Science.gov

Sample records for process sensitivity analyses

  1. Uncertainty and Sensitivity Analyses Plan

    SciTech Connect

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project.

  2. Understanding Intracellular Transport Processes Pertinent to Synthetic Gene Delivery via Stochastic Simulations and Sensitivity Analyses

    PubMed Central

    Dinh, Anh-Tuan; Pangarkar, Chinmay; Theofanous, Theo; Mitragotri, Samir

    2007-01-01

    A major challenge in synthetic gene delivery is to quantitatively predict the optimal design of polymer-based gene carriers (polyplexes). Here, we report a consistent, integrated, and fundamentally grounded computational methodology to address this challenge. This is achieved by accurately representing the spatio-temporal dynamics of intracellular structures and by describing the interactions between gene carriers and cellular components at a discrete, nanoscale level. This enables the applications of systems tools such as optimization and sensitivity analysis to search for the best combination of systems parameters. We validate the approach using DNA delivery by polyethylenimine as an example. We show that the cell topology (e.g., size, circularity, and dimensionality) strongly influences the spatiotemporal distribution of gene carriers, and consequently, their optimal intracellular pathways. The model shows that there exists an upper limit on polyplexes' intracellular delivery efficiency due to their inability to protect DNA until nuclear entry. The model predicts that even for optimally designed polyethylenimine vectors, only ∼1% of total DNA is delivered to the nucleus. Based on comparison with gene delivery by viruses, the model suggests possible strategies to significantly improve transfection efficiencies of synthetic gene vectors. PMID:17085500

  3. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  4. Workload analyse of assembling process

    NASA Astrophysics Data System (ADS)

    Ghenghea, L. D.

    2015-11-01

    The workload is the most important indicator for managers responsible of industrial technological processes no matter if these are automated, mechanized or simply manual in each case, machines or workers will be in the focus of workload measurements. The paper deals with workload analyses made to a most part manual assembling technology for roller bearings assembling process, executed in a big company, with integrated bearings manufacturing processes. In this analyses the delay sample technique have been used to identify and divide all bearing assemblers activities, to get information about time parts from 480 minutes day work time that workers allow to each activity. The developed study shows some ways to increase the process productivity without supplementary investments and also indicated the process automation could be the solution to gain maximum productivity.

  5. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    SciTech Connect

    Hansen, Clifford W.; Martin, Curtis E.

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature; (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.

  6. SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES

    SciTech Connect

    Flach, G.

    2014-10-28

    PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

  7. Sensitivity and optimization analyses of the ``ACOGAS`` gas conditioning plant

    SciTech Connect

    Ochoa, D.; Cardenas, A.R.

    1995-11-01

    ACOGAS is a gas dew point control plant (water and hydrocarbons), operated by Lagoven S.A., a subsidiary of Petroleos de Venezuela S.A. (PDVSA). The ACOGAS plant located in Jusepin, Eastern Venezuela, produces stabilized condensate from an inlet gas stream which is a mixture of different gravity gases obtained by separation and compression from various oil production fields in the area. Sensitivity and optimization analyses of the plant and the stabilizer tower were carried out to evaluate the effects of: plant capacity reductions during shutdowns of some unspared systems of the plant; composition changes from original design basis; segregation of the lean gas currents from the inlet gas stream, reducing total flow but increasing GPM (C{sub 3}{sup +}) content; and incorporating condensate from the upstream compression processes in the inlet gas stream. It is shown that significant increases of stabilized condensate production could be obtained, while maintaining the quality for the condensate and lean residual gas within specifications, by various low cost modifications to the upstream processes and the stabilizer tower. Additionally, a change of the stabilizer tower valves could lower the minimum acceptable inlet flow, thereby increasing flexibility during shutdowns and low feed gas flows.

  8. Balancing data sharing requirements for analyses with data sensitivity

    USGS Publications Warehouse

    Jarnevich, C.S.; Graham, J.J.; Newman, G.J.; Crall, A.W.; Stohlgren, T.J.

    2007-01-01

    Data sensitivity can pose a formidable barrier to data sharing. Knowledge of species current distributions from data sharing is critical for the creation of watch lists and an early warning/rapid response system and for model generation for the spread of invasive species. We have created an on-line system to synthesize disparate datasets of non-native species locations that includes a mechanism to account for data sensitivity. Data contributors are able to mark their data as sensitive. This data is then 'fuzzed' in mapping applications and downloaded files to quarter-quadrangle grid cells, but the actual locations are available for analyses. We propose that this system overcomes the hurdles to data sharing posed by sensitive data. ?? 2006 Springer Science+Business Media B.V.

  9. Sensitivity of surface meteorological analyses to observation networks

    NASA Astrophysics Data System (ADS)

    Tyndall, Daniel Paul

    A computationally efficient variational analysis system for two-dimensional meteorological fields is developed and described. This analysis approach is most efficient when the number of analysis grid points is much larger than the number of available observations, such as for large domain mesoscale analyses. The analysis system is developed using MATLAB software and can take advantage of multiple processors or processor cores. A version of the analysis system has been exported as a platform independent application (i.e., can be run on Windows, Linux, or Macintosh OS X desktop computers without a MATLAB license) with input/output operations handled by commonly available internet software combined with data archives at the University of Utah. The impact of observation networks on the meteorological analyses is assessed by utilizing a percentile ranking of individual observation sensitivity and impact, which is computed by using the adjoint of the variational surface assimilation system. This methodology is demonstrated using a case study of the analysis from 1400 UTC 27 October 2010 over the entire contiguous United States domain. The sensitivity of this approach to the dependence of the background error covariance on observation density is examined. Observation sensitivity and impact provide insight on the influence of observations from heterogeneous observing networks as well as serve as objective metrics for quality control procedures that may help to identify stations with significant siting, reporting, or representativeness issues.

  10. Sensitivity analyses for parametric causal mediation effect estimation.

    PubMed

    Albert, Jeffrey M; Wang, Wei

    2015-04-01

    Causal mediation analysis uses a potential outcomes framework to estimate the direct effect of an exposure on an outcome and its indirect effect through an intermediate variable (or mediator). Causal interpretations of these effects typically rely on sequential ignorability. Because this assumption is not empirically testable, it is important to conduct sensitivity analyses. Sensitivity analyses so far offered for this situation have either focused on the case where the outcome follows a linear model or involve nonparametric or semiparametric models. We propose alternative approaches that are suitable for responses following generalized linear models. The first approach uses a Gaussian copula model involving latent versions of the mediator and the final outcome. The second approach uses a so-called hybrid causal-observational model that extends the association model for the final outcome, providing a novel sensitivity parameter. These models, while still assuming a randomized exposure, allow for unobserved (as well as observed) mediator-outcome confounders that are not affected by exposure. The methods are applied to data from a study of the effect of mother education on dental caries in adolescence.

  11. Uncertainty and Sensitivity Analyses of Duct Propagation Models

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Watson, Willie R.; Jones, Michael G.

    2008-01-01

    This paper presents results of uncertainty and sensitivity analyses conducted to assess the relative merits of three duct propagation codes. Results from this study are intended to support identification of a "working envelope" within which to use the various approaches underlying these propagation codes. This investigation considers a segmented liner configuration that models the NASA Langley Grazing Incidence Tube, for which a large set of measured data was available. For the uncertainty analysis, the selected input parameters (source sound pressure level, average Mach number, liner impedance, exit impedance, static pressure and static temperature) are randomly varied over a range of values. Uncertainty limits (95% confidence levels) are computed for the predicted values from each code, and are compared with the corresponding 95% confidence intervals in the measured data. Generally, the mean values of the predicted attenuation are observed to track the mean values of the measured attenuation quite well and predicted confidence intervals tend to be larger in the presence of mean flow. A two-level, six factor sensitivity study is also conducted in which the six inputs are varied one at a time to assess their effect on the predicted attenuation. As expected, the results demonstrate the liner resistance and reactance to be the most important input parameters. They also indicate the exit impedance is a significant contributor to uncertainty in the predicted attenuation.

  12. Applications of Parallel Processing in Configuration Analyses

    NASA Technical Reports Server (NTRS)

    Sundaram, Ppchuraman; Hager, James O.; Biedron, Robert T.

    1999-01-01

    The paper presents the recent progress made towards developing an efficient and user-friendly parallel environment for routine analysis of large CFD problems. The coarse-grain parallel version of the CFL3D Euler/Navier-Stokes analysis code, CFL3Dhp, has been ported onto most available parallel platforms. The CFL3Dhp solution accuracy on these parallel platforms has been verified with the CFL3D sequential analyses. User-friendly pre- and post-processing tools that enable a seamless transfer from sequential to parallel processing have been written. Static load balancing tool for CFL3Dhp analysis has also been implemented for achieving good parallel efficiency. For large problems, load balancing efficiency as high as 95% can be achieved even when large number of processors are used. Linear scalability of the CFL3Dhp code with increasing number of processors has also been shown using a large installed transonic nozzle boattail analysis. To highlight the fast turn-around time of parallel processing, the TCA full configuration in sideslip Navier-Stokes drag polar at supersonic cruise has been obtained in a day. CFL3Dhp is currently being used as a production analysis tool.

  13. Rock penetration : finite element sensitivity and probabilistic modeling analyses.

    SciTech Connect

    Fossum, Arlo Frederick

    2004-08-01

    This report summarizes numerical analyses conducted to assess the relative importance on penetration depth calculations of rock constitutive model physics features representing the presence of microscale flaws such as porosity and networks of microcracks and rock mass structural features. Three-dimensional, nonlinear, transient dynamic finite element penetration simulations are made with a realistic geomaterial constitutive model to determine which features have the most influence on penetration depth calculations. A baseline penetration calculation is made with a representative set of material parameters evaluated from measurements made from laboratory experiments conducted on a familiar sedimentary rock. Then, a sequence of perturbations of various material parameters allows an assessment to be made of the main penetration effects. A cumulative probability distribution function is calculated with the use of an advanced reliability method that makes use of this sensitivity database, probability density functions, and coefficients of variation of the key controlling parameters for penetration depth predictions. Thus the variability of the calculated penetration depth is known as a function of the variability of the input parameters. This simulation modeling capability should impact significantly the tools that are needed to design enhanced penetrator systems, support weapons effects studies, and directly address proposed HDBT defeat scenarios.

  14. Synthesis of Trigeneration Systems: Sensitivity Analyses and Resilience

    PubMed Central

    Carvalho, Monica; Lozano, Miguel A.; Ramos, José; Serra, Luis M.

    2013-01-01

    This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs. PMID:24453881

  15. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    SciTech Connect

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings.

  16. Entropy Analyses of Four Familiar Processes.

    ERIC Educational Resources Information Center

    Craig, Norman C.

    1988-01-01

    Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)

  17. Uncertainty and Sensitivity Analyses Plan. Draft for Peer Review: Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project.

  18. Marginal Utility of Conditional Sensitivity Analyses for Dynamic Models

    EPA Science Inventory

    Background/Question/MethodsDynamic ecological processes may be influenced by many factors. Simulation models thatmimic these processes often have complex implementations with many parameters. Sensitivityanalyses are subsequently used to identify critical parameters whose uncertai...

  19. Structural Glycomic Analyses at High Sensitivity: A Decade of Progress

    PubMed Central

    Alley, William R.; Novotny, Milos V.

    2014-01-01

    The field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems. PMID:23560930

  20. Genome-Facilitated Analyses of Geomicrobial Processes

    SciTech Connect

    Kenneth H. Nealson

    2012-05-02

    that makes up chitin, virtually all of the strains were in fact capable. This led to the discovery of a great many new genes involved with chitin and NAG metabolism (7). In a similar vein, a detailed study of the sugar utilization pathway revealed a major new insight into the regulation of sugar metabolism in this genus (19). Systems Biology and Comparative Genomics of the shewanellae: Several publications were put together describing the use of comparative genomics for analyses of the group Shewanella, and these were a logical culmination of our genomic-driven research (10,15,18). Eight graduate students received their Ph.D. degrees doing part of the work described here, and four postdoctoral fellows were supported. In addition, approximately 20 undergraduates took part in projects during the grant period.

  1. Peer review of HEDR uncertainty and sensitivity analyses plan

    SciTech Connect

    Hoffman, F.O.

    1993-06-01

    This report consists of a detailed documentation of the writings and deliberations of the peer review panel that met on May 24--25, 1993 in Richland, Washington to evaluate your draft report ``Uncertainty/Sensitivity Analysis Plan`` (PNWD-2124 HEDR). The fact that uncertainties are being considered in temporally and spatially varying parameters through the use of alternative time histories and spatial patterns deserves special commendation. It is important to identify early those model components and parameters that will have the most influence on the magnitude and uncertainty of the dose estimates. These are the items that should be investigated most intensively prior to committing to a final set of results.

  2. Phase sensitive Raman process with correlated seeds

    SciTech Connect

    Chen, Bing; Qiu, Cheng; Chen, L. Q. Zhang, Kai; Guo, Jinxian; Yuan, Chun-Hua; Zhang, Weiping; Ou, Z. Y.

    2015-03-16

    A phase sensitive Raman scattering was experimentally demonstrated by injecting a Stokes light seed into an atomic ensemble, whose internal state is set in such a way that it is coherent with the input Stokes seed. Such phase sensitive characteristic is a result of interference effect due to the phase correlation between the injected Stokes light field and the internal state of the atomic ensemble in the Raman process. Furthermore, the constructive interference leads to a Raman efficiency larger than other kinds of Raman processes such as stimulated Raman process with Stokes seed injection alone or uncorrelated light-atom seeding. It may find applications in precision spectroscopy, quantum optics, and precise measurement.

  3. Do lipids influence the allergic sensitization process?

    PubMed Central

    Bublin, Merima; Eiwegger, Thomas; Breiteneder, Heimo

    2014-01-01

    Allergic sensitization is a multifactorial process that is not only influenced by the allergen and its biological function per se but also by other small molecular compounds, such as lipids, that are directly bound as ligands by the allergen or are present in the allergen source. Several members of major allergen families bind lipid ligands through hydrophobic cavities or electrostatic or hydrophobic interactions. These allergens include certain seed storage proteins, Bet v 1–like and nonspecific lipid transfer proteins from pollens and fruits, certain inhalant allergens from house dust mites and cockroaches, and lipocalins. Lipids from the pollen coat and furry animals and the so-called pollen-associated lipid mediators are codelivered with the allergens and can modulate the immune responses of predisposed subjects by interacting with the innate immune system and invariant natural killer T cells. In addition, lipids originating from bacterial members of the pollen microbiome contribute to the outcome of the sensitization process. Dietary lipids act as adjuvants and might skew the immune response toward a TH2-dominated phenotype. In addition, the association with lipids protects food allergens from gastrointestinal degradation and facilitates their uptake by intestinal cells. These findings will have a major influence on how allergic sensitization will be viewed and studied in the future. PMID:24880633

  4. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    NASA Astrophysics Data System (ADS)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  5. Systematic Processing of Clementine Data for Scientific Analyses

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1993-01-01

    If fully successful, the Clementine mission will return about 3,000,000 lunar images and more than 5000 images of Geographos. Effective scientific analyses of such large datasets require systematic processing efforts. Concepts for two such efforts are described: glogal multispectral imaging of the moon; and videos of Geographos.

  6. Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses.

    PubMed

    Nieto-Castañón, Alfonso; Fedorenko, Evelina

    2012-11-15

    One important goal of cognitive neuroscience is to discover and explain properties common to all human brains. The traditional solution for comparing functional activations across brains in fMRI is to align each individual brain to a template brain in a Cartesian coordinate system (e.g., the Montreal Neurological Institute template). However, inter-individual anatomical variability leads to decreases in sensitivity (ability to detect a significant activation when it is present) and functional resolution (ability to discriminate spatially adjacent but functionally different neural responses) in group analyses. Subject-specific functional localizers have been previously argued to increase the sensitivity and functional resolution of fMRI analyses in the presence of inter-subject variability in the locations of functional activations (e.g., Brett et al., 2002; Fedorenko and Kanwisher, 2009, 2011; Fedorenko et al., 2010; Kanwisher et al., 1997; Saxe et al., 2006). In the current paper we quantify this dependence of sensitivity and functional resolution on functional variability across subjects in order to illustrate the highly detrimental effects of this variability on traditional group analyses. We show that analyses that use subject-specific functional localizers usually outperform traditional group-based methods in both sensitivity and functional resolution, even when the same total amount of data is used for each analysis. We further discuss how the subject-specific functional localization approach, which has traditionally only been considered in the context of ROI-based analyses, can be extended to whole-brain voxel-based analyses. We conclude that subject-specific functional localizers are particularly well suited for investigating questions of functional specialization in the brain. An SPM toolbox that can perform all of the analyses described in this paper is publicly available, and the analyses can be applied retroactively to any dataset, provided that

  7. Process improvement for regulatory analyses of custom-blend fertilizers.

    PubMed

    Wegner, Keith A

    2014-01-01

    Chemical testing of custom-blend fertilizers is essential to ensure that the products meet the formulation requirements. For purposes of proper crop nutrition and consumer protection, regulatory oversight promotes compliance and particular attention to blending and formulation specifications. Analyses of custom-blend fertilizer products must be performed and reported within a very narrow window in order to be effective. The Colorado Department of Agriculture's Biochemistry Laboratory is an ISO 17025 accredited facility and conducts analyses of custom-blend fertilizer products primarily during the spring planting season. Using the Lean Six Sigma (LSS) process, the Biochemistry Laboratory has reduced turnaround times from as much as 45 days to as little as 3 days. The LSS methodology focuses on waste reduction through identifying: non-value-added steps, unneeded process reviews, optimization of screening and confirmatory analyses, equipment utilization, nonessential reporting requirements, and inefficient personnel deployment. Eliminating these non-value-added activities helped the laboratory significantly shorten turnaround time and reduce costs. Key improvement elements discovered during the LSS process included: focused sample tracking, equipment redundancy, strategic supply stocking, batch size optimization, critical sample paths, elimination of nonessential QC reviews, and more efficient personnel deployment.

  8. Process improvement for regulatory analyses of custom-blend fertilizers.

    PubMed

    Wegner, Keith A

    2014-01-01

    Chemical testing of custom-blend fertilizers is essential to ensure that the products meet the formulation requirements. For purposes of proper crop nutrition and consumer protection, regulatory oversight promotes compliance and particular attention to blending and formulation specifications. Analyses of custom-blend fertilizer products must be performed and reported within a very narrow window in order to be effective. The Colorado Department of Agriculture's Biochemistry Laboratory is an ISO 17025 accredited facility and conducts analyses of custom-blend fertilizer products primarily during the spring planting season. Using the Lean Six Sigma (LSS) process, the Biochemistry Laboratory has reduced turnaround times from as much as 45 days to as little as 3 days. The LSS methodology focuses on waste reduction through identifying: non-value-added steps, unneeded process reviews, optimization of screening and confirmatory analyses, equipment utilization, nonessential reporting requirements, and inefficient personnel deployment. Eliminating these non-value-added activities helped the laboratory significantly shorten turnaround time and reduce costs. Key improvement elements discovered during the LSS process included: focused sample tracking, equipment redundancy, strategic supply stocking, batch size optimization, critical sample paths, elimination of nonessential QC reviews, and more efficient personnel deployment. PMID:25051621

  9. Ground water flow modeling with sensitivity analyses to guide field data collection in a mountain watershed

    USGS Publications Warehouse

    Johnson, Raymond H.

    2007-01-01

    In mountain watersheds, the increased demand for clean water resources has led to an increased need for an understanding of ground water flow in alpine settings. In Prospect Gulch, located in southwestern Colorado, understanding the ground water flow system is an important first step in addressing metal loads from acid-mine drainage and acid-rock drainage in an area with historical mining. Ground water flow modeling with sensitivity analyses are presented as a general tool to guide future field data collection, which is applicable to any ground water study, including mountain watersheds. For a series of conceptual models, the observation and sensitivity capabilities of MODFLOW-2000 are used to determine composite scaled sensitivities, dimensionless scaled sensitivities, and 1% scaled sensitivity maps of hydraulic head. These sensitivities determine the most important input parameter(s) along with the location of observation data that are most useful for future model calibration. The results are generally independent of the conceptual model and indicate recharge in a high-elevation recharge zone as the most important parameter, followed by the hydraulic conductivities in all layers and recharge in the next lower-elevation zone. The most important observation data in determining these parameters are hydraulic heads at high elevations, with a depth of less than 100 m being adequate. Evaluation of a possible geologic structure with a different hydraulic conductivity than the surrounding bedrock indicates that ground water discharge to individual stream reaches has the potential to identify some of these structures. Results of these sensitivity analyses can be used to prioritize data collection in an effort to reduce time and money spend by collecting the most relevant model calibration data.

  10. Convection sensitivity and thermal analyses for indium and indium-lead mixing experiment (74-18)

    NASA Technical Reports Server (NTRS)

    Bourgeois, S. V.; Doty, J. P.

    1976-01-01

    Sounding rocket Experiment 74-18 was designed to demonstrate the effects of the Black Brandt rocket acceleration levels (during the low-g coast phase of its flight) on the motion of a liquid metal system to assist in preflight design. Some post flight analyses were also conducted. Preflight studies consisted of heat transfer analysis and convection sensitivity and convection modeling analyses which aided in the: (1) final selection of fluid materials (indium-lead melts rather than paraffins); (2) design and timing of heater and quench system; and (3) preflight predictions of the degree of lead penetration into the pure indium segment of the fluid. Postflight studies involved: (1) updating the convection sensitivity calculations by utilizing actual flight gravity levels; and (2) modeling the mixing in the flight samples.

  11. Visualization tools for uncertainty and sensitivity analyses on thermal-hydraulic transients

    NASA Astrophysics Data System (ADS)

    Popelin, Anne-Laure; Iooss, Bertrand

    2014-06-01

    In nuclear engineering studies, uncertainty and sensitivity analyses of simulation computer codes can be faced to the complexity of the input and/or the output variables. If these variables represent a transient or a spatial phenomenon, the difficulty is to provide tool adapted to their functional nature. In this paper, we describe useful visualization tools in the context of uncertainty analysis of model transient outputs. Our application involves thermal-hydraulic computations for safety studies of nuclear pressurized water reactors.

  12. Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts.

    SciTech Connect

    Sevougian, S. David; Freeze, Geoffrey A.; Gardner, William Payton; Hammond, Glenn Edward; Mariner, Paul

    2014-09-01

    directly, rather than through simplified abstractions. It also a llows for complex representations of the source term, e.g., the explicit representation of many individual waste packages (i.e., meter - scale detail of an entire waste emplacement drift). This report fulfills the Generic Disposal System Analysis Work Packa ge Level 3 Milestone - Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts (M 3 FT - 1 4 SN08080 3 2 ).

  13. ERP analyses of task effects on semantic processing from words.

    PubMed

    Marí-Beffa, Paloma; Valdés, Berenice; Cullen, Doug J D; Catena, Andrés; Houghton, George

    2005-05-01

    Semantic (positive) priming refers to the facilitated processing of a probe word when preceded by a related prime word, and is a widely used technique for investigating semantic activation. However, the effect is interrupted or eliminated when attention is directed to low-level features of the prime word, such as its letters, a result which has been used to question the automaticity of semantic processing. We investigated this issue using both behavioural [reaction time (RT)] and electrophysiological measures [event-related potentials (ERPs)]. Subjects performed semantic categorization (living vs. nonliving) and letter search ("A" or "E") tasks on prime words followed by lexical decision on the probe. RT results showed the expected elimination of semantic priming following letter search. However, both prime tasks were affected by the semantic category of the prime, indicating that the meaning was processed. The ERP results supported this conclusion: an early component previously associated with automatic semantic processing [the Recognition Potential (RP)] was sensitive to the category of the prime word irrespective of the prime task. However, a later component (N400) was significantly affected by the task, in both the prime (categorization task) and probe words (semantic priming). The results dissociate rapid, automatic semantic processing from semantic priming. We suggest that a later inhibitory control mechanism suppresses this semantic activation when it is not relevant to the task, and that this produces the loss of semantic priming. PMID:15820637

  14. Three-dimensional lake water quality modeling: sensitivity and uncertainty analyses.

    PubMed

    Missaghi, Shahram; Hondzo, Miki; Melching, Charles

    2013-11-01

    Two sensitivity and uncertainty analysis methods are applied to a three-dimensional coupled hydrodynamic-ecological model (ELCOM-CAEDYM) of a morphologically complex lake. The primary goals of the analyses are to increase confidence in the model predictions, identify influential model parameters, quantify the uncertainty of model prediction, and explore the spatial and temporal variabilities of model predictions. The influence of model parameters on four model-predicted variables (model output) and the contributions of each of the model-predicted variables to the total variations in model output are presented. The contributions of predicted water temperature, dissolved oxygen, total phosphorus, and algal biomass contributed 3, 13, 26, and 58% of total model output variance, respectively. The fraction of variance resulting from model parameter uncertainty was calculated by two methods and used for evaluation and ranking of the most influential model parameters. Nine out of the top 10 parameters identified by each method agreed, but their ranks were different. Spatial and temporal changes of model uncertainty were investigated and visualized. Model uncertainty appeared to be concentrated around specific water depths and dates that corresponded to significant storm events. The results suggest that spatial and temporal variations in the predicted water quality variables are sensitive to the hydrodynamics of physical perturbations such as those caused by stream inflows generated by storm events. The sensitivity and uncertainty analyses identified the mineralization of dissolved organic carbon, sediment phosphorus release rate, algal metabolic loss rate, internal phosphorus concentration, and phosphorus uptake rate as the most influential model parameters.

  15. Project W-320 SAR and process control thermal analyses

    SciTech Connect

    Sathyanarayana, K.

    1997-06-19

    This report summarizes the results of thermal hydraulic computer modeling supporting Project W-320 for process control and SAR documentation. Parametric analyses were performed for the maximum steady state waste temperature. The parameters included heat load distribution, tank heat load, fluffing factor and thermal conductivity. Uncertainties in the fluffing factor and heat load distribution had the largest effect on maximum waste temperature. Safety analyses were performed for off normal events including loss of ventilation, loss of evaporation and loss of secondary chiller. The loss of both the primary and secondary ventilation was found to be the most limiting event with saturation temperature in the bottom waste reaching in just over 30 days. An evaluation was performed for the potential lowering of the supernatant level in tank 241-AY-102. The evaluation included a loss of ventilation and steam bump analysis. The reduced supernatant level decreased the time to reach saturation temperature in the waste for the loss of ventilation by about one week. However, the consequence of a steam bump were dramatically reduced.

  16. Quasi-Static Probabilistic Structural Analyses Process and Criteria

    NASA Technical Reports Server (NTRS)

    Goldberg, B.; Verderaime, V.

    1999-01-01

    Current deterministic structural methods are easily applied to substructures and components, and analysts have built great design insights and confidence in them over the years. However, deterministic methods cannot support systems risk analyses, and it was recently reported that deterministic treatment of statistical data is inconsistent with error propagation laws that can result in unevenly conservative structural predictions. Assuming non-nal distributions and using statistical data formats throughout prevailing stress deterministic processes lead to a safety factor in statistical format, which integrated into the safety index, provides a safety factor and first order reliability relationship. The embedded safety factor in the safety index expression allows a historically based risk to be determined and verified over a variety of quasi-static metallic substructures consistent with the traditional safety factor methods and NASA Std. 5001 criteria.

  17. Uncertainty and sensitivity analyses of ballast life-cycle cost and payback period

    SciTech Connect

    McMahon, James E.; Liu, Xiaomin; Turiel, Ike; Hakim, Sajid; Fisher, Diane

    2000-06-01

    The paper introduces an innovative methodology for evaluating the relative significance of energy-efficient technologies applied to fluorescent lamp ballasts. The method involves replacing the point estimates of life cycle cost of the ballasts with uncertainty distributions reflecting the whole spectrum of possible costs, and the assessed probability associated with each value. The results of uncertainty and sensitivity analyses will help analysts reduce effort in data collection and carry on analysis more efficiently. These methods also enable policy makers to gain an insightful understanding of which efficient technology alternatives benefit or cost what fraction of consumers, given the explicit assumptions of the analysis.

  18. Lesbian, Gay, and Bisexual Identity Scale (LGBIS): construct validation, sensitivity analyses and other psychometric properties.

    PubMed

    de Oliveira, João Manuel; Lopes, Diniz; Costa, Carlos Gonçalves; Nogueira, Conceição

    2012-03-01

    According to Mohr and Fassinger (2006), identity is seen as both self-identification and collective identification with values, beliefs, traits or behaviours and attachments. Their Lesbian, Gay, and Bisexual (LGB) multidimensional identity model accounts for important variables regarding the constitution of identities. This model not only accesses numerous dimensions of the lives of LGB individuals, but is also based on a body of research that recognizes how LGB difficulties are caused by societal intolerance and marginalization (Mohr & Fassinger, 2000). The Lesbian, Gay, and Bisexual Identity Scale (LGBIS; Kendra & Mohr, 2008) constitutes an operationalization of this multidimensional model, and the aim of this article is to present its construct validity by analysing its factor structure using a sample of Portuguese lesbian, gay and bisexual participants. Results from exploratory and confirmatory factor analyses, as well as from factor invariance analysis across sub-samples are presented. In a general way, the factor structure obtained in this study follows the original proposal of Kendra and Mohr's (2008) LGBIS. Moreover, scale sensitivity analyses are presented in order to check for eventual differences in the factor structure and/or factor intercorrelations regarding participant gender and sexual orientation. These results are then discussed in the light of LGB identity models.

  19. CHILDREN AS A SENSITIVE SUBPOPULATION FOR THE RISK ASSESSMENT PROCESS

    EPA Science Inventory

    Children as a sensitive subpopulation for the risk assessment process
    Abstract
    For cancer risk assessment purposes, it is necessary to consider how to incorporate sensitive subpopulations into the process to ensure that they are appropriately protected. Children represent o...

  20. Sensitivity and first-step uncertainty analyses for the preferential flow model MACRO.

    PubMed

    Dubus, Igor G; Brown, Colin D

    2002-01-01

    Sensitivity analyses for the preferential flow model MACRO were carried out using one-at-a-time and Monte Carlo sampling approaches. Four different scenarios were generated by simulating leaching to depth of two hypothetical pesticides in a sandy loam and a more structured clay loam soil. Sensitivity of the model was assessed using the predictions for accumulated water percolated at a 1-m depth and accumulated pesticide losses in percolation. Results for simulated percolation were similar for the two soils. Predictions of water volumes percolated were found to be only marginally affected by changes in input parameters and the most influential parameter was the water content defining the boundary between micropores and macropores in this dual-porosity model. In contrast, predictions of pesticide losses were found to be dependent on the scenarios considered and to be significantly affected by variations in input parameters. In most scenarios, predictions for pesticide losses by MACRO were most influenced by parameters related to sorption and degradation. Under specific circumstances, pesticide losses can be largely affected by changes in hydrological properties of the soil. Since parameters were varied within ranges that approximated their uncertainty, a first-step assessment of uncertainty for the predictions of pesticide losses was possible. Large uncertainties in the predictions were reported, although these are likely to have been overestimated by considering a large number of input parameters in the exercise. It appears desirable that a probabilistic framework accounting for uncertainty is integrated into the estimation of pesticide exposure for regulatory purposes.

  1. Unsteady engulfment regime in a three dimensional T-mixer: stability and sensitivity analyses

    NASA Astrophysics Data System (ADS)

    Camarri, Simone; Fani, Andrea; Salvetti, Maria Vittoria

    2013-11-01

    Micro T-mixers are important devices in microfluidics; for instance, they are often used as junction elements in complex micro-systems. Most of the studies in the literature focused their attention on the steady engulfment regime, characterized by a loss of the flow symmetries in the outflow channel which in turn leads to a considerable increase of the mixing efficiency. It has been recently observed that if the Reynolds number is increased beyond the steady engulfment critical value, the flow may become unsteady with a periodic pulsating behavior and this regime corresponds to a significant further increase of mixing compared to the steady one. We consider a given T-mixer geometry and we combine direct numerical simulations with fully 3D linear stability and sensitivity analyses to characterize the unsteady engulfment regime in terms of critical Reynolds number, characteristic time frequencies and flow dynamics. The unsteadiness seems to be triggered by a critical value for the intensity and orientation of vortices at the confluence in the mixing channel; the instability core is indeed located in the center of these vortices. The sensitivity to a generic modification of the base-flow is investigated, to obtain indications on possible control strategies.

  2. Algorithms and sensitivity analyses for stratospheric aerosol and gas experiment II water vapor retrieval

    SciTech Connect

    Chu, W.P.; Thomason, L.W.; Buglia, J.J.; McCormick, M.P.; McMaster, L.M. ); Chiou, E.W.; Larsen, J.C. ); Rind, D. ); Oltmans, S. )

    1993-03-20

    This paper provides a detailed description of the current operational inversion algorithm for the retrieval of water vapor vertical profiles from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation data at the 0.94-[mu]m wavelength channel. This algorithm is different from the algorithm used for the retrieval of the other species such as aerosol, ozone, and nitrogen dioxide because of the nonlinear relationship between the concentration versus the broad band absorption characteristics of water vapor. Included in the discussion of the retrieval algorithm are problems related to the accuracy of the computational scheme, accuracy of the removal of other interfering species, and the expected uncertainty of the retrieved profile. A comparative analysis on the computational schemes used for the calculation of the water vapor transmission at the 0.94-[mu]m wavelength region is presented. Analyses are also presented on the sensitivity of the retrievals to interferences from the other species which contribute to the total signature as observed at the 0.94-[mu]m wavelength channel on SAGE II instrument. Error analyses of the SAGE II water vapor retrieval is shown, indicating that good quality water vapor data are being produced by the SAGE II measurements. 27 refs., 10 figs., 1 tab.

  3. Accounting for management costs in sensitivity analyses of matrix population models.

    PubMed

    Baxter, Peter W J; McCarthy, Michael A; Possingham, Hugh P; Menkhorst, Peter W; McLean, Natasha

    2006-06-01

    Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency.

  4. Accounting for management costs in sensitivity analyses of matrix population models.

    PubMed

    Baxter, Peter W J; McCarthy, Michael A; Possingham, Hugh P; Menkhorst, Peter W; McLean, Natasha

    2006-06-01

    Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. PMID

  5. Incorporating uncertainty of management costs in sensitivity analyses of matrix population models.

    PubMed

    Salomon, Yacov; McCarthy, Michael A; Taylor, Peter; Wintle, Brendan A

    2013-02-01

    The importance of accounting for economic costs when making environmental-management decisions subject to resource constraints has been increasingly recognized in recent years. In contrast, uncertainty associated with such costs has often been ignored. We developed a method, on the basis of economic theory, that accounts for the uncertainty in population-management decisions. We considered the case where, rather than taking fixed values, model parameters are random variables that represent the situation when parameters are not precisely known. Hence, the outcome is not precisely known either. Instead of maximizing the expected outcome, we maximized the probability of obtaining an outcome above a threshold of acceptability. We derived explicit analytical expressions for the optimal allocation and its associated probability, as a function of the threshold of acceptability, where the model parameters were distributed according to normal and uniform distributions. To illustrate our approach we revisited a previous study that incorporated cost-efficiency analyses in management decisions that were based on perturbation analyses of matrix population models. Incorporating derivations from this study into our framework, we extended the model to address potential uncertainties. We then applied these results to 2 case studies: management of a Koala (Phascolarctos cinereus) population and conservation of an olive ridley sea turtle (Lepidochelys olivacea) population. For low aspirations, that is, when the threshold of acceptability is relatively low, the optimal strategy was obtained by diversifying the allocation of funds. Conversely, for high aspirations, the budget was directed toward management actions with the highest potential effect on the population. The exact optimal allocation was sensitive to the choice of uncertainty model. Our results highlight the importance of accounting for uncertainty when making decisions and suggest that more effort should be placed on

  6. Sensitivity analyses of turbulence theory-based variance-covariance matrices of tropospheric slant delays

    NASA Astrophysics Data System (ADS)

    Vennebusch, M.; Schön, S.

    2009-04-01

    Atmospheric turbulence induces physical correlations on any space geodetic technique based on electromagnetic waves. Thus, also GNSS phase observations are both temporally and spatially correlated due to refractivity fluctuations along the signal's path from the transmitter to the receiver. Currently, these physical correlations are rarely considered in GNSS data analysis; yielding too optimistic parameter variances and covariances. Based on turbulence theory, Schön and Brunner (2008) developed a formulation of the variances and covariances induced by refractivity fluctuations in the troposphere. This model adequately describes the variance-covariance matrix (VCM) of tropospheric slant delays. The parametrisation is mainly based on the turbulence structure constant, the outer scale length, the integration height, the wind direction and the observation geometry. The VCM can adequately be used to determine synthetic slant delay time series. In this paper, this strategy will be described by using an exemplary GPS configuration. Furthermore, the latest results of simulation studies and sensitivity analyses of this VCM model w.r.t. the model parameters are presented. As a result, the most dominant parameters (that should be either determined with special care or precisely known) will be identified.

  7. Energy from biological processes. Volume II. Technical and environmental analyses

    SciTech Connect

    Not Available

    1980-09-01

    This assessment responds to a request by the Senate Committee on Commerce, Science, and Transportation for an evaluation of the energy potential of biomass. This volume presents the technical and environmental analyses on which the conclusions in Volume 1 are based. The biomass resource base includes forestry, agriculture, unconventional biomass, and biomass wastes. The technical, economic, and environmental aspects of developing these resources are presented. Thermochemical conversion, fermentation, and anaerobic digestion technologies are described. Possible end uses for alcohol fuels are presented. The production of chemicals from biomass is considered. Energy balances for alcohol fuels are given. (DMC)

  8. Uncertainty and Sensitivity Analyses of a Two-Parameter Impedance Prediction Model

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2008-01-01

    This paper presents comparisons of predicted impedance uncertainty limits derived from Monte-Carlo-type simulations with a Two-Parameter (TP) impedance prediction model and measured impedance uncertainty limits based on multiple tests acquired in NASA Langley test rigs. These predicted and measured impedance uncertainty limits are used to evaluate the effects of simultaneous randomization of each input parameter for the impedance prediction and measurement processes. A sensitivity analysis is then used to further evaluate the TP prediction model by varying its input parameters on an individual basis. The variation imposed on the input parameters is based on measurements conducted with multiple tests in the NASA Langley normal incidence and grazing incidence impedance tubes; thus, the input parameters are assigned uncertainties commensurate with those of the measured data. These same measured data are used with the NASA Langley impedance measurement (eduction) processes to determine the corresponding measured impedance uncertainty limits, such that the predicted and measured impedance uncertainty limits (95% confidence intervals) can be compared. The measured reactance 95% confidence intervals encompass the corresponding predicted reactance confidence intervals over the frequency range of interest. The same is true for the confidence intervals of the measured and predicted resistance at near-resonance frequencies, but the predicted resistance confidence intervals are lower than the measured resistance confidence intervals (no overlap) at frequencies away from resonance. A sensitivity analysis indicates the discharge coefficient uncertainty is the major contributor to uncertainty in the predicted impedances for the perforate-over-honeycomb liner used in this study. This insight regarding the relative importance of each input parameter will be used to guide the design of experiments with test rigs currently being brought on-line at NASA Langley.

  9. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  10. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  11. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes

    PubMed Central

    Curtis, Janelle M.R.

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  12. Thermal State of the Greenland Ice Sheet Interior: Thermo-mechanical Modeling and Sensitivity Analyses

    NASA Astrophysics Data System (ADS)

    Sommers, A. N.; Rajaram, H.; Colgan, W. T.; Csatho, B. M.

    2015-12-01

    Temperature and velocity conditions in the Greenland ice sheet interior, particularly at the bed, remain fairly uncertain, with the exception of sparse borehole measurements and radar inferences. As surface melt progresses inland, these basal conditions may play an important role in future ice sheet dynamics. Using a two-dimensional flow line thermo-mechanically coupled model, we generate steady state velocity and temperature fields for 75 flow lines in the Greenland ice sheet interior, whose accuracy is assessed using robust surface velocity field measurements at stations measured by the Program for Arctic Regional Climate Assessment (PARCA) around the approximate 2,000 m elevation contour of the ice sheet. It is generally useful to perform forward modeling exercises and associated sensitivity analyses as a prelude to detailed inverse modeling, as a means to reveal relations between various uncertain parameters and the observations. We explore the influence of geothermal flux, enhancement factor for Wisconsin ice, and bed topography on temperature and velocity fields in the Greenland interior. A notable finding is a negative feedback between increasing geothermal flux and ice surface velocity in regions with temperate bed. We present simulated temperature and velocity profiles from the main divide to the PARCA stakes, as well as maps of inferred regions of temperate bed and temperate ice thickness. The suggested extent of temperate bed from our simulations is consistent with all available borehole and radar observations in the Greenland interior, and reproduces general features evident from other modeling studies. The velocity and temperature conditions produced in this work for widespread regions of the interior of the Greenland ice sheet may be used to inform and constrain models of future ice sheet response, particularly involving subglacial hydrology and basal refreezing in the interior.

  13. Microfiltration of thin stillage: Process simulation and economic analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plant scale operations, multistage membrane systems have been adopted for cost minimization. We considered design optimization and operation of a continuous microfiltration (MF) system for the corn dry grind process. The objectives were to develop a model to simulate a multistage MF system, optim...

  14. Thermodynamics of Gases: Combustion Processes, Analysed in Slow Motion

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2013-01-01

    We present a number of simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature relatively slow combustion processes of pure hydrogen as well as fast reactions involving oxy-hydrogen in a stoichiometric mixture. (Contains 4 figures.)

  15. MASSIVELY PARALLEL LATENT SEMANTIC ANALYSES USING A GRAPHICS PROCESSING UNIT

    SciTech Connect

    Cavanagh, J.; Cui, S.

    2009-01-01

    Latent Semantic Analysis (LSA) aims to reduce the dimensions of large term-document datasets using Singular Value Decomposition. However, with the ever-expanding size of datasets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. A graphics processing unit (GPU) can solve some highly parallel problems much faster than a traditional sequential processor or central processing unit (CPU). Thus, a deployable system using a GPU to speed up large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a PC cluster. Due to the GPU’s application-specifi c architecture, harnessing the GPU’s computational prowess for LSA is a great challenge. We presented a parallel LSA implementation on the GPU, using NVIDIA® Compute Unifi ed Device Architecture and Compute Unifi ed Basic Linear Algebra Subprograms software. The performance of this implementation is compared to traditional LSA implementation on a CPU using an optimized Basic Linear Algebra Subprograms library. After implementation, we discovered that the GPU version of the algorithm was twice as fast for large matrices (1 000x1 000 and above) that had dimensions not divisible by 16. For large matrices that did have dimensions divisible by 16, the GPU algorithm ran fi ve to six times faster than the CPU version. The large variation is due to architectural benefi ts of the GPU for matrices divisible by 16. It should be noted that the overall speeds for the CPU version did not vary from relative normal when the matrix dimensions were divisible by 16. Further research is needed in order to produce a fully implementable version of LSA. With that in mind, the research we presented shows that the GPU is a viable option for increasing the speed of LSA, in terms of cost/performance ratio.

  16. Process analyses of ITER Toroidal Field Structure cooling scheme

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Takami, S.; Iwamoto, A.; Chang, H. S.; Forgeas, A.; Chalifour, M.; Serio, L.

    2014-09-01

    Process studies for Toroidal Field Structure (TF ST) system with a dedicated Auxiliary Cold Box (ACB-ST) have been conducted under 15 MA baseline, including plasma disruptions. ACB-ST consists of two heat exchangers immersed in the Liquid Helium (LHe) subcooler, which are placed at the inlet/outlet of a Supercritical Helium (SHe) cold circulator (centrifugal pump). Robustness of ACB-ST is a key to achieve the stability of TF coil operation since it provides the thermal barrier at the interface of the TF Winding Pack (WP) with ST. The paper discusses the control logic for the nominal plasma operating scenario and for Mitigation to regulate the dynamic heat loads on ST. In addition, the operation field of a cold circulator is described in the case of plasma disruptions. The required performance of heat exchangers in the ACB-ST is assessed based on the expected operating conditions.

  17. A risk assessment process for allergic contact sensitization.

    PubMed

    Robinson, M K; Stotts, J; Danneman, P J; Nusair, T L; Bay, P H

    1989-07-01

    This review describes an approach that has been used to assess the skin sensitization risk of new chemicals and product formulations prior to launching the new chemical or product on the market. The risk assessment process utilizes a comparative toxicological approach, in which data on the inherent toxicity of a material, and the exposure to it through manufacturing or consumer use or foreseeable misuse, are integrated and compared with data generated by 'benchmark' materials of similar chemistry or product application, or both. This approach has been valuable in providing an accurate assessment of the skin sensitization potential for a wide range of consumer products and pharmaceuticals, ranging from products with a very transient skin exposure (e.g. some paper products), to cosmetics, to products whose ingredients may be deposited on fabrics and thus result in chronic skin exposure. The risk assessment process described includes both guinea-pig (Buehler) and human skin sensitization test methodologies to evaluate inherent toxicity under relevant epicutaneous exposure conditions. Alternative guinea-pig test methods have been reported to be more sensitive than the Buehler method, particularly those employing intradermal injection of the test material in Freund's complete adjuvant (e.g. maximization test). However, by bypassing the skin barrier at induction, these methods can overstate the sensitization risk of epicutaneous exposure to weak sensitizers (Andersen and Hamann, 1983 and 1984; Matsushita et al., 1975a,b), and can understate the risk to very strong sensitizers possibly through tolerance induction (Buehler, 1985). In addition, materials are tested and classified at concentrations that may not be relevant to anticipated human exposure. The Buehler guinea-pig test data are important in assessing skin sensitization risk in the early phases of product development, where human exposure can be limited, controlled and monitored (e.g. manufacturing employees). The

  18. Multiple scattering of polarized light in atmosphere- ocean systems: Application to sensitivity analyses of aerosol polarimetry

    NASA Astrophysics Data System (ADS)

    Chowdhary, Jacek

    1999-09-01

    Sunlight scattered by small particles in the atmosphere becomes partially polarized, the degree and state of which are sensitive to the physical and chemical properties of these particles. The high accuracy with which these polarization quantities can be measured causes space-borne polarimetry to be a promising remote sensing tool for retrieving tropospheric aerosols, but it also imposes strong requirements on the accuracy and efficiency of the methods used to numerically study such data. Light reflected by the lower atmospheric boundary may, in addition, become highly polarized, necessitating a careful error analysis of the latter scattering contribution to the remotely sensed signal. Part I of this work focusses, on the former requirements for an atmosphere-ocean system, and discusses an approach for treating scattering of light by water body, ocean surface, and atmosphere together in one method while employing numerically efficient techniques for each of these three components. Benchmark results are provided with an accuracy of 5 decimals for the Stokes vectors of scattering contributions to internal and external fields, and we discuss typical features seen in the bidirectional behaviour of the latter contributions. In Part II, we investigate uncertainties in the reflection properties of the ocean system and the resulting variation in degree of linear polarization observed from space. Three sources of uncertainty are identified: oceanic foam, the ocean surface roughness, and underwater light scattering. The magnitude of the latter two sources are derived from current remote sensing capabilities to retrieve the surface windspeed and oceanic pigment concentration, respectively. Simulations are carried out for the visible and near infrared part of the spectrum and two aerosol models. Our analyses indicate that the use of a priori information on the state of the ocean can provide enough constraints for aerosol polarimetry to be sufficiently accurate for climate

  19. Phase holograms formed by silver halide /sensitized/ gelatin processing

    NASA Astrophysics Data System (ADS)

    Graver, W. R.; Gladden, J. W.; Eastes, J. W.

    1980-05-01

    A novel recording process for the formation of phase volume holograms at up to 1500 cycles/mm is described. The term silver halide (sensitized) gelatin or SHG denotes an all-gelatin phase material, which records the initial image information through photon absorption by the silver halide. Our process uses a reversal bleach that dissolves the developed silver image and cross-links the gelatin molecules in the vicinity of the developed image. Experiments have determined the stored image as refractive-index differences within the remaining gelatin. The major attributes of SHG holograms are (1) panchromatic response, (2) 100:1 greater light sensitivity than dichromate (sensitized) gelatin, and (3) elimination of darkening (printout) effects.

  20. Space shuttle orbiter digital data processing system timing sensitivity analysis OFT ascent phase

    NASA Technical Reports Server (NTRS)

    Lagas, J. J.; Peterka, J. J.; Becker, D. A.

    1977-01-01

    Dynamic loads were investigated to provide simulation and analysis of the space shuttle orbiter digital data processing system (DDPS). Segments of the ascent test (OFT) configuration were modeled utilizing the information management system interpretive model (IMSIM) in a computerized simulation modeling of the OFT hardware and software workload. System requirements for simulation of the OFT configuration were defined, and sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and these sensitivity analyses, a test design was developed for adapting, parameterizing, and executing IMSIM, using varying load and stress conditions for model execution. Analyses of the computer simulation runs are documented, including results, conclusions, and recommendations for DDPS improvements.

  1. Deterministic vs. probabilistic analyses to identify sensitive parameters in dose assessment using RESRAD.

    PubMed

    Kamboj, Sunita; Cheng, Jing-Jy; Yu, Charley

    2005-05-01

    The dose assessments for sites containing residual radioactivity usually involve the use of computer models that employ input parameters describing the physical conditions of the contaminated and surrounding media and the living and consumption patterns of the receptors in analyzing potential doses to the receptors. The precision of the dose results depends on the precision of the input parameter values. The identification of sensitive parameters that have great influence on the dose results would help set priorities in research and information gathering for parameter values so that a more precise dose assessment can be conducted. Two methods of identifying site-specific sensitive parameters, deterministic and probabilistic, were compared by applying them to the RESRAD computer code for analyzing radiation exposure for a residential farmer scenario. The deterministic method has difficulty in evaluating the effect of simultaneous changes in a large number of input parameters on the model output results. The probabilistic method easily identified the most sensitive parameters, but the sensitivity measure of other parameters was obscured. The choice of sensitivity analysis method would depend on the availability of site-specific data. Generally speaking, the deterministic method would identify the same set of sensitive parameters as the probabilistic method when 1) the baseline values used in the deterministic method were selected near the mean or median value of each parameter and 2) the selected range of parameter values used in the deterministic method was wide enough to cover the 5th to 95th percentile values from the distribution of that parameter.

  2. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China

    PubMed Central

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-01-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108

  3. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China

    NASA Astrophysics Data System (ADS)

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-04-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.

  4. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China.

    PubMed

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-01-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108

  5. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China.

    PubMed

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-04-07

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.

  6. Sensitivity studies for the weak r process: neutron capture rates

    SciTech Connect

    Surman, R.; Mumpower, M.; Sinclair, R.; Jones, K. L.; Hix, W. R.; McLaughlin, G. C.

    2014-04-15

    Rapid neutron capture nucleosynthesis involves thousands of nuclear species far from stability, whose nuclear properties need to be understood in order to accurately predict nucleosynthetic outcomes. Recently sensitivity studies have provided a deeper understanding of how the r process proceeds and have identified pieces of nuclear data of interest for further experimental or theoretical study. A key result of these studies has been to point out the importance of individual neutron capture rates in setting the final r-process abundance pattern for a ‘main’ (A ∼ 130 peak and above) r process. Here we examine neutron capture in the context of a ‘weak’ r process that forms primarily the A ∼ 80 r-process abundance peak. We identify the astrophysical conditions required to produce this peak region through weak r-processing and point out the neutron capture rates that most strongly influence the final abundance pattern.

  7. Decision-making processes: sensitivity to sequentially experienced outcome probabilities.

    PubMed

    Boyer, Ty W

    2007-05-01

    A computerized sequential event sampling decision-making task was administered to 187 5- to 10-year-olds and adults Participants made a series of choices between alternatives that differed in win probability (Study 1) or win and loss probability (Study 2). Intuitive and more explicit measures were used. Study 1 revealed that, across ages, participants demonstrated intuitive sensitivity to probability; however, adult participants evidenced greater sensitivity than did children, and younger children failed to demonstrate more explicit understanding of probability. Study 2 also revealed that children were intuitively sensitive to probability; however, the inclusion of loss had limited impact on decision processes. These findings and their relevance to cognitive developmental theory are discussed.

  8. Temperature sensitivity relationships for nonsteady processes. [In SRMs

    SciTech Connect

    Skidmore, M.A.; Glick, R.L.

    1989-01-01

    Analytical relationships connecting 'instantaneous' temperature sensitivities of chamber pressure for quasi-steady and nonsteady (progressive) solid rocket motor burns are derived from a bulk mode, isothermal, ideal gas model and tested with numerical calculations from an exact, bulk mode model. Results show that the instantaneous temperature sensitivity of progressive, nonsteady burns can be substantially reduced relative to quasi-steady burns for identical initial states and temperature differences, and the analytical relationship's predictions are within 7 percent of the exact results. Since this is within the expected accuracy of pi-K measurements, the connective relationships can be employed to either extract pi-K data from progressive, nonsteady motor burns or estimate the temperature sensitivity of these nonsteady processes. 12 refs.

  9. Description, evaluation, and sensitivity analyses of principal US EPA air quality prediction models

    SciTech Connect

    Greenway, A.R.; Ellis, H.M.; Deland, R.J.

    1980-08-01

    The scientific validity of the principal assumptions used in the US Environmental Protection Agency (EPA) air pollution prediction models was reviewed. The computational assumptions and equations used in the principal EPA models were reviewed, as was the recommended applicability of these models and their performance as reported in validation and comparison studies. In addition, a sensitivity analysis of model response to input parameter changes was conducted. The performance of the CRSTER, the Urban and Rural RAM Models, and by inference the MPTER Model of the UNAMAP series was reviewed and evaluated based on available studies of the performance of these models. It is concluded that the RAM (Urban) Model tends to overpredict the impact of sources with tall stacks, even in urban areas due to the treatment of unstable cases. The RAM (Urban) Model implicitly accounts for building-effect downwash through enhanced plume spreading rates. The CRSTER Model performs well when the ratio of stack height to receptor height is high, but leads to overpredictions when the ratio is low. This, in complex terrain cases involving moderate stack heights, the CRSTER Model tends to overpredict. A sensitivity analysis showed that the CRSTER Model is more sensitive to input parameter values than the RAM Model. The CRSTER Model is most sensitive to changes in wind speed, stack height, stack gas exit velocity and stack gas exit temperature. Thus, these parameters should be well defined. This sensitivity increases as the ratio of stack height to receptor height decreases. Since the MPTER Model has not yet been released for use by US EPA, the evaluation of this model was more limited. Since it is basically a multi-source version of the single source CRSTER Model, conclusions concerning MPTER are inferred from the CRSTER evaluations.

  10. Uncertainty and Sensitivity Analyses of a Pebble Bed HTGR Loss of Cooling Event

    DOE PAGES

    Strydom, Gerhard

    2013-01-01

    The Very High Temperature Reactor Methods Development group at the Idaho National Laboratory identified the need for a defensible and systematic uncertainty and sensitivity approach in 2009. This paper summarizes the results of an uncertainty and sensitivity quantification investigation performed with the SUSA code, utilizing the International Atomic Energy Agency CRP 5 Pebble Bed Modular Reactor benchmark and the INL code suite PEBBED-THERMIX. Eight model input parameters were selected for inclusion in this study, and after the input parameters variations and probability density functions were specified, a total of 800 steady state and depressurized loss of forced cooling (DLOFC) transientmore » PEBBED-THERMIX calculations were performed. The six data sets were statistically analyzed to determine the 5% and 95% DLOFC peak fuel temperature tolerance intervals with 95% confidence levels. It was found that the uncertainties in the decay heat and graphite thermal conductivities were the most significant contributors to the propagated DLOFC peak fuel temperature uncertainty. No significant differences were observed between the results of Simple Random Sampling (SRS) or Latin Hypercube Sampling (LHS) data sets, and use of uniform or normal input parameter distributions also did not lead to any significant differences between these data sets.« less

  11. Control of a mechanical aeration process via topological sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Abdelwahed, M.; Hassine, M.; Masmoudi, M.

    2009-06-01

    The topological sensitivity analysis method gives the variation of a criterion with respect to the creation of a small hole in the domain. In this paper, we use this method to control the mechanical aeration process in eutrophic lakes. A simplified model based on incompressible Navier-Stokes equations is used, only considering the liquid phase, which is the dominant one. The injected air is taken into account through local boundary conditions for the velocity, on the injector holes. A 3D numerical simulation of the aeration effects is proposed using a mixed finite element method. In order to generate the best motion in the fluid for aeration purposes, the optimization of the injector location is considered. The main idea is to carry out topological sensitivity analysis with respect to the insertion of an injector. Finally, a topological optimization algorithm is proposed and some numerical results, showing the efficiency of our approach, are presented.

  12. Sensitivity and uncertainty analyses for thermo-hydraulic calculation of research reactor

    SciTech Connect

    Hartini, Entin; Andiwijayakusuma, Dinan; Isnaeni, Muh Darwis

    2013-09-09

    The sensitivity and uncertainty analysis of input parameters on thermohydraulic calculations for a research reactor has successfully done in this research. The uncertainty analysis was carried out on input parameters for thermohydraulic calculation of sub-channel analysis using Code COOLOD-N. The input parameters include radial peaking factor, the increase bulk coolant temperature, heat flux factor and the increase temperature cladding and fuel meat at research reactor utilizing plate fuel element. The input uncertainty of 1% - 4% were used in nominal power calculation. The bubble detachment parameters were computed for S ratio (the safety margin against the onset of flow instability ratio) which were used to determine safety level in line with the design of 'Reactor Serba Guna-G. A. Siwabessy' (RSG-GA Siwabessy). It was concluded from the calculation results that using the uncertainty input more than 3% was beyond the safety margin of reactor operation.

  13. Sensitivity studies for the main r process: nuclear masses

    SciTech Connect

    Aprahamian, A.; Mumpower, M.; Bentley, I.; Surman, R.

    2014-04-15

    The site of the rapid neutron capture process (r process) is one of the open challenges in all of physics today. The r process is thought to be responsible for the creation of more than half of all elements beyond iron. The scientific challenges to understanding the origin of the heavy elements beyond iron lie in both the uncertainties associated with astrophysical conditions that are needed to allow an r process to occur and a vast lack of knowledge about the properties of nuclei far from stability. One way is to disentangle the nuclear and astrophysical components of the question. On the nuclear physics side, there is great global competition to access and measure the most exotic nuclei that existing facilities can reach, while simultaneously building new, more powerful accelerators to make even more exotic nuclei. On the astrophysics side, various astrophysical scenarios for the production of the heaviest elements have been proposed but open questions remain. This paper reports on a sensitivity study of the r process to determine the most crucial nuclear masses to measure using an r-process simulation code, several mass models (FRDM, Duflo-Zuker, and HFB-21), and three potential astrophysical scenarios.

  14. Using ambulatory care sensitive hospitalisations to analyse the effectiveness of primary care services in Mexico.

    PubMed

    Lugo-Palacios, David G; Cairns, John

    2015-11-01

    Ambulatory care sensitive hospitalisations (ACSH) have been widely used to study the quality and effectiveness of primary care. Using data from 248 general hospitals in Mexico during 2001-2011 we identify 926,769 ACSHs in 188 health jurisdictions before and during the health insurance expansion that took place in this period, and estimate a fixed effects model to explain the association of the jurisdiction ACSH rate with patient and community factors. National ACSH rate increased by 50%, but trends and magnitude varied at the jurisdiction and state level. We find strong associations of the ACSH rate with socioeconomic conditions, health care supply and health insurance coverage even after controlling for potential endogeneity in the rolling out of the insurance programme. We argue that the traditional focus on the increase/decrease of the ACSH rate might not be a valid indicator to assess the effectiveness of primary care in a health insurance expansion setting, but that the ACSH rate is useful when compared between and within states once the variation in insurance coverage is taken into account as it allows the identification of differences in the provision of primary care. The high heterogeneity found in the ACSH rates suggests important state and jurisdiction differences in the quality and effectiveness of primary care in Mexico.

  15. High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography.

    PubMed

    Desmarais, Samantha M; Tropini, Carolina; Miguel, Amanda; Cava, Felipe; Monds, Russell D; de Pedro, Miguel A; Huang, Kerwyn Casey

    2015-12-25

    The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination.

  16. Children as a sensitive subpopulation for the risk assessment process.

    PubMed

    Preston, R Julian

    2004-09-01

    For cancer risk assessment purposes, it is necessary to consider how to incorporate sensitive subpopulations into the process to ensure that they are appropriately protected. Children represent one such potentially sensitive subpopulation that is of quite considerable magnitude. The data needs include sensitivity to the induction of childhood cancers compared to adult cancers and relative sensitivity of early-life exposures for the formation of tumors in adults. These needs as far as human data are concerned are best met for ionizing radiations, for which it has been shown in the atomic bomb survivors that early-life exposures are more effective at inducing cancers later in life. The risk assessment approach for ionizing radiations, however, is based on tumor data itself for total population exposures so that there is no requirement to consider specifically the impact of early-life exposures. In the case of environmental chemicals, the majority of the tumor data used for risk assessments are from rodent bioassays. There is a paucity of data that allow for a comparison of the response to early-life exposures compared to that for adult-only exposures. This presents a fairly difficult challenge to the identification of a general sensitivity factor or a chemical-specific sensitivity factor for early-life exposures. The U.S. Environmental Protection Agency (EPA) has not, until recently, incorporated a general adjustment for early-life exposure to carcinogens into its risk assessment guidelines. The Agency has relied on the fact that, in the absence of specific data to the contrary, the linear extrapolation for rodent tumor data provided appropriate protection. When specific data are available, then an adjustment can be calculated. In its most recent draft guidelines, however, a general adjustment has been proposed for mutagenic chemicals. A 10-fold risk adjustment is recommended for the first 2 years of life, a 3-fold adjustment for years 3-15, and no adjustment for

  17. Chronic Beryllium Disease and Sensitization at a Beryllium Processing Facility

    PubMed Central

    Rosenman, Kenneth; Hertzberg, Vicki; Rice, Carol; Reilly, Mary Jo; Aronchick, Judith; Parker, John E.; Regovich, Jackie; Rossman, Milton

    2005-01-01

    We conducted a medical screening for beryllium disease of 577 former workers from a beryllium processing facility. The screening included a medical and work history questionnaire, a chest radiograph, and blood lymphocyte proliferation testing for beryllium. A task exposure and a job exposure matrix were constructed to examine the association between exposure to beryllium and the development of beryllium disease. More than 90% of the cohort completed the questionnaire, and 74% completed the blood and radiograph component of the screening. Forty-four (7.6%) individuals had definite or probable chronic beryllium disease (CBD), and another 40 (7.0%) were sensitized to beryllium. The prevalence of CBD and sensitization in our cohort was greater than the prevalence reported in studies of other beryllium-exposed cohorts. Various exposure measures evaluated included duration; first decade worked; last decade worked; cumulative, mean, and highest job; and highest task exposure to beryllium (to both soluble and nonsoluble forms). Soluble cumulative and mean exposure levels were lower in individuals with CBD. Sensitized individuals had shorter duration of exposure, began work later, last worked longer ago, and had lower cumulative and peak exposures and lower nonsoluble cumulative and mean exposures. A possible explanation for the exposure–response findings of our study may be an interaction between genetic predisposition and a decreased permanence of soluble beryllium in the body. Both CBD and sensitization occurred in former workers whose mean daily working lifetime average exposures were lower than the current allowable Occupational Safety and Health Administration workplace air level of 2 μg/m3 and the Department of Energy guideline of 0.2 μg/m3. PMID:16203248

  18. Feasibility for development of a nuclear reactor pressure vessel flaw distribution: Sensitivity analyses and NDE (nondestructive evaluation) capability

    SciTech Connect

    Rosinski, S.T. ); Kennedy, E.L.; Foulds, J.R. )

    1990-01-01

    Pressurized water reactor pressure vessels operate under US Nuclear Regulatory Commission (NRC) rules and regulatory guides that are intended to maintain a low probability of vessel failure. The NRC has also addressed neutron embrittlement of pressurized water reactor pressure vessels by imposing regulations on plant operation. Plants failing to meet the operating criteria specified by these rules and regulations are required, among other things, to analytically demonstrate fitness for service in order to continue safe operation. The initial flaw size or distribution of initial vessel flaws is a key input to the required vessel integrity analyses. A fracture mechanics sensitivity study was performed to quantify the effect of the assumed flaw distribution on the predicted vessel performance under a specified pressurized thermal shock transient and to determine the critical crack size. Results of the analysis indicate that vessel performance in terms of the estimated probability of failure is very sensitive to the assumed flaw distribution. 20 refs., 3 figs., 2 tabs.

