Science.gov

Sample records for process sensitivity analyses

  1. Uncertainty and Sensitivity Analyses Plan

    SciTech Connect

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project.

  2. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  3. Workload analyse of assembling process

    NASA Astrophysics Data System (ADS)

    Ghenghea, L. D.

    2015-11-01

    The workload is the most important indicator for managers responsible of industrial technological processes no matter if these are automated, mechanized or simply manual in each case, machines or workers will be in the focus of workload measurements. The paper deals with workload analyses made to a most part manual assembling technology for roller bearings assembling process, executed in a big company, with integrated bearings manufacturing processes. In this analyses the delay sample technique have been used to identify and divide all bearing assemblers activities, to get information about time parts from 480 minutes day work time that workers allow to each activity. The developed study shows some ways to increase the process productivity without supplementary investments and also indicated the process automation could be the solution to gain maximum productivity.

  4. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    SciTech Connect

    Hansen, Clifford W.; Martin, Curtis E.

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature; (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.

  5. SENSITIVITY ANALYSIS FOR SALTSTONE DISPOSAL UNIT COLUMN DEGRADATION ANALYSES

    SciTech Connect

    Flach, G.

    2014-10-28

    PORFLOW related analyses supporting a Sensitivity Analysis for Saltstone Disposal Unit (SDU) column degradation were performed. Previous analyses, Flach and Taylor 2014, used a model in which the SDU columns degraded in a piecewise manner from the top and bottom simultaneously. The current analyses employs a model in which all pieces of the column degrade at the same time. Information was extracted from the analyses which may be useful in determining the distribution of Tc-99 in the various SDUs throughout time and in determining flow balances for the SDUs.

  6. Sensitivity and optimization analyses of the ``ACOGAS`` gas conditioning plant

    SciTech Connect

    Ochoa, D.; Cardenas, A.R.

    1995-11-01

    ACOGAS is a gas dew point control plant (water and hydrocarbons), operated by Lagoven S.A., a subsidiary of Petroleos de Venezuela S.A. (PDVSA). The ACOGAS plant located in Jusepin, Eastern Venezuela, produces stabilized condensate from an inlet gas stream which is a mixture of different gravity gases obtained by separation and compression from various oil production fields in the area. Sensitivity and optimization analyses of the plant and the stabilizer tower were carried out to evaluate the effects of: plant capacity reductions during shutdowns of some unspared systems of the plant; composition changes from original design basis; segregation of the lean gas currents from the inlet gas stream, reducing total flow but increasing GPM (C{sub 3}{sup +}) content; and incorporating condensate from the upstream compression processes in the inlet gas stream. It is shown that significant increases of stabilized condensate production could be obtained, while maintaining the quality for the condensate and lean residual gas within specifications, by various low cost modifications to the upstream processes and the stabilizer tower. Additionally, a change of the stabilizer tower valves could lower the minimum acceptable inlet flow, thereby increasing flexibility during shutdowns and low feed gas flows.

  7. Nonindependence and sensitivity analyses in ecological and evolutionary meta-analyses.

    PubMed

    Noble, Daniel W A; Lagisz, Malgorzata; O'dea, Rose E; Nakagawa, Shinichi

    2017-01-30

    Meta-analysis is an important tool for synthesizing research on a variety of topics in ecology and evolution, including molecular ecology, but can be susceptible to nonindependence. Nonindependence can affect two major interrelated components of a meta-analysis: (i) the calculation of effect size statistics and (ii) the estimation of overall meta-analytic estimates and their uncertainty. While some solutions to nonindependence exist at the statistical analysis stages, there is little advice on what to do when complex analyses are not possible, or when studies with nonindependent experimental designs exist in the data. Here we argue that exploring the effects of procedural decisions in a meta-analysis (e.g. inclusion of different quality data, choice of effect size) and statistical assumptions (e.g. assuming no phylogenetic covariance) using sensitivity analyses are extremely important in assessing the impact of nonindependence. Sensitivity analyses can provide greater confidence in results and highlight important limitations of empirical work (e.g. impact of study design on overall effects). Despite their importance, sensitivity analyses are seldom applied to problems of nonindependence. To encourage better practice for dealing with nonindependence in meta-analytic studies, we present accessible examples demonstrating the impact that ignoring nonindependence can have on meta-analytic estimates. We also provide pragmatic solutions for dealing with nonindependent study designs, and for analysing dependent effect sizes. Additionally, we offer reporting guidelines that will facilitate disclosure of the sources of nonindependence in meta-analyses, leading to greater transparency and more robust conclusions.

  8. Balancing data sharing requirements for analyses with data sensitivity

    USGS Publications Warehouse

    Jarnevich, C.S.; Graham, J.J.; Newman, G.J.; Crall, A.W.; Stohlgren, T.J.

    2007-01-01

    Data sensitivity can pose a formidable barrier to data sharing. Knowledge of species current distributions from data sharing is critical for the creation of watch lists and an early warning/rapid response system and for model generation for the spread of invasive species. We have created an on-line system to synthesize disparate datasets of non-native species locations that includes a mechanism to account for data sensitivity. Data contributors are able to mark their data as sensitive. This data is then 'fuzzed' in mapping applications and downloaded files to quarter-quadrangle grid cells, but the actual locations are available for analyses. We propose that this system overcomes the hurdles to data sharing posed by sensitive data. ?? 2006 Springer Science+Business Media B.V.

  9. Singular vector decomposition for sensitivity analyses of tropospheric chemical scenarios

    NASA Astrophysics Data System (ADS)

    Goris, N.; Elbern, H.

    2011-06-01

    Observations of the chemical state of the atmosphere typically provide only sparse snapshots of the state of the system due to their insufficient temporal and spatial density. Therefore the measurement configurations need to be optimised to get a best possible state estimate. One possibility to optimise the state estimate is provided by observation targeting of sensitive system states, to identify measurement configurations of best value for forecast improvements. In recent years, numerical weather prediction adapted singular vector analysis with respect to initial values as a novel method to identify sensitive states. In the present work, this technique is transferred from meteorological to chemical forecast. Besides initial values, emissions are investigated as controlling variables. More precisely uncertainties in the amplitude of the diurnal profile of emissions are analysed, yielding emission factors as target variables. Singular vector analysis is extended to allow for projected target variables not only at final time but also at initial time. Further, special operators are introduced, which consider the combined influence of groups of chemical species. As a preparation for targeted observation calculations, the concept of adaptive observations is studied with a chemistry box model. For a set of six different scenarios, the VOC versus NOx limitation of the ozone formation is investigated. Results reveal, that the singular vectors are strongly dependent on start time and length of the simulation. As expected, singular vectors with initial values as target variables tend to be more sensitive to initial values, while emission factors as target variables are more sensitive to simulation length. Further, the particular importance of chemical compounds differs strongly between absolute and relative error growth.

  10. Seeking harmony: estimands and sensitivity analyses for confirmatory clinical trials.

    PubMed

    Mehrotra, Devan V; Hemmings, Robert J; Russek-Cohen, Estelle

    2016-08-01

    In October 2014, the Steering Committee of the International Conference on Harmonization endorsed the formation of an expert working group to develop an addendum to the International Conference on Harmonization E9 guideline ("Statistical Principles for Clinical Trials"). The addendum will focus on two topics involving randomized confirmatory clinical trials: estimands and sensitivity analyses. Both topics are motivated, in part, by the need to improve the precision with which scientific questions of interest are formulated and addressed by clinical trialists and regulators, specifically in the context of post-randomization events such as use of rescue medication or missing data resulting from dropouts. Given the importance of these topics for the statistical and medical community, we articulate the reasons for the planned addendum. The resulting "ICH E9/R1" guideline will include a framework for improved trial planning, conduct, analysis, and interpretation; a draft is expected to be ready for public comment in the second half of 2016.

  11. Uncertainty and Sensitivity Analyses of Duct Propagation Models

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Watson, Willie R.; Jones, Michael G.

    2008-01-01

    This paper presents results of uncertainty and sensitivity analyses conducted to assess the relative merits of three duct propagation codes. Results from this study are intended to support identification of a "working envelope" within which to use the various approaches underlying these propagation codes. This investigation considers a segmented liner configuration that models the NASA Langley Grazing Incidence Tube, for which a large set of measured data was available. For the uncertainty analysis, the selected input parameters (source sound pressure level, average Mach number, liner impedance, exit impedance, static pressure and static temperature) are randomly varied over a range of values. Uncertainty limits (95% confidence levels) are computed for the predicted values from each code, and are compared with the corresponding 95% confidence intervals in the measured data. Generally, the mean values of the predicted attenuation are observed to track the mean values of the measured attenuation quite well and predicted confidence intervals tend to be larger in the presence of mean flow. A two-level, six factor sensitivity study is also conducted in which the six inputs are varied one at a time to assess their effect on the predicted attenuation. As expected, the results demonstrate the liner resistance and reactance to be the most important input parameters. They also indicate the exit impedance is a significant contributor to uncertainty in the predicted attenuation.

  12. Synthesis of trigeneration systems: sensitivity analyses and resilience.

    PubMed

    Carvalho, Monica; Lozano, Miguel A; Ramos, José; Serra, Luis M

    2013-01-01

    This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs.

  13. Synthesis of Trigeneration Systems: Sensitivity Analyses and Resilience

    PubMed Central

    Carvalho, Monica; Lozano, Miguel A.; Ramos, José; Serra, Luis M.

    2013-01-01

    This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs. PMID:24453881

  14. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    SciTech Connect

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings.

  15. Entropy Analyses of Four Familiar Processes.

    ERIC Educational Resources Information Center

    Craig, Norman C.

    1988-01-01

    Presents entropy analysis of four processes: a chemical reaction, a heat engine, the dissolution of a solid, and osmosis. Discusses entropy, the second law of thermodynamics, and the Gibbs free energy function. (MVL)

  16. Genome-Facilitated Analyses of Geomicrobial Processes

    SciTech Connect

    Kenneth H. Nealson

    2012-05-02

    that makes up chitin, virtually all of the strains were in fact capable. This led to the discovery of a great many new genes involved with chitin and NAG metabolism (7). In a similar vein, a detailed study of the sugar utilization pathway revealed a major new insight into the regulation of sugar metabolism in this genus (19). Systems Biology and Comparative Genomics of the shewanellae: Several publications were put together describing the use of comparative genomics for analyses of the group Shewanella, and these were a logical culmination of our genomic-driven research (10,15,18). Eight graduate students received their Ph.D. degrees doing part of the work described here, and four postdoctoral fellows were supported. In addition, approximately 20 undergraduates took part in projects during the grant period.

  17. Marginal Utility of Conditional Sensitivity Analyses for Dynamic Models

    EPA Science Inventory

    Background/Question/MethodsDynamic ecological processes may be influenced by many factors. Simulation models thatmimic these processes often have complex implementations with many parameters. Sensitivityanalyses are subsequently used to identify critical parameters whose uncertai...

  18. Uncertainty and Sensitivity Analyses Plan. Draft for Peer Review: Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project.

  19. Structural Glycomic Analyses at High Sensitivity: A Decade of Progress

    PubMed Central

    Alley, William R.; Novotny, Milos V.

    2014-01-01

    The field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems. PMID:23560930

  20. Structural Glycomic Analyses at High Sensitivity: A Decade of Progress

    NASA Astrophysics Data System (ADS)

    Alley, William R.; Novotny, Milos V.

    2013-06-01

    The field of glycomics has recently advanced in response to the urgent need for structural characterization and quantification of complex carbohydrates in biologically and medically important applications. The recent success of analytical glycobiology at high sensitivity reflects numerous advances in biomolecular mass spectrometry and its instrumentation, capillary and microchip separation techniques, and microchemical manipulations of carbohydrate reactivity. The multimethodological approach appears to be necessary to gain an in-depth understanding of very complex glycomes in different biological systems.

  1. Grid and aerodynamic sensitivity analyses of airplane components

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, Ideen; Smith, Robert E.; Tiwari, Surendra N.

    1993-01-01

    An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic optimization. The procedure is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B-Splines) for defining the wing-section geometry. An interactive algebraic grid generation technique, known as Two-Boundary Grid Generation (TBGG) is employed to generate C-type grids around wing-sections. The grid sensitivity of the domain with respect to geometric design parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations such as a wing or fuselage. The aerodynamic sensitivity coefficients are obtained by direct differentiation of the compressible two-dimensional thin-layer Navier-Stokes equations. An optimization package has been introduced into the algorithm in order to optimize the wing-section surface. Results demonstrate a substantially improved design due to maximized lift/drag ratio of the wing-section.

  2. Peer review of HEDR uncertainty and sensitivity analyses plan

    SciTech Connect

    Hoffman, F.O.

    1993-06-01

    This report consists of a detailed documentation of the writings and deliberations of the peer review panel that met on May 24--25, 1993 in Richland, Washington to evaluate your draft report ``Uncertainty/Sensitivity Analysis Plan`` (PNWD-2124 HEDR). The fact that uncertainties are being considered in temporally and spatially varying parameters through the use of alternative time histories and spatial patterns deserves special commendation. It is important to identify early those model components and parameters that will have the most influence on the magnitude and uncertainty of the dose estimates. These are the items that should be investigated most intensively prior to committing to a final set of results.

  3. Ultraconserved Elements: Analyses of Dosage Sensitivity, Motifs and Boundaries

    PubMed Central

    Chiang, Charleston W. K.; Derti, Adnan; Schwartz, Daniel; Chou, Michael F.; Hirschhorn, Joel N.; Wu, C.-ting

    2008-01-01

    Ultraconserved elements (UCEs) are sequences that are identical between reference genomes of distantly related species. As they are under negative selection and enriched near or in specific classes of genes, one explanation for their ultraconservation may be their involvement in important functions. Indeed, many UCEs can drive tissue-specific gene expression. We have demonstrated that nonexonic UCEs are depleted among segmental duplications (SDs) and copy number variants (CNVs) and proposed that their ultraconservation may reflect a mechanism of copy counting via comparison. Here, we report that nonexonic UCEs are also depleted among 10 of 11 recent genomewide data sets of human CNVs, including 3 obtained with strategies permitting greater precision in determining the extents of CNVs. We further present observations suggesting that nonexonic UCEs per se may contribute to this depletion and that their apparent dosage sensitivity was in effect when they became fixed in the last common ancestor of mammals, birds, and reptiles, consistent with dosage sensitivity contributing to ultraconservation. Finally, in searching for the mechanism(s) underlying the function of nonexonic UCEs, we have found that they are enriched in TAATTA, which is also the recognition sequence for the homeodomain DNA-binding module, and bounded by a change in A + T frequency. PMID:18957701

  4. The Sensitization Process Of Dichromated Gelatin

    NASA Astrophysics Data System (ADS)

    Billard, Thomas C.; Pawluczyk, Romuald; Hockley, Bernard S.

    1989-05-01

    The effects of varying the concentration of the ammonium dichromate sensitizing solution on the gelatin film properties were investigated quantitatively. The film thicknesses were measured following preparation, sensitization and processing. The refractive indices of the film surfaces were measured following sensitization and processing. The absorbances of the films were measured following sensitization. The results indicated that following sensitization the refractive indices of the films increased and the film thicknesses decreased for low ammonium dichromate concentrations and increased for high concentrations. Subsequent to processing, the refractive indices decreased and the film thicknesses increased for films sensitized at low concentrations and decreased for films sensitized at high concentrations. The expected shifts in the reconstruction wavelengths were determined from the changes in the film thicknesses and refractive indices and were found to agree well with the wavelength shifts measured using a spectrophotometer. The reconstruction wavelengths were determined to vary linearly with the specific absorbance. The diffraction efficiencies and bandwidths of the holograms produced increased as the concentration of the ammonium dichromate in the sensitizing bath was increased. The implications of the results for the production of highly efficient volume holograms were discussed.

  5. A tutorial on sensitivity analyses in clinical trials: the what, why, when and how

    PubMed Central

    2013-01-01

    Background Sensitivity analyses play a crucial role in assessing the robustness of the findings or conclusions based on primary analyses of data in clinical trials. They are a critical way to assess the impact, effect or influence of key assumptions or variations—such as different methods of analysis, definitions of outcomes, protocol deviations, missing data, and outliers—on the overall conclusions of a study. The current paper is the second in a series of tutorial-type manuscripts intended to discuss and clarify aspects related to key methodological issues in the design and analysis of clinical trials. Discussion In this paper we will provide a detailed exploration of the key aspects of sensitivity analyses including: 1) what sensitivity analyses are, why they are needed, and how often they are used in practice; 2) the different types of sensitivity analyses that one can do, with examples from the literature; 3) some frequently asked questions about sensitivity analyses; and 4) some suggestions on how to report the results of sensitivity analyses in clinical trials. Summary When reporting on a clinical trial, we recommend including planned or posthoc sensitivity analyses, the corresponding rationale and results along with the discussion of the consequences of these analyses on the overall findings of the study. PMID:23855337

  6. Phase sensitive Raman process with correlated seeds

    SciTech Connect

    Chen, Bing; Qiu, Cheng; Chen, L. Q. Zhang, Kai; Guo, Jinxian; Yuan, Chun-Hua; Zhang, Weiping; Ou, Z. Y.

    2015-03-16

    A phase sensitive Raman scattering was experimentally demonstrated by injecting a Stokes light seed into an atomic ensemble, whose internal state is set in such a way that it is coherent with the input Stokes seed. Such phase sensitive characteristic is a result of interference effect due to the phase correlation between the injected Stokes light field and the internal state of the atomic ensemble in the Raman process. Furthermore, the constructive interference leads to a Raman efficiency larger than other kinds of Raman processes such as stimulated Raman process with Stokes seed injection alone or uncorrelated light-atom seeding. It may find applications in precision spectroscopy, quantum optics, and precise measurement.

  7. A method to enhance the sensitivity of DTI analyses to group differences: a validation study with comparison to voxelwise analyses.

    PubMed

    Cykowski, Matthew D; Lancaster, Jack L; Fox, Peter T

    2011-09-30

    Studies of white matter (WM) abnormalities in psychiatric and neurological disorders often use the analysis package Tract-Based Spatial Statistics (TBSS). However, with small samples and/or subtle effects, a study using the standard TBSS approach can be underpowered. For such cases, a new method is presented that summarizes global differences between TBSS-derived fractional anisotropy (FA) images with a single paired t-statistic, estimating the degrees of freedom using spatial autocorrelation. The sensitivity of the method is demonstrated by using well-known aging effects on FA as a proxy for disease effects. Sixty healthy subjects were divided equally into younger- (YA), middle- (MA), and older-aged (OA) groups and significant global differences were demonstrated in the YA versus OA (all N ≥ 4, FA difference≈0.023), MA versus OA (all N≥4, FA difference≈0.017), and YA versus MA (FA difference≈0.005 at N=20) comparisons. In contrast, no significant difference could be detected in the YA versus MA comparison using voxelwise TBSS analysis with the full sample (N=20 per group). This method should facilitate localizing analyses in the direction of a proven group difference while providing clinically relevant information about pathophysiologic processes globally affecting WM.

  8. Do lipids influence the allergic sensitization process?

    PubMed

    Bublin, Merima; Eiwegger, Thomas; Breiteneder, Heimo

    2014-09-01

    Allergic sensitization is a multifactorial process that is not only influenced by the allergen and its biological function per se but also by other small molecular compounds, such as lipids, that are directly bound as ligands by the allergen or are present in the allergen source. Several members of major allergen families bind lipid ligands through hydrophobic cavities or electrostatic or hydrophobic interactions. These allergens include certain seed storage proteins, Bet v 1-like and nonspecific lipid transfer proteins from pollens and fruits, certain inhalant allergens from house dust mites and cockroaches, and lipocalins. Lipids from the pollen coat and furry animals and the so-called pollen-associated lipid mediators are codelivered with the allergens and can modulate the immune responses of predisposed subjects by interacting with the innate immune system and invariant natural killer T cells. In addition, lipids originating from bacterial members of the pollen microbiome contribute to the outcome of the sensitization process. Dietary lipids act as adjuvants and might skew the immune response toward a TH2-dominated phenotype. In addition, the association with lipids protects food allergens from gastrointestinal degradation and facilitates their uptake by intestinal cells. These findings will have a major influence on how allergic sensitization will be viewed and studied in the future.

  9. Do lipids influence the allergic sensitization process?

    PubMed Central

    Bublin, Merima; Eiwegger, Thomas; Breiteneder, Heimo

    2014-01-01

    Allergic sensitization is a multifactorial process that is not only influenced by the allergen and its biological function per se but also by other small molecular compounds, such as lipids, that are directly bound as ligands by the allergen or are present in the allergen source. Several members of major allergen families bind lipid ligands through hydrophobic cavities or electrostatic or hydrophobic interactions. These allergens include certain seed storage proteins, Bet v 1–like and nonspecific lipid transfer proteins from pollens and fruits, certain inhalant allergens from house dust mites and cockroaches, and lipocalins. Lipids from the pollen coat and furry animals and the so-called pollen-associated lipid mediators are codelivered with the allergens and can modulate the immune responses of predisposed subjects by interacting with the innate immune system and invariant natural killer T cells. In addition, lipids originating from bacterial members of the pollen microbiome contribute to the outcome of the sensitization process. Dietary lipids act as adjuvants and might skew the immune response toward a TH2-dominated phenotype. In addition, the association with lipids protects food allergens from gastrointestinal degradation and facilitates their uptake by intestinal cells. These findings will have a major influence on how allergic sensitization will be viewed and studied in the future. PMID:24880633

  10. Sensitivity analyses of spatial population viability analysis models for species at risk and habitat conservation planning.

    PubMed

    Naujokaitis-Lewis, Ilona R; Curtis, Janelle M R; Arcese, Peter; Rosenfeld, Jordan

    2009-02-01

    Population viability analysis (PVA) is an effective framework for modeling species- and habitat-recovery efforts, but uncertainty in parameter estimates and model structure can lead to unreliable predictions. Integrating complex and often uncertain information into spatial PVA models requires that comprehensive sensitivity analyses be applied to explore the influence of spatial and nonspatial parameters on model predictions. We reviewed 87 analyses of spatial demographic PVA models of plants and animals to identify common approaches to sensitivity analysis in recent publications. In contrast to best practices recommended in the broader modeling community, sensitivity analyses of spatial PVAs were typically ad hoc, inconsistent, and difficult to compare. Most studies applied local approaches to sensitivity analyses, but few varied multiple parameters simultaneously. A lack of standards for sensitivity analysis and reporting in spatial PVAs has the potential to compromise the ability to learn collectively from PVA results, accurately interpret results in cases where model relationships include nonlinearities and interactions, prioritize monitoring and management actions, and ensure conservation-planning decisions are robust to uncertainties in spatial and nonspatial parameters. Our review underscores the need to develop tools for global sensitivity analysis and apply these to spatial PVA.

  11. Systematic Processing of Clementine Data for Scientific Analyses

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1993-01-01

    If fully successful, the Clementine mission will return about 3,000,000 lunar images and more than 5000 images of Geographos. Effective scientific analyses of such large datasets require systematic processing efforts. Concepts for two such efforts are described: glogal multispectral imaging of the moon; and videos of Geographos.

  12. Odor processing in multiple chemical sensitivity.

    PubMed

    Hillert, Lena; Musabasic, Vildana; Berglund, Hans; Ciumas, Carolina; Savic, Ivanka

    2007-03-01

    Multiple chemical sensitivity (MCS) is characterized by somatic distress upon exposure to odors. As in other idiopathic environmental intolerances, the mechanisms behind the reported hypersensitivity are unknown. Using the advantage of the well-defined trigger (odor), we investigated whether subjects with MCS could have an increased odor-signal response in the odor-processing neuronal circuits. Positron emission tomography (PET) activation studies with several different odorants were carried out in 12 MCS females and 12 female controls. Activation was defined as a significant increase in regional cerebral blood flow (rCBF) during smelling of the respective odorant compared to smelling of odorless air. The study also included online measurements of respiratory frequency and amplitude and heart rate variations by recording of R wave intervals (RR) on the surface electrocardiogram. The MCS subjects activated odor-processing brain regions less than controls, despite the reported, and physiologically indicated (decreased RR interval) distress. In parallel, they showed an odorant-related increase in activation of the anterior cingulate cortex and cuneus-precuneus. Notably, the baseline rCBF was normal. Thus, the abnormal patterns were observed only in response to odor signals. Subjects with MCS process odors differently from controls, however, without signs of neuronal sensitization. One possible explanation for the observed pattern of activation in MCS is a top-down regulation of odor-response via cingulate cortex.

  13. Further investigation of EUV process sensitivities for wafer track processing

    NASA Astrophysics Data System (ADS)

    Bradon, Neil; Nafus, K.; Shite, H.; Kitano, J.; Kosugi, H.; Goethals, M.; Cheng, S.; Hermans, J.; Hendrickx, E.; Baudemprez, B.; Van Den Heuvel, D.

    2010-04-01

    As Extreme ultraviolet (EUV) lithography technology shows promising results below 40nm feature sizes, TOKYO ELECTRON LTD.(TEL) is committed to understanding the fundamentals needed to improve our technology, thereby enabling customers to meet roadmap expectations. TEL continues collaboration with imec for evaluation of Coater/Developer processing sensitivities using the ASML Alpha Demo Tool for EUV exposures. The results from the collaboration help develop the necessary hardware for EUV Coater/Developer processing. In previous work, processing sensitivities of the resist materials were investigated to determine the impact on critical dimension (CD) uniformity and defectivity. In this work, new promising resist materials have been studied and more information pertaining to EUV exposures was obtained. Specifically, post exposure bake (PEB) impact to CD is studied in addition to dissolution characteristics and resist material hydrophobicity. Additionally, initial results show the current status of CDU and defectivity with the ADT/CLEAN TRACK ACTTM 12 lithocluster. Analysis of a five wafer batch of CDU wafers shows within wafer and wafer to wafer contribution from track processing. A pareto of a patterned wafer defectivity test gives initial insight into the process defects with the current processing conditions. From analysis of these data, it's shown that while improvements in processing are certainly possible, the initial results indicate a manufacturable process for EUV.

  14. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    NASA Astrophysics Data System (ADS)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  15. Process improvement for regulatory analyses of custom-blend fertilizers.

    PubMed

    Wegner, Keith A

    2014-01-01

    Chemical testing of custom-blend fertilizers is essential to ensure that the products meet the formulation requirements. For purposes of proper crop nutrition and consumer protection, regulatory oversight promotes compliance and particular attention to blending and formulation specifications. Analyses of custom-blend fertilizer products must be performed and reported within a very narrow window in order to be effective. The Colorado Department of Agriculture's Biochemistry Laboratory is an ISO 17025 accredited facility and conducts analyses of custom-blend fertilizer products primarily during the spring planting season. Using the Lean Six Sigma (LSS) process, the Biochemistry Laboratory has reduced turnaround times from as much as 45 days to as little as 3 days. The LSS methodology focuses on waste reduction through identifying: non-value-added steps, unneeded process reviews, optimization of screening and confirmatory analyses, equipment utilization, nonessential reporting requirements, and inefficient personnel deployment. Eliminating these non-value-added activities helped the laboratory significantly shorten turnaround time and reduce costs. Key improvement elements discovered during the LSS process included: focused sample tracking, equipment redundancy, strategic supply stocking, batch size optimization, critical sample paths, elimination of nonessential QC reviews, and more efficient personnel deployment.

  16. Designing optimized industrial process analysers for closed loop control

    PubMed Central

    Grevesmuehl, Bernard; Kradjel, Cynthia; Kellner, Hanno

    1991-01-01

    Manufacturers are now looking closely at ways of optimizing ‘quality’ and increasing process efficiency while reducing manufacturing costs. Near infra-red (NIR) technology is a popular solution to this challenge: it provides manufacturers with rapid and reliable in-process analysis and thousands of systems have already been installed in the food, chemical, pharmaceutical and agricultural markets. For over 10 years, NIR has been successfully applied to at-line process analysis. Rugged and easy-to-operate filter analysers are traditionally located in the control room–process operators can then ‘grab samples’ and obtain results in less than a minute. There are many practical advantages to using at-line filter systems. Products from many lines can be run on one system, and, since there is no direct process interface, installation, operation and maintenance are quite simple. Many manufacturers, however, are now striving to achieve on-line closed loop control, in these cases the benefit of obtaining continuous measurement is well worth the effort required to automate the analysis. PMID:18924898

  17. Ground water flow modeling with sensitivity analyses to guide field data collection in a mountain watershed

    USGS Publications Warehouse

    Johnson, Raymond H.

    2007-01-01

    In mountain watersheds, the increased demand for clean water resources has led to an increased need for an understanding of ground water flow in alpine settings. In Prospect Gulch, located in southwestern Colorado, understanding the ground water flow system is an important first step in addressing metal loads from acid-mine drainage and acid-rock drainage in an area with historical mining. Ground water flow modeling with sensitivity analyses are presented as a general tool to guide future field data collection, which is applicable to any ground water study, including mountain watersheds. For a series of conceptual models, the observation and sensitivity capabilities of MODFLOW-2000 are used to determine composite scaled sensitivities, dimensionless scaled sensitivities, and 1% scaled sensitivity maps of hydraulic head. These sensitivities determine the most important input parameter(s) along with the location of observation data that are most useful for future model calibration. The results are generally independent of the conceptual model and indicate recharge in a high-elevation recharge zone as the most important parameter, followed by the hydraulic conductivities in all layers and recharge in the next lower-elevation zone. The most important observation data in determining these parameters are hydraulic heads at high elevations, with a depth of less than 100 m being adequate. Evaluation of a possible geologic structure with a different hydraulic conductivity than the surrounding bedrock indicates that ground water discharge to individual stream reaches has the potential to identify some of these structures. Results of these sensitivity analyses can be used to prioritize data collection in an effort to reduce time and money spend by collecting the most relevant model calibration data.

  18. Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts.

    SciTech Connect

    Sevougian, S. David; Freeze, Geoffrey A.; Gardner, William Payton; Hammond, Glenn Edward; Mariner, Paul

    2014-09-01

    directly, rather than through simplified abstractions. It also a llows for complex representations of the source term, e.g., the explicit representation of many individual waste packages (i.e., meter - scale detail of an entire waste emplacement drift). This report fulfills the Generic Disposal System Analysis Work Packa ge Level 3 Milestone - Performance Assessment Modeling and Sensitivity Analyses of Generic Disposal System Concepts (M 3 FT - 1 4 SN08080 3 2 ).

  19. Project W-320 SAR and process control thermal analyses

    SciTech Connect

    Sathyanarayana, K.

    1997-06-19

    This report summarizes the results of thermal hydraulic computer modeling supporting Project W-320 for process control and SAR documentation. Parametric analyses were performed for the maximum steady state waste temperature. The parameters included heat load distribution, tank heat load, fluffing factor and thermal conductivity. Uncertainties in the fluffing factor and heat load distribution had the largest effect on maximum waste temperature. Safety analyses were performed for off normal events including loss of ventilation, loss of evaporation and loss of secondary chiller. The loss of both the primary and secondary ventilation was found to be the most limiting event with saturation temperature in the bottom waste reaching in just over 30 days. An evaluation was performed for the potential lowering of the supernatant level in tank 241-AY-102. The evaluation included a loss of ventilation and steam bump analysis. The reduced supernatant level decreased the time to reach saturation temperature in the waste for the loss of ventilation by about one week. However, the consequence of a steam bump were dramatically reduced.

  20. Finite element analyses of tool stresses in metal cutting processes

    SciTech Connect

    Kistler, B.L.

    1997-01-01

    In this report, we analytically predict and examine stresses in tool tips used in high speed orthogonal machining operations. Specifically, one analysis was compared to an existing experimental measurement of stresses in a sapphire tool tip cutting 1020 steel at slow speeds. In addition, two analyses were done of a carbide tool tip in a machining process at higher cutting speeds, in order to compare to experimental results produced as part of this study. The metal being cut was simulated using a Sandia developed damage plasticity material model, which allowed the cutting to occur analytically without prespecifying the line of cutting/failure. The latter analyses incorporated temperature effects on the tool tip. Calculated tool forces and peak stresses matched experimental data to within 20%. Stress contours generally agreed between analysis and experiment. This work could be extended to investigate/predict failures in the tool tip, which would be of great interest to machining shops in understanding how to optimize cost/retooling time.

  1. Quasi-Static Probabilistic Structural Analyses Process and Criteria

    NASA Technical Reports Server (NTRS)

    Goldberg, B.; Verderaime, V.

    1999-01-01

    Current deterministic structural methods are easily applied to substructures and components, and analysts have built great design insights and confidence in them over the years. However, deterministic methods cannot support systems risk analyses, and it was recently reported that deterministic treatment of statistical data is inconsistent with error propagation laws that can result in unevenly conservative structural predictions. Assuming non-nal distributions and using statistical data formats throughout prevailing stress deterministic processes lead to a safety factor in statistical format, which integrated into the safety index, provides a safety factor and first order reliability relationship. The embedded safety factor in the safety index expression allows a historically based risk to be determined and verified over a variety of quasi-static metallic substructures consistent with the traditional safety factor methods and NASA Std. 5001 criteria.

  2. CHILDREN AS A SENSITIVE SUBPOPULATION FOR THE RISK ASSESSMENT PROCESS

    EPA Science Inventory

    Children as a sensitive subpopulation for the risk assessment process
    Abstract
    For cancer risk assessment purposes, it is necessary to consider how to incorporate sensitive subpopulations into the process to ensure that they are appropriately protected. Children represent o...

  3. Accounting for management costs in sensitivity analyses of matrix population models.

    PubMed

    Baxter, Peter W J; McCarthy, Michael A; Possingham, Hugh P; Menkhorst, Peter W; McLean, Natasha

    2006-06-01

    Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency.

  4. Incorporating uncertainty of management costs in sensitivity analyses of matrix population models.

    PubMed

    Salomon, Yacov; McCarthy, Michael A; Taylor, Peter; Wintle, Brendan A

    2013-02-01

    The importance of accounting for economic costs when making environmental-management decisions subject to resource constraints has been increasingly recognized in recent years. In contrast, uncertainty associated with such costs has often been ignored. We developed a method, on the basis of economic theory, that accounts for the uncertainty in population-management decisions. We considered the case where, rather than taking fixed values, model parameters are random variables that represent the situation when parameters are not precisely known. Hence, the outcome is not precisely known either. Instead of maximizing the expected outcome, we maximized the probability of obtaining an outcome above a threshold of acceptability. We derived explicit analytical expressions for the optimal allocation and its associated probability, as a function of the threshold of acceptability, where the model parameters were distributed according to normal and uniform distributions. To illustrate our approach we revisited a previous study that incorporated cost-efficiency analyses in management decisions that were based on perturbation analyses of matrix population models. Incorporating derivations from this study into our framework, we extended the model to address potential uncertainties. We then applied these results to 2 case studies: management of a Koala (Phascolarctos cinereus) population and conservation of an olive ridley sea turtle (Lepidochelys olivacea) population. For low aspirations, that is, when the threshold of acceptability is relatively low, the optimal strategy was obtained by diversifying the allocation of funds. Conversely, for high aspirations, the budget was directed toward management actions with the highest potential effect on the population. The exact optimal allocation was sensitive to the choice of uncertainty model. Our results highlight the importance of accounting for uncertainty when making decisions and suggest that more effort should be placed on

  5. Sensitivity analyses of turbulence theory-based variance-covariance matrices of tropospheric slant delays

    NASA Astrophysics Data System (ADS)

    Vennebusch, M.; Schön, S.

    2009-04-01

    Atmospheric turbulence induces physical correlations on any space geodetic technique based on electromagnetic waves. Thus, also GNSS phase observations are both temporally and spatially correlated due to refractivity fluctuations along the signal's path from the transmitter to the receiver. Currently, these physical correlations are rarely considered in GNSS data analysis; yielding too optimistic parameter variances and covariances. Based on turbulence theory, Schön and Brunner (2008) developed a formulation of the variances and covariances induced by refractivity fluctuations in the troposphere. This model adequately describes the variance-covariance matrix (VCM) of tropospheric slant delays. The parametrisation is mainly based on the turbulence structure constant, the outer scale length, the integration height, the wind direction and the observation geometry. The VCM can adequately be used to determine synthetic slant delay time series. In this paper, this strategy will be described by using an exemplary GPS configuration. Furthermore, the latest results of simulation studies and sensitivity analyses of this VCM model w.r.t. the model parameters are presented. As a result, the most dominant parameters (that should be either determined with special care or precisely known) will be identified.

