices. Of these, 46 were given a card by their doctor indicating the presence of a total joint implant. In only 30% of the security encounters of these patients did the card expedite the screening process. This is the largest study on the effects of joint implants, and shoulder implants in particular, on airport security devices and the only one that has analyzed the data of post-9/11 travel. Patients traveling after total shoulder replacement are often delayed and subjected to more rigorous screening when traveling, especially in the post-9/11 environment. Doctors often warn their patients of potential problems and may try to avert this by giving them cards documenting the presence of a joint implant. The acceptance of these cards is sporadic. This study raises the importance of notifying patients of potential security delays, especially those with multiple joint implants, as they may directly affect travel plans. In addition, these patients may benefit from the establishment of an international joint registry.
Anticounterfeiting features of artistic screening
NASA Astrophysics Data System (ADS)
Ostromoukhov, Victor; Rudaz, Nicolas; Amidror, Isaac; Emmel, Patrick; Hersch, Roger D.
1996-12-01
In a recent publication (Ostromoukhov95), a new image reproduction technique, artistic screening, was presented. It incorporates freely created artistic screen elements for generating halftones. Fixed predefined dot contours associated with given intensity levels determine the screen dot shape's growing behavior. Screen dot contours associated with each intensity level are obtained by interpolation between the fixed predefined dot contours. A user-defined mapping transforms screen elements from screen element definition space to screen element rendition space. This mapping can be tuned to produce various effects such as dilatations, contractions and non-linear deformations of the screen element grid. Although artistic screening has been designed mainly for performing the creation of graphic designs of high artistic quality, it also incorporates several important anti-counterfeiting features. For example, bank notes or other valuable printed matters produced with artistic screening may incorporate both full size and microscopic letters of varying shape into the image halftoning process. Furthermore, artistic screening can be used for generating screen dots at varying frequencies and orientations, which are well known for inducing strong moire effects when scanned by a digital color copier or a desktop scanner. However, it is less known that frequency-modulated screen dots have at each screen element size a different reproduction behavior (dot gain). When trying to reproduce an original by analog means, such as a photocopier, the variations in dot gain induce strong intensity variations at the same original intensity levels. In this paper, we present a method for compensating such variations for the target printer, on which the original security document is to be printed. Potential counterfeiters who would like to reproduce the original with a photocopying device may only be able to adjust the dot gain for the whole image and will therefore be unable to eliminate the undesired intensity variations produced by variable frequency screen elements.
Turley, James P; Johnson, Todd R; Smith, Danielle Paige; Zhang, Jaijie; Brixey, Juliana J
2006-04-01
Use of medical devices often directly contributes to medical errors. Because it is difficult or impossible to change the design of existing devices, the best opportunity for improving medical device safety is during the purchasing process. However, most hospital personnel are not familiar with the usability evaluation methods designed to identify aspects of a user interface that do not support intuitive and safe use. A review of medical device operating manuals is proposed as a more practical method of usability evaluation. Operating manuals for five volumetric infusion pumps from three manufacturers were selected for this study (January-April 2003). Each manual's safety message content was evaluated to determine whether the message indicated a device design characteristic that violated known usability principles (heuristics) or indicated a violation of an affordance of the device. "Minimize memory load," with 65 violations, was the heuristic violated most frequently across pumps. Variations between pumps, including the frequency and severity of violations for each, were noted. Results suggest that manual review can provide a proxy for heuristic evaluation of the actual medical device. This method, intended to be a component of prepurchasing evaluation, can complement more formal usability evaluation methods and be used to select a subset of devices for more extensive and formal testing.
Translations on USSR Science and Technology, Physical Sciences and Technology, Number 16
1977-08-05
34INVESTIGATION OF SPLITTING OF LIGHT NUCLEI WITH HIGH-ENERGY y -RAYS WITH THE METHOD OF WILSON’S CHAMBER OPERATING IN POWERFUL BEAMS OF ELECTRONIC...boast high reliability, high speed, and extremely modest power requirements. Information oh the Screen Visual display devices greatly facilitate...area of application of these units Includes navigation, control of power systems, machine tools, and manufac- turing processes. Th» ^»abilities of
Microfluidic devices for the controlled manipulation of small volumes
Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN
2003-02-25
A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The method and apparatus are implemented on a fluidic microchip to provide high serial throughput. The method and device of the invention also lend themselves to multiple parallel analyses and manipulation to provide greater throughput for the generation of biochemical information. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter biochemical reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The individual reaction volumes are manipulated in serial fashion analogous to a digital shift register. The method and apparatus according to this invention have application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
Detection of orthopaedic foot and ankle implants by security screening devices.
Bluman, Eric M; Tankson, Cedric; Myerson, Mark S; Jeng, Clifford L
2006-12-01
A common question asked by patients contemplating foot and ankle surgery is whether the implants used will set off security screening devices in airports and elsewhere. Detectability of specific implants may require the orthopaedic surgeon to provide attestation regarding their presence in patients undergoing implantation of these devices. Only two studies have been published since security measures became more stringent in the post-9/11 era. None of these studies specifically focused on the large numbers of orthopaedic foot and ankle implants in use today. This study establishes empiric data on the detectability by security screening devices of some currently used foot and ankle implants. A list of foot and ankle procedures was compiled, including procedures frequently used by general orthopaedists as well as those usually performed only by foot and ankle specialists. Implants tested included those used for open reduction and internal fixation, joint fusion, joint arthroplasty, osteotomies, arthroreisis, and internal bone stimulation. A test subject walked through a gate-type security device and was subsequently screened using a wand-type detection device while wearing each construct grouping. The screening was repeated with the implants placed within uncooked steak to simulate subcutaneous and submuscular implantation. None of the implants were detected by the gate-type security device. Specific implants that triggered the wand-type detection device regardless of coverage with the meat were total ankle prostheses, implantable bone stimulators, large metatarsophalangeal hemiarthroplasty, large arthroreisis plugs, medial distal tibial locking construct, supramalleolar osteotomy fixation, stainless steel bimalleolar ankle fracture fixation, calcaneal fracture plate and screw constructs, large fragment blade plate constructs, intramedullary tibiotalocalcaneal fusion constructs, and screw fixation for calcaneal osteotomies, ankle arthrodeses, triple arthrodeses, and stainless steel first metatarsophalangeal joint arthrodeses. The placement of implants in meat prevented the detectability of only the stainless steel Jones fracture implant (stainless steel 6.5-mm cannulated screw) and the stainless steel midfoot fusion construct (four stainless steel 4.0-mm cannulated screws). These data may help the orthopaedic surgeon in counseling patients as to the detectability of some orthopaedic foot and ankle implants in use today. Specific constructs for which documentation may need to be provided to the patient are identified. As security standards evolve and the environments in which they are practiced change, empiric testing of many of these devices may need to be repeated.
The Use of the Miller Analogies Test as a Screening Device for Mexican-American Graduate Students.
ERIC Educational Resources Information Center
Duling, John A.
The determination of whether or not the Miller Analogies Test (MAT) is a valid screening device to use with a culturally diverse populace was examined. The study was conducted at New Mexico State University (NMSU) using 2 sample groups. Sample A consisted of 560 Anglos and 101 Mexican Americans tested by the NMSU Counseling Center during a 2-year…
Code of Federal Regulations, 2010 CFR
2010-10-01
... sufficient amount of saliva for an alcohol screening test? (a) As the STT, you must take the following steps if an employee is unable to provide sufficient saliva to complete a test on a saliva screening device (e.g., the employee does not provide sufficient saliva to activate the device). (1) You must conduct...
Velocity Vector Field Visualization of Flow in Liquid Acquisition Device Channel
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Chao, David F.; Hall, Nancy R.; Zhang, Nengli
2012-01-01
A capillary flow liquid acquisition device (LAD) for cryogenic propellants has been developed and tested in NASA Glenn Research Center to meet the requirements of transferring cryogenic liquid propellants from storage tanks to an engine in reduced gravity environments. The prototypical mesh screen channel LAD was fabricated with a mesh screen, covering a rectangular flow channel with a cylindrical outlet tube, and was tested with liquid oxygen (LOX). In order to better understand the performance in various gravity environments and orientations at different liquid submersion depths of the screen channel LAD, a series of computational fluid dynamics (CFD) simulations of LOX flow through the LAD screen channel was undertaken. The resulting velocity vector field visualization for the flow in the channel has been used to reveal the gravity effects on the flow in the screen channel.
Pointright: a system to redirect mouse and keyboard control among multiple machines
Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA
2008-09-30
The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.
Noninvasive type 2 diabetes screening: superior sensitivity to fasting plasma glucose and A1C.
Maynard, John D; Rohrscheib, Mark; Way, Jeffrey F; Nguyen, Catriona M; Ediger, Marwood N
2007-05-01
This study compared the performance of a novel noninvasive technology to fasting plasma glucose (FPG) and A1C tests for detecting undiagnosed diabetes and impaired glucose tolerance. The design was a head-to-head evaluation in a naïve population. Consented subjects received FPG and A1C tests and an oral glucose tolerance test (OGTT). Subjects were also measured by a noninvasive device that detects the fluorescence of skin advanced glycation end products. A total of 351 subjects participated. Subjects with 2-h OGTT values > or = 140 mg/dl defined the positive screening class. A total of 84 subjects (23.9% prevalence) screened positive. The performances of the noninvasive device, FPG, and A1C were evaluated for sensitivity and specificity against this classification. At the impaired fasting glucose threshold (FPG = 100 mg/dl), the FPG testing sensitivity was 58% and the specificity was 77.4%. At that same specificity, the sensitivity for A1C testing was 63.8%, while the noninvasive testing sensitivity was 74.7%. The sensitivity advantage of the noninvasive device over both blood tests for detecting diabetes and precursors was statistically significant (P < 0.05). The noninvasive technology showed clinical performance advantages over both FPG and A1C testing. The sensitivity differential indicated that the noninvasive device is capable of identifying 28.8% more individuals in the OGTT-defined positive screening class than FPG testing and 17.1% more than A1C testing. The combination of higher sensitivity and greater convenience--rapid results with no fasting or blood draws--makes the device well suited for opportunistic screening.
Microfluidic devices for the controlled manipulation of small volumes
Ramsey, Michael J; Jacobson, Stephen C
2012-09-18
A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
NASA Astrophysics Data System (ADS)
1981-12-01
Test data were collected on 1035 plastic encapsulated devices and 75 hermetically scaled control group devices that were purchased from each of five different manufacturers in the categories of (1) low power Schottsky TTL (bipolar) digital circuits; (2) CMOS digital circuits; (3) operational amplifier linear circuits; and (4) NPN transistors. These parts were subjected to three different initial screening conditions, then to extended life testing, to determine any possible advantages or trends for any particular screen. Several tests were carried out in the areas of flammability testing, humidity testing, high pressure steam (auroclave) testing, and high temperature storage testing. Test results are presented. Procurement and application considerations for use of plastic encapsulated semiconductors are presented and a statistical analysis program written to study the log normal distributions resulting from life testing is concluded.
NASA Technical Reports Server (NTRS)
1981-01-01
Test data were collected on 1035 plastic encapsulated devices and 75 hermetically scaled control group devices that were purchased from each of five different manufacturers in the categories of (1) low power Schottsky TTL (bipolar) digital circuits; (2) CMOS digital circuits; (3) operational amplifier linear circuits; and (4) NPN transistors. These parts were subjected to three different initial screening conditions, then to extended life testing, to determine any possible advantages or trends for any particular screen. Several tests were carried out in the areas of flammability testing, humidity testing, high pressure steam (auroclave) testing, and high temperature storage testing. Test results are presented. Procurement and application considerations for use of plastic encapsulated semiconductors are presented and a statistical analysis program written to study the log normal distributions resulting from life testing is concluded.
Microfluidic devices for the controlled manipulation of small volumes
Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN
2007-07-03
A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
Assessing subacute mild traumatic brain injury with a portable virtual reality balance device.
Wright, W Geoffrey; McDevitt, Jane; Tierney, Ryan; Haran, F Jay; Appiah-Kubi, Kwadwo Osei; Dumont, Alex
2017-07-01
Balance impairment is a common sensorimotor symptom in mild traumatic brain injury (mTBI). We designed an affordable, portable virtual reality (VR)-based balance screening device (Virtual Environment TBI Screen [VETS]), which will be validated relative to the Neurocom Sensory Organization Test (SOT) to determine if it can replace commonly used postural assessments. This preliminary study examines healthy adults (n = 56) and adults with mTBI (n = 11). Participants performed six upright postural tasks on the VETS and the SOT. Analysis of variance was used to determine between-group differences. Pearson's correlations were used to establish construct validity. Known-groups approach was used to establish classification accuracy. The mTBI cohort performed significantly worse than the healthy cohort on the new device (p = 0.001). The new device has 91.0% accuracy and an ROC curve with a significant area-under-the-curve (AUC = 0.865, p < 0.001). Conditions with dynamic visual stimulation were the most sensitive to health status. The SOT had an 84.8% accuracy and AUC =0.703 (p = 0.034). The new VR-based device is a valid measure for detecting balance impairment following mTBI and can potentially replace more expensive and cumbersome equipment. Assessments that test visual-vestibular processing, such as VETS, increase sensitivity to mTBI-related balance deficits, which can be used to guide rehabilitation. Implications for rehabilitation Emerging technology using virtual reality can be economically integrated into the clinical setting for easy testing of postural control in neurologically impaired populations. Tailoring postural assessments to include tasks that rely on visual and vestibular integration will increase the accuracy of detecting balance impairment following mild traumatic brain injury.
A Data-Driven Design Evaluation Tool for Handheld Device Soft Keyboards
Trudeau, Matthieu B.; Sunderland, Elsie M.; Jindrich, Devin L.; Dennerlein, Jack T.
2014-01-01
Thumb interaction is a primary technique used to operate small handheld devices such as smartphones. Despite the different techniques involved in operating a handheld device compared to a personal computer, the keyboard layouts for both devices are similar. A handheld device keyboard that considers the physical capabilities of the thumb may improve user experience. We developed and applied a design evaluation tool for different geometries of the QWERTY keyboard using a performance evaluation model. The model utilizes previously collected data on thumb motor performance and posture for different tap locations and thumb movement directions. We calculated a performance index (PITOT, 0 is worst and 2 is best) for 663 designs consisting in different combinations of three variables: the keyboard's radius of curvature (R) (mm), orientation (O) (°), and vertical location on the screen (L). The current standard keyboard performed poorly (PITOT = 0.28) compared to other designs considered. Keyboard location (L) contributed to the greatest variability in performance out of the three design variables, suggesting that designers should modify this variable first. Performance was greatest for designs in the middle keyboard location. In addition, having a slightly upward curve (R = −20 mm) and orientated perpendicular to the thumb's long axis (O = −20°) improved performance to PITOT = 1.97. Poorest performances were associated with placement of the keyboard's spacebar in the bottom right corner of the screen (e.g., the worst was for R = 20 mm, O = 40°, L = Bottom (PITOT = 0.09)). While this evaluation tool can be used in the design process as an ergonomic reference to promote user motor performance, other design variables such as visual access and usability still remain unexplored. PMID:25211465
Impact of e-Discipline on Children's Screen Time.
Hawi, Nazir S; Rupert, Maya Samaha
2015-06-01
With rapid technological advancement, the prevalence and undesirable effects of excess screen time on children have become a mounting issue worldwide. There are many studies investigating the phenomenon's impact on society (e.g., behavioral, academic, health), but studies that uncover the causes and factors that increase the odds of children's excess screen time are limited. To this end, this study introduces the term "e-discipline" to refer to systematic practices that use screen devices as discipline tools. As such, the aim of this study is to investigate the association between e-discipline and children's screen time by gender. Analysis was performed on 3,141 children aged 7-11 years old. Bivariate logistic regression models were used to calculate the odds of exceeding the American Academy of Pediatrics guidelines of 2 hours of screen time per day by boys and girls whose parents practice e-discipline. The results showed that children whose parents used screen devices as discipline tools had significantly more screen time compared to children whose parents did not. Furthermore, no statistically significant gender differences were found in the odds of exceeding the recommended screen time under e-discipline. Recommendations stemming from all the results are discussed.
Goh, Si Ning; Teh, Long Hua; Tay, Wei Rong; Anantharaman, Saradha; van Dam, Rob M; Tan, Chuen Seng; Chua, Hwee Ling; Wong, Pey Gein; Müller-Riemenschneider, Falk
2016-01-01
Objective This study aimed to investigate total and device-specific screen viewing (SV) and its determinants in children aged 2 years and below. Design Cross-sectional study conducted in February 2014. Setting Well-child clinics in Singapore national polyclinics. Participants Parents of children (Singapore citizens or permanent residents) aged 2 years and below were enrolled during routine clinic visits. Out of 794 eligible parent–child dyads, 725 (91.3%) provided informed consent and were included in the analysis. Main outcome measures Device-specific information on SV and determinants was ascertained using interviewer-administered survey questionnaires. The prevalence and duration of aggregate and device-specific SV were reported. Associations with potential determinants were investigated using multiple logistic regression analysis. A p value less than 0.05 was considered statistically significant. Results The prevalence of daily SV and SV ≥2 h/day constituted 53.5% and 16.3%, respectively. The majority of children aged 18–24 months (88.2%) engaged in daily SV. TVs and mobile devices were the most commonly used screen devices, followed by computers and video consoles. In multivariable analysis, younger child age, Chinese ethnicity and setting rules on time of SV were strongly and consistently associated with lower levels of any SV and SV ≥2 h/day. Parental knowledge of SV recommendations and less parental SV were additionally associated with lower levels of SV ≥2 h/day. The number of screen devices was not associated with children's SV. Conclusions In contrast to recommendations, SV prevalence in children aged less than 2 years is high and appears to increase steadily across age groups. TVs and mobile devices are most frequently used. Improving parental knowledge of SV recommendations, reducing parental SV and especially the implementation of strict rules on SV time could be successful strategies to reduce SV in young children. PMID:26810995
Usability of digital media in patients with COPD: a pilot study.
Cheung, Amy; Janssen, Anton; Amft, Oliver; Wouters, Emiel F M; Spruit, Martijn A
2013-04-01
Digital media can be integrated in tele-monitoring solutions, serving as the main interface between the patient and the caregiver. Consequently, the selection of the most appropriate digital medium for the specified target group is critical to ensure compliance with the tele-monitoring system. This pilot study aims to gather insights from patients with chronic obstructive pulmonary disease (COPD) on the ease-of-use, efficacy, effectiveness, and satisfaction of different types of digital media. Five off-the-shelf digital media devices were tested on nine patients at CIRO+ in Horn, The Netherlands. Usability was evaluated by asking patients to use each device to answer questions related to their symptoms and health status. Subsequently, patients completed a paper-based device usability questionnaire, which assessed prior experience with digital media, device dimensions, device controllability, response speed, screen readability, ease-of-use, and overall satisfaction. After testing all the devices, patients ranked the devices according to their preference. We identified the netbook as the preferred type of device due to its good controllability, fast response time, and large screen size. The smartphone was the least favorite device as patients found the size of the screen to be too small, which made it difficult to interact with. The pilot study has provided important insights to guide the selection of the most appropriate type of digital medium for implementation in tele-monitoring solutions for patients with COPD. As the digital medium is an important interface to the patient in tele-monitoring solutions, it is essential that patients feel motivated to interact with the digital medium on a regular basis.
Guigas, Bruno
2017-09-01
SpecPad is a new device-independent software program for the visualization and processing of one-dimensional and two-dimensional nuclear magnetic resonance (NMR) time domain (FID) and frequency domain (spectrum) data. It is the result of a project to investigate whether the novel programming language DART, in combination with Html5 Web technology, forms a suitable base to write an NMR data evaluation software which runs on modern computing devices such as Android, iOS, and Windows tablets as well as on Windows, Linux, and Mac OS X desktop PCs and notebooks. Another topic of interest is whether this technique also effectively supports the required sophisticated graphical and computational algorithms. SpecPad is device-independent because DART's compiled executable code is JavaScript and can, therefore, be run by the browsers of PCs and tablets. Because of Html5 browser cache technology, SpecPad may be operated off-line. Network access is only required during data import or export, e.g. via a Cloud service, or for software updates. A professional and easy to use graphical user interface consistent across all hardware platforms supports touch screen features on mobile devices for zooming and panning and for NMR-related interactive operations such as phasing, integration, peak picking, or atom assignment. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Electromagnetic radiation screening of microcircuits for long life applications
NASA Technical Reports Server (NTRS)
Brammer, W. G.; Erickson, J. J.; Levy, M. E.
1974-01-01
The utility of X-rays as a stimulus for screening high reliability semiconductor microcircuits was studied. The theory of the interaction of X-rays with semiconductor materials and devices was considered. Experimental measurements of photovoltages, photocurrents, and effects on specified parameters were made on discrete devices and on microcircuits. The test specimens included discrete devices with certain types of identified flaws and symptoms of flaws, and microcircuits exhibiting deviant electrical behavior. With a necessarily limited sample of test specimens, no useful correlation could be found between the X-ray-induced electrical response and the known or suspected presence of flaws.
ERIC Educational Resources Information Center
Namwong, Pithakpong; Jarujamrus, Purim; Amatatongchai, Maliwan; Chairam, Sanoe
2018-01-01
In this article, a low-cost, simple, and rapid fabrication of paper-based analytical devices (PADs) using a wax screen-printing method is reported here. The acid-base reaction is implemented in the simple PADs to demonstrate to students the chemistry concept of a limiting reagent. When a fixed concentration of base reacts with a gradually…
NASA Technical Reports Server (NTRS)
Stanley, A. G.; Price, W. E.
1976-01-01
An extensive investigation of irradiate-anneal (IRAN) screening against total dose radiation effects was carried out as part of a program to harden the Mariner Jupiter/Saturn 1977 (MJS'77) spacecraft to survive the Jupiter radiation belts. The method consists of irradiating semiconductor devices with Cobalt-60 to a suitable total dose under representative bias conditions and of separating the parts in the undesired tail of the distribution from the bulk of the parts by means of a predetermined acceptance limit. The acceptable devices are then restored close to their preirradiation condition by annealing them at an elevated temperature. IRAN was used when lot screen methods were impracticable due to lack of time, and when members of a lot showed a diversity of radiation response. The feasibility of the technique was determined by testing of a number of types of linear bipolar integrated circuits, analog switches, n-channel JFETS and bipolar transistors. Based on the results of these experiments a number of device types were selected for IRAN of flight parts in the MJS'77 spacecraft systems. The part types, screening doses, acceptance criteria, number of parts tested and rejected as well as the program steps are detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizah, N., E-mail: norazizahparmin84@gmail.com; Gopinath, Subash C. B.; Nadzirah, Sh.
2016-07-06
Titanium dioxide (TiO{sub 2}) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO{sub 2} was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO{sub 2} on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO{sub 2} based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO{sub 2} based IDE for sensitive,more » label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.« less
Coating and Patterning Functional Materials for Large Area Electrofluidic Arrays
Wu, Hao; Tang, Biao; Hayes, Robert A.; Dou, Yingying; Guo, Yuanyuan; Jiang, Hongwei; Zhou, Guofu
2016-01-01
Industrialization of electrofluidic devices requires both high performance coating laminates and efficient material utilization on large area substrates. Here we show that screen printing can be effectively used to provide homogeneous pin-hole free patterned amorphous fluoropolymer dielectric layers to provide both the insulating and fluidic reversibility required for devices. Subsequently, we over-coat photoresist using slit coating on this normally extremely hydrophobic layer. In this way, we are able to pattern the photoresist by conventional lithography to provide the chemical contrast required for liquids dosing by self-assembly and highly-reversible electrofluidic switching. Materials, interfacial chemistry, and processing all contribute to the provision of the required engineered substrate properties. Coating homogeneity as characterized by metrology and device performance data are used to validate the methodology, which is well-suited for transfer to high volume production in existing LCD cell-making facilities. PMID:28773826
Coating and Patterning Functional Materials for Large Area Electrofluidic Arrays.
Wu, Hao; Tang, Biao; Hayes, Robert A; Dou, Yingying; Guo, Yuanyuan; Jiang, Hongwei; Zhou, Guofu
2016-08-19
Industrialization of electrofluidic devices requires both high performance coating laminates and efficient material utilization on large area substrates. Here we show that screen printing can be effectively used to provide homogeneous pin-hole free patterned amorphous fluoropolymer dielectric layers to provide both the insulating and fluidic reversibility required for devices. Subsequently, we over-coat photoresist using slit coating on this normally extremely hydrophobic layer. In this way, we are able to pattern the photoresist by conventional lithography to provide the chemical contrast required for liquids dosing by self-assembly and highly-reversible electrofluidic switching. Materials, interfacial chemistry, and processing all contribute to the provision of the required engineered substrate properties. Coating homogeneity as characterized by metrology and device performance data are used to validate the methodology, which is well-suited for transfer to high volume production in existing LCD cell-making facilities.
Identification of Volunteer Screening Practices for Selected Ohio Youth Organizations.
ERIC Educational Resources Information Center
Henderson, Jan; Schmiesing, Ryan J.
2001-01-01
Interviews with eight coordinators of youth organization volunteers indicated that most used position descriptions, applications, reference checks, and interviews as screening tools; only four checked motor vehicle records and three checked criminal records. Consistent policies and advanced screening devices were recommended. (SK)
Integrated fountain effect pump device for fluid management at low gravity
NASA Technical Reports Server (NTRS)
Yuan, S. W. K.; Frank, D. J.
1988-01-01
A new device for fluid management at low gravity is described. The system is basically the same as the enclosed capillary device using screens, in which the screens along the gallery channels are replaced by porous plugs which are responsible for both the fluid retention and pumping of He II; in this device, no downstream pump is needed. The plugs in contact with liquid He on both sides act as a fountain-effect pumps (FEPs), while plugs exposed to vapor on one side behave as vapor-liquid phase separators (VLPSs). The total net rate of He II transfer into the receiving tank equals the mass flow rate through the FEP plugs minus the liquid loss from the VLPS plugs. The results of the performance analysis of this integrated FEP device are presented together with its schematic diagram.
Human Centered Design and Development for NASA's MerBoard
NASA Technical Reports Server (NTRS)
Trimble, Jay
2003-01-01
This viewgraph presentation provides an overview of the design and development process for NASA's MerBoard. These devices are large interactive display screens which can be shown on the user's computer, which will allow scientists in many locations to interpret and evaluate mission data in real-time. These tools are scheduled to be used during the 2003 Mars Exploration Rover (MER) expeditions. Topics covered include: mission overview, Mer Human Centered Computers, FIDO 2001 observations and MerBoard prototypes.
1993-04-01
CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURIlY CLASSIFICATION 20. UMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT UNCLASSIFIED UNCLASSIFIED...with the silicon underneath, growing a thin nitride layer. This layer of Si 3 N 4 , if not completely removed, will retard oxidation in the area...C. Shatas, K. C. Saraswat and J. D. Meindl, "Interfacial and Breakdown Characteristics of MOS Devices with Rapidly Grown Ultrathin SiO Gate
Correlates of mobile screen media use among children aged 0–8: a systematic review
Jancey, Jonine; Subedi, Narayan; Leavy, Justine
2017-01-01
Objective This study is a systematic review of the peer-reviewed literature to identify the correlates of mobile screen media use among children aged 8 years and less. Setting Home or community-based studies were included in this review while child care or school-based studies were excluded. Participants Children aged 8 years or less were the study population. Studies that included larger age groups without subgroup analysis specific to the 0–8 years category were excluded. Eight electronic databases were searched for peer-reviewed English language primary research articles published or in press between January 2009 and March 2017 that have studied correlates of mobile screen media use in this age group. Outcome measure Mobile screen media use was the primary outcome measure. Mobile screen media use refers to children’s use of mobile screens, such as mobile phones, electronic tablets, handheld computers or personal digital assistants. Results Thirteen studies meeting the inclusion criteria were identified of which a total of 36 correlates were examined. Older children, children better skilled in using mobile screen media devices, those having greater access to such devices at home and whose parents had high mobile screen media use were more likely to have higher use of mobile screen media devices. No association existed with parent’s age, sex and education. Conclusion Limited research has been undertaken into young children’s mobile screen media use and most of the variables have been studied too infrequently for robust conclusions to be reached. Future studies with objective assessment of mobile screen media use and frequent examination of the potential correlates across multiple studies and settings are recommended. Trial registration number This review is registered with PROSPERO International Prospective Register of Ongoing Systematic Reviews (registration number: CRD42015028028). PMID:29070636
Correlates of mobile screen media use among children aged 0-8: a systematic review.
Paudel, Susan; Jancey, Jonine; Subedi, Narayan; Leavy, Justine
2017-10-24
This study is a systematic review of the peer-reviewed literature to identify the correlates of mobile screen media use among children aged 8 years and less. Home or community-based studies were included in this review while child care or school-based studies were excluded. Children aged 8 years or less were the study population. Studies that included larger age groups without subgroup analysis specific to the 0-8 years category were excluded. Eight electronic databases were searched for peer-reviewed English language primary research articles published or in press between January 2009 and March 2017 that have studied correlates of mobile screen media use in this age group. Mobile screen media use was the primary outcome measure. Mobile screen media use refers to children's use of mobile screens, such as mobile phones, electronic tablets, handheld computers or personal digital assistants. Thirteen studies meeting the inclusion criteria were identified of which a total of 36 correlates were examined. Older children, children better skilled in using mobile screen media devices, those having greater access to such devices at home and whose parents had high mobile screen media use were more likely to have higher use of mobile screen media devices. No association existed with parent's age, sex and education. Limited research has been undertaken into young children's mobile screen media use and most of the variables have been studied too infrequently for robust conclusions to be reached. Future studies with objective assessment of mobile screen media use and frequent examination of the potential correlates across multiple studies and settings are recommended. This review is registered with PROSPERO International Prospective Register of Ongoing Systematic Reviews (registration number: CRD42015028028). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
X-Eye: a novel wearable vision system
NASA Astrophysics Data System (ADS)
Wang, Yuan-Kai; Fan, Ching-Tang; Chen, Shao-Ang; Chen, Hou-Ye
2011-03-01
This paper proposes a smart portable device, named the X-Eye, which provides a gesture interface with a small size but a large display for the application of photo capture and management. The wearable vision system is implemented with embedded systems and can achieve real-time performance. The hardware of the system includes an asymmetric dualcore processer with an ARM core and a DSP core. The display device is a pico projector which has a small volume size but can project large screen size. A triple buffering mechanism is designed for efficient memory management. Software functions are partitioned and pipelined for effective execution in parallel. The gesture recognition is achieved first by a color classification which is based on the expectation-maximization algorithm and Gaussian mixture model (GMM). To improve the performance of the GMM, we devise a LUT (Look Up Table) technique. Fingertips are extracted and geometrical features of fingertip's shape are matched to recognize user's gesture commands finally. In order to verify the accuracy of the gesture recognition module, experiments are conducted in eight scenes with 400 test videos including the challenge of colorful background, low illumination, and flickering. The processing speed of the whole system including the gesture recognition is with the frame rate of 22.9FPS. Experimental results give 99% recognition rate. The experimental results demonstrate that this small-size large-screen wearable system has effective gesture interface with real-time performance.