  19. IgE sensitization in snow crab-processing workers.

    PubMed

    Cartier, A; Malo, J L; Ghezzo, H; McCants, M; Lehrer, S B

    1986-08-01

    Occupational asthma is a highly prevalent disease among snow crab-processing workers, but its immunologic mechanism has not been identified. Prick skin tests with snow crab-meat extract, commercial extracts from other crab genera, and snow crab cooking water collected in 1984 were performed on 119 workers. Crab-specific IgE was assessed by RAST in sera from 115 workers with meat and water extracts. Both skin and RAST tests were performed in 58 individuals. Diagnosis of occupational asthma had previously been confirmed in 54 individuals. A highly significant relationship was demonstrated between the presence of immediate skin reactivity or increased serum levels of specific IgE to crab extracts and the occurrence of occupational asthma. There was good agreement between the results of skin and RAST tests with extracts of either meat or snow crab cooking water. Cooking water and snow crab-meat extracts were more sensitive than commercial preparations. Water extract was more potent and more sensitive than meat extract. We conclude that there is evidence that occupational asthma in snow crab-processing workers is mediated through an IgE mechanism.

  20. Sensitivity analyses of the theoretical equations used in point velocity probe (PVP) data interpretation

    NASA Astrophysics Data System (ADS)

    Devlin, J. F.

    2016-09-01

    Point velocity probes (PVPs) are dedicated, relatively low-cost instruments for measuring groundwater speed and direction in non-cohesive, unconsolidated porous media aquifers. They have been used to evaluate groundwater velocity in groundwater treatment zones, glacial outwash aquifers, and within streambanks to assist with the assessment of groundwater-surfaced water exchanges. Empirical evidence of acceptable levels of uncertainty for these applications has come from both laboratory and field trials. This work extends previous assessments of the method by examining the inherent uncertainties arising from the equations used to interpret PVP datasets. PVPs operate by sensing tracer movement on the probe surface, producing apparent velocities from two detectors. Sensitivity equations were developed for the estimation of groundwater speed, v∞, and flow direction, α, as a function of the apparent velocities of water on the probe surface and the α angle itself. The resulting estimations of measurement uncertainty, which are inherent limitations of the method, apply to idealized, homogeneous porous media, which on the local scale of a PVP measurement may be approached. This work does not address experimental sources of error that may arise from the presence of cohesive sediments that prevent collapse around the probe, the effects of centimeter-scale aquifer heterogeneities, or other complications related to borehole integrity or operator error, which could greatly exceed the inherent sources of error. However, the findings reported here have been shown to be in agreement with the previous empirical work. On this basis, properly installed and functioning PVPs should be expected to produce estimates of groundwater speed with uncertainties less than ± 15%, with the most accurate values of groundwater speed expected when horizontal flow is incident on the probe surface at about 50° from the active injection port. Directions can be measured with uncertainties less than

  1. Sensitivity analyses of the theoretical equations used in point velocity probe (PVP) data interpretation.

    PubMed

    Devlin, J F

    2016-09-01

    Point velocity probes (PVPs) are dedicated, relatively low-cost instruments for measuring groundwater speed and direction in non-cohesive, unconsolidated porous media aquifers. They have been used to evaluate groundwater velocity in groundwater treatment zones, glacial outwash aquifers, and within streambanks to assist with the assessment of groundwater-surfaced water exchanges. Empirical evidence of acceptable levels of uncertainty for these applications has come from both laboratory and field trials. This work extends previous assessments of the method by examining the inherent uncertainties arising from the equations used to interpret PVP datasets. PVPs operate by sensing tracer movement on the probe surface, producing apparent velocities from two detectors. Sensitivity equations were developed for the estimation of groundwater speed, v∞, and flow direction, α, as a function of the apparent velocities of water on the probe surface and the α angle itself. The resulting estimations of measurement uncertainty, which are inherent limitations of the method, apply to idealized, homogeneous porous media, which on the local scale of a PVP measurement may be approached. This work does not address experimental sources of error that may arise from the presence of cohesive sediments that prevent collapse around the probe, the effects of centimeter-scale aquifer heterogeneities, or other complications related to borehole integrity or operator error, which could greatly exceed the inherent sources of error. However, the findings reported here have been shown to be in agreement with the previous empirical work. On this basis, properly installed and functioning PVPs should be expected to produce estimates of groundwater speed with uncertainties less than ±15%, with the most accurate values of groundwater speed expected when horizontal flow is incident on the probe surface at about 50° from the active injection port. Directions can be measured with uncertainties less than

  2. Descriptive and sensitivity analyses of WATBALI: A dynamic soil water model

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W. (Principal Investigator)

    1981-01-01

    A soil water computer model that uses the IBM Continuous System Modeling Program III to solve the dynamic equations representing the soil, plant, and atmospheric physical or physiological processes considered is presented and discussed. Using values describing the soil-plant-atmosphere characteristics, the model predicts evaporation, transpiration, drainage, and soil water profile changes from an initial soil water profile and daily meteorological data. The model characteristics and simulations that were performed to determine the nature of the response to controlled variations in the input are described the results of the simulations are included and a change that makes the response of the model more closely represent the observed characteristics of evapotranspiration and profile changes for dry soil conditions is examined.

  3. Sensitivity of rainfall-runoff processes in the Hydrological Open Air Laboratory

    NASA Astrophysics Data System (ADS)

    Széles, Borbála; Parajka, Juraj; Blöschl, Günter; Oismüller, Markus; Hajnal, Géza

    2016-04-01

    The objective of the present study was to simulate the rainfall response and analyse the sensitivity of rainfall-runoff processes of the Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, a small experimental watershed (66 ha) located in the western part of Lower Austria and dominated by agricultural land use. Due to the extensive monitoring network in the HOAL, the spatial and temporal heterogeneity of hydro-meteorological elements are exceptionally well represented on the catchment scale. The study aimed to exploit the facilities of the available database collected by innovative sensing techniques to advance the understanding of various rainfall-runoff processes. The TUWmodel, a lumped, conceptual hydrological model, following the structure of the HBV model was implemented on the catchment. In addition to the surface runoff at the catchment outlet, several different runoff generation mechanisms (tile drainage flow, saturation excess runoff from wetlands and groundwater discharge from springs) were also simulated, which gave an opportunity to describe the spatial distribution of model parameters in the study area. This helped to proceed from the original lumped model concept towards a spatially distributed one. The other focus of this work was to distinguish the dominant model parameters from the less sensitive ones for each tributary with different runoff type by applying two different sensitivity analysis methods, the simple local perturbation and the global Latin-Hypercube-One-Factor-At-a-Time (LH-OAT) tools. Moreover, the impacts of modifying the initial parameters of the LH-OAT method and the applied objective functions were also taken into consideration. The results and findings of the model and sensitivity analyses were summarized and future development perspectives were outlined. Key words: spatial heterogeneity of rainfall-runoff mechanisms, sensitivity analysis, lumped conceptual hydrological model

  4. Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans.

    PubMed

    Qin, Chun-Fang; He, Meng-Han; Chen, Feng-Ping; Zhu, Wen; Yang, Li-Na; Wu, E-Jiao; Guo, Zheng-Liang; Shang, Li-Ping; Zhan, Jiasui

    2016-01-01

    Knowledge of the evolution of fungicide resistance is important in securing sustainable disease management in agricultural systems. In this study, we analyzed and compared the spatial distribution of genetic variation in azoxystrobin sensitivity and SSR markers in 140 Phytophthora infestans isolates sampled from seven geographic locations in China. Sensitivity to azoxystrobin and its genetic variation in the pathogen populations was measured by the relative growth rate (RGR) at four fungicide concentrations and determination of the effective concentration for 50% inhibition (EC50). We found that all isolates in the current study were sensitive to azoxystrobin and their EC50 was similar to that detected from a European population about 20 years ago, suggesting the risk of developing azoxystrobin resistance in P. infestans populations is low. Further analyses indicate that reduced genetic variation and high fitness cost in resistant mutations are the likely causes for the low evolutionary likelihood of developing azoxystrobin resistance in the pathogen. We also found a negative correlation between azoxystrobin tolerance in P. infestans populations and the mean annual temperature of collection sites, suggesting that global warming may increase the efficiency of using the fungicide to control the late blight. PMID:26853908

  5. Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans

    PubMed Central

    Qin, Chun-Fang; He, Meng-Han; Chen, Feng-Ping; Zhu, Wen; Yang, Li-Na; Wu, E-Jiao; Guo, Zheng-Liang; Shang, Li-Ping; Zhan, Jiasui

    2016-01-01

    Knowledge of the evolution of fungicide resistance is important in securing sustainable disease management in agricultural systems. In this study, we analyzed and compared the spatial distribution of genetic variation in azoxystrobin sensitivity and SSR markers in 140 Phytophthora infestans isolates sampled from seven geographic locations in China. Sensitivity to azoxystrobin and its genetic variation in the pathogen populations was measured by the relative growth rate (RGR) at four fungicide concentrations and determination of the effective concentration for 50% inhibition (EC50). We found that all isolates in the current study were sensitive to azoxystrobin and their EC50 was similar to that detected from a European population about 20 years ago, suggesting the risk of developing azoxystrobin resistance in P. infestans populations is low. Further analyses indicate that reduced genetic variation and high fitness cost in resistant mutations are the likely causes for the low evolutionary likelihood of developing azoxystrobin resistance in the pathogen. We also found a negative correlation between azoxystrobin tolerance in P. infestans populations and the mean annual temperature of collection sites, suggesting that global warming may increase the efficiency of using the fungicide to control the late blight. PMID:26853908

  6. Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans.

    PubMed

    Qin, Chun-Fang; He, Meng-Han; Chen, Feng-Ping; Zhu, Wen; Yang, Li-Na; Wu, E-Jiao; Guo, Zheng-Liang; Shang, Li-Ping; Zhan, Jiasui

    2016-01-01

    Knowledge of the evolution of fungicide resistance is important in securing sustainable disease management in agricultural systems. In this study, we analyzed and compared the spatial distribution of genetic variation in azoxystrobin sensitivity and SSR markers in 140 Phytophthora infestans isolates sampled from seven geographic locations in China. Sensitivity to azoxystrobin and its genetic variation in the pathogen populations was measured by the relative growth rate (RGR) at four fungicide concentrations and determination of the effective concentration for 50% inhibition (EC50). We found that all isolates in the current study were sensitive to azoxystrobin and their EC50 was similar to that detected from a European population about 20 years ago, suggesting the risk of developing azoxystrobin resistance in P. infestans populations is low. Further analyses indicate that reduced genetic variation and high fitness cost in resistant mutations are the likely causes for the low evolutionary likelihood of developing azoxystrobin resistance in the pathogen. We also found a negative correlation between azoxystrobin tolerance in P. infestans populations and the mean annual temperature of collection sites, suggesting that global warming may increase the efficiency of using the fungicide to control the late blight.

  7. Sensitivity of Middle Atmospheric Analyses to the Representation of Gravity-Wave Drag in the DAO's Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Li, Shuhua; Chern, Jiundar; Joiner, Joanna; Lin, Shian-Jiann; Pawson, Steven; daSilva, Arlindo; Atlas, Robert (Technical Monitor)

    2002-01-01

    The damping of mesoscale gravity waves has important effects on the global circulation, structure, and composition of the atmosphere. A number of assimilation and forecast experiments have been conducted to examine the sensitivity of meteorological analyses and forecasts to the representation of gravity wave impacts in a data assimilation system (DAS). The experiments were conducted with the Finite-Volume (FV) DAS developed at NASA's Data Assimilation Office (DAO), The main purpose of this research is to determine the optimal combination of wave number, phase speed, wavelength, etc. for representing gravity-wave drag (GWD) in FVDAS. The GWD included in FVDAS includes a spectrum of waves, as would be forced by topography and transient motions (e.g., convection) in the troposphere. The sensitivity experiments are performed by modifying several parameters, such as the number of waves allowed, their wavelength, the background stress amplitude, etc. The results show that the assimilated fields are very sensitive to the number of gravity waves represented in the system, especially at high latitudes of the middle and upper stratosphere and mesosphere in winter. The analyzed stratopause temperature varies by up to 10K when the GWD scheme is modified from a multiple-wave scheme (using a stationary wave and waves with phase speeds of 10, 20, 30 and 40 m/s in each direction) to a single, stationary wave. Insight into the reality of the various versions of the GWD can be obtained by examining the "Observation minus Forecast" residuals from the FVDAS.

  8. Children's Writing Processes when Using Computers: Insights Based on Combining Analyses of Product and Process

    ERIC Educational Resources Information Center

    Gnach, Aleksandra; Wiesner, Esther; Bertschi-Kaufmann, Andrea; Perrin, Daniel

    2007-01-01

    Children and young people are increasingly performing a variety of writing tasks using computers, with word processing programs thus becoming their natural writing environment. The development of keystroke logging programs enables us to track the process of writing, without changing the writing environment for the writers. In the myMoment schools…

  9. Temperature sensitivity of organic compound destruction in SCWO process.

    PubMed

    Tan, Yaqin; Shen, Zhemin; Guo, Weimin; Ouyang, Chuang; Jia, Jinping; Jiang, Weili; Zhou, Haiyun

    2014-03-01

    To study the temperature sensitivity of the destruction of organic compounds in supercritical water oxidation process (SCWO), oxidation effects of twelve chemicals in supercritical water were investigated. The SCWO reaction rates of different compounds improved to varying degrees with the increase of temperature, so the highest slope of the temperature-effect curve (imax) was defined as the maximum ratio of removal ratio to working temperature. It is an important index to stand for the temperature sensitivity effect in SCWO. It was proven that the higher imax is, the more significant the effect of temperature on the SCWO effect is. Since the high-temperature area of SCWO equipment is subject to considerable damage from fatigue, the temperature is of great significance in SCWO equipment operation. Generally, most compounds (imax > 0.25) can be completely oxidized when the reactor temperature reaches 500°C. However, some compounds (imax > 0.25) need a higher temperature for complete oxidation, up to 560°C. To analyze the correlation coefficients between imax and various molecular descriptors, a quantum chemical method was used in this study. The structures of the twelve organic compounds were optimized by the Density Functional Theory B3LYP/6-311G method, as well as their quantum properties. It was shown that six molecular descriptors were negatively correlated to imax while other three descriptors were positively correlated to imax. Among them, dipole moment had the greatest effect on the oxidation thermodynamics of the twelve organic compounds. Once a correlation between molecular descriptors and imax is established, SCWO can be run at an appropriate temperature according to molecular structure.

  10. Temperature sensitivity of organic compound destruction in SCWO process.

    PubMed

    Tan, Yaqin; Shen, Zhemin; Guo, Weimin; Ouyang, Chuang; Jia, Jinping; Jiang, Weili; Zhou, Haiyun

    2014-03-01

    To study the temperature sensitivity of the destruction of organic compounds in supercritical water oxidation process (SCWO), oxidation effects of twelve chemicals in supercritical water were investigated. The SCWO reaction rates of different compounds improved to varying degrees with the increase of temperature, so the highest slope of the temperature-effect curve (imax) was defined as the maximum ratio of removal ratio to working temperature. It is an important index to stand for the temperature sensitivity effect in SCWO. It was proven that the higher imax is, the more significant the effect of temperature on the SCWO effect is. Since the high-temperature area of SCWO equipment is subject to considerable damage from fatigue, the temperature is of great significance in SCWO equipment operation. Generally, most compounds (imax > 0.25) can be completely oxidized when the reactor temperature reaches 500°C. However, some compounds (imax > 0.25) need a higher temperature for complete oxidation, up to 560°C. To analyze the correlation coefficients between imax and various molecular descriptors, a quantum chemical method was used in this study. The structures of the twelve organic compounds were optimized by the Density Functional Theory B3LYP/6-311G method, as well as their quantum properties. It was shown that six molecular descriptors were negatively correlated to imax while other three descriptors were positively correlated to imax. Among them, dipole moment had the greatest effect on the oxidation thermodynamics of the twelve organic compounds. Once a correlation between molecular descriptors and imax is established, SCWO can be run at an appropriate temperature according to molecular structure. PMID:25079262

  11. Reduction of Large Detailed Chemical Kinetic Mechanisms for Autoignition Using Joint Analyses of Reaction Rates and Sensitivities

    SciTech Connect

    Saylam, A; Ribaucour, M; Pitz, W J; Minetti, R

    2006-11-29

    A new technique of reduction of detailed mechanisms for autoignition, which is based on two analysis methods is described. An analysis of reaction rates is coupled to an analysis of reaction sensitivity for the detection of redundant reactions. Thresholds associated with the two analyses have a great influence on the size and efficiency of the reduced mechanism. Rules of selection of the thresholds are defined. The reduction technique has been successfully applied to detailed autoignition mechanisms of two reference hydrocarbons: n-heptane and iso-octane. The efficiency of the technique and the ability of the reduced mechanisms to reproduce well the results generated by the full mechanism are discussed. A speedup of calculations by a factor of 5.9 for n-heptane mechanism and by a factor of 16.7 for iso-octane mechanism is obtained without losing accuracy of the prediction of autoignition delay times and concentrations of intermediate species.

  12. A Coding Scheme for Analysing Problem-Solving Processes of First-Year Engineering Students

    ERIC Educational Resources Information Center

    Grigg, Sarah J.; Benson, Lisa C.

    2014-01-01

    This study describes the development and structure of a coding scheme for analysing solutions to well-structured problems in terms of cognitive processes and problem-solving deficiencies for first-year engineering students. A task analysis approach was used to assess students' problem solutions using the hierarchical structure from a…

  13. Uncertainty and sensitivity analyses for gas and brine migration at the Waste Isolation Pilot Plant, May 1992

    SciTech Connect

    Helton, J.C.; Bean, J.E.; Butcher, B.M.; Garner, J.W.; Vaughn, P.; Schreiber, J.D.; Swift, P.N.

    1993-08-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis, stepwise regression analysis and examination of scatterplots are used in conjunction with the BRAGFLO model to examine two phase flow (i.e., gas and brine) at the Waste Isolation Pilot Plant (WIPP), which is being developed by the US Department of Energy as a disposal facility for transuranic waste. The analyses consider either a single waste panel or the entire repository in conjunction with the following cases: (1) fully consolidated shaft, (2) system of shaft seals with panel seals, and (3) single shaft seal without panel seals. The purpose of this analysis is to develop insights on factors that are potentially important in showing compliance with applicable regulations of the US Environmental Protection Agency (i.e., 40 CFR 191, Subpart B; 40 CFR 268). The primary topics investigated are (1) gas production due to corrosion of steel, (2) gas production due to microbial degradation of cellulosics, (3) gas migration into anhydrite marker beds in the Salado Formation, (4) gas migration through a system of shaft seals to overlying strata, and (5) gas migration through a single shaft seal to overlying strata. Important variables identified in the analyses include initial brine saturation of the waste, stoichiometric terms for corrosion of steel and microbial degradation of cellulosics, gas barrier pressure in the anhydrite marker beds, shaft seal permeability, and panel seal permeability.

  14. The EVLA Correlator - Signal Processing for Ultra-Sensitive Astronomy

    NASA Astrophysics Data System (ADS)

    Dewdney, P. E.; Carlson, B. R.

    2000-05-01

    Companion papers by the EVLA team illustrate the power of the EVLA, which can be enabled only by the most powerful, flexible correlator conceived to date. Moreover, since the correlator will be expected to process signals containing interference, it must be robust to radio frequency interference. We propose to build a correlator to process signals from up to 40 antennas in eight independently tunable, 2 GHz wide IF-bands (typically four left and four right polarizations). This will provide the basic continuum sensitivity needed to explore the high red-shift objects of the ``Evolving Universe'' or the weak polarized signals of the ``Magnetic Universe''. High spectral resolution confers the ability to observe very narrow spectral lines or to carry out esoteric planetary radar observations. Large numbers of channels permit searches for highly red-shifted spectral lines over large volumes of the universe at once or simultaneous observations of multiple spectral lines in the ``Obscured Universe''. We expect to be able to provide 16384 channels per baseline that can be flexibly distributed over all the IF-bands or concentrated in very narrow sub-bands. Objects in the ``Transient Universe'', from pulsars to solar bursts can be accomodated by 10 ms integration periods, asynchronous triggering of short observation ``bursts'', and up to 1024 pulsar ``phase bins'' per baseline. Strong signals from astronomical masers, the sun, and interference require spectral dynamic range of >105, which combined with high spectral resolution, will permit the expurgation of interference. These are the most important specifications needed to realize the potential of the EVLA. We expect to be able to meet them, using an innovative correlator architecture.

  15. Interdependencies of Arctic land surface processes: A uniquely sensitive environment

    NASA Astrophysics Data System (ADS)

    Bowling, L. C.

    2007-12-01

    The circumpolar arctic drainage basin is composed of several distinct ecoregions including steppe grassland and cropland, boreal forest and tundra. Land surface hydrology throughout this diverse region shares several unique features such as dramatic seasonal runoff differences controlled by snowmelt and ice break-up; the storage of significant portions of annual precipitation as snow and in lakes and wetlands; and the effects of ephemeral and permanently frozen soils. These arctic land processes are delicately balanced with the climate and are therefore important indicators of change. The litany of recently-detected changes in the Arctic includes changes in snow precipitation, trends and seasonal shifts in river discharge, increases and decreases in the extent of surface water, and warming soil temperatures. Although not unique to the arctic, increasing anthropogenic pressures represent an additional element of change in the form of resource extraction, fire threat and reservoir construction. The interdependence of the physical, biological and social systems mean that changes in primary indicators have large implications for land cover, animal populations and the regional carbon balance, all of which have the potential to feed back and induce further change. In fact, the complex relationships between the hydrological processes that make the Artic unique also render observed historical change difficult to interpret and predict, leading to conflicting explanations. For example, a decrease in snow accumulation may provide less insulation to the underlying soil resulting in greater frost development and increased spring runoff. Similarly, melting permafrost and ground ice may lead to ground subsidence and increased surface saturation and methane production, while more complete thaw may enhance drainage and result in drier soil conditions. The threshold nature of phase change around the freezing point makes the system especially sensitive to change. In addition, spatial

  16. Dual sensitivity mode system for monitoring processes and sensors

    DOEpatents

    Wilks, Alan D.; Wegerich, Stephan W.; Gross, Kenneth C.

    2000-01-01

    A method and system for analyzing a source of data. The system and method involves initially training a system using a selected data signal, calculating at least two levels of sensitivity using a pattern recognition methodology, activating a first mode of alarm sensitivity to monitor the data source, activating a second mode of alarm sensitivity to monitor the data source and generating a first alarm signal upon the first mode of sensitivity detecting an alarm condition and a second alarm signal upon the second mode of sensitivity detecting an associated alarm condition. The first alarm condition and second alarm condition can be acted upon by an operator and/or analyzed by a specialist or computer program.

  17. The power of liking: Highly sensitive aesthetic processing for guiding us through the world

    PubMed Central

    Faerber, Stella J.; Carbon, Claus-Christian

    2012-01-01

    Assessing liking is one of the most intriguing and influencing types of processing we experience day by day. We can decide almost instantaneously what we like and are highly consistent in our assessments, even across cultures. Still, the underlying mechanism is not well understood and often neglected by vision scientists. Several potential predictors for liking are discussed in the literature, among them very prominently typicality. Here, we analysed the impact of subtle changes of two perceptual dimensions (shape and colour saturation) of three-dimensional models of chairs on typicality and liking. To increase the validity of testing, we utilized a test-adaptation–retest design for extracting sensitivity data of both variables from a static (test only) as well as from a dynamic perspective (test–retest). We showed that typicality was only influenced by shape properties, whereas liking combined processing of shape plus saturation properties, indicating more complex and integrative processing. Processing the aesthetic value of objects, persons, or scenes is an essential and sophisticated mechanism, which seems to be highly sensitive to the slightest variations of perceptual input. PMID:23145310

  18. The Anxiety Sensitivity Index--Revised: Confirmatory Factor Analyses, Structural Invariance in Caucasian and African American Samples, and Score Reliability and Validity

    ERIC Educational Resources Information Center

    Arnau, Randolph C.; Broman-Fulks, Joshua J.; Green, Bradley A.; Berman, Mitchell E.

    2009-01-01

    The most commonly used measure of anxiety sensitivity is the 36-item Anxiety Sensitivity Index--Revised (ASI-R). Exploratory factor analyses have produced several different factors structures for the ASI-R, but an acceptable fit using confirmatory factor analytic approaches has only been found for a 21-item version of the instrument. We evaluated…

  19. Using Uncertainty and Sensitivity Analyses in Socioecological Agent-Based Models to Improve Their Analytical Performance and Policy Relevance

    PubMed Central

    Ligmann-Zielinska, Arika; Kramer, Daniel B.; Spence Cheruvelil, Kendra; Soranno, Patricia A.

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system. PMID:25340764

  20. Numerical Analyses on Transient Thermal Process of Gas - Cooled Current Leads in BEPC II

    NASA Astrophysics Data System (ADS)

    Zhang, X. B.; Yao, Z. L.; Wang, L.; Jia, L. X.

    2004-06-01

    A pair of high current leads will be used for the superconducting detector solenoid magnet and six pairs of low current leads will be used for the superconducting interaction quadruple magnets in the Beijing Electron-Positron Collider Upgrade (BEPC II). This paper reports the numerical analyses on the thermal processes in the current leads, including the power charging process and overloaded current case as well as the transient characteristic of the leads once the helium cooling is interrupted. The design parameters of the current leads are studied for the stable and unstable conditions.

  1. Assessing uncertainty in ecological systems using global sensitivity analyses: a case example of simulated wolf reintroduction effects on elk

    USGS Publications Warehouse

    Fieberg, J.; Jenkins, Kurt J.

    2005-01-01

    Often landmark conservation decisions are made despite an incomplete knowledge of system behavior and inexact predictions of how complex ecosystems will respond to management actions. For example, predicting the feasibility and likely effects of restoring top-level carnivores such as the gray wolf (Canis lupus) to North American wilderness areas is hampered by incomplete knowledge of the predator-prey system processes and properties. In such cases, global sensitivity measures, such as Sobola?? indices, allow one to quantify the effect of these uncertainties on model predictions. Sobola?? indices are calculated by decomposing the variance in model predictions (due to parameter uncertainty) into main effects of model parameters and their higher order interactions. Model parameters with large sensitivity indices can then be identified for further study in order to improve predictive capabilities. Here, we illustrate the use of Sobola?? sensitivity indices to examine the effect of parameter uncertainty on the predicted decline of elk (Cervus elaphus) population sizes following a hypothetical reintroduction of wolves to Olympic National Park, Washington, USA. The strength of density dependence acting on survival of adult elk and magnitude of predation were the most influential factors controlling elk population size following a simulated wolf reintroduction. In particular, the form of density dependence in natural survival rates and the per-capita predation rate together accounted for over 90% of variation in simulated elk population trends. Additional research on wolf predation rates on elk and natural compensations in prey populations is needed to reliably predict the outcome of predatora??prey system behavior following wolf reintroductions.

  2. Sensitivity analyses for clustered data: an illustration from a large-scale clustered randomized controlled trial in education.

    PubMed

    Abe, Yasuyo; Gee, Kevin A

    2014-12-01

    In this paper, we demonstrate the importance of conducting well-thought-out sensitivity analyses for handling clustered data (data in which individuals are grouped into higher order units, such as students in schools) that arise from cluster randomized controlled trials (RCTs). This is particularly relevant given the rise in rigorous impact evaluations that use cluster randomized designs across various fields including education, public health and social welfare. Using data from a recently completed cluster RCT of a school-based teacher professional development program, we demonstrate our use of four commonly applied methods for analyzing clustered data. These methods include: (1) hierarchical linear modeling (HLM); (2) feasible generalized least squares (FGLS); (3) generalized estimating equations (GEE); and (4) ordinary least squares (OLS) regression with cluster-robust (Huber-White) standard errors. We compare our findings across each method, showing how inconsistent results - in terms of both effect sizes and statistical significance - emerged across each method and our analytic approach to resolving such inconsistencies.

  3. Sensitivity Analyses in Small Break LOCA with HPI-Failure: Effect of Break-Size in Secondary-Side Depressurization

    NASA Astrophysics Data System (ADS)

    Kinoshita, Ikuo; Torige, Toshihide; Yamada, Minoru

    2014-06-01

    In the case of total failure of the high pressure injection (HPI) system following small break loss of coolant accident (SBLOCA) in pressurized water reactor (PWR), the break size is so small that the primary system does not depressurize to the accumulator (ACC) injection pressure before the core is uncovered extensively. Therefore, steam generator (SG) secondary-side depressurization is necessary as an accident management in order to grant accumulator system actuation and core reflood. A thermal-hydraulic analysis using RELAP5/MOD3 was made on SBLOCA with HPI-failure for Oi Units 3/4 operated by Kansai Electoric Power Co., which are conventional 4 loop PWR plants. The effectiveness of SG secondary-side depressurization procedure was investigated for the real plant design and operational characteristics. The sensitivity analyses using RELAP5/MOD3.2 showed that the accident management was effective for a wide range of break sizes, various orientations and positions. The critical break can be 3 inch cold-leg bottom break.

  4. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    PubMed

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  5. A sensitive non-aqueous capillary electrophoresis-mass spectrometric method for multiresidue analyses of beta-agonists in pork.

    PubMed

    Anurukvorakun, Oraphan; Buchberger, Wolfgang; Himmelsbach, Markus; Klampel, Christian W; Suntornsuk, Leena

    2010-06-01

    Non-aqueous capillary electrophoresis-mass spectrometry (NACE-MS) was developed for trace analyses of beta-agonists (i.e. clenbuterol, salbutamol and terbutaline) in pork. The NACE was in 18 mM ammonium acetate in methanol-acetonitrile-glacial acetic acid (66 : 33 : 1, v/v/v) using a voltage of 28 kV. The hyphenation of CE with a time-of-flight MS was performed by electrospray ionization interface employing 5 mM ammonium acetate in methanol-water (80 : 20, v/v) as the sheath liquid at a flow rate of 2 microL/min. Method sensitivity was enhanced by a co-injection technique (combination of hydrodynamic and electrokinetic injection) using a pressure of 50 mbar and a voltage of 10 kV for 12 s. The method was validated in comparison with HPLC-MS-MS. The NACE-MS procedure provided excellent detection limits of 0.3 ppb for all analytes. Method linearity was good (r(2) > 0.999, in a range of 0.8-1000 ppb for all analytes). Precision showed %RSDs of <17.7%. Sample pre-treatment was carried out by solid-phase extraction using mixed mode reversed phase/cation exchange cartridges yielding recoveries between 69 and 80%. The NACE-MS could be successfully used for the analysis of beta-agonists in pork samples and results showed no statistical differences from the values reported by the Ministry of Public Health, Thailand using HPLC-MS-MS method.

  6. Phenotypic and Genetic Analyses of the Varroa Sensitive Hygienic Trait in Russian Honey Bee (Hymenoptera: Apidae) Colonies

    PubMed Central

    Kirrane, Maria J.; de Guzman, Lilia I.; Holloway, Beth; Frake, Amanda M.; Rinderer, Thomas E.; Whelan, Pádraig M.

    2015-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an “actual brood removal assay” that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock. PMID:25909856

  7. Social conformity is due to biased stimulus processing: electrophysiological and diffusion analyses.

    PubMed

    Germar, Markus; Albrecht, Thorsten; Voss, Andreas; Mojzisch, Andreas

    2016-09-01

    Hundreds of studies have found that humans' decisions are strongly influenced by the opinions of others, even when making simple perceptual decisions. In this study, we aimed to clarify whether this effect can be explained by social influence biasing (early) perceptual processes. We employed stimulus evoked potentials, lateralized readiness potentials (LRPs) and a diffusion model analysis of reaction time data to uncover the neurocognitive processes underlying social conformity in perceptual decision-making. The diffusion model analysis showed that social conformity was due to a biased uptake of stimulus information and accompanied by more careful stimulus processing. As indicated by larger N1-amplitudes, social influence increased early attentional resources for stimulus identification and discrimination. Furthermore, LRP analyses revealed that stimulus processing was biased even in cases of non-conformity. In conclusion, our results suggest that the opinion of others can cause individuals to selectively process stimulus information supporting this opinion, thereby inducing social conformity. This effect is present even when individuals do not blindly follow the majority but rather carefully process stimulus information.

  8. Sensory-processing sensitivity in social anxiety disorder: relationship to harm avoidance and diagnostic subtypes.

    PubMed

    Hofmann, Stefan G; Bitran, Stella

    2007-01-01

    Sensory-processing sensitivity is assumed to be a heritable vulnerability factor for shyness. The present study is the first to examine sensory-processing sensitivity among individuals with social anxiety disorder. The results showed that the construct is separate from social anxiety, but it is highly correlated with harm avoidance and agoraphobic avoidance. Individuals with a generalized subtype of social anxiety disorder reported higher levels of sensory-processing sensitivity than individuals with a non-generalized subtype. These preliminary findings suggest that sensory-processing sensitivity is uniquely associated with the generalized subtype of social anxiety disorder. Recommendations for future research are discussed.

  9. The quest for the best: The impact of different EPI sequences on the sensitivity of random effect fMRI group analyses.

    PubMed

    Kirilina, Evgeniya; Lutti, Antoine; Poser, Benedikt A; Blankenburg, Felix; Weiskopf, Nikolaus

    2016-02-01

    We compared the sensitivity of standard single-shot 2D echo planar imaging (EPI) to three advanced EPI sequences, i.e., 2D multi-echo EPI, 3D high resolution EPI and 3D dual-echo fast EPI in fixed effect and random effects group level fMRI analyses at 3T. The study focused on how well the variance reduction in fixed effect analyses achieved by advanced EPI sequences translates into increased sensitivity in the random effects group level analysis. The sensitivity was estimated in a functional MRI experiment of an emotional learning and a reward based learning tasks in a group of 24 volunteers. Each experiment was acquired with the four different sequences. The task-related response amplitude, contrast level and respective t-value were proxies for the functional sensitivity across the brain. All three advanced EPI methods increased the sensitivity in the fixed effects analyses, but standard single-shot 2D EPI provided a comparable performance in random effects group analysis when whole brain coverage and moderate resolution are required. In this experiment inter-subject variability determined the sensitivity of the random effects analysis for most brain regions, making the impact of EPI pulse sequence improvements less relevant or even negligible for random effects analyses. An exception concerns the optimization of EPI reducing susceptibility-related signal loss that translates into an enhanced sensitivity e.g. in the orbitofrontal cortex for multi-echo EPI. Thus, future optimization strategies may best aim at reducing inter-subject variability for higher sensitivity in standard fMRI group studies at moderate spatial resolution. PMID:26515905

  10. FMRI of ventral and dorsal processing streams in basic reading processes: insular sensitivity to phonology.

    PubMed

    Borowsky, Ron; Cummine, Jacqueline; Owen, William J; Friesen, Chris Kelland; Shih, Francis; Sarty, Gordon E

    2006-01-01

    Most current models of the neurophysiology of basic reading processes agree on a system involving two cortical streams: a ventral stream (occipital-temporal) used when accessing familiar words encoded in lexical memory, and a dorsal stream (occipital-parietal-frontal) used when phonetically decoding words (i.e., mapping sublexical spelling onto sounds). The models diverge, however, on the issue of whether the insular cortex is involved. The present fMRI study required participants to read aloud exception words (e.g., 'one', which must be read via lexical memory) and pseudohomophones (e.g., 'wun', which must be read via sublexical spelling to sound translation) to examine the processing streams as well as the insular cortex, and their relationship to lexical and sublexical reading processes. The present study supports the notion of independent ventral-lexical and dorsal-sublexical streams, and further suggests the insular cortex to be sensitive to phonological processing (particularly sublexical spelling-sound translation). These latter findings illuminate the nature of insular activity during reading, which must be explored further in future studies, and accounted for in models of the neurophysiology of reading.

  11. GoSynthetic database tool to analyse natural and engineered molecular processes

    PubMed Central

    Liang, Chunguang; Krüger, Beate; Dandekar, Thomas

    2013-01-01

    An essential topic for synthetic biologists is to understand the structure and function of biological processes and involved proteins and plan experiments accordingly. Remarkable progress has been made in recent years towards this goal. However, efforts to collect and present all information on processes and functions are still cumbersome. The database tool GoSynthetic provides a new, simple and fast way to analyse biological processes applying a hierarchical database. Four different search modes are implemented. Furthermore, protein interaction data, cross-links to organism-specific databases (17 organisms including six model organisms and their interactions), COG/KOG, GO and IntAct are warehoused. The built in connection to technical and engineering terms enables a simple switching between biological concepts and concepts from engineering, electronics and synthetic biology. The current version of GoSynthetic covers more than one million processes, proteins, COGs and GOs. It is illustrated by various application examples probing process differences and designing modifications. Database URL: http://gosyn.bioapps.biozentrum.uni-wuerzburg.de. PMID:23813641

  12. Emotional perception: meta-analyses of face and natural scene processing.

    PubMed

    Sabatinelli, Dean; Fortune, Erica E; Li, Qingyang; Siddiqui, Aisha; Krafft, Cynthia; Oliver, William T; Beck, Stefanie; Jeffries, Joshua

    2011-02-01

    Functional imaging studies of emotional processing typically contain neutral control conditions that serve to remove simple effects of visual perception, thus revealing the additional emotional process. Here we seek to identify similarities and differences across 100 studies of emotional face processing and 57 studies of emotional scene processing, using a coordinate-based meta-analysis technique. The overlay of significant meta-analyses resulted in extensive overlap in clusters, coupled with offset and unique clusters of reliable activity. The area of greatest overlap is the amygdala, followed by regions of medial prefrontal cortex, inferior frontal/orbitofrontal cortex, inferior temporal cortex, and extrastriate occipital cortex. Emotional face-specific clusters were identified in regions known to be involved in face processing, including anterior fusiform gyrus and middle temporal gyrus, and emotional scene studies were uniquely associated with lateral occipital cortex, as well as pulvinar and the medial dorsal nucleus of the thalamus. One global result of the meta-analysis reveals that a class of visual stimuli (faces vs. scenes) has a considerable impact on the resulting emotion effects, even after removing the basic visual perception effects through subtractive contrasts. Pure effects of emotion may thus be difficult to remove for the particular class of stimuli employed in an experimental paradigm. Whether a researcher chooses to tightly control the various elements of the emotional stimuli, as with posed face photographs, or allow variety and environmental realism into their evocative stimuli, as with natural scenes, will depend on the desired generalizability of their results. PMID:20951215

  13. Protons are one of the limiting factors in determining sensitivity of nano surface-assisted (+)-mode LDI MS analyses.

    PubMed

    Cho, Eunji; Ahn, Miri; Kim, Young Hwan; Kim, Jongwon; Kim, Sunghwan

    2013-10-01

    A proton source employing a nanostructured gold surface for use in (+)-mode laser desorption ionization mass spectrometry (LDI-MS) was evaluated. Analysis of perdeuterated polyaromatic hydrocarbon compound dissolved in regular toluene, perdeuterated toluene, and deuterated methanol all showed that protonated ions were generated irregardless of solvent system. Therefore, it was concluded that residual water on the surface of the LDI plate was the major source of protons. The fact that residual water remaining after vacuum drying was the source of protons suggests that protons may be the limiting reagent in the LDI process and that overall ionization efficiency can be improved by incorporating an additional proton source. When extra proton sources, such as thiolate compounds and/or citric acid, were added to a nanostructured gold surface, the protonated signal abundance increased. These data show that protons are one of the limiting components in (+)-mode LDI MS analyses employing nanostructured gold surfaces. Therefore, it has been suggested that additional efforts are required to identify compounds that can act as proton donors without generating peaks that interfere with mass spectral interpretation.

  14. Microstructure Sensitive Design and Processing in Solid Oxide Electrolyzer Cell

    SciTech Connect

    Dr. Hamid Garmestani; Dr. Stephen Herring

    2009-06-12

    The aim of this study was to develop and inexpensive manufacturing process for deposition of functionally graded thin films of LSM oxides with porosity graded microstructures for use as IT-SOFCs cathode. The spray pyrolysis method was chosen as a low-temperature processing technique for deposition of porous LSM films onto dense YXZ substrates. The effort was directed toward the optimization of the processing conditions for deposition of high quality LSM films with variety of morphologies in the range of dense to porous microstructures. Results of optimization studies of spray parameters revealed that the substrate surface temperature is the most critical parameter influencing the roughness and morphology, porosity, cracking and crystallinity of the film.

  15. Temperament trait of sensory processing sensitivity moderates cultural differences in neural response

    PubMed Central

    Ketay, Sarah; Hedden, Trey; Aron, Elaine N.; Rose Markus, Hazel; Gabrieli, John D. E.

    2010-01-01

    This study focused on a possible temperament-by-culture interaction. Specifically, it explored whether a basic temperament/personality trait (sensory processing sensitivity; SPS), perhaps having a genetic component, might moderate a previously established cultural difference in neural responses when making context-dependent vs context-independent judgments of simple visual stimuli. SPS has been hypothesized to underlie what has been called inhibitedness or reactivity in infants, introversion in adults, and reactivity or responsivness in diverse animal species. Some biologists view the trait as one of two innate strategies—observing carefully before acting vs being first to act. Thus the central characteristic of SPS is hypothesized to be a deep processing of information. Here, 10 European-Americans and 10 East Asians underwent functional magnetic resonance imaging while performing simple visuospatial tasks emphasizing judgments that were either context independent (typically easier for Americans) or context dependent (typically easier for Asians). As reported elsewhere, each group exhibited greater activation for the culturally non-preferred task in frontal and parietal regions associated with greater effort in attention and working memory. However, further analyses, reported here for the first time, provided preliminary support for moderation by SPS. Consistent with the careful-processing theory, high-SPS individuals showed little cultural difference; low-SPS, strong culture differences. PMID:20388694

  16. Variable high pressure processing sensitivities for GII human noroviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (HuNoV) is the leading cause of foodborne diseases worldwide. High pressure processing (HPP) is one of the most promising non-thermal technologies for decontamination of viral pathogens in foods. However, the survival of HuNoVs by HPP is poorly understood because these viruses cann...

  17. In situ analyses on negative ions in the indium-gallium-zinc oxide sputtering process

    SciTech Connect

    Jia, Junjun; Torigoshi, Yoshifumi; Shigesato, Yuzo

    2013-07-01

    The origin of negative ions in the dc magnetron sputtering process using a ceramic indium-gallium-zinc oxide target has been investigated by in situ analyses. The observed negative ions are mainly O{sup -} with energies corresponding to the target voltage, which originates from the target and barely from the reactive gas (O{sub 2}). Dissociation of ZnO{sup -}, GaO{sup -}, ZnO{sub 2}{sup -}, and GaO{sub 2}{sup -} radicals also contributes to the total negative ion flux. Furthermore, we find that some sputtering parameters, such as the type of sputtering gas (Ar or Kr), sputtering power, total gas pressure, and magnetic field strength at the target surface, can be used to control the energy distribution of the O{sup -} ion flux.

  18. Data processing and sensitivity studies of the GOMOS instrument

    NASA Astrophysics Data System (ADS)

    Tamminen, Johanna; Sihvola, Elina; Haario, Heikki

    1996-10-01

    The data processing of the global ozone monitoring by occultation of stars instrument separates naturally into two parts. The nonlinear spectral inversion retrieves the horizontally integrated gas densities. The vertical profiles of the gases are retrieved by using the generalized onion peeling method. The Markov chain Monte Carlo method has been used to calculate the posteriori distribution of the spectral inversion problem. This method was found to be simple and straightforward in analyzing the real posteriori distribution and confidence regions of the retrievals.

  19. Thermal threshold and sensitivity of the only symbiotic Mediterranean gorgonian Eunicella singularis by morphometric and genotypic analyses.

    PubMed

    Pey, Alexis; Catanéo, Jérôme; Forcioli, Didier; Merle, Pierre-Laurent; Furla, Paola

    2013-07-01

    The only symbiotic Mediterranean gorgonian, Eunicella singularis, has faced several mortality events connected to abnormal high temperatures. Since thermotolerance data remain scarce, heat-induced necrosis was monitored in aquarium by morphometric analysis. Gorgonian tips were sampled at two sites: Medes (Spain) and Riou (France) Islands, and at two depths: -15 m and-35 m. Although coming from contrasting thermal regimes, seawater above 28 °C led to rapid and complete tissue necrosis for all four populations. However, at 27 °C, the time length leading to 50% tissue necrosis allowed us to classify samples within three classes of thermal sensitivity. Irrespectively of the depth, Medes specimens were either very sensitive or resistant, while Riou fragments presented a medium sensitivity. Microsatellite analysis revealed that host and symbiont were genetically differentiated between sites, but not between depths. Finally, these genetic differentiations were not directly correlated to a specific thermal sensitivity whose molecular bases remain to be discovered.

  20. Assessing the risk of bluetongue to UK livestock: uncertainty and sensitivity analyses of a temperature-dependent model for the basic reproduction number.

    PubMed

    Gubbins, Simon; Carpenter, Simon; Baylis, Matthew; Wood, James L N; Mellor, Philip S

    2008-03-01

    Since 1998 bluetongue virus (BTV), which causes bluetongue, a non-contagious, insect-borne infectious disease of ruminants, has expanded northwards in Europe in an unprecedented series of incursions, suggesting that there is a risk to the large and valuable British livestock industry. The basic reproduction number, R(0), provides a powerful tool with which to assess the level of risk posed by a disease. In this paper, we compute R(0) for BTV in a population comprising two host species, cattle and sheep. Estimates for each parameter which influences R(0) were obtained from the published literature, using those applicable to the UK situation wherever possible. Moreover, explicit temperature dependence was included for those parameters for which it had been quantified. Uncertainty and sensitivity analyses based on Latin hypercube sampling and partial rank correlation coefficients identified temperature, the probability of transmission from host to vector and the vector to host ratio as being most important in determining the magnitude of R(0). The importance of temperature reflects the fact that it influences many processes involved in the transmission of BTV and, in particular, the biting rate, the extrinsic incubation period and the vector mortality rate. PMID:17638649

  1. Linking databases to plant drawings saves time and money in process hazard analyses

    SciTech Connect

    Lancaster, C. )

    1993-07-01

    Part of OSHA regulation 29 CFR 1910.119 requires process hazards analyses (PHAs) to be performed for certain chemical operations. A PHA -- also known as a hazardous operations analysis, or HAZOP -- is an organized, systematic effort to identify and analyze the significance of potential hazards associated with processing or handling highly hazardous chemicals. The problem is, most chemical and petrochemical plants have been designed using manual drafting methods. In many cases, these paper drawings are deteriorating with age, and their information is outdated. Thus, many companies updating their drawings to satisfy PHA requirements are converting to computer-aided plant engineering methods. The latest generation of PC-based, computer-aided plant engineering systems links information databases and adds them to drawings in minimal time. This method creates a self-documenting plant, and saves time when performing the PHA and generating other safety- or efficiency-related information. While the computer-aided capability has been available for years on mainframe computers, only recently has it migrated to the more cost-effective PC level.

  2. Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-dm-30

    PubMed Central

    Voss, Andreas; Voss, Jochen; Lerche, Veronika

    2015-01-01

    Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modeling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss and Voss, 2007) for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability for different data sets. PMID:25870575

  3. A knowledge acquisition process to analyse operational problems in solid waste management facilities.

    PubMed

    Dokas, Ioannis M; Panagiotakopoulos, Demetrios C

    2006-08-01

    The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions.

  4. ANION ANALYSES BY ION CHROMATOGRAPHY FOR THE ALTERNATE REDUCTANT DEMONSTRATION FOR THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Best, D.

    2010-08-04

    The Process Science Analytical Laboratory (PSAL) at the Savannah River National Laboratory was requested by the Defense Waste Processing Facility (DWPF) to develop and demonstrate an Ion Chromatography (IC) method for the analysis of glycolate, in addition to eight other anions (fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate and phosphate) in Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) samples. The method will be used to analyze anions for samples generated from the Alternate Reductant Demonstrations to be performed for the DWPF at the Aiken County Technology Laboratory (ACTL). The method is specific to the characterization of anions in the simulant flowsheet work. Additional work will be needed for the analyses of anions in radiological samples by Analytical Development (AD) and DWPF. The documentation of the development and demonstration of the method fulfills the third requirement in the TTQAP, SRNL-RP-2010-00105, 'Task Technical and Quality Assurance Plan for Glycolic-Formic Acid Flowsheet Development, Definition and Demonstrations Tasks 1-3'.

  5. Process hazards analysis (PrHA) program, bridging accident analyses and operational safety

    SciTech Connect

    Richardson, J. A.; McKernan, S. A.; Vigil, M. J.

    2003-01-01

    Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker

  6. A miniaturised laser ablation/ionisation analyser for investigation of elemental/isotopic composition with the sub-ppm detection sensitivity

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Riedo, A.; Meyer, S.; Iakovleva, M.; Neuland, M.; Wurz, P.

    2012-04-01

    Detailed knowledge of the elemental and isotopic composition of solar system objects imposes critical constraints on models describing the origin of our solar system and can provide insight to chemical and physical processes taking place during the planetary evolution. So far, the investigation of chemical composition of planetary surfaces could be conducted almost exclusively by remotely controlled spectroscopic instruments from orbiting spacecraft, landers or rovers. With some exceptions, the sensitivity of these techniques is, however, limited and often only abundant elements can be investigated. Nevertheless, the spectroscopic techniques proved to be successful for global chemical mapping of entire planetary objects such as the Moon, Mars and asteroids. A combined afford of the measurements from orbit, landers and rovers can also yield the determination of local mineralogy. New instruments including Laser Induced Breakdown Spectroscopy (LIBS) and Laser Ablation/Ionisation Mass Spectrometer (LIMS), have been recently included for several landed missions. LIBS is thought to improve flexibility of the investigations and offers a well localised chemical probing from distances up to 10-13 m. Since LIMS is a mass spectrometric technique it allows for very sensitive measurements of elements and isotopes. We will demonstrate the results of the current performance tests obtained by application of a miniaturised laser ablation/ionisation mass spectrometer, a LIMS instrument, developed in Bern for the chemical analysis of solids. So far, the only LIMS instrument on a spacecraft is the LAZMA instrument. This spectrometer was a part of the payload for PHOBOS-GRUNT mission and is also currently selected for LUNA-RESURCE and LUNA-GLOB missions to the lunar south poles (Managadze et al., 2011). Our LIMS instrument has the dimensions of 120 x Ø60 mm and with a weight of about 1.5 kg (all electronics included), it is the lightest mass analyser designed for in situ chemical

  7. Combination of optical and electrical loss analyses for a Si-phthalocyanine dye-sensitized solar cell.

    PubMed

    Lin, Keng-Chu; Wang, Lili; Doane, Tennyson; Kovalsky, Anton; Pejic, Sandra; Burda, Clemens

    2014-12-11

    In order to promote the development of solar cells with varying types of sensitizers including dyes and quantum dots, it is crucial to establish a general experimental analysis that accounts for all important optical and electrical losses resulting from interfacial phenomena. All of these varying types of solar cells share common features where a mesoporous scaffold is used as a sensitizer loading support as well as an electron transport material, which may result in light scattering. The loss of efficiency at interfaces of the sensitizer, the mesoporous TiO2 nanoparticle films, the FTO conductive layer, and the supportive glass substrate should be considered in addition to the photoinduced electron transport properties within a cell. On the basis of optical parameters, one can obtain the internal quantum efficiency (IQE) of a solar cell, an important parameter that cannot be directly measured but must be derived from several key experiments. By integrating an optical loss model with an electrical loss model, many solar cell parameters could be characterized from electro-optical observables including reflectance, transmittance, and absorptance of the dye sensitizer, the electron injection efficiency, and the charge collection efficiency. In this work, an integrated electro-optical approach has been applied to SiPc (Pc 61) dye-sensitized solar cells for evaluating the parameters affecting the overall power conversion efficiency. The absorptance results of the Pc 61 dye-sensitized solar cell provide evidence that the adsorbed Pc 61 forms noninjection layers on TiO2 surfaces when the dye immersion time exceeds 120 min, resulting in shading light from the active layer rather than an increase in photoelectric current efficiency.

  8. Combination of optical and electrical loss analyses for a Si-phthalocyanine dye-sensitized solar cell.

    PubMed

    Lin, Keng-Chu; Wang, Lili; Doane, Tennyson; Kovalsky, Anton; Pejic, Sandra; Burda, Clemens

    2014-12-11

    In order to promote the development of solar cells with varying types of sensitizers including dyes and quantum dots, it is crucial to establish a general experimental analysis that accounts for all important optical and electrical losses resulting from interfacial phenomena. All of these varying types of solar cells share common features where a mesoporous scaffold is used as a sensitizer loading support as well as an electron transport material, which may result in light scattering. The loss of efficiency at interfaces of the sensitizer, the mesoporous TiO2 nanoparticle films, the FTO conductive layer, and the supportive glass substrate should be considered in addition to the photoinduced electron transport properties within a cell. On the basis of optical parameters, one can obtain the internal quantum efficiency (IQE) of a solar cell, an important parameter that cannot be directly measured but must be derived from several key experiments. By integrating an optical loss model with an electrical loss model, many solar cell parameters could be characterized from electro-optical observables including reflectance, transmittance, and absorptance of the dye sensitizer, the electron injection efficiency, and the charge collection efficiency. In this work, an integrated electro-optical approach has been applied to SiPc (Pc 61) dye-sensitized solar cells for evaluating the parameters affecting the overall power conversion efficiency. The absorptance results of the Pc 61 dye-sensitized solar cell provide evidence that the adsorbed Pc 61 forms noninjection layers on TiO2 surfaces when the dye immersion time exceeds 120 min, resulting in shading light from the active layer rather than an increase in photoelectric current efficiency. PMID:24922464

  9. Continuum beliefs in the stigma process regarding persons with schizophrenia and depression: results of path analyses

    PubMed Central

    Mnich, Eva E.; Angermeyer, Matthias C.; von dem Knesebeck, Olaf

    2016-01-01

    Background Individuals with mental illness often experience stigmatization and encounter stereotypes such as being dangerous or unpredictable. To further improve measures against psychiatric stigma, it is of importance to understand its components. In this study, we attend to the step of separation between “us” and “them” in the stigma process as conceptualized by Link and Phelan. In using the belief in continuity of mental illness symptoms as a proxy for separation, we explore its associations with stereotypes, emotional responses and desire for social distance in the stigma process. Methods Analyses are based on a representative survey in Germany. Vignettes with symptoms suggestive of schizophrenia (n = 1,338) or depression (n = 1,316) were presented to the respondents, followed by questions on continuum belief, stereotypes, emotional reactions and desire for social distance. To examine the relationship between these items, path models were computed. Results Respondents who endorsed the continuum belief tended to show greater prosocial reactions (schizophrenia: 0.07; p < 0.001, depression: 0.09; p < 0.001) and less desire for social distance (schizophrenia: −0.13; p < 0.001, depression: −0.14; p < 0.001) toward a person with mental illness. In both cases, agreement with the stereotypes of unpredictability and dangerousness was positively associated with feelings of anger and fear as well as desire for social distance. There were no statistically significant relations between stereotypes and continuum beliefs. Discussion Assumptions regarding continuum beliefs in the stigma process were only partially confirmed. However, there were associations of continuum beliefs with less stigmatizing attitudes toward persons affected by either schizophrenia or depression. Including information on continuity of symptoms, and thus oppose perceived separation, could prove helpful in future anti-stigma campaigns. PMID:27703840

  10. Pre-waste-emplacement ground-water travel time sensitivity and uncertainty analyses for Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect

    Kaplan, P.G.

    1993-01-01

    Yucca Mountain, Nevada is a potential site for a high-level radioactive-waste repository. Uncertainty and sensitivity analyses were performed to estimate critical factors in the performance of the site with respect to a criterion in terms of pre-waste-emplacement ground-water travel time. The degree of failure in the analytical model to meet the criterion is sensitive to the estimate of fracture porosity in the upper welded unit of the problem domain. Fracture porosity is derived from a number of more fundamental measurements including fracture frequency, fracture orientation, and the moisture-retention characteristic inferred for the fracture domain.

  11. Phenotypic and genetic analyses of the Varroa Sensitive Hygienic trait in Russian Honey Bee (Hymenoptera: Apidae) colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene and more specific VarroaVarroa Sensitive Hygiene (VSH) provide resistance toward the Varroa mite in a number of stocks. In this study, Russian (RHB) and Italian honey bees were assessed for the VSH trait. Two...

  12. Star cluster analyses from multi-band photometry: the key advantage of SALT's U-band sensitivity

    NASA Astrophysics Data System (ADS)

    Fritze-v. Alvensleben, Uta; Papaderos, Polychronis; Anders, Peter; Lilly, Thomas; Cunow, Barbara; Gallagher, Jay

    Conventionally, CMD analyses of nearby star clusters are based on observations in 2 passbands. They are plagued by considerable degeneracies between age, metallicity, distance (and extinction) that can largely be resolved by including additional passbands with U being most appropriate for young star clusters and I or a NIR band for old globular clusters. For star clusters that cannot be resolved, integrated photometry in suitably selected passbands was shown to be as accurate as spectroscopy in independently revealing ages, metallicities, internal extinction, and photometric masses and their respective 1σ uncertainties, when analysed with a dedicated analysis tool for their Spectral Energy Distributions (=SEDs) (cf. Anders et al. 2004a, b, de Grijs et al. 2003b). For external galaxies, rich star cluster populations can thus be efficiently analysed using deep exposures in 4 suitable filters. Again, the inclusion of the U-band significantly reduces the uncertainties in the cluster parameters. The age and metallicity distributions of star cluster systems yield valuable information about the formation history of their parent galaxies (Fritze - v. Alvensleben 2004). Here, we present our GALEV evolutionary synthesis models for star clusters of various metallicities (Anders & Fritze - v. Alvensleben 2003), recently extended to include the time evolution of CMDs, the dedicated SED Analysis Tool AnalySED we developed, show results on the basis of HST data, and first results from our SALT PVP project on young star clusters in starburst and interacting galaxies.

  13. The highly sensitive brain: an fMRI study of sensory processing sensitivity and response to others' emotions

    PubMed Central

    Acevedo, Bianca P; Aron, Elaine N; Aron, Arthur; Sangster, Matthew-Donald; Collins, Nancy; Brown, Lucy L

    2014-01-01

    Background Theory and research suggest that sensory processing sensitivity (SPS), found in roughly 20% of humans and over 100 other species, is a trait associated with greater sensitivity and responsiveness to the environment and to social stimuli. Self-report studies have shown that high-SPS individuals are strongly affected by others' moods, but no previous study has examined neural systems engaged in response to others' emotions. Methods This study examined the neural correlates of SPS (measured by the standard short-form Highly Sensitive Person [HSP] scale) among 18 participants (10 females) while viewing photos of their romantic partners and of strangers displaying positive, negative, or neutral facial expressions. One year apart, 13 of the 18 participants were scanned twice. Results Across all conditions, HSP scores were associated with increased brain activation of regions involved in attention and action planning (in the cingulate and premotor area [PMA]). For happy and sad photo conditions, SPS was associated with activation of brain regions involved in awareness, integration of sensory information, empathy, and action planning (e.g., cingulate, insula, inferior frontal gyrus [IFG], middle temporal gyrus [MTG], and PMA). Conclusions As predicted, for partner images and for happy facial photos, HSP scores were associated with stronger activation of brain regions involved in awareness, empathy, and self-other processing. These results provide evidence that awareness and responsiveness are fundamental features of SPS, and show how the brain may mediate these traits. PMID:25161824

  14. The neural processing of moral sensitivity to issues of justice and care.

    PubMed

    Robertson, Diana; Snarey, John; Ousley, Opal; Harenski, Keith; DuBois Bowman, F; Gilkey, Rick; Kilts, Clinton

    2007-03-01

    The empirical and theoretical consideration of ethical decision making has focused on the process of moral judgment; however, a precondition to judgment is moral sensitivity, the ability to detect and evaluate moral issues [Rest, J. R. (1984). The major components of morality. In W. Kurtines & J. Gewirtz (Eds.), Morality, moral behaviour, and moral development (pp. 24-38). New York, NY: Wiley]. Using functional magnetic resonance imaging (fMRI) and contextually standardized, real life moral issues, we demonstrate that sensitivity to moral issues is associated with activation of the polar medial prefrontal cortex, dorsal posterior cingulate cortex, and posterior superior temporal sulcus (STS). These activations suggest that moral sensitivity is related to access to knowledge unique to one's self, supported by autobiographical memory retrieval and social perspective taking. We also assessed whether sensitivity to rule-based or "justice" moral issues versus social situational or "care" moral issues is associated with dissociable neural processing events. Sensitivity to justice issues was associated with greater activation of the left intraparietal sulcus, whereas sensitivity to care issues was associated with greater activation of the ventral posterior cingulate cortex, ventromedial and dorsolateral prefrontal cortex, and thalamus. These results suggest a role for access to self histories and identities and social perspectives in sensitivity to moral issues, provide neural representations of the subcomponent process of moral sensitivity originally proposed by Rest, and support differing neural information processing for the interpretive recognition of justice and care moral issues.