  6. Thermodynamics of Gases: Combustion Processes, Analysed in Slow Motion

    ERIC Educational Resources Information Center

    Vollmer, Michael; Mollmann, Klaus-Peter

    2013-01-01

    We present a number of simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature relatively slow combustion processes of pure hydrogen as well as fast reactions involving oxy-hydrogen in a stoichiometric mixture. (Contains 4 figures.)

  7. Uncertainty and Sensitivity Analyses of a Two-Parameter Impedance Prediction Model

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2008-01-01

    This paper presents comparisons of predicted impedance uncertainty limits derived from Monte-Carlo-type simulations with a Two-Parameter (TP) impedance prediction model and measured impedance uncertainty limits based on multiple tests acquired in NASA Langley test rigs. These predicted and measured impedance uncertainty limits are used to evaluate the effects of simultaneous randomization of each input parameter for the impedance prediction and measurement processes. A sensitivity analysis is then used to further evaluate the TP prediction model by varying its input parameters on an individual basis. The variation imposed on the input parameters is based on measurements conducted with multiple tests in the NASA Langley normal incidence and grazing incidence impedance tubes; thus, the input parameters are assigned uncertainties commensurate with those of the measured data. These same measured data are used with the NASA Langley impedance measurement (eduction) processes to determine the corresponding measured impedance uncertainty limits, such that the predicted and measured impedance uncertainty limits (95% confidence intervals) can be compared. The measured reactance 95% confidence intervals encompass the corresponding predicted reactance confidence intervals over the frequency range of interest. The same is true for the confidence intervals of the measured and predicted resistance at near-resonance frequencies, but the predicted resistance confidence intervals are lower than the measured resistance confidence intervals (no overlap) at frequencies away from resonance. A sensitivity analysis indicates the discharge coefficient uncertainty is the major contributor to uncertainty in the predicted impedances for the perforate-over-honeycomb liner used in this study. This insight regarding the relative importance of each input parameter will be used to guide the design of experiments with test rigs currently being brought on-line at NASA Langley.

  8. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes

    PubMed Central

    Curtis, Janelle M.R.

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  9. Advances in global sensitivity analyses of demographic-based species distribution models to address uncertainties in dynamic landscapes.

    PubMed

    Naujokaitis-Lewis, Ilona; Curtis, Janelle M R

    2016-01-01

    Developing a rigorous understanding of multiple global threats to species persistence requires the use of integrated modeling methods that capture processes which influence species distributions. Species distribution models (SDMs) coupled with population dynamics models can incorporate relationships between changing environments and demographics and are increasingly used to quantify relative extinction risks associated with climate and land-use changes. Despite their appeal, uncertainties associated with complex models can undermine their usefulness for advancing predictive ecology and informing conservation management decisions. We developed a computationally-efficient and freely available tool (GRIP 2.0) that implements and automates a global sensitivity analysis of coupled SDM-population dynamics models for comparing the relative influence of demographic parameters and habitat attributes on predicted extinction risk. Advances over previous global sensitivity analyses include the ability to vary habitat suitability across gradients, as well as habitat amount and configuration of spatially-explicit suitability maps of real and simulated landscapes. Using GRIP 2.0, we carried out a multi-model global sensitivity analysis of a coupled SDM-population dynamics model of whitebark pine (Pinus albicaulis) in Mount Rainier National Park as a case study and quantified the relative influence of input parameters and their interactions on model predictions. Our results differed from the one-at-time analyses used in the original study, and we found that the most influential parameters included the total amount of suitable habitat within the landscape, survival rates, and effects of a prevalent disease, white pine blister rust. Strong interactions between habitat amount and survival rates of older trees suggests the importance of habitat in mediating the negative influences of white pine blister rust. Our results underscore the importance of considering habitat attributes along

  10. MASSIVELY PARALLEL LATENT SEMANTIC ANALYSES USING A GRAPHICS PROCESSING UNIT

    SciTech Connect

    Cavanagh, J.; Cui, S.

    2009-01-01

    Latent Semantic Analysis (LSA) aims to reduce the dimensions of large term-document datasets using Singular Value Decomposition. However, with the ever-expanding size of datasets, current implementations are not fast enough to quickly and easily compute the results on a standard PC. A graphics processing unit (GPU) can solve some highly parallel problems much faster than a traditional sequential processor or central processing unit (CPU). Thus, a deployable system using a GPU to speed up large-scale LSA processes would be a much more effective choice (in terms of cost/performance ratio) than using a PC cluster. Due to the GPU’s application-specifi c architecture, harnessing the GPU’s computational prowess for LSA is a great challenge. We presented a parallel LSA implementation on the GPU, using NVIDIA® Compute Unifi ed Device Architecture and Compute Unifi ed Basic Linear Algebra Subprograms software. The performance of this implementation is compared to traditional LSA implementation on a CPU using an optimized Basic Linear Algebra Subprograms library. After implementation, we discovered that the GPU version of the algorithm was twice as fast for large matrices (1 000x1 000 and above) that had dimensions not divisible by 16. For large matrices that did have dimensions divisible by 16, the GPU algorithm ran fi ve to six times faster than the CPU version. The large variation is due to architectural benefi ts of the GPU for matrices divisible by 16. It should be noted that the overall speeds for the CPU version did not vary from relative normal when the matrix dimensions were divisible by 16. Further research is needed in order to produce a fully implementable version of LSA. With that in mind, the research we presented shows that the GPU is a viable option for increasing the speed of LSA, in terms of cost/performance ratio.

  11. Development of analytical Fourier transform nuclear magnetic resonance spectroscopy for sensitivity enhancement and mixture analyses

    SciTech Connect

    Ha, Steven Tung-Kuen.

    1989-01-01

    FT-NMR has been explored with regard to its ability to analyze mixtures. The recycled-flow NMR method, which permits premagnetized nuclei to flow into the detector before acquisition, allows substantial sensitivity enhancement, especially for those nuclei with inefficient relaxation mechanisms. The enhancement factor of flow NMR over static NMR is between 3.5-5 for the slowly relaxing carbon nuclei. Similar enhancements have been observed in 1D spin-echo and 2D J-resolved experiments. A mathematical discussion of the potential enhancement in recycled-flow NMR indicates that this enhancement could be as large as 20. In addition, flow NMR also provides accurate quantitative {sup 13}C data in substantially less time. These dual advantages of recycled-flow NMR have been applied to analyze two mixtures and to determine the MW{sub n} of several polyethylene glycols. An on-line continuous-flow high performance liquid chromatography (HPLC)/{sup 1}H NMR system has been developed on a 400 MHz FT-NMR spectrometer. The detection limit of this system is estimated to be 30 {mu}g, using alanine and caffeine as test samples. For practical HPLC/NMR analyses, a 200 {mu}g quantity of material may be required. The eluent used in reversed-phase (RP)-HPLC, which interfaces with the proton signals of the eluates, is suppressed by the binomial and WATR (Water Attenuation by T{sub 2} Relaxation) pulse methods. RP-HPLC/{sup 1}H NMR is applied to the separation and identification of antimycin A, a class of antibiotics used in fishery management, and its degradation products, antimycin lactones. A method based on the long range J-resolved (LRJR) NMR experiment is developed to analyze mixtures. LRJR is used to select those carbons that are modulated due to the long range {sub 1}H-{sup 13}C coupling to a specific proton(s).

  12. Uncertainty and sensitivity analyses in seismic risk assessments on the example of Cologne, Germany

    NASA Astrophysics Data System (ADS)

    Tyagunov, S.; Pittore, M.; Wieland, M.; Parolai, S.; Bindi, D.; Fleming, K.; Zschau, J.

    2014-06-01

    Both aleatory and epistemic uncertainties associated with different sources and components of risk (hazard, exposure, vulnerability) are present at each step of seismic risk assessments. All individual sources of uncertainty contribute to the total uncertainty, which might be very high and, within the decision-making context, may therefore lead to either very conservative and expensive decisions or the perception of considerable risk. When anatomizing the structure of the total uncertainty, it is therefore important to propagate the different individual uncertainties through the computational chain and to quantify their contribution to the total value of risk. The present study analyses different uncertainties associated with the hazard, vulnerability and loss components by the use of logic trees. The emphasis is on the analysis of epistemic uncertainties, which represent the reducible part of the total uncertainty, including a sensitivity analysis of the resulting seismic risk assessments with regard to the different uncertainty sources. This investigation, being a part of the EU FP7 project MATRIX (New Multi-Hazard and Multi-Risk Assessment Methods for Europe), is carried out for the example of, and with reference to, the conditions of the city of Cologne, Germany, which is one of the MATRIX test cases. At the same time, this particular study does not aim to revise nor to refine the hazard and risk level for Cologne; it is rather to show how large are the existing uncertainties and how they can influence seismic risk estimates, especially in less well-studied areas, if hazard and risk models adapted from other regions are used.

  13. Process analyses of ITER Toroidal Field Structure cooling scheme

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Takami, S.; Iwamoto, A.; Chang, H. S.; Forgeas, A.; Chalifour, M.; Serio, L.

    2014-09-01

    Process studies for Toroidal Field Structure (TF ST) system with a dedicated Auxiliary Cold Box (ACB-ST) have been conducted under 15 MA baseline, including plasma disruptions. ACB-ST consists of two heat exchangers immersed in the Liquid Helium (LHe) subcooler, which are placed at the inlet/outlet of a Supercritical Helium (SHe) cold circulator (centrifugal pump). Robustness of ACB-ST is a key to achieve the stability of TF coil operation since it provides the thermal barrier at the interface of the TF Winding Pack (WP) with ST. The paper discusses the control logic for the nominal plasma operating scenario and for Mitigation to regulate the dynamic heat loads on ST. In addition, the operation field of a cold circulator is described in the case of plasma disruptions. The required performance of heat exchangers in the ACB-ST is assessed based on the expected operating conditions.

  14. Feasibility studies for separation processes using environmentally sensitive hydrogels

    SciTech Connect

    Sassi, A.P.; Blanch, H.W.; Prausnitz, J.M.

    1994-12-01

    Temperature- and pH-sensitive hydrogels can be used to separate or concentrate proteins from dilute solution. Two possible separation processes are discussed here. Experimental partitioning data are used to compare the efficiencies of neutral, weakly acidic, weakly basic, and polyampholytic poly-N-isopropylacrylamide copolymer gels for separating cytochrome c from ovalbumin. For each process, attention is given to the influence of the solute partition coefficient and swelling equilibria on process efficiency.

  15. Physician Cost Profiling-Reliability and Risk of Misclassification: Detailed Methodology and Sensitivity Analyses.

    PubMed

    Adams, John L; Mehrotra, Ateev; Thomas, J William; McGlynn, Elizabeth A; Adams, John L; Mehrotra, Ateev; McGlynn, Elizabeth A

    2012-01-01

    This article describes the methods and sensitivity analyses used by the authors in an article published in the New England Journal of Medicine. Purchasers are experimenting with a variety of approaches to control health care costs, including limiting network contracts to lower-cost physicians and offering patients differential copayments to encourage them to visit "high-performance" (i.e., higher-quality, lower-cost) physicians. These approaches require a method for analyzing physicians' costs and a classification system for determining which physicians have lower relative costs. There has been little analysis of the reliability of such methods. Reliability is determined by three factors: the number of observations, the variation between physicians in their use of resources, and random variation in the scores. A study of claims data from four Massachusetts health plans demonstrates that, according to the current methods of physician cost profiling, the majority of physicians did not have cost profiles that met common reliability thresholds and, importantly, reliability varied significantly by specialty. Low reliability results in a substantial chance that a given physician will be misclassified as lower-cost when he or she is not, or vice versa. Such findings raise concerns about the use of cost profiling tools and the utility of their results. It also explains the relationship between reliability measurement and misclassification for physician quality and cost measures in health care. It provides details and a practical method to calculate reliability and misclassification from the data typically available to health plans. This article builds on other RAND work on reliability and misclassification and has two main goals. First, it can serve as a tutorial for measuring reliability and misclassification. Second, it will describe the likelihood of misclassification in a situation not addressed in our prior work in which physicians are categorized using statistical

  16. Integrated Process Model Development and Systems Analyses for the LIFE Power Plant

    SciTech Connect

    Meier, W R; Anklam, T; Abbott, R; Erlandson, A; Halsey, W; Miles, R; Simon, A J

    2009-07-15

    We have developed an integrated process model (IPM) for a Laser Inertial Fusion-Fission Energy (LIFE) power plant. The model includes cost and performance algorithms for the major subsystems of the plant, including the laser, fusion target fabrication and injection, fusion-fission chamber (including the tritium and fission fuel blankets), heat transfer and power conversion systems, and other balance of plant systems. The model has been developed in Visual Basic with an Excel spreadsheet user interface in order to allow experts in various aspects of the design to easily integrate their individual modules and provide a convenient, widely accessible platform for conducting the system studies. Subsystem modules vary in level of complexity; some are based on top-down scaling from fission power plant costs (for example, electric plant equipment), while others are bottom-up models based on conceptual designs being developed by LLNL (for example, the fusion-fission chamber and laser systems). The IPM is being used to evaluate design trade-offs, do design optimization, and conduct sensitivity analyses to identify high-leverage areas for R&D. We describe key aspects of the IPM and report on the results of our systems analyses. Designs are compared and evaluated as a function of key design variables such as fusion target yield and pulse repetition rate.

  17. Nicotine-induced locomotor sensitization: pharmacological analyses with candidate smoking cessation aids.

    PubMed

    Goutier, Wouter; Kloeze, Margreet; McCreary, Andrew C

    2016-03-01

    There are a number of approved therapeutics for the management of alcohol dependence, which might also convey the potential as smoking cessation aids. The present study investigated the effect of a few of these therapeutics and potential candidates (non-peptide vasopressin V1b antagonists) on the expression of nicotine-induced behavioral sensitization in Wistar rats. The following compounds were included in this evaluation: rimonabant, bupropion, topiramate, acamprosate, naltrexone, mecamylamine, nelivaptan (SSR-149415, V1b antagonist) and two novel V1b antagonists. Following the development of nicotine-induced locomotor sensitization and a withdrawal period, the expression of sensitization was assessed in the presence of one of the examined agents given 30 minutes prior to the nicotine challenge injection. Acamprosate, naltrexone, rimonabant, mecamylamine, nelivaptan and V1b antagonist 'compound 2' significantly antagonized the expression of nicotine-induced sensitization. Whereas topiramate showed a trend for effects, the V1b antagonist 'compound 1' did not show any significant effects. Bupropion failed to block sensitization but increased activity alone and was therefore tested in development and cross-sensitization studies. Taken together, these findings provide pre-clinical evidence that these molecules attenuated the expression of nicotine-induced sensitization and should be further investigated as putative treatments for nicotine addiction. Moreover, V1b antagonists should be further investigated as a potential novel smoking cessation aid.

  18. Space shuttle orbiter digital data processing system timing sensitivity analysis OFT ascent phase

    NASA Technical Reports Server (NTRS)

    Lagas, J. J.; Peterka, J. J.; Becker, D. A.

    1977-01-01

    Dynamic loads were investigated to provide simulation and analysis of the space shuttle orbiter digital data processing system (DDPS). Segments of the ascent test (OFT) configuration were modeled utilizing the information management system interpretive model (IMSIM) in a computerized simulation modeling of the OFT hardware and software workload. System requirements for simulation of the OFT configuration were defined, and sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and these sensitivity analyses, a test design was developed for adapting, parameterizing, and executing IMSIM, using varying load and stress conditions for model execution. Analyses of the computer simulation runs are documented, including results, conclusions, and recommendations for DDPS improvements.

  19. Deterministic vs. probabilistic analyses to identify sensitive parameters in dose assessment using RESRAD.

    PubMed

    Kamboj, Sunita; Cheng, Jing-Jy; Yu, Charley

    2005-05-01

    The dose assessments for sites containing residual radioactivity usually involve the use of computer models that employ input parameters describing the physical conditions of the contaminated and surrounding media and the living and consumption patterns of the receptors in analyzing potential doses to the receptors. The precision of the dose results depends on the precision of the input parameter values. The identification of sensitive parameters that have great influence on the dose results would help set priorities in research and information gathering for parameter values so that a more precise dose assessment can be conducted. Two methods of identifying site-specific sensitive parameters, deterministic and probabilistic, were compared by applying them to the RESRAD computer code for analyzing radiation exposure for a residential farmer scenario. The deterministic method has difficulty in evaluating the effect of simultaneous changes in a large number of input parameters on the model output results. The probabilistic method easily identified the most sensitive parameters, but the sensitivity measure of other parameters was obscured. The choice of sensitivity analysis method would depend on the availability of site-specific data. Generally speaking, the deterministic method would identify the same set of sensitive parameters as the probabilistic method when 1) the baseline values used in the deterministic method were selected near the mean or median value of each parameter and 2) the selected range of parameter values used in the deterministic method was wide enough to cover the 5th to 95th percentile values from the distribution of that parameter.

  20. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China

    PubMed Central

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-01-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs. PMID:27052108

  1. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China

    NASA Astrophysics Data System (ADS)

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-04-01

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.

  2. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China.

    PubMed

    Yang, Yanzheng; Zhu, Qiuan; Peng, Changhui; Wang, Han; Xue, Wei; Lin, Guanghui; Wen, Zhongming; Chang, Jie; Wang, Meng; Liu, Guobin; Li, Shiqing

    2016-04-07

    Increasing evidence indicates that current dynamic global vegetation models (DGVMs) have suffered from insufficient realism and are difficult to improve, particularly because they are built on plant functional type (PFT) schemes. Therefore, new approaches, such as plant trait-based methods, are urgently needed to replace PFT schemes when predicting the distribution of vegetation and investigating vegetation sensitivity. As an important direction towards constructing next-generation DGVMs based on plant functional traits, we propose a novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. The results demonstrated that a Gaussian mixture model (GMM) trained with a LMA-Nmass-LAI data combination yielded an accuracy of 72.82% in simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem functions. The new approach also performed well in analyses of vegetation sensitivity to different climatic scenarios. Although the trait-climate relationship is not the only candidate useful for predicting vegetation distributions and analysing climatic sensitivity, it sheds new light on the development of next-generation trait-based DGVMs.

  3. Global Sensitivity and Data-Worth Analyses in iTOUGH2: User's Guide

    SciTech Connect

    Wainwright, Haruko Murakami; Finsterle, Stefan

    2016-07-15

    This manual explains the use of local sensitivity analysis, the global Morris OAT and Sobol’ methods, and a related data-worth analysis as implemented in iTOUGH2. In addition to input specification and output formats, it includes some examples to show how to interpret results.

  4. Grid and design variables sensitivity analyses for NACA four-digit wing-sections

    NASA Technical Reports Server (NTRS)

    Sadrehaghighi, Ideen; Smith, Robert E.; Tiwari, Surendra N.

    1993-01-01

    Two distinct parameterization procedures are developed for investigating the grid sensitivity with respect to design parameters of a wing-section example. The first procedure is based on traditional (physical) relations defining NACA four-digit wing-sections. The second is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B-Splines) for defining the wing-section geometry. An interactive algebraic grid generation technique, known as Hermite Cubic Interpolation, is employed to generate C-type grids around wing-sections. The grid sensitivity of the domain with respect to design and grid parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations. A comparison of the sensitivity coefficients with those obtained using a finite-difference approach has been made to verify the feasibility of the approach. The aerodynamic sensitivity coefficients are obtained using the compressible two-dimensional thin-layer Navier-Stokes equations.

  5. Description, evaluation, and sensitivity analyses of principal US EPA air quality prediction models

    SciTech Connect

    Greenway, A.R.; Ellis, H.M.; Deland, R.J.

    1980-08-01

    The scientific validity of the principal assumptions used in the US Environmental Protection Agency (EPA) air pollution prediction models was reviewed. The computational assumptions and equations used in the principal EPA models were reviewed, as was the recommended applicability of these models and their performance as reported in validation and comparison studies. In addition, a sensitivity analysis of model response to input parameter changes was conducted. The performance of the CRSTER, the Urban and Rural RAM Models, and by inference the MPTER Model of the UNAMAP series was reviewed and evaluated based on available studies of the performance of these models. It is concluded that the RAM (Urban) Model tends to overpredict the impact of sources with tall stacks, even in urban areas due to the treatment of unstable cases. The RAM (Urban) Model implicitly accounts for building-effect downwash through enhanced plume spreading rates. The CRSTER Model performs well when the ratio of stack height to receptor height is high, but leads to overpredictions when the ratio is low. This, in complex terrain cases involving moderate stack heights, the CRSTER Model tends to overpredict. A sensitivity analysis showed that the CRSTER Model is more sensitive to input parameter values than the RAM Model. The CRSTER Model is most sensitive to changes in wind speed, stack height, stack gas exit velocity and stack gas exit temperature. Thus, these parameters should be well defined. This sensitivity increases as the ratio of stack height to receptor height decreases. Since the MPTER Model has not yet been released for use by US EPA, the evaluation of this model was more limited. Since it is basically a multi-source version of the single source CRSTER Model, conclusions concerning MPTER are inferred from the CRSTER evaluations.

  6. Uncertainty and Sensitivity Analyses of a Pebble Bed HTGR Loss of Cooling Event

    DOE PAGES

    Strydom, Gerhard

    2013-01-01

    The Very High Temperature Reactor Methods Development group at the Idaho National Laboratory identified the need for a defensible and systematic uncertainty and sensitivity approach in 2009. This paper summarizes the results of an uncertainty and sensitivity quantification investigation performed with the SUSA code, utilizing the International Atomic Energy Agency CRP 5 Pebble Bed Modular Reactor benchmark and the INL code suite PEBBED-THERMIX. Eight model input parameters were selected for inclusion in this study, and after the input parameters variations and probability density functions were specified, a total of 800 steady state and depressurized loss of forced cooling (DLOFC) transientmore » PEBBED-THERMIX calculations were performed. The six data sets were statistically analyzed to determine the 5% and 95% DLOFC peak fuel temperature tolerance intervals with 95% confidence levels. It was found that the uncertainties in the decay heat and graphite thermal conductivities were the most significant contributors to the propagated DLOFC peak fuel temperature uncertainty. No significant differences were observed between the results of Simple Random Sampling (SRS) or Latin Hypercube Sampling (LHS) data sets, and use of uniform or normal input parameter distributions also did not lead to any significant differences between these data sets.« less

  7. Lower Stratospheric Temperature Differences In Meteorological Analyses and Their Impact On Polar Processing Studies

    NASA Astrophysics Data System (ADS)

    Manney, G.; Sabutis, J.; Pawson, S.; Santee, M.; Naujokat, B.; Swinbank, R.; Gelman, M.; Ebisuzaki, W.

    Models - chemical transport models (CTMs), trajectory and Eulerian transport mod- els, microphysical models - used in polar processing studies typically rely on winds and/or temperatures from one of several meteorological analyses to drive the transport and control processes such as polar stratospheric cloud (PSC) formation and chemical reaction rates. Using different analyzed data sets to obtain temperatures and temper- ature histories can have significant consequences. A quantitative comparison of six meteorological analyses (UK Met Office, National Centers for Environmental Pre- diction/Climate Prediction Center (NCEP), NCEP/National Center for Atmospheric Research Reanalysis (REAN), Freie Universität Berlin, European Centre for Medium- Range Weather Forecasts (ECMWF), NASA Data Assimilation Office (DAO)) is pre- sented for the cold 1999-2000 and 1995-1996 Arctic winters, showing substantial dif- ferences in diagnostics related to polar processing between the different analyses. Bi- ases between analyses vary from year to year. Temperature history case studies show substantial differences using Met Office, NCEP, REAN, ECMWF, and DAO analyses. Different meteorological conditions in the comparably cold winters of 1995-1996 and 1999-2000 had a large impact on both expectations for PSC formation and on the ef- fects of discrepancies between different meteorological analyses. Met Office, NCEP, REAN, ECMWF, and DAO analyses are commonly used in modeling polar processes; the choice of analysis can strongly influence the results of such studies.

  8. Adjoint modeling for atmospheric pollution process sensitivity at regional scale

    NASA Astrophysics Data System (ADS)

    Menut, Laurent

    2003-09-01

    During the summer 1998, a strong pollution event was documented over Paris as part of the Etude et Simulation de la Qualité de l'air en Ile-de-France (ESQUIF) project (second intensive observation period (IOP2)). From 7 to 9 August 1998 the pollution event changes from a well-marked ozone plume issued from Paris to a more general pollution over the whole Ile-de-France region. Using a three-dimensional chemistry-transport model and its adjoint part, the sensitivity of ozone, Ox, and NOx peaks to model parameters is investigated. For two locations, Paris and a suburban site, the influence of both meteorological and chemical model parameters on the simulated field concentrations is hourly quantified for each day. Processes leading to a urban polluted event are compared. It is shown that the pollutant concentrations are mainly driven by traffic and solvent surface emissions and meteorological parameters such as temperature. Since the adjoint approach is limited to infinitesimal model perturbation, some scenario simulations are carried out to evaluate the linearity of the impact of the most sensitive parameters within the uncertainty range. It is shown that the sensitivities determined from the adjoint approach can be extrapolated until their uncertainty ranges except for the wind speed.

  9. Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan.

    PubMed

    Sebti, Issam; Chollet, Emilie; Degraeve, Pascal; Noel, Claude; Peyrol, Eric

    2007-02-07

    Several properties of chitosan films associated or not with hydroxypropylmethylcellulose polymer (HPMC) and HPMC films incorporating or not nisin and/or milk fat were studied. Nisin addition at a level of 250 microg mL-1 and likewise chitosan at 1% (w/v) concentration were efficient for total inhibiting Aspergillus niger and Kocuria rhizophila food deterioration microorganisms. HPMC and chitosan films were transparent, whereas nisin and/or fat incorporation induced a 2-fold lightness parameter increase and, consequently, involved more white films. Measurements of tensile strength, as well as ultimate elongation, showed that chitosan and HPMC initial films were elastic and flexible. High thermal treatments and additive incorporation induced less elastic and more plastic films. Water vapor transmission as far as total water desorption rates suggested that chitosan films were slightly sensitive to water. Water transfer was decreased by <60% as compared with other biopolymer films. Regarding its hydrophobic property, the capacity of fat to improve film water barrier was very limited.

  10. Uncertainty and sensitivity analyses of a decision analytic model for posteradication polio risk management.

    PubMed

    Duintjer Tebbens, Radboud J; Pallansch, Mark A; Kew, Olen M; Sutter, Roland W; Bruce Aylward, R; Watkins, Margaret; Gary, Howard; Alexander, James; Jafari, Hamid; Cochi, Stephen L; Thompson, Kimberly M

    2008-08-01

    Decision analytic modeling of polio risk management policies after eradication may help inform decisionmakers about the quantitative tradeoffs implied by various options. Given the significant dynamic complexity and uncertainty involving posteradication decisions, this article aims to clarify the structure of a decision analytic model developed to help characterize the risks, costs, and benefits of various options for polio risk management after eradication of wild polioviruses and analyze the implications of different sources of uncertainty. We provide an influence diagram of the model with a description of each component, explore the impact of different assumptions about model inputs, and present probability distributions of model outputs. The results show that choices made about surveillance, response, and containment for different income groups and immunization policies play a major role in the expected final costs and polio cases. While the overall policy implications of the model remain robust to the variations of assumptions and input uncertainty we considered, the analyses suggest the need for policymakers to carefully consider tradeoffs and for further studies to address the most important knowledge gaps.

  11. IASI's sensitivity to near-surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases

    NASA Astrophysics Data System (ADS)

    Bauduin, Sophie; Clarisse, Lieven; Theunissen, Michael; George, Maya; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2017-03-01

    Separating concentrations of carbon monoxide (CO) in the boundary layer from the rest of the atmosphere with nadir satellite measurements is of particular importance to differentiate emission from transport. Although thermal infrared (TIR) satellite sounders are considered to have limited sensitivity to the composition of the near-surface atmosphere, previous studies show that they can provide information on CO close to the ground in case of high thermal contrast. In this work we investigate the capability of IASI (Infrared Atmospheric Sounding Interferometer) to retrieve near-surface CO concentrations, and we quantitatively assess the influence of thermal contrast on such retrievals. We present a 3-part analysis, which relies on both theoretical forward simulations and retrievals on real data, performed for a large range of negative and positive thermal contrast situations. First, we derive theoretically the IASI detection threshold of CO enhancement in the boundary layer, and we assess its dependence on thermal contrast. Then, using the optimal estimation formalism, we quantify the role of thermal contrast on the error budget and information content of near-surface CO retrievals. We demonstrate that, contrary to what is usually accepted, large negative thermal contrast values (ground cooler than air) lead to a better decorrelation between CO concentrations in the low and the high troposphere than large positive thermal contrast (ground warmer than the air). In the last part of the paper we use Mexico City and Barrow as test cases to contrast our theoretical predictions with real retrievals, and to assess the accuracy of IASI surface CO retrievals through comparisons to ground-based in-situ measurements.

  12. Uncertainty and sensitivity analyses in seismic risk assessments on the example of Cologne, Germany

    NASA Astrophysics Data System (ADS)

    Tyagunov, S.; Pittore, M.; Wieland, M.; Parolai, S.; Bindi, D.; Fleming, K.; Zschau, J.

    2013-12-01

    Both aleatory and epistemic uncertainties associated with different sources and components of risk (hazard, exposure, vulnerability) are present at each step of seismic risk assessments. All individual sources of uncertainty contribute to the total uncertainty, which might be very high and, within the decision-making context, may therefore lead to either very conservative and expensive decisions or the perception of considerable risk. When anatomizing the structure of the total uncertainty, it is therefore important to propagate the different individual uncertainties through the computational chain and to quantify their contribution to the total value of risk. The present study analyzes different uncertainties associated with the hazard, vulnerability and loss components by the use of logic trees. The emphasis is on the analysis of epistemic uncertainties, which represent the reducible part of the total uncertainty, including a sensitivity analysis of the resulting seismic risk assessments with regards to the different uncertainty sources. This investigation, being a part of the EU FP7 project MATRIX (New Multi-Hazard and Multi-Risk Assessment Methods for Europe), is carried out for the example of, and with reference to, the conditions of the city of Cologne, Germany, which is one of the MATRIX test cases. At the same time, this particular study does not aim to revise nor to refine the hazard and risk level for Cologne; it is rather to show how large are the existing uncertainties and how they can influence seismic risk estimates, especially in less well-studied areas, if hazard and risk models adapted from other regions are used.

  13. Sensitivity analyses of the theoretical equations used in point velocity probe (PVP) data interpretation

    NASA Astrophysics Data System (ADS)

    Devlin, J. F.

    2016-09-01

    Point velocity probes (PVPs) are dedicated, relatively low-cost instruments for measuring groundwater speed and direction in non-cohesive, unconsolidated porous media aquifers. They have been used to evaluate groundwater velocity in groundwater treatment zones, glacial outwash aquifers, and within streambanks to assist with the assessment of groundwater-surfaced water exchanges. Empirical evidence of acceptable levels of uncertainty for these applications has come from both laboratory and field trials. This work extends previous assessments of the method by examining the inherent uncertainties arising from the equations used to interpret PVP datasets. PVPs operate by sensing tracer movement on the probe surface, producing apparent velocities from two detectors. Sensitivity equations were developed for the estimation of groundwater speed, v∞, and flow direction, α, as a function of the apparent velocities of water on the probe surface and the α angle itself. The resulting estimations of measurement uncertainty, which are inherent limitations of the method, apply to idealized, homogeneous porous media, which on the local scale of a PVP measurement may be approached. This work does not address experimental sources of error that may arise from the presence of cohesive sediments that prevent collapse around the probe, the effects of centimeter-scale aquifer heterogeneities, or other complications related to borehole integrity or operator error, which could greatly exceed the inherent sources of error. However, the findings reported here have been shown to be in agreement with the previous empirical work. On this basis, properly installed and functioning PVPs should be expected to produce estimates of groundwater speed with uncertainties less than ± 15%, with the most accurate values of groundwater speed expected when horizontal flow is incident on the probe surface at about 50° from the active injection port. Directions can be measured with uncertainties less than

  14. Sensitivity analyses of the theoretical equations used in point velocity probe (PVP) data interpretation.

    PubMed

    Devlin, J F

    2016-09-01

    Point velocity probes (PVPs) are dedicated, relatively low-cost instruments for measuring groundwater speed and direction in non-cohesive, unconsolidated porous media aquifers. They have been used to evaluate groundwater velocity in groundwater treatment zones, glacial outwash aquifers, and within streambanks to assist with the assessment of groundwater-surfaced water exchanges. Empirical evidence of acceptable levels of uncertainty for these applications has come from both laboratory and field trials. This work extends previous assessments of the method by examining the inherent uncertainties arising from the equations used to interpret PVP datasets. PVPs operate by sensing tracer movement on the probe surface, producing apparent velocities from two detectors. Sensitivity equations were developed for the estimation of groundwater speed, v∞, and flow direction, α, as a function of the apparent velocities of water on the probe surface and the α angle itself. The resulting estimations of measurement uncertainty, which are inherent limitations of the method, apply to idealized, homogeneous porous media, which on the local scale of a PVP measurement may be approached. This work does not address experimental sources of error that may arise from the presence of cohesive sediments that prevent collapse around the probe, the effects of centimeter-scale aquifer heterogeneities, or other complications related to borehole integrity or operator error, which could greatly exceed the inherent sources of error. However, the findings reported here have been shown to be in agreement with the previous empirical work. On this basis, properly installed and functioning PVPs should be expected to produce estimates of groundwater speed with uncertainties less than ±15%, with the most accurate values of groundwater speed expected when horizontal flow is incident on the probe surface at about 50° from the active injection port. Directions can be measured with uncertainties less than

  15. Descriptive and sensitivity analyses of WATBALI: A dynamic soil water model

    NASA Technical Reports Server (NTRS)

    Hildreth, W. W. (Principal Investigator)

    1981-01-01

    A soil water computer model that uses the IBM Continuous System Modeling Program III to solve the dynamic equations representing the soil, plant, and atmospheric physical or physiological processes considered is presented and discussed. Using values describing the soil-plant-atmosphere characteristics, the model predicts evaporation, transpiration, drainage, and soil water profile changes from an initial soil water profile and daily meteorological data. The model characteristics and simulations that were performed to determine the nature of the response to controlled variations in the input are described the results of the simulations are included and a change that makes the response of the model more closely represent the observed characteristics of evapotranspiration and profile changes for dry soil conditions is examined.

  16. Comparison enhances size sensitivity: neural correlates of outcome magnitude processing.

    PubMed

    Luo, Qiuling; Qu, Chen

    2013-01-01

    Magnitude is a critical feature of outcomes. In the present study, two event-related potential (ERP) experiments were implemented to explore the neural substrates of outcome magnitude processing. In Experiment 1, we used an adapted gambling paradigm where physical area symbols were set to represent potential relative outcome magnitudes in order to exclude the possibility that the participants would be ignorant of the magnitudes. The context was manipulated as total monetary amount: ¥4 and ¥40. In these two contexts, the relative outcome magnitudes were ¥1 versus ¥3, and ¥10 versus ¥30, respectively. Experiment 2, which provided two area symbols with similar outcome magnitudes, was conducted to exclude the possible interpretation of physical area symbol for magnitude effect of feedback-related negativity (FRN) in Experiment 1. Our results showed that FRN responded to the relative outcome magnitude but not to the context or area symbol, with larger amplitudes for relatively small outcomes. A larger FRN effect (the difference between losses and wins) was found for relatively large outcomes than relatively small outcomes. Relatively large outcomes evoked greater positive ERP waves (P300) than relatively small outcomes. Furthermore, relatively large outcomes in a high amount context elicited a larger P300 than those in a low amount context. The current study indicated that FRN is sensitive to variations in magnitude. Moreover, relative magnitude was integrated in both the early and late stages of feedback processing, while the monetary amount context was processed only in the late stage of feedback processing.

  17. Parametric design and correlational analyses help integrating fMRI and electrophysiological data during face processing.