Teychenne, Megan; Hinkley, Trina
2016-01-01
Objectives Anxiety is a serious illness and women (including mothers with young children) are at particular risk. Although physical activity (PA) may reduce anxiety risk, little research has investigated the link between sedentary behaviour and anxiety risk. The aim of this study was to examine the association between screen-based sedentary behaviour and anxiety symptoms, independent of PA, amongst mothers with young children. Methods During 2013–2014, 528 mothers with children aged 2–5 years completed self-report measures of recreational screen-based sedentary behaviour (TV/DVD/video viewing, computer/e-games/hand held device use) and anxiety symptoms (using the Hospital Anxiety and Depression Scale, HADS-A). Linear regression analyses examined the cross-sectional association between screen-based sedentary behaviour and anxiety symptoms. Results In models that adjusted for key demographic and behavioural covariates (including moderate- to vigorous-intensity PA, MVPA), computer/device use (B = 0.212; 95% CI = 0.048, 0.377) and total screen time (B = 0.109; 95% CI = 0.014, 0.205) were positively associated with heightened anxiety symptoms. TV viewing was not associated with anxiety symptoms in either model. Conclusions Higher levels of recreational computer or handheld device use and overall screen time may be linked to higher risk of anxiety symptoms in mothers with young children, independent of MVPA. Further longitudinal and intervention research is required to determine temporal associations. PMID:27191953
Oehl, M; Sutter, C
2015-05-01
With aging visual feedback becomes increasingly relevant in action control. Consequently, visual device and task characteristics should more and more affect tool use. Focussing on late working age, the present study aims to investigate age-related differences in processing task irrelevant (display size) and task relevant visual information (task difficulty). Young and middle-aged participants (20-35 and 36-64 years of age, respectively) sat in front of a touch screen with differently sized active touch areas (4″ to 12″) and performed pointing tasks with differing task difficulties (1.8-5 bits). Both display size and age affected pointing performance, but the two variables did not interact and aiming duration moderated both effects. Furthermore, task difficulty affected the pointing durations of middle-aged adults moreso than those of young adults. Again, aiming duration accounted for the variance in the data. The onset of an age-related decline in aiming duration can be clearly located in middle adulthood. Thus, the fine psychomotor ability "aiming" is a moderator and predictor for age-related differences in pointing tasks. The results support a user-specific design for small technical devices with touch interfaces. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Mandavia, R; Lapa, T; Smith, M; Bhutta, M F
2018-02-01
Hearing loss is a neglected international health problem. The greatest burden of ear disease is in low-income countries where there is also a lack of resources. In this context, screening for otological disease may be worthwhile. Cupris© has developed an otoscopy device that offers the possibility of low-cost mass screening in remote communities. We evaluated the validity of this device in diagnosing ear disease and in determining whether referral to an ENT centre is warranted. Cross-sectional study. Outpatient clinic, Nepal. All adults and children were invited to take part over a 2-day period. The Cupris© device was used to record participants otological history and examination. Stored history and images were assessed in the United Kingdom by a Consultant-grade ENT Surgeon, who provided a diagnosis and decided whether referral to an ENT centre was warranted. After screening with the Cupris© device, participants were immediately assessed by a UK trained ENT Consultant Surgeon using a standard otoscope ("standard assessment"). A diagnosis was recorded for each participant and a decision was made as to whether referral to an ENT centre was warranted. Concordance in primary diagnosis (analysed per ear) and concordance in the decision to refer (analysed per patient). Cohen's kappa coefficient for inter-rater agreement in diagnosis. Fifty-six patients agreed to participate. In four patients, the quality of video recorded precluded a diagnosis or management plan. These patients were excluded from subsequent analysis, leaving 52 patients for analysis. The same diagnosis was reached for 99 of 104 ears when comparing the Cupris© device to standard assessment (95% concordance), with Cohen's kappa coefficient of 0.89. The decision as to whether a patient should be referred to an ENT centre for further assessment was the same for all 52 participants when comparing the Cupris© device to standard assessment. When compared to standard assessment, the Cupris© device is a valid tool for the diagnosis of ear disease and decision for onward referral. It shows considerable promise for use by trained non-medical workers, as a low-cost and portable tool to screen for ear disease in remote settings, particularly in low- and middle-income countries. © 2017 John Wiley & Sons Ltd.
Desteghe, Lien; Raymaekers, Zina; Lutin, Mark; Vijgen, Johan; Dilling-Boer, Dagmara; Koopman, Pieter; Schurmans, Joris; Vanduynhoven, Philippe; Dendale, Paul; Heidbuchel, Hein
2017-01-01
To determine the usability, accuracy, and cost-effectiveness of two handheld single-lead electrocardiogram (ECG) devices for atrial fibrillation (AF) screening in a hospital population with an increased risk for AF. Hospitalized patients (n = 445) at cardiological or geriatric wards were screened for AF by two handheld ECG devices (MyDiagnostick and AliveCor). The performance of the automated algorithm of each device was evaluated against a full 12-lead or 6-lead ECG recording. All ECGs and monitor tracings were also independently reviewed in a blinded fashion by two electrophysiologists. Time investments by nurses and physicians were tracked and used to estimate cost-effectiveness of different screening strategies. Handheld recordings were not possible in 7 and 21.4% of cardiology and geriatric patients, respectively, because they were not able to hold the devices properly. Even after the exclusion of patients with an implanted device, sensitivity and specificity of the automated algorithms were suboptimal (Cardiology: 81.8 and 94.2%, respectively, for MyDiagnostick; 54.5 and 97.5%, respectively, for AliveCor; Geriatrics: 89.5 and 95.7%, respectively, for MyDiagnostick; 78.9 and 97.9%, respectively, for AliveCor). A scenario based on automated AliveCor evaluation in patients without AF history and without an implanted device proved to be the most cost-effective method, with a provider cost to identify one new AF patient of €193 and €82 at cardiology and geriatrics, respectively. The cost to detect one preventable stroke per year would be €7535 and €1916, respectively (based on average CHA 2 DS 2 -VASc of 3.9 ± 2.0 and 5.0 ± 1.5, respectively). Manual interpretation increases sensitivity, but decreases specificity, doubling the cost per detected patient, but remains cheaper than sole 12-lead ECG screening. Using AliveCor or MyDiagnostick handheld recorders requires a structured screening strategy to be effective and cost-effective in a hospital setting. It must exclude patients with implanted devices and known AF, and requires targeted additional 12-lead ECGs to optimize specificity. Under these circumstances, the expenses per diagnosed new AF patient and preventable stroke are reasonable. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Design and Development of an Electrostatic Screen Battery for Emission Control (ESBEC)
Han, Taewon; Mainelis, Gediminas
2017-01-01
Current diesel particulate filters (DPFs) can effectively capture the exhaust particles, but they add to engine backpressure and accumulate particles during their operation, which results in the need to regenerate the DPFs by burning off the collected particles periodically. This regeneration results in aerosol emissions, especially in the 10–30 nanometer size range and contributes to ultrafine particle pollution. In this research, we designed and developed a prototype of a novel diesel exhaust control device: the Electrostatic Screen Battery for Emissions Control (ESBEC). The device features high particle collection efficiency without adding to the exhaust backpressure and without the need for thermal regeneration of the collected particles. The ESBEC consists of a series of metal mesh screens coated with a superhydrophobic substance and an integrated carbon fiber ionizer to charge the incoming particles. Multiple pairs of screens (e.g., 5 pairs) are arranged in a battery, in which one screen of each pair is supplied with high voltage, and the other is grounded, producing electrostatic field produced across the screens. The application of a superhydrophobic coating onto the screens allows easy removal of the collected particles using liquid without the need for thermal regeneration. The current prototypes of the device were tested with fluorescent polystyrene latex (PSL) particles of 0.2 and 1.2 μm in size and at 25 and 105 L/min sampling flow rates. The average collection efficiency was ~87% for 0.2 μm and ~95% for 1.2 μm PSL particles. In addition, the ESBEC was tested with actual diesel exhaust particles; here its performance was verified by visually inspecting deposition of particles on an after-filter with the device ON and OFF. In the next stages of this work, the ESBEC will be challenged with diesel exhaust at different mass concentrations and for different collection time periods. PMID:28983124
Design and Development of an Electrostatic Screen Battery for Emission Control (ESBEC).
Han, Taewon; Mainelis, Gediminas
2017-05-01
Current diesel particulate filters (DPFs) can effectively capture the exhaust particles, but they add to engine backpressure and accumulate particles during their operation, which results in the need to regenerate the DPFs by burning off the collected particles periodically. This regeneration results in aerosol emissions, especially in the 10-30 nanometer size range and contributes to ultrafine particle pollution. In this research, we designed and developed a prototype of a novel diesel exhaust control device: the Electrostatic Screen Battery for Emissions Control (ESBEC). The device features high particle collection efficiency without adding to the exhaust backpressure and without the need for thermal regeneration of the collected particles. The ESBEC consists of a series of metal mesh screens coated with a superhydrophobic substance and an integrated carbon fiber ionizer to charge the incoming particles. Multiple pairs of screens (e.g., 5 pairs) are arranged in a battery, in which one screen of each pair is supplied with high voltage, and the other is grounded, producing electrostatic field produced across the screens. The application of a superhydrophobic coating onto the screens allows easy removal of the collected particles using liquid without the need for thermal regeneration. The current prototypes of the device were tested with fluorescent polystyrene latex (PSL) particles of 0.2 and 1.2 μm in size and at 25 and 105 L/min sampling flow rates. The average collection efficiency was ~87% for 0.2 μm and ~95% for 1.2 μm PSL particles. In addition, the ESBEC was tested with actual diesel exhaust particles; here its performance was verified by visually inspecting deposition of particles on an after-filter with the device ON and OFF. In the next stages of this work, the ESBEC will be challenged with diesel exhaust at different mass concentrations and for different collection time periods.
Willis, B H; Barton, P; Pearmain, P; Bryan, S; Hyde, C
2005-03-01
To assess the effectiveness and cost-effectiveness of adding automated image analysis to cervical screening programmes. Searching of all major electronic databases to the end of 2000 was supplemented by a detailed survey for unpublished UK literature. Four systematic reviews were conducted according to recognised guidance. The review of 'clinical effectiveness' included studies assessing reproducibility and impact on health outcomes and processes in addition to evaluations of test accuracy. A discrete event simulation model was developed, although the economic evaluation ultimately relied on a cost-minimisation analysis. The predominant finding from the systematic reviews was the very limited amount of rigorous primary research. None of the included studies refers to the only commercially available automated image analysis device in 2002, the AutoPap Guided Screening (GS) System. The results of the included studies were debatably most compatible with automated image analysis being equivalent in test performance to manual screening. Concerning process, there was evidence that automation does lead to reductions in average slide processing times. In the PRISMATIC trial this was reduced from 10.4 to 3.9 minutes, a statistically significant and practically important difference. The economic evaluation tentatively suggested that the AutoPap GS System may be efficient. The key proviso is that credible data become available to support that the AutoPap GS System has test performance and processing times equivalent to those obtained for PAPNET. The available evidence is still insufficient to recommend implementation of automated image analysis systems. The priority for action remains further research, particularly the 'clinical effectiveness' of the AutoPap GS System. Assessing the cost-effectiveness of introducing automation alongside other approaches is also a priority.
21 CFR 886.1810 - Tangent screen (campimeter).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tangent screen (campimeter). 886.1810 Section 886.1810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... a patient's visual field. This generic type of device includes projection tangent screens, target...
21 CFR 892.1960 - Radiographic intensifying screen.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... (a) Identification. A radiographic intensifying screen is a device that is a thin radiolucent sheet... for medical purposes to expose radiographic film. (b) Classification. Class I (general controls). The...
Electromagnetic radiation screening of semiconductor devices for long life applications
NASA Technical Reports Server (NTRS)
Hall, T. C.; Brammer, W. G.
1972-01-01
A review is presented of the mechanism of interaction of electromagnetic radiation in various spectral ranges, with various semiconductor device defects. Previous work conducted in this area was analyzed as to its pertinence to the current problem. The task was studied of implementing electromagnetic screening methods in the wavelength region determined to be most effective. Both scanning and flooding type stimulation techniques are discussed. While the scanning technique offers a considerably higher yield of useful information, a preliminary investigation utilizing the flooding approach is first recommended because of the ease of implementation, lower cost and ability to provide go-no-go information in semiconductor screening.
Explosives Detection: Exploitation of the Physical Signatures
NASA Astrophysics Data System (ADS)
Atkinson, David
2010-10-01
Explosives based terrorism is an ongoing threat that is evolving with respect to implementation, configuration and materials used. There are a variety of devices designed to detect explosive devices, however, each technology has limitations and operational constraints. A full understanding of the signatures available for detection coupled with the array of detection choices can be used to develop a conceptual model of an explosives screening operation. Physics based sensors provide a robust approach to explosives detection, typically through the identification of anomalies, and are currently used for screening in airports around the world. The next generation of detectors for explosives detection will need to be more sensitive and selective, as well as integrate seamlessly with devices focused on chemical signatures. An appreciation for the details of the physical signature exploitation in cluttered environments with time, space, and privacy constraints is necessary for effective explosives screening of people, luggage, cargo, and vehicles.
NASA Technical Reports Server (NTRS)
Wang, Joseph; Escarpa, Alberto; Pumera, Martin; Feldman, Jason; Svehla, D. (Principal Investigator)
2002-01-01
A microfluidic analytical system for the separation and detection of organic peroxides, based on a microchip capillary electrophoresis device with an integrated amperometric detector, was developed. The new microsystem relies on the reductive detection of both organic acid peroxides and hydroperoxides at -700 mV (vs. Ag wire/AgCl). Factors influencing the separation and detection processes were examined and optimized. The integrated microsystem offers rapid measurements (within 130 s) of these organic-peroxide compounds, down to micromolar levels. A highly stable response for repetitive injections (RSD 0.35-3.12%; n = 12) reflects the negligible electrode passivation. Such a "lab-on-a-chip" device should be attractive for on-site analysis of organic peroxides, as desired for environmental screening and industrial monitoring.
Fischmeister, Florian Ph.S.; Leodolter, Ulrich; Windischberger, Christian; Kasess, Christian H.; Schöpf, Veronika; Moser, Ewald; Bauer, Herbert
2010-01-01
Throughout recent years there has been an increasing interest in studying unconscious visual processes. Such conditions of unawareness are typically achieved by either a sufficient reduction of the stimulus presentation time or visual masking. However, there are growing concerns about the reliability of the presentation devices used. As all these devices show great variability in presentation parameters, the processing of visual stimuli becomes dependent on the display-device, e.g. minimal changes in the physical stimulus properties may have an enormous impact on stimulus processing by the sensory system and on the actual experience of the stimulus. Here we present a custom-built three-way LC-shutter-tachistoscope which allows experimental setups with both, precise and reliable stimulus delivery, and millisecond resolution. This tachistoscope consists of three LCD-projectors equipped with zoom lenses to enable stimulus presentation via a built-in mirror-system onto a back projection screen from an adjacent room. Two high-speed liquid crystal shutters are mounted serially in front of each projector to control the stimulus duration. To verify the intended properties empirically, different sequences of presentation times were performed while changes in optical power were measured using a photoreceiver. The obtained results demonstrate that interfering variabilities in stimulus parameters and stimulus rendering are markedly reduced. Together with the possibility to collect external signals and to send trigger-signals to other devices, this tachistoscope represents a highly flexible and easy to set up research tool not only for the study of unconscious processing in the brain but for vision research in general. PMID:20122963
Zhou, Jianyu; Dong, Tao
2018-06-11
In this study, we developed a novel wearable and low-cost device for qualitative screening of glucose (GLU), leukocytes (LEU), and nitrite (NIT) and for semi-quantitative analysis of blood (BLD) and proteins (PRO) in the urine samples. The device can be attached to a diaper, and the results can be read by an app. The main functions of the device can be divided into sample collection, valve closing, and pad saturation; the recorded times for valve closing and pad saturation at four corners and pad saturation at the central parts are pseudo-medians (Hodges-Lehmann estimator) of 3.55 (95% WCI, 3.45-3.72), 6.5 (95% WCI, 6-7), and 6 (95% WCI, 5.5-6.5) minutes, respectively. The RGB values in the reagent pads remain stable from 20 min to 480 min, which satisfies the requirement of regular diaper-wearing time. Pre-diagnostic results indicate high accuracy with good accuracy for the app recognition of five biomarkers in the urine samples, which makes it a promising tool for screening diseases, especially for the elderly healthcare.
Lee, Adrian J; Jacobson, Sheldon H
2012-02-01
A critical component of aviation security consists of screening passengers and baggage to protect airports and aircraft from terrorist threats. Advancements in screening device technology have increased the ability to detect these threats; however, specifying the operational configurations of these devices in response to changes in the threat environment can become difficult. This article proposes to use Fisher information as a statistical measure for detecting changes in the threat environment. The perceived risk of passengers, according to prescreening information and behavior analysis, is analyzed as the passengers sequentially enter the security checkpoint. The alarm responses from the devices used to detect threats are also analyzed to monitor significant changes in the frequency of threat items uncovered. The key results are that this information-based measure can be used within the Homeland Security Advisory System to indicate changes in threat conditions in real time, and provide the flexibility of security screening detection devices to responsively and automatically adapt operational configurations to these changing threat conditions. © 2012 Society for Risk Analysis. All rights reserved.
AN EVALUATION OF STORM DRAINAGE INLET DEVICES FOR STORMWATER QUALITY TREATMENT
The activities summarized in this paper included the testing of three representative stormwater control devices that were located at storm drainage inlets. The two proprietary devices utilized screening and filtering (using filter fabric and a coarser mesh). A conventional catchb...
Engineering Novel Lab Devices Using 3D Printing and Microcontrollers.
Courtemanche, Jean; King, Samson; Bouck, David
2018-03-01
The application of 3D printing and microcontrollers allows users to rapidly engineer novel hardware solutions useful in a laboratory environment. 3D printing is transformative as it enables the rapid fabrication of adapters, housings, jigs, and small structural elements. Microcontrollers allow for the creation of simple, inexpensive machines that receive input from one or more sensors to trigger a mechanical or electrical output. Bringing these technologies together, we have developed custom solutions that improve capabilities and reduce costs, errors, and human intervention. In this article, we describe three devices: JetLid, TipWaster, and Remote Monitoring Device (REMIND). JetLid employs a microcontroller and presence sensor to trigger a high-speed fan that reliably de-lids microtiter plates on a high-throughput screening system. TipWaster uses a presence sensor to activate an active tip waste chute when tips are ejected from a pipetting head. REMIND is a wireless, networked lab monitoring device. In its current implementation, it monitors the liquid level of waste collection vessels or bulk liquid reagent containers. The modularity of this device makes adaptation to other sensors (temperature, humidity, light/darkness, movement, etc.) relatively simple. These three devices illustrate how 3D printing and microcontrollers have enabled the process of rapidly turning ideas into useful devices.
3D multiplayer virtual pets game using Google Card Board
NASA Astrophysics Data System (ADS)
Herumurti, Darlis; Riskahadi, Dimas; Kuswardayan, Imam
2017-08-01
Virtual Reality (VR) is a technology which allows user to interact with the virtual environment. This virtual environment is generated and simulated by computer. This technology can make user feel the sensation when they are in the virtual environment. The VR technology provides real virtual environment view for user and it is not viewed from screen. But it needs another additional device to show the view of virtual environment. This device is known as Head Mounted Device (HMD). Oculust Rift and Microsoft Hololens are the most famous HMD devices used in VR. And in 2014, Google Card Board was introduced at Google I/O developers conference. Google Card Board is VR platform which allows user to enjoy the VR with simple and cheap way. In this research, we explore Google Card Board to develop simulation game of raising pet. The Google Card Board is used to create view for the VR environment. The view and control in VR environment is built using Unity game engine. And the simulation process is designed using Finite State Machine (FSM). This FSM can help to design the process clearly. So the simulation process can describe the simulation of raising pet well. Raising pet is fun activity. But sometimes, there are many conditions which cause raising pet become difficult to do, i.e. environment condition, disease, high cost, etc. this research aims to explore and implement Google Card Board in simulation of raising pet.
NASA Astrophysics Data System (ADS)
Huang, Po-Jung; Baghbani Kordmahale, Sina; Chou, Chao-Kai; Yamaguchi, Hirohito; Hung, Mien-Chie; Kameoka, Jun
2016-03-01
Signal transductions including multiple protein post-translational modifications (PTM), protein-protein interactions (PPI), and protein-nucleic acid interaction (PNI) play critical roles for cell proliferation and differentiation that are directly related to the cancer biology. Traditional methods, like mass spectrometry, immunoprecipitation, fluorescence resonance energy transfer, and fluorescence correlation spectroscopy require a large amount of sample and long processing time. "microchannel for multiple-parameter analysis of proteins in single-complex (mMAPS)"we proposed can reduce the process time and sample volume because this system is composed by microfluidic channels, fluorescence microscopy, and computerized data analysis. In this paper, we will present an automated mMAPS including integrated microfluidic device, automated stage and electrical relay for high-throughput clinical screening. Based on this result, we estimated that this automated detection system will be able to screen approximately 150 patient samples in a 24-hour period, providing a practical application to analyze tissue samples in a clinical setting.
A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...
Research study on stellar X-ray imaging experiment, volume 1
NASA Technical Reports Server (NTRS)
Wilson, H. H.; Vanspeybroeck, L. P.
1972-01-01
The use of microchannel plates as focal plane readout devices and the evaluation of mirrors for X-ray telescopes applied to stellar X-ray imaging is discussed. The microchannel plate outputs were either imaged on a phosphor screen which was viewed by a low light level vidicon or on a wire array which was read out by digitally processing the output of a charge division network attached to the wires. A service life test which was conducted on two image intensifiers is described.
Intelligent Advanced Communications IP Telephony Feasibility for the U.S. Navy. Volume 1
2007-10-01
Monitors Control and Bearer Designed by the There are no bearing Circuitry Health through Non - manufacture of the circuits to be testing in Selectable... controlled process, only replacing non -tactical end devices at first and then replacing tactical when the sailors and the commanding officers build up...looked at as an alternative to the touch screen in a non -software research . A complete review of development of voice is larger then this test bed can
Chang, Fong-Ching; Chiu, Chiung-Hui; Chen, Ping-Hung; Miao, Nae-Fang; Chiang, Jeng-Tung; Chuang, Hung-Yi
2018-03-01
This study assessed the computer/mobile device screen time and eye care behavior of children and examined the roles of risk perception and parental practices. Data were obtained from a sample of 2,454 child-parent dyads recruited from 30 primary schools in Taipei city and New Taipei city, Taiwan, in 2016. Self-administered questionnaires were collected from students and parents. Fifth-grade students spend more time on new media (computer/smartphone/tablet: 16 hours a week) than on traditional media (television: 10 hours a week). The average daily screen time (3.5 hours) for these children exceeded the American Academy of Pediatrics recommendations (≤2 hours). Multivariate analysis results showed that after controlling for demographic factors, the parents with higher levels of risk perception and parental efficacy were more likely to mediate their child's eye care behavior. Children who reported lower academic performance, who were from non-intact families, reported lower levels of risk perception of mobile device use, had parents who spent more time using computers and mobile devices, and had lower levels of parental mediation were more likely to spend more time using computers and mobile devices; whereas children who reported higher academic performance, higher levels of risk perception, and higher levels of parental mediation were more likely to engage in higher levels of eye care behavior. Risk perception by children and parental practices are associated with the amount of screen time that children regularly engage in and their level of eye care behavior.
NASA Technical Reports Server (NTRS)
1976-01-01
With NASA contracts, Whittaker Corporations Space Science division has developed an electro-optical instrument to mass screen for lead poisoning. Device is portable and detects protoporphyrin in whole blood. Free corpuscular porphyrins occur as an early effect of lead ingestion. Also detects lead in urine used to confirm blood tests. Test is inexpensive and can be applied by relatively unskilled personnel. Similar Whittaker fluorometry device called "drug screen" can measure morphine and quinine in urine much faster and cheaper than other methods.
Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.
Botasini, S; Martí, A C; Méndez, E
2016-10-17
Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.
ERIC Educational Resources Information Center
Liu, Chen-Chung; Kao, L.-C.
2007-01-01
One-to-one computing environments change and improve classroom dynamics as individual students can bring handheld devices fitted with wireless communication capabilities into the classrooms. However, the screens of handheld devices, being designed for individual-user mobile application, limit promotion of interaction among groups of learners. This…
An integrated microfludic device for culturing and screening of Giardia lamblia.
Zheng, Guo-Xia; Zhang, Xue-Mei; Yang, Yu-Suo; Zeng, Shu-Rui; Wei, Jun-Feng; Wang, Yun-Hua; Li, Ya-Jie
2014-02-01
In vitro culturing of trophozoites was important for research of Giardia lamblia (G. lamblia), especially in discovery of anti-Giardia agents. The current culture methods mainly suffer from lab-intension or the obstacle in standardizing the gas condition. Thus, it could benefit from a more streamlined and integrated approach. Microfluidics offers a way to accomplish this goal. Here we presented an integrated microfluidic device for culturing and screening of G. lamblia. The device consisted of a polydimethylsiloxane (PDMS) microchip with an aerobic culture system. In the microchip, the functionality of integrated concentration gradient generator (CGG) with micro-scale cell culture enables dose-response experiment to be performed in a simple and reagent-saving way. The diffusion-based culture chambers allowed growing G. lamblia at the in vivo like environment. It notable that the highly air permeable material of parallel chambers maintain uniform anaerobic environment in different chambers easily. Using this device, G. lamblia were successfully cultured and stressed on-chip. In all cases, a dose-related inhibitory response was detected. The application of this device for these purposes represents the first step in developing a completely integrated microfluidic platform for high-throughput screening and might be expanded to other assays based on in vitro culture of G. lamblia with further tests. Copyright © 2013 Elsevier Inc. All rights reserved.
Controlled carrier screening in p-n NiO/GaN piezoelectric generators by an Al2O3 insertion layer
NASA Astrophysics Data System (ADS)
Johar, Muhammad Ali; Jeong, Dae Kyung; Afifi Hassan, Mostafa; Kang, Jin-Ho; Ha, Jun-Seok; Key Lee, June; Ryu, Sang-Wan
2017-12-01
The performance of a piezoelectric generator (PG) depends significantly on the internal screening process inside the device. As piezoelectric charges appear on both ends of the piezoelectric crystal, internal screening starts to decrease the piezoelectric bias. Therefore, the piezoelectric energy generated by external stress is not fully utilized by external circuit, which is the most challenging aspect of high-efficiency PGs. In this work, the internal screening effect of a NiO/GaN p-n PG was analyzed and controlled with an Al2O3 insertion layer. Internal screening in the p-n diode PG was categorized into free-carrier screening in neutral regions and junction screening due to charge drift across the junction. It was observed that junction screening could be significantly suppressed by inserting an Al2O3 layer and that effect was dominant in a leaky diode PG. With this implementation, the piezoelectric bias of the NiO/GaN PG was improved by a factor of ~100 for high-leakage diodes and a factor of ~1.6 for low-leakage diodes. Consequently, NiO/Al2O3/GaN PGs under a stress of 5 MPa provided a piezoelectric bias of 12.1 V and a current density of 2.25 µA cm-2. The incorporation of a highly resistive Al2O3 layer between p-NiO and n-GaN layers in NiO/GaN heterojunctions provides an efficient means of improving the piezoelectric performance by controlling the internal screening of the piezoelectric field.
Teleoperated robotic sorting system
Roos, Charles E.; Sommer, Jr., Edward J.; Parrish, Robert H.; Russell, James R.
2008-06-24
A method and apparatus are disclosed for classifying materials utilizing a computerized touch sensitive screen or other computerized pointing device for operator identification and electronic marking of spatial coordinates of materials to be extracted. An operator positioned at a computerized touch sensitive screen views electronic images of the mixture of materials to be sorted as they are conveyed past a sensor array which transmits sequences of images of the mixture either directly or through a computer to the touch sensitive display screen. The operator manually "touches" objects displayed on the screen to be extracted from the mixture thereby registering the spatial coordinates of the objects within the computer. The computer then tracks the registered objects as they are conveyed and directs automated devices including mechanical means such as air jets, robotic arms, or other mechanical diverters to extract the registered objects.
NASA Technical Reports Server (NTRS)
Burge, G. W.; Blackmon, J. B.
1973-01-01
Areas of cryogenic fuel systems were identified where critical experimental information was needed either to define a design criteria or to establish the feasibility of a design concept or a critical aspect of a particular design. Such data requirements fell into three broad categories: (1) basic surface tension screen characteristics; (2) screen acquisition device fabrication problems; and (3) screen surface tension device operational failure modes. To explore these problems and to establish design criteria where possible, extensive laboratory or bench test scale experiments were conducted. In general, these proved to be quite successful and, in many instances, the test results were directly used in the system design analyses and development. In some cases, particularly those relating to operational-type problems, areas requiring future research were identified, especially screen heat transfer and vibrational effects.
Teleoperated robotic sorting system
Roos, Charles E.; Sommer, Edward J.; Parrish, Robert H.; Russell, James R.
2000-01-01
A method and apparatus are disclosed for classifying materials utilizing a computerized touch sensitive screen or other computerized pointing device for operator identification and electronic marking of spatial coordinates of materials to be extracted. An operator positioned at a computerized touch sensitive screen views electronic images of the mixture of materials to be sorted as they are conveyed past a sensor array which transmits sequences of images of the mixture either directly or through a computer to the touch sensitive display screen. The operator manually "touches" objects displayed on the screen to be extracted from the mixture thereby registering the spatial coordinates of the objects within the computer. The computer then tracks the registered objects as they are conveyed and directs automated devices including mechanical means such as air jets, robotic arms, or other mechanical diverters to extract the registered objects.
Binns-Hall, O; Selvarajah, D; Sanger, D; Walker, J; Scott, A; Tesfaye, S
2018-04-02
To evaluate the feasibility of a one-stop microvascular screening service for the early diagnosis of diabetic distal symmetrical polyneuropathy, painful distal symmetrical polyneuropathy and the at-risk diabetic foot. People with diabetes attending retinal screening in hospital and community settings had their feet examined by a podiatrist. Assessment included: Toronto Clinical Neuropathy Score evaluation; a 10-g monofilament test; and two validated, objective and quick measures of neuropathy obtained using the point-of-care devices 'DPN-Check', a hand-held device that measures sural nerve conduction velocity and amplitude, and 'Sudoscan', a device that measures sudomotor function. The diagnostic utility of these devices was assessed against the Toronto Clinical Neuropathy Score as the 'gold standard'. A total of 236 consecutive people attending the retinal screening service, 18.9% of whom had never previously had their feet examined, were evaluated. The prevalence of distal symmetrical polyneuropathy, assessed using the Toronto Clinical Neuropathy Score, was 30.9%, and was underestimated by 10-g monofilament test (14.4%). The prevalence of distal symmetrical polyneuropathy using DPN-check was 51.5% (84.3% sensitivity, 68.3% specificity), 38.2% using Sudoscan foot electrochemical skin conductance (77.4% sensitivity, 68.3% specificity), and 61.9% using abnormality in either of the results (93.2% sensitivity, 52.8% specificity). The results of both devices correlated with Toronto Clinical Neuropathy Score (P<0.001). A new diagnosis of painful distal symmetrical polyneuropathy was made in 59 participants (25%), and 56.6% had moderate- or high-risk foot. Participants rated the service very highly. Combined, eye, foot and renal screening is feasible, has a high uptake, reduces clinic visits, and identifies painful distal symmetrical polyneuropathy and the at-risk foot. Combined large- and small-nerve-fibre assessment using non-invasive, quantitative and quick point-of-care devices may be an effective model for the early diagnosis of distal symmetrical polyneuropathy. © 2018 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.
3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.
Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali
2017-07-28
Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.
NASA Astrophysics Data System (ADS)
Azizah, N.; Hashim, U.; Arshad, M. K. Md.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Ayub, R. M.