  15. Developing Sensitivity to Subword Combinatorial Orthographic Regularity (SCORe): A Two-Process Framework

    ERIC Educational Resources Information Center

    Mano, Quintino R.

    2016-01-01

    Accumulating evidence suggests that literacy acquisition involves developing sensitivity to the statistical regularities of the textual environment. To organize accumulating evidence and help guide future inquiry, this article integrates data from disparate fields of study and formalizes a new two-process framework for developing sensitivity to…

  16. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  17. Texture Analyses of Ti/Al2O3 Nanocomposite Produced Using Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shafiei-Zarghani, Aziz; Kashani-Bozorg, Seyed Farshid; Gerlich, Adrian P.

    2016-11-01

    The texture evolution of Ti/Al2O3 nanocomposite fabricated using friction stir processing (FSP) was investigated at both macroscopic and microscopic levels employing X-ray diffraction and electron backscattering diffraction techniques. The developed textures were compared with ideal shear textures of hexagonal close-packed (hcp) structure, revealing that the fabricated nanocomposite is dominated by the P 1 hcp (fiber { 10bar{1}1} < 1bar{2}10rangle (and relatively weak B (fiber { 10bar{1}1} < bar{1}bar{1}23rangle ) textures. The analyses of macro- and microtextures showed that the presence of nanosized Al2O3 particles activated the pyramidal { 10bar{1}1} < bar{1}bar{1}23rangle slip system in addition to dominant { 10bar{1}0} < 1bar{2}10rangle prism, basal { {0002} }< 1bar{2}10rangle, and pyramidal { 10bar{1}1} < 1bar{2}10rangle slip systems which normally govern plastic deformation during FSP of commercially pure titanium alloy. Moreover, the presence of nanoparticles promoted the occurrence of continuous dynamic recrystallization as well as increasing the fraction of high-angle grain boundaries within the developed microstructure.

  18. Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)

    SciTech Connect

    CHRYSOCHOOU, MARIA; FAKRA, SIRINE C .; Marcus, Matthew A.; Moon, Deok Hyun; Dermatas, Dimitris

    2010-03-01

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30percent of its total Cr(VI) (6000 mg/kg) as large crystals(>20 ?m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50percent of the Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmilleritewasalso likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment ofHBCOPRis challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to ~;;50percent of Cr(VI) in GB COPR.

  19. Texture Analyses of Ti/Al2O3 Nanocomposite Produced Using Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shafiei-Zarghani, Aziz; Kashani-Bozorg, Seyed Farshid; Gerlich, Adrian P.

    2016-08-01

    The texture evolution of Ti/Al2O3 nanocomposite fabricated using friction stir processing (FSP) was investigated at both macroscopic and microscopic levels employing X-ray diffraction and electron backscattering diffraction techniques. The developed textures were compared with ideal shear textures of hexagonal close-packed (hcp) structure, revealing that the fabricated nanocomposite is dominated by the P 1 hcp (fiber { 10bar{1}1} < 1bar{2}10rangle (and relatively weak B (fiber { 10bar{1}1} < bar{1}bar{1}23rangle ) textures. The analyses of macro- and microtextures showed that the presence of nanosized Al2O3 particles activated the pyramidal { 10bar{1}1} < bar{1}bar{1}23rangle slip system in addition to dominant { 10bar{1}0} < 1bar{2}10rangle prism, basal { {0002} }< 1bar{2}10rangle, and pyramidal { 10bar{1}1} < 1bar{2}10rangle slip systems which normally govern plastic deformation during FSP of commercially pure titanium alloy. Moreover, the presence of nanoparticles promoted the occurrence of continuous dynamic recrystallization as well as increasing the fraction of high-angle grain boundaries within the developed microstructure.

  20. Microstructural analyses of Cr(VI) speciation in chromite ore processing residue (COPR).

    PubMed

    Chrysochoou, Maria; Fakra, Sirine C; Marcus, Matthew A; Moon, Deok Hyun; Dermatas, Dimitris

    2009-07-15

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30% of its total Cr(VI) (6000 mg/kg) as large crystals (>20 microm diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50% of the Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmillerite was also likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment of HB COPR is challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to approximately 50% of Cr(VI) in GB COPR.

  1. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: a case study for submerged aquatic vegetation

    USGS Publications Warehouse

    Zajac, Zuzanna; Stith, Bradley M.; Bowling, Andrea C.; Langtimm, Catherine A.; Swain, Eric D.

    2015-01-01

    Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust

  2. Sensitivity of LDEF foil analyses using ultra-low background germanium vs. large NaI(Tl) multidimensional spectrometers

    NASA Technical Reports Server (NTRS)

    Reeves, James H.; Arthur, Richard J.; Brodzinski, Ronald L.

    1993-01-01

    Cobalt foils and stainless steel samples were analyzed for induced Co-60 activity with both an ultra-low background germanium gamma-ray spectrometer and with a large NaI(Tl) multidimensional spectrometer, both of which use electronic anticoincidence shielding to reduce background counts resulting from cosmic rays. Aluminum samples were analyzed for Na-22. The results, in addition to the relative sensitivities and precisions afforded by the two methods, are presented.

  3. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: a case study for submerged aquatic vegetation

    PubMed Central

    Zajac, Zuzanna; Stith, Bradley; Bowling, Andrea C; Langtimm, Catherine A; Swain, Eric D

    2015-01-01

    Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust

  4. Compact variant-rich customized sequence database and a fast and sensitive database search for efficient proteogenomic analyses.

    PubMed

    Park, Heejin; Bae, Junwoo; Kim, Hyunwoo; Kim, Sangok; Kim, Hokeun; Mun, Dong-Gi; Joh, Yoonsung; Lee, Wonyeop; Chae, Sehyun; Lee, Sanghyuk; Kim, Hark Kyun; Hwang, Daehee; Lee, Sang-Won; Paek, Eunok

    2014-12-01

    In proteogenomic analysis, construction of a compact, customized database from mRNA-seq data and a sensitive search of both reference and customized databases are essential to accurately determine protein abundances and structural variations at the protein level. However, these tasks have not been systematically explored, but rather performed in an ad-hoc fashion. Here, we present an effective method for constructing a compact database containing comprehensive sequences of sample-specific variants--single nucleotide variants, insertions/deletions, and stop-codon mutations derived from Exome-seq and RNA-seq data. It, however, occupies less space by storing variant peptides, not variant proteins. We also present an efficient search method for both customized and reference databases. The separate searches of the two databases increase the search time, and a unified search is less sensitive to identify variant peptides due to the smaller size of the customized database, compared to the reference database, in the target-decoy setting. Our method searches the unified database once, but performs target-decoy validations separately. Experimental results show that our approach is as fast as the unified search and as sensitive as the separate searches. Our customized database includes mutation information in the headers of variant peptides, thereby facilitating the inspection of peptide-spectrum matches.

  5. Sensory processing sensitivity: a review in the light of the evolution of biological responsivity.

    PubMed

    Aron, Elaine N; Aron, Arthur; Jagiellowicz, Jadzia

    2012-08-01

    This article reviews the literature on sensory processing sensitivity (SPS) in light of growing evidence from evolutionary biology that many personality differences in nonhuman species involve being more or less responsive, reactive, flexible, or sensitive to the environment. After briefly defining SPS, it first discusses how biologists studying animal personality have conceptualized this general environmental sensitivity. Second, it reviews relevant previous human personality/temperament work, focusing on crossover interactions (where a trait generates positive or negative outcomes depending on the environment), and traits relevant to specific hypothesized aspects of SPS: inhibition of behavior, sensitivity to stimuli, depth of processing, and emotional/physiological reactivity. Third, it reviews support for the overall SPS model, focusing on development of the Highly Sensitive Person (HSP) Scale as a measure of SPS then on neuroimaging and genetic studies using the scale, all of which bears on the extent to which SPS in humans corresponds to biological responsivity.

  6. Influence of as-deposited conductive type on sensitization process of PbSe films

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Chen, Lei; Zheng, Jianbang; Qiao, Kai; Li, Xiaojiang

    2016-07-01

    The as-grown n- and p-type polycrystalline PbSe thin films are fabricated by vapor phase deposition using substrate temperature regulation. The surface polycrystalline structures and photoelectric properties of n- and p-type polycrystalline PbSe films are provided. Surface composition of n-type-sensitized PbSe film has been analyzed according to X-ray photoelectron spectroscopy results. The oxygen roles in n- and p-type PbSe polycrystalline films during the sensitization process are studied experimentally, respectively. The dependence of sensitized photoelectric performance on the initial conductive state has been firstly observed and discussed, as we know presently. It is revealed that oxygen can trigger photo-response in the sensitization process for n-type PbSe film, but not for p-type. These discussions may be useful for understanding the sensitization mechanism of lead salt materials.

  7. Process Mining Techniques for Analysing Patterns and Strategies in Students' Self-Regulated Learning

    ERIC Educational Resources Information Center

    Bannert, Maria; Reimann, Peter; Sonnenberg, Christoph

    2014-01-01

    Referring to current research on self-regulated learning, we analyse individual regulation in terms of a set of specific sequences of regulatory activities. Successful students perform regulatory activities such as analysing, planning, monitoring and evaluating cognitive and motivational aspects during learning not only with a higher frequency…

  8. Face processing regions are sensitive to distinct aspects of temporal sequence in facial dynamics.

    PubMed

    Reinl, Maren; Bartels, Andreas

    2014-11-15

    Facial movement conveys important information for social interactions, yet its neural processing is poorly understood. Computational models propose that shape- and temporal sequence sensitive mechanisms interact in processing dynamic faces. While face processing regions are known to respond to facial movement, their sensitivity to particular temporal sequences has barely been studied. Here we used fMRI to examine the sensitivity of human face-processing regions to two aspects of directionality in facial movement trajectories. We presented genuine movie recordings of increasing and decreasing fear expressions, each of which were played in natural or reversed frame order. This two-by-two factorial design matched low-level visual properties, static content and motion energy within each factor, emotion-direction (increasing or decreasing emotion) and timeline (natural versus artificial). The results showed sensitivity for emotion-direction in FFA, which was timeline-dependent as it only occurred within the natural frame order, and sensitivity to timeline in the STS, which was emotion-direction-dependent as it only occurred for decreased fear. The occipital face area (OFA) was sensitive to the factor timeline. These findings reveal interacting temporal sequence sensitive mechanisms that are responsive to both ecological meaning and to prototypical unfolding of facial dynamics. These mechanisms are temporally directional, provide socially relevant information regarding emotional state or naturalness of behavior, and agree with predictions from modeling and predictive coding theory. PMID:25132020

  9. Ocular allergy modulation to hi-dose antigen sensitization is a Treg-dependent process.

    PubMed

    Lee, Hyun Soo; Schlereth, Simona; Khandelwal, Payal; Saban, Daniel R

    2013-01-01

    A reproducible method to inhibit allergic immune responses is accomplished with hi-dose Ag sensitization, via intraperitoneal (IP) injection. However, the role of CD4+ CD25+ FoxP3+ T regulatory cells (Treg) in this process is unknown, as is whether such modulation extends to ocular allergy. We therefore determined herein whether hi-dose sensitization modulates ocular allergy, and whether CD4+ CD25+ FoxP3+ Treg are involved. C57BL/6 mice were IP sensitized via low-dose (100 µg) versus hi-dose (1000 µg) ovalbumin (OVA), in aluminum hydroxide (1 mg) and pertussis-toxin (300 ng). Other mice received anti-CD25 Ab (PC61) to ablate Treg during sensitization. In another experiment, Treg from hi-dose sensitized mice were adoptively transferred into low-dose sensitized mice. Once daily OVA challenges were administered. Clinical signs, IgE, T cell cytokines, and eosinophils were assessed. Data revealed that hi-dose, but not low-dose, sensitization led to allergy modulation, indicated by decreased clinical signs, serum IgE levels, Th2 recall responses, and eosinophil recruitment. T cells from hi-dose sensitized mice showed a robust increase in TGF-b production, and Treg from these mice were able to efficiently suppress effector T cell proliferation in vitro. In addition, in vivo Treg ablation in hi-dose sensitized mice revoked allergy modulation. Lastly, Treg from hi-dose sensitized mice were able to adoptively transfer allergy modulation to their low-dose sensitized counterparts. Collectively, these findings indicate that modulation to hi-dose sensitization, which is extended to ocular allergy, occurs in a Treg-dependent manner. In addition, our data suggest that hi-dose sensitization may henceforth facilitate the further examination of CD4+ CD25+ FoxP3+ Treg in allergic disease.

  10. A Case Study Analysing the Process of Analogy-Based Learning in a Teaching Unit about Simple Electric Circuits

    ERIC Educational Resources Information Center

    Paatz, Roland; Ryder, James; Schwedes, Hannelore; Scott, Philip

    2004-01-01

    The purpose of this case study is to analyse the learning processes of a 16-year-old student as she learns about simple electric circuits in response to an analogy-based teaching sequence. Analogical thinking processes are modelled by a sequence of four steps according to Gentner's structure mapping theory (activate base domain, postulate local…

  11. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    SciTech Connect

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

  12. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    PubMed

    Tsuruda, Jennifer M; Harris, Jeffrey W; Bourgeois, Lanie; Danka, Robert G; Hunt, Greg J

    2012-01-01

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  13. High-Resolution Linkage Analyses to Identify Genes That Influence Varroa Sensitive Hygiene Behavior in Honey Bees

    PubMed Central

    Tsuruda, Jennifer M.; Harris, Jeffrey W.; Bourgeois, Lanie; Danka, Robert G.; Hunt, Greg J.

    2012-01-01

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene ‘no receptor potential A’ and a dopamine receptor. ‘No receptor potential A’ is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection. PMID:23133626

  14. Inorganic analyses of volatilized and condensed species within prototypic Defense Waste Processing Facility (DWPF) canistered waste

    SciTech Connect

    Jantzen, C.M.

    1992-06-30

    The high-level radioactive waste currently stored in carbon steel tanks at the Savannah River Site (SRS) will be immobilized in a borosilicate glass in the Defense Waste Processing Facility (DWPF). The canistered waste will be sent to a geologic repository for final disposal. The Waste Acceptance Preliminary Specifications (WAPS) require the identification of any inorganic phases that may be present in the canister that may lead to internal corrosion of the canister or that could potentially adversely affect normal canister handling. During vitrification, volatilization of mixed (Na, K, Cs)Cl, (Na, K, Cs){sub 2}SO{sub 4}, (Na, K, Cs)BF{sub 4}, (Na, K){sub 2}B{sub 4}O{sub 7} and (Na,K)CrO{sub 4} species from glass melt condensed in the melter off-gas and in the cyclone separator in the canister pour spout vacuum line. A full-scale DWPF prototypic canister filled during Campaign 10 of the SRS Scale Glass Melter was sectioned and examined. Mixed (NaK)CI, (NaK){sub 2}SO{sub 4}, (NaK) borates, and a (Na,K) fluoride phase (either NaF or Na{sub 2}BF{sub 4}) were identified on the interior canister walls, neck, and shoulder above the melt pour surface. Similar deposits were found on the glass melt surface and on glass fracture surfaces. Chromates were not found. Spinel crystals were found associated with the glass pour surface. Reference amounts of the halides and sulfates were found retained in the glass and the glass chemistry, including the distribution of the halides and sulfates, was homogeneous. In all cases where rust was observed, heavy metals (Zn, Ti, Sn) from the cutting blade/fluid were present indicating that the rust was a reaction product of the cutting fluid with glass and heat sensitized canister or with carbon-steel contamination on canister interior. Only minimal water vapor is present so that internal corrosion of the canister, will not occur.

  15. Greenhouse gas network design using backward Lagrangian particle dispersion modelling - Part 2: Sensitivity analyses and South African test case

    NASA Astrophysics Data System (ADS)

    Nickless, A.; Ziehn, T.; Rayner, P. J.; Scholes, R. J.; Engelbrecht, F.

    2015-02-01

    This is the second part of a two-part paper considering a measurement network design based on a stochastic Lagrangian particle dispersion model (LPDM) developed by Marek Uliasz, in this case for South Africa. A sensitivity analysis was performed for different specifications of the network design parameters which were applied to this South African test case. The LPDM, which can be used to derive the sensitivity matrix used in an atmospheric inversion, was run for each candidate station for the months of July (representative of the Southern Hemisphere winter) and January (summer). The network optimisation procedure was carried out under a standard set of conditions, similar to those applied to the Australian test case in Part 1, for both months and for the combined 2 months, using the incremental optimisation (IO) routine. The optimal network design setup was subtly changed, one parameter at a time, and the optimisation routine was re-run under each set of modified conditions and compared to the original optimal network design. The assessment of the similarity between network solutions showed that changing the height of the surface grid cells, including an uncertainty estimate for the ocean fluxes, or increasing the night-time observation error uncertainty did not result in any significant changes in the positioning of the stations relative to the standard design. However, changing the prior flux error covariance matrix, or increasing the spatial resolution, did. Large aggregation errors were calculated for a number of candidate measurement sites using the resolution of the standard network design. Spatial resolution of the prior fluxes should be kept as close to the resolution of the transport model as the computing system can manage, to mitigate the exclusion of sites which could potentially be beneficial to the network. Including a generic correlation structure in the prior flux error covariance matrix led to pronounced changes in the network solution. The genetic

  16. Analysing agricultural drought vulnerability at sub-district level through exposure, sensitivity and adaptive capacity based composite index

    NASA Astrophysics Data System (ADS)

    Murthy, C. S.; Laxman, B.; Sesha Sai, M. V. R.; Diwakar, P. G.

    2014-11-01

    Information on agricultural drought vulnerability status of different regions is extremely useful for implementation of long term drought management measures. A quantitative approach for measuring agricultural drought vulnerability at sub-district level was developed and implemented in the current study, which was carried-out in Andhra Pradesh state, India with the data of main cropping season i.e., kharif. The contributing indicators represent exposure, sensitivity and adaptive capacity components of vulnerability and were drawn from weather, soil, crop, irrigation and land holdings related data. After performing data normalisation and variance based weights generation, component wise composite indices were generated. Agricultural Drought Vulnerability Index (ADVI) was generated using the three component indices and beta distribution was fitted to it. Mandals (sub-district level administrative units) of the state were categorised into 5 classes - Less vulnerable, Moderately vulnerable, Vulnerable, Highly vulnerable and Very highly vulnerable. Districts dominant with vulnerable Mandals showed considerably larger variability of detrended yields of principal crops compared to the other districts, thus validating the index based vulnerability status. Current status of agricultural drought vulnerability in the state, based on ADVI, indicated that vulnerable to very highly vulnerable group of Mandals represent 54 % of total Mandals and about 55 % of the agricultural area and 65 % of the rainfed crop area. The variability in the agricultural drought vulnerability at disaggregated level was effectively captured by ADVI. The vulnerability status map is useful for diagnostic analysis and for formulating vulnerability reduction plans.

  17. Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost

    SciTech Connect

    Suresh Kumar, K. Pal, Chandan

    2013-12-15

    In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition.

  18. Sensitivity Analysis and Insights into Hydrological Processes and Uncertainty at Different Scales

    NASA Astrophysics Data System (ADS)

    Haghnegahdar, A.; Razavi, S.; Wheater, H. S.; Gupta, H. V.

    2015-12-01

    Sensitivity analysis (SA) is an essential tool for providing insight into model behavior, and conducting model calibration and uncertainty assessment. Numerous techniques have been used in environmental modelling studies for sensitivity analysis. However, it is often overlooked that the scale of modelling study, and the metric choice can significantly change the assessment of model sensitivity and uncertainty. In order to identify important hydrological processes across various scales, we conducted a multi-criteria sensitivity analysis using a novel and efficient technique, Variogram Analysis of Response Surfaces (VARS). The analysis was conducted using three different hydrological models, HydroGeoSphere (HGS), Soil and Water Assessment Tool (SWAT), and Modélisation Environmentale-Surface et Hydrologie (MESH). Models were applied at various scales ranging from small (hillslope) to large (watershed) scales. In each case, the sensitivity of simulated streamflow to model processes (represented through parameters) were measured using different metrics selected based on various hydrograph characteristics such as high flows, low flows, and volume. We demonstrate how the scale of the case study and the choice of sensitivity metric(s) can change our assessment of sensitivity and uncertainty. We present some guidelines to better align the metric choice with the objective and scale of a modelling study.

  19. Effect of uniaxial deformation to 50% on the sensitization process in 316 stainless steel

    SciTech Connect

    Ramirez, L.M.; Almanza, E.; Murr, L.E. . E-mail: fekberg@utep.edu

    2004-09-15

    The effect of uniaxial deformation to 50% on the degree of sensitization (DOS) in 316 stainless steel was investigated at 625 and 670 deg. C for 5-100 h using the electrochemical potentiokinetic reactivation (EPR) test. The results showed that the deformation accelerated the sensitization/desensitization process, especially at 670 deg. C. However, the material is still sensitized after up to 100 h of aging time. Transmission electron microscopy was used to corroborate these results. The deformed material showed more carbide precipitates (Cr{sub 23}C{sub 6}) at the grain boundaries and twin intersections than did the nondeformed material.

  20. Reward Sensitivity Is Associated with Brain Activity during Erotic Stimulus Processing

    PubMed Central

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray’s reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray’s theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food. PMID:23840558

  1. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    PubMed

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food.

  2. Reward sensitivity is associated with brain activity during erotic stimulus processing.

    PubMed

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray's reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray's theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food. PMID:23840558

  3. Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence

    PubMed Central

    Urošević, Snežana; Collins, Paul; Muetzel, Ryan; Lim, Kelvin; Luciana, Monica

    2012-01-01

    Adolescence is a period of radical normative changes and increased risk for substance use, mood disorders, and physical injury. Researchers have proposed that increases in reward sensitivity, i.e., sensitivity of the behavioral approach system (BAS), and/or increases in reactivity to all emotional stimuli (i.e., reward and threat sensitivities) lead to these phenomena. The present study is the first longitudinal investigation of changes in reward (i.e., BAS) sensitivity in 9 to 23-year-olds across a two-year follow-up. We found support for increased reward sensitivity from early to late adolescence and evidence for decline in the early twenties. This decline is combined with a decrease in left nucleus accumbens (Nacc) volume, a key structure for reward processing, from the late teens into the early twenties. Furthermore, we found longitudinal increases in sensitivity to reward to be predicted by individual differences in the Nacc and medial OFC volumes at baseline in this developmental sample. Similarly, increases in sensitivity to threat (i.e., BIS sensitivity) were qualified by sex, with only females experiencing this increase, and predicted by individual differences in lateral OFC volumes at baseline. PMID:22390662

  4. Tailoring Catalytic Activity of Pt Nanoparticles Encapsulated Inside Dendrimers by Tuning Nanoparticle Sizes with Subnanometer Accuracy for Sensitive Chemiluminescence-Based Analyses.

    PubMed

    Lim, Hyojung; Ju, Youngwon; Kim, Joohoon

    2016-05-01

    Here, we report the size-dependent catalysis of Pt dendrimer-encapsulated nanoparticles (DENs) having well-defined sizes over the range of 1-3 nm with subnanometer accuracy for the highly enhanced chemiluminescence of the luminol/H2O2 system. This size-dependent catalysis is ascribed to the differences in the chemical states of the Pt DENs as well as in their surface areas depending on their sizes. Facile and versatile applications of the Pt DENs in diverse oxidase-based assays are demonstrated as efficient catalysts for sensitive chemiluminescence-based analyses. PMID:27032992

  5. Studying Mathematics Teacher Education: Analysing the Process of Task Variation on Learning

    ERIC Educational Resources Information Center

    Bragg, Leicha A.

    2015-01-01

    Self-study of variations to task design offers a way of analysing how learning takes place. Over several years, variations were made to improve an assessment task completed by final-year teacher candidates in a primary mathematics teacher education subject. This article describes how alterations to a task informed on-going developments in…

  6. Higher sensory processing sensitivity, introversion and ectomorphism: New biomarkers for human creativity in developing rural areas.

    PubMed

    Rizzo-Sierra, Carlos V; Leon-S, Martha E; Leon-Sarmiento, Fidias E

    2012-05-01

    The highly sensitive trait present in animals, has also been proposed as a human neurobiological trait. People having such trait can process larger amounts of sensory information than usual, making it an excellent attribute that allows to pick up subtle environmental details and cues. Furthermore, this trait correlates to some sort of giftedness such as higher perception, inventiveness, imagination and creativity. We present evidences that support the existance of key neural connectivity between the mentioned trait, higher sensory processing sensitivity, introversion, ectomorphism and creativity. The neurobiological and behavioral implications that these biomarkers have in people living in developing rural areas are discussed as well.

  7. Hydrophilic property of 316L stainless steel after treatment by atmospheric pressure corona streamer plasma using surface-sensitive analyses

    NASA Astrophysics Data System (ADS)

    Al-Hamarneh, Ibrahim; Pedrow, Patrick; Eskhan, Asma; Abu-Lail, Nehal

    2012-10-01

    Surgical-grade 316L stainless steel (SS 316L) had its surface hydrophilic property enhanced by processing in a corona streamer plasma reactor using O2 gas mixed with Ar at atmospheric pressure. Reactor excitation was 60 Hz ac high-voltage (0-10 kVRMS) applied to a multi-needle-to-grounded screen electrode configuration. The treated surface was characterized with a contact angle tester. Surface free energy (SFE) for the treated stainless steel increased measurably compared to the untreated surface. The Ar-O2 plasma was more effective in enhancing the SFE than Ar-only plasma. Optimum conditions for the plasma treatment system used in this study were obtained. X-ray photoelectron spectroscopy (XPS) characterization of the chemical composition of the treated surfaces confirms the existence of new oxygen-containing functional groups contributing to the change in the hydrophilic nature of the surface. These new functional groups were generated by surface reactions caused by reactive oxidation of substrate species. Atomic force microscopy (AFM) images were generated to investigate morphological and roughness changes on the plasma treated surfaces. The aging effect in air after treatment was also studied.

  8. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 4: Uncertainty and sensitivity analyses for 40 CFR 191, Subpart B

    SciTech Connect

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Additional information about the 1992 PA is provided in other volumes. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions, the choice of parameters selected for sampling, and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect compliance with 40 CFR 191B are: drilling intensity, intrusion borehole permeability, halite and anhydrite permeabilities, radionuclide solubilities and distribution coefficients, fracture spacing in the Culebra Dolomite Member of the Rustler Formation, porosity of the Culebra, and spatial variability of Culebra transmissivity. Performance with respect to 40 CFR 191B is insensitive to uncertainty in other parameters; however, additional data are needed to confirm that reality lies within the assigned distributions.

  9. The monitoring and control of TRUEX processes. Volume 1, The use of sensitivity analysis to determine key process variables and their control bounds

    SciTech Connect

    Regalbuto, M.C.; Misra, B.; Chamberlain, D.B.; Leonard, R.A.; Vandegrift, G.F.

    1992-04-01

    The Generic TRUEX Model (GTM) was used to design a flowsheet for the TRUEX solvent extraction process that would be used to determine its instrumentation and control requirements. Sensitivity analyses of the key process variables, namely, the aqueous and organic flow rates, feed compositions, and the number of contactor stages, were carried out to assess their impact on the operation of the TRUEX process. Results of these analyses provide a basis for the selection of an instrument and control system and the eventual implementation of a control algorithm. Volume Two of this report is an evaluation of the instruments available for measuring many of the physical parameters. Equations that model the dynamic behavior of the TRUEX process have been generated. These equations can be used to describe the transient or dynamic behavior of the process for a given flowsheet in accordance with the TRUEX model. Further work will be done with the dynamic model to determine how and how quickly the system responds to various perturbations. The use of perturbation analysis early in the design stage will lead to a robust flowsheet, namely, one that will meet all process goals and allow for wide control bounds. The process time delay, that is, the speed with which the system reaches a new steady state, is an important parameter in monitoring and controlling a process. In the future, instrument selection and point-of-variable measurement, now done using the steady-state results reported here, will be reviewed and modified as necessary based on this dynamic method of analysis.

  10. Normative topographic ERP analyses of speed of speech processing and grammar before and after grammatical treatment.

    PubMed

    Yoder, Paul J; Molfese, Dennis; Murray, Micah M; Key, Alexandra P F

    2013-01-01

    Typically developing (TD) preschoolers and age-matched preschoolers with specific language impairment (SLI) received event-related potentials (ERPs) to four monosyllabic speech sounds prior to treatment and, in the SLI group, after 6 months of grammatical treatment. Before treatment, the TD group processed speech sounds faster than the SLI group. The SLI group increased the speed of their speech processing after treatment. Posttreatment speed of speech processing predicted later impairment in comprehending phrase elaboration in the SLI group. During the treatment phase, change in speed of speech processing predicted growth rate of grammar in the SLI group.

  11. Normative Topographic ERP Analyses of Speed of Speech Processing and Grammar Before and After Grammatical Treatment

    PubMed Central

    Yoder, Paul J.; Molfese, Dennis; Murray, Micah M.; Key, Alexandra P. F.

    2013-01-01

    Typically developing (TD) preschoolers and age-matched preschoolers with specific language impairment (SLI) received event-related potentials (ERPs) to four monosyllabic speech sounds prior to treatment and, in the SLI group, after 6 months of grammatical treatment. Before treatment, the TD group processed speech sounds faster than the SLI group. The SLI group increased the speed of their speech processing after treatment. Post-treatment speed of speech processing predicted later impairment in comprehending phrase elaboration in the SLI group. During the treatment phase, change in speed of speech processing predicted growth rate of grammar in the SLI group. PMID:24219693

  12. Sensitivity to Increased Task Demands: Contributions from Data-Driven and Conceptually Driven Information Processing Deficits.

    ERIC Educational Resources Information Center

    Gillam, Ronald B.; Hoffman, LaVae M.; Marler, Jeffrey A.; Wynn-Dancy, M. Lorraine

    2002-01-01

    This article explores evidence related to the idea that children with language impairments present co-occurring limitations in data-driven and conceptually driven processing. It concludes that together, these limitations contribute to a heightened sensitivity to increasing task demands in children with language impairments. Assessment and…

  13. What Is the deficit in Phonological Processing Deficits: Auditory Sensitivity, Masking, or Category Formation?

    ERIC Educational Resources Information Center

    Nittrouer, Susan; Shune, Samantha; Lowenstein, Joanna H.

    2011-01-01

    Although children with language impairments, including those associated with reading, usually demonstrate deficits in phonological processing, there is minimal agreement as to the source of those deficits. This study examined two problems hypothesized to be possible sources: either poor auditory sensitivity to speech-relevant acoustic properties,…

  14. Analysing student written solutions to investigate if problem-solving processes are evident throughout

    NASA Astrophysics Data System (ADS)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-07-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.

  15. Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing

    PubMed Central

    Ohtani, Kouhei; Yamamoto, Hiroyuki; Akimitsu, Kazuya

    2002-01-01

    Specificity in the interaction between rough lemon (Citrus jambhiri Lush.) and the fungal pathogen Alternaria alternata rough lemon pathotype is determined by a host-selective toxin, ACR-toxin. Mitochondria from rough lemon are sensitive to ACR-toxin whereas mitochondria from resistant plants, including other citrus species, are resistant. We have identified a C. jambhiri mitochondrial DNA sequence, designated ACRS (ACR-toxin sensitivity gene), that confers toxin sensitivity to Escherichia coli. ACRS is located in the group II intron of the mitochondrial tRNA-Ala and is translated into a SDS-resistant oligomeric protein in C. jambhiri mitochondria but is not translated in the toxin-insensitive mitochondria. ACRS is present in the mitochondrial genome of both toxin-sensitive and -insensitive citrus. However, in mitochondria of toxin-insensitive plants, the transcripts from ACRS are shorter than those in mitochondria of sensitive plants. These results demonstrate that sensitivity to ACR-toxin and hence specificity of the interaction between A. alternata rough lemon pathotype and C. jambhiri is due to differential posttranscriptional processing of a mitochondrial gene. PMID:11842194

  16. Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems.

    PubMed

    Vredenberg, Wim

    2011-02-01

    In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with multi-turnover pulses (MTFs) of variable intensity and duration. These analyses have led to definition and formulation of rate equations that describe the sequence of primary linear electron transfer (LET) steps in photosystem II (PSII) and of cyclic electron transport (CET) in PSI. The model considers heterogeneity in PSII reaction centers (RCs) associated with the S-states of the OEC and incorporates in a dark-adapted state the presence of a 15-35% fraction of Q(B)-nonreducing RCs that probably is identical with the S₀ fraction. The fluorescence induction algorithm (FIA) in the 10 μs-1s excitation time range considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P phase reflecting the response of the variable fluorescence to the electric trans-thylakoid potential generated by the proton pump fuelled by CET in PSI. The photochemical phase incorporates the kinetics associated with the double reduction of the acceptor pair of pheophytin (Phe) and plastoquinone Q(A) [PheQ(A)] in Q(B) nonreducing RCs and the associated doubling of the variable fluorescence, in agreement with the three-state trapping model (TSTM) of PS II. The decline in fluorescence emission during the so called SMT in the 1-100s excitation time range, known as the Kautsky curve, is shown to be associated with a substantial decrease of CET-powered proton efflux from the stroma into the chloroplast lumen through the ATPsynthase of the photosynthetic machinery. PMID:21070830

  17. Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems.

    PubMed

    Vredenberg, Wim

    2011-02-01

    In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with multi-turnover pulses (MTFs) of variable intensity and duration. These analyses have led to definition and formulation of rate equations that describe the sequence of primary linear electron transfer (LET) steps in photosystem II (PSII) and of cyclic electron transport (CET) in PSI. The model considers heterogeneity in PSII reaction centers (RCs) associated with the S-states of the OEC and incorporates in a dark-adapted state the presence of a 15-35% fraction of Q(B)-nonreducing RCs that probably is identical with the S₀ fraction. The fluorescence induction algorithm (FIA) in the 10 μs-1s excitation time range considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P phase reflecting the response of the variable fluorescence to the electric trans-thylakoid potential generated by the proton pump fuelled by CET in PSI. The photochemical phase incorporates the kinetics associated with the double reduction of the acceptor pair of pheophytin (Phe) and plastoquinone Q(A) [PheQ(A)] in Q(B) nonreducing RCs and the associated doubling of the variable fluorescence, in agreement with the three-state trapping model (TSTM) of PS II. The decline in fluorescence emission during the so called SMT in the 1-100s excitation time range, known as the Kautsky curve, is shown to be associated with a substantial decrease of CET-powered proton efflux from the stroma into the chloroplast lumen through the ATPsynthase of the photosynthetic machinery.

  18. Neurodynamics of executive control processes in bilinguals: evidence from ERP and source reconstruction analyses

    PubMed Central

    Heidlmayr, Karin; Hemforth, Barbara; Moutier, Sylvain; Isel, Frédéric

    2015-01-01

    The present study was designed to examine the impact of bilingualism on the neuronal activity in different executive control processes namely conflict monitoring, control implementation (i.e., interference suppression and conflict resolution) and overcoming of inhibition. Twenty-two highly proficient but non-balanced successive French–German bilingual adults and 22 monolingual adults performed a combined Stroop/Negative priming task while event-related potential (ERP) were recorded online. The data revealed that the ERP effects were reduced in bilinguals in comparison to monolinguals but only in the Stroop task and limited to the N400 and the sustained fronto-central negative-going potential time windows. This result suggests that bilingualism may impact the process of control implementation rather than the process of conflict monitoring (N200). Critically, our study revealed a differential time course of the involvement of the anterior cingulate cortex (ACC) and the prefrontal cortex (PFC) in conflict processing. While the ACC showed major activation in the early time windows (N200 and N400) but not in the latest time window (late sustained negative-going potential), the PFC became unilaterally active in the left hemisphere in the N400 and the late sustained negative-going potential time windows. Taken together, the present electroencephalography data lend support to a cascading neurophysiological model of executive control processes, in which ACC and PFC may play a determining role. PMID:26124740

  19. Neurodynamics of executive control processes in bilinguals: evidence from ERP and source reconstruction analyses.

    PubMed

    Heidlmayr, Karin; Hemforth, Barbara; Moutier, Sylvain; Isel, Frédéric

    2015-01-01

    The present study was designed to examine the impact of bilingualism on the neuronal activity in different executive control processes namely conflict monitoring, control implementation (i.e., interference suppression and conflict resolution) and overcoming of inhibition. Twenty-two highly proficient but non-balanced successive French-German bilingual adults and 22 monolingual adults performed a combined Stroop/Negative priming task while event-related potential (ERP) were recorded online. The data revealed that the ERP effects were reduced in bilinguals in comparison to monolinguals but only in the Stroop task and limited to the N400 and the sustained fronto-central negative-going potential time windows. This result suggests that bilingualism may impact the process of control implementation rather than the process of conflict monitoring (N200). Critically, our study revealed a differential time course of the involvement of the anterior cingulate cortex (ACC) and the prefrontal cortex (PFC) in conflict processing. While the ACC showed major activation in the early time windows (N200 and N400) but not in the latest time window (late sustained negative-going potential), the PFC became unilaterally active in the left hemisphere in the N400 and the late sustained negative-going potential time windows. Taken together, the present electroencephalography data lend support to a cascading neurophysiological model of executive control processes, in which ACC and PFC may play a determining role. PMID:26124740

  20. Enhancing Sensitivity of a Miniature Spectrometer Using a Real-Time Image Processing Algorithm.

    PubMed

    Chandramohan, Sabarish; Avrutsky, Ivan

    2016-05-01

    A real-time image processing algorithm is developed to enhance the sensitivity of a planar single-mode waveguide miniature spectrometer with integrated waveguide gratings. A novel approach of averaging along the arcs in a curved coordinate system is introduced which allows for collecting more light, thereby enhancing the sensitivity. The algorithm is tested using CdSeS/ZnS quantum dots drop casted on the surface of a single-mode waveguide. Measurements indicate that a monolayer of quantum dots is expected to produce guided mode attenuation approximately 11 times above the noise level.

  1. Efficient simulation of press hardening process through integrated structural and CFD analyses

    SciTech Connect

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek; Roy, Subir

    2013-12-16

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integrated commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.

  2. Efficient simulation of press hardening process through integrated structural and CFD analyses

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek; Roy, Subir

    2013-12-01

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integrated commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.

  3. Sensitivity studies for the main r process: β-decay rates

    SciTech Connect

    Mumpower, M.; Cass, J.; Passucci, G.; Aprahamian, A.; Surman, R.

    2014-04-15

    The pattern of isotopic abundances produced in rapid neutron capture, or r-process, nucleosynthesis is sensitive to the nuclear physics properties of thousands of unstable neutron-rich nuclear species that participate in the process. It has long been recognized that the some of the most influential pieces of nuclear data for r-process simulations are β-decay lifetimes. In light of experimental advances that have pushed measurement capabilities closer to the classic r-process path, we revisit the role of individual β-decay rates in the r process. We perform β-decay rate sensitivity studies for a main (A > 120) r process in a range of potential astrophysical scenarios. We study the influence of individual rates during (n, γ)-(γ, n) equilibrium and during the post-equilibrium phase where material moves back toward stability. We confirm the widely accepted view that the most important lifetimes are those of nuclei along the r-process path for each astrophysical scenario considered. However, we find in addition that individual β-decay rates continue to shape the final abundance pattern through the post-equilibrium phase, for as long as neutron capture competes with β decay. Many of the lifetimes important for this phase of the r process are within current or near future experimental reach.

  4. Sensitivity of global tropical climate to land surface processes: Mean state and interannual variability

    SciTech Connect

    Ma, Hsi-Yen; Xiao, Heng; Mechoso, C. R.; Xue, Yongkang

    2013-03-01

    This study examines the sensitivity of global tropical climate to land surface processes (LSP) using an atmospheric general circulation model both uncoupled (with prescribed SSTs) and coupled to an oceanic general circulation model. The emphasis is on the interactive soil moisture and vegetation biophysical processes, which have first order influence on the surface energy and water budgets. The sensitivity to those processes is represented by the differences between model simulations, in which two land surface schemes are considered: 1) a simple land scheme that specifies surface albedo and soil moisture availability, and 2) the Simplified Simple Biosphere Model (SSiB), which allows for consideration of interactive soil moisture and vegetation biophysical process. Observational datasets are also employed to assess the reality of model-revealed sensitivity. The mean state sensitivity to different LSP is stronger in the coupled mode, especially in the tropical Pacific. Furthermore, seasonal cycle of SSTs in the equatorial Pacific, as well as ENSO frequency, amplitude, and locking to the seasonal cycle of SSTs are significantly modified and more realistic with SSiB. This outstanding sensitivity of the atmosphere-ocean system develops through changes in the intensity of equatorial Pacific trades modified by convection over land. Our results further demonstrate that the direct impact of land-atmosphere interactions on the tropical climate is modified by feedbacks associated with perturbed oceanic conditions ("indirect effect" of LSP). The magnitude of such indirect effect is strong enough to suggest that comprehensive studies on the importance of LSP on the global climate have to be made in a system that allows for atmosphere-ocean interactions.

  5. Transcriptome analyses of blood and sugar digestive processes in female Culicoides sonorensis midges (Diptera: Ceratopogonidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female Culicoides sonorensis Wirth & Jones (Diptera:Ceratopogonidae) midges vector numerous diseases impacting livestock and humans. The molecular physiology of this midge has been under-studied, so our approach was to gain an understanding of basic processes of blood and sucrose digestion using tra...

  6. Analysing Feedback Processes in an Online Teaching and Learning Environment: An Exploratory Study

    ERIC Educational Resources Information Center

    Espasa, Anna; Meneses, Julio

    2010-01-01

    Within the constructivist framework of online distance education the feedback process is considered a key element in teachers' roles because it can promote the regulation of learning. Therefore, faced with the need to guide and train teachers in the kind of feedback to provide and how to provide it, we establish three aims for this research:…

  7. Multi-criteria analyses of wastewater treatment bio-processes under an uncertainty and a multiplicity of steady states.

    PubMed

    Južnič-Zonta, Zivko; Kocijan, Juš; Flotats, Xavier; Vrečko, Darko

    2012-11-15

    This paper presents a multi-criteria evaluation methodology for determining the operating strategies for bio-chemical, wastewater treatment plants based on a model analysis under an uncertainty that can present multiple steady states. The method is based on Monte Carlo (MC) simulations and the expected utility theory in order to deal with the analysis of choices among risky operating strategies with multi-dimensional outcomes. The motivation is given by a case study using an anaerobic digestion model (ADM) adapted for multiple co-substrates. It is shown how the multi-criteria analyses' computational complexity can be reduced within an approximation based on Gaussian-process regression and how a reliability map can be built for a bio-process model under uncertainty and multiplicity. In our uncertainty-analyses case study, the reliability map shows the probability of a biogas-production collapse for a given set of substrates mixture input loads.

  8. Multi-criteria analyses of wastewater treatment bio-processes under an uncertainty and a multiplicity of steady states.

    PubMed

    Južnič-Zonta, Zivko; Kocijan, Juš; Flotats, Xavier; Vrečko, Darko

    2012-11-15

    This paper presents a multi-criteria evaluation methodology for determining the operating strategies for bio-chemical, wastewater treatment plants based on a model analysis under an uncertainty that can present multiple steady states. The method is based on Monte Carlo (MC) simulations and the expected utility theory in order to deal with the analysis of choices among risky operating strategies with multi-dimensional outcomes. The motivation is given by a case study using an anaerobic digestion model (ADM) adapted for multiple co-substrates. It is shown how the multi-criteria analyses' computational complexity can be reduced within an approximation based on Gaussian-process regression and how a reliability map can be built for a bio-process model under uncertainty and multiplicity. In our uncertainty-analyses case study, the reliability map shows the probability of a biogas-production collapse for a given set of substrates mixture input loads. PMID:23021337

  9. Introspective Minds: Using ALE Meta-Analyses to Study Commonalities in the Neural Correlates of Emotional Processing, Social & Unconstrained Cognition

    PubMed Central

    Schilbach, Leonhard; Bzdok, Danilo; Timmermans, Bert; Fox, Peter T.; Laird, Angela R.; Vogeley, Kai; Eickhoff, Simon B.

    2012-01-01

    Previous research suggests overlap between brain regions that show task-induced deactivations and those activated during the performance of social-cognitive tasks. Here, we present results of quantitative meta-analyses of neuroimaging studies, which confirm a statistical convergence in the neural correlates of social and resting state cognition. Based on the idea that both social and unconstrained cognition might be characterized by introspective processes, which are also thought to be highly relevant for emotional experiences, a third meta-analysis was performed investigating studies on emotional processing. By using conjunction analyses across all three sets of studies, we can demonstrate significant overlap of task-related signal change in dorso-medial prefrontal and medial parietal cortex, brain regions that have, indeed, recently been linked to introspective abilities. Our findings, therefore, provide evidence for the existence of a core neural network, which shows task-related signal change during socio-emotional tasks and during resting states. PMID:22319593

  10. Sensitivity analyses of MAGIC modelled predictions of future impacts of whole-tree harvest on soil calcium supply and stream acid neutralizing capacity.

    PubMed

    Zetterberg, Therese; Köhler, Stephan J; Löfgren, Stefan

    2014-10-01

    Forest biofuel is a main provider of energy in Sweden and the market is expected to grow even further in the future. Removal of logging residues via harvest can lead to short-term acidification but the long-term effects are largely unknown. The objectives of this study were to 1) model the long-term effect of whole-tree harvest (WTH) on soil and stream water acidity and 2) perform sensitivity analyses by varying the amounts of logging residues, calcium (Ca(2+)) concentrations in tree biomass and site productivity in nine alternate scenarios. Data from three Swedish forested catchments and the Model of Acidification of Groundwater in Catchments (MAGIC) were used to simulate changes in forest soil exchangeable Ca(2+) pools and stream water acid neutralizing capacity (ANC) at Gammtratten, Kindla and Aneboda. Large depletions in soil Ca(2+) supply and a reversal of the positive trend in stream ANC were predicted for all three sites after WTH. However, the magnitude of impact on stream ANC varied depending on site and the concentration of mobile strong acid anions. Contrary to common beliefs, the largest decrease in modelled ANC was observed at the well-buffered site Gammtratten. The effects at Kindla and Aneboda were much more limited and not large enough to offset the general recovery from acidification. Varying the tree biomass Ca(2+) concentrations exerted the largest impact on modelled outcome. Site productivity was the second most important variable whereas changing biomass amounts left on site only marginally affected the results. The outcome from the sensitivity analyses pointed in the same direction of change as in the base scenario, except for Kindla where soil Ca(2+) pools were predicted to be replenished under a given set of input data. The reliability of modelled outcome would increase by using site-specific Ca(2+) concentrations in tree biomass and field determined identification of site productivity. PMID:25046610

  11. Processing of immunoisolated pancreatic islets: implications for histological analyses of hydrated tissue.

    PubMed

    De Haan, Bart J; van Goor, Harry; De Vos, Paul

    2002-03-01

    Routine tissue processing is usually associated with histological artifacts as a consequence of shrinkage and distortion during dehydration required for embedding. With hydrated specimens such as lung, embryonic, and tissues in hydrophilic membranes, tissue processing can induce severe artifacts that interfere with adequate microscopic evaluation. Here we present a method for embedding hydrophilic alginate-polylysine microencapsulated pancreatic tissue that combines the absence of histological artifacts with a practical tissue processing method. We found that the glycol-methacrylate (GMA)-embedding method preserved the integrity of the encapsulated tissue better than snap-freezing or paraffin embedding, but the overall quality of the hydrophilic capsules remained poor Next, we modified the GMA method by introducing gradual dehydration to investigate whether the integrity of the sectioned capsules was better maintained by a more gradual pattern of water extraction. This modification resulted in well-preserved morphological details of the hydrophilic membranes, hydrogel-cell interface, and encapsulated pancreatic tissue. Subsequent routine staining gave excellent contrast between the islet tissue and hydrophilic components, which allowed adequate quantitative histological and pathological comparisons.

  12. Root border cell development is a temperature-insensitive and Al-sensitive process in barley.

    PubMed

    Pan, Jian-Wei; Ye, Dan; Wang, Li-Ling; Hua, Jing; Zhao, Gu-Feng; Pan, Wei-Huai; Han, Ning; Zhu, Mu-Yuan

    2004-06-01

    In vivo and in vitro experiments showed that border cell (BC) survival was dependent on root tip mucigel in barley (Hordeum vulgare L. cv. Hang 981). In aeroponic culture, BC development was an induced process in barley, whereas in hydroponic culture, it was a kinetic equilibrium process during which 300-400 BCs were released into water daily. The response of root elongation to temperatures (10-35 degrees C) was very sensitive but temperature changes had no great effect on barley BC development. At 35 degrees C, the root elongation ceased whereas BC production still continued, indicating that the two processes might be regulated independently under high temperature (35 degrees C) stress. Fifty microM Al could inhibit significantly BC development by inhibiting pectin methylesterase activity in the root cap of cv. 2000-2 (Al-sensitive) and cv. Humai 16 (Al-tolerant), but 20 microM Al could not block BC development in cv. Humai 16. BCs and their mucigel of barley had a limited role in the protection of Al-induced inhibition of root elongation, but played a significant role in the prevention of Al from diffusing into the meristems of the root tip and the root cap. Together, these results suggested that BC development was a temperature-insensitive but Al-sensitive process, and that BCs and their mucigel played an important role in the protection of root tip and root cap meristems from Al toxicity.

  13. The sensitivity of current and future forest managers to climate-induced changes in ecological processes.

    PubMed

    Seidl, Rupert; Aggestam, Filip; Rammer, Werner; Blennow, Kristina; Wolfslehner, Bernhard

    2016-05-01

    Climate vulnerability of managed forest ecosystems is not only determined by ecological processes but also influenced by the adaptive capacity of forest managers. To better understand adaptive behaviour, we conducted a questionnaire study among current and future forest managers (i.e. active managers and forestry students) in Austria. We found widespread belief in climate change (94.7 % of respondents), and no significant difference between current and future managers. Based on intended responses to climate-induced ecosystem changes, we distinguished four groups: highly sensitive managers (27.7 %), those mainly sensitive to changes in growth and regeneration processes (46.7 %), managers primarily sensitive to regeneration changes (11.2 %), and insensitive managers (14.4 %). Experiences and beliefs with regard to disturbance-related tree mortality were found to particularly influence a manager's sensitivity to climate change. Our findings underline the importance of the social dimension of climate change adaptation, and suggest potentially strong adaptive feedbacks between ecosystems and their managers.

  14. Experimental measurement and theoretical analyses of the freezing-thawing processes around a probe.

    PubMed

    Zhang, J; Hua, T C; Chen, E T

    2000-01-01

    Both the experimental and the analytical studies of the freezing/thawing process around a cryosurgical cylinder probes in a simulative biological tissue are presented in this paper. The enthalpy method and the finite element scheme are applied to solve the multidimensional phase change problems in cryosurgery. A very good agreement is found between the computed solutions and the experimental results. The influences of different cooling-warming schemes of the probe on the ice ball development, the temperature variation, the axial and the radial temperature gradients inside the tissues, and the requirement of cooling power are analyzed

  15. Thermal analyses of a materials processing furnace being developed for use with heat pipes

    NASA Technical Reports Server (NTRS)

    Mcanally, J. V.; Robertson, S. J.

    1979-01-01

    A special materials processing furnace is being developed for the forthcoming Spacelab missions to study the solidification under closely controlled conditions of various sample materials in the absence of gravity. The samples are to be rod shaped and subjected to both heating and cooling simultaneously. The thermal model is based on a developed Thermal Analyzer computer program. The model was developed to be very general to enable the simulation of variations in the furnace design and, hence, serve as an aid in finalizing the design. The thermal model is described and a user's guide given. Some preliminary results obtained in testing the model are also given.

  16. Microgravity and Materials Processing Facility study (MMPF): Requirements and Analyses of Commercial Operations (RACO) preliminary data release

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This requirements and analyses of commercial operations (RACO) study data release reflects the current status of research activities of the Microgravity and Materials Processing Facility under Modification No. 21 to NASA/MSFC Contract NAS8-36122. Section 1 includes 65 commercial space processing projects suitable for deployment aboard the Space Station. Section 2 contains reports of the R:BASE (TM) electronic data base being used in the study, synopses of the experiments, and a summary of data on the experimental facilities. Section 3 is a discussion of video and data compression techniques used as well as a mission timeline analysis.

  17. Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process.

    PubMed

    Qiao, Zhenzhen; Pingault, Lise; Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    Nitrogen is one of the most essential plant nutrients and one of the major factors limiting crop productivity. Having the goal to perform a more sustainable agriculture, there is a need to maximize biological nitrogen fixation, a feature of legumes. To enhance our understanding of the molecular mechanisms controlling the interaction between legumes and rhizobia, the symbiotic partner fixing and assimilating the atmospheric nitrogen for the plant, researchers took advantage of genetic and genomic resources developed across different legume models (e.g., Medicago truncatula, Lotus japonicus, Glycine max, and Phaseolus vulgaris) to identify key regulatory protein coding genes of the nodulation process. In this study, we are presenting the results of a comprehensive comparative genomic analysis to highlight orthologous and paralogous relationships between the legume genes controlling nodulation. Mining large transcriptomic datasets, we also identified several orthologous and paralogous genes characterized by the induction of their expression during nodulation across legume plant species. This comprehensive study prompts new insights into the evolution of the nodulation process in legume plant and will benefit the scientific community interested in the transfer of functional genomic information between species.

  18. Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process.

    PubMed

    Qiao, Zhenzhen; Pingault, Lise; Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    Nitrogen is one of the most essential plant nutrients and one of the major factors limiting crop productivity. Having the goal to perform a more sustainable agriculture, there is a need to maximize biological nitrogen fixation, a feature of legumes. To enhance our understanding of the molecular mechanisms controlling the interaction between legumes and rhizobia, the symbiotic partner fixing and assimilating the atmospheric nitrogen for the plant, researchers took advantage of genetic and genomic resources developed across different legume models (e.g., Medicago truncatula, Lotus japonicus, Glycine max, and Phaseolus vulgaris) to identify key regulatory protein coding genes of the nodulation process. In this study, we are presenting the results of a comprehensive comparative genomic analysis to highlight orthologous and paralogous relationships between the legume genes controlling nodulation. Mining large transcriptomic datasets, we also identified several orthologous and paralogous genes characterized by the induction of their expression during nodulation across legume plant species. This comprehensive study prompts new insights into the evolution of the nodulation process in legume plant and will benefit the scientific community interested in the transfer of functional genomic information between species. PMID:26858743

  19. Comparison of a urine chemistry analyser and microscopy, culture and sensitivity results to detect the presence of urinary tract infections in an elective orthopaedic population.

    PubMed

    Clement, Sue; Young, Jeanne; Munday, Ellana

    2004-01-01

    Currently elective orthopaedic patients require a microscopy and culture of urine (MSU) to be performed on admission. Between 70-80% of urine cultures are found to be negative for infection, making this practice costly and time consuming. The purpose of this study was to compare the accuracy of a dip stick urine chemistry analyser (Clinitek 50 machine) with a MSU, to detect the presence of nitrites and/or leukocytes in a group of elective orthopaedic surgical patients. methodology: Using a prospective cohort study design all elective orthopaedic patients who met the study criteria were invited to participate. In total 102 patients undergoing total hip or total knee replacement surgery participated. results: Results showed that the prevalence of urinary tract infections in patients undergoing total knee or hip surgery, was 14%. High specificity and negative predictive values for the detection of bacterial growth by dip stick urine chemical analysis were found, especially when either the presence of nitrites or leukocytes was used as an indicator. conclusion: This study has provided valuable baseline data on the accuracy of using photometry techniques as a screening measure, in the detection of UTI, in a sample of orthopaedic patients. While the Clinitek 50 dip stick urine chemistry analyser did not have high sensitivity in identifying those patients with a UTI, it was specific in identifying those patients who did not have an infection. Given the enormous cost in routine screening of these patients and the impact on nursing resources, use of this analyser could have potential nursing resource and financial benefits.

  20. Quasi-3D Waveform Inversion for Velocity Structures and Source Process Analyses Using its Results

    NASA Astrophysics Data System (ADS)

    Hikima, K.; Koketsu, K.

    2007-12-01

    In this study, we propose an efficient waveform inversion method for 2-D velocity structures and 3-D velocity structures are constructed by interpolating the results of the 2-D inversions. We apply these methods to a source process study of the 2003 Miyagi-ken Hokubu earthquake. We will first construct a velocity model, then determine the source processes of this earthquake sequence using the Green's function calculated with the resultant 3-D velocity model. We formulate the inversion procedure in a 2-D cross section. In a 2-D problem, an earthquake is forced to be a line source. Therefore, we introduce approximate transformation from a line source to a point source (Vidale and Helmberger, 1987). We use the 2-D velocity-stress staggered-grid finite difference scheme, so that the source representation is somewhat different from the original 'source box method' and we apply additional corrections to calculated waveforms. The boundary shapes of layers are expressed by connected nodes and we invert observed waveforms for layer thicknesses at the nodes. We perform 2-D velocity inversions along cross sections which involve a medium-size earthquake and observation points. We assemble the results for many stations and interpolated them to construct the 3-D velocity model. Finally, we calculate waveforms from the target earthquake by the 3-D finite difference method with this velocity model to confirm the validity of the model. We next perform waveform inversions for source processes of the 2003 Miyagi-ken Hokubu earthquake sequence using the resultant 3-D velocity model. We divide the fault plane into northern and southern subplanes, so that the southern subplane includes the hypocenter of the mainshock and the largest foreshock. The strike directions of the northern and southern subplanes were N-S and NE-SW, respectively. The Green's functions for these source inversions are calculated using the reciprocal theorem. We determine the slip models using the 3- D structure and

  1. Hanford Environmental Restoration data validation process for chemical and radiochemical analyses

    SciTech Connect

    Adams, M.R.; Bechtold, R.A.; Clark, D.E.; Angelos, K.M.; Winter, S.M.

    1993-10-01

    Detailed procedures for validation of chemical and radiochemical data are used to assure consistent application of validation principles and support a uniform database of quality environmental data. During application of these procedures, it was determined that laboratory data packages were frequently missing certain types of documentation causing subsequent delays in meeting critical milestones in the completion of validation activities. A quality improvement team was assembled to address the problems caused by missing documentation and streamline the entire process. The result was the development of a separate data package verification procedure and revisions to the data validation procedures. This has resulted in a system whereby deficient data packages are immediately identified and corrected prior to validation and revised validation procedures which more closely match the common analytical reporting practices of laboratory service vendors.

  2. Dynamic speckle-interferometer for intracellular processes analyses at high optical magnification

    NASA Astrophysics Data System (ADS)

    Baharev, A. A.; Vladimirov, A. P.; Malygin, A. S.; Mikhailova, Y. A.; Novoselova, I. A.; Yakin, D. I.; Druzhinin, A. V.

    2015-05-01

    At present work dynamic of biospeckles is used for studying processes occurring in cells which arranged in the one layer. The basis of many diseases is changes in the structural and functional properties of the molecular cells components as caused by the influence of external factors and internal functional disorders. Purpose of work is approbation of speckle-interferometer designed for the analysis of cellular metabolism in individual cells. As a parameter, characterizing the metabolic activity of cells used the value of the correlation coefficient (η) of optical signals proportional to the radiation intensity I, recorded at two points in time t. At 320x magnification for the cell diameter of 20 microns value η can be determined in the area size of 6 microns.

  3. Amphetamine Sensitization Alters Reward Processing in the Human Striatum and Amygdala

    PubMed Central

    O’Daly, Owen G.; Joyce, Daniel; Tracy, Derek K.; Azim, Adnan; Stephan, Klaas E.; Murray, Robin M.; Shergill, Sukhwinder S.

    2014-01-01

    Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders. PMID:24717936

  4. Amphetamine sensitization alters reward processing in the human striatum and amygdala.

    PubMed

    O'Daly, Owen G; Joyce, Daniel; Tracy, Derek K; Azim, Adnan; Stephan, Klaas E; Murray, Robin M; Shergill, Sukhwinder S

    2014-01-01

    Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.

  5. Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses

    SciTech Connect

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Veglio, Francesco

    2011-12-15

    Highlights: > Recovery of yttrium from spent fluorescent lamps by sulphuric acid leaching. > The use of sulphuric acid allows to reduce calcium dissolutions. > Main contaminant of fluorescent powder are Si, Pb, Ca and Ba. > Hydrated yttrium oxalate, recovered by selective precipitation, is quite pure (>90%). > We have studied the whole process for the treatment of dangerous waste (plant capability). - Abstract: The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO{sub 3} produces toxic vapours. A full factorial design is carried out with HCl and H{sub 2}SO{sub 4} to evaluate the influence of operating factors. HCl and H{sub 2}SO{sub 4} leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4 N H{sub 2}SO{sub 4} concentration and 90 deg. C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H{sub 2}SO{sub 4} medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized

  6. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments.