    PubMed

    Horovitz, Silvina G; Rossion, Bruno; Skudlarski, Pawel; Gore, John C

    2004-08-01

    Face perception is typically associated with activation in the inferior occipital, superior temporal (STG), and fusiform gyri (FG) and with an occipitotemporal electrophysiological component peaking around 170 ms on the scalp, the N170. However, the relationship between the N170 and the multiple face-sensitive activations observed in neuroimaging is unclear. It has been recently shown that the amplitude of the N170 component monotonically decreases as gaussian noise is added to a picture of a face [Jemel et al., 2003]. To help clarify the sources of the N170 without a priori assumptions regarding their number and locations, ERPs and fMRI were recorded in five subjects in the same experiment, in separate sessions. We used a parametric paradigm in which the amplitude of the N170 was modulated by varying the level of noise in a picture, and identified regions where the percent signal change in fMRI correlated with the ERP data. N170 signals were observed for pictures of both cars and faces but were stronger for faces. A monotonic decrease with added noise was observed for the N170 at right hemisphere sites but was less clear on the left and occipital central sites. Correlations between fMRI signal and N170 amplitudes for faces were highly significant (P < 0.001) in bilateral fusiform gyrus and superior temporal gyrus. For cars, the strongest correlations were observed in the parahippocampal region and in the STG (P < 0.005). Besides contributing to clarify the spatiotemporal course of face processing, this study illustrates how ERP information may be used synergistically in fMRI analyses. Parametric designs may be developed further to provide some timing information on fMRI activity and help identify the generators of ERP signals.

  18. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?

    PubMed

    Dozza, Marco; González, Nieves Pañeda

    2013-11-01

    New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential

  19. Children's Writing Processes when Using Computers: Insights Based on Combining Analyses of Product and Process

    ERIC Educational Resources Information Center

    Gnach, Aleksandra; Wiesner, Esther; Bertschi-Kaufmann, Andrea; Perrin, Daniel

    2007-01-01

    Children and young people are increasingly performing a variety of writing tasks using computers, with word processing programs thus becoming their natural writing environment. The development of keystroke logging programs enables us to track the process of writing, without changing the writing environment for the writers. In the myMoment schools…

  20. Sensitivity and uncertainty analyses of unsaturated flow travel time in the CHnz unit of Yucca Mountain, Nevada

    SciTech Connect

    Nichols, W.E.; Freshley, M.D.

    1991-10-01

    This report documents the results of sensitivity and uncertainty analyses conducted to improve understanding of unsaturated zone ground-water travel time distribution at Yucca Mountain, Nevada. The US Department of Energy (DOE) is currently performing detailed studies at Yucca Mountain to determine its suitability as a host for a geologic repository for the containment of high-level nuclear wastes. As part of these studies, DOE is conducting a series of Performance Assessment Calculational Exercises, referred to as the PACE problems. The work documented in this report represents a part of the PACE-90 problems that addresses the effects of natural barriers of the site that will stop or impede the long-term movement of radionuclides from the potential repository to the accessible environment. In particular, analyses described in this report were designed to investigate the sensitivity of the ground-water travel time distribution to different input parameters and the impact of uncertainty associated with those input parameters. Five input parameters were investigated in this study: recharge rate, saturated hydraulic conductivity, matrix porosity, and two curve-fitting parameters used for the van Genuchten relations to quantify the unsaturated moisture-retention and hydraulic characteristics of the matrix. 23 refs., 20 figs., 10 tabs.

  1. Sensitivity of rainfall-runoff processes in the Hydrological Open Air Laboratory

    NASA Astrophysics Data System (ADS)

    Széles, Borbála; Parajka, Juraj; Blöschl, Günter; Oismüller, Markus; Hajnal, Géza

    2016-04-01

    The objective of the present study was to simulate the rainfall response and analyse the sensitivity of rainfall-runoff processes of the Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, a small experimental watershed (66 ha) located in the western part of Lower Austria and dominated by agricultural land use. Due to the extensive monitoring network in the HOAL, the spatial and temporal heterogeneity of hydro-meteorological elements are exceptionally well represented on the catchment scale. The study aimed to exploit the facilities of the available database collected by innovative sensing techniques to advance the understanding of various rainfall-runoff processes. The TUWmodel, a lumped, conceptual hydrological model, following the structure of the HBV model was implemented on the catchment. In addition to the surface runoff at the catchment outlet, several different runoff generation mechanisms (tile drainage flow, saturation excess runoff from wetlands and groundwater discharge from springs) were also simulated, which gave an opportunity to describe the spatial distribution of model parameters in the study area. This helped to proceed from the original lumped model concept towards a spatially distributed one. The other focus of this work was to distinguish the dominant model parameters from the less sensitive ones for each tributary with different runoff type by applying two different sensitivity analysis methods, the simple local perturbation and the global Latin-Hypercube-One-Factor-At-a-Time (LH-OAT) tools. Moreover, the impacts of modifying the initial parameters of the LH-OAT method and the applied objective functions were also taken into consideration. The results and findings of the model and sensitivity analyses were summarized and future development perspectives were outlined. Key words: spatial heterogeneity of rainfall-runoff mechanisms, sensitivity analysis, lumped conceptual hydrological model

  2. Sobol‧ sensitivity analysis of NAPL-contaminated aquifer remediation process based on multiple surrogates

    NASA Astrophysics Data System (ADS)

    Luo, Jiannan; Lu, Wenxi

    2014-06-01

    Sobol‧ sensitivity analyses based on different surrogates were performed on a trichloroethylene (TCE)-contaminated aquifer to assess the sensitivity of the design variables of remediation duration, surfactant concentration and injection rates at four wells to remediation efficiency First, the surrogate models of a multi-phase flow simulation model were constructed by applying radial basis function artificial neural network (RBFANN) and Kriging methods, and the two models were then compared. Based on the developed surrogate models, the Sobol‧ method was used to calculate the sensitivity indices of the design variables which affect the remediation efficiency. The coefficient of determination (R2) and the mean square error (MSE) of these two surrogate models demonstrated that both models had acceptable approximation accuracy, furthermore, the approximation accuracy of the Kriging model was slightly better than that of the RBFANN model. Sobol‧ sensitivity analysis results demonstrated that the remediation duration was the most important variable influencing remediation efficiency, followed by rates of injection at wells 1 and 3, while rates of injection at wells 2 and 4 and the surfactant concentration had negligible influence on remediation efficiency. In addition, high-order sensitivity indices were all smaller than 0.01, which indicates that interaction effects of these six factors were practically insignificant. The proposed Sobol‧ sensitivity analysis based on surrogate is an effective tool for calculating sensitivity indices, because it shows the relative contribution of the design variables (individuals and interactions) to the output performance variability with a limited number of runs of a computationally expensive simulation model. The sensitivity analysis results lay a foundation for the optimal groundwater remediation process optimization.

  3. Face-Sensitive Processes One Hundred Milliseconds after Picture Onset

    PubMed Central

    Dering, Benjamin; Martin, Clara D.; Moro, Sancho; Pegna, Alan J.; Thierry, Guillaume

    2011-01-01

    The human face is the most studied object category in visual neuroscience. In a quest for markers of face processing, event-related potential (ERP) studies have debated whether two peaks of activity – P1 and N170 – are category-selective. Whilst most studies have used photographs of unaltered images of faces, others have used cropped faces in an attempt to reduce the influence of features surrounding the “face–object” sensu stricto. However, results from studies comparing cropped faces with unaltered objects from other categories are inconsistent with results from studies comparing whole faces and objects. Here, we recorded ERPs elicited by full front views of faces and cars, either unaltered or cropped. We found that cropping artificially enhanced the N170 whereas it did not significantly modulate P1. In a second experiment, we compared faces and butterflies, either unaltered or cropped, matched for size and luminance across conditions, and within a narrow contrast bracket. Results of Experiment 2 replicated the main findings of Experiment 1. We then used face–car morphs in a third experiment to manipulate the perceived face-likeness of stimuli (100% face, 70% face and 30% car, 30% face and 70% car, or 100% car) and the N170 failed to differentiate between faces and cars. Critically, in all three experiments, P1 amplitude was modulated in a face-sensitive fashion independent of cropping or morphing. Therefore, P1 is a reliable event sensitive to face processing as early as 100 ms after picture onset. PMID:21954382

  4. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity

    PubMed Central

    Shimada, Kenichi; Hayano, Miki; Pagano, Nen; Stockwell, Brent

    2016-01-01

    Precision medicine in oncology requires not only identification of cancer-associated mutations, but also effective drugs for each cancer genotype, which is still a largely unsolved problem. One approach for the latter challenge has been large-scale testing of small molecules in genetically characterized cell lines. We hypothesized that compounds with high cell-line-selective lethality exhibited consistent results across such pharmacogenomic studies. We analyzed the compound sensitivity data of 6,259 lethal compounds from the NCI-60 project. 2,565 cell-line-selective lethal compounds were identified and grouped into 18 clusters based on their GI50 profiles across the 60 cell lines, which were shown to represent distinct mechanisms of action. Further transcriptome analysis revealed a biomarker, NADPH abundance, for predicting sensitivity to ferroptosis-inducing compounds, which we experimentally validated. In summary, incorporating cell-line selectivity filters improves the predictive power of pharmacogenomic analyses and enables discovery of biomarkers that predict the sensitivity of cells to specific cell death inducers. PMID:26853626

  5. Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans

    PubMed Central

    Qin, Chun-Fang; He, Meng-Han; Chen, Feng-Ping; Zhu, Wen; Yang, Li-Na; Wu, E-Jiao; Guo, Zheng-Liang; Shang, Li-Ping; Zhan, Jiasui

    2016-01-01

    Knowledge of the evolution of fungicide resistance is important in securing sustainable disease management in agricultural systems. In this study, we analyzed and compared the spatial distribution of genetic variation in azoxystrobin sensitivity and SSR markers in 140 Phytophthora infestans isolates sampled from seven geographic locations in China. Sensitivity to azoxystrobin and its genetic variation in the pathogen populations was measured by the relative growth rate (RGR) at four fungicide concentrations and determination of the effective concentration for 50% inhibition (EC50). We found that all isolates in the current study were sensitive to azoxystrobin and their EC50 was similar to that detected from a European population about 20 years ago, suggesting the risk of developing azoxystrobin resistance in P. infestans populations is low. Further analyses indicate that reduced genetic variation and high fitness cost in resistant mutations are the likely causes for the low evolutionary likelihood of developing azoxystrobin resistance in the pathogen. We also found a negative correlation between azoxystrobin tolerance in P. infestans populations and the mean annual temperature of collection sites, suggesting that global warming may increase the efficiency of using the fungicide to control the late blight. PMID:26853908

  6. Cell-Line Selectivity Improves the Predictive Power of Pharmacogenomic Analyses and Helps Identify NADPH as Biomarker for Ferroptosis Sensitivity.

    PubMed

    Shimada, Kenichi; Hayano, Miki; Pagano, Nen C; Stockwell, Brent R

    2016-02-18

    Precision medicine in oncology requires not only identification of cancer-associated mutations but also effective drugs for each cancer genotype, which is still a largely unsolved problem. One approach for the latter challenge has been large-scale testing of small molecules in genetically characterized cell lines. We hypothesized that compounds with high cell-line-selective lethality exhibited consistent results across such pharmacogenomic studies. We analyzed the compound sensitivity data of 6,259 lethal compounds from the NCI-60 project. A total of 2,565 cell-line-selective lethal compounds were identified and grouped into 18 clusters based on their median growth inhibitory GI50 profiles across the 60 cell lines, which were shown to represent distinct mechanisms of action. Further transcriptome analysis revealed a biomarker, NADPH abundance, for predicting sensitivity to ferroptosis-inducing compounds, which we experimentally validated. In summary, incorporating cell-line-selectivity filters improves the predictive power of pharmacogenomic analyses and enables discovery of biomarkers that predict the sensitivity of cells to specific cell death inducers.

  7. A sensitive fluorescence optosensor for analysing propranolol in pharmaceutical preparations and a test for its control in urine in sport.

    PubMed

    Fernández-Sánchez, J F; Carretero, A Segura; Cruces-Blanco, C; Fernández-Gutiérrez, A

    2003-04-01

    We describe a simple and selective method for analysing propranolol and a sensitive test for its control in urine. A flow-through fluorescence optosensor based on on-line immobilization in a non-ionic-exchanger (Amberlite XAD-7) solid support in a continuous flow was used in both cases. Determination was made in 5 mM H(2)PO(4)(-)/HPO(4)(2-) buffer solution at pH 6 at a working temperature of 20 degrees C. Fluorescence intensities were measured at lambda(ex/em) = 300/338 nm with a response time of 80 s, thus obtaining a linear concentration range of between 0 and 250.0 ng ml(-1) with a detection limit of 1.3 ng ml(-1), an analytical sensitivity of 6.0 ng ml(-1) and a standard deviation of 2.40% at a 150 ng ml(-1) concentration level for propranolol. We also propose a test to detect propranolol in urine with a linear concentration range between 0 and 100.0 ng ml(-1), a detection limit of 0.2 ng ml(-1), an analytical sensitivity of 1.0 ng ml(-1), and a standard deviation of 0.84% at a 75 ng ml(-1) concentration level. The effect of proteins presents in urine samples were evaluated. The two proposed methods were satisfactorily applied to commercial formulations and urine samples respectively.

  8. Sensitivity of Middle Atmospheric Analyses to the Representation of Gravity-Wave Drag in the DAO's Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Li, Shuhua; Chern, Jiundar; Joiner, Joanna; Lin, Shian-Jiann; Pawson, Steven; daSilva, Arlindo; Atlas, Robert (Technical Monitor)

    2002-01-01

    The damping of mesoscale gravity waves has important effects on the global circulation, structure, and composition of the atmosphere. A number of assimilation and forecast experiments have been conducted to examine the sensitivity of meteorological analyses and forecasts to the representation of gravity wave impacts in a data assimilation system (DAS). The experiments were conducted with the Finite-Volume (FV) DAS developed at NASA's Data Assimilation Office (DAO), The main purpose of this research is to determine the optimal combination of wave number, phase speed, wavelength, etc. for representing gravity-wave drag (GWD) in FVDAS. The GWD included in FVDAS includes a spectrum of waves, as would be forced by topography and transient motions (e.g., convection) in the troposphere. The sensitivity experiments are performed by modifying several parameters, such as the number of waves allowed, their wavelength, the background stress amplitude, etc. The results show that the assimilated fields are very sensitive to the number of gravity waves represented in the system, especially at high latitudes of the middle and upper stratosphere and mesosphere in winter. The analyzed stratopause temperature varies by up to 10K when the GWD scheme is modified from a multiple-wave scheme (using a stationary wave and waves with phase speeds of 10, 20, 30 and 40 m/s in each direction) to a single, stationary wave. Insight into the reality of the various versions of the GWD can be obtained by examining the "Observation minus Forecast" residuals from the FVDAS.

  9. Comparative analyses of fungicide sensitivity and SSR marker variations indicate a low risk of developing azoxystrobin resistance in Phytophthora infestans.

    PubMed

    Qin, Chun-Fang; He, Meng-Han; Chen, Feng-Ping; Zhu, Wen; Yang, Li-Na; Wu, E-Jiao; Guo, Zheng-Liang; Shang, Li-Ping; Zhan, Jiasui

    2016-02-08

    Knowledge of the evolution of fungicide resistance is important in securing sustainable disease management in agricultural systems. In this study, we analyzed and compared the spatial distribution of genetic variation in azoxystrobin sensitivity and SSR markers in 140 Phytophthora infestans isolates sampled from seven geographic locations in China. Sensitivity to azoxystrobin and its genetic variation in the pathogen populations was measured by the relative growth rate (RGR) at four fungicide concentrations and determination of the effective concentration for 50% inhibition (EC50). We found that all isolates in the current study were sensitive to azoxystrobin and their EC50 was similar to that detected from a European population about 20 years ago, suggesting the risk of developing azoxystrobin resistance in P. infestans populations is low. Further analyses indicate that reduced genetic variation and high fitness cost in resistant mutations are the likely causes for the low evolutionary likelihood of developing azoxystrobin resistance in the pathogen. We also found a negative correlation between azoxystrobin tolerance in P. infestans populations and the mean annual temperature of collection sites, suggesting that global warming may increase the efficiency of using the fungicide to control the late blight.

  10. Adaptive and repeated cumulative meta-analyses of safety data during a new drug development process.

    PubMed

    Quan, Hui; Ma, Yingqiu; Zheng, Yan; Cho, Meehyung; Lorenzato, Christelle; Hecquet, Carole

    2015-01-01

    During a new drug development process, it is desirable to timely detect potential safety signals. For this purpose, repeated meta-analyses may be performed sequentially on accumulating safety data. Moreover, if the amount of safety data from the originally planned program is not enough to ensure adequate power to test a specific hypothesis (e.g., the noninferiority hypothesis of an event of interest), the total sample size may be increased by adding new studies to the program. Without appropriate adjustment, it is well known that the type I error rate will be inflated because of repeated analyses and sample size adjustment. In this paper, we discuss potential issues associated with adaptive and repeated cumulative meta-analyses of safety data conducted during a drug development process. We consider both frequentist and Bayesian approaches. A new drug development example is used to demonstrate the application of the methods.

  11. Processes models, environmental analyses, and cognitive architectures: quo vadis quantum probability theory?

    PubMed

    Marewski, Julian N; Hoffrage, Ulrich

    2013-06-01

    A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.

  12. A Coding Scheme for Analysing Problem-Solving Processes of First-Year Engineering Students

    ERIC Educational Resources Information Center

    Grigg, Sarah J.; Benson, Lisa C.

    2014-01-01

    This study describes the development and structure of a coding scheme for analysing solutions to well-structured problems in terms of cognitive processes and problem-solving deficiencies for first-year engineering students. A task analysis approach was used to assess students' problem solutions using the hierarchical structure from a…

  13. Improved analyses for soil carbohydrates, amino acids, and phenols: Tools for understanding soil processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A process-level understanding of soil carbon(C) and nitrogen (N) cycling will be facilitated by precise measurement of biochemical compounds in soil organic matter. This review summarizes some recent developments in analyses for soil carbohydrates, amino compounds (amino acids and amino sugars), and...

  14. Sensitivity analysis on parameters and processes affecting vapor intrusion risk.

    PubMed

    Picone, Sara; Valstar, Johan; van Gaans, Pauline; Grotenhuis, Tim; Rijnaarts, Huub

    2012-05-01

    A one-dimensional numerical model was developed and used to identify the key processes controlling vapor intrusion risks by means of a sensitivity analysis. The model simulates the fate of a dissolved volatile organic compound present below the ventilated crawl space of a house. In contrast to the vast majority of previous studies, this model accounts for vertical variation of soil water saturation and includes aerobic biodegradation. The attenuation factor (ratio between concentration in the crawl space and source concentration) and the characteristic time to approach maximum concentrations were calculated and compared for a variety of scenarios. These concepts allow an understanding of controlling mechanisms and aid in the identification of critical parameters to be collected for field situations. The relative distance of the source to the nearest gas-filled pores of the unsaturated zone is the most critical parameter because diffusive contaminant transport is significantly slower in water-filled pores than in gas-filled pores. Therefore, attenuation factors decrease and characteristic times increase with increasing relative distance of the contaminant dissolved source to the nearest gas diffusion front. Aerobic biodegradation may decrease the attenuation factor by up to three orders of magnitude. Moreover, the occurrence of water table oscillations is of importance. Dynamic processes leading to a retreating water table increase the attenuation factor by two orders of magnitude because of the enhanced gas phase diffusion.

  15. Temperature sensitivity of organic compound destruction in SCWO process.

    PubMed

    Tan, Yaqin; Shen, Zhemin; Guo, Weimin; Ouyang, Chuang; Jia, Jinping; Jiang, Weili; Zhou, Haiyun

    2014-03-01

    To study the temperature sensitivity of the destruction of organic compounds in supercritical water oxidation process (SCWO), oxidation effects of twelve chemicals in supercritical water were investigated. The SCWO reaction rates of different compounds improved to varying degrees with the increase of temperature, so the highest slope of the temperature-effect curve (imax) was defined as the maximum ratio of removal ratio to working temperature. It is an important index to stand for the temperature sensitivity effect in SCWO. It was proven that the higher imax is, the more significant the effect of temperature on the SCWO effect is. Since the high-temperature area of SCWO equipment is subject to considerable damage from fatigue, the temperature is of great significance in SCWO equipment operation. Generally, most compounds (imax > 0.25) can be completely oxidized when the reactor temperature reaches 500°C. However, some compounds (imax > 0.25) need a higher temperature for complete oxidation, up to 560°C. To analyze the correlation coefficients between imax and various molecular descriptors, a quantum chemical method was used in this study. The structures of the twelve organic compounds were optimized by the Density Functional Theory B3LYP/6-311G method, as well as their quantum properties. It was shown that six molecular descriptors were negatively correlated to imax while other three descriptors were positively correlated to imax. Among them, dipole moment had the greatest effect on the oxidation thermodynamics of the twelve organic compounds. Once a correlation between molecular descriptors and imax is established, SCWO can be run at an appropriate temperature according to molecular structure.

  16. Crowd-structure interaction in footbridges: Modelling, application to a real case-study and sensitivity analyses

    NASA Astrophysics Data System (ADS)

    Bruno, Luca; Venuti, Fiammetta

    2009-06-01

    A mathematical and computational model used to simulate crowd-structure interaction in lively footbridges is presented in this work. The model is based on the mathematical and numerical decomposition of the coupled multiphysical nonlinear system into two interacting subsystems. The model was conceived to simulate the synchronous lateral excitation phenomenon caused by pedestrians walking on footbridges. The model was first applied to simulate a crowd event on an actual footbridge, the T-bridge in Japan. Three sensitivity analyses were then performed on the same benchmark to evaluate the properties of the model. The simulation results show good agreement with the experimental data found in literature and the model could be considered a useful tool for designers and engineers in the different phases of footbridge design.

  17. Reduction of Large Detailed Chemical Kinetic Mechanisms for Autoignition Using Joint Analyses of Reaction Rates and Sensitivities

    SciTech Connect

    Saylam, A; Ribaucour, M; Pitz, W J; Minetti, R

    2006-11-29

    A new technique of reduction of detailed mechanisms for autoignition, which is based on two analysis methods is described. An analysis of reaction rates is coupled to an analysis of reaction sensitivity for the detection of redundant reactions. Thresholds associated with the two analyses have a great influence on the size and efficiency of the reduced mechanism. Rules of selection of the thresholds are defined. The reduction technique has been successfully applied to detailed autoignition mechanisms of two reference hydrocarbons: n-heptane and iso-octane. The efficiency of the technique and the ability of the reduced mechanisms to reproduce well the results generated by the full mechanism are discussed. A speedup of calculations by a factor of 5.9 for n-heptane mechanism and by a factor of 16.7 for iso-octane mechanism is obtained without losing accuracy of the prediction of autoignition delay times and concentrations of intermediate species.

  18. Uncertainty and sensitivity analyses for gas and brine migration at the Waste Isolation Pilot Plant, May 1992

    SciTech Connect

    Helton, J.C.; Bean, J.E.; Butcher, B.M.; Garner, J.W.; Vaughn, P.; Schreiber, J.D.; Swift, P.N.

    1993-08-01

    Uncertainty and sensitivity analysis techniques based on Latin hypercube sampling, partial correlation analysis, stepwise regression analysis and examination of scatterplots are used in conjunction with the BRAGFLO model to examine two phase flow (i.e., gas and brine) at the Waste Isolation Pilot Plant (WIPP), which is being developed by the US Department of Energy as a disposal facility for transuranic waste. The analyses consider either a single waste panel or the entire repository in conjunction with the following cases: (1) fully consolidated shaft, (2) system of shaft seals with panel seals, and (3) single shaft seal without panel seals. The purpose of this analysis is to develop insights on factors that are potentially important in showing compliance with applicable regulations of the US Environmental Protection Agency (i.e., 40 CFR 191, Subpart B; 40 CFR 268). The primary topics investigated are (1) gas production due to corrosion of steel, (2) gas production due to microbial degradation of cellulosics, (3) gas migration into anhydrite marker beds in the Salado Formation, (4) gas migration through a system of shaft seals to overlying strata, and (5) gas migration through a single shaft seal to overlying strata. Important variables identified in the analyses include initial brine saturation of the waste, stoichiometric terms for corrosion of steel and microbial degradation of cellulosics, gas barrier pressure in the anhydrite marker beds, shaft seal permeability, and panel seal permeability.

  19. Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: experience with a juvenile pelvis.

    PubMed

    Watson, Peter J; Fagan, Michael J; Dobson, Catherine A

    2015-01-01

    Biomechanical analysis of juvenile pelvic growth can be used in the evaluation of medical devices and investigation of hip joint disorders. This requires access to scan data of healthy juveniles, which are not always freely available. This article analyses the application of a geometric morphometric technique, which facilitates the reconstruction of the articulated juvenile pelvis from cadaveric remains, in biomechanical modelling. The sensitivity of variation in reconstructed morphologies upon predicted stress/strain distributions is of particular interest. A series of finite element analyses of a 9-year-old hemi-pelvis were performed to examine differences in predicted strain distributions between a reconstructed model and the originally fully articulated specimen. Only minor differences in the minimum principal strain distributions were observed between two varying hemi-pelvic morphologies and that of the original articulation. A Wilcoxon rank-sum test determined there was no statistical significance between the nodal strains recorded at 60 locations throughout the hemi-pelvic structures. This example suggests that finite element models created by this geometric morphometric reconstruction technique can be used with confidence, and as observed with this hemi-pelvis model, even a visual morphological difference does not significantly affect the predicted results. The validated use of this geometric morphometric reconstruction technique in biomechanical modelling reduces the dependency on clinical scan data.

  20. To analyse a trace or not? Evaluating the decision-making process in the criminal investigation.

    PubMed

    Bitzer, Sonja; Ribaux, Olivier; Albertini, Nicola; Delémont, Olivier

    2016-05-01

    In order to broaden our knowledge and understanding of the decision steps in the criminal investigation process, we started by evaluating the decision to analyse a trace and the factors involved in this decision step. This decision step is embedded in the complete criminal investigation process, involving multiple decision and triaging steps. Considering robbery cases occurring in a geographic region during a 2-year-period, we have studied the factors influencing the decision to submit biological traces, directly sampled on the scene of the robbery or on collected objects, for analysis. The factors were categorised into five knowledge dimensions: strategic, immediate, physical, criminal and utility and decision tree analysis was carried out. Factors in each category played a role in the decision to analyse a biological trace. Interestingly, factors involving information available prior to the analysis are of importance, such as the fact that a positive result (a profile suitable for comparison) is already available in the case, or that a suspect has been identified through traditional police work before analysis. One factor that was taken into account, but was not significant, is the matrix of the trace. Hence, the decision to analyse a trace is not influenced by this variable. The decision to analyse a trace first is very complex and many of the tested variables were taken into account. The decisions are often made on a case-by-case basis.

  1. Dual sensitivity mode system for monitoring processes and sensors

    DOEpatents

    Wilks, Alan D.; Wegerich, Stephan W.; Gross, Kenneth C.

    2000-01-01

    A method and system for analyzing a source of data. The system and method involves initially training a system using a selected data signal, calculating at least two levels of sensitivity using a pattern recognition methodology, activating a first mode of alarm sensitivity to monitor the data source, activating a second mode of alarm sensitivity to monitor the data source and generating a first alarm signal upon the first mode of sensitivity detecting an alarm condition and a second alarm signal upon the second mode of sensitivity detecting an associated alarm condition. The first alarm condition and second alarm condition can be acted upon by an operator and/or analyzed by a specialist or computer program.

  2. The Anxiety Sensitivity Index--Revised: Confirmatory Factor Analyses, Structural Invariance in Caucasian and African American Samples, and Score Reliability and Validity

    ERIC Educational Resources Information Center

    Arnau, Randolph C.; Broman-Fulks, Joshua J.; Green, Bradley A.; Berman, Mitchell E.

    2009-01-01

    The most commonly used measure of anxiety sensitivity is the 36-item Anxiety Sensitivity Index--Revised (ASI-R). Exploratory factor analyses have produced several different factors structures for the ASI-R, but an acceptable fit using confirmatory factor analytic approaches has only been found for a 21-item version of the instrument. We evaluated…

  3. Using Uncertainty and Sensitivity Analyses in Socioecological Agent-Based Models to Improve Their Analytical Performance and Policy Relevance

    PubMed Central

    Ligmann-Zielinska, Arika; Kramer, Daniel B.; Spence Cheruvelil, Kendra; Soranno, Patricia A.

    2014-01-01

    Agent-based models (ABMs) have been widely used to study socioecological systems. They are useful for studying such systems because of their ability to incorporate micro-level behaviors among interacting agents, and to understand emergent phenomena due to these interactions. However, ABMs are inherently stochastic and require proper handling of uncertainty. We propose a simulation framework based on quantitative uncertainty and sensitivity analyses to build parsimonious ABMs that serve two purposes: exploration of the outcome space to simulate low-probability but high-consequence events that may have significant policy implications, and explanation of model behavior to describe the system with higher accuracy. The proposed framework is applied to the problem of modeling farmland conservation resulting in land use change. We employ output variance decomposition based on quasi-random sampling of the input space and perform three computational experiments. First, we perform uncertainty analysis to improve model legitimacy, where the distribution of results informs us about the expected value that can be validated against independent data, and provides information on the variance around this mean as well as the extreme results. In our last two computational experiments, we employ sensitivity analysis to produce two simpler versions of the ABM. First, input space is reduced only to inputs that produced the variance of the initial ABM, resulting in a model with output distribution similar to the initial model. Second, we refine the value of the most influential input, producing a model that maintains the mean of the output of initial ABM but with less spread. These simplifications can be used to 1) efficiently explore model outcomes, including outliers that may be important considerations in the design of robust policies, and 2) conduct explanatory analysis that exposes the smallest number of inputs influencing the steady state of the modeled system. PMID:25340764

  4. Integrative mRNA-microRNA analyses reveal novel interactions related to insulin sensitivity in human adipose tissue.

    PubMed

    Kirby, Tyler J; Walton, R Grace; Finlin, Brian; Zhu, Beibei; Unal, Resat; Rasouli, Neda; Peterson, Charlotte A; Kern, Philip A

    2016-02-01

    Adipose tissue has profound effects on whole-body insulin sensitivity. However, the underlying biological processes are quite complex and likely multifactorial. For instance, the adipose transcriptome is posttranscriptionally modulated by microRNAs, but the relationship between microRNAs and insulin sensitivity in humans remains to be determined. To this end, we utilized an integrative mRNA-microRNA microarray approach to identify putative molecular interactions that regulate the transcriptome in subcutaneous adipose tissue of insulin-sensitive (IS) and insulin-resistant (IR) individuals. Using the NanoString nCounter Human v1 microRNA Expression Assay, we show that 17 microRNAs are differentially expressed in IR vs. IS. Of these, 16 microRNAs (94%) are downregulated in IR vs. IS, including miR-26b, miR-30b, and miR-145. Using Agilent Human Whole Genome arrays, we identified genes that were predicted targets of miR-26b, miR-30b, and miR-145 and were upregulated in IR subjects. This analysis produced ADAM22, MYO5A, LOX, and GM2A as predicted gene targets of these microRNAs. We then validated that miR-145 and miR-30b regulate these mRNAs in differentiated human adipose stem cells. We suggest that use of bioinformatic integration of mRNA and microRNA arrays yields verifiable mRNA-microRNA pairs that are associated with insulin resistance and can be validated in vitro.

  5. Assessing uncertainty in ecological systems using global sensitivity analyses: a case example of simulated wolf reintroduction effects on elk

    USGS Publications Warehouse

    Fieberg, J.; Jenkins, Kurt J.

    2005-01-01

    Often landmark conservation decisions are made despite an incomplete knowledge of system behavior and inexact predictions of how complex ecosystems will respond to management actions. For example, predicting the feasibility and likely effects of restoring top-level carnivores such as the gray wolf (Canis lupus) to North American wilderness areas is hampered by incomplete knowledge of the predator-prey system processes and properties. In such cases, global sensitivity measures, such as Sobola?? indices, allow one to quantify the effect of these uncertainties on model predictions. Sobola?? indices are calculated by decomposing the variance in model predictions (due to parameter uncertainty) into main effects of model parameters and their higher order interactions. Model parameters with large sensitivity indices can then be identified for further study in order to improve predictive capabilities. Here, we illustrate the use of Sobola?? sensitivity indices to examine the effect of parameter uncertainty on the predicted decline of elk (Cervus elaphus) population sizes following a hypothetical reintroduction of wolves to Olympic National Park, Washington, USA. The strength of density dependence acting on survival of adult elk and magnitude of predation were the most influential factors controlling elk population size following a simulated wolf reintroduction. In particular, the form of density dependence in natural survival rates and the per-capita predation rate together accounted for over 90% of variation in simulated elk population trends. Additional research on wolf predation rates on elk and natural compensations in prey populations is needed to reliably predict the outcome of predatora??prey system behavior following wolf reintroductions.

  6. Low-temperature oxidation of magnetite - a humidity sensitive process?

    NASA Astrophysics Data System (ADS)

    Appel, Erwin; Fang, Xiaomin; Herb, Christian; Hu, Shouyun

    2015-04-01

    Extensive multi-parameter palaeoclimate records were obtained from two long-term lacustrine archives at the Tibetan Plateau: the Qaidam basin (2.69-0.08 Ma) and Heqing basin (0.90-0.03 Ma). At present the region of the Qaidam site has an arid climate (<100 mm mean annual precipitation) while the Heqing site is located in the sub-tropical region with monsoonal rainfall. Magnetic properties play a prominent role for palaeoclimate interpretation in both records. Several parameters show a 100 kyr eccentricity cyclicity; in the Qaidam record also the Mid-Pleistocene Transition is seen. Both magnetic records are controlled by different absolute and relative contributions of magnetite and its altered (maghemitized) phases as well as hematite. Weathering conditions likely cause a systematic variation of magnetic mineralogy due to low-temperature oxidation (LTO). Maghemitization is well recognized as an alteration process in submarine basalts but about its relevance for climate-induced weathering in continental environments little is known. Various factors i.e., humidity, temperature, seasonality, duration of specific weathering conditions, and bacterial activity could be responsible for maghemitization (LTO) and transformation to hematite (or goethite) when a critical degree of LTO is reached. These factors may lead to a complex interplay, but one has to note that water acts as an electrolyte for Fe(II) to Fe(III) oxidation at the crystal surface and due to maghemitization-induced lattice shrinking a larger internal particle surface area becomes exposed to oxidation. We suggest that humidity is the most crucial driver for the two studied archives - for the following reasons: (1) The overall parameter variations and catchment conditions are well in agreement with an LTO scenario. (2) In the Qaidam record we observe a direct relationship of a humidity sensitive pollen Ratio with magnetic susceptibility (reflecting the degree of alteration by LTO). (3) In the Heqing record

  7. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    PubMed

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  8. Idea of Identification of Copper Ore with the Use of Process Analyser Technology Sensors

    NASA Astrophysics Data System (ADS)

    Jurdziak, Leszek; Kaszuba, Damian; Kawalec, Witold; Król, Robert

    2016-10-01

    The Polish resources of the copper ore exploited by the KGHM S.A. underground mines are considered as one of the most complex in the world and - consequently - the most difficult to be processed. The ore consists of three lithology forms: dolomites, shales and sandstones but in different proportions which has a significant impact on the effectiveness of the grinding and flotation processes. The lithological composition of the ore is generally recognised in-situ but after being mined it is blended on its long way from various mining fields to the processing plant by the complex transportation system consisting of belt conveyors with numerous switching points, ore bunkers and shafts. Identification of the lithological composition of the ore being supplied to the processing plant should improve the adjustments of the ore processing machinery equipment aiming to decrease the specific processing (mainly grinding) energy consumption as well as increase the metal recovery. The novel idea of Process Analyser Technology (PAT) sensors - information carrying pellets, dropped into the transported or processed bulk material which can be read directly when needed - is investigated for various applications within the DISIRE project (a part of the SPIRE initiative, acting under the Horizon2020 framework program) and here is adopted for implementing the annotation the transported copper ore for the needs of ore processing plants control. The identification of the lithological composition of ore blended on its way to the processing plant can be achieved by an information system consisting of pellets that keep the information about the original location of the portions of conveyed ore, the digital, geological database keeping the data of in-situ lithology and the simulation models of the transportation system, necessary to evaluate the composition of the blended ore. The assumptions of the proposed solution and the plan of necessary in-situ tests (with the special respect to harsh

  9. Social conformity is due to biased stimulus processing: electrophysiological and diffusion analyses.

    PubMed

    Germar, Markus; Albrecht, Thorsten; Voss, Andreas; Mojzisch, Andreas

    2016-09-01

    Hundreds of studies have found that humans' decisions are strongly influenced by the opinions of others, even when making simple perceptual decisions. In this study, we aimed to clarify whether this effect can be explained by social influence biasing (early) perceptual processes. We employed stimulus evoked potentials, lateralized readiness potentials (LRPs) and a diffusion model analysis of reaction time data to uncover the neurocognitive processes underlying social conformity in perceptual decision-making. The diffusion model analysis showed that social conformity was due to a biased uptake of stimulus information and accompanied by more careful stimulus processing. As indicated by larger N1-amplitudes, social influence increased early attentional resources for stimulus identification and discrimination. Furthermore, LRP analyses revealed that stimulus processing was biased even in cases of non-conformity. In conclusion, our results suggest that the opinion of others can cause individuals to selectively process stimulus information supporting this opinion, thereby inducing social conformity. This effect is present even when individuals do not blindly follow the majority but rather carefully process stimulus information.