2016-07-01
Titanium dioxide (TiO2) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of pH sensors using IDE nanocoated with TiO2 was studied in this paper. In this paper, a preliminary assessment of this intracellular sensor with electrical measurement under different pH levels. 3-aminopropyltriethoxysilane (APTES) was used to enhance the sensitivity of titanium dioxide layer as well as able to provide surface modification by undergoing protonation and deprotonation process. Different types of pH solution provide different resistivity and conductivity towards the surface. Base solution has the higher current compared to an acid solution. Amine and oxide functionalized TiO2 based IDE exhibit pH-dependent could be understood in terms of the change in surface charge during protonation and deprotonation. The simple fabrication process, high sensitivity, and fast response of the TiO2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.
The Role and Design of Screen Images in Software Documentation.
ERIC Educational Resources Information Center
van der Meij, Hans
2000-01-01
Discussion of learning a new computer software program focuses on how to support the joint handling of a manual, input devices, and screen display. Describes a study that examined three design styles for manuals that included screen images to reduce split-attention problems and discusses theory versus practice and cognitive load theory.…
A Rating Scale to Screen Symptoms of Psychiatric Disorders in Children
ERIC Educational Resources Information Center
Scholte, Evert M.; Van Berckelaer-Onnes, Ina; Van der Ploeg, Jan D.
2008-01-01
To be able to offer children with developmental disorders adequate help, professionals working in special needs education must use a screening device to assess the specific psychiatric difficulties of the children. In this paper the psychometric properties of an easy-to-use parental rating scale to screen symptoms of major psychiatric disorders…
EPICS-based control and data acquisition for the APS slope profiler (Conference Presentation)
NASA Astrophysics Data System (ADS)
Sullivan, Joseph; Assoufid, Lahsen; Qian, Jun; Jemian, Peter R.; Mooney, Tim; Rivers, Mark L.; Goetze, Kurt; Sluiter, Ronald L.; Lang, Keenan
2016-09-01
The motion control, data acquisition and analysis system for APS Slope Measuring Profiler was implemented using the Experimental Physics and Industrial Control System (EPICS). EPICS was designed as a framework with software tools and applications that provide a software infrastructure used in building distributed control systems to operate devices such as particle accelerators, large experiments and major telescopes. EPICS was chosen to implement the APS Slope Measuring Profiler because it is also applicable to single purpose systems. The control and data handling capability available in the EPICS framework provides the basic functionality needed for high precision X-ray mirror measurement. Those built in capabilities include hardware integration of high-performance motion control systems (3-axis gantry and tip-tilt stages), mirror measurement devices (autocollimator, laser spot camera) and temperature sensors. Scanning the mirror and taking measurements was accomplished with an EPICS feature (the sscan record) which synchronizes motor positioning with measurement triggers and data storage. Various mirror scanning modes were automatically configured using EPICS built-in scripting. EPICS tools also provide low-level image processing (areaDetector). Operation screens were created using EPICS-aware GUI screen development tools.
A Method for Rapid Measurement of Contrast Sensitivity on Mobile Touch-Screens
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2016-01-01
Touch-screen displays in cell phones and tablet computers are now pervasive, making them an attractive option for vision testing outside of the laboratory or clinic. Here we de- scribe a novel method in which subjects use a finger swipe to indicate the transition from visible to invisible on a grating which is swept in both contrast and frequency. Because a single image can be swiped in about a second, it is practical to use a series of images to zoom in on particular ranges of contrast or frequency, both to increase the accuracy of the measurements and to obtain an estimate of the reliability of the subject. Sensitivities to chromatic and spatio-temporal modulations are easily measured using the same method. A proto- type has been developed for Apple Computer's iPad/iPod/iPhone family of devices, implemented using an open-source scripting environment known as QuIP (QUick Image Processing, http://hsi.arc.nasa.gov/groups/scanpath/research.php). Preliminary data show good agreement with estimates obtained from traditional psychophysical methods as well as newer rapid estimation techniques. Issues relating to device calibration are also discussed.
Eisenberg, Daniel A; Yu, Mengjing; Lam, Carl W; Ogunseitan, Oladele A; Schoenung, Julie M
2013-09-15
Copper-indium-gallium-selenium-sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS₂ p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Darr, S. R.; Camarotti, C. F.; Hartwig, J. W.; Chung, J. N.
2017-01-01
Technologies that enable the storage and transfer of cryogenic propellants in space will be needed for the next generation vehicles that will carry humans to Mars. One of the candidate technologies is the screen channel liquid acquisition device (LAD), which uses a metal woven wire mesh to separate the liquid and vapor phases so that single-phase liquid propellant can be transferred in microgravity. In this work, an experiment is carried out that provides measurements of the velocity and pressure fields in a screen channel LAD. These data are used to validate a new analytical solution of the liquid flow through a screen channel LAD. This hydrodynamic model, which accounts for non-uniform injection through the screen, is compared with the traditional pressure term summation model which assumes a constant, uniform injection velocity. Results show that the new model performs best against the new data and historical data. The velocity measurements inside the screen channel LAD are used to provide a more accurate velocity profile which further improves the new model. The result of this work is a predictive tool that will instill confidence in the design of screen channel LADs for future in-space propulsion systems.
Increased metal concentrations in exhaled breath condensate of industrial welders.
Hoffmeyer, Frank; Weiss, Tobias; Lehnert, Martin; Pesch, Beate; Berresheim, Hans; Henry, Jana; Raulf-Heimsoth, Monika; Broding, Horst Christoph; Bünger, Jürgen; Harth, Volker; Brüning, Thomas
2011-01-01
It was the aim of this study to evaluate the effect of different devices on the metal concentration in exhaled breath condensate (EBC) and to prove whether working conditions in different welding companies result in diverse composition of metallic elements. The influence of two collection devices (ECoScreen, ECoScreen2) on detection of metallic elements in EBC was evaluated in 24 control subjects. Properties of ECoScreen and a frequent use can alter EBC metal content due to contamination from metallic components. ECoScreen2 turned out to be favourable for metal assessment. Concentrations of iron, nickel and chromium in EBC sampled with ECoScreen2 were compared between non-exposed controls and industrial welders. Metal concentrations in EBC were higher in 36 welders recruited from three companies. Exposure to welding fumes could be demonstrated predominantly for increased iron concentrations. Concentrations of iron and nickel differed by working conditions, but chromium could not be detected in EBC.
Eeles, Eamonn; Gunn, Hayley; Sutt, Anna-Liisa; Pinsker, Donna; Flaws, Dylan; Jarrett, Paul; Lye, India; Fraser, John F
2018-06-01
Delirium is common in the intensive care unit (ICU), often affecting older patients. A bedside electronic tool has the potential to revolutionise delirium screening. Our group describe a novel approach to the design and development of delirium screening questions for the express purpose of use within an electronic device. Preliminary results are presented. Our group designed a series of tests which targeted the clinical criteria for delirium according to Diagnostic and Statistical Manual of Mental Disorders - Fifth Edition (DSM-5) criteria against predefined requirements, including applicability to older patients. Candidate questions, including tests of attention and awareness, were devised and then refined by an expert multidisciplinary group, including geriatricians. A scoring scheme was constructed, with testing to failure an indicator of delirium. The device was tested in healthy controls, aged 20-80 years, who were recorded as being without delirium. e-Screening for delirium requires a novel approach to instrument design but may revolutionise recognition of delirium in ICU. © 2018 AJA Inc.
Classification of team sport activities using a single wearable tracking device.
Wundersitz, Daniel W T; Josman, Casey; Gupta, Ritu; Netto, Kevin J; Gastin, Paul B; Robertson, Sam
2015-11-26
Wearable tracking devices incorporating accelerometers and gyroscopes are increasingly being used for activity analysis in sports. However, minimal research exists relating to their ability to classify common activities. The purpose of this study was to determine whether data obtained from a single wearable tracking device can be used to classify team sport-related activities. Seventy-six non-elite sporting participants were tested during a simulated team sport circuit (involving stationary, walking, jogging, running, changing direction, counter-movement jumping, jumping for distance and tackling activities) in a laboratory setting. A MinimaxX S4 wearable tracking device was worn below the neck, in-line and dorsal to the first to fifth thoracic vertebrae of the spine, with tri-axial accelerometer and gyroscope data collected at 100Hz. Multiple time domain, frequency domain and custom features were extracted from each sensor using 0.5, 1.0, and 1.5s movement capture durations. Features were further screened using a combination of ANOVA and Lasso methods. Relevant features were used to classify the eight activities performed using the Random Forest (RF), Support Vector Machine (SVM) and Logistic Model Tree (LMT) algorithms. The LMT (79-92% classification accuracy) outperformed RF (32-43%) and SVM algorithms (27-40%), obtaining strongest performance using the full model (accelerometer and gyroscope inputs). Processing time can be reduced through feature selection methods (range 1.5-30.2%), however a trade-off exists between classification accuracy and processing time. Movement capture duration also had little impact on classification accuracy or processing time. In sporting scenarios where wearable tracking devices are employed, it is both possible and feasible to accurately classify team sport-related activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
An affordable cuff-less blood pressure estimation solution.
Jain, Monika; Kumar, Niranjan; Deb, Sujay
2016-08-01
This paper presents a cuff-less hypertension pre-screening device that non-invasively monitors the Blood Pressure (BP) and Heart Rate (HR) continuously. The proposed device simultaneously records two clinically significant and highly correlated biomedical signals, viz., Electrocardiogram (ECG) and Photoplethysmogram (PPG). The device provides a common data acquisition platform that can interface with PC/laptop, Smart phone/tablet and Raspberry-pi etc. The hardware stores and processes the recorded ECG and PPG in order to extract the real-time BP and HR using kernel regression approach. The BP and HR estimation error is measured in terms of normalized mean square error, Error Standard Deviation (ESD) and Mean Absolute Error (MAE), with respect to a clinically proven digital BP monitor (OMRON HBP1300). The computed error falls under the maximum standard allowable error mentioned by Association for the Advancement of Medical Instrumentation; MAE <; 5 mmHg and ESD <; 8mmHg. The results are validated using two-tailed dependent sample t-test also. The proposed device is a portable low-cost home and clinic bases solution for continuous health monitoring.
Improved intensifying screen reduces X-ray exposure
NASA Technical Reports Server (NTRS)
Buchanan, R. A.
1972-01-01
X-ray intensifying screen may make possible radiographic procedures where detection speed and X-ray tube power have been the limiting factors. Device will reduce total population exposure to harmful radiation in the United States.
A portable detection instrument based on DSP for beef marbling
NASA Astrophysics Data System (ADS)
Zhou, Tong; Peng, Yankun
2014-05-01
Beef marbling is one of the most important indices to assess beef quality. Beef marbling is graded by the measurement of the fat distribution density in the rib-eye region. However quality grades of beef in most of the beef slaughtering houses and businesses depend on trainees using their visual senses or comparing the beef slice to the Chinese standard sample cards. Manual grading demands not only great labor but it also lacks objectivity and accuracy. Aiming at the necessity of beef slaughtering houses and businesses, a beef marbling detection instrument was designed. The instrument employs Charge-coupled Device (CCD) imaging techniques, digital image processing, Digital Signal Processor (DSP) control and processing techniques and Liquid Crystal Display (LCD) screen display techniques. The TMS320DM642 digital signal processor of Texas Instruments (TI) is the core that combines high-speed data processing capabilities and real-time processing features. All processes such as image acquisition, data transmission, image processing algorithms and display were implemented on this instrument for a quick, efficient, and non-invasive detection of beef marbling. Structure of the system, working principle, hardware and software are introduced in detail. The device is compact and easy to transport. The instrument can determine the grade of beef marbling reliably and correctly.
Analysis of field usage failure rate data for plastic encapsulated solid state devices
NASA Technical Reports Server (NTRS)
1981-01-01
Survey and questionnaire techniques were used to gather data from users and manufacturers on the failure rates in the field of plastic encapsulated semiconductors. It was found that such solid state devices are being successfully used by commercial companies which impose certain screening and qualification procedures. The reliability of these semiconductors is now adequate to support their consideration in NASA systems, particularly in low cost systems. The cost of performing necessary screening for NASA applications was assessed.
Protective laser beam viewing device
Neil, George R.; Jordan, Kevin Carl
2012-12-18
A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.
Shin, Hye Young; Suh, Mina; Baik, Hyung Won; Choi, Kui Son; Park, Boyoung; Jun, Jae Kwan; Hwang, Sang-Hyun; Kim, Byung Chang; Lee, Chan Wha; Oh, Jae Hwan; Lee, You Kyoung; Han, Dong Soo; Lee, Do-Hoon
2016-11-15
We are in the process of conducting a randomized trial to determine whether compliance with the fecal immunochemical test (FIT) for colorectal cancer screening differs according to the stool-collection method. This study was an interim analysis of the performance of two stool-collection devices (sampling bottle vs conventional container). In total, 1,701 individuals (age range, 50 to 74 years) were randomized into the sampling bottle group (intervention arm) or the conventional container group (control arm). In both groups, we evaluated the FIT positivity rate, the positive predictive value for advanced neoplasia, and the detection rate for advanced neoplasia. The FIT positivity rates were 4.1% for the sampling bottles and 2.0% for the conventional containers; these values were significantly different. The positive predictive values for advanced neoplasia in the sampling bottles and conventional containers were 11.1% (95% confidence interval [CI], -3.4 to 25.6) and 12.0% (95% CI, -0.7 to 24.7), respectively. The detection rates for advanced neoplasia in the sampling bottles and conventional containers were 4.5 per 1,000 persons (95% CI, 2.0 to 11.0) and 2.4 per 1,000 persons (95% CI, 0.0 to 5.0), respectively. The impact of these findings on FIT screening performance was unclear in this interim analysis. This impact should therefore be evaluated in the final analysis following the final enrollment period.
Niu, Ye; Qi, Lin; Zhang, Fen; Zhao, Yi
2018-07-30
Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields. Copyright © 2018 Elsevier B.V. All rights reserved.
Non-ARC solution to metal reflective notching: its evaluation and selection
NASA Astrophysics Data System (ADS)
Buffat, Stephen J.
1997-07-01
Patterning photoresists on reflective topography such as aluminum is one of the more difficult problems in device manufacturing. Interference effects caused by reflected light from the substrate/photoresist interface and surface topography result in coupling of additional energy into the film. This leads to linewidth variation known as reflective notching which severely impacts process latitude and increases critical dimension variation. For many years, suppliers approached the problem by adding dyes that absorb in the actinic region to create a larger non-bleachable absorption. In recent years, strongly absorbing intermediate layers or ARC's, both organic and inorganic, have seen widespread implementation to control reflective notching. However, if a fab is not equipped to accommodate the required ARC process, the processing can be very time consuming, cumbersome and costly. This study was undertaken to determine if a non-ARC, i-line photoresist process could be developed to reduce or eliminate aluminum reflective notching and accompanying critical dimension variation. This study was designed to screen, identify, and characterize various resist chemistries. Based on the screening characterization, a final, cost effective resist chemistry without ARC was selected, fully characterized and transferred into production. The selected material is currently being used in a high volume 0.60 micrometers CMOS, 200 mm wafer manufacturing process.
Microfluidic Devices for Drug Delivery Systems and Drug Screening
Kompella, Uday B.; Damiati, Safa A.
2018-01-01
Microfluidic devices present unique advantages for the development of efficient drug carrier particles, cell-free protein synthesis systems, and rapid techniques for direct drug screening. Compared to bulk methods, by efficiently controlling the geometries of the fabricated chip and the flow rates of multiphase fluids, microfluidic technology enables the generation of highly stable, uniform, monodispersed particles with higher encapsulation efficiency. Since the existing preclinical models are inefficient drug screens for predicting clinical outcomes, microfluidic platforms might offer a more rapid and cost-effective alternative. Compared to 2D cell culture systems and in vivo animal models, microfluidic 3D platforms mimic the in vivo cell systems in a simple, inexpensive manner, which allows high throughput and multiplexed drug screening at the cell, organ, and whole-body levels. In this review, the generation of appropriate drug or gene carriers including different particle types using different configurations of microfluidic devices is highlighted. Additionally, this paper discusses the emergence of fabricated microfluidic cell-free protein synthesis systems for potential use at point of care as well as cell-, organ-, and human-on-a-chip models as smart, sensitive, and reproducible platforms, allowing the investigation of the effects of drugs under conditions imitating the biological system. PMID:29462948
Metal current collect protected by oxide film
Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.
2004-05-25
Provided are low-cost, mechanically strong, highly electronically conductive current collects and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical devices having as current interconnects a ferritic steel felt or screen coated with a protective oxide film.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-11
... Characteristics of In Vitro Diagnostic Devices for Chlamydia Trachomatis and/or Neisseria Gonorrhoeae: Screening... entitled ``Establishing the Performance Characteristics of In Vitro Diagnostic Devices for Chlamydia... clinical performance of in vitro diagnostic devices (IVDs) intended for C. trachomatis and/or N...
DOT National Transportation Integrated Search
1974-06-01
This evaluation report examines use in the field of portable breath test (PBT) devices by police in Hennepin County, Minnesota. Thirteen Brog-Warner J2 and J2A-200 "ALERT" devices were deployed by seven enforcement agencies. This report is presented ...
Hinten, Floor; Hilbrands, Luuk B; Meeuwis, Kim A; van Bergen-Verkuyten, Muriël C; Slangen, Brigitte F; van Rossum, Michelle M; Rahamat-Langendoen, Janette; Massuger, Leon F; de Hullu, Joanne A; Melchers, Willem J
2017-01-01
Female renal transplant recipients (RTRs) have increased risk for developing human papillomavirus (HPV)-related (pre)malignancies of the lower genital tract. Annual cervical screening is advised for RTRs, but the participation rate is low. The aim of this study is to investigate whether HPV self-sampling is suitable for gynecological screening of RTRs to increase participation rate. A large cohort of 253 RTRs was investigated for the prevalence of HPV. All participants received a device for a cervicovaginal self-sample. Questionnaires were sent to assess the experience with this device. High-risk (hrHPV) presence was determined with the SPF10-LiPA25 system and GP5+/6+ PCR. HrHPV-positive patients underwent gynecological examination. More than 90% of the patients rated their experience with the self-sample device as good to excellent, and 77% preferred self-sampling over a physician taken sample. Approximately thirty-five of 217 women tested hrHPV positive with SPF10- LiPA25, and 22 tested positive with the GP5+/6+ PCR. Eleven hrHPV-positive patients had clinically relevant gynecological abnormalities, and they all tested positive with GP5+/6+ PCR. Self-sampling is clinically applicable in a gynecological screening and is preferred by female RTRs. Therefore, self-sampling could be implemented with the aim to increase the participation rate of female RTRs in yearly gynecological screening.
[A Method for Selecting Self-Adoptive Chromaticity of the Projected Markers].
Zhao, Shou-bo; Zhang, Fu-min; Qu, Xing-hua; Zheng, Shi-wei; Chen, Zhe
2015-04-01
The authors designed a self-adaptive projection system which is composed of color camera, projector and PC. In detail, digital micro-mirror device (DMD) as a spatial light modulator for the projector was introduced in the optical path to modulate the illuminant spectrum based on red, green and blue light emitting diodes (LED). However, the color visibility of active markers is affected by the screen which has unknown reflective spectrum as well. Here active markers are projected spot array. And chromaticity feature of markers is sometimes submerged in similar spectral screen. In order to enhance the color visibility of active markers relative to screen, a method for selecting self-adaptive chromaticity of the projected markers in 3D scanning metrology is described. Color camera with 3 channels limits the accuracy of device characterization. For achieving interconversion of device-independent color space and device-dependent color space, high-dimensional linear model of reflective spectrum was built. Prior training samples provide additional constraints to yield high-dimensional linear model with more than three degrees of freedom. Meanwhile, spectral power distribution of ambient light was estimated. Subsequently, markers' chromaticity in CIE color spaces was selected via maximization principle of Euclidean distance. The setting values of RGB were easily estimated via inverse transform. Finally, we implemented a typical experiment to show the performance of the proposed approach. An 24 Munsell Color Checker was used as projective screen. Color difference in the chromaticity coordinates between the active marker and the color patch was utilized to evaluate the color visibility of active markers relative to the screen. The result comparison between self-adaptive projection system and traditional diode-laser light projector was listed and discussed to highlight advantage of our proposed method.
From Paper to PDA: Design and Evaluation of a Clinical Ward Instruction on a Mobile Device
NASA Astrophysics Data System (ADS)
Kanstrup, Anne Marie; Stage, Jan
Mobile devices with small screens and minimal facilities for interaction are increasingly being used in complex human activities for accessing and processing information, while the user is moving. This paper presents a case study of the design and evaluation of a mobile system, which involved transformation of complex text and tables to digital format on a PDA. The application domain was an emergency medical ward, and the user group was junior registrars. We designed a PDA-based system for accessing information, focusing on the ward instruction, implemented a prototype and evaluated it for usability and utility. The evaluation results indicate significant problems in the interaction with the system as well as the extent to which the system is useful for junior registrars in their daily work.
Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes.
Yuksel, Recep; Sarioba, Zeynep; Cirpan, Ali; Hiralal, Pritesh; Unalan, Husnu Emrah
2014-09-10
We describe a simple process for the fabrication of transparent and flexible, solid-state supercapacitors. Symmetric electrodes made up of binder-free single walled carbon nanotube (SWCNT) thin films were deposited onto polydimethylsiloxane substrates by vacuum filtration followed by a stamping method, and solid-state supercapacitor devices were assembled using a gel electrolyte. An optical transmittance of 82% was found for 0.02 mg of SWCNTs, and a specific capacitance of 22.2 F/g was obtained. The power density can reach to 41.5 kW · kg(-1) and shows good capacity retention (94%) upon cycling over 500 times. Fabricated supercapacitors will be relevant for the realization of transparent and flexible devices with energy storage capabilities, displays and touch screens in particular.
Smartphone-based fluorescence spectroscopy device aiding in preliminary skin screening
NASA Astrophysics Data System (ADS)
Sahoo, Aparajita; Wahi, Akshat; Das, Anshuman
2018-02-01
Preliminary diagnosis of closely resembling skin conditions can be highly subjective for dermatologists. In ambiguous cases, it often leads to performing invasive procedures like biopsies. Different skin conditions, however, have varying concentrations of fluorophores (like collagen, NADH) and chromophores (like melanin, hemoglobin) which can alter their fluorescence spectra. We demonstrate a handheld, portable, smartphone-based spectrometer that leverages these alterations in skin autofluorescence spectra for rapid screening of skin conditions. This methodology involves excitation of affected skin areas with ultraviolet (UV-A) 385 nm light, capturing the generated fluorescence spectra and sending the data wirelessly to a companion mobile application for data storage, analysis and visualization. By collecting the fluorescence spectral signals from healthy and unhealthy skin conditions, we establish that the signals collected using this portable device can be used to develop a classification method to help in differentially diagnosing these conditions. It shows promise as a useful skin screening tool for both dermatologists and primary health care workers. This device can enable quick, non-invasive and a more objective preliminary examination. We envision the device to be especially useful in primary healthcare centers of developing countries where availability of dermatologists is limited.
NASA Astrophysics Data System (ADS)
Pratavieira, S.; Santos, P. L. A.; Bagnato, V. S.; Kurachi, C.
2009-06-01
Oral and skin cancers constitute a major global health problem that cause great impact in patients. The most common screening method for oral cancer is visual inspection and palpation of the mouth. Visual examination relies heavily on the experience and skills of the physician to identify and delineate early premalignant and cancer changes, which is not simple due to the similar characteristics of early stage cancers and benign lesions. Optical imaging has the potential to address these clinical challenges. Contrast between normal and neoplastic areas may be increased, distinct to the conventional white light, when using illumination and detection conditions. Reflectance imaging can detect local changes in tissue scattering and absorption and fluorescence imaging can probe changes in the biochemical composition. These changes have shown to be indicatives of malignant progression. Widefield optical imaging systems are interesting because they may enhance the screening ability in large regions allowing the discrimination and the delineation of neoplastic and potentially of occult lesions. Digital image processing allows the combination of autofluorescence and reflectance images in order to objectively identify and delineate the peripheral extent of neoplastic lesions in the skin and oral cavity. Combining information from different imaging modalities has the potential of increasing diagnostic performance, due to distinct provided information. A simple widefiled imaging device based on fluorescence and reflectance modes together with a digital image processing was assembled and its performance tested in an animal study.
Flow chemistry using milli- and microstructured reactors-from conventional to novel process windows.
Illg, Tobias; Löb, Patrick; Hessel, Volker
2010-06-01
The terminology Novel Process Window unites different methods to improve existing processes by applying unconventional and harsh process conditions like: process routes at much elevated pressure, much elevated temperature, or processing in a thermal runaway regime to achieve a significant impact on process performance. This paper is a review of parts of IMM's works in particular the applicability of above mentioned Novel Process Windows on selected chemical reactions. First, general characteristics of microreactors are discussed like excellent mass and heat transfer and improved mixing quality. Different types of reactions are presented in which the use of microstructured devices led to an increased process performance by applying Novel Process Windows. These examples were chosen to demonstrate how chemical reactions can benefit from the use of milli- and microstructured devices and how existing protocols can be changed toward process conditions hitherto not applicable in standard laboratory equipment. The used milli- and microstructured reactors can also offer advantages in other areas, for example, high-throughput screening of catalysts and better control of size distribution in a particle synthesis process by improved mixing, etc. The chemical industry is under continuous improvement. So, a lot of research is being done to synthesize high value chemicals, to optimize existing processes in view of process safety and energy consumption and to search for new routes to produce such chemicals. Leitmotifs of such undertakings are often sustainable development(1) and Green Chemistry(2).
Microfluidic glycosyl hydrolase screening for biomass-to-biofuel conversion.
Bharadwaj, Rajiv; Chen, Zhiwei; Datta, Supratim; Holmes, Bradley M; Sapra, Rajat; Simmons, Blake A; Adams, Paul D; Singh, Anup K
2010-11-15
The hydrolysis of biomass to fermentable sugars using glycosyl hydrolases such as cellulases and hemicellulases is a limiting and costly step in the conversion of biomass to biofuels. Enhancement in hydrolysis efficiency is necessary and requires improvement in both enzymes and processing strategies. Advances in both areas in turn strongly depend on the progress in developing high-throughput assays to rapidly and quantitatively screen a large number of enzymes and processing conditions. For example, the characterization of various cellodextrins and xylooligomers produced during the time course of saccharification is important in the design of suitable reactors, enzyme cocktail compositions, and biomass pretreatment schemes. We have developed a microfluidic-chip-based assay for rapid and precise characterization of glycans and xylans resulting from biomass hydrolysis. The technique enables multiplexed separation of soluble cellodextrins and xylose oligomers in around 1 min (10-fold faster than HPLC). The microfluidic device was used to elucidate the mode of action of Tm_Cel5A, a novel cellulase from hyperthermophile Thermotoga maritima . The results demonstrate that the cellulase is active at 80 °C and effectively hydrolyzes cellodextrins and ionic-liquid-pretreated switchgrass and Avicel to glucose, cellobiose, and cellotriose. The proposed microscale approach is ideal for quantitative large-scale screening of enzyme libraries for biomass hydrolysis, for development of energy feedstocks, and for polysaccharide sequencing.
Reading and Studying on the Screen: An Overview of Literature towards Good Learning Design Practice
ERIC Educational Resources Information Center
Nichols, Mark
2016-01-01
As distance education moves increasingly towards online provision, and because of the benefits provided by online approaches, students will be expected to engage with more resources available on screen. Contemporary forms of reading from the screen include reading from tablet devices, LCD monitors, and smartphones. However, print remains the…
[Utilization of self-sampling kits for HPV testing in cervical cancer screening - pilot study].
Ondryášová, H; Koudeláková, V; Drábek, J; Vaněk, P; Slavkovský, R; Hajdúch, M
2015-12-01
To get initial experience with alternative sampling (self-sampling) for HPV testing as the means of cervical cancer screening program. Original work. Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc. Based on expression of interest, 215 self-sampling kits were posted to women. Evalyn(®) Brush Vaginal swabs obtained by self-sampling were analyzed for the presence of HPV infection by Cobas 4800 HPV (Roche) followed by genotyping using PapilloCheck(®) HPV-Screening (Greiner Bio-One). Sixty women randomly chosen from our sample were sent a questionnaire focused on their experience with self-sampling. One hundred seventy-four of 215 (81%) distributed self-sampling devices have been delivered to analysis. All cervicovaginal swabs were sampled correctly and it was possible to analyze them by Cobas 4800 HPV test. Similarly, 98% (171/174) samples were analyzable by PapilloCheck(®) HPV-Screening.One hundred twenty-five (72%) of 174 tested samples were HPV negative. Low risk HPV infection was detected only in 7 samples (4%), and high risk HPV (hrHPV) infection was present in 42 samples (24%). The most frequently detected hrHPV genotypes were HPV16 (11/42; 26%) and HPV53 (6/42; 14%). HrHPV co-infection was detected in 10 cases, in 5 of them lrHPV infection was find also.Of the 60 questionnaires, 48 (80%) were returned. From this group, 47 (98%) women rated their experience with self-sampling device as good to excellent. User manual of self-sampling device was considered good to excellent by all women (100%). All women also rated the convenience of self-sampling device using as good to excellent. As expected, most of the women (n = 42 [88%]) preferred self-sampling to physician sampling. Cervicovaginal self-sampling leads to valid results of HPV screening using two molecular genetics methods and was accepted by Czech women very well. The self-sampling as an opportunity to participate in cervical cancer screening could increase the attendance of the screening program and would help to reduce the incidence and mortality for this disease in the Czech population.
Zabek, Daniel; Seunarine, Kris; Spacie, Chris; Bowen, Chris
2017-03-15
Thermal energy can be effectively converted into electricity using pyroelectrics, which act as small scale power generator and energy harvesters providing nanowatts to milliwatts of electrical power. In this paper, a novel pyroelectric harvester based on free-standing poly(vinylidene difluoride) (PVDF) was manufactured that exploits the high thermal radiation absorbance of a screen printed graphene ink electrode structure to facilitate the conversion of the available thermal radiation energy into electrical energy. The use of interconnected graphene nanoplatelets (GNPs) as an electrode enable high thermal radiation absorbance and high electrical conductivity along with the ease of deposition using a screen print technique. For the asymmetric structure, the pyroelectric open-circuit voltage and closed-circuit current were measured, and the harvested electrical energy was stored in an external capacitor. For the graphene ink/PVDF/aluminum system the closed circuit pyroelectric current improves by 7.5 times, the open circuit voltage by 3.4 times, and the harvested energy by 25 times compared to a standard aluminum/PVDF/aluminum system electrode design, with a peak energy density of 1.13 μJ/cm 3 . For the pyroelectric device employed in this work, a complete manufacturing process and device characterization of these structures are reported along with the thermal conductivity of the graphene ink. The material combination presented here provides a new approach for delivering smart materials and structures, wireless technologies, and Internet of Things (IoT) devices.