    PubMed

    Vogt, Frank; White, Lauren

    2015-03-31

    Via photosynthesis, marine phytoplankton transforms large quantities of inorganic compounds into biomass. This has considerable environmental impacts as microalgae contribute for instance to counter-balancing anthropogenic releases of the greenhouse gas CO2. On the other hand, high concentrations of nitrogen compounds in an ecosystem can lead to harmful algae blooms. In previous investigations it was found that the chemical composition of microalgal biomass is strongly dependent on the nutrient availability. Therefore, it is expected that algae's sequestration capabilities and productivity are also determined by the cells' chemical environments. For investigating this hypothesis, novel analytical methodologies are required which are capable of monitoring live cells exposed to chemically shifting environments followed by chemometric modeling of their chemical adaptation dynamics. FTIR-ATR experiments have been developed for acquiring spectroscopic time series of live Dunaliella parva cultures adapting to different nutrient situations. Comparing experimental data from acclimated cultures to those exposed to a chemically shifted nutrient situation reveals insights in which analyte groups participate in modifications of microalgal biomass and on what time scales. For a chemometric description of these processes, a data model has been deduced which explains the chemical adaptation dynamics explicitly rather than empirically. First results show that this approach is feasible and derives information about the chemical biomass adaptations. Future investigations will utilize these instrumental and chemometric methodologies for quantitative investigations of the relation between chemical environments and microalgal sequestration capabilities. PMID:25813024

  7. Experimental and theoretical analyses on the ultrasonic cavitation processing of Al-based alloys and nanocomposites

    NASA Astrophysics Data System (ADS)

    Jia, Shian

    Strong evidence is showing that microstructure and mechanical properties of a casting component can be significantly improved if nanoparticles are used as reinforcement to form metal-matrix-nano-composite (MMNC). In this paper, 6061/A356 nanocomposite castings are fabricated using the ultrasonic stirring technology (UST). The 6061/A356 alloy and Al2O3/SiC nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles are injected into the molten metal and dispersed by ultrasonic cavitation and acoustic streaming. The applied UST parameters in the current experiments are used to validate a recently developed multiphase Computational Fluid Dynamics (CFD) model, which is used to model the nanoparticle dispersion during UST processing. The CFD model accounts for turbulent fluid flow, heat transfer and the complex interaction between the molten alloy and nanoparticles using the ANSYS Fluent Dense Discrete Phase Model (DDPM). The modeling study includes the effects of ultrasonic probe location and the initial location where the nanoparticles are injected into the molten alloy. The microstructure, mechanical behavior and mechanical properties of the nanocomposite castings have been also investigated in detail. The current experimental results show that the tensile strength and elongation of the as-cast nanocomposite samples (6061/A356 alloy reinforced by Al2O 3 or SiC nanoparticles) are improved. The addition of the Al2O 3 or SiC nanoparticles in 6061/A356 alloy matrix changes the fracture mechanism from brittle dominated to ductile dominated.

  8. Spectroscopic analyses of chemical adaptation processes within microalgal biomass in response to changing environments.

    PubMed

    Vogt, Frank; White, Lauren

    2015-03-31

    Via photosynthesis, marine phytoplankton transforms large quantities of inorganic compounds into biomass. This has considerable environmental impacts as microalgae contribute for instance to counter-balancing anthropogenic releases of the greenhouse gas CO2. On the other hand, high concentrations of nitrogen compounds in an ecosystem can lead to harmful algae blooms. In previous investigations it was found that the chemical composition of microalgal biomass is strongly dependent on the nutrient availability. Therefore, it is expected that algae's sequestration capabilities and productivity are also determined by the cells' chemical environments. For investigating this hypothesis, novel analytical methodologies are required which are capable of monitoring live cells exposed to chemically shifting environments followed by chemometric modeling of their chemical adaptation dynamics. FTIR-ATR experiments have been developed for acquiring spectroscopic time series of live Dunaliella parva cultures adapting to different nutrient situations. Comparing experimental data from acclimated cultures to those exposed to a chemically shifted nutrient situation reveals insights in which analyte groups participate in modifications of microalgal biomass and on what time scales. For a chemometric description of these processes, a data model has been deduced which explains the chemical adaptation dynamics explicitly rather than empirically. First results show that this approach is feasible and derives information about the chemical biomass adaptations. Future investigations will utilize these instrumental and chemometric methodologies for quantitative investigations of the relation between chemical environments and microalgal sequestration capabilities.

  9. Rupture Process of the 1969 and 1975 Kurile Earthquakes Estimated from Tsunami Waveform Analyses

    NASA Astrophysics Data System (ADS)

    Ioki, Kei; Tanioka, Yuichiro

    2016-09-01

    The 1969 and 1975 great Kurile earthquakes occurred along the Kurile trench. Tsunamis generated by these earthquakes were observed at tide gauge stations around the coasts of the Okhotsk Sea and Pacific Ocean. To understand rupture process of the 1969 and 1975 earthquakes, slip distributions of the 1969 and 1975 events were estimated using tsunami waveform inversion technique. Seismic moments estimated from slip distributions of the 1969 and 1975 earthquakes were 1.1 × 1021 Nm (M w 8.0) and 0.6 × 1021 Nm (M w 7.8), respectively. The 1973 Nemuro-Oki earthquake occurred at the plate interface adjacent to that ruptured by the 1969 Kurile earthquake. The 1975 Shikotan earthquake occurred in a shallow region of the plate interface where was not ruptured by the 1969 Kurile earthquake. Further, like a sequence of the 1969 and 1975 earthquakes, it is possible that a great earthquake may occur in a shallow part of the plate interface a few years after a great earthquake that occurs in a deeper part of the same region along the trench.

  10. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect

    Farnsworth, R.K.; Mishima, J.

    1988-12-01

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  11. Sensitivity analysis of the add-on price estimate for the silicon web growth process

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.

    1981-01-01

    The web growth process, a silicon-sheet technology option, developed for the flat plate solar array (FSA) project, was examined. Base case data for the technical and cost parameters for the technical and commercial readiness phase of the FSA project are projected. The process add on price, using the base case data for cost parameters such as equipment, space, direct labor, materials and utilities, and the production parameters such as growth rate and run length, using a computer program developed specifically to do the sensitivity analysis with improved price estimation are analyzed. Silicon price, sheet thickness and cell efficiency are also discussed.

  12. Nonassociative learning processes affecting swimming probability in the seaslug Tritonia diomedea: habituation, sensitization and inhibition.

    PubMed

    Brown, G D

    1998-10-01

    The role of nonassociative learning processes in determining whether or not a chemical stimulus will elicit the Tritonia diomedea swimming response was examined in a variety of conditioning experiments. Iterative presentation of a chemical stimulus resulted in a reduced swimming probability (SP). By the criteria of Thompson and Spencer (Thompson RF, Spencer WA. Psychol. Rev. 1966;73:16-43) and others, this iterative reduction of SP was concluded to be the result of habituation. Site-specificity and a below zero effect implicated sensory pathways in habituation memory storage. The iterative reduction in SP was reversible, confirming that a sensitization-like process can also influence SP. It was further concluded that a short-term decrement in swimming cycle number was most likely due to a constraint in the effector pathway. Experience with a tactile stimulus had a long-lasting decremental effect on SP. This heterostimic reduction of SP was amplified in a multistimic paradigm that included both chemical and tactile stimuli during training. The chemical stimuli alone did not alter SP in this experiment. Multistimic reduction lasted for a week and was reversed temporarily by an excitatory chemical stimulus. The long-lasting reduction of SP by tactile stimulation appears to be the result of a novel nonassociative inhibitory process, which was distinguished from other learning processes by its duration and specificity. A total of three distinct learning processes are postulated to account for the role of simple types of experience in determining SP in Tritonia: habituation, sensitization, and nonassociative inhibition.

  13. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Vegliò, Francesco

    2011-12-01

    The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO(3) produces toxic vapours. A full factorial design is carried out with HCl and H(2)SO(4) to evaluate the influence of operating factors. HCl and H(2)SO(4) leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4N H(2)SO(4) concentration and 90°C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H(2)SO(4) medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized, besides the cost that is usually paid to recycling companies for collection, treatment or final disposal of such fluorescent powders.

  14. Modelling hydrological processes and analysing water-related ecosystem services of Western Siberian lowland basins

    NASA Astrophysics Data System (ADS)

    Schmalz, Britta; Kiesel, Jens; Kruse, Marion; Pfannerstill, Matthias; Sheludkov, Artyom; Khoroshavin, Vitaliy; Veshkurseva, Tatyana; Müller, Felix; Fohrer, Nicola

    2015-04-01

    For discussing and planning sustainable land management of river basins, stakeholders need suitable information on spatio-temporal patterns of hydrological components and ecosystem services. The ecosystem services concept, i.e., services provided by ecosystems that contribute to human welfare benefits, contributes comprehensive information for sustainable river management. This study shows an approach to use ecohydrological modelling results for quantifying and assessing water-related ecosystem services in three lowland river basins in Western Siberia, a region which is of global significance in terms of carbon sequestration, agricultural production and biodiversity preservation. Using the ecohydrological model SWAT, the three basins Pyschma (16762 km²), Vagai (3348 km²) and Loktinka (373 km²) were modelled following a gradient from the landscape units taiga, pre-taiga to forest steppe. For a correct representation of the Siberian lowland hydrology, the consideration of snow melt and retention of surface runoff as well as the implementation of a second groundwater aquifer was of great importance. Good to satisfying model performances were obtained for the extreme hydrological conditions. The simulated SWAT output variables of different hydrological processes were used as indicators for the two regulating services water flow and erosion regulation. The model results were translated into a relative ecosystem service valuation scale. The resulting ecosystem service maps show different spatial and seasonal patterns. Although the high resolution modelling results are averaged out within the aggregated relative valuation scale, seasonal differences can be depicted: during snowmelt, low relevant regulation can be determined, especially for water flow regulation, but a very high relevant regulation was calculated for the vegetation period during summer and for the winter period. The SWAT model serves as a suitable quantification method for the assessment of water

  15. The Sensitivity of r-PROCESS Nucleosynthesis to the Properties of Neutron-Rich Nuclei

    NASA Astrophysics Data System (ADS)

    Surman, R.; Mumpower, M. R.; Cass, J.; Aprahamian, A.

    2014-09-01

    About half of the heavy elements in the Solar System were created by rapid neutron capture, or r-process, nucleosynthesis. In the r-process, heavy elements are built up via a sequence of neutron captures and beta decays in which an intense neutron flux pushes material out towards the neutron drip line. The nuclear network simulations used to test potential astrophysical scenarios for the r-process therefore require nuclear physics data (masses, beta decay lifetimes, neutron capture rates, fission probabilities) for thousands of nuclei far from stability. Only a small fraction of this data has been experimentally measured. Here we discuss recent sensitivity studies that aim to determine the nuclei whose properties are most crucial for r-process calculations.

  16. Preliminary Thermal-Mechanical Sizing of Metallic TPS: Process Development and Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Poteet, Carl C.; Abu-Khajeel, Hasan; Hsu, Su-Yuen

    2002-01-01

    The purpose of this research was to perform sensitivity studies and develop a process to perform thermal and structural analysis and sizing of the latest Metallic Thermal Protection System (TPS) developed at NASA LaRC (Langley Research Center). Metallic TPS is a key technology for reducing the cost of reusable launch vehicles (RLV), offering the combination of increased durability and competitive weights when compared to other systems. Accurate sizing of metallic TPS requires combined thermal and structural analysis. Initial sensitivity studies were conducted using transient one-dimensional finite element thermal analysis to determine the influence of various TPS and analysis parameters on TPS weight. The thermal analysis model was then used in combination with static deflection and failure mode analysis of the sandwich panel outer surface of the TPS to obtain minimum weight TPS configurations at three vehicle stations on the windward centerline of a representative RLV. The coupled nature of the analysis requires an iterative analysis process, which will be described herein. Findings from the sensitivity analysis are reported, along with TPS designs at the three RLV vehicle stations considered.

  17. Sensitivity study and parameter optimization of OCD tool for 14nm finFET process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhensheng; Chen, Huiping; Cheng, Shiqiu; Zhan, Yunkun; Huang, Kun; Shi, Yaoming; Xu, Yiping

    2016-03-01

    Optical critical dimension (OCD) measurement has been widely demonstrated as an essential metrology method for monitoring advanced IC process in the technology node of 90 nm and beyond. However, the rapidly shrunk critical dimensions of the semiconductor devices and the increasing complexity of the manufacturing process bring more challenges to OCD. The measurement precision of OCD technology highly relies on the optical hardware configuration, spectral types, and inherently interactions between the incidence of light and various materials with various topological structures, therefore sensitivity analysis and parameter optimization are very critical in the OCD applications. This paper presents a method for seeking the optimum sensitive measurement configuration to enhance the metrology precision and reduce the noise impact to the greatest extent. In this work, the sensitivity of different types of spectra with a series of hardware configurations of incidence angles and azimuth angles were investigated. The optimum hardware measurement configuration and spectrum parameter can be identified. The FinFET structures in the technology node of 14 nm were constructed to validate the algorithm. This method provides guidance to estimate the measurement precision before measuring actual device features and will be beneficial for OCD hardware configuration.

  18. Word recognition in competing babble and the effects of age, temporal processing, and absolute sensitivity.

    PubMed

    Snell, Karen B; Mapes, Frances M; Hickman, Elizabeth D; Frisina, D Robert

    2002-08-01

    This study was designed to clarify whether speech understanding in a fluctuating background is related to temporal processing as measured by the detection of gaps in noise bursts. Fifty adults with normal hearing or mild high-frequency hearing loss served as subjects. Gap detection thresholds were obtained using a three-interval, forced-choice paradigm. A 150-ms noise burst was used as the gap carrier with the gap placed close to carrier onset. A high-frequency masker without a temporal gap was gated on and off with the noise bursts. A continuous white-noise floor was present in the background. Word scores for the subjects were obtained at a presentation level of 55 dB HL in competing babble levels of 50, 55, and 60 dB HL. A repeated measures analysis of covariance of the word scores examined the effects of age, absolute sensitivity, and temporal sensitivity. The results of the analysis indicated that word scores in competing babble decreased significantly with increases in babble level, age, and gap detection thresholds. The effects of absolute sensitivity on word scores in competing babble were not significant. These results suggest that age and temporal processing influence speech understanding in fluctuating backgrounds in adults with normal hearing or mild high-frequency hearing loss.

  19. Pain Processing after Social Exclusion and Its Relation to Rejection Sensitivity in Borderline Personality Disorder

    PubMed Central

    Bungert, Melanie; Koppe, Georgia; Niedtfeld, Inga; Vollstädt-Klein, Sabine; Schmahl, Christian

    2015-01-01

    Objective There is a general agreement that physical pain serves as an alarm signal for the prevention of and reaction to physical harm. It has recently been hypothesized that “social pain,” as induced by social rejection or abandonment, may rely on comparable, phylogenetically old brain structures. As plausible as this theory may sound, scientific evidence for this idea is sparse. This study therefore attempts to link both types of pain directly. We studied patients with borderline personality disorder (BPD) because BPD is characterized by opposing alterations in physical and social pain; hyposensitivity to physical pain is associated with hypersensitivity to social pain, as indicated by an enhanced rejection sensitivity. Method Twenty unmedicated female BPD patients and 20 healthy participants (HC, matched for age and education) played a virtual ball-tossing game (cyberball), with the conditions for exclusion, inclusion, and a control condition with predefined game rules. Each cyberball block was followed by a temperature stimulus (with a subjective pain intensity of 60% in half the cases). The cerebral responses were measured by functional magnetic resonance imaging. The Adult Rejection Sensitivity Questionnaire was used to assess rejection sensitivity. Results Higher temperature heat stimuli had to be applied to BPD patients relative to HCs to reach a comparable subjective experience of painfulness in both groups, which suggested a general hyposensitivity to pain in BPD patients. Social exclusion led to a subjectively reported hypersensitivity to physical pain in both groups that was accompanied by an enhanced activation in the anterior insula and the thalamus. In BPD, physical pain processing after exclusion was additionally linked to enhanced posterior insula activation. After inclusion, BPD patients showed reduced amygdala activation during pain in comparison with HC. In BPD patients, higher rejection sensitivity was associated with lower activation

  20. Sensitivity of Multiangle, Multispectral Polarimetric Remote Sensing Over Open Oceans to Water-Leaving Radiance: Analyses of RSP Data Acquired During the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    Chowdhary, Jacek; Cairns, Brian; Waquet, Fabien; Knobelspiesse, Kirk; Ottaviani, Matteo; Redemann, Jens; Travis, Larry; Mishchenko, Michael

    2012-01-01

    For remote sensing of aerosol over the ocean, there is a contribution from light scattered underwater. The brightness and spectrum of this light depends on the biomass content of the ocean, such that variations in the color of the ocean can be observed even from space. Rayleigh scattering by pure sea water, and Rayleigh-Gans type scattering by plankton, causes this light to be polarized with a distinctive angular distribution. To study the contribution of this underwater light polarization to multiangle, multispectral observations of polarized reflectance over ocean, we previously developed a hydrosol model for use in underwater light scattering computations that produces realistic variations of the ocean color and the underwater light polarization signature of pure sea water. In this work we review this hydrosol model, include a correction for the spectrum of the particulate scattering coefficient and backscattering efficiency, and discuss its sensitivity to variations in colored dissolved organic matter (CDOM) and in the scattering function of marine particulates. We then apply this model to measurements of total and polarized reflectance that were acquired over open ocean during the MILAGRO field campaign by the airborne Research Scanning Polarimeter (RSP). Analyses show that our hydrosol model faithfully reproduces the water-leaving contributions to RSP reflectance, and that the sensitivity of these contributions to Chlorophyll a concentration [Chl] in the ocean varies with the azimuth, height, and wavelength of observations. We also show that the impact of variations in CDOM on the polarized reflectance observed by the RSP at low altitude is comparable to or much less than the standard error of this reflectance whereas their effects in total reflectance may be substantial (i.e. up to >30%). Finally, we extend our study of polarized reflectance variations with [Chl] and CDOM to include results for simulated spaceborne observations.

  1. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity

    PubMed Central

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A. M.

    2016-01-01

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n = 18) (Griffioen-Roose et al., 2013). First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex (bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per se may be

  2. Sensitivity, child regulatory processes, and naturally occurring declines in antisocial behavior across childhood.

    PubMed

    Buck, Katharine Ann

    2014-12-01

    Despite considerable research on why antisocial behavior develops and interventions that reduce it, aspects of everyday family processes that may promote naturally occurring declines in antisocial behavior or that may result from such declines in most children without intervention are poorly understood. The current study explored family processes that may enable children to replace antisocial tendencies and the effects that declines in antisocial behavior may have on parenting and child regulatory processes. Longitudinal data from 1,022 children (54 months-6th grade) from the NICHD Study of Early Child Care and Youth Development were examined. Findings demonstrated that naturally occurring declines in antisocial behavior both predicted and were predicted by maternal sensitivity, emotion regulation, and social skills. These declines predicted but were not predicted by declines in hostile attributions. The data revealed multiple indirect paths, which highlight the complex nature of these variables across development.

  3. Stress Sensitivity and Stress Generation in Social Anxiety Disorder: A Temporal Process Approach

    PubMed Central

    Farmer, Antonina S.; Kashdan, Todd B.

    2015-01-01

    Dominant theoretical models of social anxiety disorder (SAD) suggest that people who suffer from function-impairing social fears are likely to react more strongly to social stressors. Researchers have examined the reactivity of people with SAD to stressful laboratory tasks, but there is little knowledge about how stress affects their daily lives. We asked 79 adults from the community, 40 diagnosed with SAD and 39 matched healthy controls, to self-monitor their social interactions, social events, and emotional experiences over two weeks using electronic diaries. These data allowed us to examine associations of social events and emotional well-being both within-day and from one day to the next. Using hierarchical linear modeling, we found all participants to report increases in negative affect and decreases in positive affect and self-esteem on days when they experienced more stressful social events. However, people with SAD displayed greater stress sensitivity, particularly in negative emotion reactions to stressful social events, compared to healthy controls. Groups also differed in how previous days’ events influenced sensitivity to current days’ events. Moreover, we found evidence of stress generation in that the SAD group reported more frequent interpersonal stress, though temporal analyses did not suggest greater likelihood of social stress on days following intense negative emotions. Our findings support the role of heightened social stress sensitivity in SAD, highlighting rigidity in reactions and occurrence of stressful experiences from one day to the next. These findings also shed light on theoretical models of emotions and self-esteem in SAD and present important clinical implications. PMID:25688437

  4. Analysing the Policy Process.

    ERIC Educational Resources Information Center

    Humes, Walter M.

    1997-01-01

    Examines the recent development of educational policy analysis as a research field within Scottish education. Discusses "inside" and "outside" approaches to policy analysis; the value of theoretical models for making sense of source material; the potential of discourse analysis, illustrated by reference to Foucault and Lyotard; and the need for…

  5. Sensitivity analysis of a dry-processed Candu fuel pellet's design parameters

    SciTech Connect

    Choi, Hangbok; Ryu, Ho Jin

    2007-07-01

    Sensitivity analysis was carried out in order to investigate the effect of a fuel pellet's design parameters on the performance of a dry-processed Canada deuterium uranium (CANDU) fuel and to suggest the optimum design modifications. Under a normal operating condition, a dry-processed fuel has a higher internal pressure and plastic strain due to a higher fuel centerline temperature when compared with a standard natural uranium CANDU fuel. Under a condition that the fuel bundle dimensions do not change, sensitivity calculations were performed on a fuel's design parameters such as the axial gap, dish depth, gap clearance and plenum volume. The results showed that the internal pressure and plastic strain of the cladding were most effectively reduced if a fuel's element plenum volume was increased. More specifically, the internal pressure and plastic strain of the dry-processed fuel satisfied the design limits of a standard CANDU fuel when the plenum volume was increased by one half a pellet, 0.5 mm{sup 3}/K. (authors)

  6. A sensitivity study of s-process: the impact of uncertainties from nuclear reaction rates

    NASA Astrophysics Data System (ADS)

    Vinyoles, N.; Serenelli, A.

    2016-01-01

    The slow neutron capture process (s-process) is responsible for the production of about half the elements beyond the Fe-peak. The production sites and the conditions under which the different components of s-process occur are relatively well established. A detailed quantitative understanding of s-process nucleosynthesis may yield light in physical processes, e.g. convection and mixing, taking place in the production sites. For this, it is important that the impact of uncertainties in the nuclear physics is well understood. In this work we perform a study of the sensitivity of s-process nucleosynthesis, with particular emphasis in the main component, on the nuclear reaction rates. Our aims are: to quantify the current uncertainties in the production factors of s-process elements originating from nuclear physics and, to identify key nuclear reactions that require more precise experimental determinations. In this work we studied two different production sites in which s-process occurs with very different neutron exposures: 1) a low-mass extremely metal-poor star during the He-core flash (nn reaching up to values of ∼ 1014cm-3); 2) the TP-AGB phase of a M⊙, Z=0.01 model, the typical site of the main s-process component (nn up to 108 — 109cm-3). In the first case, the main variation in the production of s-process elements comes from the neutron poisons and with relative variations around 30%-50%. In the second, the neutron poison are not as important because of the higher metallicity of the star that actually acts as a seed and therefore, the final error of the abundances are much lower around 10%-25%.

  7. Combination of chemical analyses and animal feeding trials as reliable procedures to assess the safety of heat processed soybean seeds.

    PubMed

    Vasconcelos, Ilka M; Brasil, Isabel Cristiane F; Oliveira, José Tadeu A; Campello, Cláudio C; Maia, Fernanda Maria M; Campello, Maria Verônica M; Farias, Davi F; Carvalho, Ana Fontenele U

    2009-06-10

    This study assessed whether chemical analyses are sufficient to guarantee the safety of heat processing of soybeans (SB) for human/animal consumption. The effects of extrusion and dry-toasting were analyzed upon seed composition and performance of broiler chicks. None of these induced appreciable changes in protein content and amino acid composition. Conversely, toasting reduced all antinutritional proteins by over 85%. Despite that, the animals fed on toasted SB demonstrated a low performance (feed efficiency 57.8 g/100 g). Extrusion gave place to higher contents of antinutrients, particularly of trypsin inhibitors (27.53 g/kg flour), but animal performance was significantly (p < 0.05) better (feed efficiency 63.2 g/100 g). Upon the basis of chemical analyses, dry-toasting represents the treatment of choice. However, considering the results of the feeding trials, extrusion appears to be the safest method. In conclusion, in order to evaluate the reliability of any processing method intended to improve nutritional value, the combination of chemical and animal studies is necessary.

  8. Sensitivity of mix in Inertial Confinement Fusion simulations to diffusion processes

    NASA Astrophysics Data System (ADS)

    Melvin, Jeremy; Cheng, Baolian; Rana, Verinder; Lim, Hyunkyung; Glimm, James; Sharp, David H.

    2015-11-01

    We explore two themes related to the simulation of mix within an Inertial Confinement Fusion (ICF) implosion, the role of diffusion (viscosity, mass diffusion and thermal conduction) processes and the impact of front tracking on the growth of the hydrodynamic instabilities. Using the University of Chicago HEDP code FLASH, we study the sensitivity of post-shot simulations of a NIC cryogenic shot to the diffusion models and front tracking of the material interfaces. Results of 1D and 2D simulations are compared to experimental quantities and an analysis of the current state of fully integrated ICF simulations is presented.

  9. Implementation of Complex Signal Processing Algorithms for Position-Sensitive Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2008-01-01

    We have recently reported on a theoretical digital signal-processing algorithm for improved energy and position resolution in position-sensitive, transition-edge sensor (POST) X-ray detectors [Smith et al., Nucl, lnstr and Meth. A 556 (2006) 2371. PoST's consists of one or more transition-edge sensors (TES's) on a large continuous or pixellated X-ray absorber and are under development as an alternative to arrays of single pixel TES's. PoST's provide a means to increase the field-of-view for the fewest number of read-out channels. In this contribution we extend the theoretical correlated energy position optimal filter (CEPOF) algorithm (originally developed for 2-TES continuous absorber PoST's) to investigate the practical implementation on multi-pixel single TES PoST's or Hydras. We use numerically simulated data for a nine absorber device, which includes realistic detector noise, to demonstrate an iterative scheme that enables convergence on the correct photon absorption position and energy without any a priori assumptions. The position sensitivity of the CEPOF implemented on simulated data agrees very well with the theoretically predicted resolution. We discuss practical issues such as the impact of random arrival phase of the measured data on the performance of the CEPOF. The CEPOF algorithm demonstrates that full-width-at- half-maximum energy resolution of < 8 eV coupled with position-sensitivity down to a few 100 eV should be achievable for a fully optimized device.

  10. Modeling and Estimating Recall Processing Capacity: Sensitivity and Diagnostic Utility in Application to Mild Cognitive Impairment.

    PubMed

    Wenger, Michael K; Negash, Selamawit; Petersen, Ronald C; Petersen, Lyndsay

    2010-02-01

    We investigate the potential for using latency-based measures of retrieval processing capacity to assess changes in perfomance specific to individuals with mild cognitive impairment (MCI), a reliable precursor state to Alzheimer's Disease. Use of these capacity measures is motivated in part by exploration of the effects of atrophy on a computational model of a basic hippocampal circuit. We use this model to suggest that capacity may be a more sensitive indicator of undelying atrophy than speed of processing, and test this hypothesis by adapting a standard behavioral measure of memory (the free and cued selective reminding test, FCSRT) to allow for the collection of cued recall latencies. Participants were drawn from five groups: college-aged, middle-aged, healthy elderly, those with a diagnosis of MCI, and a sample of MCI control participants. The measure of capacity is shown to offer increased classificatory sensitivity relative to the standard behavioral measures, and is also shown to be the behavioral measure that correlated most strongly with hippocampal volume. PMID:20436932

  11. Identification of sensitive parameters in the modeling of SVOC reemission processes from soil to atmosphere.

    PubMed

    Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc

    2014-09-15

    Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty.

  12. Estimate design sensitivity to process variation for the 14nm node

    NASA Astrophysics Data System (ADS)

    Landié, Guillaume; Farys, Vincent

    2016-03-01

    Looking for the highest density and best performance, the 14nm technological node saw the development of aggressive designs, with design rules as close as possible to the limit of the process. Edge placement error (EPE) budget is now tighter and Reticle Enhancement Techniques (RET) must take into account the highest number of parameters to be able to get the best printability and guaranty yield requirements. Overlay is a parameter that must be taken into account earlier during the design library development to avoid design structures presenting a high risk of performance failure. This paper presents a method taking into account the overlay variation and the Resist Image simulation across the process window variation to estimate the design sensitivity to overlay. Areas in the design are classified with specific metrics, from the highest to the lowest overlay sensitivity. This classification can be used to evaluate the robustness of a full chip product to process variability or to work with designers during the design library development. The ultimate goal is to evaluate critical structures in different contexts and report the most critical ones. In this paper, we study layers interacting together, such as Contact/Poly area overlap or Contact/Active distance. ASML-Brion tooling allowed simulating the different resist contours and applying the overlay value to one of the layers. Lithography Manufacturability Check (LMC) detectors are then set to extract the desired values for analysis. Two different approaches have been investigated. The first one is a systematic overlay where we apply the same overlay everywhere on the design. The second one is using a real overlay map which has been measured and applied to the LMC tools. The data are then post-processed and compared to the design target to create a classification and show the error distribution. Figure:

  13. High-sensitivity matrix-assisted laser desorption/ionization Fourier transform mass spectrometry analyses of small carbohydrates and amino acids using oxidized carbon nanotubes prepared by chemical vapor deposition as matrix.

    PubMed

    Wang, Cui-hong; Li, Jian; Yao, Sheng-jun; Guo, Yin-long; Xia, Xing-hua

    2007-12-01

    In matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry (FTMS) analyses of small oligosaccharides and amino acids, high sensitivities for oligosaccharides (10 fmol) were obtained by introducing oxidized carbon nanotubes (CNTs) with short and open-end structure as valuable matrix. The CNTs were deposited in porous anodic alumina (PAA) templates by chemical vapor deposition. Transmission electron microscopy (TEM) images show that those CNTs include low levels of amorphous carbon. Thus, the background interference signals generally caused by amorphous carbon powder in CNTs can be reduced effectively. Experiments also confirmed that the FTMS signal intensity of CNTs prepared in PAA template is much lower than that of commercial multi-wall carbon nanotubes (MCNTs). Moreover, the purified process for CNTs with mixed acid (H2SO4 and HNO3) also contributed to the minimization of background. Intense signals corresponding to alkali cation adduct of neutral carbohydrates and amino acids have been acquired. In addition, reliable quantitative analyses for urine and corn root were also achieved successfully. The present work will open a new way to the application of oxidized CNTs as an effective matrix in MALDI MS research.

  14. Integrating surface plasmon resonance biosensor-based interaction kinetic analyses into the lead discovery and optimization process.

    PubMed

    Danielson, U Helena

    2009-11-01

    Surface plasmon resonance biosensor technology has come of age and become an important tool for drug discovery. It is a label-free biophysical technique for the kinetic analysis of molecular interactions that provides exceptionally information-rich data. Recent improvements in sensitivity, experimental design, data analysis and sample throughput makes it suitable for use throughout the drug-discovery process. This article outlines the use of SPR biosensor technology for small-molecule drug discovery and exemplifies how it complements other techniques. The technology is especially valuable for fragment-based lead discovery since it has the required sensitivity and throughput for screening of fragment libraries. Hits can be identified with respect to multiple criteria, defined by the experimental design used for screening. Expansion of hits and subsequent characterization and optimization of leads can be performed with a variety of experiments exploiting the kinetic resolution of the technology. Leads identified by this strategy can therefore be extensively characterized with respect to their interactions, with their target as well as with nontarget proteins. Although it may take some time for the methods to become well established, and for the research community to reach proficiency and fully embrace the information-rich data that can be obtained, it can be predicted that this technology will be widely used for drug discovery within the near future. It is expected that the technology will be particularly important for fragment-based strategies and integrated with other experimental technologies as well as with computational methods. PMID:21426056

  15. Process metallurgy analyses for high bendability and springback property sheet design by using multi-scale finite element method

    NASA Astrophysics Data System (ADS)

    Kuramae, Hiroyuki; Honda, Takeshi; Morimoto, Hideo; Morita, Yusuke; Nakamachi, Eiji

    2014-10-01

    In this study, we develop bendability and springback prediction analysis code for an optimum crystal texture design scheme to generate ideal aluminum alloy sheet through the sheet rolling and heat treatment processes. To predict the relationships between the sheet metal formability and the crystal texture, we applied our multi-scale finite element (FE) procedure based on the crystallographic homogenization method for the bending process analyses. Our code employed two-scale method, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum by introducing the effect of crystal orientation distribution. It means that our code can predict the plastic deformation of sheet metal in the macro-scale, and the crystal texture evolutions in the micro-scale. Furthermore, we designed the polycrystal texture by asymmetric rolling (ASR) and annealing heat treatment processes to generate high bendability and low springback polycrystal material. Annealing heat treatment was modeled as the growth of Cube {001}<100> orientation based on the Johnson-Mehl-Avrami's equation. The design parameters, ASR ratio and annealing heat treatment time, were optimized by using a discrete multi-objective optimization algorithm to maximize the bendability and to minimize the springback angle. As the optimized result, the ASR ratio 1.16 and the annealing heat treatment time 13.5min were obtained.

  16. A novel BCI based on ERP components sensitive to configural processing of human faces

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Qibin; Jing, Jin; Wang, Xingyu; Cichocki, Andrzej

    2012-04-01

    This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min-1 using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.

  17. Silver-halide sensitized gelatin (SHSG) processing method for pulse holograms recorded on VRP plates

    NASA Astrophysics Data System (ADS)

    Evstigneeva, Maria K.; Drozdova, Olga V.; Mikhailov, Viktor N.

    2002-06-01

    One of the most important area of holograph applications is display holography. In case of pulse recording the requirement for vibration stability is easier than compared to CW exposure. At the same time it is widely known that the behavior of sliver-halide holographic materials strongly depends on the exposure duration. In particular the exposure sensitivity drastically decreases under nanosecond pulse duration. One of the effective ways of the diffraction efficiency improvement is SHSG processing method. This processing scheme is based on high modulation of refractive index due to microvoids appearance inside emulsion layer. It should be mentioned that the SHSG method was used earlier only in the cases when the holograms were recorded by use of CW lasers. This work is devoted to the investigation of SHSG method for pulse hologram recording on VRP plates. We used a pulsed YLF:Nd laser with pulse duration of 25 nanoseconds and wavelength of 527 nm. Both transmission and reflection holograms were recorded. The different kinds of bleaching as well as developing solutions were investigated. Our final processing scheme includes the following stages: 1) development in non-tanning solution, 2) rehalogenating bleach, 3) intermediate alcohol drying, 4) uniform second exposure, 5) second development in diluted developer, 6) reverse bleaching, 7) fixing and 8) gradient drying in isopropyl alcohol. Diffraction efficiency of transmission holograms was of about 60 percent and reflection mirror holograms was of about 45 percent. Thus we have demonstrated the SHSG processing scheme for producing effective holograms on VRP plates under pulse exposure.

  18. Reducing Missed Laboratory Results: Defining Temporal Responsibility, Generating User Interfaces for Test Process Tracking, and Retrospective Analyses to Identify Problems

    PubMed Central

    Tarkan, Sureyya; Plaisant, Catherine; Shneiderman, Ben; Hettinger, A. Zachary

    2011-01-01

    Researchers have conducted numerous case studies reporting the details on how laboratory test results of patients were missed by the ordering medical providers. Given the importance of timely test results in an outpatient setting, there is limited discussion of electronic versions of test result management tools to help clinicians and medical staff with this complex process. This paper presents three ideas to reduce missed results with a system that facilitates tracking laboratory tests from order to completion as well as during follow-up: (1) define a workflow management model that clarifies responsible agents and associated time frame, (2) generate a user interface for tracking that could eventually be integrated into current electronic health record (EHR) systems, (3) help identify common problems in past orders through retrospective analyses. PMID:22195201

  19. Exploring the Sensitivity of Terrestrial Carbon Sources and Sinks to Nitrogen Cycle Processes

    NASA Astrophysics Data System (ADS)

    Kheshgi, H. S.; Yang, X.; Jain, A.

    2009-12-01

    The sensitivity of terrestrial carbon sources and sinks to modeled nitrogen-cycle processes is explored and observational constraints considered to advance understanding of model differences and the uncertainty of CO2 projections. The magnitude of worldwide terrestrial carbon sources and sinks driven by changing climate and CO2 fertilization have been found to be attenuated by the dynamics of the nitrogen cycle, with the strength of this attenuation effect differing between coupled nitrogen-carbon-cycle models (Jain et al., GBC in press, 2009; Sokolov et al., J. of Climate, 2008; Thornton et al., GBC, 2007). In this study, a terrestrial nitrogen-carbon-cycle model (Yang et al., GBC in press, 2009) was used to evaluate how the nitrogen cycle influences terrestrial carbon sinks and sources in response to observation-based changes in atmospheric CO2, climate, nitrogen inputs, and land use over the 20th century and scenarios for these drivers over the 21st century. Modeled global carbon uptake by the terrestrial biosphere is found to be sensitive to, for example, the extent of nitrogen limitation in the tropics, the extent plant C/N ratio increase under nitrogen limitation and its consequent effects on productivity, and the change of rates of nitrogen inputs (e.g. biological nitrogen fixation and nitrogen deposition) and outputs (e.g. leaching and denitrification). Greater nitrogen limitation in tropical regions, reduced ability of plants to grow with increased C/N ratio, and decreased rates of nitrogen inputs and outputs (equal in equilibrium) each strengthen the nitrogen cycle’s effect of reducing carbon sinks and sources. Application of observation-based constraints to these nitrogen-cycle processes gives an estimate of the contribution of uncertainty in these processes to the uncertainty of CO2 projections.

  20. The possibilities of improvement in the sensitivity of cancer fluorescence diagnostics by computer image processing

    NASA Astrophysics Data System (ADS)

    Ledwon, Aleksandra; Bieda, Robert; Kawczyk-Krupka, Aleksandra; Polanski, Andrzej; Wojciechowski, Konrad; Latos, Wojciech; Sieron-Stoltny, Karolina; Sieron, Aleksander

    2008-02-01

    Background: Fluorescence diagnostics uses the ability of tissues to fluoresce after exposition to a specific wavelength of light. The change in fluorescence between normal and progression to cancer allows to see early cancer and precancerous lesions often missed by white light. Aim: To improve by computer image processing the sensitivity of fluorescence images obtained during examination of skin, oral cavity, vulva and cervix lesions, during endoscopy, cystoscopy and bronchoscopy using Xillix ONCOLIFE. Methods: Function of image f(x,y):R2 --> R 3 was transformed from original color space RGB to space in which vector of 46 values refers to every point labeled by defined xy-coordinates- f(x,y):R2 --> R 46. By means of Fisher discriminator vector of attributes of concrete point analalyzed in the image was reduced according to two defined classes defined as pathologic areas (foreground) and healthy areas (background). As a result the highest four fisher's coefficients allowing the greatest separation between points of pathologic (foreground) and healthy (background) areas were chosen. In this way new function f(x,y):R2 --> R 4 was created in which point x,y corresponds with vector Y, H, a*, c II. In the second step using Gaussian Mixtures and Expectation-Maximisation appropriate classificator was constructed. This classificator enables determination of probability that the selected pixel of analyzed image is a pathologically changed point (foreground) or healthy one (background). Obtained map of probability distribution was presented by means of pseudocolors. Results: Image processing techniques improve the sensitivity, quality and sharpness of original fluorescence images. Conclusion: Computer image processing enables better visualization of suspected areas examined by means of fluorescence diagnostics.

  1. The Development of Expert Face Processing: Are Infants Sensitive to Normal Differences in Second-Order Relational Information?

    ERIC Educational Resources Information Center

    Hayden, Angela; Bhatt, Ramesh S.; Reed, Andrea; Corbly, Christine R.; Joseph, Jane E.

    2007-01-01

    Sensitivity to second-order relational information (i.e., spatial relations among features such as the distance between eyes) is a vital part of achieving expertise with face processing. Prior research is unclear on whether infants are sensitive to second-order differences seen in typical human populations. In the current experiments, we examined…

  2. Angularly sensitive wide field of view micro-sensor construction and new processing paradigm: task oriented optical processing

    NASA Astrophysics Data System (ADS)

    Franck, Jerome B.

    2007-04-01

    Discussed is a novel method of manufacturing an Angularly Sensitive Micro-Sensor (ASMS). The process employed utilizes excimer laser ablation to write out the microlens on the curved surface of the master lens. This master lens element is manufactured with fused optical fibers, such that if the registration is maintained, the light from each microlens goes via the fiber to a specific pixel in a focal plane array (FPA). Such a system allows for a field of view greatly in excess of 180 degrees. If local imaging is required for specific tasks the fiber can send the angularly localized image to a pixel set. Image fusing may then be required. Infrared and ultraviolet versions can be manufactured. A more general application allows for a multi-spectral sensor. After one ASMS is constructed, then an inverse mask (mould) can be created and the monolithic sphere, retaining its registration, is covered in liquid plastic and placed into the mould and the exact replica is re-created. The advantage is low cost and rapid manufacture of the ASMS. The paper focuses on this sensor as a Task-Oriented Optical Processing (TOP) system; where the processing is performed primarily by the optics leaving a greatly reduced requirement for an electronic processor. This is a critical issue for micro, insect sized platforms where the weight budget is devoted to the energy and propulsive systems. An important aspect of this approach is that the sensor samples amplitude and angular space rather than amplitude and position space as conventional sensors currently do. This makes the ASMS processing paradigm completely different from conventional image processing. For example using several fiber/pixel elements to comprise a UV polarimeter allows for simple storage and processing of vector elements for simple navigation. The home position may be treated as "Look up table" reference matrix (RM). That base table can be modified to account for the passage of time (and hence change in solar position from

  3. Specific capture of the hydrolysate on magnetic beads for sensitive detecting plant vacuolar processing enzyme activity.

    PubMed

    Zhou, Jun; Cheng, Meng; Zeng, Lizhang; Liu, Weipeng; Zhang, Tao; Xing, Da

    2016-05-15

    Conventional plant protease detection always suffers from high background interference caused by the complex coloring metabolites in plant cells. In this study, a bio-modified magnetic beads-based strategy was developed for sensitive and quantitative detection of plant vacuolar processing enzyme (VPE) activity. Cleavage of the peptide substrate (ESENCRK-FITC) after asparagine residue by VPE resulted in the 2-cyano-6-amino-benzothiazole (CABT)-functionalized magnetic beads capture of the severed substrate CRK-FITC via a condensation reaction between CABT and cysteine (Cys). The catalytic activity was subsequently obtained by the confocal microscopy imaging and flow cytometry quantitative analysis. The sensor system integrated advantages of (i) the high efficient enrichment and separation capabilities of magnetic beads and (ii) the catalyst-free properties of the CABT-Cys condensation reaction. It exhibited a linear relationship between the fluorescence signal and the concentration of severed substrate in the range of 10-600 pM. The practical results showed that, compared with normal growth conditions, VPE activity was increased by 2.7-fold (307.2 ± 25.3 μM min(-1)g(-1)) upon cadmium toxicity stress. This platform effectively overcame the coloring metabolites-caused background interference, showing fine applicability for the detection of VPE activity in real samples. The strategy offers great sensitivity and may be further extended to other protease activity detection. PMID:26797250

  4. Quantifying Measurement Fluctuations from Stochastic Surface Processes on Sensors with Heterogeneous Sensitivity

    NASA Astrophysics Data System (ADS)

    Charmet, Jérôme; Michaels, Thomas C. T.; Daly, Ronan; Prasad, Abhinav; Thiruvenkathanathan, Pradyumna; Langley, Robin S.; Knowles, Tuomas P. J.; Seshia, Ashwin A.

    2016-06-01

    Recent advances in micro- and nanotechnology have enabled the development of ultrasensitive sensors capable of detecting small numbers of species. In general, however, the response induced by the random adsorption of a small number of objects onto the surface of such sensors results in significant fluctuations due to the heterogeneous sensitivity inherent to many such sensors coupled to statistical fluctuations in the particle number. At present, this issue is addressed by considering either the limit of very large numbers of analytes, where fluctuations vanish, or the converse limit, where the sensor response is governed by individual analytes. Many cases of practical interest, however, fall between these two limits and remain challenging to analyze. Here, we address this limitation by deriving a general theoretical framework for quantifying measurement variations on mechanical resonators resulting from statistical-number fluctuations of analyte species. Our results provide insights into the stochastic processes in the sensing environment and offer opportunities to improve the performance of mechanical-resonator-based sensors. This metric can be used, among others, to aid in the design of robust sensor platforms to reach ultrahigh-resolution measurements using an array of sensors. These concepts, illustrated here in the context of biosensing, are general and can therefore be adapted and extended to other sensors with heterogeneous sensitivity.

  5. Energy Efficienct Processes for Making Tackifier Dispersions used to make Pressure Sensitive Adhesives

    SciTech Connect

    Rakesh Gupta

    2006-07-26

    The primary objective of this project was to develop an energy efficient, environmentally friendly and low cost process (compared to the current process) for making tackifier dispersions that are used to make pressure-sensitive adhesives. These adhesives are employed in applications such as self-adhesive postage stamps and disposable diapers and are made by combining the tackifier dispersion with a natural or synthetic rubber latex. The current process for tackifier dispersion manufacture begins by melting a (plastic) resin and adding water to it in order to form a water-in-oil emulsion. This is then converted to an oil-in-water emulsion by phase inversion in the presence of continuous stirring. The resulting emulsion is the tackifier dispersion, but it is not concentrated and the remaining excess water has to be transported and removed. The main barrier that has to be overcome in the development of commercial quality tackifier dispersions is the inability to directly emulsify resin in water due to the very low viscosity of water as compared to the viscosity of the molten resin. In the present research, a number of solutions were proposed to overcome this barrier, and these included use of different mixer types to directly form the emulsion from the molten resin but without going through a phase inversion, the idea of forming a solid resin-in-water suspension having the correct size and size distribution but without melting of the resin, and the development of techniques of making a colloidal powder of the resin that could be dispersed in water just prior to use. Progress was made on each of these approaches, and each was found to be feasible. The most appealing solution, though, is the last one, since it does not require melting of the resin. Also, the powder can be shipped in dry form and then mixed with water in any proportion depending on the needs of the process. This research was conducted at Argonne National Laboratory, and it was determined the new process

  6. Threat/reward-sensitivity and hypomanic-personality modulate cognitive-control and attentional neural processes to emotional stimuli.

    PubMed

    Pornpattananangkul, Narun; Hu, Xiaoqing; Nusslock, Robin

    2015-11-01

    Temperamental-traits (e.g. threat/reward-sensitivity) are found to modulate cognitive-control and attentional-processes. Yet, it is unclear exactly how these traits interact with emotional-stimuli in the modulation of cognitive-control, as reflected by the N2 event-related potential (ERP), and attentional-processes, as reflected by the P2 and P3 ERPs. Here in an ERP emotional-Go/NoGo task, 36 participants were instructed to inhibit their response to Fearful- and Happy-faces. Individual-differences in threat-sensitivity, reward-sensitivity and hypomanic-personality were assessed through self-report. Hypomanic-personality was assessed, given its relationship with reward-sensitivity and relevance to mood-disorder symptoms. Concerning cognitive-control, individuals with elevated threat-sensitivity displayed more-negative N2s to Happy-NoGo (relative to Fearful-NoGo) faces, whereas both individuals with elevated reward-sensitivity and hypomanic-personality displayed more-negative N2s to Fearful-NoGo (relative to Happy-NoGo) faces. Accordingly, when cognitive-control is required (during Go/NoGo), a mismatch between one's temperament and the valence of the NoGo-stimulus elevates detection of the need for cognitive-control. Conversely, the modulation of attentional-processing was specific to threat-sensitivity, as there was no relationship between either reward-sensitivity or hypomanic-personality and attentional-processing. Elevated threat-sensitivity was associated with enhanced early (P2s) and later (P3s) attentional-processing to Fearful-NoGo (relative to Happy-NoGo) faces. These latter findings support the negative attentional-bias model relating elevated threat-sensitivity with attentional-biases toward negative-stimuli and away from positive-stimuli.

  7. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; kim, Han Seong; Lee, Dong Y.

    2015-01-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration. PMID:26087134

  8. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process.

    PubMed

    Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Kim, Han Seong; Lee, Dong Y

    2015-01-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration.

  9. PITRE: software for phase-sensitive X-ray image processing and tomography reconstruction.

    PubMed

    Chen, Rong Chang; Dreossi, Diego; Mancini, Lucia; Menk, Ralf; Rigon, Luigi; Xiao, Ti Qiao; Longo, Renata

    2012-09-01

    Synchrotron-radiation computed tomography has been applied in many research fields. Here, PITRE (Phase-sensitive X-ray Image processing and Tomography REconstruction) and PITRE_BM (PITRE Batch Manager) are presented. PITRE supports phase retrieval for propagation-based phase-contrast imaging/tomography (PPCI/PPCT), extracts apparent absorption, refractive and scattering information of diffraction enhanced imaging (DEI), and allows parallel-beam tomography reconstruction for conventional absorption CT data and for PPCT phase retrieved and DEI-CT extracted information. PITRE_BM is a batch processing manager for PITRE: it executes a series of tasks, created via PITRE, without manual intervention. Both PITRE and PITRE_BM are coded in Interactive Data Language (IDL), and have a user-friendly graphical user interface. They are freeware and can run on Microsoft Windows systems via IDL Virtual Machine, which can be downloaded for free and does not require a license. The data-processing principle and some examples of application will be presented.

  10. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process.

    PubMed

    Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Kim, Han Seong; Lee, Dong Y

    2015-01-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration. PMID:26087134

  11. Sensory-processing sensitivity moderates the association between childhood experiences and adult life satisfaction

    PubMed Central

    Booth, Charlotte; Standage, Helen; Fox, Elaine

    2015-01-01

    There are few studies testing the differential susceptibility hypothesis (DSH: hypothesizing that some individuals are more responsive to both positive and negative experiences) with adult personality traits. The current study examined the DSH by investigating the moderating effect of sensory-processing sensitivity (SPS) on childhood experiences and life satisfaction. A total of 185 adults completed measures of SPS, positive/negative childhood experiences and life satisfaction. SPS did moderate the association between childhood experiences and life satisfaction. Simple slopes analysis compared those reporting high and low SPS (+/− 1 SD) and revealed that the difference was observed only for those who reported negative childhood experiences; with the high SPS group reporting lower life satisfaction. There was no difference observed in those reporting positive childhood experiences, which supported a diathesis-stress model rather than the DSH. PMID:26688599

  12. Modified surface loading process for achieving improved performance of the quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Jin, Zhongxiu; Zhu, Jun; Xu, Yafeng; Zhou, Li; Dai, Songyuan

    2016-06-01

    Achieving high surface coverage of the colloidal quantum dots (QDs) on TiO2 films has been challenging for quantum dot-sensitized solar cells (QDSCs). Herein, a general surface engineering approach was proposed to increase the loading of these QDs. It was found that S2- treatment/QD re-uptake process can significantly improve the attachment of the QDs on TiO2 films. Surface concentration of the QDs was improved by ∼60%, which in turn greatly enhances light absorption and decreases carrier recombination in QDSCs. Ensuing QDSCs with optimized QD loading exhibit a power conversion efficiency of 3.66%, 83% higher than those fabricated with standard procedures.

  13. Liquid PEG Polymers Containing Antioxidants: A Versatile Platform for Studying Oxygen-Sensitive Photochemical Processes.

    PubMed

    Mongin, Cédric; Golden, Jessica H; Castellano, Felix N

    2016-09-14

    This article proposes the exploitation of widely available, inexpensive, innocuous "green" liquid polyethylene glycol (PEG) polymers containing the oxygen scavenger oleic acid (OA) as promising media for studying oxygen-sensitive photochemical processes. Here we report the successful application of this media to detailed investigations of triplet-sensitized photochemical upconversion, previously established as being readily poisoned by dissolved oxygen. Three different PEG materials were investigated with increasing molecular weight from 200 to 600 g/mol, coded as PEG-200, PEG-400, and PEG-600. These fluidic polymers facilitate an oxygen-depleted environment in comparison to commonly employed organic solvents while providing high solubility and diffusion for the dissolved chromophores. Moreover, the low oxygen permeation afforded by these PEG solvents allows them to remain deoxygenated in open containers under ambient conditions for extended time periods. OA, 9,10-dimethylanthracene (DMA), and 2,5-dimethylfuran (DMF) are shown to efficiently and quantitatively consume dissolved oxygen in the PEG environment in the presence of the photoactivated triplet sensitizer platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP). Oxygen consumption was directly correlated with systematically increasing sensitizer excited-state lifetimes that eventually reach the same plateau as achieved through extensive N2 sparging. Diffusion-controlled bimolecular triplet-triplet energy transfer quenching between PtTPBP and the acceptor/annihilator 9,10-bisphenylethynylanthracene (BPEA) was observed in all three PEG formulations investigated. Subsequent triplet-triplet annihilation, between triplet excited BPEA acceptors, achieves bright and stable upconverted singlet fluorescence from BPEA with no decrease in intensity over 20 h under ambient conditions. In the champion composition (PEG 200), the upconversion quantum efficiency reached 31% under conditions where triplet-triplet annihilation

  14. Histological and immunohistochemical analyses of the chronology of healing process after immediate tooth replantation in incisor rat teeth.

    PubMed

    Panzarini, Sônia Regina; Okamoto, Roberta; Poi, Wilson Roberto; Sonoda, Celso Koogi; Pedrini, Denise; da Silva, Paula Ervolino; Saito, Celia Tomiko Matida Hamata; Marão, Heloísa Fonseca; Sedlacek, Paulo

    2013-02-01

    Dental tissues have special characteristics, and its regenerative capacity is noteworthy. However, understanding the circumstances that lead to regeneration is challenging. In this study, the chronology of the healing process after immediate replantation of rat incisor teeth was examined by histological and immunohistochemical analyses within a 60-day period. Thirty-six male Wistar rats had their maxillary right incisors extracted and replanted after 15 min in saline storage. The rats were sacrificed immediately 3, 7, 15, 28, and 60 days after replantation. The histological analysis showed rupture of the periodontal ligament and formation of a blood clot, which started being replaced by a connective tissue after 3 days. At 7 days, the gingival mucosa epithelium was reinserted and areas of root resorption could be seen. At 15 days, the periodontal ligament was repaired. At 3 days, the pulp presented an absence of the odontoblast layer, which started being replaced by a connective tissue. This tissue suffered gradual calcification, filling the root canal at 28 and 60 days. The root ends were closed. The immunohistochemical analysis revealed greater expression of OP, OPG, and RANK proteins in the initial periods (0 and 3 days), while TRAP expression predominated at 28 and 60 days (P < 0.05). In conclusion, in delayed tooth replantation, there is great new bone formation activity in the earlier periods of the repair process, while a predominance of bone resorption and remodeling is observed in the more advanced periods.

  15. Erosion processes by water in agricultural landscapes: a low-cost methodology for post-event analyses

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Calligaro, Simone; Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    Throughout the world, agricultural landscapes assume a great importance, especially for supplying food and a livelihood. Among the land degradation phenomena, erosion processes caused by water are those that may most affect the benefits provided by agricultural lands and endanger people who work and live there. In particular, erosion processes that affect the banks of agricultural channels may cause the bank failure and represent, in this way, a severe threat to floodplain inhabitants and agricultural crops. Similarly, rills and gullies are critical soil erosion processes as well, because they bear upon the productivity of a farm and represent a cost that growers have to deal with. To estimate quantitatively soil losses due to bank erosion and rills processes, area based measurements of surface changes are necessary but, sometimes, they may be difficult to realize. In fact, surface changes due to short-term events have to be represented with fine resolution and their monitoring may entail too much money and time. The main objective of this work is to show the effectiveness of a user-friendly and low-cost technique that may even rely on smart-phones, for the post-event analyses of i) bank erosion affecting agricultural channels, and ii) rill processes occurring on an agricultural plot. Two case studies were selected and located in the Veneto floodplain (northeast Italy) and Marche countryside (central Italy), respectively. The work is based on high-resolution topographic data obtained by the emerging, low-cost photogrammetric method named Structure-from-Motion (SfM). Extensive photosets of the case studies were obtained using both standalone reflex digital cameras and smart-phone built-in cameras. Digital Terrain Models (DTMs) derived from SfM revealed to be effective to estimate quantitatively erosion volumes and, in the case of the bank eroded, deposited materials as well. SfM applied to pictures taken by smartphones is useful for the analysis of the topography

  16. Self-sustaining smoldering combustion for NAPL remediation: laboratory evaluation of process sensitivity to key parameters.

    PubMed

    Pironi, Paolo; Switzer, Christine; Gerhard, Jason I; Rein, Guillermo; Torero, Jose L

    2011-04-01

    Smoldering combustion has been introduced recently as a potential remediation strategy for soil contaminated by nonaqueous phase liquids (NAPLs). Published proof-of-concept experiments demonstrated that the process can be self-sustaining (i.e., requires energy input only to start the process) and achieve essentially complete remediation of the contaminated soil. Those initial experiments indicated that the process may be applicable across a broad range of NAPLs and soils. This work presents the results of a series of bench-scale experiments that examine in detail the sensitivity of the process to a range of key parameters, including contaminant concentration, water saturation, soil type, and air flow rates for two contaminants, coal tar and crude oil. Smoldering combustion was observed to be self-sustaining in the range 28,400 to 142,000 mg/kg for coal tar and in the range 31,200 to 104,000 mg/kg for crude oil, for the base case air flux. The process remained self-sustaining and achieved effective remediation across a range of initial water concentrations (0 to 177,000 mg/kg water) despite extended ignition times and decreased temperatures and velocities of the reaction front. The process also exhibited self-sustaining and effective remediation behavior across a range of fine to coarse sand grain sizes up to a threshold maximum value between 6 mm and 10 mm. Propagation velocity is observed to be highly dependent on air flux, and smoldering was observed to be self-sustaining down to an air Darcy flux of at least 0.5 cm/s for both contaminants. The extent of remediation in these cases was determined to be at least 99.5% and 99.9% for crude oil and coal tar, respectively. Moreover, no physical evidence of contamination was detected in the treatment zone for any case where a self-sustaining reaction was achieved. Lateral heat losses to the external environment were observed to significantly affect the smoldering process at the bench scale, suggesting that the field

  17. Computation of sensitivities of IC interconnect parasitic capacitances to the process variation with dual discrete geometric methods

    NASA Astrophysics Data System (ADS)

    Zhan, Gao; Dan, Ren; Shuai, Yan; Xiaoyu, Xu; Zhuoxiang, Ren

    2016-08-01

    Sensitivity analysis methods help to deal with the challenges of process variation in extraction of parasitic capacitances in an integrated circuit. The dual discrete geometric methods (DGMs), which have been recently utilized to extract parasitic capacitances, are reviewed. The computation method based on the dual DGMs for sensitivities of capacitances with respect to the given process parameters is presented. As the dual DGMs utilize scalar electric potential is unknown, the capacitances are obtained effectively, and then the sensitivities are calculated conveniently. Project supported by the National Natural Science Foundation of China (Nos. 61574167, 51407181).

  18. Inferring Instantaneous, Multivariate and Nonlinear Sensitivities for the Analysis of Feedback Processes in a Dynamical System: Lorenz Model Case Study

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.

  19. New interpretation of photonic yield processes (450-750nm) in multi-junction Si CMOS LEDs: simulation and analyses

    NASA Astrophysics Data System (ADS)

    Snyman, Lukas W.; Bellotti, Enrico

    2010-02-01

    Emission levels in the 450-750nm range of about 80-100 fold higher than that emitted by single junction avalanche LEDs, has been obtained. CMOS Si LED p+-i-np+ structures were modeled in order to investigate the effect of various depletion layer profiles and defect engineering on the photonic transitions in the 1.4 to 2.8 eV, 450-750nnm regime. Modeling and device simulation results showed that by utilizing a short lowly doped layer in between a highly doped p+ layer and n layer can enhance the photonic yields by orders of magnitude through an increase in the dynamic carrier densities in the device and favoring enhanced lateral multiplication processes. The electric field profile should be of the order of 5 x 105 V.cm-1 and about 0.5 micron long. Injecting of carriers of opposite charge type from an opposing forward bias junction further enhance the photonic yield. These models and interpretations is confirmed by analyses of device designs as realized in 1.2 μm and 0.35 CMOS technology. The device design involved normal CMOS design and processing procedures with no excessive micro-dimensioning. The current devices operated in the 8-10V, 1uA - 2mA regime and yield emission intensities of up to 100 nW.μm-2. The current emission levels are about three orders higher than the low frequency detectability limit of Si CMOS p-n detectors of corresponding area. The particular design favors higher emission levels towards the 750nm wavelength region. This makes diverse electro-optical applications possible such as optical communication on chip, diverse optical signal processing and wave-guiding. It also enables realization of on chip Micro-Optical-Electro-Mechanical Sensors (MOEMS), which could lead to the development of so-called "smart chips" utilizing standard CMOS integrated circuitry.

  20. Ozone production in four major cities of China: sensitivity to ozone precursors and heterogeneous processes

    NASA Astrophysics Data System (ADS)

    Xue, L. K.; Wang, T.; Gao, J.; Ding, A. J.; Zhou, X. H.; Blake, D. R.; Wang, X. F.; Saunders, S. M.; Fan, S. J.; Zuo, H. C.; Zhang, Q. Z.; Wang, W. X.

    2013-10-01

    Despite a large volume of research over a number of years, our understandings of the key precursors that control tropospheric ozone production and the impacts of heterogeneous processes remain incomplete. In this study, we analyze measurements of ozone and its precursors made at rural/suburban sites downwind of four large Chinese cities - Beijing, Shanghai, Guangzhou and Lanzhou. At each site the same measurement techniques were utilized and a photochemical box model based on the Master Chemical Mechanism (v3.2) was applied, to minimize uncertainties in comparison of the results due to differences in methodology. All four cities suffered from severe ozone pollution. At the rural site of Beijing, export of the well-processed urban plumes contributed to the extremely high ozone levels (up to an hourly value of 286 ppbv), while the pollution observed at the suburban sites of Shanghai, Guangzhou and Lanzhou was characterized by intense in-situ ozone production. The major anthropogenic hydrocarbons were alkenes and aromatics in Beijing and Shanghai, aromatics in Guangzhou, and alkenes in Lanzhou. The ozone production was found to be in a VOCs-limited regime in both Shanghai and Guangzhou, and a mixed regime in Lanzhou. In Shanghai, the ozone formation was most sensitive to aromatics and alkenes, while in Guangzhou aromatics were the predominant ozone precursors. In Lanzhou, either controlling NOx or reducing emissions of olefins from the petrochemical industry would mitigate the local ozone production. The potential impacts of several heterogeneous processes on the ozone formation were assessed. The hydrolysis of dinitrogen pentoxide (N2O5), uptake of the hydroperoxyl radical (HO2) on particles, and surface reactions of NO2 forming nitrous acid (HONO) present considerable sources of uncertainty in the current studies of ozone chemistry. Further efforts are urgently required to better understand these processes and refine atmospheric models.