  10. Phenotypic and Genetic Analyses of the Varroa Sensitive Hygienic Trait in Russian Honey Bee (Hymenoptera: Apidae) Colonies

    PubMed Central

    Kirrane, Maria J.; de Guzman, Lilia I.; Holloway, Beth; Frake, Amanda M.; Rinderer, Thomas E.; Whelan, Pádraig M.

    2015-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an “actual brood removal assay” that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock. PMID:25909856

  11. Optimization of Forming Processes in Microstructure Sensitive Design

    NASA Astrophysics Data System (ADS)

    Garmestani, H.; Li, D. S.

    2004-06-01

    Optimization of the forming processes from initial microstructures of raw materials to desired microstructures of final products is an important topic in materials design. Processing path model proposed in this study gives an explicit mathematical solution about how the microstructure evolves during thermomechanical processing. Based on a conservation principle in the orientation space (originally proposed by Bunge), this methodology is independent of the underlying deformation mechanisms. The evolutions of texture coefficients are modeled using a texture evolution matrix calculated from the experimental results. For the same material using the same processing method, the texture evolution matrix is the same. It does not change with the initial texture. This processing path model provides functions of processing paths and streamlines.

  12. A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Peizhi; Tang, Qunwei; Ji, Chenming; Wang, Haobo

    2015-12-01

    Pursuit of an efficient strategy for quantum dot-sensitized photoanode has been a persistent objective for enhancing photovoltaic performances of quantum dot-sensitized solar cell (QDSC). We present here the fabrication of the indium sulfide (In2S3) quantum dot-sensitized titanium dioxide (TiO2) photoanode by combining successive ionic layer adsorption and reaction (SILAR) with solvothermal processes. The resultant QDSC consists of an In2S3 sensitized TiO2 photoanode, a liquid polysulfide electrolyte, and a Co0.85Se counter electrode. The optimized QDSC with photoanode prepared with the help of a SILAR method at 20 deposition cycles and solvothermal method yields a maximum power conversion efficiency of 1.39%.

  13. The quest for the best: The impact of different EPI sequences on the sensitivity of random effect fMRI group analyses

    PubMed Central

    Kirilina, Evgeniya; Lutti, Antoine; Poser, Benedikt A.; Blankenburg, Felix; Weiskopf, Nikolaus

    2016-01-01

    We compared the sensitivity of standard single-shot 2D echo planar imaging (EPI) to three advanced EPI sequences, i.e., 2D multi-echo EPI, 3D high resolution EPI and 3D dual-echo fast EPI in fixed effect and random effects group level fMRI analyses at 3 T. The study focused on how well the variance reduction in fixed effect analyses achieved by advanced EPI sequences translates into increased sensitivity in the random effects group level analysis. The sensitivity was estimated in a functional MRI experiment of an emotional learning and a reward based learning tasks in a group of 24 volunteers. Each experiment was acquired with the four different sequences. The task-related response amplitude, contrast level and respective t-value were proxies for the functional sensitivity across the brain. All three advanced EPI methods increased the sensitivity in the fixed effects analyses, but standard single-shot 2D EPI provided a comparable performance in random effects group analysis when whole brain coverage and moderate resolution are required. In this experiment inter-subject variability determined the sensitivity of the random effects analysis for most brain regions, making the impact of EPI pulse sequence improvements less relevant or even negligible for random effects analyses. An exception concerns the optimization of EPI reducing susceptibility-related signal loss that translates into an enhanced sensitivity e.g. in the orbitofrontal cortex for multi-echo EPI. Thus, future optimization strategies may best aim at reducing inter-subject variability for higher sensitivity in standard fMRI group studies at moderate spatial resolution. PMID:26515905

  14. Localized Mechanical Properties of Friction Stir Processed Sensitized 5456-H116 Al

    DTIC Science & Technology

    2013-04-01

    FSP is applied to a sensitized 5456-H116 aluminum plate and the resulting microstructure is linked to local mechanical properties (0.2% yield...have negatively affected the mechanical properties 15. SUBJECT TERMS Aluminum Alloys, Friction Stir Processing, Sensitization, Mechanical Testing... aluminum 5456-H116 (wt. %) ..............................................3 Table 2. Bulk base material properties for H116, O, and sensitized H116

  15. Sensitive, time-resolved, broadband spectroscopy of single transient processes

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Baev, Ivan; Hellmig, Ortwin; Sengstock, Klaus; Baev, Valery M.

    2015-09-01

    Intracavity absorption spectroscopy with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of transient gain and absorption in electrically excited Xe and Kr plasmas. The achieved time resolution for broadband spectral recording of a single process is 25 µs. For pulsed-periodic processes, the time resolution is limited by the laser pulse duration, which is set here to 3 µs. This pulse duration also predefines the effective absorption path length, which amounts to 900 m. The presented technique can be applied to multicomponent analysis of single transient processes such as shock tube experiments, pulse detonation engines, or explosives.

  16. Protons are one of the limiting factors in determining sensitivity of nano surface-assisted (+)-mode LDI MS analyses.

    PubMed

    Cho, Eunji; Ahn, Miri; Kim, Young Hwan; Kim, Jongwon; Kim, Sunghwan

    2013-10-01

    A proton source employing a nanostructured gold surface for use in (+)-mode laser desorption ionization mass spectrometry (LDI-MS) was evaluated. Analysis of perdeuterated polyaromatic hydrocarbon compound dissolved in regular toluene, perdeuterated toluene, and deuterated methanol all showed that protonated ions were generated irregardless of solvent system. Therefore, it was concluded that residual water on the surface of the LDI plate was the major source of protons. The fact that residual water remaining after vacuum drying was the source of protons suggests that protons may be the limiting reagent in the LDI process and that overall ionization efficiency can be improved by incorporating an additional proton source. When extra proton sources, such as thiolate compounds and/or citric acid, were added to a nanostructured gold surface, the protonated signal abundance increased. These data show that protons are one of the limiting components in (+)-mode LDI MS analyses employing nanostructured gold surfaces. Therefore, it has been suggested that additional efforts are required to identify compounds that can act as proton donors without generating peaks that interfere with mass spectral interpretation.

  17. Protons are One of the Limiting Factors in Determining Sensitivity of Nano Surface-Assisted (+)-Mode LDI MS Analyses

    NASA Astrophysics Data System (ADS)

    Cho, Eunji; Ahn, Miri; Kim, Young Hwan; Kim, Jongwon; Kim, Sunghwan

    2013-10-01

    A proton source employing a nanostructured gold surface for use in (+)-mode laser desorption ionization mass spectrometry (LDI-MS) was evaluated. Analysis of perdeuterated polyaromatic hydrocarbon compound dissolved in regular toluene, perdeuterated toluene, and deuterated methanol all showed that protonated ions were generated irregardless of solvent system. Therefore, it was concluded that residual water on the surface of the LDI plate was the major source of protons. The fact that residual water remaining after vacuum drying was the source of protons suggests that protons may be the limiting reagent in the LDI process and that overall ionization efficiency can be improved by incorporating an additional proton source. When extra proton sources, such as thiolate compounds and/or citric acid, were added to a nanostructured gold surface, the protonated signal abundance increased. These data show that protons are one of the limiting components in (+)-mode LDI MS analyses employing nanostructured gold surfaces. Therefore, it has been suggested that additional efforts are required to identify compounds that can act as proton donors without generating peaks that interfere with mass spectral interpretation.

  18. Genome-Wide Gene-Sodium Interaction Analyses on Blood Pressure: The Genetic Epidemiology Network of Salt-Sensitivity Study.

    PubMed

    Li, Changwei; He, Jiang; Chen, Jing; Zhao, Jinying; Gu, Dongfeng; Hixson, James E; Rao, Dabeeru C; Jaquish, Cashell E; Gu, Charles C; Chen, Jichun; Huang, Jianfeng; Chen, Shufeng; Kelly, Tanika N

    2016-08-01

    We performed genome-wide analyses to identify genomic loci that interact with sodium to influence blood pressure (BP) using single-marker-based (1 and 2 df joint tests) and gene-based tests among 1876 Chinese participants of the Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) study. Among GenSalt participants, the average of 3 urine samples was used to estimate sodium excretion. Nine BP measurements were taken using a random zero sphygmomanometer. A total of 2.05 million single-nucleotide polymorphisms were imputed using Affymetrix 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panel. Promising findings (P<1.00×10(-4)) from GenSalt were evaluated for replication among 775 Chinese participants of the Multi-Ethnic Study of Atherosclerosis (MESA). Single-nucleotide polymorphism and gene-based results were meta-analyzed across the GenSalt and MESA studies to determine genome-wide significance. The 1 df tests identified interactions for UST rs13211840 on diastolic BP (P=3.13×10(-9)). The 2 df tests additionally identified associations for CLGN rs2567241 (P=3.90×10(-12)) and LOC105369882 rs11104632 (P=4.51×10(-8)) with systolic BP. The CLGN variant rs2567241 was also associated with diastolic BP (P=3.11×10(-22)) and mean arterial pressure (P=2.86×10(-15)). Genome-wide gene-based analysis identified MKNK1 (P=6.70×10(-7)), C2orf80 (P<1.00×10(-12)), EPHA6 (P=2.88×10(-7)), SCOC-AS1 (P=4.35×10(-14)), SCOC (P=6.46×10(-11)), CLGN (P=3.68×10(-13)), MGAT4D (P=4.73×10(-11)), ARHGAP42 (P≤1.00×10(-12)), CASP4 (P=1.31×10(-8)), and LINC01478 (P=6.75×10(-10)) that were associated with at least 1 BP phenotype. In summary, we identified 8 novel and 1 previously reported BP loci through the examination of single-nucleotide polymorphism and gene-based interactions with sodium.

  19. Evaluating the Paleoindian Radiocarbon Record at the Onset of the Younger Dryas: Sensitivity Analyses and Bayesian Chronology-Building

    NASA Astrophysics Data System (ADS)

    Culleton, B. J.; Kennett, D. J.

    2008-12-01

    The onset of the Younger Dryas (13.0-12.9 ka) in North America is marked in the archaeological record by the transition from Clovis to Folsom cultural assemblages, as well as the extinction of many megafauna species. The nature of the transition-gradual or abrupt, continuous or discontinuous, regionally uniform or variable - remains poorly understood because of: 1) low-precision and low-quality radiocarbon records; 2) concerns about the accuracy of the calibration curve before ca. 12.4 ka; and, 3) disagreement on the appropriate statistical models for chronology building. Here we evaluate two approaches to Paleoindian radiocarbon chronology, summed probability distributions and Bayesian phase/boundary models. Summed probability frequencies have been used as demographic proxies recently, but the effects of sample quality, density, and the variations in the calibration curve are largely unexplored. Sensitivity analyses were done by simulating radiocarbon ages at 10, 25, 50 and 100 cal yr intervals with varying measurement errors, which were calibrated and summed to obtain a probability distribution function for each run. We find that dense, high-precision radiocarbon records are necessary to detect gaps as small as 100 years in the record. Currently available radiocarbon databases for the Paleoindian period can at best be characterized as sparse and of low- to medium-precision, arguing against the use of summed probabilities as a proxy for human activity during that period. Bayesian statistical models incorporate a priori archaeological information (e.g., stratigraphic relationships, cultural assemblage) to constrain calibrated radiocarbon ages leading to more refined chronologies. Selected high-precision, reliable radiocarbon dates were used to build phase and boundary models for Clovis and post-Clovis periods, and to determine the likelihood of a gap between them consistent with depopulation consistent with an ET impact at the Younger Dryas boundary. Model results

  20. Analyses of Markov decision process structure regarding the possible strategic use of interacting memory systems.

    PubMed

    Zilli, Eric A; Hasselmo, Michael E

    2008-01-01

    Behavioral tasks are often used to study the different memory systems present in humans and animals. Such tasks are usually designed to isolate and measure some aspect of a single memory system. However, it is not necessarily clear that any given task actually does isolate a system or that the strategy used by a subject in the experiment is the one desired by the experimenter. We have previously shown that when tasks are written mathematically as a form of partially observable Markov decision processes, the structure of the tasks provide information regarding the possible utility of certain memory systems. These previous analyses dealt with the disambiguation problem: given a specific ambiguous observation of the environment, is there information provided by a given memory strategy that can disambiguate that observation to allow a correct decision? Here we extend this approach to cases where multiple memory systems can be strategically combined in different ways. Specifically, we analyze the disambiguation arising from three ways by which episodic-like memory retrieval might be cued (by another episodic-like memory, by a semantic association, or by working memory for some earlier observation). We also consider the disambiguation arising from holding earlier working memories, episodic-like memories or semantic associations in working memory. From these analyses we can begin to develop a quantitative hierarchy among memory systems in which stimulus-response memories and semantic associations provide no disambiguation while the episodic memory system provides the most flexible disambiguation, with working memory at an intermediate level.

  1. Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo

    2016-11-01

    This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.

  2. Sensitivity analysis of a pharmaceutical tablet production process from the control engineering perspective.

    PubMed

    Rehrl, Jakob; Gruber, Arlin; Khinast, Johannes G; Horn, Martin

    2017-01-30

    This paper presents a sensitivity analysis of a pharmaceutical direct compaction process. Sensitivity analysis is an important tool for gaining valuable process insights and designing a process control concept. Examining its results in a systematic manner makes it possible to assign actuating signals to controlled variables. This paper presents mathematical models for individual unit operations, on which the sensitivity analysis is based. Two sensitivity analysis methods are outlined: (i) based on the so-called Sobol indices and (ii) based on the steady-state gains and the frequency response of the proposed plant model.

  3. Temperament trait of sensory processing sensitivity moderates cultural differences in neural response

    PubMed Central

    Ketay, Sarah; Hedden, Trey; Aron, Elaine N.; Rose Markus, Hazel; Gabrieli, John D. E.

    2010-01-01

    This study focused on a possible temperament-by-culture interaction. Specifically, it explored whether a basic temperament/personality trait (sensory processing sensitivity; SPS), perhaps having a genetic component, might moderate a previously established cultural difference in neural responses when making context-dependent vs context-independent judgments of simple visual stimuli. SPS has been hypothesized to underlie what has been called inhibitedness or reactivity in infants, introversion in adults, and reactivity or responsivness in diverse animal species. Some biologists view the trait as one of two innate strategies—observing carefully before acting vs being first to act. Thus the central characteristic of SPS is hypothesized to be a deep processing of information. Here, 10 European-Americans and 10 East Asians underwent functional magnetic resonance imaging while performing simple visuospatial tasks emphasizing judgments that were either context independent (typically easier for Americans) or context dependent (typically easier for Asians). As reported elsewhere, each group exhibited greater activation for the culturally non-preferred task in frontal and parietal regions associated with greater effort in attention and working memory. However, further analyses, reported here for the first time, provided preliminary support for moderation by SPS. Consistent with the careful-processing theory, high-SPS individuals showed little cultural difference; low-SPS, strong culture differences. PMID:20388694

  4. Temperament trait of sensory processing sensitivity moderates cultural differences in neural response.

    PubMed

    Aron, Arthur; Ketay, Sarah; Hedden, Trey; Aron, Elaine N; Rose Markus, Hazel; Gabrieli, John D E

    2010-06-01

    This study focused on a possible temperament-by-culture interaction. Specifically, it explored whether a basic temperament/personality trait (sensory processing sensitivity; SPS), perhaps having a genetic component, might moderate a previously established cultural difference in neural responses when making context-dependent vs context-independent judgments of simple visual stimuli. SPS has been hypothesized to underlie what has been called inhibitedness or reactivity in infants, introversion in adults, and reactivity or responsivness in diverse animal species. Some biologists view the trait as one of two innate strategies-observing carefully before acting vs being first to act. Thus the central characteristic of SPS is hypothesized to be a deep processing of information. Here, 10 European-Americans and 10 East Asians underwent functional magnetic resonance imaging while performing simple visuospatial tasks emphasizing judgments that were either context independent (typically easier for Americans) or context dependent (typically easier for Asians). As reported elsewhere, each group exhibited greater activation for the culturally non-preferred task in frontal and parietal regions associated with greater effort in attention and working memory. However, further analyses, reported here for the first time, provided preliminary support for moderation by SPS. Consistent with the careful-processing theory, high-SPS individuals showed little cultural difference; low-SPS, strong culture differences.

  5. Microstructure Sensitive Design and Processing in Solid Oxide Electrolyzer Cell

    SciTech Connect

    Dr. Hamid Garmestani; Dr. Stephen Herring

    2009-06-12

    The aim of this study was to develop and inexpensive manufacturing process for deposition of functionally graded thin films of LSM oxides with porosity graded microstructures for use as IT-SOFCs cathode. The spray pyrolysis method was chosen as a low-temperature processing technique for deposition of porous LSM films onto dense YXZ substrates. The effort was directed toward the optimization of the processing conditions for deposition of high quality LSM films with variety of morphologies in the range of dense to porous microstructures. Results of optimization studies of spray parameters revealed that the substrate surface temperature is the most critical parameter influencing the roughness and morphology, porosity, cracking and crystallinity of the film.

  6. Variable high pressure processing sensitivities for GII human noroviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (HuNoV) is the leading cause of foodborne diseases worldwide. High pressure processing (HPP) is one of the most promising non-thermal technologies for decontamination of viral pathogens in foods. However, the survival of HuNoVs by HPP is poorly understood because these viruses cann...

  7. Sensitivity of Mycobacterium bovis to common beef processing interventions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction. Cattle infected with Mycobacterium bovis, the causative agent of bovine tuberculosis and a relevant zoonosis to humans, may be sent to slaughter before diagnosis of infection because of slow multiplication of the pathogen. Purpose. This study evaluates multiple processing interventi...

  8. Face-Sensitive Cortical Processing in Early Infancy

    ERIC Educational Resources Information Center

    Halit, Hanife; Csibra, Gergely; Volein, Agnes; Johnson, Mark H.

    2004-01-01

    Background: Debates about the developmental origins of adult face processing could be directly addressed if a clear infant neural marker could be identified. Previous research with infants remains open to criticism regarding the control stimuli employed. Methods: We recorded ERPs from adults and 3-month-old infants while they watched faces and…

  9. Sensitivity of membranes to their environment. Role of stochastic processes.

    PubMed Central

    Offner, F F

    1984-01-01

    Ionic flow through biomembranes often exhibits a sensitivity to the environment, which is difficult to explain by classical theory, that usually assumes that the free energy available to change the membrane permeability results from the environmental change acting directly on the permeability control mechanism. This implies, for example, that a change delta V in the trans-membrane potential can produce a maximum free energy change, delta V X q, on a gate (control mechanism) carrying a charge q. The analysis presented here shows that when stochastic fluctuations are considered, under suitable conditions (gate cycle times rapid compared with the field relaxation time within a channel), the change in free energy is limited, not by the magnitude of the stimulus, but by the electrochemical potential difference across the membrane, which may be very much greater. Conformational channel gates probably relax more slowly than the field within the channel; this would preclude appreciable direct amplification of the stimulus. It is shown, however, that the effect of impermeable cations such as Ca++ is to restore the amplification of the stimulus through its interaction with the electric field. The analysis predicts that the effect of Ca++ should be primarily to affect the number of channels that are open, while only slightly affecting the conductivity of an open channel. PMID:6093903

  10. Upconversion processes in Yb-sensitized Tm:ZBLAN

    SciTech Connect

    Carrig, T.J.; Cockroft, N.J.

    1996-10-01

    A spectroscopic study of 22 rare-earth-ion doped ZBLAN (fluorozirconate) glass was done to study feasibility of sensitizing Tm:ZBLAN with Yb to facilitate development of an efficient, conveniently pumped blue upconversion fiber laser. it was found that, under single-color pumping, 480 nm emission from Tm{sup 3+} was strongest when Yb,Tm:ZBLAN is excited at 975 nm; the strongest blue blue emission was obtained from a glass sample with 2.0 wt% Yb + 0.3 wt% Tm. Also, for weak 975 nm pump intensities, strength of blue upconversion emission can be greatly enhanced by simultaneously pumping at 785 nm. This increased upconversion efficiency is due to reduced number of energy transfer steps needed to populate the Tm{sup 3+} {sup 1}G{sub 4} energy level. Measurements of fluorescence lifetimes vs dopant concentration were also made for Yb{sup 3+}, Tm{sup 3+}, and Pr{sup 3+} transitions in ZBLAN in order to better characterize concentration quenching effects. Energy transfer between Tm{sup 3+} and Pr{sup 3+} in ZBLAN is also described.

  11. ANION ANALYSES BY ION CHROMATOGRAPHY FOR THE ALTERNATE REDUCTANT DEMONSTRATION FOR THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Best, D.

    2010-08-04

    The Process Science Analytical Laboratory (PSAL) at the Savannah River National Laboratory was requested by the Defense Waste Processing Facility (DWPF) to develop and demonstrate an Ion Chromatography (IC) method for the analysis of glycolate, in addition to eight other anions (fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate and phosphate) in Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) samples. The method will be used to analyze anions for samples generated from the Alternate Reductant Demonstrations to be performed for the DWPF at the Aiken County Technology Laboratory (ACTL). The method is specific to the characterization of anions in the simulant flowsheet work. Additional work will be needed for the analyses of anions in radiological samples by Analytical Development (AD) and DWPF. The documentation of the development and demonstration of the method fulfills the third requirement in the TTQAP, SRNL-RP-2010-00105, 'Task Technical and Quality Assurance Plan for Glycolic-Formic Acid Flowsheet Development, Definition and Demonstrations Tasks 1-3'.

  12. Assessing cognitive processes with diffusion model analyses: a tutorial based on fast-dm-30

    PubMed Central

    Voss, Andreas; Voss, Jochen; Lerche, Veronika

    2015-01-01

    Diffusion models can be used to infer cognitive processes involved in fast binary decision tasks. The model assumes that information is accumulated continuously until one of two thresholds is hit. In the analysis, response time distributions from numerous trials of the decision task are used to estimate a set of parameters mapping distinct cognitive processes. In recent years, diffusion model analyses have become more and more popular in different fields of psychology. This increased popularity is based on the recent development of several software solutions for the parameter estimation. Although these programs make the application of the model relatively easy, there is a shortage of knowledge about different steps of a state-of-the-art diffusion model study. In this paper, we give a concise tutorial on diffusion modeling, and we present fast-dm-30, a thoroughly revised and extended version of the fast-dm software (Voss and Voss, 2007) for diffusion model data analysis. The most important improvement of the fast-dm version is the possibility to choose between different optimization criteria (i.e., Maximum Likelihood, Chi-Square, and Kolmogorov-Smirnov), which differ in applicability for different data sets. PMID:25870575

  13. A knowledge acquisition process to analyse operational problems in solid waste management facilities.

    PubMed

    Dokas, Ioannis M; Panagiotakopoulos, Demetrios C

    2006-08-01

    The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions.

  14. Thermal threshold and sensitivity of the only symbiotic Mediterranean gorgonian Eunicella singularis by morphometric and genotypic analyses.

    PubMed

    Pey, Alexis; Catanéo, Jérôme; Forcioli, Didier; Merle, Pierre-Laurent; Furla, Paola

    2013-07-01

    The only symbiotic Mediterranean gorgonian, Eunicella singularis, has faced several mortality events connected to abnormal high temperatures. Since thermotolerance data remain scarce, heat-induced necrosis was monitored in aquarium by morphometric analysis. Gorgonian tips were sampled at two sites: Medes (Spain) and Riou (France) Islands, and at two depths: -15 m and-35 m. Although coming from contrasting thermal regimes, seawater above 28 °C led to rapid and complete tissue necrosis for all four populations. However, at 27 °C, the time length leading to 50% tissue necrosis allowed us to classify samples within three classes of thermal sensitivity. Irrespectively of the depth, Medes specimens were either very sensitive or resistant, while Riou fragments presented a medium sensitivity. Microsatellite analysis revealed that host and symbiont were genetically differentiated between sites, but not between depths. Finally, these genetic differentiations were not directly correlated to a specific thermal sensitivity whose molecular bases remain to be discovered.

  15. Spatio-temporal analyses of sediment transport processes in an alpine catchment a scales oriented approach

    NASA Astrophysics Data System (ADS)

    Schober, S.; Habersack, H. M.

    2003-04-01

    Increasing morphological problems are being encountered with water courses in Austria, related to the impacts of sediment regime with lack and surplus of material. River bed degradation and aggradation are enhanced by human intervention. On a scaling perspective the boundary conditions and major processes in a catchment, like the geomorphological setting, are given by longterm developments. On the basis of field mapping these effects are discusssed with respect to sediment availability, being affected e. g. by deep-seated gravitational slope deformations and slope creeping. Within these longterm processes, short-term unsteady sediment supply, erosion, transfer, deposition and remobilisation processes determine catchment sedimentation and management. At the moment the analysis of sediment regime is restricted to specific scales. Measurements of sediment transport are performed at limited spatial scales of a few meters or even individual points. These measurements are often not typical for the whole vertical or the whole cross section. The temporal resolution allows mostly no detailed analysis of e.g. the hysteretic behaviour of a flood wave. Furthermore it is questionable whether these data are characteristic for a longer reach which consists of individual sub-reaches of degradation, aggregation or equilibrium conditions. Finally the catchment wide analysis of sediment regime is restricted by the information given at these smaller scales and it is sensitive to the representativeness of these data with respect to spatial and temporal significance. With the help of a River Scaling Concept we discuss different scales in the alpine catchment Sölk for developing and testing a scale oriented procedure to investigate the catchment wide sediment regime in a spatio-temporal frame. It is shown that this methodology improves the quality of results derived from geometrical properties for the subbasins and gives good ideas for the solution of morphological problems.

  16. Continuum beliefs in the stigma process regarding persons with schizophrenia and depression: results of path analyses

    PubMed Central

    Mnich, Eva E.; Angermeyer, Matthias C.; von dem Knesebeck, Olaf

    2016-01-01

    Background Individuals with mental illness often experience stigmatization and encounter stereotypes such as being dangerous or unpredictable. To further improve measures against psychiatric stigma, it is of importance to understand its components. In this study, we attend to the step of separation between “us” and “them” in the stigma process as conceptualized by Link and Phelan. In using the belief in continuity of mental illness symptoms as a proxy for separation, we explore its associations with stereotypes, emotional responses and desire for social distance in the stigma process. Methods Analyses are based on a representative survey in Germany. Vignettes with symptoms suggestive of schizophrenia (n = 1,338) or depression (n = 1,316) were presented to the respondents, followed by questions on continuum belief, stereotypes, emotional reactions and desire for social distance. To examine the relationship between these items, path models were computed. Results Respondents who endorsed the continuum belief tended to show greater prosocial reactions (schizophrenia: 0.07; p < 0.001, depression: 0.09; p < 0.001) and less desire for social distance (schizophrenia: −0.13; p < 0.001, depression: −0.14; p < 0.001) toward a person with mental illness. In both cases, agreement with the stereotypes of unpredictability and dangerousness was positively associated with feelings of anger and fear as well as desire for social distance. There were no statistically significant relations between stereotypes and continuum beliefs. Discussion Assumptions regarding continuum beliefs in the stigma process were only partially confirmed. However, there were associations of continuum beliefs with less stigmatizing attitudes toward persons affected by either schizophrenia or depression. Including information on continuity of symptoms, and thus oppose perceived separation, could prove helpful in future anti-stigma campaigns. PMID:27703840

  17. Context sensitivity in action decreases along the autism spectrum: a predictive processing perspective.

    PubMed

    Palmer, Colin J; Paton, Bryan; Kirkovski, Melissa; Enticott, Peter G; Hohwy, Jakob

    2015-03-07

    Recent predictive processing accounts of perception and action point towards a key challenge for the nervous system in dynamically optimizing the balance between incoming sensory information and existing expectations regarding the state of the environment. Here, we report differences in the influence of the preceding sensory context on motor function, varying with respect to both clinical and subclinical features of autism spectrum disorder (ASD). Reach-to-grasp movements were recorded subsequent to an inactive period in which illusory ownership of a prosthetic limb was induced. We analysed the sub-components of reach trajectories derived using a minimum-jerk fitting procedure. Non-clinical adults low in autistic features showed disrupted movement execution following the illusion compared to a control condition. By contrast, individuals higher in autistic features (both those with ASD and non-clinical individuals high in autistic traits) showed reduced sensitivity to the presence of the illusion in their reaching movements while still exhibiting the typical perceptual effects of the illusion. Clinical individuals were distinct from non-clinical individuals scoring high in autistic features, however, in the early stages of movement. These results suggest that the influence of high-level representations of the environment differs between individuals, contributing to clinical and subclinical differences in motor performance that manifest in a contextual manner. As high-level representations of context help to explain fluctuations in sensory input over relatively longer time scales, more circumscribed sensitivity to prior or contextual information in autistic sensory processing could contribute more generally to reduced social comprehension, sensory impairments and a stronger desire for predictability and routine.

  18. A miniaturised laser ablation/ionisation analyser for investigation of elemental/isotopic composition with the sub-ppm detection sensitivity

    NASA Astrophysics Data System (ADS)

    Tulej, M.; Riedo, A.; Meyer, S.; Iakovleva, M.; Neuland, M.; Wurz, P.

    2012-04-01

    Detailed knowledge of the elemental and isotopic composition of solar system objects imposes critical constraints on models describing the origin of our solar system and can provide insight to chemical and physical processes taking place during the planetary evolution. So far, the investigation of chemical composition of planetary surfaces could be conducted almost exclusively by remotely controlled spectroscopic instruments from orbiting spacecraft, landers or rovers. With some exceptions, the sensitivity of these techniques is, however, limited and often only abundant elements can be investigated. Nevertheless, the spectroscopic techniques proved to be successful for global chemical mapping of entire planetary objects such as the Moon, Mars and asteroids. A combined afford of the measurements from orbit, landers and rovers can also yield the determination of local mineralogy. New instruments including Laser Induced Breakdown Spectroscopy (LIBS) and Laser Ablation/Ionisation Mass Spectrometer (LIMS), have been recently included for several landed missions. LIBS is thought to improve flexibility of the investigations and offers a well localised chemical probing from distances up to 10-13 m. Since LIMS is a mass spectrometric technique it allows for very sensitive measurements of elements and isotopes. We will demonstrate the results of the current performance tests obtained by application of a miniaturised laser ablation/ionisation mass spectrometer, a LIMS instrument, developed in Bern for the chemical analysis of solids. So far, the only LIMS instrument on a spacecraft is the LAZMA instrument. This spectrometer was a part of the payload for PHOBOS-GRUNT mission and is also currently selected for LUNA-RESURCE and LUNA-GLOB missions to the lunar south poles (Managadze et al., 2011). Our LIMS instrument has the dimensions of 120 x Ø60 mm and with a weight of about 1.5 kg (all electronics included), it is the lightest mass analyser designed for in situ chemical

  19. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  20. Combination of optical and electrical loss analyses for a Si-phthalocyanine dye-sensitized solar cell.

    PubMed

    Lin, Keng-Chu; Wang, Lili; Doane, Tennyson; Kovalsky, Anton; Pejic, Sandra; Burda, Clemens

    2014-12-11

    In order to promote the development of solar cells with varying types of sensitizers including dyes and quantum dots, it is crucial to establish a general experimental analysis that accounts for all important optical and electrical losses resulting from interfacial phenomena. All of these varying types of solar cells share common features where a mesoporous scaffold is used as a sensitizer loading support as well as an electron transport material, which may result in light scattering. The loss of efficiency at interfaces of the sensitizer, the mesoporous TiO2 nanoparticle films, the FTO conductive layer, and the supportive glass substrate should be considered in addition to the photoinduced electron transport properties within a cell. On the basis of optical parameters, one can obtain the internal quantum efficiency (IQE) of a solar cell, an important parameter that cannot be directly measured but must be derived from several key experiments. By integrating an optical loss model with an electrical loss model, many solar cell parameters could be characterized from electro-optical observables including reflectance, transmittance, and absorptance of the dye sensitizer, the electron injection efficiency, and the charge collection efficiency. In this work, an integrated electro-optical approach has been applied to SiPc (Pc 61) dye-sensitized solar cells for evaluating the parameters affecting the overall power conversion efficiency. The absorptance results of the Pc 61 dye-sensitized solar cell provide evidence that the adsorbed Pc 61 forms noninjection layers on TiO2 surfaces when the dye immersion time exceeds 120 min, resulting in shading light from the active layer rather than an increase in photoelectric current efficiency.

  1. Texture Analyses of Ti/Al2O3 Nanocomposite Produced Using Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shafiei-Zarghani, Aziz; Kashani-Bozorg, Seyed Farshid; Gerlich, Adrian P.

    2016-11-01

    The texture evolution of Ti/Al2O3 nanocomposite fabricated using friction stir processing (FSP) was investigated at both macroscopic and microscopic levels employing X-ray diffraction and electron backscattering diffraction techniques. The developed textures were compared with ideal shear textures of hexagonal close-packed (hcp) structure, revealing that the fabricated nanocomposite is dominated by the P 1 hcp (fiber { 10bar{1}1} < 1bar{2}10rangle (and relatively weak B (fiber { 10bar{1}1} < bar{1}bar{1}23rangle ) textures. The analyses of macro- and microtextures showed that the presence of nanosized Al2O3 particles activated the pyramidal { 10bar{1}1} < bar{1}bar{1}23rangle slip system in addition to dominant { 10bar{1}0} < 1bar{2}10rangle prism, basal { {0002} }< 1bar{2}10rangle, and pyramidal { 10bar{1}1} < 1bar{2}10rangle slip systems which normally govern plastic deformation during FSP of commercially pure titanium alloy. Moreover, the presence of nanoparticles promoted the occurrence of continuous dynamic recrystallization as well as increasing the fraction of high-angle grain boundaries within the developed microstructure.

  2. Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)

    SciTech Connect

    CHRYSOCHOOU, MARIA; FAKRA, SIRINE C .; Marcus, Matthew A.; Moon, Deok Hyun; Dermatas, Dimitris

    2010-03-01

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30percent of its total Cr(VI) (6000 mg/kg) as large crystals(>20 ?m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50percent of the Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmilleritewasalso likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment ofHBCOPRis challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to ~;;50percent of Cr(VI) in GB COPR.

  3. Microstructural analyses of Cr(VI) speciation in chromite ore processing residue (COPR).

    PubMed

    Chrysochoou, Maria; Fakra, Sirine C; Marcus, Matthew A; Moon, Deok Hyun; Dermatas, Dimitris

    2009-07-15

    The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30% of its total Cr(VI) (6000 mg/kg) as large crystals (>20 microm diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50% of the Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmillerite was also likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment of HB COPR is challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to approximately 50% of Cr(VI) in GB COPR.

  4. Advanced Stirling Radioisotope Generator: Design Processes, Reliability Analyses Impacts, and Extended Operation Tests

    NASA Astrophysics Data System (ADS)

    Ha, Chuong T.; Fernandez, René; Cornford, Steven L.; Feather, Martin S.