Liquid crystal foil for the detection of breast cancer
NASA Astrophysics Data System (ADS)
Biernat, Michał; Trzyna, Marcin; Byszek, Agnieszka; Jaremek, Henryk
2016-09-01
Breast cancer is the most common malignant tumor in females around the world, representing 25.2% of all cancers in women. About 1.7 million women were diagnosed with breast cancer worldwide in 2012 with a death rate of about 522,0001,2. The most frequently used methods in breast cancer screening are imaging methods, i.e. ultrasonography and mammography. A common feature of these methods is that they inherently involve the use of expensive and advanced equipment. The development of advanced computer systems allowed for the continuation of research started already in the 1980s3 and the use of contact thermography in breast cancer screening. The physiological basis for the application of thermography in medical imaging diagnostics is the so-called dermothermal effect related to higher metabolism rate around focal neoplastic lesion. This phenomenon can occur on breast surface as localized temperature anomalies4. The device developed by Braster is composed of a detector that works on the basis of thermotropic liquid crystals, image acquisition device and a computer system for image data processing and analysis. Production of the liquid crystal detector was based on a proprietary CLCF technology (Continuous Liquid Crystal Film). In 2014 Braster started feasibility study to prove that there is a potential for artificial intelligence in early breast cancer detection using Braster's proprietary technology. The aim of this study was to develop a computer system, using a client-server architecture, to an automatic interpretation of thermographic pictures created by the Braster devices.
Mammographic interpretation training in the UK: current difficulties and future outlook
NASA Astrophysics Data System (ADS)
Chen, Yan; Gale, Alastair G.; Scott, Hazel
2009-02-01
In the UK, most mammographic interpretation training needs to be undertaken where there is a mammo-alternator or other suitable light box; consequently limiting the time and places where training can take place. However, the gradual introduction of digital mammography is opening up new opportunities of providing such training without the restriction of current viewing devices. Whilst high-resolution monitors in appropriate viewing environments are de rigour for actual reporting; advantages of the digital image over film are in the flexibility of training opportunity afforded, e.g. training whenever, wherever suits the individual. A previous study indicated the possible potential for reporting mammographic cases utilising handheld devices with suitable interaction techniques. In a pilot study, a group of mammographers (n=4) were questioned in semi-structured interviews in order to help establish current UK film-readers' training profile. On the basis of the pilot study data, 109 Breast Screening Units (601 film readers) were approached to complete a structured questionnaire in order to establish the potential role of smaller computer devices in mammographic interpretation training (given the use of digital mammography). Subsequently, a study of radiologists' visual search behaviour in digital screening has begun. This has highlighted different image manipulations than found in structured experiments in this area and poses new challenges for visualising the inspection process. Overall the results indicate that using different display sizes for training is possible but is also a challenging task requiring novel interaction approaches.
Finger tracking for hand-held device interface using profile-matching stereo vision
NASA Astrophysics Data System (ADS)
Chang, Yung-Ping; Lee, Dah-Jye; Moore, Jason; Desai, Alok; Tippetts, Beau
2013-01-01
Hundreds of millions of people use hand-held devices frequently and control them by touching the screen with their fingers. If this method of operation is being used by people who are driving, the probability of deaths and accidents occurring substantially increases. With a non-contact control interface, people do not need to touch the screen. As a result, people will not need to pay as much attention to their phones and thus drive more safely than they would otherwise. This interface can be achieved with real-time stereovision. A novel Intensity Profile Shape-Matching Algorithm is able to obtain 3-D information from a pair of stereo images in real time. While this algorithm does have a trade-off between accuracy and processing speed, the result of this algorithm proves the accuracy is sufficient for the practical use of recognizing human poses and finger movement tracking. By choosing an interval of disparity, an object at a certain distance range can be segmented. In other words, we detect the object by its distance to the cameras. The advantage of this profile shape-matching algorithm is that detection of correspondences relies on the shape of profile and not on intensity values, which are subjected to lighting variations. Based on the resulting 3-D information, the movement of fingers in space from a specific distance can be determined. Finger location and movement can then be analyzed for non-contact control of hand-held devices.
Control Board Digital Interface Input Devices – Touchscreen, Trackpad, or Mouse?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas A. Ulrich; Ronald L. Boring; Roger Lew
The authors collaborated with a power utility to evaluate input devices for use in the human system interface (HSI) for a new digital Turbine Control System (TCS) at a nuclear power plant (NPP) undergoing a TCS upgrade. A standalone dynamic software simulation of the new digital TCS and a mobile kiosk were developed to conduct an input device study to evaluate operator preference and input device effectiveness. The TCS software presented the anticipated HSI for the TCS and mimicked (i.e., simulated) the turbine systems’ responses to operator commands. Twenty-four licensed operators from the two nuclear power units participated in themore » study. Three input devices were tested: a trackpad, mouse, and touchscreen. The subjective feedback from the survey indicates the operators preferred the touchscreen interface. The operators subjectively rated the touchscreen as the fastest and most comfortable input device given the range of tasks they performed during the study, but also noted a lack of accuracy for selecting small targets. The empirical data suggest the mouse input device provides the most consistent performance for screen navigation and manipulating on screen controls. The trackpad input device was both empirically and subjectively found to be the least effective and least desired input device.« less
Modems and More: The Computer Branches Out.
ERIC Educational Resources Information Center
Dyrli, Odvard Egil
1986-01-01
Surveys new "peripherals," electronic devices that attach to computers. Devices such as videodisc players, desktop laser printers, large screen projectors, and input mechanisms that circumvent the keyboard dramatically expand the computer's instructional uses. (Author/LHW)
NASA Astrophysics Data System (ADS)
Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John
2013-07-01
Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.
Kinori, Michael; Molina, Iliana; Hernandez, Eric O; Robbins, Shira L; Granet, David B; Coleman, Anne L; Brown, Stuart I
2018-05-01
To compare the performance of the PlusoptiX S12 mobile photoscreener and the Retinomax K+3 Autorefractor as screening devices in preschool children. Children ranging from 3 to 5 years of age from 11 San Diego County preschools underwent vision screening in their schools where ambient light could not always be controlled using both the Retinomax and the PlusoptiX. Cycloplegic refraction on the consented children was subsequently performed on the UCSD EyeMobile for children on-site at the school locations. A total of 321 children were screened with the PlusoptiX and Retinomax. The PlusoptiX referred 22% of children, of whom 70% of the referrals were read as "unable". The Retinomax referred 13% and there were no "unables". Similar results occurred in the cycloplegic-refracted 182 consented children-64% of the PlusoptiX referrals were read as "unable" . Only one third of these "unables" required glasses. Both devices referred the four children with amblyopia and one case of strabismus. However, PlusoptiX's 3 false negatives had amblyopia risk factors (ARFs) while the one Retinomax's false negative did not have ARFs. The Retinomax screening had 95% sensitivity and 94% specificity. The PlusoptiX screening had 86% sensitivity and 84% specificity. In this preschool population and environment, the PlusoptiX referred 63% more than the Retinomax in addition to a lower specificity and sensitivity. Adjusting PlusoptiX referral criteria might not substantially improve the specificity of the PlusoptiX due to the high numbers of "unables".
Gan, Kok Beng; Azeez, Dhifaf; Umat, Cila; Ali, Mohd Alauddin Mohd; Wahab, Noor Alaudin Abdul; Mukari, Siti Zamratol Mai-Sarah
2012-10-01
Hearing screening is important for the early detection of hearing loss. The requirements of specialized equipment, skilled personnel, and quiet environments for valid screening results limit its application in schools and health clinics. This study aimed to develop an automated hearing screening kit (auto-kit) with the capability of realtime noise level monitoring to ensure that the screening is performed in an environment that conforms to the standard. The auto-kit consists of a laptop, a 24-bit resolution sound card, headphones, a microphone, and a graphical user interface, which is calibrated according to the American National Standards Institute S3.6-2004 standard. The auto-kit can present four test tones (500, 1000, 2000, and 4000 Hz) at 25 or 40 dB HL screening cut-off level. The clinical results at 40 dB HL screening cut-off level showed that the auto-kit has a sensitivity of 92.5% and a specificity of 75.0%. Because the 500 Hz test tone is not included in the standard hearing screening procedure, it can be excluded from the auto-kit test procedure. The exclusion of 500 Hz test tone improved the specificity of the auto-kit from 75.0% to 92.3%, which suggests that the auto-kit could be a valid hearing screening device. In conclusion, the auto-kit may be a valuable hearing screening tool, especially in countries where resources are limited.
ERIC Educational Resources Information Center
Lui, Donald P. Y.; Szeto, Grace P. Y.; Jones, Alice Y. M.
2011-01-01
The present study examined the usage pattern of electronic game devices among primary school children in Hong Kong. Commonly used types of games devices were grouped into three main categories: large-screen/TV-based games, small handheld game devices and active game devices. A survey was conducted among 476 students in a local primary school, with…
Optimization of a hydrodynamic separator using a multiscale computational fluid dynamics approach.
Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine
2013-01-01
This article deals with the optimization of a hydrodynamic separator working on the tangential separation mechanism along a screen. The aim of this study is to optimize the shape of the device to avoid clogging. A multiscale approach is used. This methodology combines measurements and computational fluid dynamics (CFD). A local model enables us to observe the different phenomena occurring at the orifice scale, which shows the potential of expanded metal screens. A global model is used to simulate the flow within the device using a conceptual model of the screen (porous wall). After validation against the experimental measurements, the global model was used to investigate the influence of deflectors and disk plates in the structure.
The demise of plastic encapsulated microcircuit myths
NASA Astrophysics Data System (ADS)
Hakim, E. B.; Agarwal, R. K.; Pecht, M.
1994-10-01
Production of microelectronic devices encapsulated in solid, molded plastic packages has rapidly increased since the early 1980's. Today, millions of plastic-encapsulated devices are produced daily. On the other hand, only a few million hermetic (cavity) packages are produced per year. Reasons for the increased use of plastic-encapsulated packages include cost, availability, size, weight, quality, and reliability. Markets taking advantage of this technology range from computers and telecommunications to automotive uses. Yet, several industries, the military in particular, will not accept such devices. One reason for this reluctance to use the best available commercial parts is a perceived risk of poor reliability, derived from antiquated military specifications, standards, and handbooks; other common justifications cite differing environments; inadequate screens; inadequate test data, and required government audits of suppliers' processes. This paper describes failure mechanisms associated with plastic encapsulation and their elimination. It provides data indicating the relative reliability of cavity and solid-encapsulated packaging, and presents possible approaches to assuring quality and reliability in the procuring and applying this successful commercial technology.
NASA Astrophysics Data System (ADS)
Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.
2018-01-01
The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).
Lissak, Gadi
2018-07-01
A growing body of literature is associating excessive and addictive use of digital media with physical, psychological, social and neurological adverse consequences. Research is focusing more on mobile devices use, and studies suggest that duration, content, after-dark-use, media type and the number of devices are key components determining screen time effects. Physical health effects: excessive screen time is associated with poor sleep and risk factors for cardiovascular diseases such as high blood pressure, obesity, low HDL cholesterol, poor stress regulation (high sympathetic arousal and cortisol dysregulation), and Insulin Resistance. Other physical health consequences include impaired vision and reduced bone density. Psychological effects: internalizing and externalizing behavior is related to poor sleep. Depressive symptoms and suicidal are associated to screen time induced poor sleep, digital device night use, and mobile phone dependency. ADHD-related behavior was linked to sleep problems, overall screen time, and violent and fast-paced content which activates dopamine and the reward pathways. Early and prolonged exposure to violent content is also linked to risk for antisocial behavior and decreased prosocial behavior. Psychoneurological effects: addictive screen time use decreases social coping and involves craving behavior which resembles substance dependence behavior. Brain structural changes related to cognitive control and emotional regulation are associated with digital media addictive behavior. A case study of a treatment of an ADHD diagnosed 9-year-old boy suggests screen time induced ADHD-related behavior could be inaccurately diagnosed as ADHD. Screen time reduction is effective in decreasing ADHD-related behavior. Components crucial for psychophysiological resilience are none-wandering mind (typical of ADHD-related behavior), good social coping and attachment, and good physical health. Excessive digital media use by children and adolescents appears as a major factor which may hamper the formation of sound psychophysiological resilience. Copyright © 2018 Elsevier Inc. All rights reserved.
Digital watermarking opportunities enabled by mobile media proliferation
NASA Astrophysics Data System (ADS)
Modro, Sierra; Sharma, Ravi K.
2009-02-01
Consumer usages of mobile devices and electronic media are changing. Mobile devices now include increased computational capabilities, mobile broadband access, better integrated sensors, and higher resolution screens. These enhanced features are driving increased consumption of media such as images, maps, e-books, audio, video, and games. As users become more accustomed to using mobile devices for media, opportunities arise for new digital watermarking usage models. For example, transient media, like images being displayed on screens, could be watermarked to provide a link between mobile devices. Applications based on these emerging usage models utilizing watermarking can provide richer user experiences and drive increased media consumption. We describe the enabling factors and highlight a few of the usage models and new opportunities. We also outline how the new opportunities are driving further innovation in watermarking technologies. We discuss challenges in market adoption of applications based on these usage models.
Ge, Lei; Yan, Jixian; Song, Xianrang; Yan, Mei; Ge, Shenguang; Yu, Jinghua
2012-02-01
In this work, electrochemiluminescence (ECL) immunoassay was introduced into the recently proposed microfluidic paper-based analytical device (μPADs) based on directly screen-printed electrodes on paper for the very first time. The screen-printed paper-electrodes will be more important for further development of this paper-based ECL device in simple, low-cost and disposable application than commercialized ones. To further perform high-performance, high-throughput, simple and inexpensive ECL immunoassay on μPAD for point-of-care testing, a wax-patterned three-dimensional (3D) paper-based ECL device was demonstrated for the very first time. In this 3D paper-based ECL device, eight carbon working electrodes including their conductive pads were screen-printed on a piece of square paper and shared the same Ag/AgCl reference and carbon counter electrodes on another piece of square paper after stacking. Using typical tris-(bipyridine)-ruthenium (Ⅱ) - tri-n-propylamine ECL system, the application test of this 3D paper-based ECL device was performed through the diagnosis of four tumor markers in real clinical serum samples. With the aid of a facile device-holder and a section-switch assembled on the analyzer, eight working electrodes were sequentially placed into the circuit to trigger the ECL reaction in the sweeping range from 0.5 to 1.1 V at room temperature. In addition, this 3D paper-based ECL device can be easily integrated and combined with the recently emerging paper electronics to further develop simple, sensitive, low-cost, disposable and portable μPAD for point-of-care testing, public health and environmental monitoring in remote regions, developing or developed countries. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?
Billah, Syed Masum; Ashok, Vikas; Porter, Donald E.; Ramakrishnan, IV
2017-01-01
Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access—an early forerunner of true ubiquitous access—screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments. PMID:28782061
Knipel, V; Criée, C P; Windisch, W
2013-03-01
Inhalation therapy is well recognized as a cornerstone treatment of airway diseases. In daily practice, however, high failure rates of inhalation technique are evident, which substantially attenuates the treatment success. In 2011 the German Airway League has initiated the production of video screens for correct inhalation aimed at providing an efficient and globally available platform for information. All devices regularly used have been filmed and published via internet and DVD; thereby, video screens, spoken text passages, and visual insertion of information have been combined. Here, all important steps of inhalation therapy like preparation, performance, and termination have been covered. Video screens of 20 different devices lasting between 1:42 and 3:11 min:sec have been produced between July 2011 and January 2013 and published on the YouTube channel of the German Airway League with more than 70.000 clicks so far (27. February 2013). Pragmatic, internet-based video screens on the correct inhalation therapy are available and are cost-free. Further studies aimed at evaluating the benefits of these screens are necessary. © Georg Thieme Verlag KG Stuttgart · New York.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?
Billah, Syed Masum; Ashok, Vikas; Porter, Donald E; Ramakrishnan, I V
2017-05-01
Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access-an early forerunner of true ubiquitous access-screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments.
Capillary Liquid Acquisition Device Heat Entrapment
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hastings, L. J.; Statham, G.; Turpin, J. B.
2007-01-01
Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of subcooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs? Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, 200x1400 and 325x2300, both with Twill Dutch Weave. Upon consideration of both the water and LN2 data, it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.
How Children Use Active Videogames and the Association Between Screen Time and Physical Activity.
Forde, Cuisle; Hussey, Juliette
2015-08-01
The energy required to play active videogames (AVGs) has been reported on in the literature; however, little is known about how children use such games in their home environment. The aim of this study was to investigate children's use of AVGs and the association among AVG use, other screen-based activities, and physical activity levels. Eight hundred and twenty children 12.1 (0.6) years of age participated. Physical activity levels, sedentary screen-based activities, and AVG use were investigated. Differences across genders and deprivation indices were also analyzed. Fifty-eight percent of children met minimal physical activity guidelines. Forty-seven percent of children exceeded screen time recommendations. Of those who had access to AVGs, more children played sedentary games (or active games in a sedentary manner [68 percent]) than active games (55 percent) on AVG consoles. Furthermore, sedentary games were played for longer than active games. AVG play was positively correlated with reported time spent watching television (P=0.02). In free-living conditions AVG consoles are being used by more children and for longer durations as sedentary screen-based devices rather than active screen-based devices.
Eddy-current inspection of shuttle heat exchanger tube welds
NASA Technical Reports Server (NTRS)
Dodd, Casius V.; Scott, G. W.; Chitwood, L. D.
1990-01-01
The goal of this project was to develop the system necessary to demonstrate in the laboratory that an eddy current system can inspect the tubes and welds described, screening for the existence of flaws equal in size to, or larger than, the target flaw. The laboratory system was to include the probe necessary to traverse the tubing, the electronics to drive (i.e., electrically excite) the probe and receive and process signals from it, a data display, data recording, and playback devices, and microprocessor software or firmware necessary to operate the system.
Colorimetric Characterization of Mobile Devices for Vision Applications.
de Fez, Dolores; Luque, Maria José; García-Domene, Maria Carmen; Camps, Vicente; Piñero, David
2016-01-01
Available applications for vision testing in mobile devices usually do not include detailed setup instructions, sacrificing rigor to obtain portability and ease of use. In particular, colorimetric characterization processes are generally obviated. We show that different mobile devices differ also in colorimetric profile and that those differences limit the range of applications for which they are most adequate. The color reproduction characteristics of four mobile devices, two smartphones (Samsung Galaxy S4, iPhone 4s) and two tablets (Samsung Galaxy Tab 3, iPad 4), have been evaluated using two procedures: 3D LUT (Look Up Table) and a linear model assuming primary constancy and independence of the channels. The color reproduction errors have been computed with the CIEDE2000 color difference formula. There is good constancy of primaries but large deviations of additivity. The 3D LUT characterization yields smaller reproduction errors and dispersions for the Tab 3 and iPhone 4 devices, but for the iPad 4 and S4, both models are equally good. The smallest reproduction errors occur with both Apple devices, although the iPad 4 has the highest number of outliers of all devices with both colorimetric characterizations. Even though there is good constancy of primaries, the large deviations of additivity exhibited by the devices and the larger reproduction errors make any characterization based on channel independence not recommendable. The smartphone screens show, in average, the best color reproduction performance, particularly the iPhone 4, and therefore, they are more adequate for applications requiring precise color reproduction.
Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening.
Ciui, Bianca; Martin, Aida; Mishra, Rupesh K; Brunetti, Barbara; Nakagawa, Tatsuo; Dawkins, Thomas J; Lyu, Mengjia; Cristea, Cecilia; Sandulescu, Robert; Wang, Joseph
2018-04-01
Wearable bendable bandage-based sensor and a minimally invasive microneedle biosensor are described toward rapid screening of skin melanoma. These wearable electrochemical sensors are capable of detecting the presence of the tyrosinase (TYR) enzyme cancer biomarker in the presence of its catechol substrate, immobilized on the transducer surface. In the presence of the surface TYR biomarker, the immobilized catechol is rapidly converted to benzoquinone that is detected amperometrically, with a current signal proportional to the TYR level. The flexible epidermal bandage sensor relies on printing stress-enduring inks which display good resiliency against mechanical deformations, whereas the hollow microneedle device is filled with catechol-coated carbon paste for assessing tissue TYR levels. The bandage sensor can thus be used directly on the skin whereas microneedle device can reach melanoma tissues under the skin. Both wearable sensors are interfaced to an ultralight flexible electronic board, which transmits data wirelessly to a mobile device. The analytical performance of the resulting bandage and microneedle sensing systems are evaluated using TYR-containing agarose phantom gel and porcine skin. The new integrated conformal portable sensing platforms hold considerable promise for decentralized melanoma screening, and can be extended to the screening of other key biomarkers in skin moles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Khan, Z. N.; Ahmed, S.; Ali, M.
2016-01-01
Metal Oxide Semiconductor (MOS) capacitors (MOSCAP) have been instrumental in making CMOS nano-electronics realized for back-to-back technology nodes. High-k gate stacks including the desirable metal gate processing and its integration into CMOS technology remain an active research area projecting the solution to address the requirements of technology roadmaps. Screening, selection and deposition of high-k gate dielectrics, post-deposition thermal processing, choice of metal gate structure and its post-metal deposition annealing are important parameters to optimize the process and possibly address the energy efficiency of CMOS electronics at nano scales. Atomic layer deposition technique is used throughout this work because of its known deposition kinetics resulting in excellent electrical properties and conformal structure of the device. The dynamics of annealing greatly influence the electrical properties of the gate stack and consequently the reliability of the process as well as manufacturable device. Again, the choice of the annealing technique (migration of thermal flux into the layer), time-temperature cycle and sequence are key parameters influencing the device’s output characteristics. This work presents a careful selection of annealing process parameters to provide sufficient thermal budget to Si MOSCAP with atomic layer deposited HfSiO high-k gate dielectric and TiN gate metal. The post-process annealing temperatures in the range of 600°C -1000°C with rapid dwell time provide a better trade-off between the desirable performance of Capacitance-Voltage hysteresis and the leakage current. The defect dynamics is thought to be responsible for the evolution of electrical characteristics in this Si MOSCAP structure specifically designed to tune the trade-off at low frequency for device application. PMID:27571412
The Pitfalls of Mobile Devices in Learning: A Different View and Implications for Pedagogical Design
ERIC Educational Resources Information Center
Ting, Yu-Liang
2012-01-01
Studies have been devoted to the design, implementation, and evaluation of mobile learning in practice. A common issue among students' responses toward this type of learning concerns the pitfalls of mobile devices, including small screen, limited input options, and low computational power. As a result, mobile devices are not always perceived by…
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND... purpose, or the device is intended for lay use where the former intended use was by health care... of immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic...
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND... purpose, or the device is intended for lay use where the former intended use was by health care... of immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic...
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND... purpose, or the device is intended for lay use where the former intended use was by health care... of immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic...
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND... purpose, or the device is intended for lay use where the former intended use was by health care... of immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic...
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
46 CFR 28.400 - Radar and depth sounding devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted at...
46 CFR 28.400 - Radar and depth sounding devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted at...
46 CFR 28.400 - Radar and depth sounding devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted at...
46 CFR 28.400 - Radar and depth sounding devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted at...
46 CFR 28.400 - Radar and depth sounding devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Radar and depth sounding devices. 28.400 Section 28.400... Operate With More Than 16 Individuals on Board § 28.400 Radar and depth sounding devices. (a) Each vessel must be fitted with a general marine radar system for surface navigation with a radar screen mounted at...
Grentzer, Jaclyn M; Peipert, Jeffrey F; Zhao, Qiuhong; McNicholas, Colleen; Secura, Gina M; Madden, Tessa
2015-10-01
The objective was to compare three strategies for Chlamydia trachomatis and Neisseria gonorrhoeae screening prior to intrauterine device (IUD) insertion. This was a secondary analysis of the Contraceptive CHOICE Project. We measured the prevalence of C. trachomatis and/or N. gonorrhoeae at the time of IUD insertion. We then compared sensitivity, specificity, negative and positive predictive values, and likelihood ratios for three screening strategies for C. trachomatis and N. gonorrhoeae prior to IUD insertion: (a) "age-based" — age ≤25 years alone; (b) "age/partner-based" — age ≤25 and/or multiple sexual partners; and (c) "risk-based" — age ≤25, multiple sexual partners, inconsistent condom use and/or history of prior sexually transmitted infection (STI). Among 5087 IUD users, 140 (2.8%) tested positive for C. trachomatis, 16 (0.3%) tested positive for N. gonorrhoeae, and 6 (0.1%) were positive for both at the time of IUD insertion. The "risk-based" screening strategy had the highest sensitivity (99.3%) compared to "age-based" and "age/partner-based" screening (80.7% and 84.7%, respectively.) Only one (0.7%) woman with a chlamydia or gonorrhea infection would not have been screened using "risk-based" screening. A risk-based strategy to screen for C. trachomatis and N. gonorrhoeae prior to IUD insertion has higher sensitivity than screening based on age alone or age and multiple sexual partners. Using a risk-based screening strategy (age≤25, multiple sexual partners, inconsistent condom use and/or history of an STI) to determine who should be screened for C. trachomatis and N. gonorrhoeae prior to IUD insertion will miss very few cases of infection and obviates the need for universal screening. Copyright © 2015 Elsevier Inc. All rights reserved.
Tapia-Siles, Silvia C; Coleman, Stuart; Cuschieri, Alfred
2016-02-01
Previous reports have described several candidates, which have the potential to replace colonoscopy, but to date, there is still no device capable of fully replacing flexible colonoscopy in the management of colonic disorders and for mass adult population screening for asymptomatic colorectal cancer. NASA developed the TRL methodology to describe and define the stages of development before use and marketing of any device. The definitions of the TRLS used in the present review are those formulated by "The US Department of Defense Technology Readiness Assessment Guidance" but adapted to micro-robots for colonoscopy. All the devices included are reported in scientific literature. They were identified by a systematic search in Web of Science, PubMed and IEEE Xplore amongst other sources. Devices that clearly lack the potential for full replacement of flexible colonoscopy were excluded. The technological salient features of all the devices included for assessment are described briefly, with particular focus on device propulsion. The devices are classified according to the TRL criteria based on the reported information. An analysis is next undertaken of the characteristics and salient features of the devices included in the review: wireless/tethered devices, data storage-transmission and navigation, additional functionality, residual technology challenges and clinical and socio-economical needs. Few devices currently possess the required functionality and performance to replace the conventional colonoscopy. The requirements, including functionalities which favour the development of a micro-robot platform to replace colonoscopy, are highlighted.
A study of characteristics of a reliable and practical breath alcohol screening test. Part A
DOT National Transportation Integrated Search
1975-08-01
The objectives of this study were (1) to investigate several commercially available breath-alcohol screening test devices of the length-of-stain type, under standardized laboratory conditions, with respect to their ability satisfactorily to detect an...
NASA Technical Reports Server (NTRS)
Baily, N. A.
1975-01-01
A light amplifier for large flat screen fluoroscopy was investigated which will decrease both its size and weight. The work on organ contouring was extended to yield volumes. This is a simple extension since the fluoroscopic image contains density (gray scale) information which can be translated as tissue thickness, integrated, yielding accurate volume data in an on-line situation. A number of devices were developed for analog image processing of video signals, operating on-line in real time, and with simple selection mechanisms. The results show that this approach is feasible and produces are improvement in image quality which should make diagnostic error significantly lower. These are all low cost devices, small and light in weight, thereby making them usable in a space environment, on the Ames centrifuge, and in a typical clinical situation.
Sniffer dogs as part of a bimodal bionic research approach to develop a lung cancer screening.
Boedeker, Enole; Friedel, Godehard; Walles, Thorsten
2012-05-01
Lung cancer (LC) continues to represent a heavy burden for health care systems worldwide. Epidemiological studies predict that its role will increase in the near future. While patient prognosis is strongly associated with tumour stage and early detection of disease, no screening test exists so far. It has been suggested that electronic sensor devices, commonly referred to as 'electronic noses', may be applicable to identify cancer-specific volatile organic compounds in the breath of patients and therefore may represent promising screening technologies. However, three decades of research did not bring forward a clinically applicable device. Here, we propose a new research approach by involving specially trained sniffer dogs into research strategies by making use of their ability to identify LC in the breath sample of patients.
Flashback flame arrester devices for fuel cargo tank vapor vents
NASA Technical Reports Server (NTRS)
Bjorklund, R. A.; Kushida, R. O.
1981-01-01
The flame quenching capability of four types of flame arresting devices suitable for installation on fuel cargo tank vents of marine transport vessels is evaluated. A single 30 mesh screen, a dual 20 mesh screen, a spiral wound crimped metal ribbon, and a packed bed of ballast rings were tested. Flame speed and flame penetration of the test arresters were determined. Eight fuels representative of bulk cargoes were tested. The test arresters quenched a minimum of three flashback flames from all eight fuels, with one exception: high speed ethylene flames penetrated the dual 20 mesh screen on three tests. The arresters withstood the sustained flame from a propane/air mixture for 30 minutes. None of the arresters withstood the sustained flame from an ethylene/air mixture for more than 7 minutes.
An acetate precursor process for BSCCO (2223) thin films and coprecipitated powders
NASA Technical Reports Server (NTRS)
Haertling, Gene H.
1992-01-01
Since the discovery of high temperature superconducting oxides much attention has been paid to finding better and useful ways to take advantage of the special properties exhibited by these materials. One such process is the development of thin films for engineering applications. Another such process is the coprecipitation route to producing superconducting powders. An acetate precursor process for use in thin film fabrication and a chemical coprecipitation route to Bismuth based superconducting materials has been developed. Data obtained from the thin film process were inconclusive to date and require more study. The chemical coprecipitation method of producing bulk material is a viable method, and is preferred over the previously used solid state route. This method of powder production appears to be an excellent route to producing thin section tape cast material and screen printed devices, as it requires less calcines than the oxide route to produce quality powders.
2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.
Wang, Xuanye; Christopher, Jason W; Swan, Anna K
2017-10-19
Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.
Digital Media and Sleep in Childhood and Adolescence.
LeBourgeois, Monique K; Hale, Lauren; Chang, Anne-Marie; Akacem, Lameese D; Montgomery-Downs, Hawley E; Buxton, Orfeu M
2017-11-01
Given the pervasive use of screen-based media and the high prevalence of insufficient sleep among American youth and teenagers, this brief report summarizes the literature on electronic media and sleep and provides research recommendations. Recent systematic reviews of the literature reveal that the vast majority of studies find an adverse association between screen-based media consumption and sleep health, primarily via delayed bedtimes and reduced total sleep duration. The underlying mechanisms of these associations likely include the following: (1) time displacement (ie, time spent on screens replaces time spent sleeping and other activities); (2) psychological stimulation based on media content; and (3) the effects of light emitted from devices on circadian timing, sleep physiology, and alertness. Much of our current understanding of these processes, however, is limited by cross-sectional, observational, and self-reported data. Further experimental and observational research is needed to elucidate how the digital revolution is altering sleep and circadian rhythms across development (infancy to adulthood) as pathways to poor health, learning, and safety outcomes (eg, obesity, depression, risk-taking). Copyright © 2017 by the American Academy of Pediatrics.
Electrophoretic sample insertion. [device for uniformly distributing samples in flow path
NASA Technical Reports Server (NTRS)
Mccreight, L. R. (Inventor)
1974-01-01
Two conductive screens located in the flow path of an electrophoresis sample separation apparatus are charged electrically. The sample is introduced between the screens, and the charge is sufficient to disperse and hold the samples across the screens. When the charge is terminated, the samples are uniformly distributed in the flow path. Additionally, a first separation by charged properties has been accomplished.