  1. The AquaDEB project (phase I): Analysing the physiological flexibility of aquatic species and connecting physiological diversity to ecological and evolutionary processes by using Dynamic Energy Budgets

    NASA Astrophysics Data System (ADS)

    Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.

    2009-08-01

    The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from

  2. Isotopic Investigations of Nebular and Parent Body Processes with a High Sensitivity Ion Microprobe

    NASA Technical Reports Server (NTRS)

    McKeegan, Kevin D.

    2005-01-01

    systematics by a combined approach of high-precision multiple-collector SIMS analyses, traditional analyses on the UCLA ims 1270, and high-spatial resolution analyses using a NanoSIMS instrument. The data help to deconvolve effects due to partial resetting of the A1-Mg system by multiple thermal events. Finally, we initiated investigations related to nebular heterogeneity with a new initiative of in situ high-precision sulfur isotope analyses of sulfides from a wide variety of components of chondrites. The ultimate goal of all this work is to help develop a better understanding of the relationships between CAIs and chondrules, the astrophysical environments in which they formed, and the timescales of nebular processes. As detailed in Table 1, for the project period, 14 manuscripts were published and 17 abstracts were presented describing the work.

  3. Internalization and processing of Bacillus anthracis lethal toxin by toxin-sensitive and -resistant cells.

    PubMed

    Singh, Y; Leppla, S H; Bhatnagar, R; Friedlander, A M

    1989-07-01

    Anthrax lethal toxin consists of two separate proteins, protective antigen and lethal factor (LF). Certain macrophages and a mouse macrophage-like cell line, J774A.1, are lysed by low concentrations of lethal toxin. In contrast, another macrophage cell line, IC-21, and all other cell types tested were resistant to this toxin. To discover the basis for this difference, each step in the intoxication process was examined. No differences between sensitive and resistant cells were found in receptor binding or proteolytic activation of protective antigen, steps that are required prior to LF binding. To determine whether resistance results from a defect in translocation to the cytosol, we introduced LF into J774A.1 and IC-21 cells and a nonmacrophage cell line (L6 myoblast) by osmotic lysis of pinocytic vesicles. Only J774A.1 cells were lysed; no effect was observed in IC-21 and L6 cells. These results suggest that resistant cells either lack the intracellular target of LF or fail to process LF to an active form. The relatively low potency of LF introduced into J774A.1 cells by osmotic lysis suggests that protective antigen may also be required at a stage subsequent to endocytosis. PMID:2500434

  4. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  5. Sensitive parameters in predicting exposure contaminants concentration in a risk assessment process.

    PubMed

    Avagliano, Salvatore; Vecchio, Antonella; Belgiorno, Vincenzo

    2005-12-01

    A sensitivity analysis (SA) was conducted on the analytical models considered in the risk-based corrective-action (RBCA) methodology of risk analysis, as developed by the American Society for Testing of Materials (ASTM), to predict a contaminant's concentration in the affected medium at the point of human exposure. These models are of interest because evaluations regarding the best approach to contaminated site remediation are shifting toward increased use of risk-based decision, and the ASTM RBCA methodology represents the most effective and internationally widely used standardized guide for risk assessment process. This paper identifies key physical and chemical parameters that need additional precision and accuracy consideration in order to reduce uncertainty in models prediction, thereby saving time, money and engineering effort in the data collection process. SA was performed applying a variance-based method to organic contaminants migration models with reference to soil-to-groundwater leaching ingestion exposure scenario. Results indicate that model output strongly depends on the organic-carbon partition coefficient, organic-carbon content, net infiltration, Darcy velocity, source-receptor distance, and first-order decay constant.

  6. Neurogenetics of Depression: A Focus on Reward Processing and Stress Sensitivity

    PubMed Central

    Bogdan, Ryan; Nikolova, Yuliya S.; Pizzagalli, Diego A.

    2013-01-01

    Major depressive disorder (MDD) is etiologically complex and has a heterogeneous presentation. This heterogeneity hinders the ability of molecular genetic research to reliably detect the small effects conferred by common genetic variation. As a result, significant research efforts have been directed at investigating more homogenous intermediate phenotypes believed to be more proximal to gene function and lie between genes and/or environmental effects and disease processes. In the current review we survey and integrate research on two promising intermediate phenotypes linked to depression: reward processing and stress sensitivity. A synthesis of this burgeoning literature indicates that a molecular genetic approach focused on intermediate phenotypes holds significant promise to fundamentally improve our understanding of the pathophysiology and etiology of depression, which will be required for improved diagnostic definitions and the development of novel and more efficacious treatment and prevention strategies. We conclude by highlighting challenges facing intermediate phenotype research and future development that will be required to propel this pivotal research into new directions. PMID:22659304

  7. Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence

    ERIC Educational Resources Information Center

    Urosevic, Snezana; Collins, Paul; Muetzel, Ryan; Lim, Kelvin; Luciana, Monica

    2012-01-01

    Adolescence is a period of radical normative changes and increased risk for substance use, mood disorders, and physical injury. Researchers have proposed that increases in reward sensitivity (i.e., sensitivity of the behavioral approach system [BAS]) and/or increases in reactivity to all emotional stimuli (i.e., reward and threat sensitivities)…

  8. A Process-based, Climate-Sensitive Model to Derive Methane Emissions from Natural Wetlands: Application to 5 Wetland Sites, Sensitivity to Model Parameters and Climate

    NASA Technical Reports Server (NTRS)

    Walter, Bernadette P.; Heimann, Martin

    1999-01-01

    Methane emissions from natural wetlands constitutes the largest methane source at present and depends highly on the climate. In order to investigate the response of methane emissions from natural wetlands to climate variations, a 1-dimensional process-based climate-sensitive model to derive methane emissions from natural wetlands is developed. In the model the processes leading to methane emission are simulated within a 1-dimensional soil column and the three different transport mechanisms diffusion, plant-mediated transport and ebullition are modeled explicitly. The model forcing consists of daily values of soil temperature, water table and Net Primary Productivity, and at permafrost sites the thaw depth is included. The methane model is tested using observational data obtained at 5 wetland sites located in North America, Europe and Central America, representing a large variety of environmental conditions. It can be shown that in most cases seasonal variations in methane emissions can be explained by the combined effect of changes in soil temperature and the position of the water table. Our results also show that a process-based approach is needed, because there is no simple relationship between these controlling factors and methane emissions that applies to a variety of wetland sites. The sensitivity of the model to the choice of key model parameters is tested and further sensitivity tests are performed to demonstrate how methane emissions from wetlands respond to climate variations.

  9. Experimental measurement of cooling tower emissions using image processing of sensitive papers

    NASA Astrophysics Data System (ADS)

    Ruiz, J.; Kaiser, A. S.; Ballesta, M.; Gil, A.; Lucas, M.

    2013-04-01

    Cooling tower emissions are harmful for several reasons such as air polluting, wetting, icing and solid particle deposition, but mainly due to human health hazards (i.e. Legionella). There are several methods for measuring drift drops. This paper is focussed on the sensitive paper technique, which is suitable in low drift scenarios and real conditions. The lack of an automatic classification method motivated the development of a digital image process algorithm for the Sensitive Paper method. This paper presents a detailed description of this method, in which, drop-like elements are identified by means of the Canny edge detector combined with some morphological operations. Afterwards, the application of a J48 decision tree is proposed as one of the most relevant contributions. This classification method allows us to discern between stains whose origin is a drop and stains whose origin is not a drop. The method is applied to a real case and results are presented in terms of drift and PM10 emissions. This involves the calculation of the main features of the droplet distribution at the cooling tower exit surface in terms of drop size distribution data, cumulative mass distribution curve and characteristic drop diameters. The Log-normal and the Rosin-Rammler distribution functions have been fitted to the experimental data collected in the tests and it can been concluded that the first one is the most suitable for experimental data among the functions tested (whereas the second one is less suitable). Realistic PM10 calculations include the measurement of drift emissions and Total Dissolved Solids as well as the size and number of drops. Results are compared to the method proposed by the U.S. Environmental Protection Agency assessing its overestimation. Drift emissions have found to be 0.0517% of the recirculating water, which is over the Spanish standards limit (0.05%).

  10. Exploring the enactment effect from an information processing view: what can we learn from serial position analyses?

    PubMed

    Schatz, Tanja R; Spranger, Tina; Kubik, Veit; Knopf, Monika

    2011-12-01

    The focus of the present article was to analyze processes that determine the enactment and age effect in a multi-trial free recall paradigm by looking at the serial position effects. In an experimental study (see Schatz et al 2010), the performance-enhancing effect of enactive encoding and repeated learning was tested with older and younger participants. As expected, there was a steady improvement of memory performance as a function of repeated learning regardless of age. In addition, enactive encoding led to a better memory performance than verbal encoding in both age groups. Furthermore, younger adults outperformed the elderly regardless of type of encoding. Analyses in the present article show that encoding by enacting seems to profit especially from remembering the last items of a presented list. Regarding age differences, younger outperformed older participants in nearly all item positions. The performance enhancement after task repetition is due to a higher amount of recalled items in the middle positions in a subject performed task (SPT) and a verbal task (VT) as well as the last positions of a learned list in VT.

  11. Sensitive periods differentiate processing of open- and closed-class words: an ERP study of bilinguals.

    PubMed

    Weber-Fox, C; Neville, H J

    2001-12-01

    The goal of this study was to test the hypothesis that neural processes for language are heterogeneous in their adaptations to maturation and experience. This study examined whether the neural processes for open- and closed-class words are differentially affected by delays in second-language immersion. In English, open-class words primarily convey referential meaning, whereas closed-class words are primarily related to grammatical information in sentence processing. Previous studies indicate that event-related brain potentials (ERPs) elicited by these word classes display nonidentical distributions and latencies, show different developmental time courses, and are differentially affected by early language experience in Deaf individuals. In this study, ERPs were recorded from 10 monolingual English speakers and 53 Chinese-English bilingual speakers who were grouped according to their age of immersion in English: 1-3, 4-6, 7-10, 11-13, and >15 years of age. Closed-class words elicited an N280 that was largest over left anterior electrode sites for all groups. However, the peak latency was later (>35 ms) in bilingual speakers immersed in English after 7 years of age. In contrast, the latencies and distributions of the N350 elicited by open-class words were similar in all groups. In addition, the N400, elicited by semantic anomalies (open-class words that violated semantic expectation), displayed increased peak latencies for only the later-learning bilingual speakers (>11 years). These results are consistent with the hypothesis that language subprocesses are differentially sensitive to the timing of second-language experience. PMID:11776369

  12. Process development for waveguide chemical sensors with integrated polymeric sensitive layers

    NASA Astrophysics Data System (ADS)

    Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo

    2008-02-01

    Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.

  13. Sensitive periods differentiate processing of open- and closed-class words: an ERP study of bilinguals.

    PubMed

    Weber-Fox, C; Neville, H J

    2001-12-01

    The goal of this study was to test the hypothesis that neural processes for language are heterogeneous in their adaptations to maturation and experience. This study examined whether the neural processes for open- and closed-class words are differentially affected by delays in second-language immersion. In English, open-class words primarily convey referential meaning, whereas closed-class words are primarily related to grammatical information in sentence processing. Previous studies indicate that event-related brain potentials (ERPs) elicited by these word classes display nonidentical distributions and latencies, show different developmental time courses, and are differentially affected by early language experience in Deaf individuals. In this study, ERPs were recorded from 10 monolingual English speakers and 53 Chinese-English bilingual speakers who were grouped according to their age of immersion in English: 1-3, 4-6, 7-10, 11-13, and >15 years of age. Closed-class words elicited an N280 that was largest over left anterior electrode sites for all groups. However, the peak latency was later (>35 ms) in bilingual speakers immersed in English after 7 years of age. In contrast, the latencies and distributions of the N350 elicited by open-class words were similar in all groups. In addition, the N400, elicited by semantic anomalies (open-class words that violated semantic expectation), displayed increased peak latencies for only the later-learning bilingual speakers (>11 years). These results are consistent with the hypothesis that language subprocesses are differentially sensitive to the timing of second-language experience.

  14. Solar energy conversion at dye sensitized nanostructured electrodes fabricated by sol-gel processing: Final report

    SciTech Connect

    Searson, P C; Meyer, G J

    1998-07-01

    The significant achievements accomplished in this program include: (1) the first demonstration of osmium polypyridyl compounds as sensitizers; (2) the first demonstration of donor-acceptor compounds as sensitizers; (3) the first utilization of alternative acac based sensitizer-semiconductor linkages; (4) the first demonstration of remote interfacial electron transfer; (5) the first application of bimetallic compounds as sensitizers; (6) the first correlation of the interfacial charge recombination rate constant with the open circuit photovoltage in sensitized materials; (7) the first demonstration of a solid state dye sensitized TiO{sub 2} cell; (8) an alternative band edge unpinning model for the nanocrystalline TiO{sub 2}/electrolyte interface at negative applied potentials; and (9) the first self-consistent model of electron transport in dye sensitized TiO{sub 2} films. In the following sections the authors summarize some of the results from this program and highlight the key findings.

  15. Assessment of the Sensitizing Potential of Processed Peanut Proteins in Brown Norway Rats: Roasting Does Not Enhance Allergenicity

    PubMed Central

    Kroghsbo, Stine; Rigby, Neil M.; Johnson, Philip E.; Adel-Patient, Karine; Bøgh, Katrine L.; Salt, Louise J.; Mills, E. N. Clare; Madsen, Charlotte B.

    2014-01-01

    Background IgE-binding of process-modified foods or proteins is the most common method for examination of how food processing affects allergenicity of food allergens. How processing affects sensitization capacity is generally studied by administration of purified food proteins or food extracts and not allergens present in their natural food matrix. Objectives The aim was to investigate if thermal processing increases sensitization potential of whole peanuts via the oral route. In parallel, the effect of heating on sensitization potential of the major peanut allergen Ara h 1 was assessed via the intraperitoneal route. Methods Sensitization potential of processed peanut products and Ara h 1 was examined in Brown Norway (BN) rats by oral administration of blanched or oil-roasted peanuts or peanut butter or by intraperitoneal immunization of purified native (N-), heated (H-) or heat glycated (G-)Ara h 1. Levels of specific IgG and IgE were determined by ELISA and IgE functionality was examined by rat basophilic leukemia (RBL) cell assay. Results In rats dosed orally, roasted peanuts induced significant higher levels of specific IgE to NAra h 1 and 2 than blanched peanuts or peanut butter but with the lowest level of RBL degranulation. However, extract from roasted peanuts was found to be a superior elicitor of RBL degranulation. Process-modified Ara h 1 had similar sensitizing capacity as NAra h 1 but specific IgE reacted more readily with process-modified Ara h 1 than with native. Conclusions Peanut products induce functional specific IgE when dosed orally to BN rats. Roasted peanuts do not have a higher sensitizing capacity than blanched peanuts. In spite of this, extract from roasted peanuts is a superior elicitor of RBL cell degranulation irrespectively of the peanut product used for sensitization. The results also suggest that new epitopes are formed or disclosed by heating Ara h 1 without glucose. PMID:24805813

  16. The role of punishment and reward sensitivity in the emotional labor process: a within-person perspective.

    PubMed

    Schreurs, Bert; Guenter, Hannes; Hülsheger, Ute; van Emmerik, Hetty

    2014-01-01

    In this diary study, we tested the possibility that dispositional reward and punishment sensitivity, two central constructs of reinforcement sensitivity theory, would modify the relationship between emotional labor and job-related well-being (i.e., work engagement, emotional exhaustion, depersonalization). Specifically, based on a social functional account of emotion, we hypothesized that surface acting entails the risk of social disapproval and therefore may be more detrimental for high than for low punishment-sensitive individuals. In contrast, deep acting is hypothesized to hold the promise of social approval and therefore may be more beneficial for high than for low reward-sensitive individuals. Hypotheses were tested in a sample of 237 service workers (N = 1,584 daily reports) who completed a general survey and daily surveys over the course of 10 working days. Multilevel analyses showed that surface acting was detrimental to well-being, and more strongly so for high than for low punishment-sensitive individuals. The results are consistent with the idea that heightened sensitivity to social disapproval aggravates the negative effects of surface acting.

  17. The role of punishment and reward sensitivity in the emotional labor process: a within-person perspective.

    PubMed

    Schreurs, Bert; Guenter, Hannes; Hülsheger, Ute; van Emmerik, Hetty

    2014-01-01

    In this diary study, we tested the possibility that dispositional reward and punishment sensitivity, two central constructs of reinforcement sensitivity theory, would modify the relationship between emotional labor and job-related well-being (i.e., work engagement, emotional exhaustion, depersonalization). Specifically, based on a social functional account of emotion, we hypothesized that surface acting entails the risk of social disapproval and therefore may be more detrimental for high than for low punishment-sensitive individuals. In contrast, deep acting is hypothesized to hold the promise of social approval and therefore may be more beneficial for high than for low reward-sensitive individuals. Hypotheses were tested in a sample of 237 service workers (N = 1,584 daily reports) who completed a general survey and daily surveys over the course of 10 working days. Multilevel analyses showed that surface acting was detrimental to well-being, and more strongly so for high than for low punishment-sensitive individuals. The results are consistent with the idea that heightened sensitivity to social disapproval aggravates the negative effects of surface acting. PMID:24447225

  18. Aging process on spectrally determined spontaneous baroreflex sensitivity: a 5-year prospective study.

    PubMed

    Fauvel, Jean-Pierre; Cerutti, Catherine; Mpio, Ignace; Ducher, Michel

    2007-09-01

    The interindividual age-related decrease in baroreflex sensitivity (BRS) was reported in many cross-sectional studies. However, the long-term intraindividual decrease in BRS has never been confirmed by longitudinal studies. Data obtained from a 5-year prospective study designed to assess the 5-year stress effects on blood pressure (BP) provided the opportunity to assess longitudinal aging process on spectrally determined BRS (S-BRS) using the cross spectral analysis. This analysis was carried out in 205 men aged between 18 and 50 years who had 2 valid beat to beat BP recordings (Finapress) at a mean 5-year interval. At inclusion and at end of follow-up, S-BRS was significantly correlated with age (r=-0.50, P<0.001, r=-0.33, P<0.001 respectively). Interestingly, the slopes and the intercepts were not significantly different at a 5-year interval. This result is in favor of the good reproducibility of S-BRS. The attenuation with age of S-BRS was calculated at 3.6% a year. This decrease was slightly higher than the one obtained with the baseline data (2.3% per year). This longitudinal study provided, for the first time, an estimate of the slope of the age-related physiological S-BRS decrease in a mid-aged healthy male population. Our findings reinforce the interest of evaluating spontaneous BRS reported to predict hypertension and cardiovascular events in various populations.

  19. Pre-processing in sentence comprehension: Sensitivity to likely upcoming meaning and structure

    PubMed Central

    DeLong, Katherine A.; Troyer, Melissa; Kutas, Marta

    2016-01-01

    For more than a decade, views of sentence comprehension have been shifting toward wider acceptance of a role for linguistic pre-processing—that is, anticipation, expectancy, (neural) pre-activation, or prediction—of upcoming semantic content and syntactic structure. In this survey, we begin by examining the implications of each of these “brands” of predictive comprehension, including the issue of potential costs and consequences to not encountering highly constrained sentence input. We then describe a number of studies (many using online methodologies) that provide results consistent with prospective sensitivity to various grains and levels of semantic and syntactic information, acknowledging that such pre-processing is likely to occur in other linguistic and extralinguistic domains, as well. This review of anticipatory findings also includes some discussion on the relationship of priming to prediction. We conclude with a brief examination of some possible limits to prediction, and with a suggestion for future work to probe whether and how various strands of prediction may integrate during real-time comprehension. PMID:27525035

  20. Modeling and sensitivity analysis study of the reduction of NO sub x by HNCO. [RAPRENOx process

    SciTech Connect

    Brown, N.J.; Garay, J.

    1992-05-01

    A chemical mechanism for the reduction of NO{sub x} by HNCO has been constructed to allow for the modeling of NO{sub x} in exhausts typical of natural gas combustion (RAPRENOx process). The reduction was modeled assuming plug flow, and either isothermal combustion or constant pressure adiabatic combustion. Variables were initial concentrations of NO, NO{sub 2}, CO, CH{sub 4}, H{sub 2}, and HNCO as well as initial temperatures. Exhaust residence time was nominally 1 s. Reduction was not achieved for prototypical natural gas exhaust'' for a reasonable residence time. Radical generation is crucial for reduction. H{sub 2} addition enhanced ignition and reduction. The final combustion temperature determines where NO{sub x} reduction ceases and NO{sub x} production increases. Reduction increases with HNCO, and breakthrough of NH{sub 3} and HNCO increses as well. N{sub 2}O production is due to NCO + NO, but the reduction of NO also occurs through reactions associated with the Thermal De-NOx chemistry. NH{sub 3} production and reactions are important to the reduction of NO. Sensitivity analysis under easy ignition conditions indicated that the same reactions involving nitrogen species, NH{sub 2} and NNH, important in De-NOx, are important when HNCO is used to reduce NO{sub x}. A real combustion exhaust would contain radicals, but it would be neither isothermal nor adiabatic, and heat release and loss would accompany the reduction process. Three-body recombination reactions are important and need further study.(DLC)

  1. Lower Stratospheric Temperature Differences Between Meteorological Analyses in two cold Arctic Winters and their Impact on Polar Processing Studies

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley; Atlas, Robert (Technical Monitor)

    2001-01-01

    A quantitative intercomparison of six meteorological analyses is presented for the cold 1999-2000 and 1995-1996 Arctic winters. The impacts of using different analyzed temperatures in calculations of polar stratospheric cloud (PSC) formation potential, and of different winds in idealized trajectory-based temperature histories, are substantial. The area with temperatures below a PSC formation threshold commonly varies by approximately 25% among the analyses, with differences of over 50% at some times/locations. Freie University at Berlin analyses are often colder than others at T is less than or approximately 205 K. Biases between analyses vary from year to year; in January 2000. U.K. Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses warmest. while NCEP analyses were usually coldest in 1995-1996 and Met Office or NCEP[National Center for Atmospheric Research Reanalysis (REAN) warmest. European Centre for Medium Range Weather Forecasting (ECMWF) temperatures agreed better with other analyses in 1999-2000, after improvements in the assimilation model. than in 1995-1996. Case-studies of temperature histories show substantial differences using Met Office, NCEP, REAN and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), qualitatively similar results were obtained for all analyses. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with large cold regions near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly among the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days. while in the 1996 periods, they were at 1-3 days. Thus different meteorological conditions in comparably cold winters had a large impact on expectations for PSC formation and on the

  2. Using multi-scale stable isotopes analyses to study the microbial processes of soil organic matter stabilization

    NASA Astrophysics Data System (ADS)

    Hatton, P.; Remusat, L.; Zeller, B.; Bode, S.; Brewer, E.; Boeckx, P. F.; Derrien, D.

    2012-12-01

    Soil microorganisms are increasingly recognized as important drivers for the stabilization of soil organic matter (OM) with soil assemblages, but the way they act remains not fully explored. Here, we used a multi-scale approach to investigate the attachment of microbial products with soil organo-mineral assemblages. A surface acidic Cambisol was amended with 13C15N labeled glycine and leaf fragments prior to sequential density separation of plant debris, aggregates and non-aggregates mineral grains with little OM attached. Labels were tracked using elemental analyzer coupled to isotope ratio mass spectrometry (EA-IRMS), liquid chromatography (LC) coupled to IRMS and nano-scale secondary ions MS (NanoSIMS). After 8h of glycine incubation, the comparison between γ-irradiated and non-sterile soils revealed that more than 90% and 85% of the stabilized glycine-derived 13C and 15N were found in microbial products, with a higher occurrence in aggregates than in plant debris and mineral grains. NanoSIMS images showed that these stabilized microbial products are principally not confined to the microbial cells, but evenly spread at the surface of the mineral-attached OM as extracellular products. After calibration, the comparison of their C/N ratios with the C/N ratios of the corresponding soil particles suggested that the microbial products are stabilized through physico-chemical interactions most likely mediated by the reactivity of the underlying minerals. Unlike NanoSIMS, LC-IRMS analyses allow the tracing of 13C tracers within microbial biomasses using amino sugars as biomarkers. After 3 months of incubation, freshly produced amino sugars deriving from the readily accessible glycine and finely ground leaf fragments clearly peaked in microbial aggregates and plant debris, respectively. Differences in distributions indicated that bacteria and fungi both grow where the resource is, but accumulate in microbial aggregates. These results suggested either a higher

  3. Social Sensitivity as a Factor in the Teaching Process: A Theoretical Discussion and an Experimental Contribution.

    ERIC Educational Resources Information Center

    Sandven, Johs.

    1979-01-01

    Social sensitivity is discussed as a factor in effective teaching and an investigation, using microteaching, is described. A high degree of correspondence was found between the teacher's standing on social sensitivity and students' and experts' reactions to them and their teaching performance. (Editor/SJL)

  4. First- and second-order contrast sensitivity functions reveal disrupted visual processing following mild traumatic brain injury.

    PubMed

    Spiegel, Daniel P; Reynaud, Alexandre; Ruiz, Tatiana; Laguë-Beauvais, Maude; Hess, Robert; Farivar, Reza

    2016-05-01

    Vision is disrupted by traumatic brain injury (TBI), with vision-related complaints being amongst the most common in this population. Based on the neural responses of early visual cortical areas, injury to the visual cortex would be predicted to affect both 1(st) order and 2(nd) order contrast sensitivity functions (CSFs)-the height and/or the cut-off of the CSF are expected to be affected by TBI. Previous studies have reported disruptions only in 2(nd) order contrast sensitivity, but using a narrow range of parameters and divergent methodologies-no study has characterized the effect of TBI on the full CSF for both 1(st) and 2(nd) order stimuli. Such information is needed to properly understand the effect of TBI on contrast perception, which underlies all visual processing. Using a unified framework based on the quick contrast sensitivity function, we measured full CSFs for static and dynamic 1(st) and 2(nd) order stimuli. Our results provide a unique dataset showing alterations in sensitivity for both 1(st) and 2(nd) order visual stimuli. In particular, we show that TBI patients have increased sensitivity for 1(st) order motion stimuli and decreased sensitivity to orientation-defined and contrast-defined 2(nd) order stimuli. In addition, our data suggest that TBI patients' sensitivity for both 1(st) order stimuli and 2(nd) order contrast-defined stimuli is shifted towards higher spatial frequencies.

  5. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    PubMed Central

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2012-01-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal

  6. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    NASA Astrophysics Data System (ADS)

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of

  7. Rule based processing of the CD4000, CD3200 and CD Sapphire analyser output using the Cerner Discern Expert Module.

    PubMed

    Burgess, P; Robin, H; Langshaw, M; Kershaw, G; Pathiraja, R; Yuen, S; Coad, C; Xiros, N; Mansy, G; Coleman, R; Brown, R; Gibson, J; Holman, R; Hubbard, J; Wick, V; Lammers, M; Johnson, R; Huffman, K; Bell, J; Ibrahim, A; Estepa, F; Lovegrove, J; Joshua, D

    2009-12-01

    The latest version of our Laboratory Information System haematology laboratory expert system that handles the output of Abbott Cell-Dyn Sapphires, CD4000s and a CD3200 full blood count analyser in three high-volume haematology laboratories is described. The three hospital laboratories use Cerner Millennium Version 2007.02 software and the expert system uses Cerner Millennium Discern Expert rules and some small Cerner Command Language in-house programs. The entire expert system is totally integrated with the area-wide database and has been built and maintained by haematology staff members, as has the haematology database. Using patient demographic data, analyser numeric results, analyser error and morphology flags and previous results for the patient, this expert system decides whether to validate the main full blood count indices and white cell differential, or if the analyser results warrant further operator intervention/investigation before verifying, whether a blood film is required for microscopic review and if abnormal results require phoning to the staff treating the patient. The principles of this expert system can be generalized to different haematology analysers and haematology laboratories that have different workflows and different software. PMID:18691345

  8. Rule based processing of the CD4000, CD3200 and CD Sapphire analyser output using the Cerner Discern Expert Module.

    PubMed

    Burgess, P; Robin, H; Langshaw, M; Kershaw, G; Pathiraja, R; Yuen, S; Coad, C; Xiros, N; Mansy, G; Coleman, R; Brown, R; Gibson, J; Holman, R; Hubbard, J; Wick, V; Lammers, M; Johnson, R; Huffman, K; Bell, J; Ibrahim, A; Estepa, F; Lovegrove, J; Joshua, D

    2009-12-01

    The latest version of our Laboratory Information System haematology laboratory expert system that handles the output of Abbott Cell-Dyn Sapphires, CD4000s and a CD3200 full blood count analyser in three high-volume haematology laboratories is described. The three hospital laboratories use Cerner Millennium Version 2007.02 software and the expert system uses Cerner Millennium Discern Expert rules and some small Cerner Command Language in-house programs. The entire expert system is totally integrated with the area-wide database and has been built and maintained by haematology staff members, as has the haematology database. Using patient demographic data, analyser numeric results, analyser error and morphology flags and previous results for the patient, this expert system decides whether to validate the main full blood count indices and white cell differential, or if the analyser results warrant further operator intervention/investigation before verifying, whether a blood film is required for microscopic review and if abnormal results require phoning to the staff treating the patient. The principles of this expert system can be generalized to different haematology analysers and haematology laboratories that have different workflows and different software.

  9. Investigation of the skin sensitizing properties of 5 osmolytic prodrugs in a weight-of-evidence assessment, employing in silico, in vivo, and read across analyses.

    PubMed

    Scheel, Julia; Keller, Detlef

    2012-01-01

    The amino acid esters ethyl glycinate (EG), DL-α-tocopheryl-(mono-)betainate hydrochloride (TMB), DL-α-tocopheryl-(mono-)glycinate hydrochloride (TMG), DL-α-tocopheryl-(mono-)prolinate hydrochloride (TMP), and DL-α-tocopheryl-(mono-)sarcosinate hydrochloride (TMS) were previously shown to exert an osmoprotective function to human skin in vitro. Based on literature data, the parent compounds α-tocopherol (vitamin E) and the amino acids glycine, betaine (trimethylated glycine), proline, and sarcosine (N-methylated glycine) are not considered to be sensitizers. To investigate skin sensitizing properties of the esters, EG, TMG, and TMP were tested in the Local Lymph Node Assay (LLNA). Remaining esters were assessed by read across analysis considering structural similarities and mechanistic aspects. The LLNA results were consistent with in silico outcomes from ToxTree 2.5.0 indicative for protein binding; EG was negative; TMG and TMP were positive. Since TMB and TMS showed structural similarities to TMG and TMP and were also positive in ToxTree, it was concluded that both TMB and TMS can also be expected to have a skin sensitizing potential and therefore animal testing was waived.

  10. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation.

  11. Improved PID controller design for unstable time delay processes based on direct synthesis method and maximum sensitivity

    NASA Astrophysics Data System (ADS)

    Vanavil, B.; Krishna Chaitanya, K.; Seshagiri Rao, A.

    2015-06-01

    In this paper, a proportional-integral-derivative controller in series with a lead-lag filter is designed for control of the open-loop unstable processes with time delay based on direct synthesis method. Study of the performance of the designed controllers has been carried out on various unstable processes. Set-point weighting is considered to reduce the undesirable overshoot. The proposed scheme consists of only one tuning parameter, and systematic guidelines are provided for selection of the tuning parameter based on the peak value of the sensitivity function (Ms). Robustness analysis has been carried out based on sensitivity and complementary sensitivity functions. Nominal and robust control performances are achieved with the proposed method and improved closed-loop performances are obtained when compared to the recently reported methods in the literature.

  12. Robustness and sensitivity analysis of a virtual process chain using the S-rail specimen applying random fields

    NASA Astrophysics Data System (ADS)

    Konrad, T.; Wolff, S.; Wiegand, K.; Merklein, M.

    2016-08-01

    An important part in robustness evaluation of production processes is the identification of shape deviations. A systematic approach is typically based on the numerical evaluation of a DoE and the application of metamodels. They provide knowledge on solver noise and sensitivities of individual model parameters. This article presents the sensitivity analysis workflow of a linked deep drawing and joining process chain. LS-DYNA®, optiSLang and SoS is used. The challenge is to separate simulative from process and material parameters of AA 6014. Spatial quantities like variations in geometry, thinning and strain have to be considered in the next process steps. At the same time the number of required virtual CAE model evaluations must be limited. The solution is based on nonlinear metamodels and random fields.

  13. Analyses of moments in pseudorapidity intervals at. sqrt. s = 546 GeV by means of two probability distributions in pure-birth process

    SciTech Connect

    Biyajima, M.; Shirane, K.; Suzuki, N.

    1988-04-01

    Moments in pseudorapidity intervals at the CERN Sp-barpS collider (..sqrt..s = 546 GeV) are analyzed by means of two probability distributions in the pure-birth stochastic process. Our results show that a probability distribution obtained from the Poisson distribution as an initial condition is more useful than that obtained from the Kronecker delta function. Analyses of moments by Koba-Nielsen-Olesen scaling functions derived from solutions of the pure-birth stochastic process are also made. Moreover, analyses of preliminary data at ..sqrt..s = 200 and 900 GeV are added.

  14. Sensitivity and Specificity of French Language and Processing Measures for the Identification of Primary Language Impairment at Age 5

    ERIC Educational Resources Information Center

    Thordardottir, Elin; Kehayia, Eva; Mazer, Barbara; Lessard, Nicole; Majnemer, Annette; Sutton, Ann; Trudeau, Natacha; Chilingaryan, Gevorg

    2011-01-01

    Purpose: Research on the diagnostic accuracy of different language measures has focused primarily on English. This study examined the sensitivity and specificity of a range of measures of language knowledge and language processing for the identification of primary language impairment (PLI) in French-speaking children. Because of the lack of…

  15. Sensitivity analysis of the add-on price estimate for the edge-defined film-fed growth process

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.; Kachare, A. H.

    1981-01-01

    The analysis is in terms of cost parameters and production parameters. The cost parameters include equipment, space, direct labor, materials, and utilities. The production parameters include growth rate, process yield, and duty cycle. A computer program was developed specifically to do the sensitivity analysis.

  16. Dehydration processes in the Indian monsoon anticyclone : Lagrangian analysis and sensitivity to vertical wind fields.

    NASA Astrophysics Data System (ADS)

    James, R.; Bonazzola, M.; Legras, B.; Surbled, K.; Fueglistaler, S.

    2007-12-01

    During Asian monsoon season, the large-scale monsoon flux generates a persistent anticyclonic circulation at the tropopause over the sub-tropical part of Asia (15°N to 40°N). The anticyclonic region is associated with a large water vapor maxima, which can hardly be explained by the seasonal variation of tropopause temperatures alone. In the upper troposphere, the moistening effect of deep convective events in the anticyclone has been pointed out by Randel and Park (JGR, 10.1029/2005JD006490, 2006). However, at higher levels the deep convective area is separated from the anticyclonic region (Park et al., JGR, 10.1029/2006JD008294, 2007). The large-scale circulation (slow ascent and anticyclonic barrier) seems hence essential to explain the water vapor distribution observed at 100 hPa (MLS/AURA or MIPAS). In this context, the ability of the large-scale wind fields to represent the water vapor distribution has been studied from back-trajectories. The calculations have been performed over three summers (1998, 1999 and 2000) using two representations of the vertical wind in the ERA-40 dataset and the new ERA-Interim: the "classical" wind (from divergence equation) and the diabatic wind (from temperature tendency equation). Coupled to a simple microphysical model, back-trajectories can reconstruct water vapor maps (Fueglistaler et al., JGR, 10.1029/2004JD005516, 2005). Here, the comparison to MLS/AURA retrievements at 100 hPa shows that : if "classical" wind calculations exhibit large discrepancies, diabatic winds accurately reconstruct the location and the concentration of the indian monsoon water vapor maxima without represented small-scale micro-physic. Investigating transport and dehydration processes along trajectories (intersection with isentrops, clouds from CLAUS,...) the Lagrangian approach offers a synthetic scenario. After being quickly lifted by deep convection over the Bay of Bengal until 350-360 K, most of the parcels are freezed-dry around 370 K above

  17. Wetland and Sensitive Species Survey Report for Y-12: Proposed Uranium Processing Facility (UPF)

    SciTech Connect

    Giffen, N.; Peterson, M.; Reasor, S.; Pounds, L.; Byrd, G.; Wiest, M. C.; Hill, C. C.

    2009-11-01

    This report summarizes the results of an environmental survey conducted at sites associated with the proposed Uranium Processing Facility (UPF) at the Y-12 National Security Complex in September-October 2009. The survey was conducted in order to evaluate potential impacts of the overall project. This project includes the construction of a haul road, concrete batch plant, wet soil storage area and dry soil storage area. The environmental surveys were conducted by natural resource experts at ORNL who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). Natural resource staff assistance on this project included the collection of environmental information that can aid in project location decisions that minimize impacts to sensitive resource such as significant wildlife populations, rare plants and wetlands. Natural resources work was conducted in various habitats, corresponding to the proposed areas of impact. Thc credentials/qualifications of the researchers are contained in Appendix A. The proposed haul road traverses a number of different habitats including a power-line right-of-way. wetlands, streams, forest and mowed areas. It extends from what is known as the New Salvage Yard on the west to the Polaris Parking Lot on the east. This haul road is meant to connect the proposed concrete batch plant to the UPF building site. The proposed site of the concrete batch plant itself is a highly disturbed fenced area. This area of the project is shown in Fig. 1. The proposed Wet Soils Disposal Area is located on the north side of Bear Creek Road at the former Control Burn Study Area. This is a second growth arce containing thick vegetation, and extensive dead and down woody material. This area of the project is shown in Fig. 2. Thc dry soils storage area is proposed for what is currently known as the West Borrow Area. This site is located on the west side of Reeves Road south of Bear Creek Road. The site is an early successional

  18. Process Sensitivity, Performance, and Direct Verification Testing of Adhesive Locking Features

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Leatherwood, Michael D.; Montoya, Michael D.; Kato, Ken A.; Akers, Ed

    2012-01-01

    Phase I: The use of adhesive locking features or liquid locking compounds (LLCs) (e.g., Loctite) as a means of providing a secondary locking feature has been used on NASA programs since the Apollo program. In many cases Loctite was used as a last resort when (a) self-locking fasteners were no longer functioning per their respective drawing specification, (b) access was limited for removal & replacement, or (c) replacement could not be accomplished without severe impact to schedule. Long-term use of Loctite became inevitable in cases where removal and replacement of worn hardware was not cost effective and Loctite was assumed to be fully cured and working. The NASA Engineering & Safety Center (NESC) and United Space Alliance (USA) recognized the need for more extensive testing of Loctite grades to better understand their capabilities and limitations as a secondary locking feature. These tests, identified as Phase I, were designed to identify processing sensitivities, to determine proper cure time, the correct primer to use on aerospace nutplate, insert and bolt materials such as A286 and MP35N, and the minimum amount of Loctite that is required to achieve optimum breakaway torque values. The .1900-32 was the fastener size tested, due to wide usage in the aerospace industry. Three different grades of Loctite were tested. Results indicate that, with proper controls, adhesive locking features can be successfully used in the repair of locking features and should be considered for design. Phase II: Threaded fastening systems used in aerospace programs typically have a requirement for a redundant locking feature. The primary locking method is the fastener preload and the traditional redundant locking feature is a self-locking mechanical device that may include deformed threads, non-metallic inserts, split beam features, or other methods that impede movement between threaded members. The self-locking resistance of traditional locking features can be directly verified

  19. Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process-based ecosystem models

    NASA Astrophysics Data System (ADS)

    McGuire, A. D.; Sitch, S.; Clein, J. S.; Dargaville, R.; Esser, G.; Foley, J.; Heimann, M.; Joos, F.; Kaplan, J.; Kicklighter, D. W.; Meier, R. A.; Melillo, J. M.; Moore, B.; Prentice, I. C.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Tian, H.; Williams, L. J.; Wittenberg, U.

    2001-03-01

    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920-1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr-1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The

  20. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models

    USGS Publications Warehouse

    McGuire, A.D.; Sitch, S.; Clein, J.S.; Dargaville, R.; Esser, G.; Foley, J.; Heimann, Martin; Joos, F.; Kaplan, J.; Kicklighter, D.W.; Meier, R.A.; Melillo, J.M.; Moore, B.; Prentice, I.C.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Tian, H.; Williams, L.J.; Wittenberg, U.

    2001-01-01

    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects

  1. Nonverbal Communication and the Support Process: Interactional Sensitivity in Interactions between Mothers and Young Adult Children.

    ERIC Educational Resources Information Center

    Trees, April R.

    2000-01-01

    Investigates the contribution of nonverbal cues to supportive communication in interactions between mothers and young adult children. Uses the concept of interactional sensitivity from attachment theory for direction to propose a number of hypotheses concerning support provision. Provides insight into the role of nonverbal as well as verbal…

  2. Sensitivity of phenotypic susceptibility analyses for nonthymidine nucleoside analogues conferred by K65R or M184V in mixtures with wild-type HIV-1.

    PubMed

    Underwood, Mark R; Ross, Lisa L; Irlbeck, David M; Gerondelis, Peter; Rouse, Elizabeth; St Clair, Marty H; Trinh, Lan; Parkin, Neil; Lanier, E Randall

    2009-01-01

    Thymidine-sparing triple-nucleoside regimens have exhibited poor virologic response despite apparent phenotypic susceptibility to 2 of 3 regimen components at early time points. Phenotypic resistance masking by wild-type virus may explain this discrepancy.Consistent with this notion were (1) the presence of low level nucleoside reverse-transcriptase inhibitor-resistant human immunodeficiency virus in subjects receiving failing first-line regimens consisting of tenofovir (TDF), abacavir (ABC), and lamivudine (3TC); (2) lower fold resistance associated with mixtures versus mutants in a clinical-isolate database; and (3) dose dependent changes in susceptibility to ABC, 3TC, TDF, and didanosine on titration of K65R and/or M184V with wild-type virus. These findings underscore the limitations of stand-alone phenotypic susceptibility measures and emphasize the importance of complementary and/or more sensitive techniques.

  3. Genomic analyses of sodium channel α-subunit genes from strains of melon thrips, Thrips palmi, with different sensitivities to cypermethrin.

    PubMed

    Bao, Wen Xue; Kataoka, Yoko; Kohara, Yoko; Sonoda, Shoji

    2014-01-01

    We examined the genomic organization of the sodium channel α-subunit gene in two strains of melon thrips, Thrips palmi, having differing sensitivity to cypermethrin. The nucleotide sequences of the strains included 18 or 16 putative exons which covered the entire coding region of the gene producing 2039 amino acid residues. Deduced amino acid sequences of both strains showed 80% homology with those of Periplaneta americana and Cimex lectularius. Comparison of deduced amino acid sequences of both strains showed no consistent amino acid difference. In addition to the previously reported resistant amino acid (Ile) at the T929I site, both strains encoded another resistant amino acids at two positions which are involved in pyrethroid resistance in other arthropods. These amino acids might also involve in the basal levels of resistance to pyrethroids of both strains.

  4. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    SciTech Connect

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  5. Proposal of the Methodology for Analysing the Structural Relationship in the System of Random Process Using the Data Mining Methods

    NASA Astrophysics Data System (ADS)

    Michaľčonok, German; Kalinová, Michaela Horalová; Németh, Martin

    2014-12-01

    The aim of this paper is to present the possibilities of applying data mining techniques to the problem of analysis of structural relationships in the system of stationary random processes. In this paper, we will approach the area of the random processes, present the process of structural analysis and select suitable circuit data mining methods applicable to the area of structural analysis. We will propose the methodology for the structural analysis in the system of stationary stochastic processes using data mining methods for active experimental approach, based on the theoretical basis.

  6. Pick-and-place process for sensitivity improvement of the capacitive type CMOS MEMS 2-axis tilt sensor

    NASA Astrophysics Data System (ADS)

    Chang, Chun-I.; Tsai, Ming-Han; Liu, Yu-Chia; Sun, Chih-Ming; Fang, Weileun

    2013-09-01

    This study exploits the foundry available complimentary metal-oxide-semiconductor (CMOS) process and the packaging house available pick-and-place technology to implement a capacitive type micromachined 2-axis tilt sensor. The suspended micro mechanical structures such as the spring, stage and sensing electrodes are fabricated using the CMOS microelectromechanical systems (MEMS) processes. A bulk block is assembled onto the suspended stage by pick-and-place technology to increase the proof-mass of the tilt sensor. The low temperature UV-glue dispensing and curing processes are employed to bond the block onto the stage. Thus, the sensitivity of the CMOS MEMS capacitive type 2-axis tilt sensor is significantly improved. In application, this study successfully demonstrates the bonding of a bulk solder ball of 100 µm in diameter with a 2-axis tilt sensor fabricated using the standard TSMC 0.35 µm 2P4M CMOS process. Measurements show the sensitivities of the 2-axis tilt sensor are increased for 2.06-fold (x-axis) and 1.78-fold (y-axis) after adding the solder ball. Note that the sensitivity can be further improved by reducing the parasitic capacitance and the mismatch of sensing electrodes caused by the solder ball.

  7. Sensitivity study of an image processing workflow on synchrotron μ-CT images of Berea sandstone

    NASA Astrophysics Data System (ADS)

    Leu, Leon; Berg, Steffen; Ott, Holger; Armstrong, Ryan T.; Enzmann, Frieder; Kersten, Michael

    2014-05-01

    For the present study, the sensitivity of the threshold value for watershed-based segmentation and global threshold segmentation was assessed on μ-CT images of fine grained Berea sandstone. The sensitivities were assessed in terms of porosity, permeability, single-phase flow simulations and capillary pressure curves that were calculated from the segmented data. The μ-CT images of fine grained Berea sandstone with a resolution of 3 μm/pixel was segmented using different threshold values that were systematically varied, which resulted in slightly different structures for the pore space. The results show, that watershed-based segmentation is more robust than global threshold segmentation and that the measured permeability showed a stronger sensitivity to threshold variation than porosity, indicating that it is a more sensitive parameter to image segmentation settings. Calculated permeability and capillary pressure curves matched well with experimental data revealing that the average pores and pore throats of the watershed-based segmented structure were segmented accurately. In contrast, capillary pressure curves indicated that pore sizes near the resolution limit of 3 μm, located in kaolinite rich areas of the rock, were not segmented correctly and thus caused the disagreement between the experimental measured porosity and that measured from the digital rock image. We conclude that capillary pressure curves and permeability values that result from the digital rock data is more indicative of the flow relevant fraction of the pore structure and are therefore better suited as validation criterion than porosity data. Numerical modeling of two-phase flow on segmented data from high resolution μ-CT images enhances our understanding of the dynamics of multiphase-flow of immiscible fluids at the pore-scale. To be confident about simulated data it is therefore important to identify meaningful properties, e.g. permeability, that can be used as benchmark parameters for

  8. Thermoreception and nociception of the skin: a classic paper of Bessou and Perl and analyses of thermal sensitivity during a student laboratory exercise.

    PubMed

    Kuhtz-Buschbeck, Johann P; Andresen, Wiebke; Göbel, Stephan; Gilster, René; Stick, Carsten

    2010-06-01

    About four decades ago, Perl and collaborators were the first ones who unambiguously identified specifically nociceptive neurons in the periphery. In their classic work, they recorded action potentials from single C-fibers of a cutaneous nerve in cats while applying carefully graded stimuli to the skin (Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32: 1025-1043, 1969). They discovered polymodal nociceptors, which responded to mechanical, thermal, and chemical stimuli in the noxious range, and differentiated them from low-threshold thermoreceptors. Their classic findings form the basis of the present method that undergraduate medical students experience during laboratory exercises of sensory physiology, namely, quantitative testing of the thermal detection and pain thresholds. This diagnostic method examines the function of thin afferent nerve fibers. We collected data from nearly 300 students that showed that 1) women are more sensitive to thermal detection and thermal pain at the thenar than men, 2) habituation shifts thermal pain thresholds during repetititve testing, 3) the cold pain threshold is rather variable and lower when tested after heat pain than in the reverse case (order effect), and 4) ratings of pain intensity on a visual analog scale are correlated with the threshold temperature for heat pain but not for cold pain. Median group results could be reproduced in a retest. Quantitative sensory testing of thermal thresholds is feasible and instructive in the setting of a laboratory exercise and is appreciated by the students as a relevant and interesting technique.

  9. The Process of Interactional Sensitivity Coding in Health Care: Conceptually and Operationally Defining Patient-Centered Communication.

    PubMed

    Sabee, Christina M; Koenig, Christopher J; Wingard, Leah; Foster, Jamie; Chivers, Nick; Olsher, David; Vandergriff, Ilona

    2015-01-01

    This study aimed to develop a process for measuring sensitivity in provider-patient interactions to better understand patient-centered communication. The authors developed the Process of Interactional Sensitivity Coding in Healthcare (PISCH) by incorporating a multimethod investigation into conversations between physicians and their patients with type 2 diabetes. The PISCH was then applied and assessed for its reliability across the unitization of interactions, the activities that were reflected, and the characteristics of patient-centered interactional sensitivity that were observed within each unit. In most cases, the PISCH resulted in reliable analysis of the interactions, but a few key areas (shared decision making, enabling self-management, and responding to emotion) were not reliably assessed. Implications of the test of this coding scheme include the expansion of the theoretical notion of interactional sensitivity to the health care context, rigorous implementation of a multimethod measurement development that relied on qualitative and quantitative assessments, and important future questions about the role of communication concepts in future interpersonal research.

  10. Significance of preburial taphonomic processes to visual organic analyses of recent lacustrine sediments of Reelfoot Lake, Tennessee

    SciTech Connect

    Beckner, J.S.; Andrejko, M.J.

    1986-05-01

    Visual microscopic analyses of the recent lacustrine sediments of Reelfoot Lake in northwestern Tennessee revealed a possible paradox between the organic matter (OM) types expected versus those presently accumulating within this small lacustrine-palustrine environment. Based on the present wetland habitats, the dispersed OM actively being accumulated should predominantly consist of herbaceous (Type II) and woody (Type III) debris. However, preliminary observations revealed abundant Type I, amorphous/sapropel-like dispersed OM in bottom sediments. Two biologic conditions may account for some taphonomic loss. The lake is located within the northern end of the Mississippi Embayment and, therefore, is situated directly in a major migrational route for waterfowl. The Environmental Protection Agency reported that 16.1% of the total phosphorous loading into the lake results from feeding activities of wild ducks and geese, suggesting that a considerable part of OM being deposited in the lake has been affected by avian activities. Also, in 1983, 30,000 White Amur (grass carp) fish were introduced into the lake to control the aquatic vegetation encroachment. These fish can consume and digest mass quantities of aquatic vegetation during their lifetime (average 5-7 years). Thus, such aquatic herbivores also should account for a significant amount of the erosional activity within this environment. These observations of biological activities indicate that OM may be degraded considerably, penecontemporaneously with deposition. Therefore, these factors should be considered when evaluating visual kerogen analyses of organic-rich lacustrine sequences.

  11. Analysing the effects of frozen storage and processing on the metabolite profile of raw mullet roes using ¹H NMR spectroscopy.

    PubMed

    Piras, Cristina; Scano, Paola; Locci, Emanuela; Sanna, Roberta; Marincola, Flaminia Cesare

    2014-09-15

    (1)H NMR spectroscopy was used to investigate changes in the low molecular weight metabolic profile of raw mullet (Mugil spp.) roes during frozen storage and upon processing. NMR data were analysed by Principal Component Analyses (PCA). In the model constructed using frozen roes, no statistical significant metabolic modifications were observed in the first six months of storage, while choline derivatives, dimethylamine, lactate, and most of the free amino acids were identified as changing with statistical significance (p<0.05) in response to frozen storage time of twelve months. The PCA model comparing the metabolic profiles of roes before and after processing showed that the major modifications occurring upon manufacturing were the increase of the choline derivative compounds, uracil, and free amino acids, and a large decrease of taurine, glucose, lactate, and creatine/phosphocreatine. All of the above mentioned modifications reflect the occurrence of chemical/biochemical reactions arising from degradation processes such as lipolysis and proteolysis.

  12. Organic Matter Sulfurization in the Cariaco Water Column Revealed by High-Sensitivity and Compound-Specific d34S Analyses.

    NASA Astrophysics Data System (ADS)

    Raven, M. R.; Sessions, A. L.; Adkins, J. F.; Thunell, R.

    2015-12-01

    Organic matter burial in marine sediments is a major process in the global carbon cycle, and enhanced organic matter burial is often associated with periods of global climatic and ecological change. Still, we have only a limited understanding of the processes that drive enhanced OM burial during oxygen-deficient conditions. Abiotic OM sulfurization has the potential to enhance the preservation of OM, but for this process to be significant it must compete with heterotrophic remineralization, most of which occurs before sinking particles reach the sea floor. We investigate the sources of sulfur to sinking particles in a modern marine basin using samples from the CARIACO fixed sediment trap time-series, applying recently developed methods for d34S analysis of small (≥20 nmol) sulfur pools and individual volatile organosulfur compounds. Relative to expectations for planktonic biomass, we find that sinking particles are both sulfur-rich and 34S-depleted. Higher apparent fluxes of 34S-depleted organic sulfur are associated with high OM export from the surface ocean, low terrestrial inputs, and high concentrations of both elemental S and the dominant non-polar organosulfur compound, C20 thiophene. We conclude that OM sulfurization is occurring in particles sinking through the Cariaco water column on timescales of days or less. Depending on the frequency of high OM export events, we estimate that this rapid sulfurization delivers roughly half of the total organic S present at 5 cm depth in underlying sediments. Accordingly, many OM-rich deposits in the geologic record may represent the products of water column sulfurization. This process provides a strong mechanistic feedback between oxygen deficiency and OM preservation.

  13. Study the sensitivity of molecular functional groups to bioethanol processing in lipid biopolymer of co-products using DRIFT molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2011-11-01

    To date, there is no study on bioethanol processing-induced changes in molecular structural profiles mainly related to lipid biopolymer. The objectives of this study were to: (1) determine molecular structural changes of lipid related functional groups in the co-products that occurred during bioethanol processing; (2) relatively quantify the antisymmetric CH 3 and CH 2 (ca. 2959 and 2928 cm -1, respectively), symmetric CH 3 and CH 2 (ca. 2871 and 2954 cm -1, respectively) functional groups, carbonyl C dbnd O ester (ca. 1745 cm -1) and unsaturated groups (CH attached to C dbnd C) (ca. 3007 cm -1) spectral intensities as well as their ratios of antisymmetric CH 3 to antisymmetric CH 2, and (3) illustrate the molecular spectral analyses as a research tool to detect for the sensitivity of individual moleculars to the bioethanol processing in a complex plant-based feed and food system without spectral parameterization. The hypothesis of this study was that bioethanol processing changed the molecular structure profiles in the co-products as opposed to original cereal grains. These changes could be detected by infrared molecular spectroscopy and will be related to nutrient utilization. The results showed that bioethanol processing had effects on the functional groups spectral profiles in the co-products. It was found that the CH 3-antisymmetric to CH 2-antisymmetric stretching intensity ratio was changed. The spectral features of carbonyl C dbnd O ester group and unsaturated group were also different. Since the different types of cereal grains (wheat vs. corn) had different sensitivity to the bioethanol processing, the spectral patterns and band component profiles differed between their co-products (wheat DDGS vs. corn DDGS). The multivariate molecular spectral analyses, cluster analysis and principal component analysis of original spectra (without spectral parameterization), distinguished the structural differences between the wheat and wheat DDGS and between the corn

  14. Molecular screening and association analyses of the interleukin 6 receptor gene variants with type 2 diabetes, diabetic nephropathy, and insulin sensitivity.

    PubMed

    Wang, Hua; Zhang, Zhengxian; Chu, Winston; Hale, Terri; Cooper, Judith J; Elbein, Steven C

    2005-02-01

    IL-6 levels and polymorphisms have been implicated in type 2 diabetes mellitus (T2DM) and insulin resistance. The IL-6 receptor (IL-6R) comprises two subunits, IL-6R and gp130, of which IL-6R confers specificity to IL-6 action and is located in a region of replicated linkage to T2DM on chromosome 1q21. We screened this gene for variation in Northern European Caucasian and African-American ethnic groups. We identified 11 variants with a minor allele frequency over 5%, including two amino acid changes (D358A and V385I) and four variants in the 3' untranslated region. No variant was associated with obesity or measures of insulin sensitivity, but two single nucleotide polymorphisms in the 3' untranslated region showed a trend to an association with T2DM in all Caucasians, and three single nucleotide polymorphisms, including D358A, showed a trend (P < 0.06) to an association with T2DM among the subset of Northern European Caucasians. Variant V385I was unique to African-Americans and was significantly associated with diabetes and diabetic nephropathy (P < 0.05). Among individuals heterozygous for the four variants in the transcribed sequence, one allele was significantly overrepresented, thus suggesting the existence of a regulatory variant controlling mRNA stability or expression. IL-6R is not likely to explain the linkage to diabetes in this region, but our work supports a minor role of variants in T2DM risk and suggests that sequence variants may alter IL-6R mRNA levels and possibly levels of soluble IL-6R.

  15. A mechanistic model of H{sub 2}{sup 18}O and C{sup 18}OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses

    SciTech Connect

    Riley, W.J.; Still, C.J.; Torn, M.S.; Berry, J.A.

    2002-01-01

    The concentration of 18O in atmospheric CO2 and H2O is a potentially powerful tracer of ecosystem carbon and water fluxes. In this paper we describe the development of an isotope model (ISOLSM) that simulates the 18O content of canopy water vapor, leaf water, and vertically resolved soil water; leaf photosynthetic 18OC16O (hereafter C18OO) fluxes; CO2 oxygen isotope exchanges with soil and leaf water; soil CO2 and C18OO diffusive fluxes (including abiotic soil exchange); and ecosystem exchange of H218O and C18OO with the atmosphere. The isotope model is integrated into the land surface model LSM, but coupling with other models should be straightforward. We describe ISOLSM and apply it to evaluate (a) simplified methods of predicting the C18OO soil-surface flux; (b) the impacts on the C18OO soil-surface flux of the soil-gas diffusion coefficient formulation, soil CO2 source distribution, and rooting distribution; (c) the impacts on the C18OO fluxes of carbonic anhydrase (CA) activity in soil and leaves; and (d) the sensitivity of model predictions to the d18O value of atmospheric water vapor and CO2. Previously published simplified models are unable to capture the seasonal and diurnal variations in the C18OO soil-surface fluxes simulated by ISOLSM. Differences in the assumed soil CO2 production and rooting depth profiles, carbonic anhydrase activity in soil and leaves, and the d18O value of atmospheric water vapor have substantial impacts on the ecosystem CO2 flux isotopic composition. We conclude that accurate prediction of C18OO ecosystem fluxes requires careful representation of H218O and C18OO exchanges and transport in soils and plants.

  16. The pupil response is sensitive to divided attention during speech processing.

    PubMed

    Koelewijn, Thomas; Shinn-Cunningham, Barbara G; Zekveld, Adriana A; Kramer, Sophia E

    2014-06-01

    Dividing attention over two streams of speech strongly decreases performance compared to focusing on only one. How divided attention affects cognitive processing load as indexed with pupillometry during speech recognition has so far not been investigated. In 12 young adults the pupil response was recorded while they focused on either one or both of two sentences that were presented dichotically and masked by fluctuating noise across a range of signal-to-noise ratios. In line with previous studies, the performance decreases when processing two target sentences instead of one. Additionally, dividing attention to process two sentences caused larger pupil dilation and later peak pupil latency than processing only one. This suggests an effect of attention on cognitive processing load (pupil dilation) during speech processing in noise. PMID:24709275

  17. Effects of energy related activities on the stress-sensitive microbial processes in mangrove detrital food webs

    SciTech Connect

    Fell, J.W.

    1984-01-01

    Nutrient flows from leaf litter decomposition are evaluated in terms of their contributions to the ecosystem. The roles of the stress sensitive microbial processes are being determined. Emphasis is on the following aspects: (1) nitrogen immobilization; (2) transport of particulate carbon to the estuary; (3) role of flocculent materials produced from leachates; (4) invertebrate utilization of carbon and nitrogen flows; and (5) possible effects on these systems if the Gulf oil spill reaches the south Florida coast. 19 references. (ACR)

  18. Mutational and structural analyses of the hinge region of membrane type 1-matrix metalloproteinase and enzyme processing.

    PubMed

    Osenkowski, Pamela; Meroueh, Samy O; Pavel, Dumitru; Mobashery, Shahriar; Fridman, Rafael

    2005-07-15

    Membrane type 1 (MT1)-matrix metalloproteinase (MMP) is a major mediator of collagen degradation in the pericellular space in both physiological and pathological conditions. Previous evidence has shown that on the cell surface, active MT1-MMP undergoes autocatalytic processing to a major membrane-tethered 44-kDa product lacking the catalytic domain and displaying Gly285 at its N terminus, which is at the beginning of the hinge domain. However, the importance of this site and the hinge region in MT1-MMP processing is unknown. In the current study, we generated mutations and deletions in the hinge of MT1-MMP and followed their effect on processing. These studies established Gly284-Gly285 as the main cleavage site involved in the formation of the 44-kDa species. However, alterations at this site did not prevent processing. Instead, they forced downstream cleavages within the stretch of residues flanked by Gln296 and Ser304 in the hinge region, as determined by the processing profile of various hinge deletion mutants. Also, replacement of the hinge of MT1-MMP with the longer MT3-MMP hinge did not prevent processing of MT1-MMP. Molecular dynamic studies using a computational model of MT1-MMP revealed that the hinge region is a highly motile element that undergoes significant motion in the highly exposed loop formed by Pro295-Arg302 consistent with being a prime target for proteolysis, in agreement with the mutational data. These studies suggest that the hinge of MT1-MMP evolved to facilitate processing, a promiscuous but compulsory event in the destiny of MT1-MMP, which may play a key role in the control of pericellular proteolysis.