    2008-01-01

    NASA is currently funding an effort involving the Department of Energy (DOE), Lockheed Martin (LM), Glenn Research Center (GRC), and Sunpower (SP), Inc. to develop a high specific power Advanced Stirling Radioisotope Generator (ASRG). GRC and SP are responsible for providing the Stirling convertor, while LM is responsible for the generator housing, controller, and system integration. GRC also provides supporting technologies for various components as well as extended operation testing, both in air and in a thermal vacuum environment. Because of the 17-year life requirement of the ASRG, reliability considerations are the main design driver. Components such as the heater head, fasteners, magnets, and planar spring have been studied to ensure high reliability. To encompass unique design features, long lifetimes and extreme environmental conditions, both reliability analyses and qualification tests are used to support the design process. This paper presents an overview of the ASRG reliability approach and the impact of the Reliability Working Group (RWG) on the recently finished design effort. It also provides a summary of current and planned extended operation tests, specifically targeted to demonstrate long-life capability and to support further reliability assessment. In the event of no, or minimal failures during these extended tests, a Weibayes approach will be used to create a trend of improving reliability predictions.

  5. Pre-waste-emplacement ground-water travel time sensitivity and uncertainty analyses for Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect

    Kaplan, P.G.

    1993-01-01

    Yucca Mountain, Nevada is a potential site for a high-level radioactive-waste repository. Uncertainty and sensitivity analyses were performed to estimate critical factors in the performance of the site with respect to a criterion in terms of pre-waste-emplacement ground-water travel time. The degree of failure in the analytical model to meet the criterion is sensitive to the estimate of fracture porosity in the upper welded unit of the problem domain. Fracture porosity is derived from a number of more fundamental measurements including fracture frequency, fracture orientation, and the moisture-retention characteristic inferred for the fracture domain.

  6. Phenotypic and genetic analyses of the Varroa Sensitive Hygienic trait in Russian Honey Bee (Hymenoptera: Apidae) colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene and more specific VarroaVarroa Sensitive Hygiene (VSH) provide resistance toward the Varroa mite in a number of stocks. In this study, Russian (RHB) and Italian honey bees were assessed for the VSH trait. Two...

  7. Developing Sensitivity to Subword Combinatorial Orthographic Regularity (SCORe): A Two-Process Framework

    ERIC Educational Resources Information Center

    Mano, Quintino R.

    2016-01-01

    Accumulating evidence suggests that literacy acquisition involves developing sensitivity to the statistical regularities of the textual environment. To organize accumulating evidence and help guide future inquiry, this article integrates data from disparate fields of study and formalizes a new two-process framework for developing sensitivity to…

  8. The neural processing of moral sensitivity to issues of justice and care.

    PubMed

    Robertson, Diana; Snarey, John; Ousley, Opal; Harenski, Keith; DuBois Bowman, F; Gilkey, Rick; Kilts, Clinton

    2007-03-02

    The empirical and theoretical consideration of ethical decision making has focused on the process of moral judgment; however, a precondition to judgment is moral sensitivity, the ability to detect and evaluate moral issues [Rest, J. R. (1984). The major components of morality. In W. Kurtines & J. Gewirtz (Eds.), Morality, moral behaviour, and moral development (pp. 24-38). New York, NY: Wiley]. Using functional magnetic resonance imaging (fMRI) and contextually standardized, real life moral issues, we demonstrate that sensitivity to moral issues is associated with activation of the polar medial prefrontal cortex, dorsal posterior cingulate cortex, and posterior superior temporal sulcus (STS). These activations suggest that moral sensitivity is related to access to knowledge unique to one's self, supported by autobiographical memory retrieval and social perspective taking. We also assessed whether sensitivity to rule-based or "justice" moral issues versus social situational or "care" moral issues is associated with dissociable neural processing events. Sensitivity to justice issues was associated with greater activation of the left intraparietal sulcus, whereas sensitivity to care issues was associated with greater activation of the ventral posterior cingulate cortex, ventromedial and dorsolateral prefrontal cortex, and thalamus. These results suggest a role for access to self histories and identities and social perspectives in sensitivity to moral issues, provide neural representations of the subcomponent process of moral sensitivity originally proposed by Rest, and support differing neural information processing for the interpretive recognition of justice and care moral issues.

  9. Process Mining Techniques for Analysing Patterns and Strategies in Students' Self-Regulated Learning

    ERIC Educational Resources Information Center

    Bannert, Maria; Reimann, Peter; Sonnenberg, Christoph

    2014-01-01

    Referring to current research on self-regulated learning, we analyse individual regulation in terms of a set of specific sequences of regulatory activities. Successful students perform regulatory activities such as analysing, planning, monitoring and evaluating cognitive and motivational aspects during learning not only with a higher frequency…

  10. The highly sensitive brain: an fMRI study of sensory processing sensitivity and response to others' emotions

    PubMed Central

    Acevedo, Bianca P; Aron, Elaine N; Aron, Arthur; Sangster, Matthew-Donald; Collins, Nancy; Brown, Lucy L

    2014-01-01

    Background Theory and research suggest that sensory processing sensitivity (SPS), found in roughly 20% of humans and over 100 other species, is a trait associated with greater sensitivity and responsiveness to the environment and to social stimuli. Self-report studies have shown that high-SPS individuals are strongly affected by others' moods, but no previous study has examined neural systems engaged in response to others' emotions. Methods This study examined the neural correlates of SPS (measured by the standard short-form Highly Sensitive Person [HSP] scale) among 18 participants (10 females) while viewing photos of their romantic partners and of strangers displaying positive, negative, or neutral facial expressions. One year apart, 13 of the 18 participants were scanned twice. Results Across all conditions, HSP scores were associated with increased brain activation of regions involved in attention and action planning (in the cingulate and premotor area [PMA]). For happy and sad photo conditions, SPS was associated with activation of brain regions involved in awareness, integration of sensory information, empathy, and action planning (e.g., cingulate, insula, inferior frontal gyrus [IFG], middle temporal gyrus [MTG], and PMA). Conclusions As predicted, for partner images and for happy facial photos, HSP scores were associated with stronger activation of brain regions involved in awareness, empathy, and self-other processing. These results provide evidence that awareness and responsiveness are fundamental features of SPS, and show how the brain may mediate these traits. PMID:25161824

  11. Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies

    NASA Astrophysics Data System (ADS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley

    2003-03-01

    A quantitative comparison of six meteorological analyses is presented for the cold 1999/2000 and 1995/1996 Arctic winters. Using different analyzed data sets to obtain temperatures and temperature histories can have significant consequences. The area with temperatures below a polar stratospheric cloud (PSC) formation threshold commonly varies by ˜25% between the analyses, with some differences over 50%. Biases between analyses vary from year to year; in January 2000, Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses were warmest, while NCEP analyses were usually coldest in 1995/1996 and NCEP/National Center for Atmospheric Research Reanalysis (REAN) were usually warmest. Freie Universität Berlin analyses are often colder than others at T ≲ 205 K. European Centre for Medium-Range Weather Forecasts (ECMWF) temperatures agreed better with other analyses in 1999/2000, after improvements in the assimilation system, than in 1995/1996. Temperature history case studies show substantial differences using Met Office, NCEP, REAN, ECMWF, and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), all analyses gave qualitatively similar results. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with the cold region near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly between the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days, while in 1996 they were at 1-3 days. Different meteorological conditions in comparably cold winters have a large impact on expectations for PSC formation and on the effects of discrepancies between different meteorological analyses. Met Office, NCEP, REAN, ECMWF, and DAO analyses are commonly used in modeling polar processes

  12. Morphometric and colorimetric analyses of human tumor cell line growth and drug sensitivity in soft agar culture.

    PubMed

    Alley, M C; Pacula-Cox, C M; Hursey, M L; Rubinstein, L R; Boyd, M R

    1991-02-15

    Previous studies have demonstrated the suitability of image analysis of tetrazolium-stained colonies to assess growth and drug sensitivity of human tumor cells cultivated in soft agar culture. In the present study, the potential utility of colorimetric analysis to expedite experimental drug evaluations using human tumor cell lines was investigated. The same culture dishes were assessed by image analysis and by formazan colorimetry for purposes of comparing multiple methods of measuring growth as well as growth inhibition. Replicate cultures treated with 2-(p-iodonitrophenyl)-3-p-nitrophenyl-5-phenyltetrazolium chloride or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide exhibited nearly identical colony count and volume indices as well as excellent correlation in colorimetric end points. Colony-forming unit volume analysis versus colorimetric assessment of the same cultures following dimethyl sulfoxide extraction of protamine sulfate-rinsed, dried soft agar cultures exhibited excellent linear correlation for both growth (Pearson r ranging from 0.95 to 1.00) and drug sensitivity (Pearson r ranging from 0.90 to 0.99, and Spearman r ranging from 0.82 to 0.97) and similar drug sensitivity profiles. Results of the current investigation indicate that end points of soft agar culture remain stable for a period of at least 2 weeks following assay termination. In addition, a colorimetric detection range of 1.3-2.2 log units permits determinations of survival levels ranging from 100 to 5% of respective control levels. Colorimetric analysis is anticipated to expedite soft agar colony formation assay evaluations (a) by reducing the need to use the more rigorous and time-consuming image analysis procedures to measure activity in preliminary drug sensitivity assays and (b) by permitting the determination of effective concentration ranges of new experimental agents for subsequent, more detailed investigations.

  13. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: a case study for submerged aquatic vegetation.

    PubMed

    Zajac, Zuzanna; Stith, Bradley; Bowling, Andrea C; Langtimm, Catherine A; Swain, Eric D

    2015-07-01

    Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust

  14. Sensitivity of LDEF foil analyses using ultra-low background germanium vs. large NaI(Tl) multidimensional spectrometers

    SciTech Connect

    Reeves, J.H.; Arthur, R.J.; Brodzinski, R.L.

    1992-06-01

    Cobalt foils and stainless steel samples were analyzed for induced {sup 6O}Co activity with both an ultra-low background germanium gamma-ray spectrometer and with a large NaI(Tl) multidimensional spectrometer, both of which use electronic anticoincidence shielding to reduce background counts resulting from cosmic rays. Aluminum samples were analyzed for {sup 22}Na. The results, in addition to the relative sensitivities and precisions afforded by the two methods, are presented.

  15. Sensitivity of LDEF foil analyses using ultra-low background germanium vs. large NaI(Tl) multidimensional spectrometers

    NASA Technical Reports Server (NTRS)

    Reeves, James H.; Arthur, Richard J.; Brodzinski, Ronald L.

    1993-01-01

    Cobalt foils and stainless steel samples were analyzed for induced Co-60 activity with both an ultra-low background germanium gamma-ray spectrometer and with a large NaI(Tl) multidimensional spectrometer, both of which use electronic anticoincidence shielding to reduce background counts resulting from cosmic rays. Aluminum samples were analyzed for Na-22. The results, in addition to the relative sensitivities and precisions afforded by the two methods, are presented.

  16. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: a case study for submerged aquatic vegetation

    USGS Publications Warehouse

    Zajac, Zuzanna; Stith, Bradley M.; Bowling, Andrea C.; Langtimm, Catherine A.; Swain, Eric D.

    2015-01-01

    Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust

  17. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: a case study for submerged aquatic vegetation

    PubMed Central

    Zajac, Zuzanna; Stith, Bradley; Bowling, Andrea C; Langtimm, Catherine A; Swain, Eric D

    2015-01-01

    Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust

  18. Compact variant-rich customized sequence database and a fast and sensitive database search for efficient proteogenomic analyses.

    PubMed

    Park, Heejin; Bae, Junwoo; Kim, Hyunwoo; Kim, Sangok; Kim, Hokeun; Mun, Dong-Gi; Joh, Yoonsung; Lee, Wonyeop; Chae, Sehyun; Lee, Sanghyuk; Kim, Hark Kyun; Hwang, Daehee; Lee, Sang-Won; Paek, Eunok

    2014-12-01

    In proteogenomic analysis, construction of a compact, customized database from mRNA-seq data and a sensitive search of both reference and customized databases are essential to accurately determine protein abundances and structural variations at the protein level. However, these tasks have not been systematically explored, but rather performed in an ad-hoc fashion. Here, we present an effective method for constructing a compact database containing comprehensive sequences of sample-specific variants--single nucleotide variants, insertions/deletions, and stop-codon mutations derived from Exome-seq and RNA-seq data. It, however, occupies less space by storing variant peptides, not variant proteins. We also present an efficient search method for both customized and reference databases. The separate searches of the two databases increase the search time, and a unified search is less sensitive to identify variant peptides due to the smaller size of the customized database, compared to the reference database, in the target-decoy setting. Our method searches the unified database once, but performs target-decoy validations separately. Experimental results show that our approach is as fast as the unified search and as sensitive as the separate searches. Our customized database includes mutation information in the headers of variant peptides, thereby facilitating the inspection of peptide-spectrum matches.

  19. Rapid and sensitive analyses of glycoprotein-derived oligosaccharides by liquid chromatography and laser-induced fluorometric detection capillary electrophoresis.

    PubMed

    Oyama, Takehiro; Yodohsi, Masahiro; Yamane, Ayako; Kakehi, Kazuaki; Hayakawa, Takao; Suzuki, Shigeo

    2011-10-01

    Asparagine-type oligosaccharides are released from core proteins as N-glycosylamines in the initial step of the action of the peptide N(4)-(N-acetyl-β-D-glucosaminyl)asparagine amidase F (PNGase F). The released N-glycosylamine-type oligosaccharides (which are exclusively present at least during the course of the enzyme reaction) could therefore be derivatized with amine-labeling reagents. Here we report a method using 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) as a labeling reagent for glycosylamine-type oligosaccharides. We applied the method for the sensitive analysis of some oligosaccharide mixtures derived from well-characterized glycoproteins including human transferrin, α(1)-acid glycoprotein, bovine fetuin, and ribonuclease B. NBD-labeled oligosaccharides were successfully separated on an amide-bonded column or a diol-silica column. This labeling method included the release of oligosaccharides from glycoproteins and derivatization of oligosaccharides in a one-pot reaction and was completed within 3h. The method showed approximately fivefold higher sensitivity than that involving labeling with ethyl p-aminobenzoate (ABEE) in HPLC using fluorometric detection and a one order of magnitude higher response in ESI-LC/MS. We also applied this method for the sensitive analysis of glycoprotein-derived oligosaccharides by capillary electrophoresis with laser-induced fluorometric detection (LIF-CE). The limit of detection in HPLC and LIF-CE were 100fmol and 4fmol, respectively.

  20. A Fast, Accurate and Sensitive GC-FID Method for the Analyses of Glycols in Water and Urine

    NASA Technical Reports Server (NTRS)

    Kuo, C. Mike; Alverson, James T.; Gazda, Daniel B.

    2017-01-01

    Glycols, specifically ethylene glycol and 1,2-propanediol, are some of the major organic compounds found in the humidity condensate samples collected on the International Space Station. The current analytical method for glycols is a GC/MS method with direct sample injection. This method is simple and fast, but it is not very sensitive. Reporting limits for ethylene glycol and 1,2-propanediol are only 1 ppm. A much more sensitive GC/FID method was developed, in which glycols were derivatized with benzoyl chloride for 10 minutes before being extracted with hexane. Using 1,3-propanediol as an internal standard, the detection limits for the GC/FID method was determined to be 50 ppb and the analysis only takes 7 minutes. Data from the GC/MS and the new GC/FID methods shows excellent agreement with each other. Factors affecting the sensitivity, including sample volume, NaOH concentration and volume, volume of benzoyl chloride, reaction time and temperature, were investigated. Interferences during derivatization and possible method to reduce interferences were also investigated.

  1. A Case Study Analysing the Process of Analogy-Based Learning in a Teaching Unit about Simple Electric Circuits

    ERIC Educational Resources Information Center

    Paatz, Roland; Ryder, James; Schwedes, Hannelore; Scott, Philip

    2004-01-01

    The purpose of this case study is to analyse the learning processes of a 16-year-old student as she learns about simple electric circuits in response to an analogy-based teaching sequence. Analogical thinking processes are modelled by a sequence of four steps according to Gentner's structure mapping theory (activate base domain, postulate local…

  2. Antecedents of Maternal Sensitivity During Distressing Tasks: Integrating Attachment, Social Information Processing, and Psychobiological Perspectives

    PubMed Central

    Leerkes, Esther M.; Supple, Andrew J.; O’Brien, Marion; Calkins, Susan D.; Haltigan, John D.; Wong, Maria S.; Fortuna, Keren

    2016-01-01

    Predictors of maternal sensitivity to infant distress were examined among 259 primiparous mothers. The Adult Attachment Interview, self-reports of personality and emotional functioning, and measures of physiological, emotional, and cognitive responses to videotapes of crying infants were administered prenatally. Maternal sensitivity was observed during three distress-eliciting tasks when infants were 6 months old. Coherence of mind was directly associated with higher maternal sensitivity to distress. Mothers’ heightened emotional risk was indirectly associated with lower sensitivity via mothers’ self-focused and negative processing of infant cry cues. Likewise, high physiological arousal accompanied by poor physiological regulation in response to infant crying was indirectly associated with lower maternal sensitivity to distress through mothers’ self-focused and negative processing of infant cry cues. PMID:25209221

  3. Face processing regions are sensitive to distinct aspects of temporal sequence in facial dynamics.

    PubMed

    Reinl, Maren; Bartels, Andreas

    2014-11-15

    Facial movement conveys important information for social interactions, yet its neural processing is poorly understood. Computational models propose that shape- and temporal sequence sensitive mechanisms interact in processing dynamic faces. While face processing regions are known to respond to facial movement, their sensitivity to particular temporal sequences has barely been studied. Here we used fMRI to examine the sensitivity of human face-processing regions to two aspects of directionality in facial movement trajectories. We presented genuine movie recordings of increasing and decreasing fear expressions, each of which were played in natural or reversed frame order. This two-by-two factorial design matched low-level visual properties, static content and motion energy within each factor, emotion-direction (increasing or decreasing emotion) and timeline (natural versus artificial). The results showed sensitivity for emotion-direction in FFA, which was timeline-dependent as it only occurred within the natural frame order, and sensitivity to timeline in the STS, which was emotion-direction-dependent as it only occurred for decreased fear. The occipital face area (OFA) was sensitive to the factor timeline. These findings reveal interacting temporal sequence sensitive mechanisms that are responsive to both ecological meaning and to prototypical unfolding of facial dynamics. These mechanisms are temporally directional, provide socially relevant information regarding emotional state or naturalness of behavior, and agree with predictions from modeling and predictive coding theory.

  4. Inorganic analyses of volatilized and condensed species within prototypic Defense Waste Processing Facility (DWPF) canistered waste

    SciTech Connect

    Jantzen, C.M.

    1992-06-30

    The high-level radioactive waste currently stored in carbon steel tanks at the Savannah River Site (SRS) will be immobilized in a borosilicate glass in the Defense Waste Processing Facility (DWPF). The canistered waste will be sent to a geologic repository for final disposal. The Waste Acceptance Preliminary Specifications (WAPS) require the identification of any inorganic phases that may be present in the canister that may lead to internal corrosion of the canister or that could potentially adversely affect normal canister handling. During vitrification, volatilization of mixed (Na, K, Cs)Cl, (Na, K, Cs){sub 2}SO{sub 4}, (Na, K, Cs)BF{sub 4}, (Na, K){sub 2}B{sub 4}O{sub 7} and (Na,K)CrO{sub 4} species from glass melt condensed in the melter off-gas and in the cyclone separator in the canister pour spout vacuum line. A full-scale DWPF prototypic canister filled during Campaign 10 of the SRS Scale Glass Melter was sectioned and examined. Mixed (NaK)CI, (NaK){sub 2}SO{sub 4}, (NaK) borates, and a (Na,K) fluoride phase (either NaF or Na{sub 2}BF{sub 4}) were identified on the interior canister walls, neck, and shoulder above the melt pour surface. Similar deposits were found on the glass melt surface and on glass fracture surfaces. Chromates were not found. Spinel crystals were found associated with the glass pour surface. Reference amounts of the halides and sulfates were found retained in the glass and the glass chemistry, including the distribution of the halides and sulfates, was homogeneous. In all cases where rust was observed, heavy metals (Zn, Ti, Sn) from the cutting blade/fluid were present indicating that the rust was a reaction product of the cutting fluid with glass and heat sensitized canister or with carbon-steel contamination on canister interior. Only minimal water vapor is present so that internal corrosion of the canister, will not occur.

  5. Sensory Processing Sensitivity: Factors of the Highly Sensitive Person Scale and Their relationships to Personality and Subjective Health Complaints.

    PubMed

    Listou Grimen, Hanne; Diseth, Åge

    2016-12-01

    The aim of the present study was to examine the factor structure of a Norwegian version of the Highly Sensitive Person Scale (HSPS) and to investigate how sensory processing sensitivity (SPS) is related to personality traits of neuroticism, extraversion, and openness and to subjective health complaints (SHC) in a sample of 167 undergraduate psychology students. The results showed that the variance in a shortened version of the HSPS was best described by three separate factors: ease of excitation (EOE), aesthetic sensitivity (AES), and low sensory threshold (LST). Furthermore, the result showed than an overall SPS factor (EOE, LST, and AES combined) was predicted positively by neuroticism and openness and negatively by extraversion. With respect to SHC, the results showed that EOE and LST were positively associated with psychological health complaints. However, the personality trait of neuroticism contributed more than the SPS factors as predictor of SHC. In conclusion, the present study supported a shortened version of the HSPS and its relation to personality factors and SHC.

  6. Digital morphonuclear analyses of sensitive versus resistant neoplastic cells to vinca-alkaloid, alkylating, and intercalating drugs.

    PubMed

    Pauwels, O; Kiss, R

    1991-01-01

    We tested 12 resistant cell lines in vitro in order to evaluate common morphonuclear characteristics induced by various cytotoxic drugs on cell lines of different origins. We used the MXT mouse mammary cancer and the neoplastic J82 and T24 human bladder cell lines, whose variants are either sensitive or resistant to a vinca alkaloid derivative (Navelbine, NVB), to an investigational alkylating agent (PE1001), and to Adriamycin (ADR). We tested cell population variants resistant to NVB + PE1001 + ADR. The level of chemoresistance was evaluated by a colorimetric assay assessing the 50% concentration-induced inhibition of cellular growth (IC50) brought about by each drug on the growth of each cell variant under study. We show that resistant neoplastic cell nuclei present common morphonuclear characteristics, independent of cell origin (neoplastic mouse mammary versus human bladder cells) and the drug used (vinca alkaloid, alkylating, and intercalating derivatives). Our results further indicate that the phenotype of resistant versus sensitive cells corresponds to cell nuclei populations with smaller nuclei and less nuclear DNA content and, as a consequence, a chromatin texture showing large pale areas with some hyperchromatic clumps.

  7. Ocular allergy modulation to hi-dose antigen sensitization is a Treg-dependent process.

    PubMed

    Lee, Hyun Soo; Schlereth, Simona; Khandelwal, Payal; Saban, Daniel R

    2013-01-01

    A reproducible method to inhibit allergic immune responses is accomplished with hi-dose Ag sensitization, via intraperitoneal (IP) injection. However, the role of CD4+ CD25+ FoxP3+ T regulatory cells (Treg) in this process is unknown, as is whether such modulation extends to ocular allergy. We therefore determined herein whether hi-dose sensitization modulates ocular allergy, and whether CD4+ CD25+ FoxP3+ Treg are involved. C57BL/6 mice were IP sensitized via low-dose (100 µg) versus hi-dose (1000 µg) ovalbumin (OVA), in aluminum hydroxide (1 mg) and pertussis-toxin (300 ng). Other mice received anti-CD25 Ab (PC61) to ablate Treg during sensitization. In another experiment, Treg from hi-dose sensitized mice were adoptively transferred into low-dose sensitized mice. Once daily OVA challenges were administered. Clinical signs, IgE, T cell cytokines, and eosinophils were assessed. Data revealed that hi-dose, but not low-dose, sensitization led to allergy modulation, indicated by decreased clinical signs, serum IgE levels, Th2 recall responses, and eosinophil recruitment. T cells from hi-dose sensitized mice showed a robust increase in TGF-b production, and Treg from these mice were able to efficiently suppress effector T cell proliferation in vitro. In addition, in vivo Treg ablation in hi-dose sensitized mice revoked allergy modulation. Lastly, Treg from hi-dose sensitized mice were able to adoptively transfer allergy modulation to their low-dose sensitized counterparts. Collectively, these findings indicate that modulation to hi-dose sensitization, which is extended to ocular allergy, occurs in a Treg-dependent manner. In addition, our data suggest that hi-dose sensitization may henceforth facilitate the further examination of CD4+ CD25+ FoxP3+ Treg in allergic disease.

  8. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    SciTech Connect

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

  9. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    PubMed

    Tsuruda, Jennifer M; Harris, Jeffrey W; Bourgeois, Lanie; Danka, Robert G; Hunt, Greg J

    2012-01-01

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  10. Role of Reward Sensitivity and Processing in Major Depressive and Bipolar Spectrum Disorders

    PubMed Central

    Alloy, Lauren B.; Olino, Thomas; Freed, Rachel D.; Nusslock, Robin

    2016-01-01

    Since Costello’s (1972) seminal Behavior Therapy article on loss of reinforcers or reinforcer effectiveness in depression, the role of reward sensitivity and processing in both depression and bipolar disorder has become a central area of investigation. In this article, we review the evidence for a model of reward sensitivity in mood disorders, with unipolar depression characterized by reward hyposensitivity and bipolar disorders by reward hypersensitivity. We address whether aberrant reward sensitivity and processing are correlates of, mood-independent traits of, vulnerabilities for, and/or predictors of the course of depression and bipolar spectrum disorders, covering evidence from self-report, behavioral, neurophysiological, and neural levels of analysis. We conclude that substantial evidence documents that blunted reward sensitivity and processing are involved in unipolar depression and heightened reward sensitivity and processing are characteristic of hypomania/mania. We further conclude that aberrant reward sensitivity has a trait component, but more research is needed to clearly demonstrate that reward hyposensitivity and hypersensitivity are vulnerabilities for depression and bipolar disorder, respectively. Moreover, additional research is needed to determine whether bipolar depression is similar to unipolar depression and characterized by reward hyposensitivity, or whether like bipolar hypomania/mania, it involves reward hypersensitivity. PMID:27816074

  11. Studying Mathematics Teacher Education: Analysing the Process of Task Variation on Learning

    ERIC Educational Resources Information Center

    Bragg, Leicha A.

    2015-01-01

    Self-study of variations to task design offers a way of analysing how learning takes place. Over several years, variations were made to improve an assessment task completed by final-year teacher candidates in a primary mathematics teacher education subject. This article describes how alterations to a task informed on-going developments in…

  12. European Citizens under Construction: The Bologna Process Analysed from a Governmentality Perspective

    ERIC Educational Resources Information Center

    Fejes, Andreas

    2008-01-01

    This article focuses on problematizing the harmonisation of higher education in Europe today. The overall aim is to analyse the construction of the European citizen and the rationality of governing related to such a construction. The specific focus will be on the rules and standards of reason in higher education reforms which inscribe continuums…

  13. Cardiac sensitivity in children: sex differences and its relationship to parameters of emotional processing.

    PubMed

    Koch, Anne; Pollatos, Olga

    2014-09-01

    In adults, the level of ability to perceive one's own body signals plays an important role for many concepts of emotional experience as demonstrated for emotion processing or emotion regulation. Representative data on perception of body signals and its emotional correlates in children is lacking. Therefore, the present study investigated the cardiac sensitivity of 1,350 children between 6 and 11 years of age in a heartbeat perception task. Our main findings demonstrated the distribution of cardiac sensitivity in children as well as associations with interpersonal emotional intelligence and adaptability. Furthermore, independent of body mass index, boys showed a significantly higher cardiac sensitivity than girls. We conclude that cardiac sensitivity in children appears to show weaker but similar characteristics and relations to emotional parameters as found in adults, so that a dynamic developmental process can be assumed.

  14. Effect of uniaxial deformation to 50% on the sensitization process in 316 stainless steel

    SciTech Connect

    Ramirez, L.M.; Almanza, E.; Murr, L.E. . E-mail: fekberg@utep.edu

    2004-09-15

    The effect of uniaxial deformation to 50% on the degree of sensitization (DOS) in 316 stainless steel was investigated at 625 and 670 deg. C for 5-100 h using the electrochemical potentiokinetic reactivation (EPR) test. The results showed that the deformation accelerated the sensitization/desensitization process, especially at 670 deg. C. However, the material is still sensitized after up to 100 h of aging time. Transmission electron microscopy was used to corroborate these results. The deformed material showed more carbide precipitates (Cr{sub 23}C{sub 6}) at the grain boundaries and twin intersections than did the nondeformed material.

  15. Reward Sensitivity Is Associated with Brain Activity during Erotic Stimulus Processing

    PubMed Central

    Costumero, Victor; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Ventura-Campos, Noelia; Fuentes, Paola; Rosell-Negre, Patricia; Ávila, César

    2013-01-01

    The behavioral approach system (BAS) from Gray’s reinforcement sensitivity theory is a neurobehavioral system involved in the processing of rewarding stimuli that has been related to dopaminergic brain areas. Gray’s theory hypothesizes that the functioning of reward brain areas is modulated by BAS-related traits. To test this hypothesis, we performed an fMRI study where participants viewed erotic and neutral pictures, and cues that predicted their appearance. Forty-five heterosexual men completed the Sensitivity to Reward scale (from the Sensitivity to Punishment and Sensitivity to Reward Questionnaire) to measure BAS-related traits. Results showed that Sensitivity to Reward scores correlated positively with brain activity during reactivity to erotic pictures in the left orbitofrontal cortex, left insula, and right ventral striatum. These results demonstrated a relationship between the BAS and reward sensitivity during the processing of erotic stimuli, filling the gap of previous reports that identified the dopaminergic system as a neural substrate for the BAS during the processing of other rewarding stimuli such as money and food. PMID:23840558

  16. Tailoring chemically converted graphenes using a water-soluble pyrene derivative with a zwitterionic arm for sensitive electrochemiluminescence-based analyses.

    PubMed

    Kwon, Jihye; Park, Seo Kyoung; Lee, Yongwoon; Lee, Je Seung; Kim, Joohoon

    2017-01-15

    We report a method to tailor chemically converted graphenes (CCGs) using a water-soluble pyrene derivative (1) with a zwitterionic arm, and the feasibility of the tailored CCGs to sensitive electrochemiluminescence (ECL)-based analyses. The compound 1 serves the dual purpose of improving the dispersion of the CCGs in aqueous solutions and further tailoring the catalytic activity of the CCGs with dendrimer-encapsulated catalytic nanoparticles. As a model system, we conjugated dendrimer-encapsulated Pt nanoparticles to the 1-functionalized CCGs on indium tin oxide (ITO) electrodes. The resulting ITOs exhibited significantly increased ECL emission of the luminol/H2O2 ECL system; i.e. two orders-of-magnitude enhancement in the ECL compared to that obtained from bare ITOs, which allowed a ca. 154 times more sensitive ECL-based analysis of cholesterol using the modified ITOs compared with the use of bare ITOs.

  17. Normative Topographic ERP Analyses of Speed of Speech Processing and Grammar Before and After Grammatical Treatment

    PubMed Central

    Yoder, Paul J.; Molfese, Dennis; Murray, Micah M.; Key, Alexandra P. F.

    2013-01-01

    Typically developing (TD) preschoolers and age-matched preschoolers with specific language impairment (SLI) received event-related potentials (ERPs) to four monosyllabic speech sounds prior to treatment and, in the SLI group, after 6 months of grammatical treatment. Before treatment, the TD group processed speech sounds faster than the SLI group. The SLI group increased the speed of their speech processing after treatment. Post-treatment speed of speech processing predicted later impairment in comprehending phrase elaboration in the SLI group. During the treatment phase, change in speed of speech processing predicted growth rate of grammar in the SLI group. PMID:24219693

  18. [Position dependent influence that sensitivity correction processing gives the signal-to-noise ratio measurement in parallel imaging].

    PubMed

    Murakami, Koichi; Yoshida, Koji; Yanagimoto, Shinichi

    2012-01-01

    We studied the position dependent influence that sensitivity correction processing gave the signal-to-noise ratio (SNR) measurement of parallel imaging (PI). Sensitivity correction processing that referred to the sensitivity distribution of the body coil improved regional uniformity more than the sensitivity uniformity correction filter with a fixed correction factor. In addition, the position dependent influence to give the SNR measurement in PI was different from the sensitivity correction processing. Therefore, if we divide SNR of the sensitivity correction processing image by SNR of the original image in each pixel and calculate SNR ratio, we can show the position dependent influence that sensitivity correction processing gives the SNR measurement in PI. It is with an index of the sensitivity correction processing precision.

  19. Integrated process analyses studies on mixed low level and transuranic wastes. Summary report

    SciTech Connect

    1997-12-01

    Options for integrated thermal and nonthermal treatment systems for mixed low-level waste (MLLW) are compared such as total life cycle cost (TLCC), cost sensitivities, risk, energy requirements, final waste volume, and aqueous and gaseous effluents. The comparisons were derived by requiring all conceptual systems to treat the same composition of waste with the same operating efficiency. Thus, results can be used as a general guideline for the selection of treatment and disposal concepts. However, specific applications of individual systems will require further analysis. The potential for cost saving options and the research and development opportunities are summarized.

  20. An RF Performance Sensitivity and Process Yield Model for MIMIC CAD applications. MIMIC Program. Phase 3

    DTIC Science & Technology

    1991-09-16

    AD-A242 266 --III ! I I I 1111 i~tll An RF Performance Sensitivity and Process Yield Model for MIMIC CAD Applications MIMIC Program, Phase 3 Final...DAAL01-89-K-0906-4 September 16, 1991 An RF Performance Sensitivity and Process Yield Model for MIMIC CAD Applications MIMIC Program, Phase 3 Final...Yield Model MIMIC Phase 3 for MIMIC CAD Applications Contract No. DAALO1-89-K-0906-4 6. AUTHOR(S) R.J. Trew, D.E. Stoneking, P.Gilmore, C.T. Kelley

  1. The monitoring and control of TRUEX processes. Volume 1, The use of sensitivity analysis to determine key process variables and their control bounds

    SciTech Connect

    Regalbuto, M.C.; Misra, B.; Chamberlain, D.B.; Leonard, R.A.; Vandegrift, G.F.

    1992-04-01

    The Generic TRUEX Model (GTM) was used to design a flowsheet for the TRUEX solvent extraction process that would be used to determine its instrumentation and control requirements. Sensitivity analyses of the key process variables, namely, the aqueous and organic flow rates, feed compositions, and the number of contactor stages, were carried out to assess their impact on the operation of the TRUEX process. Results of these analyses provide a basis for the selection of an instrument and control system and the eventual implementation of a control algorithm. Volume Two of this report is an evaluation of the instruments available for measuring many of the physical parameters. Equations that model the dynamic behavior of the TRUEX process have been generated. These equations can be used to describe the transient or dynamic behavior of the process for a given flowsheet in accordance with the TRUEX model. Further work will be done with the dynamic model to determine how and how quickly the system responds to various perturbations. The use of perturbation analysis early in the design stage will lead to a robust flowsheet, namely, one that will meet all process goals and allow for wide control bounds. The process time delay, that is, the speed with which the system reaches a new steady state, is an important parameter in monitoring and controlling a process. In the future, instrument selection and point-of-variable measurement, now done using the steady-state results reported here, will be reviewed and modified as necessary based on this dynamic method of analysis.

  2. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 4: Uncertainty and sensitivity analyses for 40 CFR 191, Subpart B

    SciTech Connect

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Additional information about the 1992 PA is provided in other volumes. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions, the choice of parameters selected for sampling, and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect compliance with 40 CFR 191B are: drilling intensity, intrusion borehole permeability, halite and anhydrite permeabilities, radionuclide solubilities and distribution coefficients, fracture spacing in the Culebra Dolomite Member of the Rustler Formation, porosity of the Culebra, and spatial variability of Culebra transmissivity. Performance with respect to 40 CFR 191B is insensitive to uncertainty in other parameters; however, additional data are needed to confirm that reality lies within the assigned distributions.

  3. Analysing student written solutions to investigate if problem-solving processes are evident throughout

    NASA Astrophysics Data System (ADS)

    Kelly, Regina; McLoughlin, Eilish; Finlayson, Odilla E.