Enhanced optical security by using information carrier digital screening
NASA Astrophysics Data System (ADS)
Koltai, Ferenc; Adam, Bence
2004-06-01
Jura has developed different security features based on Information Carrier Digital Screening. Substance of such features is that a non-visible secondary image is encoded in a visible primary image. The encoded image will be visible only by using a decoding device. One of such developments is JURA's Invisible Personal Information (IPI) is widely used in high security documents, where personal data of the document holder are encoded in the screen of the document holder's photography and they can be decoded by using an optical decoding device. In order to make document verification fully automated, enhance security and eliminate human factors, digital version of IPI, the D-IPI was developed. A special 2D-barcode structure was designed, which contains sufficient quantity of encoded digital information and can be embedded into the photo. Other part of Digital-IPI is the reading software, that is able to retrieve the encoded information with high reliability. The reading software developed with a specific 2D structure is providing the possibility of a forensic analysis. Such analysis will discover all kind of manipulations -- globally, if the photography was simply changed and selectively, if only part of the photography was manipulated. Digital IPI is a good example how benefits of digital technology can be exploited by using optical security and how technology for optical security can be converted into digital technology. The D-IPI process is compatible with all current personalization printers and materials (polycarbonate, PVC, security papers, Teslin-foils, etc.) and can provide any document with enhanced security and tamper-resistance.
NASA Technical Reports Server (NTRS)
1984-01-01
Standardized methods are established for screening of JAN B microcircuits and JANTXV semiconductor components for space mission or other critical applications when JAN S devices are not available. General specifications are provided which outline the DPA (destructive physical analysis), environmental, electrical, and data requirements for screening of various component technologies. This standard was developed for Air Force Space Division, and is available for use by other DOD agencies, NASA, and space systems contractors for establishing common screening methods for electronic components.
Xia, Yiqiu; Tang, Yi; Yu, Xu; Wan, Yuan; Chen, Yizhu; Lu, Huaguang; Zheng, Si-Yang
2016-01-01
Viral diseases are perpetual threats to human and animal health. Detection and characterization of viral pathogens require accurate, sensitive and rapid diagnostic assays. For field and clinical samples, the sample preparation procedures limit the ultimate performance and utility of the overall virus diagnostic protocols. Here, we presented the development of a microfluidic device embedded with porous silicon nanowire (pSiNW) forest for label-free size-based point-of-care virus capture in a continuous curved flow design. The pSiNW forests with specific inter-wire spacing were synthesized in situ on both bottom and sidewalls of the microchannels in a batch process. With the enhancement effect of Dean flow, we demonstrated ~50% H5N2 avian influenza viruses were physically trapped without device clogging. A unique feature of the device is that captured viruses can be released by inducing self-degradation of the pSiNWs in physiological aqueous environment. About 60% of captured viruses can be released within 24 hours for virus culture, subsequent molecular diagnosis and other virus characterization and analyses. This device performs viable, unbiased and label-free virus isolation and release. It has great potentials for virus discovery, virus isolation and culture, functional studies of virus pathogenicity, transmission, drug screening, and vaccine development. PMID:27918640
Nanostructured cavity devices for extracellular stimulation of HL-1 cells
NASA Astrophysics Data System (ADS)
Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard
2015-05-01
Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network. Electronic supplementary information (ESI) available: Comparison of non-filtered and Savitzky-Golay filtered action potential recordings, electrical signals and corresponding optical signals. See DOI: 10.1039/c5nr01690h
High-Performance Screen-Printed Thermoelectric Films on Fabrics
Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook; ...
2017-08-04
Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screenprinting of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5Sb 1.5Te 3 or n-type Bi 2Te 2.7Se 0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscositymore » for printability at a very small concentration (0.45–0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.« less
Venson, José Eduardo; Bevilacqua, Fernando; Berni, Jean; Onuki, Fabio; Maciel, Anderson
2018-05-01
Mobile devices and software are now available with sufficient computing power, speed and complexity to allow for real-time interpretation of radiology exams. In this paper, we perform a multivariable user study that investigates concordance of image-based diagnoses provided using mobile devices on the one hand and conventional workstations on the other hand. We performed a between-subjects task-analysis using CT, MRI and radiography datasets. Moreover, we investigated the adequacy of the screen size, image quality, usability and the availability of the tools necessary for the analysis. Radiologists, members of several teams, participated in the experiment under real work conditions. A total of 64 studies with 93 main diagnoses were analyzed. Our results showed that 56 cases were classified with complete concordance (87.69%), 5 cases with almost complete concordance (7.69%) and 1 case (1.56%) with partial concordance. Only 2 studies presented discordance between the reports (3.07%). The main reason to explain the cause of those disagreements was the lack of multiplanar reconstruction tool in the mobile viewer. Screen size and image quality had no direct impact on the mobile diagnosis process. We concluded that for images from emergency modalities, a mobile interface provides accurate interpretation and swift response, which could benefit patients' healthcare. Copyright © 2018 Elsevier B.V. All rights reserved.
High-Performance Screen-Printed Thermoelectric Films on Fabrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Sunmi; Kumar, Rajan; Roh, Jong Wook
Printing techniques could offer a scalable approach to fabricate thermoelectric (TE) devices on flexible substrates for power generation used in wearable devices and personalized thermo-regulation. However, typical printing processes need a large concentration of binder additives, which often render a detrimental effect on electrical transport of the printed TE layers. Here, we report scalable screenprinting of TE layers on flexible fiber glass fabrics, by rationally optimizing the printing inks consisting of TE particles (p-type Bi 0.5Sb 1.5Te 3 or n-type Bi 2Te 2.7Se 0.3), binders, and organic solvents. We identified a suitable binder additive, methyl cellulose, which offers suitable viscositymore » for printability at a very small concentration (0.45–0.60 wt.%), thus minimizing its negative impact on electrical transport. Following printing, the binders were subsequently burnt off via sintering and hot pressing. We found that the nanoscale defects left behind after the binder burnt off became effective phonon scattering centers, leading to low lattice thermal conductivity in the printed n-type material. With the high electrical conductivity and low thermal conductivity, the screen-printed TE layers showed high room-temperature ZT values of 0.65 and 0.81 for p-type and n-type, respectively.« less
Bartels, P H; Bibbo, M; Hutchinson, M L; Gahm, T; Grohs, H K; Gwi-Mak, E; Kaufman, E A; Kaufman, R H; Knight, B K; Koss, L G; Magruder, L E; Mango, L J; McCallum, S M; Melamed, M R; Peebles, A; Richart, R M; Robinowitz, M; Rosenthal, D L; Sauer, T; Schenck, U; Tanaka, N; Topalidis, T; Verhest, A P; Wertlake, P T; Wilbur, D C
1998-01-01
The extension of automation to the diagnostic assessment of clinical materials raises issues of professional responsibility, on the part of both the medical professional and designer of the device. The International Academy of Cytology (IAC) and other professional cytology societies should develop a policy towards automation in the diagnostic assessment of clinical cytologic materials. The following summarizes the discussion of the initial position statement at the International Expert Conference on Diagnostic Cytology Towards the 21st Century, Hawaii, June 1997. 1. The professional in charge of a clinical cytopathology laboratory continues to bear the ultimate medical responsibility for diagnostic decisions made at the facility, whether automated devices are involved or not. 2. The introduction of automated procedures into clinical cytology should under no circumstances lead to a lowering of standards of performance. A prime objective of any guidelines should be to ensure that an automated procedure, in principle, does not expose any patient to new risks, nor should it increase already-existing, inherent risks. 3. Automated devices should provide capabilities for the medical professional to conduct periodic tests of the appropriate performance of the device. 4. Supervisory personnel should continue visual quality control screening of a certain percentage of slides dismissed at primary screening as within normal limits (WNL), even when automated procedures are employed in the laboratory. 5. Specifications for the design of primary screening devices for the detection of cervical cancer issued by the IAC in 1984 were reaffirmed. 6. The setting of numeric performance criteria is the proper charge of regulatory agencies, which also have the power of enforcement. 7. Human expert verification of results represents the "gold standard" at this time. Performance characteristics of computerized cytology devices should be determined by adherence to defined and well-considered protocols. Manufacturers should not claim a new standard of care; this is the responsibility of the medical community and professional groups. 8. Cytology professionals should support the development of procedures that bring about an improvement in diagnostic decision making. Advances in technology should be adopted if they can help solve problems in clinical cytology. The introduction of automated procedures into diagnostic decision making should take place strictly under the supervision and with the active participation and critical evaluation by the professional cytology community. Guidelines should be developed for the communication of technical information about the performance of automated screening devices by the IAC to governmental agencies and national societies. Also, guidelines are necessary for the official communication of IAC concerns to industry, medicolegal entities and the media. Procedures and guidelines for the evaluation of studies pertaining to the performance of automated devices, performance metrics and definitions for evaluation criteria should be established.
Correlates of mobile screen media use among children aged 0-8: protocol for a systematic review.
Paudel, Susan; Leavy, Justine; Jancey, Jonine
2016-06-03
Childhood is a crucial period for shaping healthy behaviours; however, it currently appears to be dominated by screen time. A large proportion of young children do not adhere to the screen time recommendations, with the use of mobile screen devices becoming more common than fixed screens. Existing systematic reviews on correlates of screen time have focused largely on the traditional fixed screen devices such as television. Reviews specially focused on mobile screen media are almost non-existent. This paper describes the protocol for conducting a systematic review of papers published between 2009 and 2015 to identify the correlates of mobile screen media use among children aged 0-8 years. A systematic literature search of electronic databases will be carried out using different combinations of keywords for papers published in English between January 2009 and December 2015. Additionally, a manual search of reference lists and citations will also be conducted. Papers that have examined correlates of screen time among children aged 0-8 will be included in the review. Studies must include at least one type of mobile screen media (mobile phones, electronic tablets or handheld computers) to be eligible for inclusion. This study will identify correlates of mobile screen-viewing among children in five categories: (i) child biological and demographic correlates, (ii) behavioural correlates, (iii) family biological and demographic correlates, (iv) family structure-related correlates and (v) socio-cultural and environmental correlates. PRISMA statement will be used for ensuring transparency and scientific reporting of the results. This study will identify the correlates associated with increased mobile screen media use among young children through the systematic review of published peer-reviewed papers. This will contribute to addressing the knowledge gap in this area. The results will provide an evidence base to better understand correlates of mobile screen media use and potentially inform the development of recommendations to reduce screen time among those aged 0-8 years. PROSPERO CRD42015028028 .
Cao, Yan; Wang, Shaozhan; Li, Yinghua; Chen, Xiaofei; Chen, Langdong; Wang, Dongyao; Zhu, Zhenyu; Yuan, Yongfang; Lv, Diya
2018-03-09
Cell membrane chromatography (CMC) has been successfully applied to screen bioactive compounds from Chinese herbs for many years, and some offline and online two-dimensional (2D) CMC-high performance liquid chromatography (HPLC) hyphenated systems have been established to perform screening assays. However, the requirement of sample preparation steps for the second-dimensional analysis in offline systems and the need for an interface device and technical expertise in the online system limit their extensive use. In the present study, an offline 2D CMC-HPLC analysis combined with the XCMS (various forms of chromatography coupled to mass spectrometry) Online statistical tool for data processing was established. First, our previously reported online 2D screening system was used to analyze three Chinese herbs that were reported to have potential anti-inflammatory effects, and two binding components were identified. By contrast, the proposed offline 2D screening method with XCMS Online analysis was applied, and three more ingredients were discovered in addition to the two compounds revealed by the online system. Then, cross-validation of the three compounds was performed, and they were confirmed to be included in the online data as well, but were not identified there because of their low concentrations and lack of credible statistical approaches. Last, pharmacological experiments showed that these five ingredients could inhibit IL-6 release and IL-6 gene expression on LPS-induced RAW cells in a dose-dependent manner. Compared with previous 2D CMC screening systems, this newly developed offline 2D method needs no sample preparation steps for the second-dimensional analysis, and it is sensitive, efficient, and convenient. It will be applicable in identifying active components from Chinese herbs and practical in discovery of lead compounds derived from herbs. Copyright © 2018 Elsevier B.V. All rights reserved.
49 CFR 40.229 - What devices are used to conduct alcohol screening tests?
Code of Federal Regulations, 2010 CFR
2010-10-01
... are allowed to use to conduct alcohol screening tests under this part. You may use an ASD that is on the NHTSA CPL for DOT alcohol tests only if there are instructions for its use in this part. An ASD...
49 CFR 40.229 - What devices are used to conduct alcohol screening tests?
Code of Federal Regulations, 2011 CFR
2011-10-01
... are allowed to use to conduct alcohol screening tests under this part. You may use an ASD that is on the NHTSA CPL for DOT alcohol tests only if there are instructions for its use in this part. An ASD...
Acquisition system environmental effects study. [for capillary-screen propellant retention devices
NASA Technical Reports Server (NTRS)
1975-01-01
The effects of vibration, warm gas exposure, and feed system startup/shutdown fluid dynamics on capillary-screen propellant retention capabilities are quantified. The existing technology is extended to the point where quantitative conlusions in terms of design criteria may be drawn.
Performance Gains of Propellant Management Devices for Liquid Hydrogen Depots
NASA Technical Reports Server (NTRS)
Hartwig, Jason W.; McQuillen, John B.; Chato, David J.
2013-01-01
This paper presents background, experimental design, and preliminary experimental results for the liquid hydrogen bubble point tests conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to investigate the parameters that affect liquid acquisition device (LAD) performance in a liquid hydrogen (LH2) propellant tank, to mitigate risk in the final design of the LAD for the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, and to provide insight into optimal LAD operation for future LH2 depots. Preliminary test results show an increase in performance and screen retention over the low reference LH2 bubble point value for a 325 2300 screen in three separate ways, thus improving fundamental LH2 LAD performance. By using a finer mesh screen, operating at a colder liquid temperature, and pressurizing with a noncondensible pressurant gas, a significant increase in margin is achieved in bubble point pressure for LH2 screen channel LADs.
Global responses for recycling waste CRTs in e-waste.
Singh, Narendra; Li, Jinhui; Zeng, Xianlai
2016-11-01
The management of used cathode ray tube (CRT) devices is a major problem worldwide due to rapid uptake of the technology and early obsolescence of CRT devices, which is considered an environment hazard if disposed improperly. Previously, their production has grown in step with computer and television demand but later on with rapid technological innovation; TVs and computer screens has been replaced by new products such as Liquid Crystal Displays (LCDs) and Plasma Display Panel (PDPs). This change creates a large volume of waste stream of obsolete CRTs waste in developed countries and developing countries will be becoming major CRTs waste producers in the upcoming years. We studied that there is also high level of trans-boundary movement of these devices as second-hand electronic equipment into developing countries in an attempt to bridge the 'digital divide'. Moreover, the current global production of e-waste is estimated to be '41million tonnes per year' where a major part of the e-waste stream consists of CRT devices. This review article provides a concise overview of world's current CRTs waste scenario, namely magnitude of the demand and processing, current disposal and recycling operations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2012 CFR
2012-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2013 CFR
2013-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2014 CFR
2014-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
Code of Federal Regulations, 2011 CFR
2011-04-01
... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY... device is intended for lay use where the former intended use was by health care professionals only; (b... immunohistochemical devices; (2) For use in screening or diagnosis of familial or acquired genetic disorders...
ERIC Educational Resources Information Center
Lee, Seungyup; Baek, Jongsoo; Han, Gunhee
2018-01-01
Using a secondary device while viewing a primary device (i.e. TV), or media multitasking, is now common. Numerous researchers and practitioners have attempted to introduce secondary devices into education as a new learning environment providing additional information to the user. However, the learning-related effects of using a second screen…
Dumuid, Dot; Olds, Timothy S; Lewis, Lucy K; Maher, Carol
2016-08-05
Activity behaviours (physical activity, sedentary time and screen time) have been linked to health outcomes in childhood. Furthermore, socioeconomic disparities have been observed in both children's activity behaviours and health outcomes. Children's physical home environments may play a role in these relationships. This study aimed to examine the associations and interactions between children's physical home environment, socioeconomic status and moderate-to-vigorous physical activity, sedentary time and screen time. Australian children (n = 528) aged 9-11 years from randomly selected schools participated in the cross-sectional International Study of Childhood Obesity, Lifestyle and the Environment. Children's physical home environment (access to equipment), socioeconomic status (household income and parental education) and demographic variables (gender and family structure) were determined by parental questionnaire. Moderate-to-vigorous physical activity and sedentary time were measured objectively by 7-day 24-h accelerometry. Screen time was obtained from child survey. The associations between the physical home environment, socioeconomic status and moderate-to-vigorous physical activity, sedentary time and screen time were examined for 427 children, using analysis of covariance, and linear and logistic regression, with adjustment for gender and family structure. The presence of TVs (p < 0.01) and video game consoles (p < 0.01) in children's bedrooms, and child possession of handheld video games (p = 0.04), cell phones (p < 0.01) and music devices (p = 0.04) was significantly and positively associated with screen time. Ownership of these devices (with the exception of music devices) was inversely related to socioeconomic status (parental education). Children's moderate-to-vigorous intensity physical activity (p = 0.04) and possession of active play equipment (p = 0.04) were both positively associated with socioeconomic status (household income), but were not related to each other (with the exception of bicycle ownership). Children with less electronic devices, particularly in their bedrooms, participated in less screen time, regardless of socioeconomic status. Socioeconomic disparities were identified in children's moderate-to-vigorous physical activity, however socioeconomic status was inconsistently related to possession of active play equipment. Home active play equipment was therefore not a clear contributor to the socioeconomic gradients in Australian children's moderate-to-vigorous physical activity.
Internal Electric Field Modulation in Molecular Electronic Devices by Atmosphere and Mobile Ions.
Chandra Mondal, Prakash; Tefashe, Ushula M; McCreery, Richard L
2018-06-13
The internal potential profile and electric field are major factors controlling the electronic behavior of molecular electronic junctions consisting of ∼1-10 nm thick layers of molecules oriented in parallel between conducting contacts. The potential profile is assumed linear in the simplest cases, but can be affected by internal dipoles, charge polarization, and electronic coupling between the contacts and the molecular layer. Electrochemical processes in solutions or the solid state are entirely dependent on modification of the electric field by electrolyte ions, which screen the electrodes and form the ionic double layers that are fundamental to electrode kinetics and widespread applications. The current report investigates the effects of mobile ions on nominally solid-state molecular junctions containing aromatic molecules covalently bonded between flat, conducting carbon surfaces, focusing on changes in device conductance when ions are introduced into an otherwise conventional junction design. Small changes in conductance were observed when a polar molecule, acetonitrile, was present in the junction, and a large decrease of conductance was observed when both acetonitrile (ACN) and lithium ions (Li + ) were present. Transient experiments revealed that conductance changes occur on a microsecond-millisecond time scale, and are accompanied by significant alteration of device impedance and temperature dependence. A single molecular junction containing lithium benzoate could be reversibly transformed from symmetric current-voltage behavior to a rectifier by repetitive bias scans. The results are consistent with field-induced reorientation of acetonitrile molecules and Li + ion motion, which screen the electrodes and modify the internal potential profile and provide a potentially useful means to dynamically alter junction electronic behavior.
New method of metallization for silicon solar cells. Second quarterly report, April 1-June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, M.
1979-01-01
The second quarter of this program is concerned with the determination of the firing cycle in a horizontal tube furnace for MoO/sub 3/:Sn ink composition applied by silk screening process on P on N structured solar cells. In comparison with the strip heater used in the first quarter to determine the reaction mechanism, the reduction of MoO/sub 3/ in the tube furnace progresses at a much faster rate and the Sn:Mo alloy forms at a much lower temperature. The device characteristics determined by the V-I curve showed a high resistance (approx. 10 Ohms) at peak temperatures between 600/sup 0/C andmore » 800/sup 0/C. The high series resistance can be attributed to the lack of formation of MoSi/sub 2/ within the used temperature range as pointed out in references to theoretical and experimental work concerned with the formation of metal silicides. According to these references this temperature range is right for the formation of silicide of titanium, which, besides having a lower resistance value, forms in the presence of an oxidized silicon surface. Therefore the basic MoO/sub 3/ ink composition was modified by an addition of titanium resinate corresponding to a titanium concentration of 1-15000 based on the solids in the mixture. The addition of titanium decreased the series resistance to the level of 1 Ohm or better and the device characteristics were comparable with the devices metallized by electroless nickel and silk screened silver.« less
Development of an Electronic Kit for detecting asthma in Human Respiratory System
NASA Astrophysics Data System (ADS)
Shek Hong, Cheow; Ghani, Ahmad Shahrizan Abdul; Khairuddin, Ismail Mohd
2018-03-01
In this paper, a prototype of a carbon dioxide (CO2) measurement device is designed to detect and used to monitor asthma patients. Nowadays, capnogram device is widely used in monitoring asthma and asthma related medical services. However, capnogram is very costly and unaffordable for patient especially those who are in low income household. Thus, the proposed device is cost effective, affordable, and produced to detect and monitor the severity of asthma. Meanwhile, flow meter will cause patient to have chest pain as they needed maximum effort to blow in the device. To overcome these limitations, this prototype electronic kit is easy to use and suitable for all range patients. This prototype electronic kit consists of MH-Z14A carbon dioxide (CO2) sensor to detect the concentration of carbon dioxide from the user exhaled air. Arduino microcontroller is used to process the data while TFT Display shield is applied for data presentation. In addition, HC-06 Bluetooth module is used to communicate with PC for further analysis of the captured graph. This device was tested with 3 asthmatics and 3 normal users. The results showed that asthmatic user has a different graph pattern compared with normal user and these graphs are clearly differentiated on the device TFT screen. Asthmatic user produces “shark fin”-like pattern whereas normal user produces “square wave”-like pattern. This device has successfully produced distinguished-patterns difference between asthmatic and normal user; therefore, it is suitable for asthma monitoring.
Optimizing the Usability of Brain-Computer Interfaces.
Zhang, Yin; Chase, Steve M
2018-05-01
Brain-computer interfaces are in the process of moving from the laboratory to the clinic. These devices act by reading neural activity and using it to directly control a device, such as a cursor on a computer screen. An open question in the field is how to map neural activity to device movement in order to achieve the most proficient control. This question is complicated by the fact that learning, especially the long-term skill learning that accompanies weeks of practice, can allow subjects to improve performance over time. Typical approaches to this problem attempt to maximize the biomimetic properties of the device in order to limit the need for extensive training. However, it is unclear if this approach would ultimately be superior to performance that might be achieved with a nonbiomimetic device once the subject has engaged in extended practice and learned how to use it. Here we approach this problem using ideas from optimal control theory. Under the assumption that the brain acts as an optimal controller, we present a formal definition of the usability of a device and show that the optimal postlearning mapping can be written as the solution of a constrained optimization problem. We then derive the optimal mappings for particular cases common to most brain-computer interfaces. Our results suggest that the common approach of creating biomimetic interfaces may not be optimal when learning is taken into account. More broadly, our method provides a blueprint for optimal device design in general control-theoretic contexts.
A simple device to assess and train motor coordination.
Petrofsky, J S; Petrofsky, D
2004-01-01
The purpose of this project was to develop a computer program which can be used on a laptop or other IBM-based computer to assess and train motor coordination in children with closed head trauma or cerebral palsy. Muscle coordination was assessed by the child's ability to track a series of lines of increasing complexity. A stylus was used by the child to trace lines on a computer screen. Two different line tests were used. In the first, lines of various complexities were drawn on the screen at various angles. The child was asked to trace the line and the accuracy with which the line was traced was determined, providing a score. In a second test, a line was drawn on the screen and the child was asked to trace the line as it was drawn. The error in tracking the line and the time to track the line both were used to evaluate and score the child's performance. Finally, a 'Winnie the Pooh' character was flashed on the screen with distracters such as trees and other animals, and the child was asked to touch the Pooh. By increasing the speed of movement and decreasing the duration that the characters appeared on the screen, the child could be challenged. Successful touching of a character resulted in a positive score. Six children with cerebral palsy were compared to five children who did not have cerebral palsy, to evaluate the device. While both groups of children showed an increase in motor skills using the program, the increase seen in the children with cerebral palsy was 5-fold greater than that of the control group. While only a few children were tested with the device, the device seems to prove quite useful for physical and occupational therapy for working on motor skills in children. More investigation is warranted.
High-stringency screening of target-binding partners using a microfluidic device
Soh, Hyongsok; Lou, Xinhui; Lagally, Eric
2015-12-01
The invention provides a method of screening a library of candidate agents by contacting the library with a target in a reaction mixture under a condition of high stringency, wherein the target includes a tag that responds to a controllable force applied to the tag, and passing the members of the library through a microfluidic device in a manner that exposes the library members to the controllable force, thereby displacing members of the library that are bound to the target relative to their unbound counterparts. Kits and systems for use with the methods of the invention are also provided.
A screen-printed circular-type paper-based glucose/O2 biofuel cell
NASA Astrophysics Data System (ADS)
Shitanda, Isao; Nohara, Saki; Hoshi, Yoshinao; Itagaki, Masayuki; Tsujimura, Seiya
2017-08-01
The printable paper-based enzymatic biofuel cell (PBFC) to directly power small devices is an important objective for realizing cost-effective and disposable energy harvesting devices. In the present study, a screen-printed circular-type PBFC, composed of a series of 5 individual cells, was constructed. The PBFC exhibited the open circuit potential of 2.65 V and maximum power of 350 μW at 1.55 V, which were sufficient to illuminate an LED without requiring a booster circuit. The output voltage of this PBFC can also be easily adjusted as required.
NASA Astrophysics Data System (ADS)
Young, Nathan Garrett
The III-Nitride materials system provides a fascinating platform for developing optoelectronic devices, such as solar cells and LEDs, which have the power to dramatically improve the efficiency of our power consumption and reduce our environmental footprint. Finding ways to make these devices more efficient is key to driving their widespread adoption. This dissertation focuses on the intersection of challenges in physics and metalorganic chemical vapor deposition (MOCVD) growth at the nanoscale when designing for device efficiency. In order to create the best possible InGaN solar cell, a multiple quantum well (MQW) active region design had to be employed to prevent strain relaxation related degradation. There were two competing challenges for MQW active region design and growth. First, it was observed current collection efficiency improved with thinner quantum barriers, which promoted efficient tunneling transport instead of inefficiency thermally activated escape. Second, GaN barriers could planarize surface defects in the MQW region under the right conditions and when grown thick enough. A two-step growth method for thinner quantum barriers was developed that simultaneously allowed for tunneling transport and planarized V-defects. Barriers as thin as 4 nm were employed in MQW active regions with up to 30 periods without structural or electrical degradation, leading to record performance. Application of dielectric optical coatings greatly reduced surface reflections and allowed a second pass of light through the device. This both demonstrated the feasibility of multijunction solar integration and boosted conversion efficiency to record levels for an InGaN solar cell. III-N LEDs have achieved state-of-the-art performance for decades, but still suffer from the phenomena of efficiency droop, where device efficiency drops dramatically at high power operation. Droop is exacerbated by the polarization-induced electric fields in InGaN quantum wells, which originate from a lack of inversion symmetry in GaN's wurtzite crystal structure. These fields can be screened by using highly doped layers, but the extreme dopant densities predicted by simulation for complete screening may require using Ge as an alternative n-type dopant to Si. GaN:Ge layers with excellent electrical characteristics were grown by MOCVD with doping densities exceeding 1020 cm -3. However, their surface morphologies were very poor and they proved a poor screening dopant in LED structures. Using Si as the n-type screening dopant, LEDs with single QW active regions were grown, packaged, and tested. Biased photoluminescence showed strong evidence of complete polarization screening. The LEDs had low droop, but also low peak efficiencies. Possible explanations for trends in efficiency with varying QW width and field screening will be discussed.
Targeted Provision of Oral Iron: The Evolution of a Practical Screening Option123
Crowley, Caitlin R.; Solomons, Noel W.; Schümann, Klaus
2012-01-01
Universal oral iron supplementation, undertaken according to 1998 WHO guidelines, produced adverse consequences among some children in malaria-endemic areas. Prompted by the Pemba trial, which revealed excessive hospitalizations and deaths, WHO advised that iron supplementation in such regions be accompanied by previous screening for iron deficiency. This agenda, however, poses issues of cost, benefit, acceptability, technical feasibility, and reliability of such screening. The cost of equipment and personnel is balanced against savings from iron supplements spared and treatment for morbidity averted. Costs aside, the most efficacious acceptable screening approach for avoiding hospitalization and deaths must be fielded. Screening before supplementation can be used to assess hematological, iron, and possible inflammatory status to differentiate the source of decreased hemoglobin concentration. Iron deficiency has often been inferred from hematological status markers. The need for extraction of blood, albeit capillary in origin, and high assay costs limit the use of validated methods in screening. Noninvasive methods, i.e., not requiring the extraction of blood, provide the most acceptable and potentially least expensive approach for determining hematological or iron status. Although a noninvasive technique for iron and inflammatory status would be the ideal, it is unattained. Field-friendly, skin-probe hemoglobin devices, derived from instruments for clinical settings, are being developed and tested for eventual rollout in malarial areas. Given a firm grounding for the theoretical requirements needed to advance the screening agenda, evaluation and monitoring of the performance of screening devices can proceed hand in hand. PMID:22797993
Administering Cognitive Tests Through Touch Screen Tablet Devices: Potential Issues.
Jenkins, Amy; Lindsay, Stephen; Eslambolchilar, Parisa; Thornton, Ian M; Tales, Andrea
2016-10-04
Mobile technologies, such as tablet devices, open up new possibilities for health-related diagnosis, monitoring, and intervention for older adults and healthcare practitioners. Current evaluations of cognitive integrity typically occur within clinical settings, such as memory clinics, using pen and paper or computer-based tests. In the present study, we investigate the challenges associated with transferring such tests to touch-based, mobile technology platforms from an older adult perspective. Problems may include individual variability in technical familiarity and acceptance; various factors influencing usability; acceptability; response characteristics and thus validity per se of a given test. For the results of mobile technology-based tests of reaction time to be valid and related to disease status rather than extraneous variables, it is imperative the whole test process is investigated in order to determine potential effects before the test is fully developed. Researchers have emphasized the importance of including the 'user' in the evaluation of such devices; thus we performed a focus group-based qualitative assessment of the processes involved in the administration and performance of a tablet-based version of a typical test of attention and information processing speed (a multi-item localization task), to younger and older adults. We report that although the test was regarded positively, indicating that using a tablet for the delivery of such tests is feasible, it is important for developers to consider factors surrounding user expectations, performance feedback, and physical response requirements and to use this information to inform further research into such applications.
Detection of wavelengths in the visible range using fiber optic sensors
NASA Astrophysics Data System (ADS)
Díaz, Leonardo; Morales, Yailteh; Mattos, Lorenzo; Torres, Cesar O.
2013-11-01
This paper shows the design and implementation of a fiber optic sensor for detecting and identifying wavelengths in the visible range. The system consists of a diffuse optical fiber, a conventional laser diode 650nm, 2.5mW of power, an ambient light sensor LX1972, a PIC 18F2550 and LCD screen for viewing. The principle used in the detection of the lambda is based on specular reflection and absorption. The optoelectronic device designed and built used the absorption and reflection properties of the material under study, having as active optical medium a bifurcated optical fiber, which is optically coupled to an ambient light sensor, which makes the conversion of light signals to electricas, procedure performed by a microcontroller, which acquires and processes the signal. To verify correct operation of the assembly were utilized the color cards of sewing thread and nail polish as samples for analysis. This optoelectronic device can be used in many applications such as quality control of industrial processes, classification of corks or bottle caps, color quality of textiles, sugar solutions, polymers and food among others.
NASA Astrophysics Data System (ADS)
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Ha, Dong-Gwang; Einzinger, Markus; Wu, Tony; Baldo, Marc A.; Aspuru-Guzik, Alán.
2016-09-01
Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%.