  19. Analysing the Information Content of Point Measurements of the Soil Hydraulic State Variables by Global Sensitivity Analysis and Multiobjective Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Werisch, Stefan; Lennartz, Franz; Schütze, Niels

    2015-04-01

    Inverse modeling has become a common approach to infer the parameters of the water retention and hydraulic conductivity functions from observations of the vadose zone state variables during dynamic experiments under varying boundary conditions. This study focuses on the estimation and investigation of the feasibility of effective soil hydraulic properties to describe the soil water flow in an undisturbed 1m³ lysimeter. The lysimeter is equipped with 6 one-dimensional observation arrays consisting of 4 tensiometers and 4 water content probes each, leading to 6 replicated one-dimensional observations which establish the calibration data base. Methods of global sensitivity analysis and multiobjective calibration strategies have been applied to examine the information content about the soil hydraulic parameters of the Mualem-van Genuchten (MvG) model contained in the individual data sets, to assess the tradeoffs between the different calibration data sets and to infer effective soil hydraulic properties for each of the arrays. The results show that (1) information about the MvG model parameters decreases with increasing depth, due to effects of overlapping soil layers and reduced soil water dynamics, (2) parameter uncertainty is affected by correlation between the individual parameters. Despite these difficulties, (3) effective one-dimensional parameter sets, which produce satisfying fits and have acceptable trade-offs, can be identified for all arrays, but (4) the array specific parameter sets vary significantly and cannot be transferred to simulate the water flow in other arrays, and (5) none of the parameter sets is suitable to simulate the integral water flow within the lysimeter. The results of the study challenge the feasibility of the inversely estimated soil hydraulic properties from multiple point measurements of the soil hydraulic state variables. Relying only on point measurements inverse modeling can lead to promising results regarding the observations

  20. Using Simulation Module, PCLAB, for Steady State Disturbance Sensitivity Analysis in Process Control

    ERIC Educational Resources Information Center

    Ali, Emad; Idriss, Arimiyawo

    2009-01-01

    Recently, chemical engineering education moves towards utilizing simulation soft wares to enhance the learning process especially in the field of process control. These training simulators provide interactive learning through visualization and practicing which will bridge the gap between the theoretical abstraction of textbooks and the…

  1. Proficiency and Working Memory Based Explanations for Nonnative Speakers' Sensitivity to Agreement in Sentence Processing

    ERIC Educational Resources Information Center

    Coughlin, Caitlin E.; Tremblay, Annie

    2013-01-01

    This study examines the roles of proficiency and working memory (WM) capacity in second-/foreign-language (L2) learners' processing of agreement morphology. It investigates the processing of grammatical and ungrammatical short- and long-distance number agreement dependencies by native English speakers at two proficiencies in French, and the…

  2. The generic MESSy submodel TENDENCY (v1.0) for process-based analyses in Earth System Models

    NASA Astrophysics Data System (ADS)

    Eichinger, R.; Jöckel, P.

    2014-04-01

    The tendencies of prognostic variables in Earth System Models are usually only accessible, e.g., for output, as sum over all physical, dynamical and chemical processes at the end of one time integration step. Information about the contribution of individual processes to the total tendency is lost, if no special precautions are implemented. The knowledge on individual contributions, however, can be of importance to track down specific mechanisms in the model system. We present the new MESSy (Modular Earth Submodel System) infrastructure submodel TENDENCY and use it exemplarily within the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to trace process-based tendencies of prognostic variables. The main idea is the outsourcing of the tendency accounting for the state variables from the process operators (submodels) to the TENDENCY submodel itself. In this way, a record of the tendencies of all process-prognostic variable pairs can be stored. The selection of these pairs can be specified by the user, tailor-made for the desired application, in order to minimise memory requirements. Moreover a standard interface allows the access to the individual process tendencies by other submodels, e.g., for on-line diagnostics or for additional parameterisations, which depend on individual process tendencies. An optional closure test assures the correct treatment of tendency accounting in all submodels and thus serves to reduce the models susceptibility. TENDENCY is independent of the time integration scheme and therefore applicable to other model systems as well. Test simulations with TENDENCY show an increase of computing time for the EMAC model (in a setup without atmospheric chemistry) of 1.8 ± 1% due to the additional subroutine calls when using TENDENCY. Exemplary results reveal the dissolving mechanisms of the stratospheric tape recorder signal in height over time. The separation of the tendency of the specific humidity into the respective processes (large-scale clouds

  3. The generic MESSy submodel TENDENCY (v1.0) for process-based analyses in Earth system models

    NASA Astrophysics Data System (ADS)

    Eichinger, R.; Jöckel, P.

    2014-07-01

    The tendencies of prognostic variables in Earth system models are usually only accessible, e.g. for output, as a sum over all physical, dynamical and chemical processes at the end of one time integration step. Information about the contribution of individual processes to the total tendency is lost, if no special precautions are implemented. The knowledge on individual contributions, however, can be of importance to track down specific mechanisms in the model system. We present the new MESSy (Modular Earth Submodel System) infrastructure submodel TENDENCY and use it exemplarily within the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to trace process-based tendencies of prognostic variables. The main idea is the outsourcing of the tendency accounting for the state variables from the process operators (submodels) to the TENDENCY submodel itself. In this way, a record of the tendencies of all process-prognostic variable pairs can be stored. The selection of these pairs can be specified by the user, tailor-made for the desired application, in order to minimise memory requirements. Moreover, a standard interface allows the access to the individual process tendencies by other submodels, e.g. for on-line diagnostics or for additional parameterisations, which depend on individual process tendencies. An optional closure test assures the correct treatment of tendency accounting in all submodels and thus serves to reduce the model's susceptibility. TENDENCY is independent of the time integration scheme and therefore the concept is applicable to other model systems as well. Test simulations with TENDENCY show an increase of computing time for the EMAC model (in a setup without atmospheric chemistry) of 1.8 ± 1% due to the additional subroutine calls when using TENDENCY. Exemplary results reveal the dissolving mechanisms of the stratospheric tape recorder signal in height over time. The separation of the tendency of the specific humidity into the respective processes (large

  4. Identified auditory neurons in the cricket Gryllus rubens: temporal processing in calling song sensitive units.

    PubMed

    Farris, Hamilton E; Mason, Andrew C; Hoy, Ronald R

    2004-07-01

    This study characterizes aspects of the anatomy and physiology of auditory receptors and certain interneurons in the cricket Gryllus rubens. We identified an 'L'-shaped ascending interneuron tuned to frequencies > 15 kHz (57 dB SPL threshold at 20 kHz). Also identified were two intrasegmental 'omega'-shaped interneurons that were broadly tuned to 3-65 kHz, with best sensitivity to frequencies of the male calling song (5 kHz, 52 dB SPL). The temporal sensitivity of units excited by calling song frequencies were measured using sinusoidally amplitude modulated stimuli that varied in both modulation rate and depth, parameters that vary with song propagation distance and the number of singing males. Omega cells responded like low-pass filters with a time constant of 42 ms. In contrast, receptors significantly coded modulation rates up to the maximum rate presented (85 Hz). Whereas omegas required approximately 65% modulation depth at 45 Hz (calling song AM) to elicit significant synchrony coding, receptors tolerated a approximately 50% reduction in modulation depth up to 85 Hz. These results suggest that omega cells in G. rubens might not play a role in detecting song modulation per se at increased distances from a singing male.

  5. Magnesium production by the Pidgeon process involving dolomite calcination and MgO silicothermic reduction: Thermodynamic and environmental analyses

    SciTech Connect

    Halmann, M.; Frei, A.; Steinfeld, A.

    2008-04-15

    Thermochemical equilibrium calculations indicate the possibility of considerable fuel savings and CO{sub 2} emission avoidance in the three steps of the Pidgeon process: (a) calcination of dolomite; (b) production of ferrosilicon from quartz sand, coal, and iron oxide; (c) silicothermic reduction of calcined dolomite by ferrosilicon to magnesium. All three steps should benefit from application of concentrated solar energy as the source of high-temperature process heat, while the first two steps may be adapted to the coproduction of syngas. For the production of ferrosilicon, an experimental study was carried out by thermogravimetry as a model for a solar-driven process. The net reaction at 1823 K was shown to be represented by Fe{sub 2}O{sub 3} + 4SiO{sub 2} + 11C {yields} 2FeSi{sub s} + 10CO{sub g} + SiC{sub s} + SiO{sub g}, confirmed by gas chromatographic analysis of the evolved CO and by XRD identification of the solid products FeSi and SiC. This product mixture agrees with that predicted for the thermochemical equilibrium, but differs from that reported in the literature for the electric arc process.

  6. Analysing the Opportunities and Challenges to Use of Information and Communication Technology Tools in Teaching-Learning Process

    ERIC Educational Resources Information Center

    Dastjerdi, Negin Barat

    2016-01-01

    The research aims at the evaluation of ICT use in teaching-learning process to the students of Isfahan elementary schools. The method of this research is descriptive-surveying. The statistical population of the study was all teachers of Isfahan elementary schools. The sample size was determined 350 persons that selected through cluster sampling…

  7. Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice.

    PubMed

    Chudziak, Doreen; Spohn, Gabriele; Karpova, Darja; Dauber, Katrin; Wiercinska, Eliza; Miettinen, Johanna A; Papayannopoulou, Thalia; Bönig, Halvard

    2015-03-15

    Hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) in an environment rich in CXCL12, the ligand for CXCR4, which is constitutively expressed on all immature hematopoietic cells in BM. This ligand-receptor pair critically controls HSPC retention and (relative) quiescence in BM. Interestingly, in a chemokine-abundant environment, CXCR4 surface expression and CXCL12 sensitivity of BM-residing HSPCs are continuously maintained. The mechanisms underlying this peculiar pattern of G-protein signal integration by BM-HSPCs are unknown. G-protein receptor kinases (GRKs) control receptor function by phosphorylating the intracellular domains upon ligand-induced activation, which results in receptor internalization and transient refractoriness. Using, therefore, a GRK6-deficient (GRK6(-/-)) mouse, we sought to address how perturbed ligand-induced CXCR4 (in)activation affects HSPC behavior in vitro and in vivo. In vitro, GRK6(-/-) HSPCs were characterized by hyper-responsiveness to CXCL12, as expected. In vivo, GRK6(-/-) immature hematopoiesis was characterized by a marked expansion of immature hematopoiesis in spleens and a modest repopulation defect in serial competitive transplantation. Enforced mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was normal, as was hematopoietic regeneration after noncompetitive transplantation or pharmacological myelosuppression. These observations illustrate that GRK-mediated restriction of CXCR4 signal input after ligand engagement is largely dispensable for BM-resident HSPCs, which may explain how continuous CXCL12 responsiveness of BM-HSPCs can be maintained.

  8. Process sensitivity studies of the Westinghouse Sulfur Cycle for hydrogen generation

    NASA Technical Reports Server (NTRS)

    Carty, R.; Funk, J.; Soliman, M.; Conger, W.; Brecher, L.; Spewock, S.; Cox, K.

    1976-01-01

    The effect of variations of acid concentration, pressure, and temperature on the thermal process efficiency of the Westinghouse Sulfur Cycle was examined using the University of Kentucky's HYDRGN program. Modifications to the original program were made to duplicate the process flow sheet and take into account combined-cycle heat-to-work efficiencies for electrochemical work requirements, aqueous solutions, and heat-of-mixing effects. A total of 125 process variations were considered (acid concentration: 50-90 w/o; pressure: 15-750 psia; temperature: 922-1366 K (2000 F)). The methods of analysis, results, and conclusions are presented.

  9. Process sensitivity studies of the Westinghouse sulfur cycle for hydrogen generation

    NASA Technical Reports Server (NTRS)

    Carty, R. H.; Cox, K. E.; Funk, J. E.; Soliman, M. A.; Conger, W. L.; Brecher, L. E.; Spewock, S.

    1976-01-01

    The effect of variations of acid concentration, pressure, and temperature on the thermal process efficiency of the Westinghouse sulfur cycle was examined using the HYDRGN program. Modifications to the original program were made to duplicate the process flowsheet and take into account combined cycle heat-to-work efficiencies for electrochemical work requirements, aqueous solutions, and heat-of-mixing effects. A total of 125 process variations were considered (acid concentration: 50-90 w/o; pressure: 15-750 psia; temperature: 922K - 1366K). The methods of analysis, results, and conclusions are presented.

  10. Hydrogeochemical Processes of Groundwater Using Multivariate Statistical Analyses and Inverse Geochemical Modeling in Samrak Park of Nakdong River Basin, Korea

    NASA Astrophysics Data System (ADS)

    Chung, Sang Yong

    2015-04-01

    Multivariate statistical methods and inverse geochemical modelling were used to assess the hydrogeochemical processes of groundwater in Nakdong River basin. The study area is located in a part of Nakdong River basin, the Busan Metropolitan City, Kora. Quaternary deposits forms Samrak Park region and are underlain by intrusive rocks of Bulkuksa group and sedimentary rocks of Yucheon group in the Cretaceous Period. The Samrak park region is acting as two aquifer systems of unconfined aquifer and confined aquifer. The unconfined aquifer consists of upper sand, and confined aquifer is comprised of clay, lower sand, gravel, weathered rock. Porosity and hydraulic conductivity of the area is 37 to 59% and 1.7 to 200m/day, respectively. Depth of the wells ranges from 9 to 77m. Piper's trilinear diagram, CaCl2 type was useful for unconfined aquifer and NaCl type was dominant for confined aquifer. By hierarchical cluster analysis (HCA), Group 1 and Group 2 are fully composed of unconfined aquifer and confined aquifer, respectively. In factor analysis (FA), Factor 1 is described by the strong loadings of EC, Na, K, Ca, Mg, Cl, HCO3, SO4 and Si, and Factor 2 represents the strong loadings of pH and Al. Base on the Gibbs diagram, the unconfined and confined aquifer samples are scattered discretely in the rock and evaporation areas. The principal hydrogeochemical processes occurring in the confined and unconfined aquifers are the ion exchange due to the phenomena of freshening under natural recharge and water-rock interactions followed by evaporation and dissolution. The saturation index of minerals such as Ca-montmorillonite, dolomite and calcite represents oversaturated, and the albite, gypsum and halite show undersaturated. Inverse geochemical modeling using PHREEQC code demonstrated that relatively few phases were required to derive the differences in groundwater chemistry along the flow path in the area. It also suggested that dissolution of carbonate and ion exchange

  11. Liquid Chromatography-diode Array Detector-electrospray Mass Spectrometry and Principal Components Analyses of Raw and Processed Moutan Cortex

    PubMed Central

    Deng, Xian-Mei; Yu, Jiang-Yong; Ding, Meng-Jin; Zhao, Ming; Xue, Xing-Yang; Che, Chun-Tao; Wang, Shu-Mei; Zhao, Bin; Meng, Jiang

    2016-01-01

    Background: Raw Moutan Cortex (RMC), derived from the root bark of Paeonia suffruticosa, and Processed Moutan Cortex (PMC) is obtained from RMC by undergoing a stir-frying process. Both of them are indicated for different pharmacodynamic action in traditional Chinese medicine, and they have been used in China and other Asian countries for thousands of years. Objective: To establish a method to study the RMC and PMC, revealing their different chemical composition by fingerprint, qualitative, and quantitative ways. Materials and Methods: High-performance liquid chromatography coupled with diode array detector and electrospray mass spectrometry (HPLC-DAD-ESIMS) were used for the analysis. Therefore, the analytes were separated on an Ultimate TM XB-C18 analytical column (250 mm × 4.6 mm, 5.0 μm) with a gradient elution program by a mobile phase consisting of acetonitrile and 0.1% (v/v) formic acid water solution. The flow rate, injection volume, detection wavelength, and column temperature were set at 1.0 mL/min, 10 μL, 254 nm, and 30°C, respectively. Besides, principal components analysis and the test of significance were applied in data analysis. Results: The results clearly showed a significant difference among RMC and PMC, indicating the significant changes in their chemical compositions before and after the stir-frying process. Conclusion: The HPLC-DAD-ESIMS coupled with chemometrics analysis could be used for comprehensive quality evaluation of raw and processed Moutan Cortex. SUMMARY The experiment study the RMC and PMC by HPLC-DAD-ESIMS couple with chemometrics analysis. The results of their fingerprints, qualitative, and quantitative all clearly showed significant changes in their chemical compositions before and after stir-frying processed. Abbreviation used: HPLC-DAD-ESIMS: High-performance Liquid Chromatography-Diode Array Detector-Electrospray Mass Spectrometry, RMC: Raw moutan cortex, PMC: Processed moutan cortex, TCM: Traditional Chinese medicine

  12. Multiobjective Sensitivity Analysis Of Sediment And Nitrogen Processes With A Watershed Model

    EPA Science Inventory

    This paper presents a computational analysis for evaluating critical non-point-source sediment and nutrient (specifically nitrogen) processes and management actions at the watershed scale. In the analysis, model parameters that bear key uncertainties were presumed to reflect the ...

  13. Sensitivity analysis of roll load, torque and material properties in the roll forming process

    NASA Astrophysics Data System (ADS)

    Abeyrathna, Buddhika; Rolfe, Bernard; Hodgson, Peter; Weiss, Matthias

    2013-12-01

    Advanced High Strength Steel (AHSS) and Ultra High Strength Steel (UHSS) are increasingly used in the current automotive industry because of their high strength and weight saving potential. As a sheet forming process, roll forming is capable of forming such materials with precise dimensions, however a small change in processing may results in significant change in the material properties such as yield strength and hardening exponent from coil to coil or within the same coil. This paper presents the effect of yield strength and the hardening exponent on roll load, torque of the roll forming process and the longitudinal bow. The roll forming process is numerically simulated, and then the regression analysis and Analysis of Variance (ANOVA) techniques are employed to establish the relationships among the aforementioned parameters and to determine the percentage influence of material properties on longitudinal bow, roll load and torque.

  14. Chemometric analyses for the characterization of raw and processed seeds of Descurainia sophia (L.) based on HPLC fingerprints.

    PubMed

    Zhou, Xidan; Tang, Liying; Wu, Hongwei; Zhou, Guohong; Wang, Ting; Kou, Zhenzhen; Li, Shunxin; Wang, Zhuju

    2015-01-01

    The seeds of Descurainia sophia (L.) (short for DSS below), with a long history of medicinal utilization in China, have attracted the attention of many Chinese medicine practitioners for the potent efficacy. In the present study, the raw and processed DSS were differentiated by several chemometrics methods based on HPLC fingerprints. Moreover, peaks which were mainly responsible for the differentiation between raw and roasted DSS were found. Therefore, the method of the chromatographic fingerprints combined with multivariate statistical analysis was effective and reasonable in orientating chemical constituents which were mainly responsible for the differentiation between raw and roasted materials, thus shedding light on illustrating the processing mechanism. What's more, this method can also be applied in the identification of authenticity. PMID:25828506

  15. Analyses by the Defense Waste Processing Facility Laboratory of Thorium Glasses from the Sludge Batch 6 Variability Study

    SciTech Connect

    Edwards, T.; Click, D.; Feller, M.

    2011-02-28

    The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 6 (SB6) with Frit 418. At times during the processing of this glass system, thorium is expected to be at concentrations in the final wasteform that make it a reportable element for the first time since startup of radioactive operations at the DWPF. The Savannah River National Laboratory (SRNL) supported the qualification of the processing of this glass system at the DWPF. A recommendation from the SRNL studies was the need for the DWPF Laboratory to establish a method to measure thorium by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICPAES). This recommendation led to the set of thorium-bearing glasses from the SB6 Variability Study (VS) being submitted to the DWPF Laboratory for chemical composition measurement. The measurements were conducted by the DWPF Laboratory using the sodium peroxide fusion preparation method routinely employed for analysis of samples from the Slurry Mix Evaporator (SME). These measurements are presented and reviewed in this report. The review indicates that the measurements provided by the DWPF Laboratory are comparable to those provided by Analytical Development's laboratory at SRNL for these same glasses. As a result, the authors of this report recommend that the DWPF Laboratory begin using its routine peroxide fusion dissolution method for the measurement of thorium in SME samples of SB6. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for the SB6 VS glasses and to compare the measurements to the targeted compositions for these VS glasses as well as to SRNL's measurements (both sets, targeted and measured, of compositional values were reported by SRNL in [2]). The goal of these comparisons is to provide information that will lead to the qualification of peroxide fusion dissolution as a method for the measurement by the DWPF Laboratory of thorium in SME

  16. DEM analyses of the whole failure process of shallow foundation in plate load test on dense sand

    NASA Astrophysics Data System (ADS)

    Li, L.; Jiang, M. J.; Li, T.; Chen, S. L.

    2015-09-01

    Shallow foundations are widely used in civil engineering practice, but the instability mechanism is still unclear yet. Previously, the Finite Element Method (FEM) was commonly used to analyze the failure process of shallow foundations, but it meets difficulty in properly simulating the whole failure process of shallow foundation on the strain-softening material. Hence, the Discrete Element Method (DEM) is employed in this paper to study the instability mechanism of the shallow foundation via numerical plate load test with focus on the microscopic features evolution during vertical loading. In the simulation, an amplified gravity was applied to a dense granular ground to reproduce a gravity stress state at a large scale. Then, a plate was put on the granular ground to simulate the plate load test. Deformation pattern, particle velocity and distribution of void ratio in the ground were examined to illustrate the microscopic features in the whole failure process of the granular ground. The results show that: 1) There are a marked peak value and a settlement softening branch in the stress-settlement relationship. 2) The grids close to the edge of the plate are peculiarly extended and twisted. 3) Four particle motion patterns were observed in the velocity fields and the percentage of each motion pattern changes during loading. 4) The void ratio field varies during loading, and the distinguishing interface tends to be similar to Terzaghi's shear failure surface.

  17. Prediction of neural differentiation fate of rat mesenchymal stem cells by quantitative morphological analyses using image processing techniques.

    PubMed

    Kazemimoghadam, Mahdieh; Janmaleki, Mohsen; Fouani, Mohamad Hassan; Abbasi, Sara

    2015-02-01

    Differentiation of bone marrow mesenchymal stem cells (BMSCs) into neural cells has received significant attention in recent years. However, there is still no practical method to evaluate differentiation process non-invasively and practically. The cellular quality evaluation method is still limited to conventional techniques, which are based on extracting genes or proteins from the cells. These techniques are invasive, costly, time consuming, and should be performed by relevant experts in equipped laboratories. Moreover, they cannot anticipate the future status of cells. Recently, cell morphology has been introduced as a feasible way of monitoring cell behavior because of its relationship with cell proliferation, functions and differentiation. In this study, rat BMSCs were induced to differentiate into neurons. Subsequently, phase contrast images of cells taken at certain intervals were subjected to a series of image processing steps and cell morphology features were calculated. In order to validate the viability of applying image-based approaches for estimating the quality of differentiation process, neural-specific markers were measured experimentally throughout the induction. The strong correlation between quantitative imaging metrics and experimental outcomes revealed the capability of the proposed approach as an auxiliary method of assessing cell behavior during differentiation.

  18. The sensitivity of convective aggregation to diabatic processes in idealized radiative-convective equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Holloway, C. E.; Woolnough, S. J.

    2016-03-01

    Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel (2014), reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a "moisture-memory" effect found in Muller and Bony (2015). Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.

  19. Functional Consequences of Perturbed CXCL12 Signal Processing: Analyses of Immature Hematopoiesis in GRK6-Deficient Mice

    PubMed Central

    Chudziak, Doreen; Spohn, Gabriele; Karpova, Darja; Dauber, Katrin; Wiercinska, Eliza; Miettinen, Johanna A.; Papayannopoulou, Thalia

    2015-01-01

    Hematopoietic stem and progenitor cells (HSPCs) reside in bone marrow (BM) in an environment rich in CXCL12, the ligand for CXCR4, which is constitutively expressed on all immature hematopoietic cells in BM. This ligand-receptor pair critically controls HSPC retention and (relative) quiescence in BM. Interestingly, in a chemokine-abundant environment, CXCR4 surface expression and CXCL12 sensitivity of BM-residing HSPCs are continuously maintained. The mechanisms underlying this peculiar pattern of G-protein signal integration by BM-HSPCs are unknown. G-protein receptor kinases (GRKs) control receptor function by phosphorylating the intracellular domains upon ligand-induced activation, which results in receptor internalization and transient refractoriness. Using, therefore, a GRK6-deficient (GRK6−/−) mouse, we sought to address how perturbed ligand-induced CXCR4 (in)activation affects HSPC behavior in vitro and in vivo. In vitro, GRK6−/− HSPCs were characterized by hyper-responsiveness to CXCL12, as expected. In vivo, GRK6−/− immature hematopoiesis was characterized by a marked expansion of immature hematopoiesis in spleens and a modest repopulation defect in serial competitive transplantation. Enforced mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 was normal, as was hematopoietic regeneration after noncompetitive transplantation or pharmacological myelosuppression. These observations illustrate that GRK-mediated restriction of CXCR4 signal input after ligand engagement is largely dispensable for BM-resident HSPCs, which may explain how continuous CXCL12 responsiveness of BM-HSPCs can be maintained. PMID:25316534

  20. Plasma sprayed manganese-cobalt spinel coatings: Process sensitivity on phase, electrical and protective performance

    NASA Astrophysics Data System (ADS)

    Han, Su Jung; Pala, Zdenek; Sampath, Sanjay

    2016-02-01

    Manganese cobalt spinel (Mn1.5Co1.5O4, MCO) coatings are prepared by the air plasma spray (APS) process to examine their efficacy in serving as protective coatings from Cr-poisoning of the cathode side in intermediate temperature-solid oxide fuel cells (IT-SOFCs). These complex oxides are susceptible to process induced stoichiometric and phase changes which affect their functional performance. To critically examine these effects, MCO coatings are produced with deliberate modifications to the spray process parameters to explore relationship among process conditions, microstructure and functional properties. The resultant interplay among particle thermal and kinetic energies are captured through process maps, which serve to characterize the parametric effects on properties. The results show significant changes to the chemistry and phase composition of the deposited material resulting from preferential evaporation of oxygen. Post deposition annealing recovers oxygen in the coatings and allows partial recovery of the spinel phase, which is confirmed through thermo-gravimetric analysis (TGA)/differential scanning calorimetry (DSC), X-ray Diffraction (XRD), and magnetic hysteresis measurements. In addition, coatings with high density after sintering show excellent electrical conductivity of 40 S cm-1 at 800 °C while simultaneously providing requisite protection characteristics against Cr-poisoning. This study provides a framework for optimal evaluation of MCO coatings in intermediate temperature SOFCs.

  1. A review of the Buehler guinea pig skin sensitization test and its use in a risk assessment process for human skin sensitization.

    PubMed

    Robinson, M K; Nusair, T L; Fletcher, E R; Ritz, H L

    1990-04-17

    The Buehler test is a valuable procedure for screening the sensitization potential of chemicals prior to human exposure. Our experience of over 20 years has shown it to be effective in detecting strong, moderate, and most weak sensitizers. The topical exposure inherent in the Buehler test allows it to be utilized to investigate dose responses, cross reactivity between structurally related chemicals, and the sensitization potential of contaminants in raw material mixtures. For safety assessment purposes, Buehler test results provide an initial indication of the sensitization potential of the material in question under relevant, but exaggerated, exposure conditions. These results can be compared to results on benchmark chemicals to assess sensitization risk for subsequent human exposure. Optimizing the sensitivity of the Buehler test requires adherence to the published methodology and proper interpretation of the challenge and rechallenge data obtained. Adjuvant-type test methods are generally considered to be more sensitive than topical methods. However, when done properly, topical test procedures such as the Buehler test or the open epicutaneous test can accurately detect most chemicals with any realistic potential for sensitizing humans by the topical route. Moreover, from a risk assessment perspective, these topical tests avoid the problems of overestimating the weak sensitization potential of many topically applied materials or underestimating the sensitization potential of very strong sensitizers; both are potential concerns with invasive adjuvant-type test methods. The Buehler test or other topical test methods are particularly valuable for comparative sensitization risk assessment since human sensitization data on benchmark materials are all derived from topical exposure. The risk assessment is developed by comparing the guinea pig data on the new material versus relevant benchmark chemicals or formulations and also by evaluating the existing human

  2. INCORPORATION OF HUMAN FACTORS ENGINEERING ANALYSES AND TOOLS INTO THE DESIGN PROCESS FOR DIGITAL CONTROL ROOM UPGRADES.

    SciTech Connect

    O'HARA,J.M.; BROWN,W.

    2004-09-19

    Many nuclear power plants are modernizing with digital instrumentation and control systems and computer-based human-system interfaces (HSIs). The purpose of this paper is to summarize the human factors engineering (HFE) activities that can help to ensure that the design meets personnel needs. HFE activities should be integrated into the design process as a regular part of the engineering effort of a plant modification. The HFE activities will help ensure that human performance issues are addressed, that new technology supports task performance, and that the HSIs are designed in a manner that is compatible with human physiological, cognitive and social characteristics.

  3. The Medical Interaction Process System (MIPS): an instrument for analysing interviews of oncologists and patients with cancer.

    PubMed

    Ford, S; Hall, A; Ratcliffe, D; Fallowfield, L

    2000-02-01

    The increase in communication skills training for doctors has led to the need for more effective means of evaluation. Analysis of video and audiotaped consultations using systems of interaction analysis can provide the trainee with in-depth feedback about their communication skills. Most interaction process systems were designed for use in primary care and recent research has questioned the applicability of these systems in medical specialties such as oncology. We describe the development of a new instrument, the Medical Interaction Process System (MIPS) for use in teaching communication skills and empirical research in medical encounters, particularly, between doctors and patients with cancer. A comparison of the MIPS and comparable behaviour categories of another widely used system (the Roter Interaction Analysis System) was made to test convergent validity. Pearson correlation coefficients suggested a good level of concurrence between the two systems. Intercoder reliability tests were carried out between two coders at two separate time periods. Both of these indicated good reliability for the majority of categories. The two major advantages of the MIPS over other coding systems are: (1) the system allows for sequential and parallel coding, thus avoiding major coding conflicts and (2) the design of the coding sheet results in a multidimensional view of the consultation without data loss. We believe that the MIPS yields useful information for teaching doctors communication skills and also provides an objective method for evaluating the effectiveness of communication skills courses.

  4. A novel intrusion signal processing method for phase-sensitive optical time-domain reflectometry (Φ-OTDR)

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Li, Xiaoyu; Peng, Zhengpu; Rao, Yunjiang

    2014-05-01

    Phase-sensitive Optical-Time-Domain Reflectometry (Φ-OTDR) is a useful distributed fiber-optic sensing technology to detect and locate multiple dynamic disturbances, offering a cost-effective and sensitive solution for intrusion monitoring of long perimeters. The Φ-OTDR is affected by laser frequency drift, air movement, transient acoustic interference and environmental noises. resulting in high Nuisance Alarm Rates (NARs). In this paper, we proposed a novel intrusion signal processing method based on the singular spectrum analysis of the longitudinal time sequence of the Φ-OTDR. The experimental results shows that true intrusions can be correctly distinguished from varying background noises and sound or air movement interferences. The probability for correct detection can be improved up to ~94% and false alarm rate can be controlled as low as ~6%.

  5. Determination of sensitivity for in-process control of cable product insulation

    NASA Astrophysics Data System (ADS)

    Redko, V. V.; Starikova, N. S.; Redko, L. A.; Vavilova, G. V.

    2015-04-01

    This article presents current methods of cable insulation control. The new method which allows to improve reliability of cable insulation control was offered. The cable model with several types of defects was developed by using Comsol Myltiphysics software. Minimal sizes of defects which can be detected by using given in-process control method.

  6. Striatal Sensitivity during Reward Processing in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Paloyelis, Yannis; Mehta, Mitul A.; Faraone, Stephen V.; Asherson, Philip; Kuntsi, Jonna

    2012-01-01

    Objective: Attention-deficit/hyperactivity disorder (ADHD) has been linked to deficits in the dopaminergic reward-processing circuitry; yet, existing evidence is limited, and the influence of genetic variation affecting dopamine signaling remains unknown. We investigated striatal responsivity to rewards in ADHD combined type (ADHD-CT) using…

  7. Early Parenting Intervention Aimed at Maternal Sensitivity and Discipline: A Process Evaluation

    ERIC Educational Resources Information Center

    Stolk, Mirjam N.; Mesman, Judi; van Zeijl, Jantien; Alink, Lenneke R. A.; Bakermans-Kranenburg, Marian J.; van IJzendoorn, Marinus H.; Juffer, Femmie; Koot, Hans M.

    2008-01-01

    This study investigated the influence of the intervention process on the effectiveness of a program aimed at promoting positive parenting. The study involved a homogeneous intervention sample (N = 120) of mothers and their 1-, 2-, or 3-year-old children screened for high levels of externalizing problems. The alliance between mother and intervener,…

  8. Context sensitive formulations of antenna pattern correction and side lobe compensation for NOSS/LAMMR real time processing

    NASA Technical Reports Server (NTRS)

    Chin, R. T.; Beaudet, P. R.

    1981-01-01

    Large antenna multi-channel microwave radiometer (LAMMR) software specifications were written for LAMMR ground processing. There is a need to determine more computationally-efficient antenna temperature correction methods in compensating side lobe contributions especially near continents, islands and weather fronts. One of the major conclusions was that the antenna pattern corrections (APC) processes did not accomplish the implied goals of compensating for the antenna side lobe influences on brightness temperature. A-priori knowledge of land/water locations was shown to be needed and had to be incorporated in a context sensitive APC process if the artifacts caused by land presence is to be avoided. The high temperatures in land regions can severely bias the lower ocean response.

  9. Dislocation density analyses of multi-crystalline silicon during the directional solidification process with bottom grooved furnace

    NASA Astrophysics Data System (ADS)

    Karuppasamy, P.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.

    2016-05-01

    A transient global model was used to investigate the effect of bottom grooved furnace upon the directional solidification (DS) process of multicrystalline silicon (mc-Si). The computations were carried out on a 2D axisymmetric model using the finite volume method. The temperature distribution, crystal-melt (c-m) interface and dislocation density were simulated. The modified heat exchanger block system was used for controlling the temperature gradient at the bottom of the crucible. The obtained results shows convex shape of the c-m interface. The dislocation density was reduced while using the bottom grooved furnace. This work was carried out for the different groove of radius 30 and 60 mm of the heat exchanger block.

  10. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos.

    PubMed

    Rahlouni, Fatima; Szarka, Szabolcs; Shulaev, Vladimir; Prokai, Laszlo

    2015-12-01

    Deyolking, the removal of the most abundant protein from the zebrafish (Danio rerio) embryo, is a common technique for in-depth exploration of proteome-level changes in vivo due to various environmental stressors or pharmacological impacts during embryonic stage of development. However, the effect of this procedure on the remaining proteome has not been fully studied. Here, we report a label-free shotgun proteomics survey on proteome coverage and biological processes that are enriched and depleted as a result of deyolking. Enriched proteins are involved in cellular energetics and development pathways, specifically implicating enrichment related to mitochondrial function. Although few proteins were removed completely by deyolking, depleted molecular pathways were associated with calcium signaling and signaling events implicating immune system response.

  11. A Survey of the Impact of Deyolking on Biological Processes Covered by Shotgun Proteomic Analyses of Zebrafish Embryos.

    PubMed

    Rahlouni, Fatima; Szarka, Szabolcs; Shulaev, Vladimir; Prokai, Laszlo

    2015-12-01

    Deyolking, the removal of the most abundant protein from the zebrafish (Danio rerio) embryo, is a common technique for in-depth exploration of proteome-level changes in vivo due to various environmental stressors or pharmacological impacts during embryonic stage of development. However, the effect of this procedure on the remaining proteome has not been fully studied. Here, we report a label-free shotgun proteomics survey on proteome coverage and biological processes that are enriched and depleted as a result of deyolking. Enriched proteins are involved in cellular energetics and development pathways, specifically implicating enrichment related to mitochondrial function. Although few proteins were removed completely by deyolking, depleted molecular pathways were associated with calcium signaling and signaling events implicating immune system response. PMID:26439676

  12. Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods and Numerical Advection Schemes

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. The simulations are made using two different numerical advection schemes: 4th order and positive definite advection. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain. The midlatitude PRESTORM simulation was found to be nearly invariant with respect to advection type for most quantities while for TOGA COARE fourth order advection produced numerous shallow convective cores and positive definite advection fewer cells that were both broader and deeper penetrating above the freezing level.

  13. Detailed analyses of the bacterial populations in processed cocoa beans of different geographic origin, subject to varied fermentation conditions.

    PubMed

    Bortolini, Cristian; Patrone, Vania; Puglisi, Edoardo; Morelli, Lorenzo

    2016-11-01

    The quality of chocolate is influenced by several parameters, one of which is bacterial diversity during fermentation and drying; a crucial factor for the generation of the optimal cocoa flavor precursors. Our understanding of the bacterial populations involved in chocolate fermentation can be improved by the use of high-throughput sequencing technologies (HTS), combined with PCR amplification of the 16S rRNA subunit. Here, we have conducted a high-throughput assessment of bacterial diversity in four processed samples of cocoa beans from different geographic origins. As part of this study, we also assessed whether different DNA extraction methods could affect the quality of our data. The dynamics of microbial populations were analyzed postharvest (fermentation and sun drying) and shipment, before entry to the industrial process. A total of 691,867 high quality sequences were obtained by Illumina MiSeq sequencing of the two bacterial 16S rRNA hypervariable regions, V3 and V4, following paired-read assembly of the raw reads. Manual curation of the 16S database allowed us to assign the correct taxonomic classifications, at species level, for 83.8% of those reads. This approach revealed a limited biodiversity and population dynamics for both the lactic acid bacteria (LAB) and acetic acid bacteria (AAB), both of which are key players during the acetification and lactic acid fermentation phases. Among the LAB, the most abundant species were Lactobacillus fermentum, Enterococcus casseliflavus, Weissella paramesenteroides, and Lactobacillus plantarum/paraplantarum. Among the AAB, Acetobacter syzygii, was most abundant, then Acetobacter senegalensis and Acetobacter pasteriuanus. Our results indicate that HTS approach has the ability to provide a comprehensive view of the cocoa bean microbiota at the species level.

  14. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    PubMed Central

    Saha, Rajib; Liu, Deng; Hoynes-O’Connor, Allison; Liberton, Michelle; Yu, Jingjie; Bhattacharyya-Pakrasi, Maitrayee; Balassy, Andrea; Zhang, Fuzhong; Maranas, Costas D.

    2016-01-01

    ABSTRACT Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. PMID:27143387

  15. Detailed analyses of the bacterial populations in processed cocoa beans of different geographic origin, subject to varied fermentation conditions.

    PubMed

    Bortolini, Cristian; Patrone, Vania; Puglisi, Edoardo; Morelli, Lorenzo

    2016-11-01

    The quality of chocolate is influenced by several parameters, one of which is bacterial diversity during fermentation and drying; a crucial factor for the generation of the optimal cocoa flavor precursors. Our understanding of the bacterial populations involved in chocolate fermentation can be improved by the use of high-throughput sequencing technologies (HTS), combined with PCR amplification of the 16S rRNA subunit. Here, we have conducted a high-throughput assessment of bacterial diversity in four processed samples of cocoa beans from different geographic origins. As part of this study, we also assessed whether different DNA extraction methods could affect the quality of our data. The dynamics of microbial populations were analyzed postharvest (fermentation and sun drying) and shipment, before entry to the industrial process. A total of 691,867 high quality sequences were obtained by Illumina MiSeq sequencing of the two bacterial 16S rRNA hypervariable regions, V3 and V4, following paired-read assembly of the raw reads. Manual curation of the 16S database allowed us to assign the correct taxonomic classifications, at species level, for 83.8% of those reads. This approach revealed a limited biodiversity and population dynamics for both the lactic acid bacteria (LAB) and acetic acid bacteria (AAB), both of which are key players during the acetification and lactic acid fermentation phases. Among the LAB, the most abundant species were Lactobacillus fermentum, Enterococcus casseliflavus, Weissella paramesenteroides, and Lactobacillus plantarum/paraplantarum. Among the AAB, Acetobacter syzygii, was most abundant, then Acetobacter senegalensis and Acetobacter pasteriuanus. Our results indicate that HTS approach has the ability to provide a comprehensive view of the cocoa bean microbiota at the species level. PMID:27458718

  16. Fast and Sensitive Solution-Processed Visible-Blind Perovskite UV Photodetectors.

    PubMed

    Adinolfi, Valerio; Ouellette, Olivier; Saidaminov, Makhsud I; Walters, Grant; Abdelhady, Ahmed L; Bakr, Osman M; Sargent, Edward H

    2016-09-01

    The first visible-blind UV photodetector based on MAPbCl3 integrated on a substrate exhibits excellent performance, with responsivities reaching 18 A W(-1) below 400 nm and imaging-compatible response times of 1 ms. This is achieved by using substrate-integrated single crystals, thus overcoming the severe limitations affecting thin films and offering a new application of efficient, solution-processed, visible-transparent perovskite optoelectronics. PMID:27300753

  17. Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations

    NASA Technical Reports Server (NTRS)

    Igel, Adele L.; Van Den Heever, Susan C.; Naud, Catherine M.; Saleeby, Stephen M.; Posselt, Derek J.

    2013-01-01

    An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front.

  18. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationships

    NASA Astrophysics Data System (ADS)

    Evans, C.; Davies, T. D.; Murdoch, P. S.

    1999-03-01

    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.

  19. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis

    PubMed Central

    Miller, Marcus J.; Barrett-Wilt, Gregory A.; Hua, Zhihua; Vierstra, Richard D.

    2010-01-01

    The covalent attachment of SUMO (small ubiquitin-like modifier) to other intracellular proteins affects a broad range of nuclear processes in yeast and animals, including chromatin maintenance, transcription, and transport across the nuclear envelope, as well as protects proteins from ubiquitin addition. Substantial increases in SUMOylated proteins upon various stresses have also implicated this modification in the general stress response. To help understand the role(s) of SUMOylation in plants, we developed a stringent method to isolate SUMO-protein conjugates from Arabidopsis thaliana that exploits a tagged SUMO1 variant that faithfully replaces the wild-type protein. Following purification under denaturing conditions, SUMOylated proteins were identified by tandem mass spectrometry from both nonstressed plants and those exposed to heat and oxidative stress. The list of targets is enriched for factors that direct SUMOylation and for nuclear proteins involved in chromatin remodeling/repair, transcription, RNA metabolism, and protein trafficking. Targets of particular interest include histone H2B, components in the LEUNIG/TOPLESS corepressor complexes, and proteins that control histone acetylation and DNA methylation, which affect genome-wide transcription. SUMO attachment site(s) were identified in a subset of targets, including SUMO1 itself to confirm the assembly of poly-SUMO chains. SUMO1 also becomes conjugated with ubiquitin during heat stress, thus connecting these two posttranslational modifications in plants. Taken together, we propose that SUMOylation represents a rapid and global mechanism for reversibly manipulating plant chromosomal functions, especially during environmental stress. PMID:20813957

  20. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression.

    PubMed

    Lasonder, Edwin; Rijpma, Sanna R; van Schaijk, Ben C L; Hoeijmakers, Wieteke A M; Kensche, Philip R; Gresnigt, Mark S; Italiaander, Annet; Vos, Martijn W; Woestenenk, Rob; Bousema, Teun; Mair, Gunnar R; Khan, Shahid M; Janse, Chris J; Bártfai, Richárd; Sauerwein, Robert W

    2016-07-27

    Sexual differentiation of malaria parasites into gametocytes in the vertebrate host and subsequent gamete fertilization in mosquitoes is essential for the spreading of the disease. The molecular processes orchestrating these transitions are far from fully understood. Here, we report the first transcriptome analysis of male and female Plasmodium falciparum gametocytes coupled with a comprehensive proteome analysis. In male gametocytes there is an enrichment of proteins involved in the formation of flagellated gametes; proteins involved in DNA replication, chromatin organization and axoneme formation. On the other hand, female gametocytes are enriched in proteins required for zygote formation and functions after fertilization; protein-, lipid- and energy-metabolism. Integration of transcriptome and proteome data revealed 512 highly expressed maternal transcripts without corresponding protein expression indicating large scale translational repression in P. falciparum female gametocytes for the first time. Despite a high degree of conservation between Plasmodium species, 260 of these 'repressed transcripts' have not been previously described. Moreover, for some of these genes, protein expression is only reported in oocysts and sporozoites indicating that repressed transcripts can be partitioned into short- and long-term storage. Finally, these data sets provide an essential resource for identification of vaccine/drug targets and for further mechanistic studies. PMID:27298255

  1. Thermal and convection analyses of the dendrite remelting rocket experiment; Experiment 74-21 in the space processing rocket program

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Pond, J. E.; Spradley, J. W.; Johnson, M. H.

    1976-01-01

    The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g.

  2. Sensitivity Analysis of the Sheet Metal Stamping Processes Based on Inverse Finite Element Modeling and Monte Carlo Simulation

    SciTech Connect

    Yu Maolin; Du, R.

    2005-08-05

    Sheet metal stamping is one of the most commonly used manufacturing processes, and hence, much research has been carried for economic gain. Searching through the literatures, however, it is found that there are still a lots of problems unsolved. For example, it is well known that for a same press, same workpiece material, and same set of die, the product quality may vary owing to a number of factors, such as the inhomogeneous of the workpice material, the loading error, the lubrication, and etc. Presently, few seem able to predict the quality variation, not to mention what contribute to the quality variation. As a result, trial-and-error is still needed in the shop floor, causing additional cost and time delay. This paper introduces a new approach to predict the product quality variation and identify the sensitive design / process parameters. The new approach is based on a combination of inverse Finite Element Modeling (FEM) and Monte Carlo Simulation (more specifically, the Latin Hypercube Sampling (LHS) approach). With an acceptable accuracy, the inverse FEM (also called one-step FEM) requires much less computation load than that of the usual incremental FEM and hence, can be used to predict the quality variations under various conditions. LHS is a statistical method, through which the sensitivity analysis can be carried out. The result of the sensitivity analysis has clear physical meaning and can be used to optimize the die design and / or the process design. Two simulation examples are presented including drawing a rectangular box and drawing a two-step rectangular box.

  3. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationship

    USGS Publications Warehouse

    Evans, C.; Davies, T.D.; Murdoch, Peter S.

    1999-01-01

    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the

  4. Controlling Explosive Sensitivity of Energy-Related Materials by Means of Production and Processing in Electromagnetic Fields

    NASA Astrophysics Data System (ADS)

    Rodzevich, A. P.; Gazenaur, E. G.; Kuzmina, L. V.; Krasheninin, V. I.; Sokolov, P. N.

    2016-08-01

    The present work is one of the world first attempts to develop effective methods for controlling explosive sensitivity of energy-related materials with the help of weak electric (up to 1 mV/cm) and magnetic (0.001 T) fields. The resulting experimental data can be used for purposeful alternation of explosive materials reactivity, which is of great practical importance. The proposed technology of producing and processing materials in a weak electric field allows forecasting long-term stability of these materials under various energy impacts.

  5. Analyses of Conformational States of the Transporter Associated with Antigen Processing (TAP) Protein in a Native Cellular Membrane Environment*

    PubMed Central

    Geng, Jie; Sivaramakrishnan, Sivaraj; Raghavan, Malini

    2013-01-01

    The transporter associated with antigen processing (TAP) plays a critical role in the MHC class I antigen presentation pathway. TAP translocates cellular peptides across the endoplasmic reticulum membrane in an ATP hydrolysis-dependent manner. We used FRET spectroscopy in permeabilized cells to delineate different conformational states of TAP in a native subcellular membrane environment. For these studies, we tagged the TAP1 and TAP2 subunits with enhanced cyan fluorescent protein and enhanced yellow fluorescent protein, respectively, C-terminally to their nucleotide binding domains (NBDs), and measured FRET efficiencies under different conditions. Our data indicate that both ATP and ADP enhance the FRET efficiencies but that neither induces a maximally closed NBD conformation. Additionally, peptide binding induces a large and significant increase in NBD proximity with a concentration dependence that is reflective of individual peptide affinities for TAP, revealing the underlying mechanism of peptide-stimulated ATPase activity of TAP. Maximal NBD closure is induced by the combination of peptide and non-hydrolysable ATP analogs. Thus, TAP1-TAP2 NBD dimers are not fully stabilized by nucleotides alone, and substrate binding plays a key role in inducing the transition state conformations of the NBD. Taken together, these findings show that at least three steps are involved in the transport of peptides across the endoplasmic reticulum membrane for antigen presentation, corresponding to three dynamically and structurally distinct conformational states of TAP. Our studies elucidate structural changes in the TAP NBD in response to nucleotides and substrate, providing new insights into the mechanism of ATP-binding cassette transporter function. PMID:24196954

  6. Combining Internet monitoring processes, packaging and isotopic analyses to determine the market structure: example of Gamma Butyrolactone.

    PubMed

    Pazos, Diego; Giannasi, Pauline; Rossy, Quentin; Esseiva, Pierre

    2013-07-10

    The Internet is becoming more and more popular among drug users. The use of websites and forums to obtain illicit drugs and relevant information about the means of consumption is a growing phenomenon mainly for new synthetic drugs. Gamma Butyrolactone (GBL), a chemical precursor of Gamma Hydroxy Butyric acid (GHB), is used as a "club drug" and also in drug facilitated sexual assaults. Its market takes place mainly on the Internet through online websites but the structure of the market remains unknown. This research aims to combine digital, physical and chemical information to help understand the distribution routes and the structure of the GBL market. Based on an Internet monitoring process, thirty-nine websites selling GBL, mainly in the Netherlands, were detected between January 2010 and December 2011. Seventeen websites were categorized into six groups based on digital traces (e.g. IP addresses and contact information). In parallel, twenty-five bulk GBL specimens were purchased from sixteen websites for packaging comparisons and carbon isotopic measurements. Packaging information showed a high correlation with digital data confirming the links previously established whereas chemical information revealed undetected links and provided complementary information. Indeed, while digital and packaging data give relevant information about the retailers, the supply routes and the distribution close to the consumer, the carbon isotopic data provides upstream information about the production level and in particular the synthesis pathways and the chemical precursors. A three-level structured market has been thereby identified with a production level mainly located in China and in Germany, an online distribution level mainly hosted in the Netherlands and the customers who order on the Internet. PMID:23523397

  7. Synchrotron FT-IR analyses of microstructured biomineral domains: Hints to the biomineralization processes in freshwater cultured pearls.

    NASA Astrophysics Data System (ADS)

    Soldati, A. L.; Vicente-Vilas, V.; Gasharova, B.; Jacob, D. E.

    2009-04-01

    Recent investigations in freshwater cultured pearls (bio-carbonate) by micro-Raman spectroscopy (Wehrmeister et al., 2008; Soldati et al., 2008), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) imaging (Jacob et al., 2008) show that the pearl biomineralisation starts with a self assembling process in which an existing gel matrix of amorphous calcium carbonate (ACC) and organic substances reorganizes and conglomerates in small domains; these conglomerates then form prisms and mature nacreous tablets of aragonite or vaterite. Raman spectroscopy shows that the calcium carbonate polymorphs have decreasing luminescence in the order ACC>Vaterite>Aragonite, coinciding with decreasing quantities of S and P (related to the organic matrix) measured by Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and Electron Probe Micro Analyzer (EPMA). Although little is known about the process of transformation of the ACC gel into vaterite and aragonite, it is speculated that this probably involves dehydration and change of the accompanying organic matrix. This is also supported by our laboratory FT-IR analysis. However, due to the small size of the areas of ACC (about 10 ?m) and the biogenic crystals an in-situ high spatially resolved IR-method is needed to record how the water content and organic matrix change in the biomineralisation sequence, to understand which processes take place in the self-organization. The beamline IR-1 at the ANKA synchrotron source (Karlsruhe, Germany) was used for this experiment. Freshwater cultured pearls from China cultured in Hyriopsis cumingii mussels by tissue nucleation methods (so-called beadless pearls) as well as by bead implantation methods (aragonite nucleus) were studied. The pearls were cut in half with a diamond-plated saw and polished with diamond paste on a copper plate. Micro-Raman spectroscopy maps (Department of Geosciences, at the Johannes Gutenberg-University, Mainz) were generated

  8. Synchrotron FT-IR analyses of microstructured biomineral domains: Hints to the biomineralization processes in freshwater cultured pearls.

    NASA Astrophysics Data System (ADS)

    Soldati, A. L.; Vicente-Vilas, V.; Gasharova, B.; Jacob, D. E.

    2009-04-01

    Recent investigations in freshwater cultured pearls (bio-carbonate) by micro-Raman spectroscopy (Wehrmeister et al., 2008; Soldati et al., 2008), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) imaging (Jacob et al., 2008) show that the pearl biomineralisation starts with a self assembling process in which an existing gel matrix of amorphous calcium carbonate (ACC) and organic substances reorganizes and conglomerates in small domains; these conglomerates then form prisms and mature nacreous tablets of aragonite or vaterite. Raman spectroscopy shows that the calcium carbonate polymorphs have decreasing luminescence in the order ACC>Vaterite>Aragonite, coinciding with decreasing quantities of S and P (related to the organic matrix) measured by Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and Electron Probe Micro Analyzer (EPMA). Although little is known about the process of transformation of the ACC gel into vaterite and aragonite, it is speculated that this probably involves dehydration and change of the accompanying organic matrix. This is also supported by our laboratory FT-IR analysis. However, due to the small size of the areas of ACC (about 10 ?m) and the biogenic crystals an in-situ high spatially resolved IR-method is needed to record how the water content and organic matrix change in the biomineralisation sequence, to understand which processes take place in the self-organization. The beamline IR-1 at the ANKA synchrotron source (Karlsruhe, Germany) was used for this experiment. Freshwater cultured pearls from China cultured in Hyriopsis cumingii mussels by tissue nucleation methods (so-called beadless pearls) as well as by bead implantation methods (aragonite nucleus) were studied. The pearls were cut in half with a diamond-plated saw and polished with diamond paste on a copper plate. Micro-Raman spectroscopy maps (Department of Geosciences, at the Johannes Gutenberg-University, Mainz) were generated

  9. Neural correlates of error processing reflect individual differences in interoceptive sensitivity.

    PubMed

    Sueyoshi, Takuya; Sugimoto, Fumie; Katayama, Jun'ichi; Fukushima, Hirokata

    2014-12-01

    Although self-monitoring is an important process for adaptive behaviors in multiple domains, the exact relationship among different internal monitoring systems is unclear. Here, we aimed to determine whether and how physiological monitoring (interoception) and behavioral monitoring (error processing) are related to each other. To this end we examined within-subject correlations among measures representing each function. Score on the heartbeat counting task (HCT) was used as a measure of interoceptive awareness. The amplitude of two event-related potentials (error-related negativity [ERN] and error-positivity [Pe]) elicited in error trials of a choice-reaction task (Simon task) were used as measures of error processing. The Simon task presented three types of stimuli (objects, faces showing disgust, and happy faces) to further examine how emotional context might affect inter-domain associations. Results showed that HCT score was robustly correlated with Pe amplitude (the later portion of error-related neural activity), irrespective of stimulus condition. In contrast, HCT score was correlated with ERN amplitude (the early component) only when participants were presented with disgust-faces as stimuli, which may have automatically elicited a physiological response. Behavioral data showed that HCT score was associated with the degree to which reaction times slowed after committing errors in the object condition. Cardiac activity measures indicated that vigilance level would not explain these correlations. These results suggest a relationship between physiological and behavioral monitoring. Furthermore, the degree to which behavioral monitoring relies on physiological monitoring appears to be flexible and depend on the situation.

  10. Improving the electrical conductivity sensitivity of polydiphenylamine and Y zeolite towards halogenated solvents by the dealumination process towards halogenated solvents

    NASA Astrophysics Data System (ADS)

    Permpool, Tharaporn; Sirivat, Anuvat; Aussawasathien, Darunee; Conductive and Electroactive Polymers Research Unit Team; National Metal and Materials Technology center Collaboration

    2013-03-01

    In order to improve the electrical conductivity selectivity of polydiphenylamine based sensors towards halogenated solvent vapors (dichloromethane, 1,2-dichloroethane, chloroform), polydiphenylamine doped with hydrochloric acid is fabricated with the dealuminatedY zeolite (Si/Al = 80). The structure and composition are investigated by Fourier transform spectroscopy and X-ray fluorescence spectrometer, respectively. The effects of acid treatment time of the dealumination process and the Y zeolite content are investigated. The sensitivity of the composites with the dealuminated Y zeolite exhibites a higher sensitivity value when exposed to the solvents relative to the pristine Y zeolite. The optimum acid treatment time which provides the highest sensitivity is 12 hr. The selectivity of the composites towards the halogenated solvents is in this order: dhicloromethane > 1,2-dichloroethane > chloroform, respectively. The optimum dealuminated Y zeolite content in the composites is 30% v/v. The Petroleum and Petrochemical College, The Thailand Graduate Institute of Science and Technology (TGIST) (TGIST-01-54-011)

  11. A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies.

    PubMed

    Estrada, José M; Kraakman, N J R Bart; Lebrero, Raquel; Muñoz, Raúl

    2012-01-01

    The sensitivity of the economics of the five most commonly applied odour abatement technologies (biofiltration, biotrickling filtration, activated carbon adsorption, chemical scrubbing and a hybrid technology consisting of a biotrickling filter coupled with carbon adsorption) towards design parameters and commodity prices was evaluated. Besides, the influence of the geographical location on the Net Present Value calculated for a 20 years lifespan (NPV20) of each technology and its robustness towards typical process fluctuations and operational upsets were also assessed. This comparative analysis showed that biological techniques present lower operating costs (up to 6 times) and lower sensitivity than their physical/chemical counterparts, with the packing material being the key parameter affecting their operating costs (40-50% of the total operating costs). The use of recycled or partially treated water (e.g. secondary effluent in wastewater treatment plants) offers an opportunity to significantly reduce costs in biological techniques. Physical/chemical technologies present a high sensitivity towards H2S concentration, which is an important drawback due to the fluctuating nature of malodorous emissions. The geographical analysis evidenced high NPV20 variations around the world for all the technologies evaluated, but despite the differences in wage and price levels, biofiltration and biotrickling filtration are always the most cost-efficient alternatives (NPV20). When, in an economical evaluation, the robustness is as relevant as the overall costs (NPV20), the hybrid technology would move up next to BTF as the most preferred technologies.

  12. Experimental and theoretical analyses of penetration processes of externally applied rotating helical magnetic perturbation fields in TEXTOR and HYBTOK-II

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; de Bock, M. F. M.; Finken, K. H.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Kraemer-Flecken, A.; Lehnen, M.; Liang, Y.; Loewenbrueck, K.; Matsunaga, G.; Reiser, D.; Samm, U.; Sewell, G.; Takamura, S.; Unterberg, B.; Wolf, R. C.; Zimmermann, O.; TEXTOR-team

    2007-05-01

    Penetration processes of rotating helical magnetic perturbation field into tokamak plasmas have been investigated by the dynamic ergodic divertor (DED) in TEXTOR. Experimental observations of the field penetration and field amplification are performed and the data are interpreted by theoretical analyses based on a linearized two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED-field is accompanied by a change in the plasma fluid rotation. The theoretical model is also applied to the DED experiment in the small tokamak device HYBTOK-II. It is confirmed that the theoretical analyses can explain the observed radial profiles of the DED-field in the plasma by inserting small magnetic pick-up coils in HYBTOK-II.

  13. Effect of process variables on the sulfate reduction process in bioreactors treating metal-containing wastewaters: factorial design and response surface analyses.

    PubMed

    Villa-Gomez, D K; Pakshirajan, K; Maestro, R; Mushi, S; Lens, P N L

    2015-07-01

    The individual and combined effect of the pH, chemical oxygen demand (COD) and SO4 (2-) concentration, metal to sulfide (M/S(2-)) ratio and hydraulic retention time (HRT) on the biological sulfate reduction (SR) process was evaluated in an inverse fluidized bed reactor by factorial design analysis (FDA) and response surface analysis (RSA). The regression-based model of the FDA described the experimental results well and revealed that the most significant variable affecting the process was the pH. The combined effect of the pH and HRT was barely observable, while the pH and COD concentration positive effect (up to 7 and 3 gCOD/L, respectively) enhanced the SR process. Contrary, the individual COD concentration effect only enhanced the COD removal efficiency, suggesting changes in the microbial pathway. The RSA showed that the M/S(2-) ratio determined whether the inhibition mechanism to the SR process was due to the presence of free metals or precipitated metal sulfides.

  14. Sensitivity of Type I X-Ray Bursts to rp-Process Reaction Rate

    NASA Astrophysics Data System (ADS)

    Amthor, Matthew A.; Galaviz, Daniel; Heger, Alexander; Sakharuk, Alexander; Schatz, Hendrik; Smith, Karl

    PoS(NIC-IX)068 First steps have been taken in a more comprehensive study of the dependence of observables in Type I X-ray bursts on uncertain (p,γ) reaction rates along the rp-process path. We use the multi- zone hydrodynamics code KEPLER which implicitly couples a full nuclear reaction network of more than 1000 isotopes, as needed, to follow structure and evolution of the X-ray burst layer and its ashes. This allows us to incorporate the full rp-process network, including all relevant nuclear reactions, and individually study changes in the X-ray burst light curves when modifying selected key nuclear reaction rates. In this work we considered all possible proton captures to nuclei with 10 < Z < 28 and N ≤ Z. When varying individual reaction rates within a symmetric full width uncertainty of a factor of 104 , early results for some rates show changes in the burst light curve as large as 10 percent of peak luminosity. This change is large enough to be detectable by current X-ray burst light curve observations. More precise reaction rates are therefore needed to test current X-ray burst models, particularly of the burst rise, with observational data and to constrain astrophysical parameters.

  15. Social defeat stress potentiates thermal sensitivity in operant models of pain processing.

    PubMed

    Marcinkiewcz, Catherine A; Green, Megan K; Devine, Darragh P; Duarte, Peter; Vierck, Charles J; Yezierski, Robert P

    2009-01-28

    Higher-order processing of nociceptive input is distributed in corticolimbic regions of the brain, including the anterior cingulate, parieto-insular and prefrontal cortices, as well as subcortical structures such as the bed nucleus of stria terminalis and amygdala. In addition to their role in pain processing, these regions encode or modulate emotional, motivational and sensory responses to stress. Thus, pain and stress pathways in the brain intersect at cortical and subcortical forebrain structures. Accordingly, previous work has shown that acute restraint stress in female rats induces heat hyperalgesia in a forebrain-dependent operant test of thermal escape. In the present study, we investigated the effects of social defeat stress in male rats on the operant escape task, as well as in a test of nociceptive thermal preference. After establishing baseline behaviors in these tests, separate groups of rats were socially defeated by dominant "resident" male rats. They were tested for thermal preference after 5 successive social defeat sessions. Escape from cold, heat and a neutral warm temperature also was evaluated after social defeat. Defeated rats exhibited a significant increase in cold preference after social defeat compared to the baseline. In the escape task, the rats exhibited increased escape from warm and nociceptive cold and heat temperatures. Thus, chronic social stress produces hyperalgesia for both hot and cold stimuli in male rats, suggesting a mutually facilitatory cross-regulation between central pathways regulating stress and pain. PMID:19059227

  16. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    NASA Astrophysics Data System (ADS)

    Skov, Daniel S.; Egholm, David L.