    2016-07-01

    An interdisciplinary science course has been implemented at a university with the intention of providing students the opportunity to develop a range of key skills in relation to: real-world connections of science, problem-solving, information and communications technology use and team while linking subject knowledge in each of the science disciplines. One of the problems used in this interdisciplinary course has been selected to evaluate if it affords students the opportunity to explicitly display problem-solving processes. While the benefits of implementing problem-based learning have been well reported, far less research has been devoted to methods of assessing student problem-solving solutions. A problem-solving theoretical framework was used as a tool to assess student written solutions to indicate if problem-solving processes were present. In two academic years, student problem-solving processes were satisfactory for exploring and understanding, representing and formulating, and planning and executing, indicating that student collaboration on problems is a good initiator of developing these processes. In both academic years, students displayed poor monitoring and reflecting (MR) processes at the intermediate level. A key impact of evaluating student work in this way is that it facilitated meaningful feedback about the students' problem-solving process rather than solely assessing the correctness of problem solutions.

  4. A highly sensitive mean-reverting process in finance and the Euler-Maruyama approximations

    NASA Astrophysics Data System (ADS)

    Wu, Fuke; Mao, Xuerong; Chen, Kan

    2008-12-01

    Empirical studies show that the most successful continuous-time models of the short-term rate in capturing the dynamics are those that allow the volatility of interest changes to be highly sensitive to the level of the rate. However, from the mathematics, the high sensitivity to the level implies that the coefficients do not satisfy the linear growth condition, so we can not examine its properties by traditional techniques. This paper overcomes the mathematical difficulties due to the nonlinear growth and examines its analytical properties and the convergence of numerical solutions in probability. The convergence result can be used to justify the method within Monte Carlo simulations that compute the expected payoff of financial productsE For illustration, we apply our results compute the value of a bond with interest rate given by the highly sensitive mean-reverting process as well as the value of a single barrier call option with the asset price governed by this process.

  5. Neurodynamics of executive control processes in bilinguals: evidence from ERP and source reconstruction analyses.

    PubMed

    Heidlmayr, Karin; Hemforth, Barbara; Moutier, Sylvain; Isel, Frédéric

    2015-01-01

    The present study was designed to examine the impact of bilingualism on the neuronal activity in different executive control processes namely conflict monitoring, control implementation (i.e., interference suppression and conflict resolution) and overcoming of inhibition. Twenty-two highly proficient but non-balanced successive French-German bilingual adults and 22 monolingual adults performed a combined Stroop/Negative priming task while event-related potential (ERP) were recorded online. The data revealed that the ERP effects were reduced in bilinguals in comparison to monolinguals but only in the Stroop task and limited to the N400 and the sustained fronto-central negative-going potential time windows. This result suggests that bilingualism may impact the process of control implementation rather than the process of conflict monitoring (N200). Critically, our study revealed a differential time course of the involvement of the anterior cingulate cortex (ACC) and the prefrontal cortex (PFC) in conflict processing. While the ACC showed major activation in the early time windows (N200 and N400) but not in the latest time window (late sustained negative-going potential), the PFC became unilaterally active in the left hemisphere in the N400 and the late sustained negative-going potential time windows. Taken together, the present electroencephalography data lend support to a cascading neurophysiological model of executive control processes, in which ACC and PFC may play a determining role.

  6. Neurodynamics of executive control processes in bilinguals: evidence from ERP and source reconstruction analyses

    PubMed Central

    Heidlmayr, Karin; Hemforth, Barbara; Moutier, Sylvain; Isel, Frédéric

    2015-01-01

    The present study was designed to examine the impact of bilingualism on the neuronal activity in different executive control processes namely conflict monitoring, control implementation (i.e., interference suppression and conflict resolution) and overcoming of inhibition. Twenty-two highly proficient but non-balanced successive French–German bilingual adults and 22 monolingual adults performed a combined Stroop/Negative priming task while event-related potential (ERP) were recorded online. The data revealed that the ERP effects were reduced in bilinguals in comparison to monolinguals but only in the Stroop task and limited to the N400 and the sustained fronto-central negative-going potential time windows. This result suggests that bilingualism may impact the process of control implementation rather than the process of conflict monitoring (N200). Critically, our study revealed a differential time course of the involvement of the anterior cingulate cortex (ACC) and the prefrontal cortex (PFC) in conflict processing. While the ACC showed major activation in the early time windows (N200 and N400) but not in the latest time window (late sustained negative-going potential), the PFC became unilaterally active in the left hemisphere in the N400 and the late sustained negative-going potential time windows. Taken together, the present electroencephalography data lend support to a cascading neurophysiological model of executive control processes, in which ACC and PFC may play a determining role. PMID:26124740

  7. Efficient simulation of press hardening process through integrated structural and CFD analyses

    SciTech Connect

    Palaniswamy, Hariharasudhan; Mondalek, Pamela; Wronski, Maciek; Roy, Subir

    2013-12-16

    Press hardened steel parts are being increasingly used in automotive structures for their higher strength to meet safety standards while reducing vehicle weight to improve fuel consumption. However, manufacturing of sheet metal parts by press hardening process to achieve desired properties is extremely challenging as it involves complex interaction of plastic deformation, metallurgical change, thermal distribution, and fluid flow. Numerical simulation is critical for successful design of the process and to understand the interaction among the numerous process parameters to control the press hardening process in order to consistently achieve desired part properties. Until now there has been no integrated commercial software solution that can efficiently model the complete process from forming of the blank, heat transfer between the blank and tool, microstructure evolution in the blank, heat loss from tool to the fluid that flows through water channels in the tools. In this study, a numerical solution based on Altair HyperWorks® product suite involving RADIOSS®, a non-linear finite element based structural analysis solver and AcuSolve®, an incompressible fluid flow solver based on Galerkin Least Square Finite Element Method have been utilized to develop an efficient solution for complete press hardening process design and analysis. RADIOSS is used to handle the plastic deformation, heat transfer between the blank and tool, and microstructure evolution in the blank during cooling. While AcuSolve is used to efficiently model heat loss from tool to the fluid that flows through water channels in the tools. The approach is demonstrated through some case studies.

  8. Applying the Cognitive-Affective Processing Systems Approach to Conceptualizing Rejection Sensitivity

    PubMed Central

    Ayduk, Özlem; Gyurak, Anett

    2009-01-01

    The Cognitive-Affective Processing Systems or CAPS theory (Mischel & Shoda, 1995) was proposed to account for the processes that explain why and how people’s behavior varies stably across situations. Research on Rejection Sensitivity is reviewed as a programmatic attempt to illustrate how personality dispositions can be studied within the CAPS framework. This research reveals an if … then … (e.g., if situation X, he does A, but if situation Y, he does B) pattern of rejection sensitivity such that high rejection sensitive people’s goal to prevent rejection can lead to accommodating behavior; yet, the failure to achieve this goal can lead to aggression, reactivity, and lack of self-concept clarity. These situation–behavior relations or personality signatures reflect a stable activation network of distinctive personality processing dynamics. These dynamics link fears and expectations of rejection, perceptions/attributions of rejection, and affective/behavioral overreactions to perceived rejection. Self-regulatory and attentional mechanisms may interact with these dynamics as buffers against high rejection sensitivity, illustrating how multiple processes within a CAPS network play out in behavior. PMID:19890458

  9. Sensitivity to Increased Task Demands: Contributions from Data-Driven and Conceptually Driven Information Processing Deficits.

    ERIC Educational Resources Information Center

    Gillam, Ronald B.; Hoffman, LaVae M.; Marler, Jeffrey A.; Wynn-Dancy, M. Lorraine

    2002-01-01

    This article explores evidence related to the idea that children with language impairments present co-occurring limitations in data-driven and conceptually driven processing. It concludes that together, these limitations contribute to a heightened sensitivity to increasing task demands in children with language impairments. Assessment and…

  10. Analysing Feedback Processes in an Online Teaching and Learning Environment: An Exploratory Study

    ERIC Educational Resources Information Center

    Espasa, Anna; Meneses, Julio

    2010-01-01

    Within the constructivist framework of online distance education the feedback process is considered a key element in teachers' roles because it can promote the regulation of learning. Therefore, faced with the need to guide and train teachers in the kind of feedback to provide and how to provide it, we establish three aims for this research:…

  11. QUANTITATIVE AND QUALITATIVE ANALYSES OF EXOGENOUS AND ENDOGENOUS CHILDREN IN SOME READING PROCESSES.

    ERIC Educational Resources Information Center

    CAPOBIANCO, RUDOLPH J.; MILLER, DONALD Y.

    THE PURPOSE OF THE PRESENT STUDY WAS TO INVESTIGATE THESE ASPECTS OF THE READING PROCESS--(1) SILENT AND ORAL READING ACHIEVEMENT, (2) PATTERN OF READING ERRORS, (3) AND AUDITORY AND VISUAL PERCEPTION TECHNIQUES. THE FACT THAT COMPARISONS BETWEEN THE EXOGENOUS AND ENDOGENOUS GROUPS ON THE QUANTITATIVE AND MOST OF THE QUALITATIVE ASPECTS OF TEST…

  12. Statistical data generated through CFD to aid in the scale-up of shear sensitive processes

    NASA Astrophysics Data System (ADS)

    Khan, Irfan; Das, Shankhadeep; Cloeter, Mike; Gillis, Paul; Poindexter, Michael

    2016-11-01

    A number of industrial processes are considered shear-sensitive, where the product quality depends on achieving the right balance between mixing energy input and the resulting strain rate distribution in the process. Examples of such industrial processes are crystallization, flocculation and suspension polymerization. Scale-up of such processes are prone to a number of challenges including the optimization of mixing and shear rate distribution in the process. Computational Fluid Dynamics (CFD) can be a valuable tool to aid in the process scale-up; however for modeling purpose, the process will often need to be simplified appropriately to reduce the computational complexity. Commercial CFD tools with appropriate Lagrangian particle tracking models can be used to gather statistical data such as maximum strain rate distribution and maximum number of passes through a specific strain rate. This presentation will discuss such statistical tools and their application to a model scale-up problem.

  13. Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing

    PubMed Central

    Ohtani, Kouhei; Yamamoto, Hiroyuki; Akimitsu, Kazuya

    2002-01-01

    Specificity in the interaction between rough lemon (Citrus jambhiri Lush.) and the fungal pathogen Alternaria alternata rough lemon pathotype is determined by a host-selective toxin, ACR-toxin. Mitochondria from rough lemon are sensitive to ACR-toxin whereas mitochondria from resistant plants, including other citrus species, are resistant. We have identified a C. jambhiri mitochondrial DNA sequence, designated ACRS (ACR-toxin sensitivity gene), that confers toxin sensitivity to Escherichia coli. ACRS is located in the group II intron of the mitochondrial tRNA-Ala and is translated into a SDS-resistant oligomeric protein in C. jambhiri mitochondria but is not translated in the toxin-insensitive mitochondria. ACRS is present in the mitochondrial genome of both toxin-sensitive and -insensitive citrus. However, in mitochondria of toxin-insensitive plants, the transcripts from ACRS are shorter than those in mitochondria of sensitive plants. These results demonstrate that sensitivity to ACR-toxin and hence specificity of the interaction between A. alternata rough lemon pathotype and C. jambhiri is due to differential posttranscriptional processing of a mitochondrial gene. PMID:11842194

  14. Introspective minds: using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social & unconstrained cognition.

    PubMed

    Schilbach, Leonhard; Bzdok, Danilo; Timmermans, Bert; Fox, Peter T; Laird, Angela R; Vogeley, Kai; Eickhoff, Simon B

    2012-01-01

    Previous research suggests overlap between brain regions that show task-induced deactivations and those activated during the performance of social-cognitive tasks. Here, we present results of quantitative meta-analyses of neuroimaging studies, which confirm a statistical convergence in the neural correlates of social and resting state cognition. Based on the idea that both social and unconstrained cognition might be characterized by introspective processes, which are also thought to be highly relevant for emotional experiences, a third meta-analysis was performed investigating studies on emotional processing. By using conjunction analyses across all three sets of studies, we can demonstrate significant overlap of task-related signal change in dorso-medial prefrontal and medial parietal cortex, brain regions that have, indeed, recently been linked to introspective abilities. Our findings, therefore, provide evidence for the existence of a core neural network, which shows task-related signal change during socio-emotional tasks and during resting states.

  15. Diagnostics and analyses of decay process in laser produced tetrakis(dimethyl-amino)ethylene plasma

    NASA Astrophysics Data System (ADS)

    Ding, Guowen; Scharer, John E.; Kelly, Kurt L.

    2001-01-01

    A large volume (hundreds of cm3) plasma is created by a 193 nm laser ionizing an organic vapor, tetrakis(dimethyl-amino)ethylene (TMAE). The plasma is characterized as high electron density (1013-1012 cm-3) and low electron temperature (˜0.1 eV). To investigate the plasma decay processes, a fast Langmuir probe technique is developed, including detailed considerations of probe structure, probe surface cleaning, shielding, frequency response of the detection system, physical processes in probe measurement, dummy probe corrections as well as noise analysis. The mechanisms for the plasma decay are studied and a delayed ionization process following the laser pulse is found to be important. This mechanism is also supported by optical emission measurements which show that nitrogen enhances the delayed emission from TMAE plasma. A model combining electron-ion recombination and delayed ionization is utilized together with experimental results to order the terms and calculate the relaxation times for delayed ionization. The relaxation times are longer for lower TMAE pressures and lower electron densities.

  16. Sensitivity of movement and intensity of severe cyclone AILA to the physical processes

    NASA Astrophysics Data System (ADS)

    Rambabu, S.; Gayatri Vani, D.; Ramakrishna, S. S. V. S.; Rama, G. V.; Apparao, B. V.

    2013-08-01

    Accurate prediction of movement and intensity of tropical cyclone is still most challenging problem in numerical weather prediction. The positive progress in this field can be achieved by providing network of observations in the storm region and best representation of atmospheric physical processes in the model. In the present study later part was attempted to investigate the sensitivity of movement and intensity of the severe cyclonic storm AILA to different physical processes in the Weather Research and Forecasting model. Three sets of experiments were conducted for convection, microphysics (MP) and planetary boundary layer (PBL) processes. Model-simulated fields like minimum central surface pressure, maximum surface wind, track and vector displacement error are considered to test the sensitivity. The results indicate that the movement of the system is more sensitive to the cumulus physics and the intensity of the cyclone is sensitive to both PBL and cumulus physics. The combination of Betts Miller Janjic (BMJ) for convection, Yonsei University (YSU) for PBL and Purdue Lin (LIN) for microphysics is found to perform better than other combination schemes. The horizontal and vertical features of the system along with its special features like complete northward movement of the system throughout the travel period and the consistent cyclonic storm intensity until 15 hrs after the landfall could be well simulated by the model.

  17. Phase-sensitive cascaded four-wave-mixing processes for generating three quantum correlated beams

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Hailong; Li, Sijin; Wang, Yaxian; Jing, Jietai

    2017-01-01

    Theoretical studies and experimental implementations of quantum correlation are the important contents of continuous variables quantum optics and quantum information science. There are various systems for the study of quantum correlation. Here, we study an experimental scheme for generating three quantum correlated beams based on phase-sensitive cascaded four-wave-mixing (FWM) processes in rubidium vapor. Quantum correlation including intensity difference or sum squeezing, two other combinatorial squeezing, and quantum entanglement among the three output light fields are theoretically analyzed in this paper. Also, the comparison of the quantum correlations have been made between the phase-sensitive cascaded FWM processes and the phase-insensitive cascaded FWM processes. By changing the phases and intensities of the input beams, it is interesting to find that the maximum degrees of various combinatorial squeezing are equal when the two FWM processes share a common intensity gain. When the common intensity gain of the two FWM processes changes, the maximum degrees of different combinatorial squeezing will be synchronously controlled. At last we discuss the genuine tripartite entanglement and steering in our phase-sensitive cascaded scheme, and compare them with the cases of the phase-insensitive cascaded scheme.

  18. Enhancing Sensitivity of a Miniature Spectrometer Using a Real-Time Image Processing Algorithm.

    PubMed

    Chandramohan, Sabarish; Avrutsky, Ivan

    2016-05-01

    A real-time image processing algorithm is developed to enhance the sensitivity of a planar single-mode waveguide miniature spectrometer with integrated waveguide gratings. A novel approach of averaging along the arcs in a curved coordinate system is introduced which allows for collecting more light, thereby enhancing the sensitivity. The algorithm is tested using CdSeS/ZnS quantum dots drop casted on the surface of a single-mode waveguide. Measurements indicate that a monolayer of quantum dots is expected to produce guided mode attenuation approximately 11 times above the noise level.

  19. Sensitivity studies for the main r process: β-decay rates

    SciTech Connect

    Mumpower, M.; Cass, J.; Passucci, G.; Aprahamian, A.; Surman, R.

    2014-04-15

    The pattern of isotopic abundances produced in rapid neutron capture, or r-process, nucleosynthesis is sensitive to the nuclear physics properties of thousands of unstable neutron-rich nuclear species that participate in the process. It has long been recognized that the some of the most influential pieces of nuclear data for r-process simulations are β-decay lifetimes. In light of experimental advances that have pushed measurement capabilities closer to the classic r-process path, we revisit the role of individual β-decay rates in the r process. We perform β-decay rate sensitivity studies for a main (A > 120) r process in a range of potential astrophysical scenarios. We study the influence of individual rates during (n, γ)-(γ, n) equilibrium and during the post-equilibrium phase where material moves back toward stability. We confirm the widely accepted view that the most important lifetimes are those of nuclei along the r-process path for each astrophysical scenario considered. However, we find in addition that individual β-decay rates continue to shape the final abundance pattern through the post-equilibrium phase, for as long as neutron capture competes with β decay. Many of the lifetimes important for this phase of the r process are within current or near future experimental reach.

  20. Thermal analyses of a materials processing furnace being developed for use with heat pipes

    NASA Technical Reports Server (NTRS)

    Mcanally, J. V.; Robertson, S. J.

    1979-01-01

    A special materials processing furnace is being developed for the forthcoming Spacelab missions to study the solidification under closely controlled conditions of various sample materials in the absence of gravity. The samples are to be rod shaped and subjected to both heating and cooling simultaneously. The thermal model is based on a developed Thermal Analyzer computer program. The model was developed to be very general to enable the simulation of variations in the furnace design and, hence, serve as an aid in finalizing the design. The thermal model is described and a user's guide given. Some preliminary results obtained in testing the model are also given.

  1. Microgravity and Materials Processing Facility study (MMPF): Requirements and Analyses of Commercial Operations (RACO) preliminary data release

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This requirements and analyses of commercial operations (RACO) study data release reflects the current status of research activities of the Microgravity and Materials Processing Facility under Modification No. 21 to NASA/MSFC Contract NAS8-36122. Section 1 includes 65 commercial space processing projects suitable for deployment aboard the Space Station. Section 2 contains reports of the R:BASE (TM) electronic data base being used in the study, synopses of the experiments, and a summary of data on the experimental facilities. Section 3 is a discussion of video and data compression techniques used as well as a mission timeline analysis.

  2. Sensitivity of global tropical climate to land surface processes: Mean state and interannual variability

    SciTech Connect

    Ma, Hsi-Yen; Xiao, Heng; Mechoso, C. R.; Xue, Yongkang

    2013-03-01

    This study examines the sensitivity of global tropical climate to land surface processes (LSP) using an atmospheric general circulation model both uncoupled (with prescribed SSTs) and coupled to an oceanic general circulation model. The emphasis is on the interactive soil moisture and vegetation biophysical processes, which have first order influence on the surface energy and water budgets. The sensitivity to those processes is represented by the differences between model simulations, in which two land surface schemes are considered: 1) a simple land scheme that specifies surface albedo and soil moisture availability, and 2) the Simplified Simple Biosphere Model (SSiB), which allows for consideration of interactive soil moisture and vegetation biophysical process. Observational datasets are also employed to assess the reality of model-revealed sensitivity. The mean state sensitivity to different LSP is stronger in the coupled mode, especially in the tropical Pacific. Furthermore, seasonal cycle of SSTs in the equatorial Pacific, as well as ENSO frequency, amplitude, and locking to the seasonal cycle of SSTs are significantly modified and more realistic with SSiB. This outstanding sensitivity of the atmosphere-ocean system develops through changes in the intensity of equatorial Pacific trades modified by convection over land. Our results further demonstrate that the direct impact of land-atmosphere interactions on the tropical climate is modified by feedbacks associated with perturbed oceanic conditions ("indirect effect" of LSP). The magnitude of such indirect effect is strong enough to suggest that comprehensive studies on the importance of LSP on the global climate have to be made in a system that allows for atmosphere-ocean interactions.

  3. Analyses of quenching process during turn-off of plasma electrolytic carburizing on carbon steel

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Liu, Run; Xue, Wenbin; Wang, Bin; Jin, Xiaoyue; Du, Jiancheng

    2014-10-01

    Plasma electrolytic carburizing (PEC) under different turn-off modes was employed to fabricate a hardening layer on carbon steel in glycerol solution without stirring at 380 V for 3 min. The quenching process in fast turn-off mode or slow turn-off mode of power supply was discussed. The temperature in the interior of steel and electron temperature in plasma discharge envelope during the quenching process were evaluated. It was found that the cooling rates of PEC samples in both turn-off modes were below 20 °C/s, because the vapor film boiling around the steel sample reduced the cooling rate greatly in terms of Leidenfrost effect. Thus the quench hardening hardly took place, though the slow turn-off mode slightly decreased the surface roughness of PEC steel. At the end of PEC treatment, the fast turn-off mode used widely at present cannot enhance the surface hardness by quench hardening, and the slow turn-off mode was recommended in order to protect the electronic devices against a large current surge.

  4. Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process

    PubMed Central

    Qiao, Zhenzhen; Pingault, Lise; Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    Nitrogen is one of the most essential plant nutrients and one of the major factors limiting crop productivity. Having the goal to perform a more sustainable agriculture, there is a need to maximize biological nitrogen fixation, a feature of legumes. To enhance our understanding of the molecular mechanisms controlling the interaction between legumes and rhizobia, the symbiotic partner fixing and assimilating the atmospheric nitrogen for the plant, researchers took advantage of genetic and genomic resources developed across different legume models (e.g., Medicago truncatula, Lotus japonicus, Glycine max, and Phaseolus vulgaris) to identify key regulatory protein coding genes of the nodulation process. In this study, we are presenting the results of a comprehensive comparative genomic analysis to highlight orthologous and paralogous relationships between the legume genes controlling nodulation. Mining large transcriptomic datasets, we also identified several orthologous and paralogous genes characterized by the induction of their expression during nodulation across legume plant species. This comprehensive study prompts new insights into the evolution of the nodulation process in legume plant and will benefit the scientific community interested in the transfer of functional genomic information between species. PMID:26858743

  5. Glacial Processes on Earth and Mars: New Perspectives from Remote Sensing and Laboratory Analyses

    NASA Astrophysics Data System (ADS)

    Rutledge, Alicia Marie

    Chemical and physical interactions of flowing ice and rock have inexorably shaped planetary surfaces. Weathering in glacial environments is a significant link in biogeochemical cycles --- carbon and strontium --- on Earth, and may have once played an important role in altering Mars' surface. Despite growing recognition of the importance of low-temperature chemical weathering, these processes are still not well understood. Debris-coated glaciers are also present on Mars, emphasizing the need to study ice-related processes in the evolution of planetary surfaces. During Earth's history, subglacial environments are thought to have sheltered communities of microorganisms from extreme climate variations. On Amazonian Mars, glaciers such as lobate debris aprons (LDA) could have hosted chemolithotrophic communities, making Mars' present glaciers candidates for life preservation. This study characterizes glacial processes on both Earth and Mars. Chemical weathering at Robertson Glacier, a small alpine glacier in the Canadian Rocky Mountains, is examined with a multidisciplinary approach. The relative proportions of differing dissolution reactions at various stages in the glacial system are empirically determined using aqueous geochemistry. Synthesis of laboratory and orbital thermal infrared spectroscopy allows identification of dissolution rinds on hand samples and characterization of carbonate dissolution signals at orbital scales, while chemical and morphological evidence for thin, discontinuous weathering rinds at microscales are evident from electron microscopy. Subglacial dissolution rates are found to outpace those of the proglacial till plain; biologically-mediated pyrite oxidation drives the bulk of this acidic weathering. Second, the area-elevation relationship, or hypsometry, of LDA in the midlatitudes of Mars is characterized. These glaciers are believed to have formed ˜500 Ma during a climate excursion. Hypsometric measurements of these debris-covered glaciers

  6. Dynamic speckle-interferometer for intracellular processes analyses at high optical magnification

    NASA Astrophysics Data System (ADS)

    Baharev, A. A.; Vladimirov, A. P.; Malygin, A. S.; Mikhailova, Y. A.; Novoselova, I. A.; Yakin, D. I.; Druzhinin, A. V.

    2015-05-01

    At present work dynamic of biospeckles is used for studying processes occurring in cells which arranged in the one layer. The basis of many diseases is changes in the structural and functional properties of the molecular cells components as caused by the influence of external factors and internal functional disorders. Purpose of work is approbation of speckle-interferometer designed for the analysis of cellular metabolism in individual cells. As a parameter, characterizing the metabolic activity of cells used the value of the correlation coefficient (η) of optical signals proportional to the radiation intensity I, recorded at two points in time t. At 320x magnification for the cell diameter of 20 microns value η can be determined in the area size of 6 microns.

  7. Sensitivity analyses of MAGIC modelled predictions of future impacts of whole-tree harvest on soil calcium supply and stream acid neutralizing capacity.

    PubMed

    Zetterberg, Therese; Köhler, Stephan J; Löfgren, Stefan

    2014-10-01

    Forest biofuel is a main provider of energy in Sweden and the market is expected to grow even further in the future. Removal of logging residues via harvest can lead to short-term acidification but the long-term effects are largely unknown. The objectives of this study were to 1) model the long-term effect of whole-tree harvest (WTH) on soil and stream water acidity and 2) perform sensitivity analyses by varying the amounts of logging residues, calcium (Ca(2+)) concentrations in tree biomass and site productivity in nine alternate scenarios. Data from three Swedish forested catchments and the Model of Acidification of Groundwater in Catchments (MAGIC) were used to simulate changes in forest soil exchangeable Ca(2+) pools and stream water acid neutralizing capacity (ANC) at Gammtratten, Kindla and Aneboda. Large depletions in soil Ca(2+) supply and a reversal of the positive trend in stream ANC were predicted for all three sites after WTH. However, the magnitude of impact on stream ANC varied depending on site and the concentration of mobile strong acid anions. Contrary to common beliefs, the largest decrease in modelled ANC was observed at the well-buffered site Gammtratten. The effects at Kindla and Aneboda were much more limited and not large enough to offset the general recovery from acidification. Varying the tree biomass Ca(2+) concentrations exerted the largest impact on modelled outcome. Site productivity was the second most important variable whereas changing biomass amounts left on site only marginally affected the results. The outcome from the sensitivity analyses pointed in the same direction of change as in the base scenario, except for Kindla where soil Ca(2+) pools were predicted to be replenished under a given set of input data. The reliability of modelled outcome would increase by using site-specific Ca(2+) concentrations in tree biomass and field determined identification of site productivity.

  8. Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses

    SciTech Connect

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Veglio, Francesco

    2011-12-15

    Highlights: > Recovery of yttrium from spent fluorescent lamps by sulphuric acid leaching. > The use of sulphuric acid allows to reduce calcium dissolutions. > Main contaminant of fluorescent powder are Si, Pb, Ca and Ba. > Hydrated yttrium oxalate, recovered by selective precipitation, is quite pure (>90%). > We have studied the whole process for the treatment of dangerous waste (plant capability). - Abstract: The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO{sub 3} produces toxic vapours. A full factorial design is carried out with HCl and H{sub 2}SO{sub 4} to evaluate the influence of operating factors. HCl and H{sub 2}SO{sub 4} leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4 N H{sub 2}SO{sub 4} concentration and 90 deg. C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H{sub 2}SO{sub 4} medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized

  9. Rupture Process of the 1969 and 1975 Kurile Earthquakes Estimated from Tsunami Waveform Analyses

    NASA Astrophysics Data System (ADS)

    Ioki, Kei; Tanioka, Yuichiro

    2016-12-01

    The 1969 and 1975 great Kurile earthquakes occurred along the Kurile trench. Tsunamis generated by these earthquakes were observed at tide gauge stations around the coasts of the Okhotsk Sea and Pacific Ocean. To understand rupture process of the 1969 and 1975 earthquakes, slip distributions of the 1969 and 1975 events were estimated using tsunami waveform inversion technique. Seismic moments estimated from slip distributions of the 1969 and 1975 earthquakes were 1.1 × 1021 Nm ( M w 8.0) and 0.6 × 1021 Nm ( M w 7.8), respectively. The 1973 Nemuro-Oki earthquake occurred at the plate interface adjacent to that ruptured by the 1969 Kurile earthquake. The 1975 Shikotan earthquake occurred in a shallow region of the plate interface where was not ruptured by the 1969 Kurile earthquake. Further, like a sequence of the 1969 and 1975 earthquakes, it is possible that a great earthquake may occur in a shallow part of the plate interface a few years after a great earthquake that occurs in a deeper part of the same region along the trench.

  10. Experimental and theoretical analyses on the ultrasonic cavitation processing of Al-based alloys and nanocomposites

    NASA Astrophysics Data System (ADS)

    Jia, Shian

    Strong evidence is showing that microstructure and mechanical properties of a casting component can be significantly improved if nanoparticles are used as reinforcement to form metal-matrix-nano-composite (MMNC). In this paper, 6061/A356 nanocomposite castings are fabricated using the ultrasonic stirring technology (UST). The 6061/A356 alloy and Al2O3/SiC nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles are injected into the molten metal and dispersed by ultrasonic cavitation and acoustic streaming. The applied UST parameters in the current experiments are used to validate a recently developed multiphase Computational Fluid Dynamics (CFD) model, which is used to model the nanoparticle dispersion during UST processing. The CFD model accounts for turbulent fluid flow, heat transfer and the complex interaction between the molten alloy and nanoparticles using the ANSYS Fluent Dense Discrete Phase Model (DDPM). The modeling study includes the effects of ultrasonic probe location and the initial location where the nanoparticles are injected into the molten alloy. The microstructure, mechanical behavior and mechanical properties of the nanocomposite castings have been also investigated in detail. The current experimental results show that the tensile strength and elongation of the as-cast nanocomposite samples (6061/A356 alloy reinforced by Al2O 3 or SiC nanoparticles) are improved. The addition of the Al2O 3 or SiC nanoparticles in 6061/A356 alloy matrix changes the fracture mechanism from brittle dominated to ductile dominated.

  11. Sensitivity of North Patagonian temperate rainforests to changes in rainfall regimes: a process-based, dynamic forest model

    NASA Astrophysics Data System (ADS)

    Gutiérrez, A. G.; Armesto, J. J.; Díaz, M. F.; Huth, A.

    2012-06-01

    Rainfall changes due to climate change and their potential impacts on forests demand the development of predictable tools coupling vegetation dynamics to hydrologic processes. Such tools need to be accurate at local scales (i.e. < 100 ha) to develop efficient forest management strategies for climate change adaptation. In this study, we developed and tested a dynamic forest model to predict hydrological balance of North Patagonian temperate rainforests on Chiloé Island, Chile (42° S). The developed model includes detailed calculations of forest water fluxes and incorporates the dynamical linkage of rainfall regimes to soil moisture, and individual tree growth. We confronted model results with detailed field measurements of water fluxes in a young secondary stand (YS). We used the model to compare forest sensitivity in the YS and an old-growth stand (OG, > 500 yr-old), i.e. changes in forest evapotranspiration, soil moisture and forest structure (biomass and basal area). We evaluated sensitivity using changes in rainfall regimes comparable to future climatic scenarios for this century in the study region. The model depicted well the hydrological balance of temperate rainforests. We found a higher evapotranspiration in OG than YS under current climatic conditions. Dryer climatic conditions predicted for this century in the study area led to changes in the hydrological balance that impacted forest structure, with stronger impacts in OG. Changes in climatic parameters decreased evapotranspiration (up to 15 % in OG compared to current values) and soil moisture to 32 % . These changes in water fluxes induced decreases in above-ground biomass in OG (up to 27 %). Our results support the use of the model for detailed analyses of climate change impacts on hydrological balance of forests. Also, it provides a tool suitable for analyses of the impacts of multiple drivers of global change on forest processes (e.g., climate change, fragmentation, forest management).

  12. The Anxiety Sensitivity Index--Revised: confirmatory factor analyses, structural invariance in Caucasian and African American samples, and score reliability and validity.

    PubMed

    Arnau, Randolph C; Broman-Fulks, Joshua J; Green, Bradley A; Berman, Mitchell E

    2009-06-01

    The most commonly used measure of anxiety sensitivity is the 36-item Anxiety Sensitivity Index-Revised (ASI-R). Exploratory factor analyses have produced several different factors structures for the ASI-R, but an acceptable fit using confirmatory factor analytic approaches has only been found for a 21-item version of the instrument. We evaluated the fit of all published factor models for the 36- and 21-item ASI-R, modified the hierarchical model using an approach that does not eliminate items, evaluated the invariance of the modified model across Caucasian and African-American subsamples, and compared the reliability and validity of the 36-item and 21-item versions. The 21-item version of the ASI-R fit a four factor model, as did the 36-item version after several meaningful model modifications. The modified 36-item model was replicable in independent cases and its structural properties were generally invariant across race. Scores from the 36-item version exhibited superior reliability and criterion-related validity.

  13. The sensitivity of current and future forest managers to climate-induced changes in ecological processes.

    PubMed

    Seidl, Rupert; Aggestam, Filip; Rammer, Werner; Blennow, Kristina; Wolfslehner, Bernhard

    2016-05-01

    Climate vulnerability of managed forest ecosystems is not only determined by ecological processes but also influenced by the adaptive capacity of forest managers. To better understand adaptive behaviour, we conducted a questionnaire study among current and future forest managers (i.e. active managers and forestry students) in Austria. We found widespread belief in climate change (94.7 % of respondents), and no significant difference between current and future managers. Based on intended responses to climate-induced ecosystem changes, we distinguished four groups: highly sensitive managers (27.7 %), those mainly sensitive to changes in growth and regeneration processes (46.7 %), managers primarily sensitive to regeneration changes (11.2 %), and insensitive managers (14.4 %). Experiences and beliefs with regard to disturbance-related tree mortality were found to particularly influence a manager's sensitivity to climate change. Our findings underline the importance of the social dimension of climate change adaptation, and suggest potentially strong adaptive feedbacks between ecosystems and their managers.

  14. Modeling materials and processes in dye-sensitized solar cells: understanding the mechanism, improving the efficiency.

    PubMed

    Pastore, Mariachiara; De Angelis, Filippo

    2014-01-01

    We present a review of recent first-principles computational modeling studies on dye-sensitized solar cells (DSCs), focusing on the materials and processes modeling aspects which are key to the functioning of this promising class of photovoltaic devices. Crucial to the DSCs functioning is the photoinduced charge separation occurring at the heterointerface(s) between a dye-sensitized nanocrystalline, mesoporous metal oxide electrode and a redox shuttle. Theoretical and computational modeling of isolated cell components (e.g., dye, semiconductor nanoparticles, redox shuttle, etc…) as well as of combined dye/semiconductor/redox shuttle systems can successfully assist the experimental research by providing basic design rules of new sensitizers and a deeper comprehension of the fundamental chemical and physical processes governing the cell functioning and its performances. A computational approach to DSCs modeling can essentially be cast into a stepwise problem, whereby one first needs to simulate accurately the individual DSCs components to move to relevant pair (or higher order) interactions characterizing the device functioning. This information can contribute to enhancing further the target DSCs characteristics, such as temporal stability and optimization of device components. After presenting selected results for isolated dyes, including the computational design of new dyes, and model semiconductors, including realistic nanostructure models, we focus in the remainder of this review on the interaction between dye-sensitizers and semiconductor oxides, covering organic as well as metallorganic dyes.