Printed soft-electronics for remote body monitoring
NASA Astrophysics Data System (ADS)
Mantysalo, Matti; Vuorinen, Tiina; Jeihani, Vala; Vehkaoja, Antti
2017-08-01
Wearable electronics has emerged into the consumer markets over the past few years. Wrist worn and textile integrated devices are the most common apparatuses for unobtrusive monitoring in sports and wellness sectors. Disposable patches and bandages, however, represent the new era of wearable electronics. Soft and stretchable electronics is the enabling technology of this paradigm shift. It can conform to temporary transfer tattoo and deform with the skin without detachment or fracture. In this paper, we focus on screen-printed soft-electronics for remote body monitoring. We will present a fabrication process of a skin conformable electrode bandage designed for long-term outpatient electrocardiography (ECG) monitoring. The soft bandage is designed to be attached to the patient chest and miniaturized data collection device is connected to the bandage via Micro-USB connector. The fabricated bandage is tested in short exercise as well as continued long-term (72 hours) monitoring during normal daily activities. The attained quality of the measured ECG signals is fully satisfactory for rhythm-based cardiac analysis also during moderate-intensity exercise. After pre-processing, the signals could be used also for more profound morphological analysis of ECG wave shapes.
Final Report, January 1991 - July 1992
NASA Astrophysics Data System (ADS)
Ferrara, Jon
1992-07-01
This report covers final schedules, expenses and billings, monthly reports, testing, and deliveries for this contract. The goal of the detector development program for the Solar and Heliospheric Spacecraft (SOHO) EUV Imaging Telescope (EIT) is an Extreme UltraViolet (EUV) CCD (Change Collecting Device) camera. As a part of the CCD screening effort, the quantum efficiency (QE) of a prototype CCD has been measured in the NRL EUV laboratory over the wavelength range of 256 to 735 Angstroms. A simplified model has been applied to these QE measurements to illustrate the relevant physical processes that determine the performance of the detector. The charge transfer efficiency (CTE) characteristics of the Tektronix 1024 X 1024 CCD being developed for STIS/SOHO space imaging applications have been characterized at different signal levels, operating conditions, and temperatures using a variety of test methods. A number of CCD's have been manufactured using processing techniques developed to improve CTE, and test results on these devices will be used in determining the final chip design. In this paper, we discuss the CTE test methods used and present the results and conclusions of these tests.
From screen to structure with a harvestable microfluidic device.
Stojanoff, Vivian; Jakoncic, Jean; Oren, Deena A; Nagarajan, V; Poulsen, Jens-Christian Navarro; Adams-Cioaba, Melanie A; Bergfors, Terese; Sommer, Morten O A
2011-08-01
Advances in automation have facilitated the widespread adoption of high-throughput vapour-diffusion methods for initial crystallization screening. However, for many proteins, screening thousands of crystallization conditions fails to yield crystals of sufficient quality for structural characterization. Here, the rates of crystal identification for thaumatin, catalase and myoglobin using microfluidic Crystal Former devices and sitting-drop vapour-diffusion plates are compared. It is shown that the Crystal Former results in a greater number of identified initial crystallization conditions compared with vapour diffusion. Furthermore, crystals of thaumatin and lysozyme obtained in the Crystal Former were used directly for structure determination both in situ and upon harvesting and cryocooling. On the basis of these results, a crystallization strategy is proposed that uses multiple methods with distinct kinetic trajectories through the protein phase diagram to increase the output of crystallization pipelines.
Schneidereit, Dominik; Kraus, Larissa; Meier, Jochen C; Friedrich, Oliver; Gilbert, Daniel F
2017-06-15
High-content screening microscopy relies on automation infrastructure that is typically proprietary, non-customizable, costly and requires a high level of skill to use and maintain. The increasing availability of rapid prototyping technology makes it possible to quickly engineer alternatives to conventional automation infrastructure that are low-cost and user-friendly. Here, we describe a 3D printed inexpensive open source and scalable motorized positioning stage for automated high-content screening microscopy and provide detailed step-by-step instructions to re-building the device, including a comprehensive parts list, 3D design files in STEP (Standard for the Exchange of Product model data) and STL (Standard Tessellation Language) format, electronic circuits and wiring diagrams as well as software code. System assembly including 3D printing requires approx. 30h. The fully assembled device is light-weight (1.1kg), small (33×20×8cm) and extremely low-cost (approx. EUR 250). We describe positioning characteristics of the stage, including spatial resolution, accuracy and repeatability, compare imaging data generated with our device to data obtained using a commercially available microplate reader, demonstrate its suitability to high-content microscopy in 96-well high-throughput screening format and validate its applicability to automated functional Cl - - and Ca 2+ -imaging with recombinant HEK293 cells as a model system. A time-lapse video of the stage during operation and as part of a custom assembled screening robot can be found at https://vimeo.com/158813199. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinmann, Vera; Chakraborty, Rupak; Rekemeyer, Paul
2016-11-21
As novel absorber materials are developed and screened for their photovoltaic (PV) properties, the challenge remains to rapidly test promising candidates in high-performing PV devices. There is a need to engineer new compatible device architectures, including the development of novel transparent conductive oxides and buffer layers. Here, we consider the two approaches of a substrate-style and a superstrate-style device architecture for novel thin-film solar cells. We use tin sulfide as a test absorber material. Upon device engineering, we demonstrate new approaches to improve device performance and performance reproducibility.
Evans, Grahame F; Shirk, Arianna; Muturi, Peter; Soliman, Elsayed Z
2017-12-01
Screening for atrial fibrillation (AF), a major risk factor for stroke that is on the rise in Africa, is becoming increasingly critical. This study sought to examine the feasibility of using mobile electrocardiogram (ECG) recording technology to detect AF. In this prospective observational study, we used a mobile ECG recorder to screen 50 African adults (66% women; mean age 54.3 ± 20.5 years) attending Kijabe Hospital (Kijabe, Kenya). Five hospital health providers involved in this study's data collection process also completed a self-administered survey to obtain information on their access to the Internet and mobile devices, both factors necessary to implement ECG mobile technology. Outcome measures included feasibility (completion of the study and recruitment of the patients on the planned study time frame) and the yield of the screening by the mobile ECG technology (ability to detect previously undiagnosed AF). Patients were recruited in a 2-week period as planned; only 1 of the 51 patients approached refused to participate (98% acceptance rate). All of the 50 patients who agreed to participate completed the test and produced readable ECGs (100% study completion rate). ECG tracings of 4 of the 50 patients who completed the study showed AF (8% AF yield), and none had been previously diagnosed with AF. When asked about continuous access to Internet and personal mobile devices, almost all of the health care providers surveyed answered affirmatively. Using mobile ECG technology in screening for AF in low-resource settings is feasible, and can detect a significant proportion of AF cases that will otherwise go undiagnosed. Further study is needed to examine the cost-effectiveness of this approach for detection of AF and its effect on reducing the risk of stroke in developing countries. Copyright © 2016 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.
Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang
2018-03-26
Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.
Circling motion and screen edges as an alternative input method for on-screen target manipulation.
Ka, Hyun W; Simpson, Richard C
2017-04-01
To investigate a new alternative interaction method, called circling interface, for manipulating on-screen objects. To specify a target, the user makes a circling motion around the target. To specify a desired pointing command with the circling interface, each edge of the screen is used. The user selects a command before circling the target. To evaluate the circling interface, we conducted an experiment with 16 participants, comparing the performance on pointing tasks with different combinations of selection method (circling interface, physical mouse and dwelling interface) and input device (normal computer mouse, head pointer and joystick mouse emulator). A circling interface is compatible with many types of pointing devices, not requiring physical activation of mouse buttons, and is more efficient than dwell-clicking. Across all common pointing operations, the circling interface had a tendency to produce faster performance with a head-mounted mouse emulator than with a joystick mouse. The performance accuracy of the circling interface outperformed the dwelling interface. It was demonstrated that the circling interface has the potential as another alternative pointing method for selecting and manipulating objects in a graphical user interface. Implications for Rehabilitation A circling interface will improve clinical practice by providing an alternative pointing method that does not require physically activating mouse buttons and is more efficient than dwell-clicking. The Circling interface can also work with AAC devices.
VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS
A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...
Optofluidics for handling and analysis of single living cells
NASA Astrophysics Data System (ADS)
Perozziello, Gerardo; Candeloro, Patrizio; Coluccio, Maria Laura; Di Fabrizio, Enzo
2017-11-01
Optofluidics is a field with important applications in areas such as biotechnology, chemical synthesis and analytical chemistry. Optofluidic devices combine optical elements into microfluidic devices in ways that increase portability and sensitivity of analysis for diagnostic or screening purposes .In fact in these devices fluids give fine adaptability, mobility and accessibility to nanoscale photonic devices which otherwise could not be realized using conventional devices. This review describes several cases inwhich optical or microfluidic approaches are used to trap single cells in proximity of integrated optical sensor for being analysed.
NASA Astrophysics Data System (ADS)
Darr, Samuel Ryan
Technologies that enable the storage and transfer of cryogenic propellants in space will be needed for the next generation vehicles that will carry humans to Mars. One of the candidate technologies is the screen channel liquid acquisition device (LAD), which uses a metal woven wire mesh to separate the liquid and vapor phases so that single-phase liquid propellant can be transferred in microgravity. The purpose of this work is to provide an accurate hydrodynamic model of the liquid flow through a screen channel LAD. Chapter 2 provides a derivation of the flow-through-screen (FTS) boundary condition. The final boundary condition more accurately represents the complex geometry of metal woven wire mesh than the current model used in the literature. The effect of thermal contraction on the screen geometry due to large temperature changes common in cryogenic systems is quantified in this chapter as well. Chapter 3 provides a two-dimensional (2-D) analytical solution of the velocity and pressure fields in a screen channel LAD. This solution, which accounts for non-uniform injection through the screen, is compared with the traditional 1-D model which assumes a constant, uniform injection velocity. Chapter 4 describes the setup and results of an experiment that measures both the velocity and pressure fields in a screen channel LAD in order to validate the 2-D model. Results show that the 2-D model performs best against the new data and historical data. With the improved FTS boundary condition and the 2-D model, the pressure drop of a screen channel LAD is described with excellent accuracy. The result of this work is a predictive tool that will instill confidence in the design of screen channel LADs for future in-space propulsion systems.
NASA Astrophysics Data System (ADS)
Yamada, Takayuki; Gohshi, Seiichi; Echizen, Isao
A method is described to prevent video images and videos displayed on screens from being re-shot by digital cameras and camcorders. Conventional methods using digital watermarking for re-shooting prevention embed content IDs into images and videos, and they help to identify the place and time where the actual content was shot. However, these methods do not actually prevent digital content from being re-shot by camcorders. We developed countermeasures to stop re-shooting by exploiting the differences between the sensory characteristics of humans and devices. The countermeasures require no additional functions to use-side devices. It uses infrared light (IR) to corrupt the content recorded by CCD or CMOS devices. In this way, re-shot content will be unusable. To validate the method, we developed a prototype system and implemented it on a 100-inch cinema screen. Experimental evaluations showed that the method effectively prevents re-shooting.
Cornejo-Aragón, Luz G; Santos-Cuevas, Clara L; Ocampo-García, Blanca E; Chairez-Oria, Isaac; Diaz-Nieto, Lorenza; García-Quiroz, Janice
2017-01-01
The aim of this study was to develop a semi automatic image processing algorithm (AIPA) based on the simultaneous information provided by X-ray and radioisotopic images to determine the biokinetic models of Tc-99m radiopharmaceuticals from quantification of image radiation activity in murine models. These radioisotopic images were obtained by a CCD (charge couple device) camera coupled to an ultrathin phosphorous screen in a preclinical multimodal imaging system (Xtreme, Bruker). The AIPA consisted of different image processing methods for background, scattering and attenuation correction on the activity quantification. A set of parametric identification algorithms was used to obtain the biokinetic models that characterize the interaction between different tissues and the radiopharmaceuticals considered in the study. The set of biokinetic models corresponded to the Tc-99m biodistribution observed in different ex vivo studies. This fact confirmed the contribution of the semi-automatic image processing technique developed in this study.
Manufacturing Demonstration Facility: Roll-to-Roll Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious
This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean roommore » facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.« less
Developments in SPR Fragment Screening.
Chavanieu, Alain; Pugnière, Martine
2016-01-01
Fragment-based approaches have played an increasing role alongside high-throughput screening in drug discovery for 15 years. The label-free biosensor technology based on surface plasmon resonance (SPR) is now sensitive and informative enough to serve during primary screens and validation steps. In this review, the authors discuss the role of SPR in fragment screening. After a brief description of the underlying principles of the technique and main device developments, they evaluate the advantages and adaptations of SPR for fragment-based drug discovery. SPR can also be applied to challenging targets such as membrane receptors and enzymes. The high-level of immobilization of the protein target and its stability are key points for a relevant screening that can be optimized using oriented immobilized proteins and regenerable sensors. Furthermore, to decrease the rate of false negatives, a selectivity test may be performed in parallel on the main target bearing the binding site mutated or blocked with a low-off-rate ligand. Fragment-based drug design, integrated in a rational workflow led by SPR, will thus have a predominant role for the next wave of drug discovery which could be greatly enhanced by new improvements in SPR devices.
Picherot, G; Cheymol, J; Assathiany, R; Barthet-Derrien, M-S; Bidet-Emeriau, M; Blocquaux, S; Carbajal, R; Caron, F-M; Gerard, O; Hinterman, M; Houde, O; Jollivet, C; Le Heuzey, M-F; Mielle, A; Ogrizek, M; Rocher, B; Samson, B; Ronziere, V; Foucaud, P
2018-02-01
The Groupe de Pédiatrie Générale (General Pediatrics Group), a member of the Société française de pédiatrie (French Pediatrics Society), has proposed guidelines for families and doctors regarding children's use of digital screens. A number of guidelines have already been published, in particular by the French Academy of Sciences in 2013 and the American Academy of Pediatrics in 2016. These new guidelines were preceded by an investigation into the location of digital screen use by young children in France, a survey of medical concerns on the misuse of digital devices, and a review of their documented benefits. The Conseil Supérieur de l'Audiovisuel (Higher Council on Audiovisual Technology) and the Union Nationale de Associations Familiales (National Union of Family Associations) have taken part in the preparation of this document. Five simple messages are proposed: understanding without demonizing; screen use in common living areas, but not in bedrooms; preserve time with no digital devices (morning, meals, sleep, etc.); provide parental guidance for screen use; and prevent social isolation. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
A Qualitative Examination of Two Year-Olds Interaction with Tablet Based Interactive Technology
ERIC Educational Resources Information Center
Geist, Eugene A.
2012-01-01
The purpose of this study was to observe children naturally interacting with these touch screen devices. Little direct instruction was given to the children on the use of the devices however an adult did assist when needed. The device was introduced to the children as would be any other educational material such as play-dough, new items in the…
Kjeldgaard, Peter; Lykkegaard, Jesper; Spillemose, Heidi; Ulrik, Charlotte Suppli
2017-01-01
Early detection of COPD may reduce the future burden of the disease. We aimed to investigate whether prescreening with a COPD-6 screening device (measuring FEV 1 and FEV 6 ) facilitates early detection of COPD in primary care. In primary care, individuals at high risk of COPD (ie, age ≥35 years, relevant exposure, and at least one respiratory symptom) and no previous diagnosis of obstructive lung disease were examined with a COPD-6 screening device. In prioritized order, the criteria for proceeding to confirmatory spirometry were FEV 1 /FEV 6 <0.7, FEV 1 <80%pred, or clinical suspicion of COPD regardless of test result (medical doctor's [MD] decision). Based on spirometry, including bronchodilator (BD) reversibility test, individuals were classified as COPD (post-BD FEV 1 /FVC <0.70), asthma (ΔFEV 1 ≥0.50 L), or no obstructive lung disease. A total of 2,990 subjects (54% men, mean age 59 years, and mean 28 pack-years) were enrolled, of whom 949 (32%) proceeded from COPD-6 screening to confirmative spirometry based on the following criteria: 510 (54%) FEV 1 /FEV 6 <0.70, 382 (40%) FEV 1 <80%pred, and 57 (6%) MD decision. Following confirmative spirometry, the 949 individuals were diagnosed as having COPD (51%), asthma (3%), and no obstructive lung disease (45%). COPD was diagnosed in 487 (16%) of the enrolled subjects in whom confirmative spirometry was performed in 69% based on FEV 1 /FEV 6 <0.7 and in 29% based on FEV 1 ≤80%pred. Prescreening with the COPD-6 device showed acceptable specificity for the selection of subjects for diagnostic spirometry and is likely to be a useful alternative to current practice in primary care.
Cizek, Karel; Prior, Chad; Thammakhet, Chongdee; Galik, Michal; Linker, Kevin; Tsui, Ray; Cagan, Avi; Wake, John; La Belle, Jeff; Wang, Joseph
2010-02-19
This article reports on an integrated explosive-preconcentration/electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. The challenges involved in such system integration are discussed. A hydrogel-coated screen-printed electrode is used for the detection of the thermally desorbed TNT from a preconcentration device using rapid square wave voltammetry. Optimization of the preconcentration system for desorption of TNT and subsequent electrochemical detection was conducted yielding a desorption temperature of 120 degrees C under a flow rate of 500 mL min(-1). Such conditions resulted in a characteristic electrochemical signal for TNT representing the multi-step reduction process. Quantitative measurements produced a linear signal dependence on TNT quantity exposed to the preconcentrator from 0.25 to 10 microg. Finally, the integrated device was successfully demonstrated using a sample of solid TNT located upstream of the preconcentrator. Copyright 2009 Elsevier B.V. All rights reserved.
Printed batteries and conductive patterns in technical textiles
NASA Astrophysics Data System (ADS)
Willert, Andreas; Meuser, Carmen; Baumann, Reinhard R.
2018-05-01
Various applications of functional devices need a tailored and reliable supply of electrical energy. Batteries are electrochemical systems that deliver energy for functional devices and applications. Due to the common use, several rigid types of batteries have been standardized. To fully integrate the battery into a product that is bendable, free in geometry and less than 1 mm thick, printing of power adaptable batteries is a challenging area of research. Therefore, the well-known zinc-manganese system, which is very promising due to its environmental sustainability and its simplicity, has been used to manufacture battery solutions on a new kind of substrate: technical textiles. Another challenge is the deposition of conductive patterns. At present, embroidery with metallic yarn is the only possibility to provide conducting paths on technical textiles, a time-consuming and elaborate process. Screen printed conductive pathways will generate a new momentum in the manufacturing of conductivity on textiles.
Inverted Outflow Ground Testing of Cryogenic Propellant Liquid Acquisition Devices
NASA Technical Reports Server (NTRS)
Chato, David J.; Hartwig, Jason W.; Rame, Enrique; McQuillen, John B.
2014-01-01
NASA is currently developing propulsion system concepts for human exploration. These propulsion concepts will require the vapor free acquisition and delivery of the cryogenic propellants stored in the propulsion tanks during periods of microgravity to the exploration vehicles engines. Propellant management devices (PMDs), such as screen channel capillary liquid acquisition devices (LADs), vanes and sponges have been used for earth storable propellants in the Space Shuttle Orbiter and other spacecraft propulsion systems, but only very limited propellant management capability currently exists for cryogenic propellants. NASA is developing PMD technology as a part of their cryogenic fluid management (CFM) project. System concept studies have looked at the key factors that dictate the size and shape of PMD devices and established screen channel LADs as an important component of PMD design. Modeling validated by normal gravity experiments is examining the behavior of the flow in the LAD channel assemblies (as opposed to only prior testing of screen samples) at the flow rates representative of actual engine service (similar in size to current launch vehicle upper stage engines). Recently testing of rectangular LAD channels has included inverted outflow in liquid oxygen and liquid hydrogen. This paper will report the results of liquid oxygen testing compare and contrast them with the recently published hydrogen results; and identify the sensitivity these results to flow rate and tank internal pressure.
Inverted Outflow Ground Testing of Cryogenic Propellant Liquid Acquisition Devices
NASA Technical Reports Server (NTRS)
Chato, David J.; Hartwig, Jason W.; Rame, Enrique; McQuillen, John B.
2014-01-01
NASA is currently developing propulsion system concepts for human exploration. These propulsion concepts will require the vapor free acquisition and delivery of the cryogenic propellants stored in the propulsion tanks during periods of microgravity to the exploration vehicles engines. Propellant management devices (PMD's), such as screen channel capillary liquid acquisition devices (LAD's), vanes and sponges have been used for earth storable propellants in the Space Shuttle Orbiter and other spacecraft propulsion systems, but only very limited propellant management capability currently exists for cryogenic propellants. NASA is developing PMD technology as a part of their cryogenic fluid management (CFM) project. System concept studies have looked at the key factors that dictate the size and shape of PMD devices and established screen channel LADs as an important component of PMD design. Modeling validated by normal gravity experiments is examining the behavior of the flow in the LAD channel assemblies (as opposed to only prior testing of screen samples) at the flow rates representative of actual engine service (similar in size to current launch vehicle upper stage engines). Recently testing of rectangular LAD channels has included inverted outflow in liquid oxygen and liquid hydrogen. This paper will report the results of liquid oxygen testing compare and contrast them with the recently published hydrogen results; and identify the sensitivity of these results to flow rate and tank internal pressure.
Clinical Implications of Technological Advances in Screening for Atrial Fibrillation.
Singh, Nikhil; Chun, Sung; Hadley, David; Froelicher, Victor
The incidence of atrial fibrillation (AF) continues to increase worldwide as people live longer. AF is the leading cause of stroke among patients older than 75 years and is responsible for at least 15% of all strokes. Industry has responded to this problem with a plethora of monitoring devices. These include single lead ECG adhesive sensors, implantable loop recorders, smartphone attachments and wearables. This review will concentrate on clinical studies using these technologies. There are wearables including watches and watch-like devices that will be mentioned but these have not been validated for clinical use. This review will begin with a background regarding screening for AF and at the end present findings from Cardiac Implantable devices that could influence use of the new mobile health technologies. Copyright © 2018 Elsevier Inc. All rights reserved.
Design and Evolution of the Asporto Heart Preservation Device.
Rivard, Andrew L
2015-06-01
The Asporto Heart Preservation Device is a system providing perfusion of cardioplegia to the donor heart using a computer-controlled peristaltic pump in a thermoelectrically cooled and insulated container. In 1998, a user interface was developed at the University of Minnesota consisting of a touch screen and battery-backed microcontroller. Power was supplied by a 120 VAC to 12 VDC converter. An upgrade to the insulated cooler and microcontroller occurred in 2002, which was followed by proof of concept experimental pre-clinical transplants and tests demonstrating the efficacy of the device with isolated donor hearts. During the period between 2002 and 2006, a variety of donor organ containers were developed, modified, and tested to provide an optimal sterile environment and fluid path. Parallel development paths encompass formalized design specifications for final prototypes of the touch screen/microcontroller, organ container, and thermoelectric cooler.
Membrane Based Thermal Control Development
NASA Technical Reports Server (NTRS)
Murdoch, Karen
1997-01-01
The investigation of the feasibility of using a membrane device as a water boiler for thermal control is reported. The membrane device permits water vapor to escape to the vacuum of space but prevents the loss of liquid water. The vaporization of the water provides cooling to the water loop. This type of cooling device would have application for various types of short duration cooling needs where expenditure of water is allowed and a low pressure source is available such as in space or on a planet's surface. A variety of membrane samples, both hydrophilic and hydrophobic, were purchased to test for this thermal control application. An initial screening test determined if the membrane could pose a sufficient barrier to maintain water against vacuum. Further testing compared the heat transfer performance of those membranes that passed the screening test.
Digital devices: big challenge in color management
NASA Astrophysics Data System (ADS)
Vauderwange, Oliver; Curticapean, Dan; Dreβler, Paul; Wozniak, Peter
2014-09-01
The paper will present how the students learn to find technical solutions in color management by using adequate digital devices and recognize the specific upcoming tasks in this area. Several issues, problems and their solutions will be discussed. The scientific background offer specific didactical solutions in this area of optics. Color management is the major item of this paper. Color management is a crucial responsibility for media engineers and designers. Print, screen and mobile applications must independently display the same colors. Predictability and consistency in the color representation are the aims of a color management system. This is only possible in a standardized and audited production workflow. Nowadays digital media have a fast-paced development process. An increasing number of different digital devices with different display sizes and display technologies are a great challenge for every color management system. The authors will present their experience in the field of color management. The design and development of a suitable learning environment with the required infrastructure is in the focus. The combination of theoretical and practical lectures creates a deeper understanding in the area of the digital color representation.
Saeki, Akinori; Yoshikawa, Saya; Tsuji, Masashi; Koizumi, Yoshiko; Ide, Marina; Vijayakumar, Chakkooth; Seki, Shu
2012-11-21
State-of-the-art low band gap conjugated polymers have been investigated for application in organic photovoltaic cells (OPVs) to achieve efficient conversion of the wide spectrum of sunlight into electricity. A remarkable improvement in power conversion efficiency (PCE) has been achieved through the use of innovative materials and device structures. However, a reliable technique for the rapid screening of the materials and processes is a prerequisite toward faster development in this area. Here we report the realization of such a versatile evaluation technique for bulk heterojunction OPVs by the combination of time-resolved microwave conductivity (TRMC) and submicrosecond white light pulse from a Xe-flash lamp. Xe-flash TRMC allows examination of the OPV active layer without requiring fabrication of the actual device. The transient photoconductivity maxima, involving information on generation efficiency, mobility, and lifetime of charge carriers in four well-known low band gap polymers blended with phenyl-C(61)-butyric acid methyl ester (PCBM), were confirmed to universally correlate with the PCE divided by the open circuit voltage (PCE/V(oc)), offering a facile way to predict photovoltaic performance without device fabrication.
Advances in Assays and Analytical Approaches for Botulinum Toxin Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, Jay W.; Ozanich, Richard M.; Warner, Marvin G.
2010-08-04
Methods to detect botulinum toxin, the most poisonous substance known, are reviewed. Current assays are being developed with two main objectives in mind: 1) to obtain sufficiently low detection limits to replace the mouse bioassay with an in vitro assay, and 2) to develop rapid assays for screening purposes that are as sensitive as possible while requiring an hour or less to process the sample an obtain the result. This review emphasizes the diverse analytical approaches and devices that have been developed over the last decade, while also briefly reviewing representative older immunoassays to provide background and context.
Graphical user interface for image acquisition and processing
Goldberg, Kenneth A.
2002-01-01
An event-driven GUI-based image acquisition interface for the IDL programming environment designed for CCD camera control and image acquisition directly into the IDL environment where image manipulation and data analysis can be performed, and a toolbox of real-time analysis applications. Running the image acquisition hardware directly from IDL removes the necessity of first saving images in one program and then importing the data into IDL for analysis in a second step. Bringing the data directly into IDL creates an opportunity for the implementation of IDL image processing and display functions in real-time. program allows control over the available charge coupled device (CCD) detector parameters, data acquisition, file saving and loading, and image manipulation and processing, all from within IDL. The program is built using IDL's widget libraries to control the on-screen display and user interface.
Zeb, Mehmood; Curzen, Nick; Allavatam, Venugopal; Wilson, David; Yue, Arthur; Roberts, Paul; Morgan, John
2015-09-15
The sensitivity and specificity of the subcutaneous implantable cardioverter defibrillator (S-ICD) pre-implant screening tool required clinical evaluation. Bipolar vectors were derived from electrodes positioned at locations similar to those employed for S-ICD sensing and pre-implant screening electrodes, and recordings collected through 80-electrode PRIME®-ECGs, in six different postures, from 40 subjects (10 healthy controls, and 30 patients with complex congenital heart disease (CCHD); 10 with Tetralogy of Fallot (TOF), 10 with single ventricle physiology (SVP), and 10 with transposition of great arteries (TGA)). The resulting vectors were analysed using the S-ICD pre-implant screening tool (Boston Scientific) and processed through the sensing algorithm of S-ICD (Boston Scientific). The data were then evaluated using 2 × 2 contingency tables. Fisher exact and McNemar tests were used for a comparison of the different categories of CCHD, and p < 0.05 vs. controls considered to be statistically significant. 57% of patients were male, mean age of 36.3 years. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the S-ICD screening tool were 95%, 79%, 59% and 98%, respectively, for controls, and 84%, 79%, 76% and 86%, respectively, in patients with CCHD (p = 0.0001). The S-ICD screening tool was comparatively more sensitive in normal controls but less specific in both CCHD patients and controls; a possible explanation for the reported high incidence of inappropriate S-ICD shocks. Thus, we propose a pre-implant screening device using the S-ICD sensing algorithm to minimise false exclusion and selection, and hence minimise potentially inappropriate shocks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
49 CFR Appendix A to Part 1511 - Aviation Security Infrastructure Fee
Code of Federal Regulations, 2011 CFR
2011-10-01
... final acceptance testing. This includes such equipment as Metal Detection Devices, Hand Wands, X-ray... such equipment as Metal Detection Devices, Hand Wands, X-ray screening machines, Explosives Trace... as test objects and X-ray radiation surveys, electricity costs and maintenance contract costs...
2011-01-01
Background Screen-viewing has been associated with increased body mass, increased risk of metabolic syndrome and lower psychological well-being among children and adolescents. There is a shortage of information about the nature of contemporary screen-viewing amongst children especially given the rapid advances in screen-viewing equipment technology and their widespread availability. Anecdotal evidence suggests that large numbers of children embrace the multi-functionality of current devices to engage in multiple forms of screen-viewing at the same time. In this paper we used qualitative methods to assess the nature and extent of multiple forms of screen-viewing in UK children. Methods Focus groups were conducted with 10-11 year old children (n = 63) who were recruited from five primary schools in Bristol, UK. Topics included the types of screen-viewing in which the participants engaged; whether the participants ever engaged in more than one form of screen-viewing at any time and if so the nature of this multiple viewing; reasons for engaging in multi-screen-viewing; the room within the house where multi-screen-viewing took place and the reasons for selecting that room. All focus groups were transcribed verbatim, anonymised and thematically analysed. Results Multi-screen viewing was a common behaviour. Although multi-screen viewing often involved watching TV, TV viewing was often the background behaviour with attention focussed towards a laptop, handheld device or smart-phone. There were three main reasons for engaging in multi-screen viewing: 1) tempering impatience that was associated with a programme loading; 2) multi-screen facilitated filtering out unwanted content such as advertisements; and 3) multi-screen viewing was perceived to be enjoyable. Multi-screen viewing occurred either in the child's bedroom or in the main living area of the home. There was considerable variability in the level and timing of viewing and this appeared to be a function of whether the participants attended after-school clubs. Conclusions UK children regularly engage in two or more forms of screen-viewing at the same time. There are currently no means of assessing multi-screen viewing nor any interventions that specifically focus on reducing multi-screen viewing. To reduce children's overall screen-viewing we need to understand and then develop approaches to reduce multi-screen viewing among children. PMID:21812945
Jago, Russell; Sebire, Simon J; Gorely, Trish; Cillero, Itziar Hoyos; Biddle, Stuart J H
2011-08-03
Screen-viewing has been associated with increased body mass, increased risk of metabolic syndrome and lower psychological well-being among children and adolescents. There is a shortage of information about the nature of contemporary screen-viewing amongst children especially given the rapid advances in screen-viewing equipment technology and their widespread availability. Anecdotal evidence suggests that large numbers of children embrace the multi-functionality of current devices to engage in multiple forms of screen-viewing at the same time. In this paper we used qualitative methods to assess the nature and extent of multiple forms of screen-viewing in UK children. Focus groups were conducted with 10-11 year old children (n = 63) who were recruited from five primary schools in Bristol, UK. Topics included the types of screen-viewing in which the participants engaged; whether the participants ever engaged in more than one form of screen-viewing at any time and if so the nature of this multiple viewing; reasons for engaging in multi-screen-viewing; the room within the house where multi-screen-viewing took place and the reasons for selecting that room. All focus groups were transcribed verbatim, anonymised and thematically analysed. Multi-screen viewing was a common behaviour. Although multi-screen viewing often involved watching TV, TV viewing was often the background behaviour with attention focussed towards a laptop, handheld device or smart-phone. There were three main reasons for engaging in multi-screen viewing: 1) tempering impatience that was associated with a programme loading; 2) multi-screen facilitated filtering out unwanted content such as advertisements; and 3) multi-screen viewing was perceived to be enjoyable. Multi-screen viewing occurred either in the child's bedroom or in the main living area of the home. There was considerable variability in the level and timing of viewing and this appeared to be a function of whether the participants attended after-school clubs. UK children regularly engage in two or more forms of screen-viewing at the same time. There are currently no means of assessing multi-screen viewing nor any interventions that specifically focus on reducing multi-screen viewing. To reduce children's overall screen-viewing we need to understand and then develop approaches to reduce multi-screen viewing among children.