    2016-04-01

    Surface erosion and sediment production seem to have accelerated globally as climate cooled in the Late Cenozoic, [Molnar, P. 2004, Herman et al 2013]. Glaciers emerged in many high mountain ranges during the Quaternary, and glaciation therefore represents a likely explanation for faster erosion in such places. Still, observations and measurements point to increases in erosion rates also in landscapes where erosion is driven mainly by fluvial processes [Lease and Ehlers (2013), Reusser (2004)]. Flume experiments and fieldwork have shown that rates of incision are to a large degree controlled by the sediment load of streams [e.g. Sklar and Dietrich (2001), Beer and Turowski (2015)]. This realization led to the formulation of sediment-flux dependent incision models [Sklar and Dietrich (2004)]. The sediment-flux dependence links incision in the channels to hillslope processes that supply sediment to the channels. The rates of weathering and soil transport on the hillslopes are processes that are likely to respond to changing temperatures, e.g. because of vegetation changes or the occurrence of frost. In this study, we perform computational landscape evolution experiments, where the coupling between fluvial incision and hillslope processes is accounted for by coupling a sediment-flux-dependent model for fluvial incision to a climate-dependent model for weathering and hillslope sediment transport. The computational experiments first of all demonstrate a strong positive feedback between channel and hillslope processes. In general, faster weathering leads to higher rates of channel incision, which further increases the weathering rates, mainly because of hillslope steepening. Slower weathering leads to the opposite result. The experiments also demonstrate, however, that the feedbacks vary significantly between different parts of a drainage network. For example, increasing hillslope sediment production may accelerate incision in the upper parts of the catchment, while at

  17. Should processed or raw image data be used in mammographic image quality analyses? A comparative study of three full-field digital mammography systems.

    PubMed

    Borg, Mark; Badr, Ishmail; Royle, Gary

    2015-01-01

    The purpose of this study is to compare a number of measured image quality parameters using processed and unprocessed or raw images in two full-field direct digital units and one computed radiography mammography system. This study shows that the difference between raw and processed image data is system specific. The results have shown that there are no significant differences between raw and processed data in the mean threshold contrast values using the contrast-detail mammography phantom in all the systems investigated; however, these results cannot be generalised to all available systems. Notable differences were noted in contrast-to-noise ratios and in other tests including: response function, modulation transfer function , noise equivalent quanta, normalised noise power spectra and detective quantum efficiency as specified in IEC 62220-1-2. Consequently, the authors strongly recommend the use of raw data for all image quality analyses in digital mammography.

  18. Abscisic acid and CO2 signalling via calcium sensitivity priming in guard cells, new CDPK mutant phenotypes and a method for improved resolution of stomatal stimulus–response analyses

    PubMed Central

    Hubbard, Katharine E.; Siegel, Robert S.; Valerio, Gabriel; Brandt, Benjamin; Schroeder, Julian I.

    2012-01-01

    Background Stomatal guard cells are the regulators of gas exchange between plants and the atmosphere. Ca2+-dependent and Ca2+-independent mechanisms function in these responses. Key stomatal regulation mechanisms, including plasma membrane and vacuolar ion channels have been identified and are regulated by the free cytosolic Ca2+ concentration ([Ca2+]cyt). Scope Here we show that CO2-induced stomatal closing is strongly impaired under conditions that prevent intracellular Ca2+ elevations. Moreover, Ca2+ oscillation-induced stomatal closing is partially impaired in knock-out mutations in several guard cell-expressed Ca2+-dependent protein kinases (CDPKs) here, including the cpk4cpk11 double and cpk10 mutants; however, abscisic acid-regulated stomatal movements remain relatively intact in the cpk4cpk11 and cpk10 mutants. We further discuss diverse studies of Ca2+ signalling in guard cells, discuss apparent peculiarities, and pose novel open questions. The recently proposed Ca2+ sensitivity priming model could account for many of the findings in the field. Recent research shows that the stomatal closing stimuli abscisic acid and CO2 enhance the sensitivity of stomatal closing mechanisms to intracellular Ca2+, which has been termed ‘calcium sensitivity priming’. The genome of the reference plant Arabidopsis thaliana encodes for over 250 Ca2+-sensing proteins, giving rise to the question, how can specificity in Ca2+ responses be achieved? Calcium sensitivity priming could provide a key mechanism contributing to specificity in eukaryotic Ca2+ signal transduction, a topic of central interest in cell signalling research. In this article we further propose an individual stomatal tracking method for improved analyses of stimulus-regulated stomatal movements in Arabidopsis guard cells that reduces noise and increases fidelity in stimulus-regulated stomatal aperture responses ( Box 1). This method is recommended for stomatal response research, in parallel to previously

  19. The sensitivity of the time-temperature shift process to thermal variations—A note

    NASA Astrophysics Data System (ADS)

    Knauss, W. G.

    2008-06-01

    Because of the highly nonlinear relation between time-shift and temperature it is generally not admissible to assume that the appropriate temperature for the shifting process equals the average temperature during the measurement interval. It is shown here that temperature variations around a mean can produce shifts that can be significantly larger than the mean temperature would indicate. Alternatively this paper can aid in providing numerical estimates that indicate for what range of thermal variations acceptable engineering data may be acquired. As a guide one finds that a one degree centigrade variation (±0.5°C) around a mean value limits the shift factor error to less than 4%, which translates into a misrepresentation of two weeks out of a year.

  20. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    NASA Astrophysics Data System (ADS)

    Skov, Daniel; Egholm, David

    2015-04-01

    Surface erosion and sediment production accelerated dramatically in most parts of the world as the climate cooled in the Late Cenozoic, (e.g. Molnar, Annu. Rev. Earth Planet. Sci. 32, 2004). In many high mountain ranges, glaciers emerged for the first time during the Quaternary, and they represent a likely explanation for the accelerated erosion in such places. Still, observations and measurements point to increases in erosion rate also in landscapes where erosion is driven mainly by fluvial processes (e.g. Lease and Ehlers, Science 341, 2013). Why fluvial incision responds to climate change remains enigmatic, in particular because the obvious links to variations in precipitation, and hence water flux, are not generally supported by erosion rate measures (Stock et al., GSA Bulletin 117, 2005). This study explores potential links between accelerating rates of river incision and sediment production on hillslopes that surround the channel network. Hillslope soil production and soil transport are processes that are likely to respond to decreasing temperatures, because the density of vegetation and for example the occurrence of frost influence rates of weathering and sediment flow. We perform computational landscape evolution experiments where a sediment-flux-dependent model for fluvial incision (e.g. Sklar and Dietrich, Geology 29, 2001) is coupled to models for sediment production and transport on hillslopes. The resulting coupled landscape dynamics is of a highly nonlinear nature, where even small changes in hillslope sediment production far up in a drainage network propagate all the way through the downstream fluvial system. Dependent on the total sediment load, the fluvial system may respond with increased incision that steepens the hillslopes and starts a positive feedback loop that accelerates overall erosion.

  1. Antibiotic sensitivity and sequence amplification patterns of genes in multidrug resistant enterobacteria isolates from processed foods in some West African countries.

    PubMed

    Owoseni, Abimbola Adetokunboh; Onilude, Abiodun Anthony

    2011-01-01

    Diarrhoea, dysentery and other diseases due to other enteric bacteria have reportedly been found to resist chemotherapeutic treatment in some West African communities with fatal consequences in some cases. This study was carried out to determine multidrug resistance patterns of Enterobacteria isolates from processed ready-to-eat foods. Indigenously processed food samples of different types were collected from two Francophone and two Anglophone countries in the West African sub-region during the wet and dry seasons of a sampling period of two years. Enterobacteria were isolated from the samples using standard techniques. Amplification of chromosomal DNA of the isolates using the Polymerase Chain Reaction was carried out. The results obtained were subjected to statistical analyses. All isolates showed resistance to cefuroxime (90.7%), nitrofurantoin (90.6%), augmentin (86.1%) and ampicillin (51.2%) while all were sensitive to gentamycin and ciprofloxacin. There was amplification indicating the presence of invA gene at a position of 240 bp. There was no amplification at all for the spvC gene in any of the isolates tested. Multidrug resistant enteric bacteria in these foods containing the invA gene could lead to infections with uncontrolled antibiotic use. The presence of enteric bacteria in the foods analyzed which provide undeniable evidence of the poor microbiological quality of these foods could form the basis of a useful databank in formulation of food-borne disease control and prevention strategies.

  2. Wheat-based foods and non celiac gluten/wheat sensitivity: Is drastic processing the main key issue?

    PubMed

    Fardet, Anthony

    2015-12-01

    While gluten and wheat must be absolutely avoided in coeliac disease and allergy, respectively, nutritional recommendations are largely more confused about non-coeliac wheat/gluten sensitivity (NCWGS). Today, some even recommend avoiding all cereal-based foods. In this paper, the increased NCWGS prevalence is hypothesized to parallel the use of more and more drastic processes applied to the original wheat grain. First, a parallel between gluten-related disorders and wheat processing and consumption evolution is briefly proposed. Notably, increased use of exogenous vital gluten is considered. Drastic processing in wheat technology are mainly grain fractionation and refining followed by recombination and salt, sugars and fats addition, being able to render ultra-processed cereal-based foods more prone to trigger chronic low-grade inflammation. Concerning bread, intensive kneading and the choice of wheat varieties with high baking quality may have rendered gluten less digestible, moving digestion from pancreatic to intestinal proteases. The hypothesis of a gluten resistant fraction reaching colon and interacting with microflora is also considered in relation with increased inflammation. Besides, wheat flour refining removes fiber co-passenger which have potential anti-inflammatory property able to protect digestive epithelium. Finally, some research tracks are proposed, notably the comparison of NCWGS prevalence in populations consuming ultra-versus minimally-processed cereal-based foods.

  3. Processive ATP-driven Substrate Disassembly by the N-Ethylmaleimide-sensitive Factor (NSF) Molecular Machine*♦

    PubMed Central

    Cipriano, Daniel J.; Jung, Jaemyeong; Vivona, Sandro; Fenn, Timothy D.; Brunger, Axel T.; Bryant, Zev

    2013-01-01

    SNARE proteins promote membrane fusion by forming a four-stranded parallel helical bundle that brings the membranes into close proximity. Post-fusion, the complex is disassembled by an AAA+ ATPase called N-ethylmaleimide-sensitive factor (NSF). We present evidence that NSF uses a processive unwinding mechanism to disassemble SNARE proteins. Using a real-time disassembly assay based on fluorescence dequenching, we correlate NSF-driven disassembly rates with the SNARE-activated ATPase activity of NSF. Neuronal SNAREs activate the ATPase rate of NSF by ∼26-fold. One SNARE complex takes an average of ∼5 s to disassemble in a process that consumes ∼50 ATP. Investigations of substrate requirements show that NSF is capable of disassembling a truncated SNARE substrate consisting of only the core SNARE domain, but not an unrelated four-stranded coiled-coil. NSF can also disassemble an engineered double-length SNARE complex, suggesting a processive unwinding mechanism. We further investigated processivity using single-turnover experiments, which show that SNAREs can be unwound in a single encounter with NSF. We propose a processive helicase-like mechanism for NSF in which ∼1 residue is unwound for every hydrolyzed ATP molecule. PMID:23775070

  4. Reproducing Kernel Particle Method in Plasticity of Pressure-Sensitive Material with Reference to Powder Forming Process

    NASA Astrophysics Data System (ADS)

    Khoei, A. R.; Samimi, M.; Azami, A. R.

    2007-02-01

    In this paper, an application of the reproducing kernel particle method (RKPM) is presented in plasticity behavior of pressure-sensitive material. The RKPM technique is implemented in large deformation analysis of powder compaction process. The RKPM shape function and its derivatives are constructed by imposing the consistency conditions. The essential boundary conditions are enforced by the use of the penalty approach. The support of the RKPM shape function covers the same set of particles during powder compaction, hence no instability is encountered in the large deformation computation. A double-surface plasticity model is developed in numerical simulation of pressure-sensitive material. The plasticity model includes a failure surface and an elliptical cap, which closes the open space between the failure surface and hydrostatic axis. The moving cap expands in the stress space according to a specified hardening rule. The cap model is presented within the framework of large deformation RKPM analysis in order to predict the non-uniform relative density distribution during powder die pressing. Numerical computations are performed to demonstrate the applicability of the algorithm in modeling of powder forming processes and the results are compared to those obtained from finite element simulation to demonstrate the accuracy of the proposed model.

  5. Integrated Process Monitoring based on Systems of Sensors for Enhanced Nuclear Safeguards Sensitivity and Robustness

    SciTech Connect

    Humberto E. Garcia

    2014-07-01

    This paper illustrates safeguards benefits that process monitoring (PM) can have as a diversion deterrent and as a complementary safeguards measure to nuclear material accountancy (NMA). In order to infer the possible existence of proliferation-driven activities, the objective of NMA-based methods is often to statistically evaluate materials unaccounted for (MUF) computed by solving a given mass balance equation related to a material balance area (MBA) at every material balance period (MBP), a particular objective for a PM-based approach may be to statistically infer and evaluate anomalies unaccounted for (AUF) that may have occurred within a MBP. Although possibly being indicative of proliferation-driven activities, the detection and tracking of anomaly patterns is not trivial because some executed events may be unobservable or unreliably observed as others. The proposed similarity between NMA- and PM-based approaches is important as performance metrics utilized for evaluating NMA-based methods, such as detection probability (DP) and false alarm probability (FAP), can also be applied for assessing PM-based safeguards solutions. To this end, AUF count estimates can be translated into significant quantity (SQ) equivalents that may have been diverted within a given MBP. A diversion alarm is reported if this mass estimate is greater than or equal to the selected value for alarm level (AL), appropriately chosen to optimize DP and FAP based on the particular characteristics of the monitored MBA, the sensors utilized, and the data processing method employed for integrating and analyzing collected measurements. To illustrate the application of the proposed PM approach, a protracted diversion of Pu in a waste stream was selected based on incomplete fuel dissolution in a dissolver unit operation, as this diversion scenario is considered to be problematic for detection using NMA-based methods alone. Results demonstrate benefits of conducting PM under a system

  6. Sensitivity Analysis of Coupled Groundwater Processes within a Land Surface Model

    SciTech Connect

    Maxwell, R M; Miller, N L; Kollet, S J

    2004-05-05

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budgets that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, models for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM2.0) and a variably-saturated groundwater model (ParFlow) have been coupled as single model, in single-column and distributed form. An initial set of single column simulations based on data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) and synthetic data demonstrate the temporal dynamics of both of the coupled models. A 15-year single-column simulation using the data from the Usadievskiy catchment in Valdai, Russia demonstrate the coupled model's ability to accurately predict the soil moisture profile and location of the water table, in addition to water and energy balance within the watershed. The distributed coupled model will also be demonstrated using a series of spatially variable subsurface parameter runs, which will be used to investigate upscaling in land-surface models. The coupled model will ultimately be used to assist

  7. Process based model sheds light on climate sensitivity of Mediterranean tree-ring width

    NASA Astrophysics Data System (ADS)

    Touchan, R.; Shishov, V. V.; Meko, D. M.; Nouiri, I.; Grachev, A.

    2012-03-01

    We use the process-based VS (Vaganov-Shashkin) model to investigate whether a regional Pinus halepensis tree-ring chronology from Tunisia can be simulated as a function of climate alone by employing a biological model linking day length and daily temperature and precipitation (AD 1959-2004) from a climate station to ring-width variations. We check performance of the model on independent data by a validation exercise in which the model's parameters are tuned using data for 1982-2004 and the model is applied to generate tree-ring indices for 1959-1981. The validation exercise yields a highly significant positive correlation between the residual chronology and estimated growth curve (r=0.76 p<0.0001, n=23). The model shows that the average duration of the growing season is 191 days, with considerable variation from year to year. On average, soil moisture limits tree-ring growth for 128 days and temperature for 63 days. Model results depend on chosen values of parameters, in particular a parameter specifying a balance ratio between soil moisture and precipitation. Future work in the Mediterranean region should include multi-year natural experiments to verify patterns of cambial-growth variation suggested by the VS model.

  8. Plasma process for development of a bulk heterojunction optoelectronic device: A highly sensitive UV detector

    NASA Astrophysics Data System (ADS)

    Sharma, Shyamalima; Pal, Arup R.; Chutia, Joyanti; Bailung, Heremba; Sarma, Neelotpal S.; Dass, Narendra N.; Patil, Dinkar

    2012-08-01

    Deposition of composite thin film of polyaniline/TiO2 (PAni/TiO2) has been carried out by a combined process of magnetron sputtering and plasma polymerization at a pressure of 5 × 10-2 Torr using titanium as a target material for sputtering, aniline as monomer, oxygen as reactive gas and argon as carrier gas/ion source for sputtering. The deposition has been achieved using direct current (dc) discharge power of 35 W for sputtering and radio frequency (rf) power of 8-12 W at substrate bias values in the ranges of -80 to -100 V for polymerization. The composition of the film has been studied using infrared spectroscopy, Raman spectroscopy as well as X-ray photoelectron spectroscopy. The morphology of the film has been characterized with the help of a transmission electron microscopy and atomic force microscopy. The ultraviolet (UV) photo-stability of the composite film has been studied by exposing the film deposited on silicon substrate for different reaction times up to 1 h under UV radiation at wave length range of 280-400 nm with an intensity of 0.4 mW/cm2. An organic/inorganic nanocomposite film based photovoltaic device has been developed. The device has an aluminum/composite/indium tin oxide sandwiched structure that shows strong photoresponse in ultraviolet region and hence the device has potential for application as an UV detector.

  9. Effect of chronic ozone fumigation on the photosynthetic process of poplar clones showing different sensitivity.

    PubMed

    Guidi, L; Nali, C; Lorenzini, G; Filippi, F; Soldatini, G F

    2001-01-01

    Rooted cuttings from two poplar clones (Populus x euramericana, I-214, and Populus deltoides x maximowiczii, Eridano) were exposed for 15 days to diurnal square-wave treatment with ozone (60 nL L-1 for 5 h day-1). Completely fully expanded leaves exposed to ozone showed a reduction in net CO2 assimilation rate as compared to the control leaves during whole exposure period in both the clones. The reduction was related to a strong stomatal closure in clone I-214, but also to an altered mesophyll activity ascribed to limitation of the dark reactions of photosynthetic process. The results obtained in leaves of I-214 subjected to long-term fumigation seem to support the view that the decrease in quantum yield of electron transport may be a mechanism to down-regulate photosynthetic electron transport so that production of ATP and NADPH would be in equilibrium with the decreased demand in the Calvin cycle. In Eridano the CO2 assimilation was reduced because of the exposure and any alteration in stomatal conductance was observed. Thus, chlorophyll fluorescence parameters showed that an inhibition of photosystem II had occurred (reduction in Fv/Fm ratio), while no alterations in quenching parameters were observed upon illumination. The results seem to indicate that an alternative sink for reducing equivalent, other than carbon metabolism is present.

  10. Immunoassays in a porous silicon interferometric biosensor combined with sensitive signal processing

    NASA Astrophysics Data System (ADS)

    Tinsley-Bown, A.; Smith, R. G.; Hayward, S.; Anderson, M. H.; Koker, L.; Green, A.; Torrens, R.; Wilkinson, A.-S.; Perkins, E. A.; Squirrell, D. J.; Nicklin, S.; Hutchinson, A.; Simons, A. J.; Cox, T. I.

    2005-06-01

    Orthogonal subspace signal processing algorithms (OSPA) have been developed to extract the optical thickness of a porous silicon layer to within one part in 105 from its reflectivity spectrum. This is equivalent to a limit of detection (LOD) of 40 pm change in optical thickness for a 3 μm thick layer, or an LOD of 1/2000 of a monolayer coverage with antibodies, of molecular weight 160 k Daltons, within a layer with pores of 100 nm diameter. A large molecule {horseradish peroxidase (HRP), MWt 40 kDa} has been detected at a concentration of 1 μg/ml by measuring its direct binding to anti-HRP antibodies immobilised within a porous silicon layer. A competitive assay has been demonstrated for the detection of a small molecule {2, 4, 6 trinitrotoluene (TNT), MWt 227 Da} at 10 μg/ml. The projected LODs for HRP and TNT by these assays are 50 ng/ml and 1 μg/ml respectively.

  11. Analyses of requirements for computer control and data processing experiment subsystems: Image data processing system (IDAPS) software description (7094 version), volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A description of each of the software modules of the Image Data Processing System (IDAPS) is presented. The changes in the software modules are the result of additions to the application software of the system and an upgrade of the IBM 7094 Mod(1) computer to a 1301 disk storage configuration. Necessary information about IDAPS sofware is supplied to the computer programmer who desires to make changes in the software system or who desires to use portions of the software outside of the IDAPS system. Each software module is documented with: module name, purpose, usage, common block(s) description, method (algorithm of subroutine) flow diagram (if needed), subroutines called, and storage requirements.

  12. Sociopolitical Analyses.

    ERIC Educational Resources Information Center

    Van Galen, Jane, Ed.; And Others

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains four articles devoted to the topic of "Sociopolitical Analyses." In "An Interview with Peter L. McLaren," Mary Leach presented the views of Peter L. McLaren on topics of local and national discourses, values, and the politics of difference. Landon E. Beyer's "Educational Studies and…

  13. Numerical investigation of sensitivity of the Black Sea mixed layer to vertical turbulent diffusion processes

    NASA Astrophysics Data System (ADS)

    Kvaratskhelia, Diana; Demetrashvili, Demuri

    2015-04-01

    The upper mixed-layer of seas and oceans is one of the important water areas, the thermodynamic state of which defines many important physical, chemical or biological processes in the sea- atmosphere environment. The same can be note concerning the Black Sea turbulent mixed layer, which represents the object of our investigation. It is well known that the depth of the mixed layer is generaly determined by measurements of water properties: temperature and sigma-t (density) but here the depth of the mixed layer and its variability are investigated by using of the basin-scale numerical model of the Black Sea dynamics of M. Nodia Institute of Geophysics (BSM-IG, Tbilisi, Georgia). The main object of this study is to investigate the Black Sea upper mixed-layer generation and its evolution in connection with the nonstationarity atmospheric circulation and thermohaline action in the inner-annual time scale. Besides, how the temperature and salinity fields of the Black Sea upper layer are substantially reacted by the vertical diffusion coefficient are the centre of our attention. Therefore, the coefficient of vertical turbulent diffusion for heat and salt are tested as constant equal to 10 cm2s-1 and it was parameterized by modified Oboukhov's formula. The results of the numerical investigations show that: in wintertime for any choosing of this vertical diffusion coefficient the intense wind-driven turbulence promotes mixing aproximetly till 16-26 m in deep layers of the Black Sea. Except for that, cold fluxes through the surface and precipitation-evapuration system play aditionally role on the mixed layer forming as well. During the transitive spring season (in difference from the cold season), when the depth of the mixed layer is aproxometly 2-4 m., the role of vertical turbulent viscosity insignificantly grows. In the warm season (summer), when the mixed layer does not observe in the upper layer of the Black Sea, the role of the vertical diffusion coefficient is more

  14. New particle-dependent parameterizations of heterogeneous freezing processes: sensitivity studies of convective clouds with an air parcel model

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Mitra, S. K.

    2015-11-01

    Based on the outcome of laboratory results, new particle-dependent parameterizations of heterogeneous freezing were derived and used to improve and extend a two-dimensional spectral microphysics scheme. They include (1) a particle-type-dependent parameterization of immersion freezing using the numbers of active sites per mass, (2) a particle-type and size-resolved parameterization of contact freezing, and (3) a particle-type-dependent description of deposition freezing. The modified microphysical scheme was embedded in an adiabatic air parcel model with entrainment. Sensitivity studies were performed to simulate convective situations and to investigate the impact of ice nuclei concentrations and types on ice formation. As a central diagnostic parameter, the ice water fraction (IWF) was selected, which is the relation of the ice water content to the total amount of water in the condensed form. The following parameters were varied: initial aerosol particle number size distributions, types of ice nucleating particles, final temperature, and the fractions of potential ice nucleating particles. Single and coupled freezing processes were investigated. The results show that immersion freezing seems to be the most efficient process. Contact freezing is constrained by the collision kernel between supercooled drops and potential ice nucleating particles. The importance of deposition freezing lies in secondary ice formation; i.e., small ice particles produced by deposition nucleation trigger the freezing of supercooled drops by collisions. Thus, a broader ice particle spectrum is generated than that by immersion and contact freezing. During coupled immersion-contact and contact-deposition freezing no competition was observed, and both processes contribute to cloud ice formation but do not impede each other. As already suggested in the literature, mineral dust particles seem to be the most important ice nucleating particles. Biological particles are probably not involved in

  15. Synergies between geomorphic hazard and risk and sediment cascade research fields: exploiting geomorphic processes' susceptibility analyses to derive potential sediment sources in the Oltet, river catchment, southern Romania

    NASA Astrophysics Data System (ADS)

    Jurchescu, Marta-Cristina

    2015-04-01

    Identifying sediment sources and sediment availability represents a major problem and one of the first concerns in the field of sediment cascade. This paper addresses the on-site effects associated with sediment transfer, investigating the degree to which studies pertaining to the field of geomorphic hazard and risk research could be exploited in sediment budget estimations. More precisely, the paper investigates whether results obtained in assessing susceptibility to various geomorphic processes (landslides, soil erosion, gully erosion) could be transferred to the study of sediment sources within a basin. The study area is a medium-sized catchment (> 2400 km2) in southern Romania encompassing four different geomorphic units (mountains, hills, piedmont and plain). The region is highly affected by a wide range of geomorphic processes which supply sediments to the drainage network. The presence of a reservoir at the river outlet emphasizes the importance of estimating sediment budgets. The susceptibility analyses are conducted separately for each type of the considered processes in a top-down framework, i.e. at two different scales, using scale-adapted methods and validation techniques in each case, as widely-recognized in the hazard and risk research literature. The analyses start at a regional scale, which has in view the entire catchment, using readily available data on conditioning factors. In a second step, the suceptibility analyses are carried out at a medium scale for selected hotspot-compartments of the catchment. In order to appraise the extent to which susceptibility results are relevant in interpreting sediment sources at catchment scale, scale-induced differences are analysed in the case of each process. Based on the amount of uncertainty revealed by each regional-scale analysis in comparison to the medium-scale ones, decisions are made on whether the first are acceptable to the aim of identifying potential sediment source areas or if they should be

  16. Somatosensory processing and schizophrenia liability: proprioception, exteroceptive sensitivity, and graphesthesia performance in the biological relatives of schizophrenia patients.

    PubMed

    Chang, Bernard P; Lenzenweger, Mark F

    2005-02-01

    In the present study, the authors examined somatosensory processing in 30 biological relatives of persons with schizophrenia (hereafter called "schizophrenia relatives"), 30 biological relatives of persons with bipolar affective disorder (psychiatric family control subjects), and 30 healthy control subjects with no family history of psychopathology. All 3 groups completed a weight discrimination task, a 2-point discrimination task, and a complex cognitive somatosensory task (i.e., graphesthesia). The schizophrenia relatives performed significantly worse on all 3 somatosensory tasks compared with both the healthy control subjects and the bipolar relatives. The healthy control subjects and psychiatric family control subjects showed no significant differences on any of the somatosensory tasks. Within the weight discrimination and 2-point discrimination tasks, schizophrenia relatives showed group differences on the d' index, the measure of sensitivity, whereas all 3 groups did not differ on lnbeta, the measure of response bias, suggesting a genuine difference in weight and touch sensitivity. The d' value of the weight discrimination task was significantly associated with both the cognitive-perceptual factor and negative symptom factor of the clinical questionnaire (e.g., Schizotypal Personality Questionnaire; SPQ), whereas the 2-point discrimination d' value and graphesthesia scores were significantly associated only with the cognitive-perceptual factor of the SPQ. Implications for the possible relation between somatosensory task performance and schizophrenia liability are discussed.

  17. Tropical Convective Responses to Microphysical and Radiative Processes: A Sensitivity Study With a 2D Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.

    2004-01-01

    Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.

  18. Analyses of Alternatively Processed Genes in Ciliates Provide Insights into the Origins of Scrambled Genomes and May Provide a Mechanism for Speciation

    PubMed Central

    Gao, Feng; Roy, Scott W.

    2015-01-01

    ABSTRACT  Chromosome rearrangements occur in a variety of eukaryotic life cycles, including during the development of the somatic macronuclear genome in ciliates. Previous work on the phyllopharyngean ciliate Chilodonella uncinata revealed that macronuclear β-tubulin and protein kinase gene families share alternatively processed germ line segments nested within divergent regions. To study genome evolution in this ciliate further, we characterized two additional alternatively processed gene families from two cryptic species of the ciliate morphospecies C. uncinata: those encoding histidine acid phosphatase protein (Hap) and leishmanolysin family protein (Lei). Analyses of the macronuclear Hap and Lei sequences reveal that each gene family consists of three members in the macronucleus that are marked by identical regions nested among highly divergent regions. Investigation of the micronuclear Hap sequences revealed a complex pattern in which the three macronuclear sequences are derived either from a single micronuclear region or from a combination of this shared region recombined with additional duplicate micronuclear copies of Hap. We propose a model whereby gene scrambling evolves by gene duplication followed by partial and reciprocal degradation of the duplicate sequences. In this model, alternative processing represents an intermediate step in the evolution of scrambled genes. Finally, we speculate on the possible role of genome architecture in speciation in ciliates by describing what might happen if changes in alternatively processed loci occur in subdivided populations. PMID:25650397

  19. Lidar Analyses

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1995-01-01

    A brief description of enhancements made to the NASA MSFC coherent lidar model is provided. Notable improvements are the addition of routines to automatically determine the 3 dB misalignment loss angle and the backscatter value at which the probability of a good estimate (for a maximum likelihood estimator) falls to 50%. The ability to automatically generate energy/aperture parametrization (EAP) plots which include the effects of angular misalignment has been added. These EAP plots make it very easy to see that for any practical system where there is some degree of misalignment then there is an optimum telescope diameter for which the laser pulse energy required to achieve a particular sensitivity is minimized. Increasing the telescope diameter above this will result in a reduction of sensitivity. These parameterizations also clearly show that the alignment tolerances at shorter wavelengths are much stricter than those at longer wavelengths. A brief outline of the NASA MSFC AEOLUS program is given and a summary of the lidar designs considered during the program is presented. A discussion of some of the design trades is performed both in the text and in a conference publication attached as an appendix.

  20. Sensitivity Analysis Using Risk Measures.

    PubMed

    Tsanakas, Andreas; Millossovich, Pietro

    2016-01-01

    In a quantitative model with uncertain inputs, the uncertainty of the output can be summarized by a risk measure. We propose a sensitivity analysis method based on derivatives of the output risk measure, in the direction of model inputs. This produces a global sensitivity measure, explicitly linking sensitivity and uncertainty analyses. We focus on the case of distortion risk measures, defined as weighted averages of output percentiles, and prove a representation of the sensitivity measure that can be evaluated on a Monte Carlo sample, as a weighted average of gradients over the input space. When the analytical model is unknown or hard to work with, nonparametric techniques are used for gradient estimation. This process is demonstrated through the example of a nonlinear insurance loss model. Furthermore, the proposed framework is extended in order to measure sensitivity to constant model parameters, uncertain statistical parameters, and random factors driving dependence between model inputs.

  1. Constraints on Martian Differentiation Processes from Rb-Sr and Sm-Nd Isotopic Analyses of the Basaltic Shergottite QUE 94201

    NASA Technical Reports Server (NTRS)

    Borg, Lars E.; Nyquist, Larry E.; Taylor, Larry A.; Wiesmann, Henry; Shih, Chi-Y.

    1997-01-01

    Isotopic analyses of mineral, leachate, and whole rock fractions from the Martian shergottite meteorite QUE 94201 yield Rb-Sr and Sm-Nd crystallization ages of 327 +/- 12 and 327 +/- 19 Ma, respectively. These ages are concordant, although the isochrons are defined by different fractions within the meteorite. Comparison of isotope dilution Sm and Nd data for the various QUE 94201 fractions with in situ ion microprobe data for QUE 94201 minerals from the literature demonstrate the presence of a leachable crustal component in the meteorite. This component is likely to have been added to QUE 94201 by secondary alteration processes on Mars, and can affect the isochrons by selectively altering the isotopic systematics of the leachates and some of the mineral fractions. The absence of crustal recycling processes on Mars may preserve the geochemical evidence for early differentiation and the decoupling of the Rb-Sr and Sm-Nd isotopic systems, underscoring one of the fundamental differences between geologic processes on Mars and the Earth.

  2. On conditions and parameters important to model sensitivity for unsaturated flow through layered, fractured tuff; Results of analyses for HYDROCOIN [Hydrologic Code Intercomparison Project] Level 3 Case 2: Yucca Mountain Project

    SciTech Connect

    Prindle, R.W.; Hopkins, P.L.

    1990-10-01

    The Hydrologic Code Intercomparison Project (HYDROCOIN) was formed to evaluate hydrogeologic models and computer codes and their use in performance assessment for high-level radioactive-waste repositories. This report describes the results of a study for HYDROCOIN of model sensitivity for isothermal, unsaturated flow through layered, fractured tuffs. We investigated both the types of flow behavior that dominate the performance measures and the conditions and model parameters that control flow behavior. We also examined the effect of different conceptual models and modeling approaches on our understanding of system behavior. The analyses included single- and multiple-parameter variations about base cases in one-dimensional steady and transient flow and in two-dimensional steady flow. The flow behavior is complex even for the highly simplified and constrained system modeled here. The response of the performance measures is both nonlinear and nonmonotonic. System behavior is dominated by abrupt transitions from matrix to fracture flow and by lateral diversion of flow. The observed behaviors are strongly influenced by the imposed boundary conditions and model constraints. Applied flux plays a critical role in determining the flow type but interacts strongly with the composite-conductivity curves of individual hydrologic units and with the stratigraphy. One-dimensional modeling yields conservative estimates of distributions of groundwater travel time only under very limited conditions. This study demonstrates that it is wrong to equate the shortest possible water-travel path with the fastest path from the repository to the water table. 20 refs., 234 figs., 10 tabs.

  3. Numerical Simulations of TRMM LBA, TOGA, COARE, GATE, ARM and PRESTORM Convective Systems: Sensitivity tests on Microphysical Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Lang, S.; Ferrier, B.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The 3D Goddard Cumulus Ensemble (GCE) model was utilized to examine the behavior and response of simulated deep tropical cloud systems that occurred over the west Pacific warm pool region, the Atlantic ocean and the central United States. The periods chosen for simulation were convectively active periods during TOGA-COARE (February 22 1993, December 11-17, 1992; December 19-28, February 9-13, 1993), GATE (September 4, 1974), LBA (January 26 and February 23, 1998), ARM (1997 IOP) and PRESTORM (June 11, 1985). We will examine differences in the microphysics for both warm rain and ice processes (evaporation /sublimation and condensation/ deposition), Q1 (Temperature), Q2 (Water vapor) and Q3 (momentum both U and V) budgets for these three convective events from different large-scale environments. The contribution of stratiform precipitation and its relationship to the vertical shear of the large-scale horizontal wind will also be examined. New improvements to the GCE model (i.e., microphysics: 4ICE two moments and 3ICE one moment; advection schemes) as well as their sensitivity to the model results will be discussed. Preliminary results indicated that various microphysical schemes could have a major impact on stratiform formation as well as the size of convective systems. However, they do not change the major characteristics of the convective systems, such as: arc shape, strong rotational circulation on both ends of system, heavy precipitation along the leading edge of systems.

  4. A novel route to prepare pH- and temperature-sensitive nanogels via a semibatch process.

    PubMed

    Zhang, Qingsong; Zha, Liusheng; Ma, Jinghong; Liang, Borun

    2009-02-15

    A novel method via a semibatch process in the absence of surfactant has been adopted to prepare pH- and temperature-sensitive nanogels. The shape, charge distribution, temperature, and pH-induced volume phase transition behavior of the latexes were investigated by scanning electronic microscopy, zeta potentials, dynamic laser light scattering, and UV/vis spectroscopy. It was found that, in the absence of surfactant, with increasing the amount of AAc from 5 to 20 mol% of N-isopropylacrylamide (NIPAM), the hydrodynamic diameters (D(H)) decrease from 230 to 60 nm. With increasing pH value from 3 to 11, the D(H) values increase slightly, which is different than the dramatic increase seen when using a conventional batch method with a range from 680 to 1700 nm. However, at pH 3, the turbidity curves of these kinds of particles increase dramatically at temperatures between 33 and 37 degrees C, while remaining constant at first and then increasing directly at pH 11. Furthermore, the distribution of carboxylic groups located not only on the interior but also on the exterior of colloidal particles as a result of adoption of the semibatch method, other than simple surface distribution of poly(NIPAM-co-AAc) latexes via the batch method.

  5. Biochemical and physiological processes associated with the differential ozone response in ozone-tolerant and sensitive soybean genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochemical and physiological traits of two soybean [Glycine max (L.) Merr.] genotypes that differ in sensitivity to ozone (O3) were investigated to determine the possible basis for the differential response. Fiskeby III (O3-tolerant) and Mandarin (Ottawa) (O3-sensitive) were grown in a greenhouse ...

  6. Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Hansen, J.

    2007-12-01

    Discussion of climate sensitivity requires careful definition of forcings, feedbacks and response times, indeed, foggy definitions have produced flawed assessments of climate sensitivity. The best information available on climate sensitivity comes from insightful interpretation of the Earth's history aided by quantitative information from climate models and understanding of climate processes. Climate sensitivity is a strong function of time scale, in part because of the nature of climate feedbacks. Unfortunately for humanity, the preponderance of feedbacks on the century time scale appears to be positive. The chief implication is the need for a sharp reversal in the trend of human-made climate forcing, if we are to avoid creating a planet that is dramatically different than the one on which civilization developed.

  7. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains

    NASA Astrophysics Data System (ADS)

    Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P.

    2015-07-01

    the effect of interannual climatic variability on river flow to be inferred. We infer the existence of two subsurface reservoirs. The groundwater reservoir (providing 40 % of annual discharge) recharges in spring and summer and releases slowly during autumn and winter, when it provides the only source for river discharge. A not fully constrained shallow reservoir with very rapid retention times buffers meltwaters during spring and summer. The negative glacier mass balance (-0.6 m w.e. yrprocesses, which are essentially confined to glaciated catchments in late summer, when glacier runoff is the only source of surface runoff. Only this precise constraint of the hydrologic cycle in this complex region allows for unravelling of the surface processes and natural hazards such as floods and landslides as well as water availability in the downstream areas. The proposed conceptual model has a tremendous importance for the understanding of the denudation processes in the region. In the Pamirs, large releases of running water that control erosion intensity are primarily controlled by temperature and the availability of snow and glaciers, thus making the region particularly sensitive to climatic variations.

  8. Combining vibrational biomolecular spectroscopy with chemometric techniques for the study of response and sensitivity of molecular structures/functional groups mainly related to lipid biopolymer to various processing applications.

    PubMed

    Yu, Gloria Qingyu; Yu, Peiqiang

    2015-09-01

    The objectives of this project were to (1) combine vibrational spectroscopy with chemometric multivariate techniques to determine the effect of processing applications on molecular structural changes of lipid biopolymer that mainly related to functional groups in green- and yellow-type Crop Development Centre (CDC) pea varieties [CDC strike (green-type) vs. CDC meadow (yellow-type)] that occurred during various processing applications; (2) relatively quantify the effect of processing applications on the antisymmetric CH3 ("CH3as") and CH2 ("CH2as") (ca. 2960 and 2923 cm(-1), respectively), symmetric CH3 ("CH3s") and CH2 ("CH2s") (ca. 2873 and 2954 cm(-1), respectively) functional groups and carbonyl C=O ester (ca. 1745 cm(-1)) spectral intensities as well as their ratios of antisymmetric CH3 to antisymmetric CH2 (ratio of CH3as to CH2as), ratios of symmetric CH3 to symmetric CH2 (ratio of CH3s to CH2s), and ratios of carbonyl C=O ester peak area to total CH peak area (ratio of C=O ester to CH); and (3) illustrate non-invasive techniques to detect the sensitivity of individual molecular functional group to the various processing applications in the recently developed different types of pea varieties. The hypothesis of this research was that processing applications modified the molecular structure profiles in the processed products as opposed to original unprocessed pea seeds. The results showed that the different processing methods had different impacts on lipid molecular functional groups. Different lipid functional groups had different sensitivity to various heat processing applications. These changes were detected by advanced molecular spectroscopy with chemometric techniques which may be highly related to lipid utilization and availability. The multivariate molecular spectral analyses, cluster analysis, and principal component analysis of original spectra (without spectral parameterization) are unable to fully distinguish the structural differences in the

  9. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; van der Marel, Cees; Koole, Leo H.

    2014-10-01

    Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional "spacers", hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups from amine-treated surfaces. The application of PEI spacer in comparison to HMDA has shown much higher intensity of detection signal in ELISA experiment, indicating better immobilization efficiency and preservation of antibody activity upon attachment to the

  10. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  11. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant.

  12. Determination of {sup 16}O and {sup 18}O sensitivity factors and charge-exchange processes in low-energy ion scattering

    SciTech Connect

    Tellez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Kilner, J. A.; Brongersma, H. H.

    2012-10-08

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He{sup +} scattered by {sup 18}O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for E{sub i} < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for E{sub i} > 2 keV. The ion fractions P{sup +} were determined for Si and O using the characteristic velocity method to quantify the surface density. The {sup 18}O/{sup 16}O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  13. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.

    PubMed

    De Angelis, Filippo

    2014-11-18

    CONSPECTUS: Over the last 2 decades, researchers have invested enormous research effort into hybrid/organic photovoltaics, leading to the recent launch of the first commercial products that use this technology. Dye-sensitized solar cells (DSCs) have shown clear advantages over competing technologies. The top certified efficiency of DSCs exceeds 11%, and the laboratory-cell efficiency is greater than 13%. In 2012, the first reports of high efficiency solid-state DSCs based on organohalide lead perovskites completely revolutionized the field. These materials are used as light absorbers in DSCs and as light-harvesting materials and electron conductors in meso-superstructured and flat heterojunction solar cells and show certified efficiencies that exceed 17%. To effectively compete with conventional photovoltaics, emerging technologies such as DSCs need to achieve higher efficiency and stability, while maintaining low production costs. Many of the advances in the DSC field have relied on the computational design and screening of new materials, with researchers examining material characteristics that can improve device performance or stability. Suitable modeling strategies allow researchers to observe the otherwise inaccessible but crucial heterointerfaces that control the operation of DSCs, offering the opportunity to develop new and more efficient materials and optimize processes. In this Account, we present a unified view of recent computational modeling research examining DSCs, illustrating how the principles and simulation tools used for these systems can also be adapted to study the emerging field of perovskite solar cells. Researchers have widely applied first-principles modeling to the DSC field and, more recently, to perovskite-based solar cells. DFT/TDDFT methods provide the basic framework to describe most of the desired materials and interfacial properties, and Car-Parrinello molecular dynamics allow researchers the further ability to sample local minima and

  14. The Roles of Explicit Information and Grammatical Sensitivity in Processing Instruction: Nominative-Accusative Case Marking and Word Order in German L2

    ERIC Educational Resources Information Center

    VanPatten, Bill; Borst, Stefanie

    2012-01-01

    In this study, we examine explicit information and aptitude within processing instruction. Forty-six learners of German in their third semester of study were divided into two groups: those who received explicit information prior to treatment (+EI) and those who did not (-EI). Participants also took the grammatical sensitivity portion of the Modern…

  15. The Roles of Explicit Information and Grammatical Sensitivity in the Processing of Clitic Direct Object Pronouns and Word Order in Spanish L2

    ERIC Educational Resources Information Center

    VanPatten, Bill; Borst, Stefanie

    2012-01-01

    In the present study, we examine the roles of 1) explicit information about language provided to learners prior to treatment and 2) aptitude (specifically grammatical sensitivity) within Processing Instruction. Forty-two learners of Spanish in their third-semester of study were divided into two groups: those who received explicit information (EI)…

  16. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    NASA Astrophysics Data System (ADS)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  17. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food.

    PubMed

    von Bargen, Christoph; Brockmeyer, Jens; Humpf, Hans-Ulrich

    2014-10-01

    Fraudulent blending of food products with meat from undeclared species is a problem on a global scale, as exemplified by the European horse meat scandal in 2013. Routinely used methods such as ELISA and PCR can suffer from limited sensitivity or specificity when processed food samples are analyzed. In this study, we have developed an optimized method for the detection of horse and pork in different processed food matrices using MRM and MRM(3) detection of species-specific tryptic marker peptides. Identified marker peptides were sufficiently stable to resist thermal processing of different meat products and thus allow the sensitive and specific detection of pork or horse in processed food down to 0.24% in a beef matrix system. In addition, we were able to establish a rapid 2-min extraction protocol for the efficient protein extraction from processed food using high molar urea and thiourea buffers. Together, we present here the specific and sensitive detection of horse and pork meat in different processed food matrices using MRM-based detection of marker peptides. Notably, prefractionation of proteins using 2D-PAGE or off-gel fractionation is not necessary. The presented method is therefore easily applicable in analytical routine laboratories without dedicated proteomics background.

  18. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data

    PubMed Central

    Vale, Claire L; Burdett, Sarah; Rydzewska, Larysa H M; Albiges, Laurence; Clarke, Noel W; Fisher, David; Fizazi, Karim; Gravis, Gwenaelle; James, Nicholas D; Mason, Malcolm D; Parmar, Mahesh K B; Sweeney, Christopher J; Sydes, Matthew R; Tombal, Bertrand; Tierney, Jayne F

    2016-01-01

    docetaxel for men with locally advanced disease (M0). Survival results from three (GETUG-12, RTOG 0521, STAMPEDE) of these trials (2121 [53%] of 3978 men) showed no evidence of a benefit from the addition of docetaxel (HR 0·87 [95% CI 0·69–1·09]; p=0·218), whereas failure-free survival data from four (GETUG-12, RTOG 0521, STAMPEDE, TAX 3501) of these trials (2348 [59%] of 3978 men) showed that docetaxel improved failure-free survival (0·70 [0·61–0·81]; p<0·0001), which translates into a reduced absolute 4-year failure rate of 8% (5–10). We identified seven eligible randomised controlled trials of bisphosphonates for men with M1 disease. Survival results from three of these trials (2740 [88%] of 3109 men) showed that addition of bisphosphonates improved survival (0·88 [0·79–0·98]; p=0·025), which translates to 5% (1–8) absolute improvement, but this result was influenced by the positive result of one trial of sodium clodronate, and we found no evidence of a benefit from the addition of zoledronic acid (0·94 [0·83–1·07]; p=0·323), which translates to an absolute improvement in survival of 2% (−3 to 7). Of 17 trials of bisphosphonates for men with M0 disease, survival results from four trials (4079 [66%] of 6220 men) showed no evidence of benefit from the addition of bisphosphonates (1·03 [0·89–1·18]; p=0·724) or zoledronic acid (0·98 [0·82–1·16]; p=0·782). Failure-free survival definitions were too inconsistent for formal meta-analyses for the bisphosphonate trials. Interpretation The addition of docetaxel to standard of care should be considered standard care for men with M1 hormone-sensitive prostate cancer who are starting treatment for the first time. More evidence on the effects of docetaxel on survival is needed in the M0 disease setting. No evidence exists to suggest that zoledronic acid improves survival in men with

  19. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data

    PubMed Central

    Vale, Claire L; Burdett, Sarah; Rydzewska, Larysa H M; Albiges, Laurence; Clarke, Noel W; Fisher, David; Fizazi, Karim; Gravis, Gwenaelle; James, Nicholas D; Mason, Malcolm D; Parmar, Mahesh K B; Sweeney, Christopher J; Sydes, Matthew R; Tombal, Bertrand; Tierney, Jayne F

    2016-01-01

    docetaxel for men with locally advanced disease (M0). Survival results from three (GETUG-12, RTOG 0521, STAMPEDE) of these trials (2121 [53%] of 3978 men) showed no evidence of a benefit from the addition of docetaxel (HR 0·87 [95% CI 0·69–1·09]; p=0·218), whereas failure-free survival data from four (GETUG-12, RTOG 0521, STAMPEDE, TAX 3501) of these trials (2348 [59%] of 3978 men) showed that docetaxel improved failure-free survival (0·70 [0·61–0·81]; p<0·0001), which translates into a reduced absolute 4-year failure rate of 8% (5–10). We identified seven eligible randomised controlled trials of bisphosphonates for men with M1 disease. Survival results from three of these trials (2740 [88%] of 3109 men) showed that addition of bisphosphonates improved survival (0·88 [0·79–0·98]; p=0·025), which translates to 5% (1–8) absolute improvement, but this result was influenced by the positive result of one trial of sodium clodronate, and we found no evidence of a benefit from the addition of zoledronic acid (0·94 [0·83–1·07]; p=0·323), which translates to an absolute improvement in survival of 2% (−3 to 7). Of 17 trials of bisphosphonates for men with M0 disease, survival results from four trials (4079 [66%] of 6220 men) showed no evidence of benefit from the addition of bisphosphonates (1·03 [0·89–1·18]; p=0·724) or zoledronic acid (0·98 [0·82–1·16]; p=0·782). Failure-free survival definitions were too inconsistent for formal meta-analyses for the bisphosphonate trials. Interpretation The addition of docetaxel to standard of care should be considered standard care for men with M1 hormone-sensitive prostate cancer who are starting treatment for the first time. More evidence on the effects of docetaxel on survival is needed in the M0 disease setting. No evidence exists to suggest that zoledronic acid improves survival in men with M1 or M0 disease, and any potential benefit is probably small. Funding Medical Research Council UK. PMID

  20. The negative affect hypothesis of noise sensitivity.

    PubMed

    Shepherd, Daniel; Heinonen-Guzejev, Marja; Heikkilä, Kauko; Dirks, Kim N; Hautus, Michael J; Welch, David; McBride, David

    2015-05-01

    Some studies indicate that noise sensitivity is explained by negative affect, a dispositional tendency to negatively evaluate situations and the self. Individuals high in such traits may report a greater sensitivity to other sensory stimuli, such as smell, bright light and pain. However, research investigating the relationship between noise sensitivity and sensitivity to stimuli associated with other sensory modalities has not always supported the notion of a common underlying trait, such as negative affect, driving them. Additionally, other explanations of noise sensitivity based on cognitive processes have existed in the clinical literature for over 50 years. Here, we report on secondary analyses of pre-existing laboratory (n = 74) and epidemiological (n = 1005) data focusing on the relationship between noise sensitivity to and annoyance with a variety of olfactory-related stimuli. In the first study a correlational design examined the relationships between noise sensitivity, noise annoyance, and perceptual ratings of 16 odors. The second study sought differences between mean noise and air pollution annoyance scores across noise sensitivity categories. Results from both analyses failed to support the notion that, by itself, negative affectivity explains sensitivity to noise.

  1. The Negative Affect Hypothesis of Noise Sensitivity

    PubMed Central

    Shepherd, Daniel; Heinonen-Guzejev, Marja; Heikkilä, Kauko; Dirks, Kim N.; Hautus, Michael J.; Welch, David; McBride, David

    2015-01-01

    Some studies indicate that noise sensitivity is explained by negative affect, a dispositional tendency to negatively evaluate situations and the self. Individuals high in such traits may report a greater sensitivity to other sensory stimuli, such as smell, bright light and pain. However, research investigating the relationship between noise sensitivity and sensitivity to stimuli associated with other sensory modalities has not always supported the notion of a common underlying trait, such as negative affect, driving them. Additionally, other explanations of noise sensitivity based on cognitive processes have existed in the clinical literature for over 50 years. Here, we report on secondary analyses of pre-existing laboratory (n = 74) and epidemiological (n = 1005) data focusing on the relationship between noise sensitivity to and annoyance with a variety of olfactory-related stimuli. In the first study a correlational design examined the relationships between noise sensitivity, noise annoyance, and perceptual ratings of 16 odors. The second study sought differences between mean noise and air pollution annoyance scores across noise sensitivity categories. Results from both analyses failed to support the notion that, by itself, negative affectivity explains sensitivity to noise. PMID:25993104

  2. Basic auditory processing and sensitivity to prosodic structure in children with specific language impairments: a new look at a perceptual hypothesis

    PubMed Central

    Cumming, Ruth; Wilson, Angela; Goswami, Usha

    2015-01-01

    Children with specific language impairments (SLIs) show impaired perception and production of spoken language, and can also present with motor, auditory, and phonological difficulties. Recent auditory studies have shown impaired sensitivity to amplitude rise time (ART) in children with SLIs, along with non-speech rhythmic timing difficulties. Linguistically, these perceptual impairments should affect sensitivity to speech prosody and syllable stress. Here we used two tasks requiring sensitivity to prosodic structure, the DeeDee task and a stress misperception task, to investigate this hypothesis. We also measured auditory processing of ART, rising pitch and sound duration, in both speech (“ba”) and non-speech (tone) stimuli. Participants were 45 children with SLI aged on average 9 years and 50 age-matched controls. We report data for all the SLI children (N = 45, IQ varying), as well as for two independent SLI subgroupings with intact IQ. One subgroup, “Pure SLI,” had intact phonology and reading (N = 16), the other, “SLI PPR” (N = 15), had impaired phonology and reading. Problems with syllable stress and prosodic structure were found for all the group comparisons. Both sub-groups with intact IQ showed reduced sensitivity to ART in speech stimuli, but the PPR subgroup also showed reduced sensitivity to sound duration in speech stimuli. Individual differences in processing syllable stress were associated with auditory processing. These data support a new hypothesis, the “prosodic phrasing” hypothesis, which proposes that grammatical difficulties in SLI may reflect perceptual difficulties with global prosodic structure related to auditory impairments in processing amplitude rise time and duration. PMID:26217286

  3. Basic auditory processing and sensitivity to prosodic structure in children with specific language impairments: a new look at a perceptual hypothesis.

    PubMed

    Cumming, Ruth; Wilson, Angela; Goswami, Usha

    2015-01-01

    Children with specific language impairments (SLIs) show impaired perception and production of spoken language, and can also present with motor, auditory, and phonological difficulties. Recent auditory studies have shown impaired sensitivity to amplitude rise time (ART) in children with SLIs, along with non-speech rhythmic timing difficulties. Linguistically, these perceptual impairments should affect sensitivity to speech prosody and syllable stress. Here we used two tasks requiring sensitivity to prosodic structure, the DeeDee task and a stress misperception task, to investigate this hypothesis. We also measured auditory processing of ART, rising pitch and sound duration, in both speech ("ba") and non-speech (tone) stimuli. Participants were 45 children with SLI aged on average 9 years and 50 age-matched controls. We report data for all the SLI children (N = 45, IQ varying), as well as for two independent SLI subgroupings with intact IQ. One subgroup, "Pure SLI," had intact phonology and reading (N = 16), the other, "SLI PPR" (N = 15), had impaired phonology and reading. Problems with syllable stress and prosodic structure were found for all the group comparisons. Both sub-groups with intact IQ showed reduced sensitivity to ART in speech stimuli, but the PPR subgroup also showed reduced sensitivity to sound duration in speech stimuli. Individual differences in processing syllable stress were associated with auditory processing. These data support a new hypothesis, the "prosodic phrasing" hypothesis, which proposes that grammatical difficulties in SLI may reflect perceptual difficulties with global prosodic structure related to auditory impairments in processing amplitude rise time and duration. PMID:26217286

  4. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity.

    PubMed

    Zunhammer, Matthias; Schweizer, Lauren M; Witte, Vanessa; Harris, Richard E; Bingel, Ulrike; Schmidt-Wilcke, Tobias

    2016-10-01

    The relationship between glutamate and γ-aminobutyric acid (GABA) levels in the living human brain and pain sensitivity is unknown. Combined glutamine/glutamate (Glx), as well as GABA levels can be measured in vivo with single-voxel proton magnetic resonance spectroscopy. In this cross-sectional study, we aimed at determining whether Glx and/or GABA levels in pain-related brain regions are associated with individual differences in pain sensitivity. Experimental heat, cold, and mechanical pain thresholds were obtained from 39 healthy, drug-free individuals (25 men) according to the quantitative sensory testing protocol and summarized into 1 composite measure of pain sensitivity. The Glx levels were measured using point-resolved spectroscopy at 3 T, within a network of pain-associated brain regions comprising the insula, the anterior cingulate cortex, the mid-cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus. GABA levels were measured using GABA-edited spectroscopy (Mescher-Garwood point-resolved spectroscopy) within the insula, the anterior cingulate cortex, and the mid-cingulate cortex. Glx and/or GABA levels correlated positively across all brain regions. Gender, weekly alcohol consumption, and depressive symptoms were significantly associated with Glx and/or GABA levels. A linear regression analysis including all these factors indicated that Glx levels pooled across pain-related brain regions were positively associated with pain sensitivity, whereas no appreciable relationship with GABA was found. In sum, we show that the levels of the excitatory neurotransmitter glutamate and its precursor glutamine across pain-related brain regions are positively correlated with individual pain sensitivity. Future studies will have to determine whether our findings also apply to clinical populations. PMID:27649042

  5. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity.

    PubMed

    Zunhammer, Matthias; Schweizer, Lauren M; Witte, Vanessa; Harris, Richard E; Bingel, Ulrike; Schmidt-Wilcke, Tobias

    2016-10-01

    The relationship between glutamate and γ-aminobutyric acid (GABA) levels in the living human brain and pain sensitivity is unknown. Combined glutamine/glutamate (Glx), as well as GABA levels can be measured in vivo with single-voxel proton magnetic resonance spectroscopy. In this cross-sectional study, we aimed at determining whether Glx and/or GABA levels in pain-related brain regions are associated with individual differences in pain sensitivity. Experimental heat, cold, and mechanical pain thresholds were obtained from 39 healthy, drug-free individuals (25 men) according to the quantitative sensory testing protocol and summarized into 1 composite measure of pain sensitivity. The Glx levels were measured using point-resolved spectroscopy at 3 T, within a network of pain-associated brain regions comprising the insula, the anterior cingulate cortex, the mid-cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus. GABA levels were measured using GABA-edited spectroscopy (Mescher-Garwood point-resolved spectroscopy) within the insula, the anterior cingulate cortex, and the mid-cingulate cortex. Glx and/or GABA levels correlated positively across all brain regions. Gender, weekly alcohol consumption, and depressive symptoms were significantly associated with Glx and/or GABA levels. A linear regression analysis including all these factors indicated that Glx levels pooled across pain-related brain regions were positively associated with pain sensitivity, whereas no appreciable relationship with GABA was found. In sum, we show that the levels of the excitatory neurotransmitter glutamate and its precursor glutamine across pain-related brain regions are positively correlated with individual pain sensitivity. Future studies will have to determine whether our findings also apply to clinical populations.

  6. A program for mass spectrometer control and data processing analyses in isotope geology; written in BASIC for an 8K Nova 1120 computer

    USGS Publications Warehouse

    Stacey, J.S.; Hope, J.

    1975-01-01

    A system is described which uses a minicomputer to control a surface ionization mass spectrometer in the peak switching mode, with the object of computing isotopic abundance ratios of elements of geologic interest. The program uses the BASIC language and is sufficiently flexible to be used for multiblock analyses of any spectrum containing from two to five peaks. In the case of strontium analyses, ratios are corrected for rubidium content and normalized for mass spectrometer fractionation. Although almost any minicomputer would be suitable, the model used was the Data General Nova 1210 with 8K memory. Assembly language driver program and interface hardware-descriptions for the Nova 1210 are included.

  7. Characteristics of TiO2/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    NASA Astrophysics Data System (ADS)

    Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana

    2016-07-01

    In this study, titanium dioxide (TiO2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.

  8. Dendritic Pooling of Noisy Threshold Processes Can Explain Many Properties of a Collision-Sensitive Visual Neuron.

    PubMed

    Keil, Matthias S

    2015-10-01

    Power laws describe brain functions at many levels (from biophysics to psychophysics). It is therefore possible that they are generated by similar underlying mechanisms. Previously, the response properties of a collision-sensitive neuron were reproduced by a model which used a power law for scaling its inhibitory input. A common characteristic of such neurons is that they integrate information across a large part of the visual field. Here we present a biophysically plausible model of collision-sensitive neurons with η-like response properties, in which we assume that each information channel is noisy and has a response threshold. Then, an approximative power law is obtained as a result of pooling these channels. We show that with this mechanism one can successfully predict many response characteristics of the Lobula Giant Movement Detector Neuron (LGMD). Moreover, the results depend critically on noise in the inhibitory pathway, but they are fairly robust against noise in the excitatory pathway. PMID:26513150

  9. Sensitivity and Calibration of Non-Destructive Evaluation Method That Uses Neural-Net Processing of Characteristic Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  10. Biochemical and physiological processes associated with the differential ozone response in ozone-tolerant and sensitive soybean genotypes.

    PubMed

    Chutteang, C; Booker, F L; Na-Ngern, P; Burton, A; Aoki, M; Burkey, K O

    2016-01-01

    Biochemical and physiological traits of two soybean [Glycine max (L.) Merr.] genotypes differing in sensitivity to ozone (O3 ) were investigated to determine the possible basis for the differential response. Fiskeby III (O3 -tolerant) and Mandarin (Ottawa) (O3 -sensitive) were grown in a greenhouse with charcoal-filtered air for 4 weeks, then treated with O3 for 7 h·day(-1) in greenhouse chambers. Mandarin (Ottawa) showed significantly more leaf injury and hydrogen peroxide (H2 O2 ) and superoxide (O2 (-) ) production compared with Fiskeby III. Peroxidase activity in Mandarin (Ottawa) was 31% higher with O3 but was not significantly different in Fiskeby III. Ozone did not affect superoxide dismutase or glutathione reductase activities, or leaf concentrations of glutathione or ascorbic acid. Thus, variation in O3 response between Fiskeby III and Mandarin (Ottawa) was not explained by differences in antioxidant enzymes and metabolites tested. Ethylene emission from leaves declined in Fiskeby III following O3 exposure but not in Mandarin (Ottawa). Ozone exposure reduced quantum yield (ΦPSII ), electron transport rate (ETR) and photochemical quenching (qp ) in Mandarin (Ottawa) more than in Fiskeby III, indicating that efficiency of energy conversion of PSII and photosynthetic electron transport was altered differently in the two genotypes. Short-term exposure to O3 had minimal effects on net carbon exchange rates of both soybean cultivars. A trend toward higher stomatal conductance in Mandarin (Ottawa) suggested stomatal exclusion might contribute to differential O3 sensitivity of the two genotypes. Increased sensitivity of Mandarin (Ottawa) to O3 was associated with higher H2 O2 and O2 (-) production compared with Fiskeby III, possibly associated with genotype differences in stomatal function or regulation of ethylene during the initial phases of O3 response.