  15. Mirror-image sensitivity and invariance in object and scene processing pathways

    PubMed Central

    Dilks, Daniel D.; Julian, Joshua B.; Kubilius, Jonas; Spelke, Elizabeth S.; Kanwisher, Nancy

    2011-01-01

    Electrophysiological and behavioral studies in many species have demonstrated mirror-image confusion for objects, perhaps because many objects are vertically symmetric (e.g., a cup is the same cup when seen in left or right profile). In contrast, the navigability of a scene changes when it is mirror reversed, and behavioral studies reveal high sensitivity to this change. Thus, we predicted that representations in object-selective cortex will be unaffected by mirror reversals, whereas representations in scene-selective cortex will be sensitive to such reversals. To test this hypothesis, we ran an event-related functional magnetic resonance (fMRI) adaptation experiment in human adults. Consistent with our prediction, we found tolerance to mirror reversals in one object-selective region, the posterior fusiform sulcus (pFs), and a strong sensitivity to these reversals in two scene-selective regions, the transverse occipital sulcus (TOS) and the retrosplenial complex (RSC). However, a more posterior object-selective region, the lateral occipital sulcus (LO), showed sensitivity to mirror reversals, suggesting that the sense information that distinguishes mirror images is represented at earlier stages in the object processing hierarchy. Moreover, one scene-selective region (the parahippocampal place area – PPA) was tolerant to mirror reversals. The last finding challenges the hypothesis that the PPA is involved in navigation and reorientation, and suggests instead that scenes, like objects, are processed by distinct pathways guiding recognition and action. PMID:21813690

  16. Mirror-image sensitivity and invariance in object and scene processing pathways.

    PubMed

    Dilks, Daniel D; Julian, Joshua B; Kubilius, Jonas; Spelke, Elizabeth S; Kanwisher, Nancy

    2011-08-03

    Electrophysiological and behavioral studies in many species have demonstrated mirror-image confusion for objects, perhaps because many objects are vertically symmetric (e.g., a cup is the same cup when seen in left or right profile). In contrast, the navigability of a scene changes when it is mirror reversed, and behavioral studies reveal high sensitivity to this change. Thus, we predicted that representations in object-selective cortex will be unaffected by mirror reversals, whereas representations in scene-selective cortex will be sensitive to such reversals. To test this hypothesis, we ran an event-related functional magnetic resonance imaging adaptation experiment in human adults. Consistent with our prediction, we found tolerance to mirror reversals in one object-selective region, the posterior fusiform sulcus, and a strong sensitivity to these reversals in two scene-selective regions, the transverse occipital sulcus and the retrosplenial complex. However, a more posterior object-selective region, the lateral occipital sulcus, showed sensitivity to mirror reversals, suggesting that the sense information that distinguishes mirror images is represented at earlier stages in the object-processing hierarchy. Moreover, one scene-selective region (the parahippocampal place area or PPA) was tolerant to mirror reversals. This last finding challenges the hypothesis that the PPA is involved in navigation and reorientation and suggests instead that scenes, like objects, are processed by distinct pathways guiding recognition and action.

  17. Low-level processing deficits underlying poor contrast sensitivity for moving plaids in anisometropic amblyopia.

    PubMed

    Tang, Yong; Chen, Linyi; Liu, Zhongjian; Liu, Caiyuan; Zhou, Yifeng

    2012-11-01

    Many studies using random dot kinematograms have indicated a global motion processing deficit originated from extrastriate cortex, specifically middle temporal area (MT) and media superior temporal area (MST), in patients with amblyopia. However, the nature of this deficit remains unclear. To explore whether the ability of motion integration is impaired in amblyopia, contrast sensitivity for moving plaids and their corresponding component gratings were measured over a range of stimulus durations and spatial and temporal frequencies in 10 control subjects and 13 anisometropic amblyopes by using a motion direction discrimination task. The results indicated a significant loss of contrast sensitivity for moving plaids as well as for moving gratings at intermediate and high spatial frequencies in amblyopic eyes (AEs). Additionally, we found that the loss of contrast sensitivity for moving plaids was statistically equivalent to that for moving component gratings in AEs, that is, the former could be almost completely accounted for by the latter. These results suggest that the integration of motion information conveyed by component gratings of moving plaids may be intact in anisometropic amblyopia, and that the apparent deficits in contrast sensitivity for moving plaids in anisometropic amblyopia can be almost completely attributed to those for gratings, that is, low-level processing deficits.

  18. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Vegliò, Francesco

    2011-12-01

    The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO(3) produces toxic vapours. A full factorial design is carried out with HCl and H(2)SO(4) to evaluate the influence of operating factors. HCl and H(2)SO(4) leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4N H(2)SO(4) concentration and 90°C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H(2)SO(4) medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized, besides the cost that is usually paid to recycling companies for collection, treatment or final disposal of such fluorescent powders.

  19. Amphetamine sensitization alters reward processing in the human striatum and amygdala.

    PubMed

    O'Daly, Owen G; Joyce, Daniel; Tracy, Derek K; Azim, Adnan; Stephan, Klaas E; Murray, Robin M; Shergill, Sukhwinder S

    2014-01-01

    Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders.

  20. Amphetamine Sensitization Alters Reward Processing in the Human Striatum and Amygdala

    PubMed Central

    O’Daly, Owen G.; Joyce, Daniel; Tracy, Derek K.; Azim, Adnan; Stephan, Klaas E.; Murray, Robin M.; Shergill, Sukhwinder S.

    2014-01-01

    Dysregulation of mesolimbic dopamine transmission is implicated in a number of psychiatric illnesses characterised by disruption of reward processing and goal-directed behaviour, including schizophrenia, drug addiction and impulse control disorders associated with chronic use of dopamine agonists. Amphetamine sensitization (AS) has been proposed to model the development of this aberrant dopamine signalling and the subsequent dysregulation of incentive motivational processes. However, in humans the effects of AS on the dopamine-sensitive neural circuitry associated with reward processing remains unclear. Here we describe the effects of acute amphetamine administration, following a sensitising dosage regime, on blood oxygen level dependent (BOLD) signal in dopaminoceptive brain regions during a rewarded gambling task performed by healthy volunteers. Using a randomised, double-blind, parallel-groups design, we found clear evidence for sensitization to the subjective effects of the drug, while rewarded reaction times were unchanged. Repeated amphetamine exposure was associated with reduced dorsal striatal BOLD signal during decision making, but enhanced ventromedial caudate activity during reward anticipation. The amygdala BOLD response to reward outcomes was blunted following repeated amphetamine exposure. Positive correlations between subjective sensitization and changes in anticipation- and outcome-related BOLD signal were seen for the caudate nucleus and amygdala, respectively. These data show for the first time in humans that AS changes the functional impact of acute stimulant exposure on the processing of reward-related information within dopaminoceptive regions. Our findings accord with pathophysiological models which implicate aberrant dopaminergic modulation of striatal and amygdala activity in psychosis and drug-related compulsive disorders. PMID:24717936

  1. Sensitivity analysis of the add-on price estimate for the silicon web growth process

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.

    1981-01-01

    The web growth process, a silicon-sheet technology option, developed for the flat plate solar array (FSA) project, was examined. Base case data for the technical and cost parameters for the technical and commercial readiness phase of the FSA project are projected. The process add on price, using the base case data for cost parameters such as equipment, space, direct labor, materials and utilities, and the production parameters such as growth rate and run length, using a computer program developed specifically to do the sensitivity analysis with improved price estimation are analyzed. Silicon price, sheet thickness and cell efficiency are also discussed.

  2. Highly sensitive devices for primary signal processing of the micromechanical capacitive transducers

    NASA Astrophysics Data System (ADS)

    Konoplev, B.; Ryndin, E.; Lysenko, I.; Denisenko, M.; Isaeva, A.

    2016-12-01

    A method of signal processing devices design for micromechanical accelerometers with capacitive transducers is proposed. This method provides the complex solution of the sensibility increasing and noise immunity problems by finding of the difference frequency of signals, which are formed by two identical generators with micromechanical capacitive transducers in frequency control circuits. In this study the analog and digital versions of the highly sensitive signal processing devices circuits with frequency output were developed. The breadboards of these devices are fabricated and studied and the project of their integral realization is designed.

  3. A high-throughput contact-hole resolution metric for photoresists:Full-process sensitivity study

    SciTech Connect

    Anderson, Christopher N.; Naulleau, Patrick P.

    2008-01-22

    The ability to accurately quantify the intrinsic resolution of chemically amplified photoresists is critical for the optimization of resists for extreme ultraviolet (EUV) Iithography. We have recently reported on two resolution metrics that have been shown to extract resolution numbers consistent with direct observation. In this paper we examine the previously reported contact-hole resolution metric and explore the sensitivity of the metric to potential error sources associated with the experimental side of the resolution extraction process. For EUV exposures at the SEMATECH Berkeley microfield exposure tool, we report a full-process error-bar in extracted resolution of 1.75 nm RMS and verify this result experimentally.

  4. A Sensitive Membrane-Targeted Biosensor for Monitoring Changes in Intracellular Chloride in Neuronal Processes

    PubMed Central

    Watts, Spencer D.; Suchland, Katherine L.; Amara, Susan G.; Ingram, Susan L.

    2012-01-01

    Background Regulation of chloride gradients is a major mechanism by which excitability is regulated in neurons. Disruption of these gradients is implicated in various diseases, including cystic fibrosis, neuropathic pain and epilepsy. Relatively few studies have addressed chloride regulation in neuronal processes because probes capable of detecting changes in small compartments over a physiological range are limited. Methodology/Principal Findings In this study, a palmitoylation sequence was added to a variant of the yellow fluorescent protein previously described as a sensitive chloride indicator (YFPQS) to target the protein to the plasma membrane (mbYFPQS) of cultured midbrain neurons. The reporter partitions to the cytoplasmic face of the cellular membranes, including the plasma membrane throughout the neurons and fluorescence is stable over 30–40 min of repeated excitation showing less than 10% decrease in mbYFPQS fluorescence compared to baseline. The mbYFPQS has similar chloride sensitivity (k50 =  41 mM) but has a shifted pKa compared to the unpalmitoylated YFPQS variant (cytYFPQS) that remains in the cytoplasm when expressed in midbrain neurons. Changes in mbYFPQS fluorescence were induced by the GABAA agonist muscimol and were similar in the soma and processes of the midbrain neurons. Amphetamine also increased mbYFPQS fluorescence in a subpopulation of cultured midbrain neurons that was reversed by the selective dopamine transporter (DAT) inhibitor, GBR12909, indicating that mbYFPQS is sensitive enough to detect endogenous DAT activity in midbrain dopamine (DA) neurons. Conclusions/Significance The mbYFPQS biosensor is a sensitive tool to study modulation of intracellular chloride levels in neuronal processes and is particularly advantageous for simultaneous whole-cell patch clamp and live-cell imaging experiments. PMID:22506078

  5. Adhesion improvement of electroless copper plating on phenolic resin matrix composite through a tin-free sensitization process

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Bian, Cheng; Jing, Xinli

    2013-04-01

    In order to improve the adhesion of electroless copper plating on phenolic resin matrix composite (PRMC), a new and efficient tin-free sensitization process has been developed. Electroless copper plating could be achieved in three steps, namely: (i) chemical etching with potassium permanganate solution; (ii) sensitization and activation with glucose and silver nitrate solution respectively; and (iii) electroless copper plating. Compared with the sample sensitized with stannous chloride (SnCl2), the copper plating obtained in the tin-free process showed excellent adhesion with the PRMC substrate, but had lower plating rate and conductivity. Additionally, the morphology of the copper plating was affected by the sensitization process, and the tin-free process was conducive to the formation of the large spherical copper polycrystal. Although the process is slightly complicated, the new sensitization process is so low-cost and environment-friendly that it is of great significance and could be applied into large-scale commercial manufacturing.

  6. Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision

    PubMed Central

    2017-01-01

    Visually guided behaviour at its sensitivity limit relies on single-photon responses originating in a small number of rod photoreceptors. For decades, researchers have debated the neural mechanisms and noise sources that underlie this striking sensitivity. To address this question, we need to understand the constraints arising from the retinal output signals provided by distinct retinal ganglion cell types. It has recently been shown in the primate retina that On and Off parasol ganglion cells, the cell types likely to underlie light detection at the absolute visual threshold, differ fundamentally not only in response polarity, but also in the way they handle single-photon responses originating in rods. The On pathway provides the brain with a thresholded, low-noise readout and the Off pathway with a noisy, linear readout. We outline the mechanistic basis of these different coding strategies and analyse their implications for detecting the weakest light signals. We show that high-fidelity, nonlinear signal processing in the On pathway comes with costs: more single-photon responses are lost and their propagation is delayed compared with the Off pathway. On the other hand, the responses of On ganglion cells allow better intensity discrimination compared with the Off ganglion cell responses near visual threshold. This article is part of the themed issue ‘Vision in dim light’. PMID:28193818

  7. Preliminary Thermal-Mechanical Sizing of Metallic TPS: Process Development and Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Poteet, Carl C.; Abu-Khajeel, Hasan; Hsu, Su-Yuen

    2002-01-01

    The purpose of this research was to perform sensitivity studies and develop a process to perform thermal and structural analysis and sizing of the latest Metallic Thermal Protection System (TPS) developed at NASA LaRC (Langley Research Center). Metallic TPS is a key technology for reducing the cost of reusable launch vehicles (RLV), offering the combination of increased durability and competitive weights when compared to other systems. Accurate sizing of metallic TPS requires combined thermal and structural analysis. Initial sensitivity studies were conducted using transient one-dimensional finite element thermal analysis to determine the influence of various TPS and analysis parameters on TPS weight. The thermal analysis model was then used in combination with static deflection and failure mode analysis of the sandwich panel outer surface of the TPS to obtain minimum weight TPS configurations at three vehicle stations on the windward centerline of a representative RLV. The coupled nature of the analysis requires an iterative analysis process, which will be described herein. Findings from the sensitivity analysis are reported, along with TPS designs at the three RLV vehicle stations considered.

  8. Sensitivity study and parameter optimization of OCD tool for 14nm finFET process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhensheng; Chen, Huiping; Cheng, Shiqiu; Zhan, Yunkun; Huang, Kun; Shi, Yaoming; Xu, Yiping

    2016-03-01

    Optical critical dimension (OCD) measurement has been widely demonstrated as an essential metrology method for monitoring advanced IC process in the technology node of 90 nm and beyond. However, the rapidly shrunk critical dimensions of the semiconductor devices and the increasing complexity of the manufacturing process bring more challenges to OCD. The measurement precision of OCD technology highly relies on the optical hardware configuration, spectral types, and inherently interactions between the incidence of light and various materials with various topological structures, therefore sensitivity analysis and parameter optimization are very critical in the OCD applications. This paper presents a method for seeking the optimum sensitive measurement configuration to enhance the metrology precision and reduce the noise impact to the greatest extent. In this work, the sensitivity of different types of spectra with a series of hardware configurations of incidence angles and azimuth angles were investigated. The optimum hardware measurement configuration and spectrum parameter can be identified. The FinFET structures in the technology node of 14 nm were constructed to validate the algorithm. This method provides guidance to estimate the measurement precision before measuring actual device features and will be beneficial for OCD hardware configuration.

  9. Pain Processing after Social Exclusion and Its Relation to Rejection Sensitivity in Borderline Personality Disorder

    PubMed Central

    Bungert, Melanie; Koppe, Georgia; Niedtfeld, Inga; Vollstädt-Klein, Sabine; Schmahl, Christian

    2015-01-01

    Objective There is a general agreement that physical pain serves as an alarm signal for the prevention of and reaction to physical harm. It has recently been hypothesized that “social pain,” as induced by social rejection or abandonment, may rely on comparable, phylogenetically old brain structures. As plausible as this theory may sound, scientific evidence for this idea is sparse. This study therefore attempts to link both types of pain directly. We studied patients with borderline personality disorder (BPD) because BPD is characterized by opposing alterations in physical and social pain; hyposensitivity to physical pain is associated with hypersensitivity to social pain, as indicated by an enhanced rejection sensitivity. Method Twenty unmedicated female BPD patients and 20 healthy participants (HC, matched for age and education) played a virtual ball-tossing game (cyberball), with the conditions for exclusion, inclusion, and a control condition with predefined game rules. Each cyberball block was followed by a temperature stimulus (with a subjective pain intensity of 60% in half the cases). The cerebral responses were measured by functional magnetic resonance imaging. The Adult Rejection Sensitivity Questionnaire was used to assess rejection sensitivity. Results Higher temperature heat stimuli had to be applied to BPD patients relative to HCs to reach a comparable subjective experience of painfulness in both groups, which suggested a general hyposensitivity to pain in BPD patients. Social exclusion led to a subjectively reported hypersensitivity to physical pain in both groups that was accompanied by an enhanced activation in the anterior insula and the thalamus. In BPD, physical pain processing after exclusion was additionally linked to enhanced posterior insula activation. After inclusion, BPD patients showed reduced amygdala activation during pain in comparison with HC. In BPD patients, higher rejection sensitivity was associated with lower activation

  10. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    SciTech Connect

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-04-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered.

  11. Sensitivity of Multiangle, Multispectral Polarimetric Remote Sensing Over Open Oceans to Water-Leaving Radiance: Analyses of RSP Data Acquired During the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    Chowdhary, Jacek; Cairns, Brian; Waquet, Fabien; Knobelspiesse, Kirk; Ottaviani, Matteo; Redemann, Jens; Travis, Larry; Mishchenko, Michael

    2012-01-01

    For remote sensing of aerosol over the ocean, there is a contribution from light scattered underwater. The brightness and spectrum of this light depends on the biomass content of the ocean, such that variations in the color of the ocean can be observed even from space. Rayleigh scattering by pure sea water, and Rayleigh-Gans type scattering by plankton, causes this light to be polarized with a distinctive angular distribution. To study the contribution of this underwater light polarization to multiangle, multispectral observations of polarized reflectance over ocean, we previously developed a hydrosol model for use in underwater light scattering computations that produces realistic variations of the ocean color and the underwater light polarization signature of pure sea water. In this work we review this hydrosol model, include a correction for the spectrum of the particulate scattering coefficient and backscattering efficiency, and discuss its sensitivity to variations in colored dissolved organic matter (CDOM) and in the scattering function of marine particulates. We then apply this model to measurements of total and polarized reflectance that were acquired over open ocean during the MILAGRO field campaign by the airborne Research Scanning Polarimeter (RSP). Analyses show that our hydrosol model faithfully reproduces the water-leaving contributions to RSP reflectance, and that the sensitivity of these contributions to Chlorophyll a concentration [Chl] in the ocean varies with the azimuth, height, and wavelength of observations. We also show that the impact of variations in CDOM on the polarized reflectance observed by the RSP at low altitude is comparable to or much less than the standard error of this reflectance whereas their effects in total reflectance may be substantial (i.e. up to >30%). Finally, we extend our study of polarized reflectance variations with [Chl] and CDOM to include results for simulated spaceborne observations.

  12. Combination of chemical analyses and animal feeding trials as reliable procedures to assess the safety of heat processed soybean seeds.

    PubMed

    Vasconcelos, Ilka M; Brasil, Isabel Cristiane F; Oliveira, José Tadeu A; Campello, Cláudio C; Maia, Fernanda Maria M; Campello, Maria Verônica M; Farias, Davi F; Carvalho, Ana Fontenele U

    2009-06-10

    This study assessed whether chemical analyses are sufficient to guarantee the safety of heat processing of soybeans (SB) for human/animal consumption. The effects of extrusion and dry-toasting were analyzed upon seed composition and performance of broiler chicks. None of these induced appreciable changes in protein content and amino acid composition. Conversely, toasting reduced all antinutritional proteins by over 85%. Despite that, the animals fed on toasted SB demonstrated a low performance (feed efficiency 57.8 g/100 g). Extrusion gave place to higher contents of antinutrients, particularly of trypsin inhibitors (27.53 g/kg flour), but animal performance was significantly (p < 0.05) better (feed efficiency 63.2 g/100 g). Upon the basis of chemical analyses, dry-toasting represents the treatment of choice. However, considering the results of the feeding trials, extrusion appears to be the safest method. In conclusion, in order to evaluate the reliability of any processing method intended to improve nutritional value, the combination of chemical and animal studies is necessary.

  13. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity

    PubMed Central

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A. M.

    2016-01-01

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n = 18) (Griffioen-Roose et al., 2013). First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex (bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per se may be

  14. Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity.

    PubMed

    van Rijn, Inge; Griffioen-Roose, Sanne; de Graaf, Cees; Smeets, Paul A M

    2015-01-01

    A food's reward value is dependent on its caloric content. Furthermore, a food's acute reward value also depends on hunger state. The drive to obtain rewards (reward sensitivity), however, differs between individuals. Here, we assessed the association between brain responses to calories in the mouth and trait reward sensitivity in different hunger states. Firstly, we assessed this in data from a functional neuroimaging study (van Rijn et al., 2015), in which participants (n = 30) tasted simple solutions of a non-caloric sweetener with or without a non-sweet carbohydrate (maltodextrin) during hunger and satiety. Secondly, we expanded these analyses to regular drinks by assessing the same relationship in data from a study in which soft drinks sweetened with either sucrose or a non-caloric sweetener were administered during hunger (n = 18) (Griffioen-Roose et al., 2013). First, taste activation by the non-caloric solution/soft drink was subtracted from that by the caloric solution/soft drink to eliminate sweetness effects and retain activation induced by calories. Subsequently, this difference in taste activation was correlated with reward sensitivity as measured with the BAS drive subscale of the Behavioral Activation System (BAS) questionnaire. When participants were hungry and tasted calories from the simple solution, brain activation in the right ventral striatum (caudate), right amygdala and anterior cingulate cortex (bilaterally) correlated negatively with BAS drive scores. In contrast, when participants were satiated, taste responses correlated positively with BAS drive scores in the left caudate. These results were not replicated for soft drinks. Thus, neural responses to oral calories from maltodextrin were modulated by reward sensitivity in reward-related brain areas. This was not the case for sucrose. This may be due to the direct detection of maltodextrin, but not sucrose in the oral cavity. Also, in a familiar beverage, detection of calories per se may be

  15. Substantial Variability Exists in Utilities' Nuclear Decommissioning Funding Adequacy: Baseline Trends (1997-2001); and Scenario and Sensitivity Analyses (Year 2001)

    SciTech Connect

    Williams, D. G.

    2003-02-26

    This paper explores the trends over 1997-2001 in my baseline simulation analysis of the sufficiency of electric utilities' funds to eventually decommission the nation's nuclear power plants. Further, for 2001, I describe the utilities' funding adequacy results obtained using scenario and sensitivity analyses, respectively. In this paper, I focus more on the wide variability observed in these adequacy measures among utilities than on the results for the ''average'' utility in the nuclear industry. Only individual utilities, not average utilities -- often used by the nuclear industry to represent its funding adequacy -- will decommission their nuclear plants. Industry-wide results tend to mask the varied results for individual utilities. This paper shows that over 1997-2001, the variability of my baseline decommissioning funding adequacy measures (in percentages) for both utility fund balances and current contributions has remained very large, reflected in the sizable ranges and frequency distributions of these percentages. The relevance of this variability for nuclear decommissioning funding adequacy is, of course, focused more on those utilities that show below ideal balances and contribution levels. Looking backward, 42 of 67 utility fund (available) balances, in 2001, were above (and 25 below) their ideal baseline levels; in 1997, 42 of 76 were above (and 34 below) ideal levels. Of these, many utility balances were far above, and many far below, such ideal levels. The problem of certain utilities continuing to show balances much below ideal persists even with increases in the adequacy of ''average'' utility balances.

  16. Sensitivity analysis of a dry-processed Candu fuel pellet's design parameters

    SciTech Connect

    Choi, Hangbok; Ryu, Ho Jin

    2007-07-01

    Sensitivity analysis was carried out in order to investigate the effect of a fuel pellet's design parameters on the performance of a dry-processed Canada deuterium uranium (CANDU) fuel and to suggest the optimum design modifications. Under a normal operating condition, a dry-processed fuel has a higher internal pressure and plastic strain due to a higher fuel centerline temperature when compared with a standard natural uranium CANDU fuel. Under a condition that the fuel bundle dimensions do not change, sensitivity calculations were performed on a fuel's design parameters such as the axial gap, dish depth, gap clearance and plenum volume. The results showed that the internal pressure and plastic strain of the cladding were most effectively reduced if a fuel's element plenum volume was increased. More specifically, the internal pressure and plastic strain of the dry-processed fuel satisfied the design limits of a standard CANDU fuel when the plenum volume was increased by one half a pellet, 0.5 mm{sup 3}/K. (authors)

  17. Sensitivity of mix in Inertial Confinement Fusion simulations to diffusion processes

    NASA Astrophysics Data System (ADS)

    Melvin, Jeremy; Cheng, Baolian; Rana, Verinder; Lim, Hyunkyung; Glimm, James; Sharp, David H.

    2015-11-01

    We explore two themes related to the simulation of mix within an Inertial Confinement Fusion (ICF) implosion, the role of diffusion (viscosity, mass diffusion and thermal conduction) processes and the impact of front tracking on the growth of the hydrodynamic instabilities. Using the University of Chicago HEDP code FLASH, we study the sensitivity of post-shot simulations of a NIC cryogenic shot to the diffusion models and front tracking of the material interfaces. Results of 1D and 2D simulations are compared to experimental quantities and an analysis of the current state of fully integrated ICF simulations is presented.

  18. Implementation of Complex Signal Processing Algorithms for Position-Sensitive Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2008-01-01

    We have recently reported on a theoretical digital signal-processing algorithm for improved energy and position resolution in position-sensitive, transition-edge sensor (POST) X-ray detectors [Smith et al., Nucl, lnstr and Meth. A 556 (2006) 2371. PoST's consists of one or more transition-edge sensors (TES's) on a large continuous or pixellated X-ray absorber and are under development as an alternative to arrays of single pixel TES's. PoST's provide a means to increase the field-of-view for the fewest number of read-out channels. In this contribution we extend the theoretical correlated energy position optimal filter (CEPOF) algorithm (originally developed for 2-TES continuous absorber PoST's) to investigate the practical implementation on multi-pixel single TES PoST's or Hydras. We use numerically simulated data for a nine absorber device, which includes realistic detector noise, to demonstrate an iterative scheme that enables convergence on the correct photon absorption position and energy without any a priori assumptions. The position sensitivity of the CEPOF implemented on simulated data agrees very well with the theoretically predicted resolution. We discuss practical issues such as the impact of random arrival phase of the measured data on the performance of the CEPOF. The CEPOF algorithm demonstrates that full-width-at- half-maximum energy resolution of < 8 eV coupled with position-sensitivity down to a few 100 eV should be achievable for a fully optimized device.

  19. Perceptual face processing in developmental prosopagnosia is not sensitive to the canonical location of face parts.

    PubMed

    Towler, John; Parketny, Joanna; Eimer, Martin

    2016-01-01

    Individuals with developmental prosopagnosia (DP) are strongly impaired in recognizing faces, but it is controversial whether this deficit is linked to atypical visual-perceptual face processing mechanisms. Previous behavioural studies have suggested that face perception in DP might be less sensitive to the canonical spatial configuration of face parts in upright faces. To test this prediction, we recorded event-related brain potentials (ERPs) to intact upright faces and to faces with spatially scrambled parts (eyes, nose, and mouth) in a group of ten participants with DP and a group of ten age-matched control participants with normal face recognition abilities. The face-sensitive N170 component and the vertex positive potential (VPP) were both enhanced and delayed for scrambled as compared to intact faces in the control group. In contrast, N170 and VPP amplitude enhancements to scrambled faces were absent in the DP group. For control participants, the N170 to scrambled faces was also sensitive to feature locations, with larger and delayed N170 components contralateral to the side where all features appeared in a non-canonical position. No such differences were present in the DP group. These findings suggest that spatial templates of the prototypical feature locations within an upright face are selectively impaired in DP.

  20. Reducing Missed Laboratory Results: Defining Temporal Responsibility, Generating User Interfaces for Test Process Tracking, and Retrospective Analyses to Identify Problems

    PubMed Central

    Tarkan, Sureyya; Plaisant, Catherine; Shneiderman, Ben; Hettinger, A. Zachary

    2011-01-01

    Researchers have conducted numerous case studies reporting the details on how laboratory test results of patients were missed by the ordering medical providers. Given the importance of timely test results in an outpatient setting, there is limited discussion of electronic versions of test result management tools to help clinicians and medical staff with this complex process. This paper presents three ideas to reduce missed results with a system that facilitates tracking laboratory tests from order to completion as well as during follow-up: (1) define a workflow management model that clarifies responsible agents and associated time frame, (2) generate a user interface for tracking that could eventually be integrated into current electronic health record (EHR) systems, (3) help identify common problems in past orders through retrospective analyses. PMID:22195201

  1. Transfer of a near infrared spectroscopy laboratory application to an online process analyser for in situ monitoring of anaerobic digestion.

    PubMed

    Krapf, L Christian; Nast, Dieter; Gronauer, Andreas; Schmidhalter, Urs; Heuwinkel, Hauke

    2013-02-01

    A near infrared (NIR) spectroscopy online process analyser was used for in situ monitoring of anaerobic digestion of energy crops and livestock residues. Spectra were measured on a lab instrument and subjected to piecewise direct standardisation for a spectra transfer. The transfer was used in conjunction with samples for which data was recorded online for the partial least squares regression of volatile solids, ammonium, total inorganic carbon, and volatile fatty acids parameters in the fresh matter of a digester slurry. Validation was performed on independent time series spectra. The results confirmed that the procedure is robust in terms of NIR monitoring of these parameters in order to support the high potential for cross-linking different spectrometers, which may help in making this technology practical.

  2. Estimate design sensitivity to process variation for the 14nm node

    NASA Astrophysics Data System (ADS)

    Landié, Guillaume; Farys, Vincent

    2016-03-01

    Looking for the highest density and best performance, the 14nm technological node saw the development of aggressive designs, with design rules as close as possible to the limit of the process. Edge placement error (EPE) budget is now tighter and Reticle Enhancement Techniques (RET) must take into account the highest number of parameters to be able to get the best printability and guaranty yield requirements. Overlay is a parameter that must be taken into account earlier during the design library development to avoid design structures presenting a high risk of performance failure. This paper presents a method taking into account the overlay variation and the Resist Image simulation across the process window variation to estimate the design sensitivity to overlay. Areas in the design are classified with specific metrics, from the highest to the lowest overlay sensitivity. This classification can be used to evaluate the robustness of a full chip product to process variability or to work with designers during the design library development. The ultimate goal is to evaluate critical structures in different contexts and report the most critical ones. In this paper, we study layers interacting together, such as Contact/Poly area overlap or Contact/Active distance. ASML-Brion tooling allowed simulating the different resist contours and applying the overlay value to one of the layers. Lithography Manufacturability Check (LMC) detectors are then set to extract the desired values for analysis. Two different approaches have been investigated. The first one is a systematic overlay where we apply the same overlay everywhere on the design. The second one is using a real overlay map which has been measured and applied to the LMC tools. The data are then post-processed and compared to the design target to create a classification and show the error distribution. Figure:

  3. Effectiveness and Sensitivity of Vibration Processing Techniques for Local Fault Detection in Gears

    NASA Astrophysics Data System (ADS)

    Dalpiaz, G.; Rivola, A.; Rubini, R.

    2000-05-01

    This paper deals with gear condition monitoring based on vibration analysis techniques. The detection and diagnostic capability of some of the most effective techniques are discussed and compared on the basis of experimental results, concerning a gear pair affected by a fatigue crack. In particular, the results of new approaches based on time-frequency and cyclostationarity analysis are compared against those obtained by means of the well-accepted cepstrum analysis and time-synchronous average analysis. Moreover, the sensitivity to fault severity is assessed by considering two different depths of the crack. The effect of transducer location and processing options are also shown. In the case of the experimental results considered in this paper, the power cepstrum is practically insensitive to the crack evolution. Conversely, the spectral correlation density function is able to monitor the fault development and does not seem to be significantly influenced by the transducer position. Analysis techniques of the time-synchronous average, such as the 'residual' signal and the demodulation technique, are able to localise the damaged tooth; however, the sensitivity of the demodulation technique is strongly dependent on the proper choice of the filtering band and affected by the transducer location. The wavelet transform seems to be a good tool for crack detection; it is particularly effective if the residual part of the time-synchronous averaged signal is processed.

  4. Identification of sensitive parameters in the modeling of SVOC reemission processes from soil to atmosphere.

    PubMed

    Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc

    2014-09-15

    Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty.

  5. What is the deficit in phonological processing deficits: Auditory sensitivity, masking, or category formation?

    PubMed Central

    Nittrouer, Susan; Shune, Samantha; Lowenstein, Joanna H.

    2012-01-01

    Although children with language impairments, including those associated with reading, usually demonstrate deficits in phonological processing, there is minimal agreement as to the source of those deficits. This study examined two problems hypothesized to be possible sources: either poor auditory sensitivity to speech-relevant acoustic properties, mainly formant transitions, or enhanced masking of those properties. Adults and 8-year-olds with and without phonological processing deficits (PPD) participated. Children with PPD demonstrated weaker abilities than children with typical language development (TLD) in reading, sentence recall, and phonological awareness. Dependent measures were: 1) word recognition; 2) discrimination of spectral glides; and 3) phonetic judgments based on spectral and temporal cues. All tasks were conducted in quiet and in noise. Children with PPD showed neither poorer auditory sensitivity nor greater masking than adults and children with TLD, but did demonstrate an unanticipated deficit in category formation for non-speech sounds. These results suggest that these children may have an underlying deficit in perceptually organizing sensory information to form coherent categories. PMID:21109251

  6. Integrated proteomic and N-glycoproteomic analyses of doxorubicin sensitive and resistant ovarian cancer cells reveal glycoprotein alteration in protein abundance and glycosylation.

    PubMed

    Ji, Yanlong; Wei, Shasha; Hou, Junjie; Zhang, Chengqian; Xue, Peng; Wang, Jifeng; Chen, Xiulan; Guo, Xiaojing; Yang, Fuquan

    2017-01-06

    Ovarian cancer is one of the most common cancer among women in the world, and chemotherapy remains the principal treatment for patients. However, drug resistance is a major obstacle to the effective treatment of ovarian cancers and the underlying mechanism is not clear. An increased understanding of the mechanisms that underline the pathogenesis of drug resistance is therefore needed to develop novel therapeutics and diagnostic. Herein, we report the comparative analysis of the doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI/ADR-RES cells using integrated global proteomics and N-glycoproteomics. A total of 1525 unique N-glycosite-containing peptides from 740 N-glycoproteins were identified and quantified, of which 253 N-glycosite-containing peptides showed significant change in the NCI/ADR-RES cells. Meanwhile, stable isotope labeling by amino acids in cell culture (SILAC) based comparative proteomic analysis of the two ovarian cancer cells led to the quantification of 5509 proteins. As about 50% of the identified N-glycoproteins are low-abundance membrane proteins, only 44% of quantified unique N-glycosite-containing peptides had corresponding protein expression ratios. The comparison and calibration of the N-glycoproteome versus the proteome classified 14 change patterns of N-glycosite-containing peptides, including 8 up-regulated N-glycosite-containing peptides with the increased glycosylation sites occupancy, 35 up-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy, 2 down-regulated N-glycosite-containing peptides with the decreased glycosylation sites occupancy, 46 down-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy. Integrated proteomic and N-glycoproteomic analyses provide new insights, which can help to unravel the relationship of N-glycosylation and multidrug resistance (MDR), understand the mechanism of MDR, and discover the new diagnostic and

  7. WRF-Chem Simulation of Air Quality in China: Sensitivity Analyses of PM Concentrations to Emissions, Atmospheric Transport, and Secondary Organic Aerosol Formation

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Saikawa, E.; Naik, V.; Horowitz, L. W.; Takigawa, M.; Zhao, Y.

    2014-12-01

    We investigate air quality in China in April 2007, using the Weather Research and Forecasting model coupled with Chemistry version 3.5 (WRF-Chem) at a spatial resolution of 20km × 20km with 31 vertical levels. The model domain covers the entire East Asian region with 399 × 299 grid cells. The initial and lateral chemical boundary conditions are taken from a present-day simulation of the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) global chemistry-climate model AM3. The Regional Acid Deposition version 2 (RADM2) atmospheric chemical mechanism is used for gas-phase chemistry and the Model Aerosol Dynamics for Europe with the Secondary Organic Aerosol Model (MADE/SORGAM) and aqueous chemistry is used for aerosol chemistry. The emissions of gaseous pollutants (CO, NOx, NH3, VOCs, and SO2) and particulate matter (BC, OC, PM2.5, and PM10) are taken from the Regional Emission Inventory in Asia (REAS) version 2. Dust and sea salt emissions are simulated online, where dust parameters are optimized using observed particular matter (PM10) concentrations in 73 cities in China. We add gravitational settlement for dust and sea salt in vertical levels. The preliminary results show that the model predicts PM10 reasonably well compared to the ground measurement data. The bias in modeled PM10 concentrations in South and Northwest­­­­­­­ China is less than 10%. We will present results of sensitivity analyses that assess the impact of emissions, atmospheric transport, and secondary organic aerosol formation on PM concentrations.