NASA Astrophysics Data System (ADS)
Alawa, Karam A.; Sayed, Mohamed; Arboleda, Alejandro; Durkee, Heather A.; Aguilar, Mariela C.; Lee, Richard K.
2017-02-01
Glaucoma is the leading cause of irreversible blindness worldwide. Due to its wide prevalence, effective screening tools are necessary. The purpose of this project is to design and evaluate a system that enables portable, cost effective, smartphone based visual field screening based on frequency doubling technology. The system is comprised of an Android smartphone to display frequency doubling stimuli and handle processing, a Bluetooth remote for user input, and a virtual reality headset to simulate the exam. The LG Nexus 5 smartphone and BoboVR Z3 virtual reality headset were used for their screen size and lens configuration, respectively. The system is capable of running the C-20, N-30, 24-2, and 30-2 testing patterns. Unlike the existing system, the smartphone FDT tests both eyes concurrently by showing the same background to both eyes but only displaying the stimulus to one eye at a time. Both the Humphrey Zeiss FDT and the smartphone FDT were tested on five subjects without a history of ocular disease with the C-20 testing pattern. The smartphone FDT successfully produced frequency doubling stimuli at the correct spatial and temporal frequency. Subjects could not tell which eye was being tested. All five subjects preferred the smartphone FDT to the Humphrey Zeiss FDT due to comfort and ease of use. The smartphone FDT is a low-cost, portable visual field screening device that can be used as a screening tool for glaucoma.
Lubans, David R; Smith, Jordan J; Skinner, Geoff; Morgan, Philip J
2014-01-01
To describe the development and implementation of a smartphone application (app) designed to promote physical activity and reduce screen-time in adolescent boys considered "at-risk" of obesity. An app was developed to support the delivery of a face-to-face school-based obesity prevention program known as the "Active Teen Leaders Avoiding Screen-time" (ATLAS) program. ATLAS was guided by self-determination theory and social cognitive theory and evaluated using a cluster randomized controlled trial with 361 boys (12.7 ± 0.5 years) in 14 secondary schools. Following the completion of the study, participants in the intervention group completed a process evaluation questionnaire and focus groups were conducted with 42 students to explore their general perceptions of the ATLAS program and their experience with the smartphone app. Barriers and challenges encountered in the development, implementation, and evaluation of the app are also described. Participation in the study was not contingent on ownership of a smartphone, but 70% of participants in the intervention group reported having access to a smartphone or tablet device. Focus group participants reported an enjoyment of the program, and felt that it had provided them with new skills, techniques, and routines for the future. However, their engagement with the smartphone app was limited, due to a variety of reasons. Barriers to the implementation and evaluation of the app included limited access to smartphone devices, technical problems with the push notifications, lack of access to usage data, and the challenges of maintaining participants' interest in using the app. Although participants reported high levels of satisfaction with the ATLAS program in general, the smartphone app was not used extensively. Additional strategies and features may be needed to enhance engagement in adolescent boys.
Zhao, Siwei; Zhu, Kan; Zhang, Yan; Zhu, Zijie; Xu, Zhengping; Zhao, Min; Pan, Tingrui
2014-11-21
Both endogenous and externally applied electrical stimulation can affect a wide range of cellular functions, including growth, migration, differentiation and division. Among those effects, the electrical field (EF)-directed cell migration, also known as electrotaxis, has received broad attention because it holds great potential in facilitating clinical wound healing. Electrotaxis experiment is conventionally conducted in centimetre-sized flow chambers built in Petri dishes. Despite the recent efforts to adapt microfluidics for electrotaxis studies, the current electrotaxis experimental setup is still cumbersome due to the needs of an external power supply and EF controlling/monitoring systems. There is also a lack of parallel experimental systems for high-throughput electrotaxis studies. In this paper, we present a first independently operable microfluidic platform for high-throughput electrotaxis studies, integrating all functional components for cell migration under EF stimulation (except microscopy) on a compact footprint (the same as a credit card), referred to as ElectroTaxis-on-a-Chip (ETC). Inspired by the R-2R resistor ladder topology in digital signal processing, we develop a systematic approach to design an infinitely expandable microfluidic generator of EF gradients for high-throughput and quantitative studies of EF-directed cell migration. Furthermore, a vacuum-assisted assembly method is utilized to allow direct and reversible attachment of our device to existing cell culture media on biological surfaces, which separates the cell culture and device preparation/fabrication steps. We have demonstrated that our ETC platform is capable of screening human cornea epithelial cell migration under the stimulation of an EF gradient spanning over three orders of magnitude. The screening results lead to the identification of the EF-sensitive range of that cell type, which can provide valuable guidance to the clinical application of EF-facilitated wound healing.
The Nano-Patch-Clamp Array: Microfabricated Glass Chips for High-Throughput Electrophysiology
NASA Astrophysics Data System (ADS)
Fertig, Niels
2003-03-01
Electrophysiology (i.e. patch clamping) remains the gold standard for pharmacological testing of putative ion channel active drugs (ICADs), but suffers from low throughput. A new ion channel screening technology based on microfabricated glass chip devices will be presented. The glass chips contain very fine apertures, which are used for whole-cell voltage clamp recordings as well as single channel recordings from mammalian cell lines. Chips containing multiple patch clamp wells will be used in a first bench-top device, which will allow perfusion and electrical readout of each well. This scalable technology will allow for automated, rapid and parallel screening on ion channel drug targets.
Silbert, David I; Matta, Noelle S; Ely, Amanda L
2014-02-01
To evaluate the SureSight autorefractor and compare it to the plusoptiX A09 photoscreener in the detection of amblyopia risk factors in a cohort of Honduran children examined during medical mission work and to assess the utility of both devices in the rural setting. The medical records of patients who had undergone SureSight autorefractor screening, plusoptiX photoscreening, and a gold standard pediatric ophthalmology examination, including cycloplegic refraction, during a recent medical mission trip to Honduras were retrospectively reviewed. A total of 216 children were examined. Of these, 9 (4%) were found to have amblyopia risk factors based on the current referral criteria of the American Association for Pediatric Ophthalmology and Strabismus on ophthalmological examination. The plusoptiX was found to have 89% sensitivity and 80% specificity; the SureSight, using manufacturer's referral criteria, was found to have sensitivity of 89% and specificity of 71%. Both devices were found to be reliable vision screening devices when used on the general population of remote villages in Honduras, although the specificity of the plusoptiX A09 was higher. Copyright © 2014 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Umami, M. K.
2018-01-01
This study is a preliminary survey on thumb reach of Indonesian population when interacting with single-handed device. This study was aimed to know the thumb reach envelope on the screen of mobile phone. The correlation between the thumb reach vs. the hand length and thumb length was also identified. Thirty young adults participated in the study. All participants had normal body stature and were right-handed person. In the observational phase, the participant was asked to colour the canvas area on the screen of the mobile phone by using his/her thumb. The participant had to complete the task by applying the single hand interaction. The participant should grab the mobile phone as he/she use it normally in his/her daily activities. The thumb reach envelope of participants was identified from the coloured area of the canvas. The results of this study found that participants with a large hand length and thumb length tend to have a large thumb reach. The results of this study also show the thumb reach area of the participants is forming an elliptical shape that runs from the northeast to southwest on the device screen.
Psychophysical Calibration of Mobile Touch-Screens for Vision Testing in the Field
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2015-01-01
The now ubiquitous nature of touch-screen displays in cell phones and tablet computers makes them an attractive option for vision testing outside of the laboratory or clinic. Accurate measurement of parameters such as contrast sensitivity, however, requires precise control of absolute and relative screen luminances. The nonlinearity of the display response (gamma) can be measured or checked using a minimum motion technique similar to that developed by Anstis and Cavanagh (1983) for the determination of isoluminance. While the relative luminances of the color primaries vary between subjects (due to factors such as individual differences in pre-retinal pigment densities), the gamma nonlinearity can be checked in the lab using a photometer. Here we compare results obtained using the psychophysical method with physical measurements for a number of different devices. In addition, we present a novel physical method using the device's built-in front-facing camera in conjunction with a mirror to jointly calibrate the camera and display. A high degree of consistency between devices is found, but some departures from ideal performance are observed. In spite of this, the effects of calibration errors and display artifacts on estimates of contrast sensitivity are found to be small.
Lei, Kin Fong; Yang, Shih-I; Tsai, Shiao-Wen; Hsu, Hsiao-Ting
2015-03-01
Efficient diagnosis is very important for the prevention and treatment of diseases. Rapid disease screening in ambulatory environment is one of the most pressing needs for disease control. Despite there are many methods to detect the results of immunoassays, quantitative measurement for rapid disease screening is still a great challenge for point-of-care applications. In this study, a fabrication method for depositing carbon nanotube bundles has been successfully developed for realization of functional paper-based microfluidic sensing device. Quantitative detection of label-free immunoassay, i.e., biotin-avidin binding interaction, was demonstrated by direct measurement of the current change of the biosensor after single application of the target analyte. Sensitivity of 0.33 μA/ng mL(-1) and minimal detectable analyte concentration of 25 ng/mL were achieved. The time necessary for the detection was 500 s which is a large reduction compared with the conventional immunoassay. Such paper-based biosensor has the benefits of portability, fast response, simple operation, and low cost and has the potential for the development of rapid disease screening devices. Copyright © 2014 Elsevier B.V. All rights reserved.
A Novel 96well-formatted Micro-gap Plate Enabling Drug Response Profiling on Primary Tumour Samples
NASA Astrophysics Data System (ADS)
Ma, Wei-Yuan; Hsiung, Lo-Chang; Wang, Chen-Ho; Chiang, Chi-Ling; Lin, Ching-Hung; Huang, Chiun-Sheng; Wo, Andrew M.
2015-04-01
Drug-based treatments are the most widely used interventions for cancer management. Personalized drug response profiling remains inherently challenging with low cell count harvested from tumour sample. We present a 96well-formatted microfluidic plate with built-in micro-gap that preserves up to 99.2% of cells during multiple assay/wash operation and only 9,000 cells needed for a single reagent test (i.e. 1,000 cells per test spot x 3 selected concentration x triplication), enabling drug screening and compatibility with conventional automated workstations. Results with MCF7 and MDA-MB-231 cell lines showed that no statistical significance was found in dose-response between the device and conventional 96-well plate control. Primary tumour samples from breast cancer patients tested in the device also showed good IC50 prediction. With drug screening of primary cancer cells must consider a wide range of scenarios, e.g. suspended/attached cell types and rare/abundant cell availability, the device enables high throughput screening even for suspended cells with low cell count since the signature microfluidic cell-trapping feature ensures cell preservation in a multiple solution exchange protocol.
NASA Astrophysics Data System (ADS)
Everard, Colm D.; Kim, Moon S.; Lee, Hoyoung
2014-05-01
The production of contaminant free fresh fruit and vegetables is needed to reduce foodborne illnesses and related costs. Leafy greens grown in the field can be susceptible to fecal matter contamination from uncontrolled livestock and wild animals entering the field. Pathogenic bacteria can be transferred via fecal matter and several outbreaks of E.coli O157:H7 have been associated with the consumption of leafy greens. This study examines the use of hyperspectral fluorescence imaging coupled with multivariate image analysis to detect fecal contamination on Spinach leaves (Spinacia oleracea). Hyperspectral fluorescence images from 464 to 800 nm were captured; ultraviolet excitation was supplied by two LED-based line light sources at 370 nm. Key wavelengths and algorithms useful for a contaminant screening optical imaging device were identified and developed, respectively. A non-invasive screening device has the potential to reduce the harmful consequences of foodborne illnesses.
Analysis of the viewing zone of the Cambridge autostereoscopic display.
Dodgson, N A
1996-04-01
The Cambridge autostereoscopic three-dimensional display is a time-multiplexed device that gives both stereo and movement parallax to the viewer without the need for any special glasses. This analysis derives the size and position of the fully illuminated, and hence useful, viewing zone for a Cambridge display. The viewing zone of such a display is shown to be completely determined by four parameters: the width of the screen, the optimal distance of the viewer from the screen, the width over which an image can be seen across the whole screen at this optimal distance, and the number of views. A display's viewing zone can thus be completely described without reference to the internal implementation of the device. An equation that describes what the eye sees from any position in front of the display is derived. The equations derived can be used in both the analysis and design of this type of time-multiplexed autostereoscopic display.
PAPNET-assisted primary screening of conventional cervical smears.
Cenci, M; Nagar, C; Vecchione, A
2000-01-01
The PAPNET System is the only device with a neural-network-based-artificial intelligence to detect and show the images of abnormal cells on the monitor to be evaluated in an interactive way. We effectively used the PAPNET in rescreening of conventional cervical smears and we detected its advantages and its disadvantages. In this paper, we report our results from PAPNET-assisted primary screening performed on 20,154 conventional smears. The smears were classified as Negative or as Review. The Negative cases were rapidly rescreened mainly near the coverslip edges, which are the slide areas not analyzed by automated devices because of focusing problems. The Review cases were fully reanalyzed by the optic microscope. In summary, 140 positive smears were detected: 57 cases showed changes due to HPV, 63 LSIL, 15 HSIL, and 5 carcinomas. Therefore, the PAPNET System was confirmed as useful in primary screening of conventional cervical samples as well as rescreening.
Harvey, Catherine; Stanton, Neville A; Pickering, Carl A; McDonald, Mike; Zheng, Pengjun
2011-07-01
In-vehicle information systems (IVIS) can be controlled by the user via direct or indirect input devices. In order to develop the next generation of usable IVIS, designers need to be able to evaluate and understand the usability issues associated with these two input types. The aim of this study was to investigate the effectiveness of a set of empirical usability evaluation methods for identifying important usability issues and distinguishing between the IVIS input devices. A number of usability issues were identified and their causal factors have been explored. These were related to the input type, the structure of the menu/tasks and hardware issues. In particular, the translation between inputs and on-screen actions and a lack of visual feedback for menu navigation resulted in lower levels of usability for the indirect device. This information will be useful in informing the design of new IVIS, with improved usability. STATEMENT OF RELEVANCE: This paper examines the use of empirical methods for distinguishing between direct and indirect IVIS input devices and identifying usability issues. Results have shown that the characteristics of indirect input devices produce more serious usability issues, compared with direct devices and can have a negative effect on the driver-vehicle interaction.
78 FR 76860 - Contraband Screening for Criminal Justice Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-19
... detection (e.g., transmission x-ray, active millimeter wave). 3. Size Class of the system/device: Fixed... traditional metal detectors will also be accepted. The NIJ Sensor, Surveillance and Biometric Technologies.... Whether the system/device Detects Metal objects. a. If YES, whether there are any types of metals that are...
Devices for home evaluation of women's health concerns.
Scolaro, Kelly L; Lloyd, Kimberly Braxton; Helms, Kristen L
2008-02-15
Devices used for home evaluation of fertility, pregnancy, menopause, colon cancer, breast cancer, and urinary-tract and vaginal yeast infections are discussed. Ovulation-prediction devices monitor natural changes in a woman's body during the menstrual cycle, including changes in basal body temperature, urinary luteinizing hormone, and urinary estrone-3-glucuronide concentrations. Also available are devices that identify changes in the content of sodium chloride and other electrolytes in saliva and cervical-vaginal mucus. Home pregnancy tests are designed to detect human chorionic gonadotropin in the urine. Both urine and saliva tests are available for home evaluation of menopause; the most common devices use urine to measure follicle-stimulating hormone. The saliva tests measure estradiol, progesterone, and testosterone. Devices for home screening for colon cancer use either the guaiac test or the fecal immunochemical test. For aid in breast self-examination, patients may use a simulated-breast product designed to train them to detect lumps or a thin, silicone-containing pad intended to increase the sensitivity of the fingers to abnormalities. Urine-dipstick tests can be used to screen for urinary-tract infection, and a swab or panty liner can be used to detect vaginal pH changes indicative of vaginal yeast infection. Home-based tests may be convenient and economical but also have limitations; pharmacists can help educate patients and clinicians. Many devices are available to help evaluate women's health concerns at home.
Bellet, Daniel; Lagrange, Mélanie; Sannicolo, Thomas; Aghazadehchors, Sara; Nguyen, Viet Huong; Langley, Daniel P.; Muñoz-Rojas, David; Jiménez, Carmen; Bréchet, Yves; Nguyen, Ngoc Duy
2017-01-01
The past few years have seen a considerable amount of research devoted to nanostructured transparent conducting materials (TCM), which play a pivotal role in many modern devices such as solar cells, flexible light-emitting devices, touch screens, electromagnetic devices, and flexible transparent thin film heaters. Currently, the most commonly used TCM for such applications (ITO: Indium Tin oxide) suffers from two major drawbacks: brittleness and indium scarcity. Among emerging transparent electrodes, silver nanowire (AgNW) networks appear to be a promising substitute to ITO since such electrically percolating networks exhibit excellent properties with sheet resistance lower than 10 Ω/sq and optical transparency of 90%, fulfilling the requirements of most applications. In addition, AgNW networks also exhibit very good mechanical flexibility. The fabrication of these electrodes involves low-temperature processing steps and scalable methods, thus making them appropriate for future use as low-cost transparent electrodes in flexible electronic devices. This contribution aims to briefly present the main properties of AgNW based transparent electrodes as well as some considerations relating to their efficient integration in devices. The influence of network density, nanowire sizes, and post treatments on the properties of AgNW networks will also be evaluated. In addition to a general overview of AgNW networks, we focus on two important aspects: (i) network instabilities as well as an efficient Atomic Layer Deposition (ALD) coating which clearly enhances AgNW network stability and (ii) modelling to better understand the physical properties of these networks. PMID:28772931
Language and the Cultural Life of a Child. (Lenguaje y Cultura de La Vida de un Nino).
ERIC Educational Resources Information Center
Buckenmeyer, Robert
These guidelines offer information necessary to define, organize, and implement a screening program for preschool children that identifies suspected physical, behavioral, and educational problems that may interfere with children's ability to achieve success in school. An Early Screening Program (ESP) utilizes testing devices to aid problem…
Analysis of Peer Interaction in Learning Activities with Personal Handhelds and Shared Displays
ERIC Educational Resources Information Center
Liu, Chen-Chung; Chung, Chen-Wei; Chen, Nian-Shing; Liu, Baw-Jhiune
2009-01-01
Collaborative learning is extensively applied in classroom activities, but the screens on handheld devices are designed for individual-user mobile applications and may constrain interaction among group learners. The small screen size may lead to fragmented and tete-a-tete communication patterns and frequently obstruct the externalization of the…
Internet-Based Cervical Cancer Screening Program
2008-05-01
information technology have facilitated the Internet transmission and archival storage of digital images and other clinical information . The combination of...Phase included: 1) development of hardware, software, and interfaces between computerized scanning device and Internet - linked servers and reading...AD_________________ Award Number: W81XWH-04-C-0083 TITLE: Internet -Based Cervical Cancer Screening
Code of Federal Regulations, 2012 CFR
2012-04-01
... mass spectrometry is a device that consists of stable isotope internal standards, control materials..., free carnitine, and acylcarnitines using tandem mass spectrometry. 862.1055 Section 862.1055 Food and... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a...
Code of Federal Regulations, 2014 CFR
2014-04-01
... mass spectrometry is a device that consists of stable isotope internal standards, control materials..., free carnitine, and acylcarnitines using tandem mass spectrometry. 862.1055 Section 862.1055 Food and... screening test system for amino acids, free carnitine, and acylcarnitines using tandem mass spectrometry. (a...
Xia, Yiqiu; Tang, Yi; Yu, Xu; Wan, Yuan; Chen, Yizhu; Lu, Huaguang; Zheng, Si-Yang
2017-02-01
Viral diseases are perpetual threats to human and animal health. Detection and characterization of viral pathogens require accurate, sensitive, and rapid diagnostic assays. For field and clinical samples, the sample preparation procedures limit the ultimate performance and utility of the overall virus diagnostic protocols. This study presents the development of a microfluidic device embedded with porous silicon nanowire (pSiNW) forest for label-free size-based point-of-care virus capture in a continuous curved flow design. The pSiNW forests with specific interwire spacing are synthesized in situ on both bottom and sidewalls of the microchannels in a batch process. With the enhancement effect of Dean flow, this study demonstrates that about 50% H5N2 avian influenza viruses are physically trapped without device clogging. A unique feature of the device is that captured viruses can be released by inducing self-degradation of the pSiNWs in physiological aqueous environment. About 60% of captured viruses can be released within 24 h for virus culture, subsequent molecular diagnosis, and other virus characterization and analyses. This device performs viable, unbiased, and label-free virus isolation and release. It has great potentials for virus discovery, virus isolation and culture, functional studies of virus pathogenicity, transmission, drug screening, and vaccine development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DeBuc, Delia Cabrera
2016-12-01
In the years since its introduction, retinal imaging has transformed our capability to visualize the posterior pole of the eye. Increasing practical advances in mobile technology, regular monitoring, and population screening for diabetic retinopathy management offer the opportunity for further development of cost-effective applications through remote assessment of the diabetic eye using portable retinal cameras, smart-phone-based devices and telemedicine networks. Numerous retinal imaging methods and mobile technologies in tele-ophthalmology applications have been reported for diabetic retinopathy screening and management. They provide several advantages of automation, sensitivity, specificity, portability, and miniaturization for the development of point-of-care diagnostics for eye complications in diabetes. The aim of this paper is to review the role of retinal imaging and mobile technologies in tele-ophthalmology applications for diabetic retinopathy screening and management. At large, although improvements in current technology and telemedicine services are still needed, telemedicine has demonstrated to be a worthy tool to support health caregivers in the effective management and prevention of diabetes and its complications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Very, F.; Rosenkrantz, E.; Combette, P.
The development of advanced instrumentation for in-pile experiments in Material Testing Reactor constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. An acoustic method for fission gas release detection was tested with success during a first experiment called REMORA 3 in 2010 and 2011, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). The maximal temperature on the sensor during the irradiation was about 150 deg. C. In this paper we present a thick film transducer produce bymore » screen printing process. The screen printing of piezoelectric offers a wide range of possible applications for the development of acoustic sensors and piezoelectric structure for measurements in high temperature environment. We firstly produced a Lead Zirconate Titanate (PZT) based paste composed of Pz27 powder from Ferroperm, CF7575 glass, and organic solvent ESL 400. Likewise a Bismuth Titanate based paste synthesized in our laboratory was produced. With these inks we produced thick film up to 130 μm by screen printing process. Material properties characterizations of these thick-film resonators are essential for device design and applications. The piezoelectric coefficients d33 and pyro-electric P(T) coefficient are investigated. The highest P(T) and d33 are respectively 80 μC.m{sup -2}.K{sup -1} and 130 μC.N{sup -1} for the PZT transducer -which validates the fabrication process-. In view of the development of this transducer oriented for high temperature and irradiation environment, we investigated the electrical properties of the transducers for different ranges of frequencies and temperature - from 20 Hz up to 40 MHz between 30 and 400 deg. C. We highlight the evolution of the impedance response and piezoelectric parameters of screen printed piezoelectric structures on alumina. Shortly an irradiation will be realized in order to investigate their reliability towards neutron fluence. (authors)« less
Yang, Fu; Kapil, Gaurav; Zhang, Putao; Hu, Zhaosheng; Kamarudin, Muhammad Akmal; Ma, Tingli; Hayase, Shuzi
2018-05-16
High-efficiency perovskite solar cells (PSCs) need to be fabricated in the nitrogen-filled glovebox by the atmosphere-controlled crystallization process. However, the use of the glovebox process is of great concern for mass level production of PSCs. In this work, notable efficient CH 3 NH 3 PbI 3 solar cells can be obtained in high humidity ambient atmosphere (60-70% relative humidity) by using acetate as the antisolvent, in which dependence of methyl, ethyl, propyl, and butyl acetate on the crystal growth mechanism is discussed. It is explored that acetate screens the sensitive perovskite intermediate phases from water molecules during perovskite film formation and annealing. It is revealed that relatively high vapor pressure and high water solubility of methyl acetate (MA) leads to the formation of highly dense and pinhole free perovskite films guiding to the best power conversion efficiency (PCE) of 16.3% with a reduced hysteresis. The devices prepared using MA showed remarkable shelf life stability of more than 80% for 360 h in ambient air condition, when compared to the devices fabricated using other antisolvents with low vapor pressure and low water solubility. Moreover, the PCE was still kept at 15.6% even though 2 vol % deionized water was added in the MA for preparing the perovskite layer.
Automated touch screen device for recording complex rodent behaviors
Mabrouk, O.S.; Dripps, I.J.; Ramani, S.; Chang, C.; Han, J.L.; Rice, KC; Jutkiewicz, E.M.
2016-01-01
Background Monitoring mouse behavior is a critical step in the development of modern pharmacotherapies. New Method Here we describe the application of a novel method that utilizes a touch display computer (tablet) and software to detect, record, and report fine motor behaviors. A consumer-grade tablet device is placed in the bottom of a specially made acrylic cage allowing the animal to walk on the device (MouseTrapp). We describe its application in open field (for general locomotor studies) which measures step lengths and velocity. The device can perform light-dark (anxiety) tests by illuminating half of the screen and keeping the other half darkened. A divider is built into the lid of the device allowing the animal free access to either side. Results Treating mice with amphetamine and the delta opioid peptide receptor agonist SNC80 stimulated locomotor activity on the device. Amphetamine increased step velocity but not step length during its peak effect (40–70 min after treatment), thus indicating detection of subtle amphetamine-induced effects. Animals showed a preference (74% of time spent) for the darkened half compared to the illuminated side. Comparison with Existing Method Animals were videotaped within the chamber to compare quadrant crosses to detected motion on the device. The slope, duration and magnitude of quadrant crosses tightly correlated with overall locomotor activity as detected by Mousetrapp. Conclusions We suggest that modern touch display devices such as MouseTrapp will be an important step toward automation of behavioral analyses for characterizing phenotypes and drug effects. PMID:24952323
Light and portable novel device for diabetic retinopathy screening.
Ting, Daniel S W; Tay-Kearney, Mei Ling; Kanagasingam, Yogesan
2012-01-01
To validate the use of an economical portable multipurpose ophthalmic imaging device, EyeScan (Ophthalmic Imaging System, Sacramento, CA, USA), for diabetic retinopathy screening. Evaluation of a diagnostic device. One hundred thirty-six (272 eyes) were recruited from diabetic retinopathy screening clinic of Royal Perth Hospital, Western Australia, Australia. All patients underwent three-field (optic disc, macular and temporal view) mydriatic retinal digital still photography captured by EyeScan and FF450 plus (Carl Zeiss Meditec, North America) and were subsequently examined by a senior consultant ophthalmologist using the slit-lamp biomicroscopy (reference standard). All retinal images were interpreted by a consultant ophthalmologist and a medical officer. The sensitivity, specificity and kappa statistics of EyeScan and FF450 plus with reference to the slit-lamp examination findings by a senior consultant ophthalmologist. For detection of any grade of diabetic retinopathy, EyeScan had a sensitivity and specificity of 93 and 98%, respectively (ophthalmologist), and 92 and 95%, respectively (medical officer). In contrast, FF450 plus images had a sensitivity and specificity of 95 and 99%, respectively (ophthalmologist), and 92 and 96%, respectively (medical officer). The overall kappa statistics for diabetic retinopathy grading for EyeScan and FF450 plus were 0.93 and 0.95 for ophthalmologist and 0.88 and 0.90 for medical officer, respectively. Given that the EyeScan requires minimal training to use and has excellent diagnostic accuracy in screening for diabetic retinopathy, it could be potentially utilized by the primary eye care providers to widely screen for diabetic retinopathy in the community. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.
Hättenschwiler, Nicole; Sterchi, Yanik; Mendes, Marcia; Schwaninger, Adrian
2018-10-01
Bomb attacks on civil aviation make detecting improvised explosive devices and explosive material in passenger baggage a major concern. In the last few years, explosive detection systems for cabin baggage screening (EDSCB) have become available. Although used by a number of airports, most countries have not yet implemented these systems on a wide scale. We investigated the benefits of EDSCB with two different levels of automation currently being discussed by regulators and airport operators: automation as a diagnostic aid with an on-screen alarm resolution by the airport security officer (screener) or EDSCB with an automated decision by the machine. The two experiments reported here tested and compared both scenarios and a condition without automation as baseline. Participants were screeners at two international airports who differed in both years of work experience and familiarity with automation aids. Results showed that experienced screeners were good at detecting improvised explosive devices even without EDSCB. EDSCB increased only their detection of bare explosives. In contrast, screeners with less experience (tenure < 1 year) benefitted substantially from EDSCB in detecting both improvised explosive devices and bare explosives. A comparison of all three conditions showed that automated decision provided better human-machine detection performance than on-screen alarm resolution and no automation. This came at the cost of slightly higher false alarm rates on the human-machine system level, which would still be acceptable from an operational point of view. Results indicate that a wide-scale implementation of EDSCB would increase the detection of explosives in passenger bags and automated decision instead of automation as diagnostic aid with on screen alarm resolution should be considered. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Marcus, Hani J; Payne, Christopher J; Hughes-Hallett, Archie; Gras, Gauthier; Leibrandt, Konrad; Nandi, Dipankar; Yang, Guang-Zhong
2016-06-01
To determine the rate and extent of translation of innovative surgical devices from the laboratory to first-in-human studies, and to evaluate the factors influencing such translation. Innovative surgical devices have preceded many of the major advances in surgical practice. However, the process by which devices arising from academia find their way to translation remains poorly understood. All biomedical engineering journals, and the 5 basic science journals with the highest impact factor, were searched between January 1993 and January 2000 using the Boolean search term "surgery OR surgeon OR surgical". Articles were included if they described the development of a new device and a surgical application was described. A recursive search of all citations to the article was performed using the Web of Science (Thompson-Reuters, New York, NY) to identify any associated first-in-human studies published by January 2015. Kaplan-Meier curves were constructed for the time to first-in-human studies. Factors influencing translation were evaluated using log-rank and Cox proportional hazards models. A total of 8297 articles were screened, and 205 publications describing unique devices were identified. The probability of a first-in-human at 10 years was 9.8%. Clinical involvement was a significant predictor of a first-in-human study (P = 0.02); devices developed with early clinical collaboration were over 6 times more likely to be translated than those without [RR 6.5 (95% confidence interval 0.9-48)]. These findings support initiatives to increase clinical translation through improved interactions between basic, translational, and clinical researchers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neale, Nathan
2016-09-01
At present, most PV materials are fabricated by vacuum technologies. Some of the many disadvantages of vacuum technology are complicated instrumentation, material waste, high cost of deposition per surface area, and instability of some compounds at the deposition temperature. Solution-based approaches for thin-film deposition on large areas are particularly desirable because of the low capital cost of the deposition equipment, relative simplicity of the processes, ease of doping, uniform deposition on a variety of substrates (including interior and exterior of tubes and various nonplanar devices), and potential compatibility with high-throughput (e.g., roll-to-roll) processing. Of the nonsilicon solar photovoltaic device modulesmore » that have been deployed to date, those based on the n-CdS/p-CdTe is a leading candidate. Two features in the optical characteristics of CdTe absorber are particularly attractive for photovoltaic conversion of sunlight; (a) its energy bandgap of 1.5 eV, which provides an optimal match with the solar spectrum and thus facilitates its efficient utilization and (b) the direct mode of the main optical transition which results in a large absorption coefficient and turn permits the use of thin layer (1-2 um) of active material. Thin films of CdTe required for these devices have been fabricated by a variety of methods (e.g., vapor transport deposition, vacuum deposition, screen printing and close-spaced sublimation). Electrodeposition is another candidate deserves more attention. This project will focus on delivering low-cost, high efficiency electrodeposited CdTe-based device.« less
Rapid microfluidic analysis of a Y-STR multiplex for screening of forensic samples.