  11. CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process

    SciTech Connect

    Chen, Ling; Gong, Haibo; Zheng, Xiaopeng; Zhu, Min; Zhang, Jun; Yang, Shikuan; Cao, Bingqiang

    2013-10-15

    Graphical abstract: - Highlights: • CdS and CdS/CdSe quantum dots are assembled on ZnO nanorods by ion exchange process. • The CdS/CdSe sensitization of ZnO effectively extends the absorption spectrum. • The performance of ZnO/CdS/CdSe cell is improved by extending absorption spectrum. - Abstract: In this paper, cadmium sulfide (CdS) and cadmium sulfide/cadmium selenide (CdS/CdSe) quantum dots (QDs) are assembled onto ZnO nanorod arrays by a solution ion exchange process for QD-sensitized solar cell application. The morphology, composition and absorption properties of different photoanodes were characterized with scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectrum and Raman spectrum in detail. It is shown that conformal and uniform CdS and CdS/CdSe shells can grow on ZnO nanorod cores. Quantum dot sensitized solar cells based on ZnO/CdS and ZnO/CdS/CdSe nanocable arrays were assembled with gold counter electrode and polysulfide electrolyte solution. The CdS/CdSe sensitization of ZnO can effectively extend the absorption spectrum up to 650 nm, which has a remarkable impact on the performance of a photovoltaic device by extending the absorption spectrum. Preliminary results show one fourth improvement in solar cell efficiency.

  12. Final Report. Evaluating the Climate Sensitivity of Dissipative Subgrid-Scale Mixing Processes and Variable Resolution in NCAR's Community Earth System Model

    SciTech Connect

    Jablonowski, Christiane

    2015-12-14

    The goals of this project were to (1) assess and quantify the sensitivity and scale-dependency of unresolved subgrid-scale mixing processes in NCAR’s Community Earth System Model (CESM), and (2) to improve the accuracy and skill of forthcoming CESM configurations on modern cubed-sphere and variable-resolution computational grids. The research thereby contributed to the description and quantification of uncertainties in CESM’s dynamical cores and their physics-dynamics interactions.

  13. Pressure Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Bencic, T.; Sullivan, J. P.

    1999-01-01

    This article reviews new advances and applications of pressure sensitive paints in aerodynamic testing. Emphasis is placed on important technical aspects of pressure sensitive paint including instrumentation, data processing, and uncertainty analysis.

  14. Aryl Bridged 1-Hydroxypyridin-2-one: Effect of the Bridge on the Eu(III) Sensitization Process

    SciTech Connect

    D'Aleo, Anthony; Moore, Evan G.; Szigethy, Geza; Xu, Jide; Raymond, Kenneth N.

    2009-06-17

    The efficiency of Eu3+ luminescence by energy transfer from an antenna ligand can be strongly dependent on the metal ion coordination geometry. The geometric component of the Eu(III) sensitization has been probed using series of tetradentate 1,2-HOPO derivatives that are connected by bridges of varying length and geometry. The ligands are N,N'-(1,2-phenylene)bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) for the ligand (L{sup 1}), 1-hydroxy-N-(2-(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamido)benzyl)-6-oxo-1,6-dihydropyridine-2-carboxamide (L{sup 2}) and N,N'-(1,2-phenylenebis(methylene))bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) (L{sup 3}). Spectroscopic characterization of both the Gd(III) and Eu(III) metal complexes, TD-DFT analysis of model compounds and evaluation of the kinetic parameters for the europium emission were completed. Some striking differences were observed in the luminescence quantum yield by altering the bridging unit. The [Eu(L{sup 2}){sub 2}]{sup -} derivative shows efficient sensitization coupled with good metal centered emission. For [Eu(L{sup 3}){sub 2}]{sup -}, the large quenching of the luminescence quantum yield compared to [Eu(L{sup 2}){sub 2}]{sup -} is primarily a result of one inner sphere water molecule bound to the europium cation while for [Eu(L{sup 1}){sub 2}]{sup -}, the low luminescence quantum yield can be attributed to inefficient sensitization of the europium ion.

  15. Aryl bridged 1-Hydroxypyridin-2-one: Effect of the bridge on the Eu(III) sensitization process

    PubMed Central

    D’Aléo, Anthony; Moore, Evan G.; Szigethy, Géza; Xu, Jide

    2011-01-01

    The efficiency of Eu3+ luminescence by energy transfer from an antenna ligand can be strongly dependent on the metal ion coordination geometry. The geometric component of the Eu(III) sensitization has been probed using series of tetradentate 1,2-HOPO derivatives that are connected by bridges of varying length and geometry. The ligands are N,N’-(1,2-phenylene)bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) for the ligand (L1), 1-hydroxy-N-(2-(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamido)benzyl)-6-oxo-1,6-dihydropyridine-2-carboxamide (L2) and N,N’-(1,2-phenylenebis(methylene))bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) (L3). Spectroscopic characterization of both the Gd(III) and Eu(III) metal complexes, TD-DFT analysis of model compounds and evaluation of the kinetic parameters for the europium emission were completed. Some striking differences were observed in the luminescence quantum yield by altering the bridging unit. The [Eu(L2)2]− derivative shows efficient sensitization coupled with good metal centered emission. For [Eu(L3)2]−, the large quenching of the luminescence quantum yield compared to [Eu(L2)2]− is primarily a result of one inner sphere water molecule bound to the europium cation while for [Eu(L1)2]−, the low luminescence quantum yield can be attributed to inefficient sensitization of the europium ion. PMID:19722546

  16. Strain rate sensitivity of mechanical properties and related thermal activation process in a two-phase {gamma} titanium aluminide

    SciTech Connect

    Lin, D.; Wang, Y.; Lin, Y.; Kim, Y.W.

    1997-12-31

    Tensile properties of a two-phase {gamma} titanium aluminide with duplex microstructure are tested under different strain rates from 5 {times} 10{sup {minus}5} to 5 {times} 10{sup {minus}3}s{sup {minus}1} at temperature from 1,123 K to 1,273 K. It is found that there exists approximate linear relationship between the flow stresses and the logarithm of the strain rate at different temperatures. The strain rate sensitivity can be explained by thermal activation theory, and dislocation climbing is identified as the rate controlling mechanism.

  17. MODFLOW-2000, the U.S. Geological Survey modular ground-water model; user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs

    USGS Publications Warehouse

    Hill, Mary Catherine; Banta, E.R.; Harbaugh, A.W.; Anderman, E.R.

    2000-01-01

    This report documents the Observation, Sensitivity, and Parameter-Estimation Processes of the ground-water modeling computer program MODFLOW-2000. The Observation Process generates model-calculated values for comparison with measured, or observed, quantities. A variety of statistics is calculated to quantify this comparison, including a weighted least-squares objective function. In addition, a number of files are produced that can be used to compare the values graphically. The Sensitivity Process calculates the sensitivity of hydraulic heads throughout the model with respect to specified parameters using the accurate sensitivity-equation method. These are called grid sensitivities. If the Observation Process is active, it uses the grid sensitivities to calculate sensitivities for the simulated values associated with the observations. These are called observation sensitivities. Observation sensitivities are used to calculate a number of statistics that can be used (1) to diagnose inadequate data, (2) to identify parameters that probably cannot be estimated by regression using the available observations, and (3) to evaluate the utility of proposed new data. The Parameter-Estimation Process uses a modified Gauss-Newton method to adjust values of user-selected input parameters in an iterative procedure to minimize the value of the weighted least-squares objective function. Statistics produced by the Parameter-Estimation Process can be used to evaluate estimated parameter values; statistics produced by the Observation Process and post-processing program RESAN-2000 can be used to evaluate how accurately the model represents the actual processes; statistics produced by post-processing program YCINT-2000 can be used to quantify the uncertainty of model simulated values. Parameters are defined in the Ground-Water Flow Process input files and can be used to calculate most model inputs, such as: for explicitly defined model layers, horizontal hydraulic conductivity

  18. Explicit Information, Grammatical Sensitivity, and the First-Noun Principle: A Cross-Linguistic Study in Processing Instruction

    ERIC Educational Resources Information Center

    VanPatten, Bill; Collopy, Erin; Price, Joseph E.; Borst, Stefanie; Qualin, Anthony

    2013-01-01

    This study presents the results of four experiments in the framework of processing instruction conducted with four language learner groups (Spanish, "n"?=?43; German, "n"?=?46; Russian, "n"?=?44; and French, "n"?=?48; discussed in that order). In each experiment, the processing problem was held constant (the…

  19. Sensitivity to Spatiotemporal Percepts Predicts the Perception of Emotion

    PubMed Central

    Castro, Vanessa L.; Boone, R. Thomas

    2015-01-01

    The present studies examined how sensitivity to spatiotemporal percepts such as rhythm, angularity, configuration, and force predicts accuracy in perceiving emotion. In Study 1, participants (N = 99) completed a nonverbal test battery consisting of three nonverbal emotion perception tests and two perceptual sensitivity tasks assessing rhythm sensitivity and angularity sensitivity. Study 2 (N = 101) extended the findings of Study 1 with the addition of a fourth nonverbal test, a third configural sensitivity task, and a fourth force sensitivity task. Regression analyses across both studies revealed partial support for the association between perceptual sensitivity to spatiotemporal percepts and greater emotion perception accuracy. Results indicate that accuracy in perceiving emotions may be predicted by sensitivity to specific percepts embedded within channel- and emotion-specific displays. The significance of such research lies in the understanding of how individuals acquire emotion perception skill and the processes by which distinct features of percepts are related to the perception of emotion. PMID:26339111

  20. Modelling the effect of climate change on recovery of acidified freshwaters: relative sensitivity of individual processes in the MAGIC model.

    PubMed

    Wright, R F; Aherne, J; Bishop, K; Camarero, L; Cosby, B J; Erlandsson, M; Evans, C D; Forsius, M; Hardekopf, D W; Helliwell, R; Hruska, J; Jenkins, A; Kopácek, J; Moldan, F; Posch, M; Rogora, M

    2006-07-15

    The MAGIC model was used to evaluate the relative sensitivity of several possible climate-induced effects on the recovery of soil and surface water from acidification. A common protocol was used at 14 intensively studied sites in Europe and eastern North America. The results show that several of the factors are of only minor importance (increase in pCO(2) in soil air and runoff, for example), several are important at only a few sites (seasalts at near-coastal sites, for example) and several are important at nearly all sites (increased concentrations of organic acids in soil solution and runoff, for example). In addition changes in forest growth and decomposition of soil organic matter are important at forested sites and sites at risk of nitrogen saturation. The trials suggest that in future modelling of recovery from acidification should take into account possible concurrent climate changes and focus specially on the climate-induced changes in organic acids and nitrogen retention.

  1. Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range.

    PubMed

    Chen, Sujie; Zhuo, Bengang; Guo, Xiaojun

    2016-08-10

    Once the requirement of sensitivity has been met, to enable a flexible pressure sensor technology to be widely adopted as an economic and convenient way for sensing diverse human body motions, critical factors need to be considered including low manufacturing cost, a large pressure detection range, and low power consumption. In this work, a facile approach is developed for one-step processing of a large area microstructured elastomer film with high density microfeatures of air voids, which can be seamlessly integrated into the process flow for fabricating flexible capacitive sensors. The fabricated sensors exhibit fast response and high sensitivity in the low pressure range to be able to detect very weak pressure down to 1 Pa and perform reliable wrist pulse monitoring. Compared to previous work, more advantageous features of this sensor are relatively high sensitivity being maintained in a wide pressure range up to 250 kPa and excellent durability under heavy load larger than 1 MPa, attributed to the formed dense air voids inside the film. A smart insole made with the sensor can accurately monitor the real-time walking or running behaviors and even a small weight change less than 1 kg under a heavy load of a 70 kg adult. For both application examples of wrist pulse monitoring and smart insole, the sensors are operated in a 3.3 V electronic system powered by a Li-ion battery, showing the potential for power-constrained wearable applications. PMID:27427977

  2. Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness.

    PubMed

    Precup, Radu-Emil; David, Radu-Codrut; Petriu, Emil M; Radac, Mircea-Bogdan; Preitl, Stefan

    2014-11-01

    This paper suggests a new generation of optimal PI controllers for a class of servo systems characterized by saturation and dead zone static nonlinearities and second-order models with an integral component. The objective functions are expressed as the integral of time multiplied by absolute error plus the weighted sum of the integrals of output sensitivity functions of the state sensitivity models with respect to two process parametric variations. The PI controller tuning conditions applied to a simplified linear process model involve a single design parameter specific to the extended symmetrical optimum (ESO) method which offers the desired tradeoff to several control system performance indices. An original back-calculation and tracking anti-windup scheme is proposed in order to prevent the integrator wind-up and to compensate for the dead zone nonlinearity of the process. The minimization of the objective functions is carried out in the framework of optimization problems with inequality constraints which guarantee the robust stability with respect to the process parametric variations and the controller robustness. An adaptive gravitational search algorithm (GSA) solves the optimization problems focused on the optimal tuning of the design parameter specific to the ESO method and of the anti-windup tracking gain. A tuning method for PI controllers is proposed as an efficient approach to the design of resilient control systems. The tuning method and the PI controllers are experimentally validated by the adaptive GSA-based tuning of PI controllers for the angular position control of a laboratory servo system. PMID:25330468

  3. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs.

    PubMed

    Planque, M; Arnould, T; Dieu, M; Delahaut, P; Renard, P; Gillard, N

    2016-09-16

    Sensitive detection of food allergens is affected by food processing and foodstuff complexity. It is therefore a challenge to detect cross-contamination in food production that could endanger an allergic customer's life. Here we used ultra-high performance liquid chromatography coupled to tandem mass spectrometry for simultaneous detection of traces of milk (casein, whey protein), egg (yolk, white), soybean, and peanut allergens in different complex and/or heat-processed foodstuffs. The method is based on a single protocol (extraction, trypsin digestion, and purification) applicable to the different tested foodstuffs: chocolate, ice cream, tomato sauce, and processed cookies. The determined limits of quantitation, expressed in total milk, egg, peanut, or soy proteins (and not soluble proteins) per kilogram of food, are: 0.5mg/kg for milk (detection of caseins), 5mg/kg for milk (detection of whey), 2.5mg/kg for peanut, 5mg/kg for soy, 3.4mg/kg for egg (detection of egg white), and 30.8mg/kg for egg (detection of egg yolk). The main advantage is the ability of the method to detect four major food allergens simultaneously in processed and complex matrices with very high sensitivity and specificity.

  4. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs.

    PubMed

    Planque, M; Arnould, T; Dieu, M; Delahaut, P; Renard, P; Gillard, N

    2016-09-16

    Sensitive detection of food allergens is affected by food processing and foodstuff complexity. It is therefore a challenge to detect cross-contamination in food production that could endanger an allergic customer's life. Here we used ultra-high performance liquid chromatography coupled to tandem mass spectrometry for simultaneous detection of traces of milk (casein, whey protein), egg (yolk, white), soybean, and peanut allergens in different complex and/or heat-processed foodstuffs. The method is based on a single protocol (extraction, trypsin digestion, and purification) applicable to the different tested foodstuffs: chocolate, ice cream, tomato sauce, and processed cookies. The determined limits of quantitation, expressed in total milk, egg, peanut, or soy proteins (and not soluble proteins) per kilogram of food, are: 0.5mg/kg for milk (detection of caseins), 5mg/kg for milk (detection of whey), 2.5mg/kg for peanut, 5mg/kg for soy, 3.4mg/kg for egg (detection of egg white), and 30.8mg/kg for egg (detection of egg yolk). The main advantage is the ability of the method to detect four major food allergens simultaneously in processed and complex matrices with very high sensitivity and specificity. PMID:27554027

  5. Effect of noise and detector sensitivity on a dynamical process: inverse power law and Mittag-Leffler interevent time survival probabilities.

    PubMed

    Pramukkul, Pensri; Svenkeson, Adam; Grigolini, Paolo

    2014-02-01

    We study the combined effects of noise and detector sensitivity on a dynamical process that generates intermittent events mimicking the behavior of complex systems. By varying the sensitivity level of the detector we move between two forms of complexity, from inverse power law to Mittag-Leffler interevent time survival probabilities. Here fluctuations fight against complexity, causing an exponential truncation to the survival probability. We show that fluctuations of relatively weak intensity have a strong effect on the generation of Mittag-Leffler complexity, providing a reason why stretched exponentials are frequently found in nature. Our results afford a more unified picture of complexity resting on the Mittag-Leffler function and encompassing the standard inverse power law definition. PMID:25353422

  6. Effect of noise and detector sensitivity on a dynamical process: Inverse power law and Mittag-Leffler interevent time survival probabilities

    NASA Astrophysics Data System (ADS)

    Pramukkul, Pensri; Svenkeson, Adam; Grigolini, Paolo

    2014-02-01

    We study the combined effects of noise and detector sensitivity on a dynamical process that generates intermittent events mimicking the behavior of complex systems. By varying the sensitivity level of the detector we move between two forms of complexity, from inverse power law to Mittag-Leffler interevent time survival probabilities. Here fluctuations fight against complexity, causing an exponential truncation to the survival probability. We show that fluctuations of relatively weak intensity have a strong effect on the generation of Mittag-Leffler complexity, providing a reason why stretched exponentials are frequently found in nature. Our results afford a more unified picture of complexity resting on the Mittag-Leffler function and encompassing the standard inverse power law definition.

  7. Predictive modeling of infrared radiative heating in tomato dry-peeling process: Part II. Model validation and sensitivity analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...

  8. dsDNA-triggered energy transfer and lanthanide sensitization processes. Luminescent probing of specific A/T sequences.

    PubMed

    Vázquez, Olalla; Sánchez, Mateo I; Mascareñas, José L; Vázquez, M Eugenio

    2010-08-14

    Orthogonal attachment of a DOTA[Ln(3+)] complex or a coumarin fluorophore to appropriately functionalized bis-4-aminobenzamidines yields compounds that experience A/T-selective, dsDNA-dependent energy transfer processes, and elicit long wavelength emission of light. PMID:20458409

  9. Visual sensitivity is a stronger determinant of illusory processes than auditory cue parameters in the sound-induced flash illusion

    PubMed Central

    Kumpik, Daniel P.; Roberts, Helen E.; King, Andrew J.; Bizley, Jennifer K.

    2014-01-01

    The sound-induced flash illusion (SIFI) is a multisensory perceptual phenomenon in which the number of brief visual stimuli perceived by an observer is influenced by the number of concurrently presented sounds. While the strength of this illusion has been shown to be modulated by the temporal congruence of the stimuli from each modality, there is conflicting evidence regarding its dependence upon their spatial congruence. We addressed this question by examining SIFIs under conditions in which the spatial reliability of the visual stimuli was degraded and different sound localization cues were presented using either free-field or closed-field stimulation. The likelihood of reporting a SIFI varied with the spatial cue composition of the auditory stimulus and was highest when binaural cues were presented over headphones. SIFIs were more common for small flashes than for large flashes, and for small flashes at peripheral locations, subjects experienced a greater number of illusory fusion events than fission events. However, the SIFI was not dependent on the spatial proximity of the audiovisual stimuli, but was instead determined primarily by differences in subjects' underlying sensitivity across the visual field to the number of flashes presented. Our findings indicate that the influence of auditory stimulation on visual numerosity judgments can occur independently of the spatial relationship between the stimuli. PMID:24961249

  10. Comparative Study of Morphometric and Fourier Transform Infrared Spectroscopy Analyses of the Collagen Fibers in the Repair Process of Cutaneous Lesions

    PubMed Central

    Nogueira, Veruska Cronemberger; Raniero, Leandro; Costa, Guilherme Bueno; de Freitas Coelho, Nayana Pinheiro Machado; Miranda, Fernando Cronemberger; Arisawa, Emília Ângela Loschiavo

    2016-01-01

    Objective: Compare the efficacy of light-emitting diode (LED) and therapeutic ultrasound (TUS), combined with a semipermeable dressing (D), at forming collagen in skin lesions by morphometry and Fourier transform infrared spectroscopy (FT-IR). Materials and Methods: Surgical skin wounds (2.5 cm) were created on 84 male Wistar rats divided into four groups (n=21): Group I (Control), Group II (LED), Group III (LED+D), and Group IV (US+D). On days 7, 14, and 21, the tissue samples were removed and divided into two pieces, one was used for histological examination (collagen) and the other for FT-IR. Results: The histomorphometric analysis showed no significant differences among groups for collagen deposition at 7 days. However, at 14 days, more deposition of collagen was noted in the groups LED (p<0.05) and LED+D (p<0.001) than in the control. At 21 days, the groups LED, LED+D, and US+D presented significantly greater deposition of collagen when compared with the control. The FT-IR spectra, at 14 days, LED+D had greater amounts of type I collagen, a better organization of fibers, and greater difference of mean separation between the groups, not observed at 7 and 21 days. Innovation: The histomorphometric and FT-IR analyses suggest that the association of semipermeable dressing to LED therapy and to TUS modulates biological events, increasing fibroblast/collagen response and accelerating dermal maturation. Conclusion: The histomorphometric and FT-IR analyses showed that LED therapy is more efficacious than TUS, when combined with a semipermeable dressing, and induced the collagen production in skin lesions. PMID:26862463

  11. Modeling the snow cover in climate studies: 2. The sensitivity to internal snow parameters and interface processes

    NASA Astrophysics Data System (ADS)

    Loth, Bettina; Graf, Hans-F.

    1998-05-01

    In order to find an optimal complexity for snow-cover models in climate studies, the influence of single snow processes on both the snow mass balance and the energy fluxes between snow surface and atmosphere has been investigated. Using a sophisticated model, experiments were performed under several different atmospheric and regional conditions (Arctic, midlatitudes, alpine regions). A high simulation quality can be achieved with a multilayered snow-cover model resolving the internal snow processes (cf. part 1,[Loth and Graf, this issue]). Otherwise, large errors can occur, mostly in zones which are of paramount importance for the entire climate dynamics. Owing to simplifications of such a model, the mean energy balance of the snow cover, the turbulent heat fluxes, and the long-wave radiation at the snow surface may alter by between 1 W/m2 and 8 W/m2. The snow-surface temperatures can be systematically changed by about 10 K.

  12. Effects of EMG processing on biomechanical models of muscle joint systems: sensitivity of trunk muscle moments, spinal forces, and stability.

    PubMed

    Staudenmann, Didier; Potvin, Jim R; Kingma, Idsart; Stegeman, Dick F; van Dieën, Jaap H

    2007-01-01

    Biomechanical models are in use to estimate parameters such as contact forces and stability at various joints. In one class of these models, surface electromyography (EMG) is used to address the problem of mechanical indeterminacy such that individual muscle activation patterns are accounted for. Unfortunately, because of the stochastical properties of EMG signals, EMG based estimates of muscle force suffer from substantial estimation errors. Recent studies have shown that improvements in muscle force estimation can be achieved through adequate EMG processing, specifically whitening and high-pass (HP) filtering of the signals. The aim of this paper is to determine the effect of such processing on outcomes of a biomechanical model of the lumbosacral joint and surrounding musculature. Goodness of fit of estimated muscle moments to net moments and also estimated joint stability significantly increased with increasing cut-off frequencies in HP filtering, whereas no effect on joint contact forces was found. Whitening resulted in moment estimations comparable to those obtained from optimal HP filtering with cut-off frequencies over 250 Hz. Moreover, compared to HP filtering, whitening led to a further increase in estimated joint-stability. Based on theoretical models and on our experimental results, we hypothesize that the processing leads to an increase in pick-up area. This then would explain the improvements from a better balance between deep and superficial motor unit contributions to the signal. PMID:16765965

  13. Transcript profile analyses of maize silks reveal effective activation of genes involved in microtubule-based movement, ubiquitin-dependent protein degradation, and transport in the pollination process.

    PubMed

    Xu, Xiao Hui; Wang, Fang; Chen, Hao; Sun, Wei; Zhang, Xian Sheng

    2013-01-01

    Pollination is the first crucial step of sexual reproduction in flowering plants, and it requires communication and coordination between the pollen and the stigma. Maize (Zea mays) is a model monocot with extraordinarily long silks, and a fully sequenced genome, but little is known about the mechanism of its pollen-stigma interactions. In this study, the dynamic gene expression of silks at four different stages before and after pollination was analyzed. The expression profiles of immature silks (IMS), mature silks (MS), and silks at 20 minutes and 3 hours after pollination (20MAP and 3HAP, respectively) were compared. In total, we identified 6,337 differentially expressed genes in silks (SDEG) at the four stages. Among them, the expression of 172 genes were induced upon pollination, most of which participated in RNA binding, processing and transcription, signal transduction, and lipid metabolism processes. Genes in the SDEG dataset could be divided into 12 time-course clusters according to their expression patterns. Gene Ontology (GO) enrichment analysis revealed that many genes involved in microtubule-based movement, ubiquitin-mediated protein degradation, and transport were predominantly expressed at specific stages, indicating that they might play important roles in the pollination process of maize. These results add to current knowledge about the pollination process of grasses and provide a foundation for future studies on key genes involved in the pollen-silk interaction in maize.

  14. Sensitivity analysis for critical control points determination and uncertainty analysis to link FSO and process criteria: application to Listeria monocytogenes in soft cheese made from pasteurized milk.

    PubMed

    Lamboni, Matieyendou; Sanaa, Moez; Tenenhaus-Aziza, Fanny

    2014-04-01

    Microbiological food safety is an important economic and health issue in the context of globalization and presents food business operators with new challenges in providing safe foods. The hazard analysis and critical control point approach involve identifying the main steps in food processing and the physical and chemical parameters that have an impact on the safety of foods. In the risk-based approach, as defined in the Codex Alimentarius, controlling these parameters in such a way that the final products meet a food safety objective (FSO), fixed by the competent authorities, is a big challenge and of great interest to the food business operators. Process risk models, issued from the quantitative microbiological risk assessment framework, provide useful tools in this respect. We propose a methodology, called multivariate factor mapping (MFM), for establishing a link between process parameters and compliance with a FSO. For a stochastic and dynamic process risk model of Listeriamonocytogenes in soft cheese made from pasteurized milk with many uncertain inputs, multivariate sensitivity analysis and MFM are combined to (i) identify the critical control points (CCPs) for L.monocytogenes throughout the food chain and (ii) compute the critical limits of the most influential process parameters, located at the CCPs, with regard to the specific process implemented in the model. Due to certain forms of interaction among parameters, the results show some new possibilities for the management of microbiological hazards when a FSO is specified. PMID:24168722

  15. Sensitivity analysis for critical control points determination and uncertainty analysis to link FSO and process criteria: application to Listeria monocytogenes in soft cheese made from pasteurized milk.

    PubMed

    Lamboni, Matieyendou; Sanaa, Moez; Tenenhaus-Aziza, Fanny

    2014-04-01

    Microbiological food safety is an important economic and health issue in the context of globalization and presents food business operators with new challenges in providing safe foods. The hazard analysis and critical control point approach involve identifying the main steps in food processing and the physical and chemical parameters that have an impact on the safety of foods. In the risk-based approach, as defined in the Codex Alimentarius, controlling these parameters in such a way that the final products meet a food safety objective (FSO), fixed by the competent authorities, is a big challenge and of great interest to the food business operators. Process risk models, issued from the quantitative microbiological risk assessment framework, provide useful tools in this respect. We propose a methodology, called multivariate factor mapping (MFM), for establishing a link between process parameters and compliance with a FSO. For a stochastic and dynamic process risk model of Listeriamonocytogenes in soft cheese made from pasteurized milk with many uncertain inputs, multivariate sensitivity analysis and MFM are combined to (i) identify the critical control points (CCPs) for L.monocytogenes throughout the food chain and (ii) compute the critical limits of the most influential process parameters, located at the CCPs, with regard to the specific process implemented in the model. Due to certain forms of interaction among parameters, the results show some new possibilities for the management of microbiological hazards when a FSO is specified.

  16. Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process.

    PubMed

    Lee, Hyojoong; Wang, Mingkui; Chen, Peter; Gamelin, Daniel R; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Md K

    2009-12-01

    In pursuit of efficient quantum dot (QD)-sensitized solar cells based on mesoporous TiO(2) photoanodes, a new procedure for preparing selenide (Se(2-)) was developed and used for depositing CdSe QDs in situ over TiO(2) mesopores by the successive ionic layer adsorption and reaction (SILAR) process in ethanol. The sizes and density of CdSe QDs over TiO(2) were controlled by the number of SILAR cycles applied. After some optimization of these QD-sensitized TiO(2) films in regenerative photoelectrochemical cells using a cobalt redox couple [Co(o-phen)(3)(2+/3+)], including addition of a final layer of CdTe, over 4% overall efficiencies were achieved at 100 W/m(2) with about 50% IPCE at its maximum. Light-harvesting properties and transient voltage decay/impedance measurements confirmed that CdTe-terminated CdSe QD cells gave better charge-collection efficiencies and kinetic parameters than corresponding CdSe QD cells. In a preliminary study, a CdSe(Te) QD-sensitized TiO(2) film was combined with an organic hole conductor, spiro-OMeTAD, and shown to exhibit a promising efficiency of 1.6% at 100 W/m(2) in inorganic/organic hybrid all-solid-state cells.

  17. 176Lu/176Hf: A Sensitive Test of s-Process Temperature and Neutron Density in AGB Stars

    NASA Astrophysics Data System (ADS)

    Heil, M.; Winckler, N.; Dababneh, S.; Käppeler, F.; Wisshak, K.; Bisterzo, S.; Gallino, R.; Davis, A. M.; Rauscher, T.

    2008-01-01

    The s-process branching at A = 176 has been analyzed on the basis of significantly improved experimental cross sections. This work reports on activation measurements of the partial (n,γ ) cross section of 176Lu feeding the isomeric state in 176Lu. In total, six irradiations were performed at the Karlsruhe 3.7 MV pulsed Van de Graaff accelerator, and the induced activities were measured with HPGe clover detectors. In combination with previous data, partial cross sections of 3185 +/- 156 and 1153 +/- 30 mbarn were deduced at kT = 5.1 and 25 keV, respectively. With these results and a recent time-of-flight measurement of the total stellar (n,γ ) cross section, the isomeric ratio was found to be constant in the relevant thermal energy range of the main s-process component. Based on these new data, a comprehensive analysis of the branching at 176Lu was carried out for testing the temperature and neutron density conditions during He shell flashes in thermally pulsing low-mass asymptotic giant branch stars. It was found that the long-standing problem of the mother/daughter ratio of the two s-only isotopes 176Lu and 176Hf could be solved, if the temperature-dependent β-decay half-life of 176Lu was considered with sufficient resolution over the temperature profile of the convective He shell flashes.

  18. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and... by conducting additional analyses using any standard engineering economics method such as sensitivity... energy or water system alternative....

  19. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and... by conducting additional analyses using any standard engineering economics method such as sensitivity... energy or water system alternative....

  20. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, Normandy, northern France

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, T.

    2015-02-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groyne, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3 to 10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2 to 101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  1. Analysing the spatial patterns of erosion scars using point process theory at the coastal chalk cliff of Mesnil-Val, (Normandy, Northern France)

    NASA Astrophysics Data System (ADS)

    Rohmer, J.; Dewez, D.

    2014-09-01

    Over the last decade, many cliff erosion studies have focused on frequency-size statistics using inventories of sea cliff retreat sizes. By comparison, only a few paid attention to quantifying the spatial and temporal organisation of erosion scars over a cliff face. Yet, this spatial organisation carries essential information about the external processes and the environmental conditions that promote or initiate sea-cliff instabilities. In this article, we use summary statistics of spatial point process theory as a tool to examine the spatial and temporal pattern of a rockfall inventory recorded with repeated terrestrial laser scanning surveys at the chalk coastal cliff site of Mesnil-Val (Normandy, France). Results show that: (1) the spatial density of erosion scars is specifically conditioned alongshore by the distance to an engineered concrete groin, with an exponential-like decreasing trend, and vertically focused both at wave breaker height and on strong lithological contrasts; (2) small erosion scars (10-3-10-2 m3) aggregate in clusters within a radius of 5 to 10 m, which suggests some sort of attraction or focused causative process, and disperse above this critical distance; (3) on the contrary, larger erosion scars (10-2-101 m3) tend to disperse above a radius of 1 to 5 m, possibly due to the spreading of successive failures across the cliff face; (4) large scars significantly occur albeit moderately, where previous large rockfalls have occurred during preceeding winter; (5) this temporal trend is not apparent for small events. In conclusion, this study shows, with a worked example, how spatial point process summary statistics are a tool to test and quantify the significance of geomorphological observation organisation.

  2. Comparison of different blood sample processing methods for sensitive detection of low level chimerism by RHD real-time PCR assay.

    PubMed

    Javadi, Ahmad; Verduin, Esther P; Brand, Anneke; Schonewille, Henk

    2013-01-01

    The rhesus D blood group, which is expressed on the red blood cells (RBC) of 85% of the Caucasian population, is one of the most immunogenic RBC antigens, inducing D antibody formation in up to 20-80% of D-negative transfusion recipients and about 10% of pregnancies at risk. Pregnancy-induced D-antibodies can persist for many years, but the mechanisms underlying this persistence are unclear. The LOTUS study, a long-term follow-up study of mothers from severely affected children with hemolytic disease of the fetus and newborn investigates, among other endpoints, whether persistent feto-maternal chimerism is associated with long-term maternal anti-D persistence. We questioned which blood sample processing method should be used to detect low levels of RHD chimerism with the highest sensitivity and specificity using qPCR. After optimization of primer and probe concentrations for singleplex RHD exon 5 and 7 qPCR, sensitivity, specificity and efficiency of RHD and DYS1 qPCR were investigated in artificial chimeric samples. Sensitivity of DYS1 was one log higher (0.0001%) in enriched mononuclear cell fractions as compared with whole blood. Comparable linear sensitivity (0.007%) and mean efficiency (84-99%) for RHD qPCR were observed in all samples regardless whether whole blood or pre- or post-mixing of cellular fractions had been used. We conclude that RHD chimerism using singleplex exon 5 and 7 qPCR is linearly detectable down to 1.0 GE, without an advantage of fraction enrichment.

  3. Identification of Yeast Mutants Exhibiting Altered Sensitivity to Valinomycin and Nigericin Demonstrate Pleiotropic Effects of Ionophores on Cellular Processes

    PubMed Central

    Bhatia-Kissova, Ingrid; Valachovic, Martin; Klobucnikova, Vlasta; Zeiselova, Lucia; Griac, Peter; Nosek, Jozef

    2016-01-01

    Ionophores such as valinomycin and nigericin are potent tools for studying the impact of ion perturbance on cellular functions. To obtain a broader picture about molecular components involved in mediating the effects of these drugs on yeast cells under respiratory growth conditions, we performed a screening of the haploid deletion mutant library covering the Saccharomyces cerevisiae nonessential genes. We identified nearly 130 genes whose absence leads either to resistance or to hypersensitivity to valinomycin and/or nigericin. The processes affected by their protein products range from mitochondrial functions through ribosome biogenesis and telomere maintenance to vacuolar biogenesis and stress response. Comparison of the results with independent screenings performed by our and other laboratories demonstrates that although mitochondria might represent the main target for both ionophores, cellular response to the drugs is very complex and involves an intricate network of proteins connecting mitochondria, vacuoles, and other membrane compartments. PMID:27711131

  4. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    NASA Astrophysics Data System (ADS)

    Zhang, K.; O'Donnell, D.; Kazil, J.; Stier, P.; Kinne, S.; Lohmann, U.; Ferrachat, S.; Croft, B.; Quaas, J.; Wan, H.; Rast, S.; Feichter, J.

    2012-10-01

    This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation. Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced κ-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker in-cloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7) between accumulation mode and coarse mode emission fluxes of aerosol number concentration. This

  5. Intersectionality and gender mainstreaming in international health: using a feminist participatory action research process to analyse voices and debates from the global south and north.

    PubMed

    Tolhurst, Rachel; Leach, Beryl; Price, Janet; Robinson, Jude; Ettore, Elizabeth; Scott-Samuel, Alex; Kilonzo, Nduku; Sabuni, Louis P; Robertson, Steve; Kapilashrami, Anuj; Bristow, Katie; Lang, Raymond; Romao, Francelina; Theobald, Sally

    2012-06-01

    Critiques of gender mainstreaming (GM) as the officially agreed strategy to promote gender equity in health internationally have reached a critical mass. There has been a notable lack of dialogue between gender advocates in the global north and south, from policy and practice, governments and non-governmental organisations (NGOs). This paper contributes to the debate on the shape of future action for gender equity in health, by uniquely bringing together the voices of disparate actors, first heard in a series of four seminars held during 2008 and 2009, involving almost 200 participants from 15 different country contexts. The series used (Feminist) Participatory Action Research (FPAR) methodology to create a productive dialogue on the developing theory around GM and the at times disconnected empirical experience of policy and practice. We analyse the debates and experiences shared at the seminar series using concrete, context specific examples from research, advocacy, policy and programme development perspectives, as presented by participants from southern and northern settings, including Kenya, Mozambique, India, the Democratic Republic of Congo, Canada and Australia. Focussing on key discussions around sexualities and (dis)ability and their interactions with gender, we explore issues around intersectionality across the five key themes for research and action identified by participants: (1) Addressing the disconnect between gender mainstreaming praxis and contemporary feminist theory; (2) Developing appropriate analysis methodologies; (3) Developing a coherent theory of change; (4) Seeking resolution to the dilemmas and uncertainties around the 'place' of men and boys in GM as a feminist project; and (5) Developing a politics of intersectionality. We conclude that there needs to be a coherent and inclusive strategic direction to improve policy and practice for promoting gender equity in health which requires the full and equal participation of practitioners and

  6. Intersectionality and gender mainstreaming in international health: using a feminist participatory action research process to analyse voices and debates from the global south and north.

    PubMed

    Tolhurst, Rachel; Leach, Beryl; Price, Janet; Robinson, Jude; Ettore, Elizabeth; Scott-Samuel, Alex; Kilonzo, Nduku; Sabuni, Louis P; Robertson, Steve; Kapilashrami, Anuj; Bristow, Katie; Lang, Raymond; Romao, Francelina; Theobald, Sally

    2012-06-01

    Critiques of gender mainstreaming (GM) as the officially agreed strategy to promote gender equity in health internationally have reached a critical mass. There has been a notable lack of dialogue between gender advocates in the global north and south, from policy and practice, governments and non-governmental organisations (NGOs). This paper contributes to the debate on the shape of future action for gender equity in health, by uniquely bringing together the voices of disparate actors, first heard in a series of four seminars held during 2008 and 2009, involving almost 200 participants from 15 different country contexts. The series used (Feminist) Participatory Action Research (FPAR) methodology to create a productive dialogue on the developing theory around GM and the at times disconnected empirical experience of policy and practice. We analyse the debates and experiences shared at the seminar series using concrete, context specific examples from research, advocacy, policy and programme development perspectives, as presented by participants from southern and northern settings, including Kenya, Mozambique, India, the Democratic Republic of Congo, Canada and Australia. Focussing on key discussions around sexualities and (dis)ability and their interactions with gender, we explore issues around intersectionality across the five key themes for research and action identified by participants: (1) Addressing the disconnect between gender mainstreaming praxis and contemporary feminist theory; (2) Developing appropriate analysis methodologies; (3) Developing a coherent theory of change; (4) Seeking resolution to the dilemmas and uncertainties around the 'place' of men and boys in GM as a feminist project; and (5) Developing a politics of intersectionality. We conclude that there needs to be a coherent and inclusive strategic direction to improve policy and practice for promoting gender equity in health which requires the full and equal participation of practitioners and

  7. On the Sensitivity of Mechanical Properties of Woven-Fabrics to the Draping Process: Static and Dynamic Assessment Through a CAE-Based Approach

    NASA Astrophysics Data System (ADS)

    Treviso, Alessandra; Farkas, Laszlo; Mundo, Domenico; Tournour, Michel

    2016-08-01

    Manufacturing processes are often considered the final stage of the design. As a matter of fact, it is during the manufacturing that material properties are ultimately determined. This is especially true for composite materials, whose manufacturing processes are often lowly automated and thus subject to the low repeatability of manual operations. Manufacturing simulations tools are becoming available to support the definition of the manufacturing process and assess the manufacturability of composite parts. The present paper proposes a reversed approach to the laminate design process which starts from the manufacturing simulation in order to quantify the impact of the process on the mechanical properties of the as-produced part. An automotive component is chosen and different woven-fabrics structures are considered to determine their sensitivity to the shearing phenomenon. Homogenization of material properties is performed on a local basis, depending on the local geometry modifications undergone by the reinforcement. Stiffness is then predicted through both static and dynamic analysis. In order to prove the effectiveness of the approach, the obtained results are compared to classic laminate modelling.

  8. Cultural, Transcriptomic, and Proteomic Analyses of Water-Stressed Cells of Actinobacterial Strains Isolated from Compost: Ecological Implications in the Fed-Batch Composting Process.

    PubMed

    Narihiro, Takashi; Kanosue, Yuji; Hiraishi, Akira

    2016-06-25

    This study was undertaken to examine the effects of water activity (aw) on the viability of actinobacterial isolates from a fed-batch composting (FBC) process by comparing culturability and stainability with 5-cyano-2,3-ditoryl tetrazolium chloride (CTC). The FBC reactor as the source of these bacteria was operated with the daily loading of household biowaste for 70 d. During this period of composting, aw in the reactor decreased linearly with time and reached approximately 0.95 at the end of operation. The plate counts of aerobic chemoorganotrophic bacteria were 3.2-fold higher than CTC-positive (CTC+) counts on average at the fully acclimated stage (after 7 weeks of operation), in which Actinobacteria predominated, as shown by lipoquinone profiling and cultivation methods. When the actinobacterial isolates from the FBC process were grown under aw stress, no significant differences were observed in culturability among the cultures, whereas CTC stainability decreased with reductions in aw levels. A cDNA microarray-based transcriptomic analysis of a representative isolate showed that many of the genes involved in cellular metabolism and genetic information processing were down-regulated by aw stress. This result was fully supported by a proteomic analysis. The results of the present study suggest that, in low aw mature compost, the metabolic activity of the community with Actinobacteria predominating is temporarily reduced to a level that hardly reacts with CTC; however, these bacteria are easily recoverable by exposure to a high aw culture medium. This may be a plausible reason why acclimated FBC reactors in which Actinobacteria predominate yields higher plate counts than CTC+ counts. PMID:27246805

  9. Cultural, Transcriptomic, and Proteomic Analyses of Water-Stressed Cells of Actinobacterial Strains Isolated from Compost: Ecological Implications in the Fed-Batch Composting Process

    PubMed Central

    Narihiro, Takashi; Kanosue, Yuji; Hiraishi, Akira

    2016-01-01

    This study was undertaken to examine the effects of water activity (aw) on the viability of actinobacterial isolates from a fed-batch composting (FBC) process by comparing culturability and stainability with 5-cyano-2,3-ditoryl tetrazolium chloride (CTC). The FBC reactor as the source of these bacteria was operated with the daily loading of household biowaste for 70 d. During this period of composting, aw in the reactor decreased linearly with time and reached approximately 0.95 at the end of operation. The plate counts of aerobic chemoorganotrophic bacteria were 3.2-fold higher than CTC-positive (CTC+) counts on average at the fully acclimated stage (after 7 weeks of operation), in which Actinobacteria predominated, as shown by lipoquinone profiling and cultivation methods. When the actinobacterial isolates from the FBC process were grown under aw stress, no significant differences were observed in culturability among the cultures, whereas CTC stainability decreased with reductions in aw levels. A cDNA microarray-based transcriptomic analysis of a representative isolate showed that many of the genes involved in cellular metabolism and genetic information processing were down-regulated by aw stress. This result was fully supported by a proteomic analysis. The results of the present study suggest that, in low aw mature compost, the metabolic activity of the community with Actinobacteria predominating is temporarily reduced to a level that hardly reacts with CTC; however, these bacteria are easily recoverable by exposure to a high aw culture medium. This may be a plausible reason why acclimated FBC reactors in which Actinobacteria predominate yields higher plate counts than CTC+ counts. PMID:27246805

  10. Ultra-sensitive detection of tumorigenic cellular impurities in human cell-processed therapeutic products by digital analysis of soft agar colony formation.

    PubMed

    Kusakawa, Shinji; Yasuda, Satoshi; Kuroda, Takuya; Kawamata, Shin; Sato, Yoji

    2015-01-01

    Contamination with tumorigenic cellular impurities is one of the most pressing concerns for human cell-processed therapeutic products (hCTPs). The soft agar colony formation (SACF) assay, which is a well-known in vitro assay for the detection of malignant transformed cells, is applicable for the quality assessment of hCTPs. Here we established an image-based screening system for the SACF assay using a high-content cell analyzer termed the digital SACF assay. Dual fluorescence staining of formed colonies and the dissolution of soft agar led to accurate detection of transformed cells with the imaging cytometer. Partitioning a cell sample into multiple wells of culture plates enabled digital readout of the presence of colonies and elevated the sensitivity for their detection. In practice, the digital SACF assay detected impurity levels as low as 0.00001% of the hCTPs, i.e. only one HeLa cell contained in 10,000,000 human mesenchymal stem cells, within 30 days. The digital SACF assay saves time, is more sensitive than in vivo tumorigenicity tests, and would be useful for the quality control of hCTPs in the manufacturing process. PMID:26644244

  11. A room-temperature process for fabricating a nano-Pt counter electrode on a plastic substrate for efficient dye-sensitized cells

    NASA Astrophysics Data System (ADS)

    Hsieh, Tsung-Yu; Wei, Tzu-Chien; Zhai, Peng; Feng, Shien-Ping; Ikegami, Masashi; Miyasaka, Tsutomu

    2015-06-01

    We present a method for depositing polyvinylpyrrolidone-capped platinum nanoparticles (PVP-nPt) on a plastic substrate as the counter electrode (CE) for dye-sensitized cells. This method was implemented using a modified two-step dip-coating process performed under ambient conditions. In particular, a short UV-ozone exposure period was adopted to replace conventional annealing, rendering the whole process feasible for plastic substrates. The surfactant required for deposition was confirmed by analyzing a Fourier transform infrared spectroscopy spectrum; however, we discovered that the surfactant jeopardized charge transfer between the PVP-nPt CE and the substrate. Furthermore, the UV-ozone treatment efficiently decomposed the surfactant, and the electrochemical-catalytic property improved considerably. When the CE was combined with a dye-sensitized photoanode fabricated on a plastic substrate, the power conversion efficiency (PCE) reached 6.24%. To further prove that the PCE is limited by the plastic photoanode instead of the proposed plastic PVP-nPt CE, a photoanode fabricated on FTO glass and the proposed plastic PVP-nPt CE with a PCE of 8.80% was demonstrated. Finally, thermal aging (conducted at 60 °C, 1000 h) test on this device indicated excellent durability, and the PCE was only 1% lower than its initial value.

  12. A process-based model for ammonia emission from urine patches, GAG (Generation of Ammonia from Grazing): description and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Móring, Andrea; Vieno, Massimo; Doherty, Ruth M.; Laubach, Johannes; Taghizadeh-Toosi, Arezoo; Sutton, Mark A.

    2016-03-01

    In this paper a new process-based, weather-driven model for ammonia (NH3) emission from a urine patch has been developed and its sensitivity to various factors assessed. The GAG model (Generation of Ammonia from Grazing) is capable of simulating the TAN (total ammoniacal nitrogen) and the water content of the soil under a urine patch and also soil pH dynamics. The model tests suggest that ammonia volatilization from a urine patch can be affected by the possible restart of urea hydrolysis after a rain event as well as CO2 emission from the soil. The vital role of temperature in NH3 exchange is supported by our model results; however, the GAG model provides only a modest overall temperature dependence in total NH3 emission compared with the literature. This, according to our findings, can be explained by the higher sensitivity to temperature close to urine application than in the later stages and may depend on interactions with other nitrogen cycling processes. In addition, we found that wind speed and relative humidity are also significant influencing factors. Considering that all the input parameters can be obtained for larger scales, GAG is potentially suitable for field and regional scale application, serving as a tool for further investigation of the effects of climate change on ammonia emissions and deposition.

  13. NMDA-receptor-dependent, muscimol-sensitive role of the entorhinal cortex in post-training memory processing.

    PubMed

    Ferreira, M.B.C.; Wolfman, C.; Walz, R.; Da Silva, R.C.; Zanatta, M.S.; Medina, J.H.; Izquierdo, I.

    1992-08-01

    The bilateral infusion into the entorhinal cortex of the NMDA receptor antagonist, AP5 (5.0µg) or of the GABA(A) agonist, muscimol (0.03µg) 90min after training but not 30min before training, 0min after training or 10min before testing, hindered retention test performance 24h after inhibitory avoidance in rats. Glutamate (5.0µg) or picrotoxin (0.08µg) infused 90min after training had no effect. In animals trained with a low level footshock a second training session, 120min after the first, was needed in order to obtain a good retention test performance. This was taken to reflect summation of the consecutive memory traces left by the two training sessions. In these animals, the infusion of AP5 or muscimol into the entorhinal cortex between the two training sessions impeded their summation. The present results suggest that the entorhinal cortex plays a late role in memory processing, that this role does not need a hyperactivation of the entorhinal cortex, and that it is important for the interaction between consecutive memory traces.

  14. Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample.

    PubMed

    Illeghems, Koen; Weckx, Stefan; De Vuyst, Luc

    2015-09-01

    A high-resolution functional metagenomic analysis of a representative single sample of a Brazilian spontaneous cocoa bean fermentation process was carried out to gain insight into its bacterial community functioning. By reconstruction of microbial meta-pathways based on metagenomic data, the current knowledge about the metabolic capabilities of bacterial members involved in the cocoa bean fermentation ecosystem was extended. Functional meta-pathway analysis revealed the distribution of the metabolic pathways between the bacterial members involved. The metabolic capabilities of the lactic acid bacteria present were most associated with the heterolactic fermentation and citrate assimilation pathways. The role of Enterobacteriaceae in the conversion of substrates was shown through the use of the mixed-acid fermentation and methylglyoxal detoxification pathways. Furthermore, several other potential functional roles for Enterobacteriaceae were indicated, such as pectinolysis and citrate assimilation. Concerning acetic acid bacteria, metabolic pathways were partially reconstructed, in particular those related to responses toward stress, explaining their metabolic activities during cocoa bean fermentation processes. Further, the in-depth metagenomic analysis unveiled functionalities involved in bacterial competitiveness, such as the occurrence of CRISPRs and potential bacteriocin production. Finally, comparative analysis of the metagenomic data with bacterial genomes of cocoa bean fermentation isolates revealed the applicability of the selected strains as functional starter cultures. PMID:25998815

  15. Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample.

    PubMed

    Illeghems, Koen; Weckx, Stefan; De Vuyst, Luc

    2015-09-01

    A high-resolution functional metagenomic analysis of a representative single sample of a Brazilian spontaneous cocoa bean fermentation process was carried out to gain insight into its bacterial community functioning. By reconstruction of microbial meta-pathways based on metagenomic data, the current knowledge about the metabolic capabilities of bacterial members involved in the cocoa bean fermentation ecosystem was extended. Functional meta-pathway analysis revealed the distribution of the metabolic pathways between the bacterial members involved. The metabolic capabilities of the lactic acid bacteria present were most associated with the heterolactic fermentation and citrate assimilation pathways. The role of Enterobacteriaceae in the conversion of substrates was shown through the use of the mixed-acid fermentation and methylglyoxal detoxification pathways. Furthermore, several other potential functional roles for Enterobacteriaceae were indicated, such as pectinolysis and citrate assimilation. Concerning acetic acid bacteria, metabolic pathways were partially reconstructed, in particular those related to responses toward stress, explaining their metabolic activities during cocoa bean fermentation processes. Further, the in-depth metagenomic analysis unveiled functionalities involved in bacterial competitiveness, such as the occurrence of CRISPRs and potential bacteriocin production. Finally, comparative analysis of the metagenomic data with bacterial genomes of cocoa bean fermentation isolates revealed the applicability of the selected strains as functional starter cultures.

  16. Sensitivity to volcanic field boundary

    NASA Astrophysics Data System (ADS)

    Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed

    2016-04-01

    Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and

  17. Ice Shell Thickness and Endogenic Processes on Europa from Mapping and Topographic Analyses of Pits, Uplifts and Small Chaos Features (Invited)

    NASA Astrophysics Data System (ADS)

    Singer, K. N.; McKinnon, W. B.; Schenk, P.

    2013-12-01

    Constraining the thickness of the ice shell on Europa and the geological processes occurring in it are keys to understanding this icy world and its potential habitability. We focus on circular-to-subcircular features generally agreed to have been created by endogenic processes in Europa's ice shell or ocean: pits, uplifts, and subcircular chaos. Pits and uplifts are defined by their negative or positive topographic expression, respectively. Pits and uplifts generally retain pre-existing surface structures such as ridges, while chaos specifically refers to areas where the surface is broken up, in some cases to the point of destroying all original surface topography. We have mapped all features plausibly created by upwellings or other endogenic processes in the size range of 1 to 50 km in diameter, and incorporated previously unavailable topographic data as an aid to mapping and characterization of features. Topography was derived from albedo-controlled photoclinometry and crosschecked with stereo data where possible. Mapping was carried out over the medium-resolution Galileo regional maps (RegMaps) covering approximately 9% of Europa's surface, as well as over available high-resolution regions. While limited in extent, the latter are extremely valuable for detecting smaller features and for overall geomorphological analysis. Results of this new mapping show decreasing numbers of small features, and a peak in the size distribution for all features at approximately 5-6 km in diameter. No pits smaller than 3.3 km in diameter were found in high resolution imagery. Topography was used to find the depths and heights of pits and uplifts in the mapped regions. A general trend of increasing pit depth with increasing pit size was found, a correlation more easily understood in the context of a diapiric hypothesis for feature formation (as opposed to purely non-diapiric, melt-through models). Based on isostasy, maximum pit depths of ~0.3-to-0.48 km imply a minimum shell

  18. Transcriptome Analyses Reveal Lipid Metabolic Process in Liver Related to the Difference of Carcass Fat Content in Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Hu, Guo; Gu, Wei; Sun, Peng; Bai, Qingli

    2016-01-01

    Excessive accumulation of carcass fat in farm animals, including fish, has a significant impact on meat quality and on the cost of feeding. Similar to farmed animals and humans, the liver can be considered one of the most important organs involved in lipid metabolism in rainbow trout (Oncorhynchus mykiss). RNA-seq based whole transcriptome sequencing was performed to liver tissue of rainbow trout with high and low carcass fat content in this study. In total 1,694 differentially expressed transcripts were identified, including many genes involved in lipid metabolism, such as L-FABP, adiponectin, PPAR-α, PPAR-β, and IGFBP1a. Evidence presented in this study indicated that lipid metabolic process in liver may be related to the difference of carcass fat content. The relevance of PPAR-α and PPAR-β as molecular markers for fat storage in liver should be worthy of further investigation. PMID:27652256

  19. Transcriptome Analyses Reveal Lipid Metabolic Process in Liver Related to the Difference of Carcass Fat Content in Rainbow Trout (Oncorhynchus mykiss).

    PubMed

    Hu, Guo; Gu, Wei; Sun, Peng; Bai, Qingli; Wang, Bingqian

    2016-01-01

    Excessive accumulation of carcass fat in farm animals, including fish, has a significant impact on meat quality and on the cost of feeding. Similar to farmed animals and humans, the liver can be considered one of the most important organs involved in lipid metabolism in rainbow trout (Oncorhynchus mykiss). RNA-seq based whole transcriptome sequencing was performed to liver tissue of rainbow trout with high and low carcass fat content in this study. In total 1,694 differentially expressed transcripts were identified, including many genes involved in lipid metabolism, such as L-FABP, adiponectin, PPAR-α, PPAR-β, and IGFBP1a. Evidence presented in this study indicated that lipid metabolic process in liver may be related to the difference of carcass fat content. The relevance of PPAR-α and PPAR-β as molecular markers for fat storage in liver should be worthy of further investigation. PMID:27652256

  20. Integrated Analyses of Multiple Worldwide Aerosol Mass Spectrometer Datasets for Improved Understanding of Aerosol Sources and Processes and for Comparison with Global Models

    SciTech Connect

    Zhang, Qi; Jose, Jimenez Luis

    2014-04-28

    The AMS is the only current instrument that provides real-time, quantitative, and size-resolved data on submicron non-refractory aerosol species with a time resolution of a few minutes or better. The AMS field data are multidimensional and massive, containing extremely rich information on aerosol chemistry, microphysics and dynamics—basic information that is required to evaluate and quantify the radiative climate forcing of atmospheric aerosols. The high time resolution of the AMS data also reveals details of aerosol dynamic variations that are vital to understanding the physico-chemical processes of atmospheric aerosols that govern aerosol properties relevant to the climate. There are two primary objectives of this 3-year project. Our first objective is to perform highly integrated analysis of dozens of AMS datasets acquired from various urban, forested, coastal, marine, mountain peak, and rural/remote locations around the world and synthesize and inter-compare results with a focus on the sources and the physico-chemical processes that govern aerosol properties relevant to aerosol climate forcing. Our second objective is to support our collaboration with global aerosol modelers, in which we will supply the size-resolved aerosol composition and temporal variation data (via a public web interface) and our analysis results for use in model testing and validation and for translation of the rich AMS database into model constraints that can improve climate forcing simulations. Several prominent global aerosol modelers have expressed enthusiastic support for this collaboration. The specific tasks that we propose to accomplish include 1) to develop, validate, and apply multivariate analysis techniques for improved characterization and source apportionment of organic aerosols; 2) to evaluate aerosol source regions and relative contributions based on back-trajectory integration (PSCF method); 3) to summarize and synthesize submicron aerosol information, including

  1. Transcriptome Analyses Reveal Lipid Metabolic Process in Liver Related to the Difference of Carcass Fat Content in Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Hu, Guo; Gu, Wei; Sun, Peng; Bai, Qingli

    2016-01-01

    Excessive accumulation of carcass fat in farm animals, including fish, has a significant impact on meat quality and on the cost of feeding. Similar to farmed animals and humans, the liver can be considered one of the most important organs involved in lipid metabolism in rainbow trout (Oncorhynchus mykiss). RNA-seq based whole transcriptome sequencing was performed to liver tissue of rainbow trout with high and low carcass fat content in this study. In total 1,694 differentially expressed transcripts were identified, including many genes involved in lipid metabolism, such as L-FABP, adiponectin, PPAR-α, PPAR-β, and IGFBP1a. Evidence presented in this study indicated that lipid metabolic process in liver may be related to the difference of carcass fat content. The relevance of PPAR-α and PPAR-β as molecular markers for fat storage in liver should be worthy of further investigation.

  2. A process-based model for ammonia emission from urine patches, GAG (Generation of Ammonia from Grazing): description, validation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Móring, A.; Vieno, M.; Doherty, R. M.; Laubach, J.; Taghizadeh-Toosi, A.; Sutton, M. A.

    2015-07-01

    In this paper a new process-based, weather-driven model for ammonia (NH3) emission from a urine patch has been developed and its sensitivity to various factors assessed. This model, the GAG model (Generation of Ammonia from Grazing) was developed as a part of a suite of weather-driven NH3 exchange models, as a necessary basis for assessing the effects of climate change on NH3 related atmospheric processes. GAG is capable of simulating the TAN (Total Ammoniacal Nitrogen) content, pH and the water content of the soil under a urine patch. To calculate the TAN budget, GAG takes into account urea hydrolysis as a TAN input and NH3 volatilization as a loss. In the water budget, in addition to the water content of urine, precipitation and evaporation are also considered. In the pH module we assumed that the main regulating processes are the dissociation and dissolution equilibria related to the two products of urea hydrolysis: ammonium and bicarbonate. Finally, in the NH3 exchange flux calculation we adapted a canopy compensation point model that accounts for exchange with soil pores and stomata as well as deposition to the leaf surface. We validated our model against measurements, and carried out a sensitivity analysis. The validation showed that the simulated parameters (NH3 exchange flux, soil pH, TAN budget and water budget) are well captured by the model (r > 0.5 for every parameter at p < 0.01 significance level). We found that process-based modelling of pH is necessary to reproduce the temporal development of NH3 emission. In addition, our results suggested that more sophisticated simulation of CO2 emission in the model could potentially improve the modelling of pH. The sensitivity analysis highlighted the vital role of temperature in NH3 exchange; however, presumably due to the TAN limitation, the GAG model currently provides only a modest overall temperature dependence in total NH3 emission compared with the values in the literature. Since all the input parameters

  3. A numerical comparison of sensitivity analysis techniques

    SciTech Connect

    Hamby, D.M.

    1993-12-31

    Engineering and scientific phenomena are often studied with the aid of mathematical models designed to simulate complex physical processes. In the nuclear industry, modeling the movement and consequence of radioactive pollutants is extremely important for environmental protection and facility control. One of the steps in model development is the determination of the parameters most influential on model results. A {open_quotes}sensitivity analysis{close_quotes} of these parameters is not only critical to model validation but also serves to guide future research. A previous manuscript (Hamby) detailed many of the available methods for conducting sensitivity analyses. The current paper is a comparative assessment of several methods for estimating relative parameter sensitivity. Method practicality is based on calculational ease and usefulness of the results. It is the intent of this report to demonstrate calculational rigor and to compare parameter sensitivity rankings resulting from various sensitivity analysis techniques. An atmospheric tritium dosimetry model (Hamby) is used here as an example, but the techniques described can be applied to many different modeling problems. Other investigators (Rose; Dalrymple and Broyd) present comparisons of sensitivity analyses methodologies, but none as comprehensive as the current work.

  4. Inhomogeneous Forcing and Transient Climate Sensitivity

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2014-01-01

    Understanding climate sensitivity is critical to projecting climate change in response to a given forcing scenario. Recent analyses have suggested that transient climate sensitivity is at the low end of the present model range taking into account the reduced warming rates during the past 10-15 years during w