Gibson-Daw, Georgiana; Albani, Patricia; Gassmann, Marcus; McCord, Bruce
2017-02-01
In this paper, we demonstrate a rapid analysis procedure for use with a small set of rapidly mutating Y chromosomal short tandem repeat (Y-STR) loci that combines both rapid polymerase chain reaction (PCR) and microfluidic separation elements. The procedure involves a high-speed polymerase and a rapid cycling protocol to permit PCR amplification in 16 min. The resultant amplified sample is next analysed using a short 1.8-cm microfluidic electrophoresis system that permits a four-locus Y-STR genotype to be produced in 80 s. The entire procedure takes less than 25 min from sample collection to result. This paper describes the rapid amplification protocol as well as studies of the reproducibility and sensitivity of the procedure and its optimisation. The amplification process utilises a small high-speed thermocycler, microfluidic device and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The four loci used for the multiplex were selected due to their rapid mutation rates and should proved useful in preliminary screening of samples and suspects. Overall, this technique provides a method for rapid sample screening of suspect and crime scene samples in forensic casework. Graphical abstract ᅟ.
NASA Astrophysics Data System (ADS)
Lu, Qiang; Liu, Li; Yang, Shuanglei; Liu, Jun; Tian, Qingyong; Yao, Weijing; Xue, Qingwen; Li, Mengxiao; Wu, Wei
2017-09-01
More convenience and intelligence life lead by flexible/wearable electronics requires innovation and hommization of power sources. Here, amorphous FeOOH/MnO2 composite as screen-printed electrode materials for supercapacitors (SCs) is synthesized by a facile method, and solid-state flexible SCs with aesthetic design are fabricated by fully screen-printed process on different substrates, including PET, paper and textile. The amorphous FeOOH/MnO2 composite shows a high specific capacitance and a good rate capability (350.2 F g-1 at a current density of 0.5 A g-1 and 159.5 F g-1 at 20 A g-1). It also possesses 95.6% capacitance retention even after 10 000 cycles. Moreover, the all-printed solid-state flexible SC device exhibits a high area specific capacitance of 5.7 mF cm-2 and 80% capacitance retention even after 2000 cycles. It also shows high mechanical flexibility. Simultaneously, these printed SCs on different substrates in series are capable to light up a 1.9 V yellow light emitting diode (LED), even after bending and stretching.
Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S.T.C.
The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound,more » electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.« less
Timm, David M.; Chen, Jianbo; Sing, David; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Raphael, Robert M.; Dehghani, Mehdi; Rosenblatt, Kevin P.; Killian, T. C.; Tseng, Hubert; Souza, Glauco R.
2013-01-01
There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures. PMID:24141454
Technological Solutions for Older People with Alzheimer's Disease: Review.
Maresova, Petra; Tomsone, Signe; Lameski, Petre; Madureira, Joana; Mendes, Ana; Zdravevski, Eftim; Chorbev, Ivan; Trajkovik, Vladimir; Ellen, Moriah; Rodile, Kasper
2018-04-27
In the nineties, numerous studies began to highlight the problem of the increasing number of people with Alzheimer's disease in developed countries, especially in the context of demographic progress. At the same time, the 21st century is typical of the development of advanced technologies that penetrate all areas of human life. Digital devices, sensors, and intelligent applications are tools that can help seniors and allow better communication and control of their caregivers. The aim of the paper is to provide an up-to-date summary of the use of technological solutions for improving health and safety for people with Alzheimer's disease. Firstly, the problems and needs of senior citizens with Alzheimer's disease (AD) and their caregivers are specified. Secondly, a scoping review is performed regarding the technological solutions suggested to assist this specific group of patients. Works obtained from the following libraries used in this scoping review: Web of Science, PubMed, Springer, ACM and IEEE Xplore. Four independent reviewers screened the identified records and selected relevant articles which were published in the period from 2007 to 2018. A total of 6,705 publications were selected. In all, 128 full papers were screened. Results obtained from the relevant studies were furthermore divided into the following categories according to the type and use of technologies: devices, processing, and activity recognition. The leading technological solution in the category of devices are wearables and ambient non-invasive sensors. The introduction and utilization of these technologies however brings about challenges in acceptability, durability, ease of use, communication, and power requirements. Furthermore, in needs to be pointed out that these technological solutions should be based on open standards. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Digital imaging with solid state x-ray image intensifiers
NASA Astrophysics Data System (ADS)
Damento, Michael A.; Radspinner, Rachel; Roehrig, Hans
1999-10-01
X-ray cameras in which a CCD is lens coupled to a large phosphor screen are known to suffer from a loss of x-ray signal due to poor light collection from conventional phosphors, making them unsuitable for most medical imaging applications. By replacing the standard phosphor with a solid-state image intensifier, it may be possible to improve the signal-to-noise ratio of the images produced with these cameras. The solid-state x-ray image intensifier is a multi- layer device in which a photoconductor layer controls the light output from an electroluminescent phosphor layer. While prototype devices have been used for direct viewing and video imaging, they are only now being evaluated in a digital imaging system. In the present work, the preparation and evaluation of intensifiers with a 65 mm square format are described. The intensifiers are prepared by screen- printing or doctor blading the following layers onto an ITO coated glass substrate: ZnS phosphor, opaque layer, CdS photoconductor, and carbon conductor. The total thickness of the layers is approximately 350 micrometers , 350 VAC at 400 Hz is applied to the device for operation. For a given x-ray dose, the intensifiers produce up to three times the intensity (after background subtracting) of Lanex Fast Front screens. X-ray images produced with the present intensifiers are somewhat noisy and their resolution is about half that of Lanex screens. Modifications are suggested which could improve the resolution and noise of the intensifiers.
Gomes, Rui S; Moreira, Felismina T C; Fernandes, Ruben; Sales, M Goreti F
2018-01-01
This work presents an alternative device for cancer screening in liquid biopsies. It combines a biomimetic film (i) with electrochemical detection (ii). The biomimetic film (i) was obtained by electro-polymerizing amine-substituted benzene rings around a CA 15-3 target. This protein target was previously adsorbed on a gold (Au) support and incubated in charged monomers (4-Styrenesulfonate sodium and 3-Hydroxytyraminium chloride). The protein was further eliminated by enzymatic activity, leaving behind vacant sites for subsequent rebinding. Electrochemical detection (ii) was achieved on an Au working electrode, designed on commercial screen-printed electrodes. Raman spectroscopy, atomic force microscopy and ellipsometric readings were used to follow the chemical modification of the Au surface. The ability of the material to rebind CA15-3 was monitored by electrochemical techniques. The device displayed linear responses to CA15-3 ranging from 0.25 to 10.00 U/mL, with detection limits of 0.05 U/mL. Accurate results were obtained by applying the sensor to the analysis of CA15-3 in PBS buffer and in serum samples. This biosensing device displayed successful features for the detection of CA 15-3 and constitutes a promising tool for breast cancer screening procedures in point-of-care applications. Moreover, its scale-up seems feasible as it contains a plastic antibody assembled in situ, in less than 1 minute, and the analysis of serum takes less than 30 minutes.
Gomes, Rui S.; Moreira, Felismina T. C.; Fernandes, Ruben
2018-01-01
This work presents an alternative device for cancer screening in liquid biopsies. It combines a biomimetic film (i) with electrochemical detection (ii). The biomimetic film (i) was obtained by electro-polymerizing amine-substituted benzene rings around a CA 15–3 target. This protein target was previously adsorbed on a gold (Au) support and incubated in charged monomers (4-Styrenesulfonate sodium and 3-Hydroxytyraminium chloride). The protein was further eliminated by enzymatic activity, leaving behind vacant sites for subsequent rebinding. Electrochemical detection (ii) was achieved on an Au working electrode, designed on commercial screen-printed electrodes. Raman spectroscopy, atomic force microscopy and ellipsometric readings were used to follow the chemical modification of the Au surface. The ability of the material to rebind CA15-3 was monitored by electrochemical techniques. The device displayed linear responses to CA15-3 ranging from 0.25 to 10.00 U/mL, with detection limits of 0.05 U/mL. Accurate results were obtained by applying the sensor to the analysis of CA15-3 in PBS buffer and in serum samples. This biosensing device displayed successful features for the detection of CA 15–3 and constitutes a promising tool for breast cancer screening procedures in point-of-care applications. Moreover, its scale-up seems feasible as it contains a plastic antibody assembled in situ, in less than 1 minute, and the analysis of serum takes less than 30 minutes. PMID:29715330
Silicon on insulator achieved using electrochemical etching
McCarthy, A.M.
1997-10-07
Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.
Silicon on insulator achieved using electrochemical etching
McCarthy, Anthony M.
1997-01-01
Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.
NASA Astrophysics Data System (ADS)
Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger K.; Aji, Vivek; Gabor, Nathaniel M.
2017-12-01
Strong electronic interactions can result in novel particle-antiparticle (electron-hole, e-h) pair generation effects, which may be exploited to enhance the photoresponse of nanoscale optoelectronic devices. Highly efficient e-h pair multiplication has been demonstrated in several important nanoscale systems, including nanocrystal quantum dots, carbon nanotubes and graphene. The small Fermi velocity and nonlocal nature of the effective dielectric screening in ultrathin layers of transition-metal dichalcogenides (TMDs) indicates that e-h interactions are very strong, so high-efficiency generation of e-h pairs from hot electrons is expected. However, such e-h pair multiplication has not been observed in 2D TMD devices. Here, we report the highly efficient multiplication of interlayer e-h pairs in 2D semiconductor heterostructure photocells. Electronic transport measurements of the interlayer I-VSD characteristics indicate that layer-indirect e-h pairs are generated by hot-electron impact excitation at temperatures near T = 300 K. By exploiting this highly efficient interlayer e-h pair multiplication process, we demonstrate near-infrared optoelectronic devices that exhibit 350% enhancement of the optoelectronic responsivity at microwatt power levels. Our findings, which demonstrate efficient carrier multiplication in TMD-based optoelectronic devices, make 2D semiconductor heterostructures viable for a new class of ultra-efficient photodetectors based on layer-indirect e-h excitations.
Nanostructured cavity devices for extracellular stimulation of HL-1 cells.
Czeschik, Anna; Rinklin, Philipp; Derra, Ulrike; Ullmann, Sabrina; Holik, Peter; Steltenkamp, Siegfried; Offenhäusser, Andreas; Wolfrum, Bernhard
2015-01-01
Microelectrode arrays (MEAs) are state-of-the-art devices for extracellular recording and stimulation on biological tissue. Furthermore, they are a relevant tool for the development of biomedical applications like retina, cochlear and motor prostheses, cardiac pacemakers and drug screening. Hence, research on functional cell-sensor interfaces, as well as the development of new surface structures and modifications for improved electrode characteristics, is a vivid and well established field. However, combining single-cell resolution with sufficient signal coupling remains challenging due to poor cell-electrode sealing. Furthermore, electrodes with diameters below 20 µm often suffer from a high electrical impedance affecting the noise during voltage recordings. In this study, we report on a nanocavity sensor array for voltage-controlled stimulation and extracellular action potential recordings on cellular networks. Nanocavity devices combine the advantages of low-impedance electrodes with small cell-chip interfaces, preserving a high spatial resolution for recording and stimulation. A reservoir between opening aperture and electrode is provided, allowing the cell to access the structure for a tight cell-sensor sealing. We present the well-controlled fabrication process and the effect of cavity formation and electrode patterning on the sensor's impedance. Further, we demonstrate reliable voltage-controlled stimulation using nanostructured cavity devices by capturing the pacemaker of an HL-1 cell network.
Lee, Sangik; Yoon, Chansoo; Lee, Ji Hye; Kim, Yeon Soo; Lee, Mi Jung; Kim, Wondong; Baik, Jaeyoon; Jia, Quanxi; Park, Bae Ho
2018-06-06
Two-dimensional (2D)-layered semiconducting materials with considerable band gaps are emerging as a new class of materials applicable to next-generation devices. Particularly, black phosphorus (BP) is considered to be very promising for next-generation 2D electrical and optical devices because of its high carrier mobility of 200-1000 cm 2 V -1 s -1 and large on/off ratio of 10 4 to 10 5 in field-effect transistors (FETs). However, its environmental instability in air requires fabrication processes in a glovebox filled with nitrogen or argon gas followed by encapsulation, passivation, and chemical functionalization of BP. Here, we report a new method for reduction of BP-channel devices fabricated without the use of a glovebox by galvanic corrosion of an Al overlayer. The reduction of BP induced by an anodic oxidation of Al overlayer is demonstrated through surface characterization of BP using atomic force microscopy, Raman spectroscopy, and X-ray photoemission spectroscopy along with electrical measurement of a BP-channel FET. After the deposition of an Al overlayer, the FET device shows a significantly enhanced performance, including restoration of ambipolar transport, high carrier mobility of 220 cm 2 V -1 s -1 , low subthreshold swing of 0.73 V/decade, and low interface trap density of 7.8 × 10 11 cm -2 eV -1 . These improvements are attributed to both the reduction of the BP channel and the formation of an Al 2 O 3 interfacial layer resulting in a high- k screening effect. Moreover, ambipolar behavior of our BP-channel FET device combined with charge-trap behavior can be utilized for implementing reconfigurable memory and neuromorphic computing applications. Our study offers a simple device fabrication process for BP-channel FETs with high performance using galvanic oxidation of Al overlayers.
Varughese, Anna M; Hagerman, Nancy; Townsend, Mari E
2013-07-01
The anesthesia preoperative screening and evaluation of a patient prior to surgery is a critical element in the safe and effective delivery of anesthesia care. In this era of increased focus on cost containment, many anesthesia practices are looking for ways to maximize productivity while maintaining the quality of the preoperative evaluation process by harnessing and optimizing all available resources. We sought to develop a Nurse Practitioner-assisted Preoperative Anesthesia Screening process using quality improvement methods with the goal of maintaining the quality of the screening process, while at the same time redirecting anesthesiologists time for the provision of nonoperating room (OR) anesthesia. The Nurse practitioner (NP) time (approximately 10 h per week) directed to this project was gained as a result of an earlier resource utilization improvement project within the Department of Anesthesia. The goal of this improvement project was to increase the proportion of patient anesthesia screens conducted by NPs to 50% within 6 months. After discussion with key stakeholders of the process, a multidisciplinary improvement team identified a set of operational factors (key drivers) believed to be important to the success of the preoperative anesthesia screening process. These included the development of dedicated NP time for daily screening, NP competency and confidence with the screening process, effective mentoring by anesthesiologists, standardization of screening process, and communication with stakeholders of the process, that is, surgeons. These key drivers focused on the development of several interventions such as (i) NP education in the preoperative anesthesia screening for consultation process by a series of didactic lectures conducted by anesthesiologists, and NP's shadowing an anesthesiologist during the screening process, (ii) Anesthesiologist mentoring and assessment of NP screenings using the dual screening process whereby both anesthesiologists and NP conducted the screening process independently and results were compared and discussed, (iii) Examination and re-adjustment of NP schedules to provide time for daily screening while preserving other responsibilities, and (iv) Standardization through the development of guidelines for the preoperative screening process. Measures recorded included the percentage of patient anesthesia screens conducted by NP, the percentage of dual screens with MD and NP agreement regarding the screening decision, and the average times taken for the anesthesiologist and NP screening process. After implementation of these interventions, the percentage of successful NP-assisted anesthesia consultation screenings increased from 0% to 65% over a period of 6 months. The Anesthesiologists' time redirected to non-OR anesthesia averaged at least 8 h a week. The percentage of dual screens with agreement on the screening decision was 96% (goal >95%). The overall average time taken for a NP screen was 8.2 min vs 4.5 min for an anesthesiologist screen. The overall average operating room delays and cancelations for cases on the day of surgery remained the same. By applying quality improvement methods, we identified key drivers for the institution of an NP-assisted preoperative screening process and successfully implemented this process while redirecting anesthesiologists' time for the provision of non-OR anesthesia. This project was instrumental in improving the matching of provider skills with clinical need while maintaining superior outcomes at the lowest possible cost. © 2013 John Wiley & Sons Ltd.
RECORDING DEVICE FOR 128 CHANNEL IONIZATION CHAMBERS (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goryunov, N.N.
1959-05-01
Descriptions are given of a 128-channel amplitude recording device desiged for operation with ionization chambers. Each channl has a large puse recording dynamic amplitude range (amplitudes can vary from each other up to 8000 fold). The recording of amplitudes is accomplished by photographing pulses on a cathode ray tube. With the aid of a commutation device it is possible to record 64 pulses simultaneously on one tube screen. (tr-auth)
Wireless Content Repurposing Architecture for DC Command and Control
2003-09-01
was a natural choice as our primary mobile device for the DC investigators. 28 The Clie uses a Lithium Ion battery , which is the longest...projects the screen of the PDA on a head-mounted display maybe used. Battery life of PDAs is relatively short. This means many Lithium Ion...Mobile Devices Mobile devices such as PDAs, mobile phones, and Smartphones have become tightly interwoven as an important part of everyday lives
Nanocellulose as Material Building Block for Energy and Flexible Electronics
NASA Astrophysics Data System (ADS)
Hu, Liangbing
2014-03-01
In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.
Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; Wan, Frank; Sheraden, Paige N.; Broecker, Jana; Ernst, Oliver P.; Gennis, Robert B.
2017-01-01
Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In prior work, we designed a novel, low-throughput X-ray transparent microfluidic device that automated the mixing of protein and lipid by diffusion for in meso crystallization trials. Here, we report X-ray transparent microfluidic devices for high-throughput crystallization screening and optimization that overcome the limitations of scale and demonstrate their application to the crystallization of several membrane proteins. Two complementary chips are presented: (1) a high-throughput screening chip to test 192 crystallization conditions in parallel using as little as 8 nl of membrane protein per well and (2) a crystallization optimization chip to rapidly optimize preliminary crystallization hits through fine-gradient re-screening. We screened three membrane proteins for new in meso crystallization conditions, identifying several preliminary hits that we tested for X-ray diffraction quality. Further, we identified and optimized the crystallization condition for a photosynthetic reaction center mutant and solved its structure to a resolution of 3.5 Å. PMID:28469762
The View from the Trenches Part 1: Emergency Medical Response Plans and the Need for EPR Screening
Gougelet, Robert M.; Rea, Michael E.; Nicolalde, Roberto J.; Geiling, James A.; Swartz, Harold M.
2014-01-01
Few natural disasters or intentional acts of war or terrorism have the potential for such severe impact upon a population and infrastructure as the intentional detonation of a nuclear device within a major U.S. city. In stark contrast to other disasters or even a “dirty bomb,” hundreds of thousands will be affected and potentially exposed to a clinically significant dose of ionizing radiation. This will result in immediate deaths and injuries and subsequently the development of Acute Radiation Syndrome (ARS). Additionally, millions more who are unlikely to develop ARS will seek medical evaluation and treatment, overwhelming the capacity of an already compromised medical system. In this paper, we propose that in vivo electron paramagnetic resonance (EPR) dosimetry be utilized to screen large numbers of potentially exposed victims, and that this screening process be incorporated into the medical-surge framework that is currently being implemented across the nation for other catastrophic public health emergencies. The National Incident Management System (NIMS), the National Response Framework (NRF), the Target Capabilities list (TCL), Homeland Security Presidential Directives (HSPD), as well as additional guidance from multiple federal agencies provides a solid framework for this response. The effective screening of potentially exposed victims directly following a nuclear attack could potentially decrease the number of patients seeking immediate medical care by greater than 90%. PMID:20065673
DOE Office of Scientific and Technical Information (OSTI.GOV)
The system is developed to collect, process, store and present the information provided by the radio frequency identification (RFID) devices. The system contains three parts, the application software, the database and the web page. The application software manages multiple RFID devices, such as readers and portals, simultaneously. It communicates with the devices through application programming interface (API) provided by the device vendor. The application software converts data collected by the RFID readers and portals to readable information. It is capable of encrypting data using 256 bits advanced encryption standard (AES). The application software has a graphical user interface (GUI). Themore » GUI mimics the configurations of the nucler material storage sites or transport vehicles. The GUI gives the user and system administrator an intuitive way to read the information and/or configure the devices. The application software is capable of sending the information to a remote, dedicated and secured web and database server. Two captured screen samples, one for storage and transport, are attached. The database is constructed to handle a large number of RFID tag readers and portals. A SQL server is employed for this purpose. An XML script is used to update the database once the information is sent from the application software. The design of the web page imitates the design of the application software. The web page retrieves data from the database and presents it in different panels. The user needs a user name combined with a password to access the web page. The web page is capable of sending e-mail and text messages based on preset criteria, such as when alarm thresholds are excceeded. A captured screen sample is attached. The application software is designed to be installed on a local computer. The local computer is directly connected to the RFID devices and can be controlled locally or remotely. There are multiple local computers managing different sites or transport vehicles. The control from remote sites and information transmitted to a central database server is through secured internet. The information stored in the central databaser server is shown on the web page. The users can view the web page on the internet. A dedicated and secured web and database server (https) is used to provide information security.« less
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Oizumi, Hiroaki; Itani, Toshiro; Tagawa, Seiichi
2010-11-01
The development of extreme ultraviolet (EUV) lithography has progressed owing to worldwide effort. As the development status of EUV lithography approaches the requirements for the high-volume production of semiconductor devices with a minimum line width of 22 nm, the extraction of resist parameters becomes increasingly important from the viewpoints of the accurate evaluation of resist materials for resist screening and the accurate process simulation for process and mask designs. In this study, we demonstrated that resist parameters (namely, quencher concentration, acid diffusion constant, proportionality constant of line edge roughness, and dissolution point) can be extracted from the scanning electron microscopy (SEM) images of patterned resists without the knowledge on the details of resist contents using two types of latest EUV resist.
Unusual Nature of Fingerprints and the Implications for Easy-to-Clean Coatings.
Stoehr, Bastian; McClure, Stuart; Höflich, Alexander; Al Kobaisi, Mohammad; Hall, Colin; Murphy, Peter J; Evans, Drew
2016-01-19
Irrespective of the technology, we now rely on touch to interact with devices such as smart phones, tablet computers, and control panels. As a result, touch screen technologies are frequently in contact with body grease. Hence, surface deposition arises from localized inhomogeneous finger-derived contaminants adhering to a surface, impairing the visual/optical experience of the user. In this study, we examined the contamination itself in order to understand its static and dynamic behavior with respect to deposition and cleaning. A process for standardized deposition of fingerprints was developed. Artificial sebum was used in this process to enable reproducibility for quantitative analysis. Fingerprint contamination was shown to be hygroscopic and to possess temperature- and shear-dependent properties. These results have implications for the design of easily cleanable surfaces.
Sundaram, S Kamakshi [Richland, WA; Riley, Brian J [West Richland, WA; Weber, Thomas J [Richland, WA; Sacksteder, Colette A [West Richland, WA; Addleman, R Shane [Benton City, WA
2011-06-07
An ATR-FTIR device and system are described that defect live-cell responses to stimuli and perturbations in real-time. The system and device can monitor perturbations resulting from exposures to various physical, chemical, and biological materials in real-time, as well as those sustained over a long period of time, including those associated with stimuli having unknown modes-of-action (e.g. nanoparticles). The device and system can also be used to identify specific chemical species or substances that profile cellular responses to these perturbations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Chung-Yan; Piccini, Matthew Ernest; Schaff, Ulrich Y.
Multiple cases of attempted bioterrorism events using biotoxins have highlighted the urgent need for tools capable of rapid screening of suspect samples in the field (e.g., mailroom and public events). We present a portable microfluidic device capable of analyzing environmental (e.g., white powder), food (e.g., milk) and clinical (e.g., blood) samples for multiplexed detection of biotoxins. The device is rapid (<15-30 min sample-to-answer), sensitive (< 0.08 pg/mL detection limit for botulinum toxin), multiplexed (up to 64 parallel assays) and capable of analyzing small volume samples (< 20 μL total sample input). The immunoassay approach (SpinDx) is based on binding ofmore » toxins in a sample to antibody-laden capture particles followed by sedimentation of particles through a density-media in a microfluidic disk and quantification using a laser-induced fluorescence detector. A direct, blinded comparison with a gold standard ELISA revealed a 5-fold more sensitive detection limit for botulinum toxin while requiring 250-fold less sample volume and a 30 minute assay time with a near unity correlation. A key advantage of the technique is its compatibility with a variety of sample matrices with no additional sample preparation required. Ultrasensitive quantification has been demonstrated from direct analysis of multiple clinical, environmental and food samples, including white powder, whole blood, saliva, salad dressing, whole milk, peanut butter, half and half, honey, and canned meat. We believe that this device can met an urgent need in screening both potentially exposed people as well as suspicious samples in mail-rooms, airports, public sporting venues and emergency rooms. The general-purpose immunodiagnostics device can also find applications in screening of infectious and systemic diseases or serve as a lab device for conducting rapid immunoassays.« less
Boissin, Constance; Blom, Lisa; Wallis, Lee; Laflamme, Lucie
2017-02-01
Mobile health has promising potential in improving healthcare delivery by facilitating access to expert advice. Enabling experts to review images on their smartphone or tablet may save valuable time. This study aims at assessing whether images viewed by medical specialists on handheld devices such as smartphones and tablets are perceived to be of comparable quality as when viewed on a computer screen. This was a prospective study comparing the perceived quality of 18 images on three different display devices (smartphone, tablet and computer) by 27 participants (4 burn surgeons and 23 emergency medicine specialists). The images, presented in random order, covered clinical (dermatological conditions, burns, ECGs and X-rays) and non-clinical subjects and their perceived quality was assessed using a 7-point Likert scale. Differences in devices' quality ratings were analysed using linear regression models for clustered data adjusting for image type and participants' characteristics (age, gender and medical specialty). Overall, the images were rated good or very good in most instances and more so for the smartphone (83.1%, mean score 5.7) and tablet (78.2%, mean 5.5) than for a standard computer (70.6%, mean 5.2). Both handheld devices had significantly higher ratings than the computer screen, even after controlling for image type and participants' characteristics. Nearly all experts expressed that they would be comfortable using smartphones (n=25) or tablets (n=26) for image-based teleconsultation. This study suggests that handheld devices could be a substitute for computer screens for teleconsultation by physicians working in emergency settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Boudard, Aurélie; Martelli, Nicolas; Prognon, Patrice; Pineau, Judith
2013-08-01
Like health technology assessment (HTA) agencies, hospitals are faced with requests for innovative and costly medical devices. However, local decision makers are frequently confronted with a lack of high-quality clinical data when assessing the effectiveness of innovative medical devices. The aim of this study was to quantify the level of evidence available for innovative medical devices in the context of hospital-based HTA. We searched the Medline, Embase and Cochrane Library databases for articles, letters and reports relating to 32 innovative medical devices requested at our hospital between January 2008 and March 2012. All clinical studies retrieved were screened and classified according to the Sackett 5-point level-of-evidence scale. We screened and classified 217 studies: 215 clinical trials and 2 cost-effectiveness studies. Only 47 of the 215 clinical studies (22%) provided high-level clinical evidence (levels 1-2); 33 (15%) were randomized controlled trials (RCTs). More than half of the 215 studies (52.1%) included fewer than 30 patients. Only 14 of the 47 high-quality studies reported the amount of missing data. For implantable medical devices, 84 (71.8%) studies specified the follow-up period and the mean follow-up period was 18.9 months. Finally, methodological quality did not increase with the risk level of the medical device. Our findings confirm that only a few studies of innovative medical devices provide high-level clinical evidence. Nevertheless, RCT may be the 'gold standard' for drugs, but it is not always appropriate for medical devices. Changes to the European regulation of medical devices, with the requirement for a demonstration of clinical efficacy and safety before release onto the European market, have raised expectations. © 2013 John Wiley & Sons Ltd.
Verification testing of the Terre Hill Concrete Products Terre Kleen™ 09 was conducted on a 1.27 acre portion of the City of Harrisburg, Pennsylvania Department of Public Works facility. The Terre Kleen™ devices combines primary and secondary chambers, baffles, a screen, and incl...
ERIC Educational Resources Information Center
Chen, Chih-Ming; Lin, Yu-Ju
2016-01-01
Despite the popularity of mobile reading devices, many studies have indicated that small screens restrict information transmission, adversely affecting reading performance on mobile devices. Moreover, mobile reading typically occurs in different reading contexts. Therefore, suitable text display type for mobile reading in different reading…
NASA Astrophysics Data System (ADS)
Cerniglia, D.; Lombardo, E.; Nigrelli, Vincenzo
2008-11-01
The paper describes results of methodical activity performed by employing inventive principles of the theory for the inventive resolution of problems (TRIZ), in order to obtain concept of rear underrun protective device for an industrial vehicle. A screening with concepts proposed in previous papers is also performed.
Verification Testing of the Stormwater Management, Inc. StormScreen treatment technology was performed during a 12-month period starting in May, 2003. The system was previously installed in a city-owned right-of-way near downtown Griffin, GA., and is a device for removing trash,...
Screening Plastic-Encapsulated Solid-State Devices
NASA Technical Reports Server (NTRS)
Buldhaupt, L.
1984-01-01
Suitability of plastic-encapsulated solid-state electronic devices for use in spacecraft discussed. Conclusion of preliminary study was plasticencapsulated parts sufficiently reliable to be considered for use in lowcost equipment used at moderate temperature and low humidity. Useful to engineers as guides to testing or use of plastic encapsulated semiconductors in severe terrestrial environments.
Ma, Huilian; Zhang, Haijun; Tian, Yuzeng; Wang, Longxing; Chen, Jiping
2011-09-01
A novel vapor dynamic headspace enrichment device was set up for nontarget screening of volatile organic compounds (VOCs) in drinking water. The main operating parameters of this device, such as length of distillation tube, volume of collected condensate, and choice of absorbent, were optimized. In this device, vapor was utilized as a purge gas and water was utilized as a absorbent. With the help of the device, one liter of water sample could be concentrated to 5 mL and the sensitivity of traditional purge and trap-gas chromatography-mass spectrometry (P&T-GC-MS) could be improved 1-2 orders of magnitude. Source and disinfected water samples from a water treatment plant were analyzed with this method. Compared with the traditional P&T-GC-MS analysis without pre-enrichment, the numbers of identified VOCs were improved from 0 to 16 for source water and 5 to 35 for disinfected water samples. It is also shown that there are many halide compounds in VOCs in disinfected water which do not exist in source water.