  8. Process sensitivities in exemplary chemo-epitaxy directed self-assembly integration

    NASA Astrophysics Data System (ADS)

    Rincon Delgadillo, Paulina A.; Gronheid, Roel; Lin, Guanyang; Cao, Yi; Romo, Ainhoa; Somervell, Mark; Nafus, Kathleen; Nealey, Paul F.

    2013-03-01

    Directed Self Assembly (DSA) using block copolymers (BCP) has received considerable attention over the past few years as a potential complementary lithographic technique. While many are focused on adapting DSA integrations to high volume manufacturing, the key to the technology's success lies in its ability to generate low defect patterns. The best way to drive the technology toward a zero defect solution is to understand the fundamentals of the block copolymer assembly, the interactions of the block copolymer with the underlying chemical pattern, and the evaluation of process parameters to obtain a high degree of order of the BCP morphologies. To this end, recent research has investigated numerous material, structural, and process sensitivities of an exemplary chemo-epitaxy line/space integration. Using the DSA flow implemented at imec, substrate properties, such as the geometry and chemistry, were studied and provided the first results regarding the dimensions of the nano-patterns and the energetic conditions necessary to obtain good alignment of the BCP. Additional parameters that have been explored include BCP film thickness and the bake conditions used to execute various steps of the flow. With this work, the key parameters that drive the assembly process have been identified. This will allow the definition of an optimized process window and materials for defect minimization.

  9. Silver-halide sensitized gelatin (SHSG) processing method for pulse holograms recorded on VRP plates

    NASA Astrophysics Data System (ADS)

    Evstigneeva, Maria K.; Drozdova, Olga V.; Mikhailov, Viktor N.

    2002-06-01

    One of the most important area of holograph applications is display holography. In case of pulse recording the requirement for vibration stability is easier than compared to CW exposure. At the same time it is widely known that the behavior of sliver-halide holographic materials strongly depends on the exposure duration. In particular the exposure sensitivity drastically decreases under nanosecond pulse duration. One of the effective ways of the diffraction efficiency improvement is SHSG processing method. This processing scheme is based on high modulation of refractive index due to microvoids appearance inside emulsion layer. It should be mentioned that the SHSG method was used earlier only in the cases when the holograms were recorded by use of CW lasers. This work is devoted to the investigation of SHSG method for pulse hologram recording on VRP plates. We used a pulsed YLF:Nd laser with pulse duration of 25 nanoseconds and wavelength of 527 nm. Both transmission and reflection holograms were recorded. The different kinds of bleaching as well as developing solutions were investigated. Our final processing scheme includes the following stages: 1) development in non-tanning solution, 2) rehalogenating bleach, 3) intermediate alcohol drying, 4) uniform second exposure, 5) second development in diluted developer, 6) reverse bleaching, 7) fixing and 8) gradient drying in isopropyl alcohol. Diffraction efficiency of transmission holograms was of about 60 percent and reflection mirror holograms was of about 45 percent. Thus we have demonstrated the SHSG processing scheme for producing effective holograms on VRP plates under pulse exposure.

  10. A novel BCI based on ERP components sensitive to configural processing of human faces

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhao, Qibin; Jing, Jin; Wang, Xingyu; Cichocki, Andrzej

    2012-04-01

    This study introduces a novel brain-computer interface (BCI) based on an oddball paradigm using stimuli of facial images with loss of configural face information (e.g., inversion of face). To the best of our knowledge, till now the configural processing of human faces has not been applied to BCI but widely studied in cognitive neuroscience research. Our experiments confirm that the face-sensitive event-related potential (ERP) components N170 and vertex positive potential (VPP) have reflected early structural encoding of faces and can be modulated by the configural processing of faces. With the proposed novel paradigm, we investigate the effects of ERP components N170, VPP and P300 on target detection for BCI. An eight-class BCI platform is developed to analyze ERPs and evaluate the target detection performance using linear discriminant analysis without complicated feature extraction processing. The online classification accuracy of 88.7% and information transfer rate of 38.7 bits min-1 using stimuli of inverted faces with only single trial suggest that the proposed paradigm based on the configural processing of faces is very promising for visual stimuli-driven BCI applications.

  11. Erosion processes by water in agricultural landscapes: a low-cost methodology for post-event analyses

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Calligaro, Simone; Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    Throughout the world, agricultural landscapes assume a great importance, especially for supplying food and a livelihood. Among the land degradation phenomena, erosion processes caused by water are those that may most affect the benefits provided by agricultural lands and endanger people who work and live there. In particular, erosion processes that affect the banks of agricultural channels may cause the bank failure and represent, in this way, a severe threat to floodplain inhabitants and agricultural crops. Similarly, rills and gullies are critical soil erosion processes as well, because they bear upon the productivity of a farm and represent a cost that growers have to deal with. To estimate quantitatively soil losses due to bank erosion and rills processes, area based measurements of surface changes are necessary but, sometimes, they may be difficult to realize. In fact, surface changes due to short-term events have to be represented with fine resolution and their monitoring may entail too much money and time. The main objective of this work is to show the effectiveness of a user-friendly and low-cost technique that may even rely on smart-phones, for the post-event analyses of i) bank erosion affecting agricultural channels, and ii) rill processes occurring on an agricultural plot. Two case studies were selected and located in the Veneto floodplain (northeast Italy) and Marche countryside (central Italy), respectively. The work is based on high-resolution topographic data obtained by the emerging, low-cost photogrammetric method named Structure-from-Motion (SfM). Extensive photosets of the case studies were obtained using both standalone reflex digital cameras and smart-phone built-in cameras. Digital Terrain Models (DTMs) derived from SfM revealed to be effective to estimate quantitatively erosion volumes and, in the case of the bank eroded, deposited materials as well. SfM applied to pictures taken by smartphones is useful for the analysis of the topography

  12. Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities

    NASA Astrophysics Data System (ADS)

    Allen, Bruce; Romano, Joseph D.

    1999-05-01

    We analyze the signal processing required for the optimal detection of a stochastic background of gravitational radiation using laser interferometric detectors. Starting with basic assumptions about the statistical properties of a stochastic gravity-wave background, we derive expressions for the optimal filter function and signal-to-noise ratio for the cross-correlation of the outputs of two gravity-wave detectors. Sensitivity levels required for detection are then calculated. Issues related to (i) calculating the signal-to-noise ratio for arbitrarily large stochastic backgrounds, (ii) performing the data analysis in the presence of nonstationary detector noise, (iii) combining data from multiple detector pairs to increase the sensitivity of a stochastic background search, (iv) correlating the outputs of 4 or more detectors, and (v) allowing for the possibility of correlated noise in the outputs of two detectors are discussed. We briefly describe a computer simulation that was used to ``experimentally'' verify the theoretical calculations derived in the paper, and which mimics the generation and detection of a simulated stochastic gravity-wave signal in the presence of simulated detector noise. Numerous graphs and tables of numerical data for the five major interferometers (LIGO-WA, LIGO-LA, VIRGO, GEO-600, and TAMA-300) are also given. This information consists of graphs of the noise power spectra, overlap reduction functions, and optimal filter functions; also included are tables of the signal-to-noise ratios and sensitivity levels for cross-correlation measurements between different detector pairs. The treatment given in this paper should be accessible to both theorists involved in data analysis and experimentalists involved in detector design and data acquisition.

  13. Tropical tropopause water isotopes in a GCM: Sensitivity to cloud processes and stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Schmidt, G. A.; Hoffmann, G.; Hu, Y.

    2004-05-01

    Water isotopes ratios (δ 18O, δ D) are very sensitive tracers of the history of the water in the atmosphere. For example, depletion of heavy isotopes in convective plumes can be extreme and thus isotope ratios can be used to discriminate between upwelled and in-situ condensation. We present results with state-of-the-art GCMs that include water isotopes in every aspect of the modelled water cycle, including the relatively sophisticated prognostic cloud water scheme. These models also have reasonable representations of the stratospheric circulation and so can be used to look at the processes involved in stratosphere-troposphere exchange. We demonstrate that the models show a similar range of variability near the tropical tropopause to that seen in recent data, and that the zonal mean values are less depleted than a simple Rayleigh distillation column would suggest. Importantly, we show that the isotopes can be sensitive to uncertain details of the cloud parameterizations and thus may help in improving and validating cloud schemes in models.

  14. Specific capture of the hydrolysate on magnetic beads for sensitive detecting plant vacuolar processing enzyme activity.

    PubMed

    Zhou, Jun; Cheng, Meng; Zeng, Lizhang; Liu, Weipeng; Zhang, Tao; Xing, Da

    2016-05-15

    Conventional plant protease detection always suffers from high background interference caused by the complex coloring metabolites in plant cells. In this study, a bio-modified magnetic beads-based strategy was developed for sensitive and quantitative detection of plant vacuolar processing enzyme (VPE) activity. Cleavage of the peptide substrate (ESENCRK-FITC) after asparagine residue by VPE resulted in the 2-cyano-6-amino-benzothiazole (CABT)-functionalized magnetic beads capture of the severed substrate CRK-FITC via a condensation reaction between CABT and cysteine (Cys). The catalytic activity was subsequently obtained by the confocal microscopy imaging and flow cytometry quantitative analysis. The sensor system integrated advantages of (i) the high efficient enrichment and separation capabilities of magnetic beads and (ii) the catalyst-free properties of the CABT-Cys condensation reaction. It exhibited a linear relationship between the fluorescence signal and the concentration of severed substrate in the range of 10-600 pM. The practical results showed that, compared with normal growth conditions, VPE activity was increased by 2.7-fold (307.2 ± 25.3 μM min(-1)g(-1)) upon cadmium toxicity stress. This platform effectively overcame the coloring metabolites-caused background interference, showing fine applicability for the detection of VPE activity in real samples. The strategy offers great sensitivity and may be further extended to other protease activity detection.

  15. Quantifying Measurement Fluctuations from Stochastic Surface Processes on Sensors with Heterogeneous Sensitivity

    NASA Astrophysics Data System (ADS)

    Charmet, Jérôme; Michaels, Thomas C. T.; Daly, Ronan; Prasad, Abhinav; Thiruvenkathanathan, Pradyumna; Langley, Robin S.; Knowles, Tuomas P. J.; Seshia, Ashwin A.

    2016-06-01

    Recent advances in micro- and nanotechnology have enabled the development of ultrasensitive sensors capable of detecting small numbers of species. In general, however, the response induced by the random adsorption of a small number of objects onto the surface of such sensors results in significant fluctuations due to the heterogeneous sensitivity inherent to many such sensors coupled to statistical fluctuations in the particle number. At present, this issue is addressed by considering either the limit of very large numbers of analytes, where fluctuations vanish, or the converse limit, where the sensor response is governed by individual analytes. Many cases of practical interest, however, fall between these two limits and remain challenging to analyze. Here, we address this limitation by deriving a general theoretical framework for quantifying measurement variations on mechanical resonators resulting from statistical-number fluctuations of analyte species. Our results provide insights into the stochastic processes in the sensing environment and offer opportunities to improve the performance of mechanical-resonator-based sensors. This metric can be used, among others, to aid in the design of robust sensor platforms to reach ultrahigh-resolution measurements using an array of sensors. These concepts, illustrated here in the context of biosensing, are general and can therefore be adapted and extended to other sensors with heterogeneous sensitivity.

  16. Energy Efficienct Processes for Making Tackifier Dispersions used to make Pressure Sensitive Adhesives

    SciTech Connect

    Rakesh Gupta

    2006-07-26

    The primary objective of this project was to develop an energy efficient, environmentally friendly and low cost process (compared to the current process) for making tackifier dispersions that are used to make pressure-sensitive adhesives. These adhesives are employed in applications such as self-adhesive postage stamps and disposable diapers and are made by combining the tackifier dispersion with a natural or synthetic rubber latex. The current process for tackifier dispersion manufacture begins by melting a (plastic) resin and adding water to it in order to form a water-in-oil emulsion. This is then converted to an oil-in-water emulsion by phase inversion in the presence of continuous stirring. The resulting emulsion is the tackifier dispersion, but it is not concentrated and the remaining excess water has to be transported and removed. The main barrier that has to be overcome in the development of commercial quality tackifier dispersions is the inability to directly emulsify resin in water due to the very low viscosity of water as compared to the viscosity of the molten resin. In the present research, a number of solutions were proposed to overcome this barrier, and these included use of different mixer types to directly form the emulsion from the molten resin but without going through a phase inversion, the idea of forming a solid resin-in-water suspension having the correct size and size distribution but without melting of the resin, and the development of techniques of making a colloidal powder of the resin that could be dispersed in water just prior to use. Progress was made on each of these approaches, and each was found to be feasible. The most appealing solution, though, is the last one, since it does not require melting of the resin. Also, the powder can be shipped in dry form and then mixed with water in any proportion depending on the needs of the process. This research was conducted at Argonne National Laboratory, and it was determined the new process

  17. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process.

    PubMed

    Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Kim, Han Seong; Lee, Dong Y

    2015-06-18

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration.

  18. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process

    NASA Astrophysics Data System (ADS)

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Kim, Han Seong; Lee, Dong Y.

    2015-06-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration.

  19. Early sensitivity for eyes within faces: a new neuronal account of holistic and featural processing.

    PubMed

    Nemrodov, Dan; Anderson, Thomas; Preston, Frank F; Itier, Roxane J

    2014-08-15

    Eyes are central to face processing however their role in early face encoding as reflected by the N170 ERP component is unclear. Using eye tracking to enforce fixation on specific facial features, we found that the N170 was larger for fixation on the eyes compared to fixation on the forehead, nasion, nose or mouth, which all yielded similar amplitudes. This eye sensitivity was seen in both upright and inverted faces and was lost in eyeless faces, demonstrating it was due to the presence of eyes at fovea. Upright eyeless faces elicited largest N170 at nose fixation. Importantly, the N170 face inversion effect (FIE) was strongly attenuated in eyeless faces when fixation was on the eyes but was less attenuated for nose fixation and was normal when fixation was on the mouth. These results suggest the impact of eye removal on the N170 FIE is a function of the angular distance between the fixated feature and the eye location. We propose the Lateral Inhibition, Face Template and Eye Detector based (LIFTED) model which accounts for all the present N170 results including the FIE and its interaction with eye removal. Although eyes elicit the largest N170 response, reflecting the activity of an eye detector, the processing of upright faces is holistic and entails an inhibitory mechanism from neurons coding parafoveal information onto neurons coding foveal information. The LIFTED model provides a neuronal account of holistic and featural processing involved in upright and inverted faces and offers precise predictions for further testing.

  20. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; kim, Han Seong; Lee, Dong Y.

    2015-01-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration. PMID:26087134

  1. Collaborative processes, research, and applications to improve drought-sensitive decision making in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Verdin, J. P.; Pulwarty, R. S.; Doesken, N. J.; Gillespie, M.; Werner, K.; Wilhelmi, O.; Lewis, M. E.; Darby, L. S.; McNutt, C. A.; Schmidt, M.; Redmond, K. T.

    2010-12-01

    The Upper Colorado River Basin (UCRB) is the focus of the first pilot regional drought early warning information system of the National Integrated Drought Information System (NIDIS). In partnership with resource managers from across the basin, a program of needs assessments, collaborative processes, research, and applications was designed and is being implemented. Priority actions involve the drought-sensitive decisions of large reservoir operators, water providers dependent on inter-basin transfers, and ecosystem managers. Identification of drought monitoring and forecasting needs has led to an ongoing UCRB drought monitoring process organized under the leadership of the Colorado state climatologist. Weekly webinars during spring runoff (monthly during the rest of the year) review the latest science, observations and forecasts for variables like streamflow, precipitation, temperature, snowpack, and reservoir storage. Research and applications projects support this collaborative process by developing new insights and tools for drought impact analyses. They include review and improvement of drought indices used in the UCRB, and new tools for making custom, locally-relevant indicators; spatial analysis of water demand in the basin; a low-flow impacts database, including environmental considerations; linkage of National Weather Service climate and hydrological modeling; a monitoring gaps assessment; and enhanced web access to drought information specific to the UCRB via the NIDIS portal. Lessons learned during 2010 will be applied during a second annual cycle in 2011 and then placed in the context of longer-term planning strategies. The findings of the pilot will provide the basis for the design of innovative and sustained practices in the UCRB, as well as expansion of the early warning system to include the Lower Colorado River Basin and to inform adaptation across multiple timescales. The UCRB effort highlights the role of pilot design and implementation as

  2. The AquaDEB project (phase I): Analysing the physiological flexibility of aquatic species and connecting physiological diversity to ecological and evolutionary processes by using Dynamic Energy Budgets

    NASA Astrophysics Data System (ADS)

    Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.

    2009-08-01

    The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from

  3. An atomistic picture of the regeneration process in dye sensitized solar cells

    PubMed Central

    Schiffmann, Florian; VandeVondele, Joost; Hutter, Jürg; Urakawa, Atsushi; Wirz, Ronny; Baiker, Alfons

    2010-01-01

    A highly efficient mechanism for the regeneration of the cis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)-ruthenium(II) sensitizing dye (N3) by I- in acetonitrile has been identified by using molecular dynamics simulation based on density functional theory. Barrier–free complex formation of the oxidized dye with both I- and , and facile dissociation of and from the reduced dye are key steps in this process. In situ vibrational spectroscopy confirms the reversible binding of I2 to the thiocyanate group. Additionally, simulations of the electrolyte near the interface suggest that acetonitrile is able to cover the (101) surface of anatase with a passivating layer that inhibits direct contact of the redox mediator with the oxide, and that the solvent structure specifically enhances the concentration of I- at a distance which further favors rapid dye regeneration. PMID:20207948

  4. Modified surface loading process for achieving improved performance of the quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Jin, Zhongxiu; Zhu, Jun; Xu, Yafeng; Zhou, Li; Dai, Songyuan

    2016-06-01

    Achieving high surface coverage of the colloidal quantum dots (QDs) on TiO2 films has been challenging for quantum dot-sensitized solar cells (QDSCs). Herein, a general surface engineering approach was proposed to increase the loading of these QDs. It was found that S2- treatment/QD re-uptake process can significantly improve the attachment of the QDs on TiO2 films. Surface concentration of the QDs was improved by ∼60%, which in turn greatly enhances light absorption and decreases carrier recombination in QDSCs. Ensuing QDSCs with optimized QD loading exhibit a power conversion efficiency of 3.66%, 83% higher than those fabricated with standard procedures.

  5. Sensory-processing sensitivity moderates the association between childhood experiences and adult life satisfaction

    PubMed Central

    Booth, Charlotte; Standage, Helen; Fox, Elaine

    2015-01-01

    There are few studies testing the differential susceptibility hypothesis (DSH: hypothesizing that some individuals are more responsive to both positive and negative experiences) with adult personality traits. The current study examined the DSH by investigating the moderating effect of sensory-processing sensitivity (SPS) on childhood experiences and life satisfaction. A total of 185 adults completed measures of SPS, positive/negative childhood experiences and life satisfaction. SPS did moderate the association between childhood experiences and life satisfaction. Simple slopes analysis compared those reporting high and low SPS (+/− 1 SD) and revealed that the difference was observed only for those who reported negative childhood experiences; with the high SPS group reporting lower life satisfaction. There was no difference observed in those reporting positive childhood experiences, which supported a diathesis-stress model rather than the DSH. PMID:26688599

  6. Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites.

    PubMed

    Liu, Tian; Wood, Weston; Zhong, Wei-Hong

    2011-12-01

    We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated)-reinforced high-density polyethylene (HDPE) composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.

  7. Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites

    PubMed Central

    2011-01-01

    We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated)-reinforced high-density polyethylene (HDPE) composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials. PMID:27502631

  8. Sensory-processing sensitivity moderates the association between childhood experiences and adult life satisfaction.

    PubMed

    Booth, Charlotte; Standage, Helen; Fox, Elaine

    2015-12-01

    There are few studies testing the differential susceptibility hypothesis (DSH: hypothesizing that some individuals are more responsive to both positive and negative experiences) with adult personality traits. The current study examined the DSH by investigating the moderating effect of sensory-processing sensitivity (SPS) on childhood experiences and life satisfaction. A total of 185 adults completed measures of SPS, positive/negative childhood experiences and life satisfaction. SPS did moderate the association between childhood experiences and life satisfaction. Simple slopes analysis compared those reporting high and low SPS (+/-1 SD) and revealed that the difference was observed only for those who reported negative childhood experiences; with the high SPS group reporting lower life satisfaction. There was no difference observed in those reporting positive childhood experiences, which supported a diathesis-stress model rather than the DSH.

  9. Textural analyses of PDC deposits from the 2006 eruption of Tungurahua volcano, Ecuador: insights on syn-emplacement erosion processes

    NASA Astrophysics Data System (ADS)

    Bernard, J.; Le Pennec, J.; Kelfoun, K.; Vallejo Vargas, S.

    2013-12-01

    Pyroclastic density currents (PDC) are one of the most destructive phenomena occurring on volcanoes and threaten many people worldwide. The hazardous nature of PDC and the presence of co-PDC ash clouds make any direct observation of their emplacement difficult. Studying PDC deposits is thus a valuable approach to better understand internal mechanisms of these phenomena. Previous works on PDC deposits strongly suggest that erosion processes occur during PDC emplacement. Our study aims at quantifying the importance of erosion by estimating the volume and the mass of juvenile and non-juvenile materials in the deposits through detailed componentry analysis of natural deposits. Our goal is to identify the origin of the incorporated material, and then to evaluate the impact of syn-erosive processes on PDC emplacement and mobility. In this work we develop a new method to determine both the entire grain-size distribution and componentry fractions of PDC deposits from the August 16, 2006 eruption of Tungurahua volcano, Ecuador. We obtained high-resolution images in the field at different magnifications on selected vertical sections along a radial transect in the deposits. Stereological unfolding and clast density conversions allow us to extract volume, grainsize and mass distribution data on the coarse part of the deposits. Mechanical sieving and componentry analyses performed under a binocular microscope in the laboratory give information on the finer fractions (matrix) of the deposits. Our results reveal that the total amount of accessory and accidental material in the deposits is about 40-50 wt% in most samples, including those collected high on the volcano. It means that erosion is a major phenomenon associated with PDC emplacement and takes place mainly on steep slopes (>30°), high on the edifice. The main sources of the eroded material are 1) the young oxidized spatter breccias accumulated around the vent during the July 14, 2006 eruption and 2) dense lava walls

  10. Liquid PEG Polymers Containing Antioxidants: A Versatile Platform for Studying Oxygen-Sensitive Photochemical Processes.

    PubMed

    Mongin, Cédric; Golden, Jessica H; Castellano, Felix N

    2016-09-14

    This article proposes the exploitation of widely available, inexpensive, innocuous "green" liquid polyethylene glycol (PEG) polymers containing the oxygen scavenger oleic acid (OA) as promising media for studying oxygen-sensitive photochemical processes. Here we report the successful application of this media to detailed investigations of triplet-sensitized photochemical upconversion, previously established as being readily poisoned by dissolved oxygen. Three different PEG materials were investigated with increasing molecular weight from 200 to 600 g/mol, coded as PEG-200, PEG-400, and PEG-600. These fluidic polymers facilitate an oxygen-depleted environment in comparison to commonly employed organic solvents while providing high solubility and diffusion for the dissolved chromophores. Moreover, the low oxygen permeation afforded by these PEG solvents allows them to remain deoxygenated in open containers under ambient conditions for extended time periods. OA, 9,10-dimethylanthracene (DMA), and 2,5-dimethylfuran (DMF) are shown to efficiently and quantitatively consume dissolved oxygen in the PEG environment in the presence of the photoactivated triplet sensitizer platinum(II) tetraphenyltetrabenzoporphyrin (PtTPBP). Oxygen consumption was directly correlated with systematically increasing sensitizer excited-state lifetimes that eventually reach the same plateau as achieved through extensive N2 sparging. Diffusion-controlled bimolecular triplet-triplet energy transfer quenching between PtTPBP and the acceptor/annihilator 9,10-bisphenylethynylanthracene (BPEA) was observed in all three PEG formulations investigated. Subsequent triplet-triplet annihilation, between triplet excited BPEA acceptors, achieves bright and stable upconverted singlet fluorescence from BPEA with no decrease in intensity over 20 h under ambient conditions. In the champion composition (PEG 200), the upconversion quantum efficiency reached 31% under conditions where triplet-triplet annihilation

  11. Sodium-level-sensitive sodium channel Na(x) is expressed in glial laminate processes in the sensory circumventricular organs.

    PubMed

    Watanabe, Eiji; Hiyama, Takeshi Y; Shimizu, Hidetada; Kodama, Ryuji; Hayashi, Noriko; Miyata, Seiji; Yanagawa, Yuchio; Obata, Kunihiko; Noda, Masaharu

    2006-03-01

    Na(x) is an atypical sodium channel that is assumed to be a descendant of the voltage-gated sodium channel family. Our recent studies on the Na(x)-gene-targeting mouse revealed that Na(x) channel is localized to the circumventricular organs (CVOs), the central loci for the salt and water homeostasis in mammals, where the Na(x) channel serves as a sodium-level sensor of the body fluid. To understand the cellular mechanism by which the information sensed by Na(x) channels is transferred to the activity of the organs, we dissected the subcellular localization of Na(x) in the present study. Double-immunostaining and immunoelectron microscopic analyses revealed that Na(x) is exclusively localized to perineuronal lamellate processes extended from ependymal cells and astrocytes in the organs. In addition, glial cells isolated from the subfornical organ, one of the CVOs, were sensitive to an increase in the extracellular sodium level, as analyzed by an ion-imaging method. These results suggest that glial cells bearing the Na(x) channel are the first to sense a physiological increase in the level of sodium in the body fluid, and they regulate the neural activity of the CVOs by enveloping neurons. Close communication between inexcitable glial cells and excitable neural cells thus appears to be the basis of the central control of the salt homeostasis.

  12. Meta-analyses of the sensitivity and specificity of ante-mortem and post-mortem diagnostic tests for bovine tuberculosis in the UK and Ireland.

    PubMed

    Nuñez-Garcia, Javier; Downs, Sara H; Parry, Jessica E; Abernethy, Darrell A; Broughan, Jennifer M; Cameron, Angus R; Cook, Alasdair J; de la Rua-Domenech, Ricardo; Goodchild, Anthony V; Gunn, Jane; More, Simon J; Rhodes, Shelley; Rolfe, Simon; Sharp, Michael; Upton, Paul A; Vordermeier, H Martin; Watson, Eamon; Welsh, Michael; Whelan, Adam O; Woolliams, John A; Clifton-Hadley, Richard S; Greiner, Matthias

    2017-03-06

    Bovine Tuberculosis (bTB) in cattle is a global health problem and eradication of the disease requires accurate estimates of diagnostic test performance to optimize their efficiency. The objective of this study was, through statistical meta-analyses, to obtain estimates of sensitivity (Se) and specificity (Sp), for 14 different ante-mortem and post-mortem diagnostic tests for bTB in cattle. Using data from a systematic review of the scientific literature (published 1934-2009) diagnostic Se and Sp were estimated using Bayesian logistic regression models adjusting for confounding factors. Random effect terms were used to account for unexplained heterogeneity. Parameters in the models were implemented using Markov Chain Monte Carlo (MCMC), and posterior distributions for the diagnostic parameters with adjustment for covariates (confounding factors) were obtained using the inverse logit function. Estimates for Se and/or Sp of the tuberculin skin tests and the IFN-γ blood test were compared with estimates published 2010-2015. Median Se for the single intradermal comparative cervical tuberculin skin (SICCT) test (standard interpretation) was 0.50 and Bayesian credible intervals (CrI) were wide (95% CrI 0.26, 0.78). Median Sp for the SICCT test was 1.00 (95% CrI 0.99, 1.00). Estimates for the IFN-γ blood test Bovine Purified Protein Derivative (PPD)-Avian PPD and Early Secreted Antigen target 6 and Culture Filtrate Protein 10 (ESAT-6/CFP10) ESAT6/CFP10 were 0.67 (95% CrI 0.49, 0.82) and 0.78 (95% CrI 0.60, 0.90) respectively for Se, and 0.98 (95% CrI 0.96, 0.99) and 0.99 (95% CrI 0.99, 1.00) for Sp. The study provides an overview of the accuracy of a range of contemporary diagnostic tests for bTB in cattle. Better understanding of diagnostic test performance is essential for the design of effective control strategies and their evaluation.

  13. Assembly of the Synaptonemal Complex Is a Highly Temperature-Sensitive Process That Is Supported by PGL-1 During Caenorhabditis elegans Meiosis

    PubMed Central

    Bilgir, Ceyda; Dombecki, Carolyn R.; Chen, Peter F.; Villeneuve, Anne M.; Nabeshima, Kentaro

    2013-01-01

    Successful chromosome segregation during meiosis depends on the synaptonemal complex (SC), a structure that stabilizes pairing between aligned homologous chromosomes. Here we show that SC assembly is a temperature-sensitive process during Caenorhabditis elegans meiosis. Temperature sensitivity of SC assembly initially was revealed through identification of the germline-specific P-granule component PGL-1 as a factor promoting stable homolog pairing. Using an assay system that monitors homolog pairing in vivo, we showed that depletion of PGL-1 at 25° disrupts homolog pairing. Analysis of homolog pairing at other chromosomal loci in a pgl-1−null mutant revealed a pairing defect similar to that observed in mutants lacking SC central region components. Furthermore, loss of pgl-1 function at temperatures ≥25° results in severe impairment in loading of SC central region component SYP-1 onto chromosomes, resulting in formation of SYP-1 aggregates. SC assembly is also temperature sensitive in wild-type worms, which exhibit similar SYP-1 loading defects and formation of SYP-1 aggregates at temperatures ≥26.5°. Temperature shift analyses suggest that assembly of the SC is temperature sensitive, but maintenance of the SC is not. We suggest that the temperature sensitive (ts) nature of SC assembly may contribute to fitness and adaptation capacity in C. elegans by enabling meiotic disruption in response to environmental change, thereby increasing the production of male progeny available for outcrossing. PMID:23550120

  14. Inferring Instantaneous, Multivariate and Nonlinear Sensitivities for the Analysis of Feedback Processes in a Dynamical System: Lorenz Model Case Study

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.

  15. Global Sensitivity Analysis for the determination of parameter importance in bio-manufacturing processes.

    PubMed

    Chhatre, Sunil; Francis, Richard; Newcombe, Anthony R; Zhou, Yuhong; Titchener-Hooker, Nigel; King, Josh; Keshavarz-Moore, Eli

    2008-10-01

    The present paper describes the application of GSA (Global Sensitivity Analysis) techniques to mathematical models of bioprocesses in order to rank inputs such as feed titres, flow rates and matrix capacities for the relative influence that each exerts upon outputs such as yield or throughput. GSA enables quantification of both the impact of individual variables on process outputs, as well as their interactions. These data highlight those attributes of a bioprocess which offer the greatest potential for achieving manufacturing improvements. Whereas previous GSA studies have been limited to individual unit operations, this paper extends the treatment to an entire downstream process and illustrates its utility by application to the production of a Fab-based rattlesnake antivenom called CroFab [(Crotalidae Polyvalent Immune Fab (Ovine); Protherics U.K. Limited]. Initially, hyperimmunized ovine serum containing rattlesnake antivenom IgG (product), other antibodies and albumin is applied to a synthetic affinity ligand adsorbent column to separate the antibodies from the albumin. The antibodies are papain-digested into Fab and Fc fragments, before concentration by ultrafiltration. Fc, residual IgG and albumin are eliminated by an ion-exchanger and then CroFab-specific affinity chromatography is used to produce purified antivenom. Application of GSA to the model of this process showed that product yield was controlled by IgG feed concentration and the synthetic-material affinity column's capacity and flow rate, whereas product throughput was predominantly influenced by the synthetic material's capacity, the ultrafiltration concentration factor and the CroFab affinity flow rate. Such information provides a rational basis for identifying the most promising strategies for delivering improvements to commercial-scale biomanufacturing processes.

  16. Isotopic Investigations of Nebular and Parent Body Processes with a High Sensitivity Ion Microprobe

    NASA Technical Reports Server (NTRS)

    McKeegan, Kevin D.

    2005-01-01

    systematics by a combined approach of high-precision multiple-collector SIMS analyses, traditional analyses on the UCLA ims 1270, and high-spatial resolution analyses using a NanoSIMS instrument. The data help to deconvolve effects due to partial resetting of the A1-Mg system by multiple thermal events. Finally, we initiated investigations related to nebular heterogeneity with a new initiative of in situ high-precision sulfur isotope analyses of sulfides from a wide variety of components of chondrites. The ultimate goal of all this work is to help develop a better understanding of the relationships between CAIs and chondrules, the astrophysical environments in which they formed, and the timescales of nebular processes. As detailed in Table 1, for the project period, 14 manuscripts were published and 17 abstracts were presented describing the work.

  17. Greater sensitivity of the cortical face processing system to perceptually-equated face detection

    PubMed Central

    Maher, S.; Ekstrom, T.; Tong, Y.; Nickerson, L.D.; Frederick, B.; Chen, Y.

    2015-01-01

    Face detection, the perceptual capacity to identify a visual stimulus as a face before probing deeper into specific attributes (such as its identity or emotion), is essential for social functioning. Despite the importance of this functional capacity, face detection and its underlying brain mechanisms are not well understood. This study evaluated the roles that the cortical face processing system, which is identified largely through studying other aspects of face perception, play in face detection. Specifically, we used functional magnetic resonance imaging (fMRI) to examine the activations of the fusifom face area (FFA), occipital face area (OFA) and superior temporal sulcus (STS) when face detection was isolated from other aspects of face perception and when face detection was perceptually-equated across individual human participants (n=20). During face detection, FFA and OFA were significantly activated, even for stimuli presented at perceptual-threshold levels, whereas STS was not. During tree detection, however, FFA and OFA were responsive only for highly salient (i.e., high contrast) stimuli. Moreover, activation of FFA during face detection predicted a significant portion of the perceptual performance levels that were determined psychophysically for each participant. This pattern of result indicates that FFA and OFA have a greater sensitivity to face detection signals and selectively support the initial process of face vs. non-face object perception. PMID:26592952

  18. Neurogenetics of Depression: A Focus on Reward Processing and Stress Sensitivity

    PubMed Central

    Bogdan, Ryan; Nikolova, Yuliya S.; Pizzagalli, Diego A.

    2013-01-01

    Major depressive disorder (MDD) is etiologically complex and has a heterogeneous presentation. This heterogeneity hinders the ability of molecular genetic research to reliably detect the small effects conferred by common genetic variation. As a result, significant research efforts have been directed at investigating more homogenous intermediate phenotypes believed to be more proximal to gene function and lie between genes and/or environmental effects and disease processes. In the current review we survey and integrate research on two promising intermediate phenotypes linked to depression: reward processing and stress sensitivity. A synthesis of this burgeoning literature indicates that a molecular genetic approach focused on intermediate phenotypes holds significant promise to fundamentally improve our understanding of the pathophysiology and etiology of depression, which will be required for improved diagnostic definitions and the development of novel and more efficacious treatment and prevention strategies. We conclude by highlighting challenges facing intermediate phenotype research and future development that will be required to propel this pivotal research into new directions. PMID:22659304

  19. Variable High-Pressure-Processing Sensitivities for Genogroup II Human Noroviruses

    PubMed Central

    Lou, Fangfei; DiCaprio, Erin; Li, Xinhui; Dai, Xianjun; Ma, Yuanmei; Hughes, John; Chen, Haiqiang; Kingsley, David H.

    2016-01-01

    ABSTRACT Human norovirus (HuNoV) is a leading cause of foodborne diseases worldwide. High-pressure processing (HPP) is one of the most promising nonthermal technologies for the decontamination of viral pathogens in foods. However, the survival of HuNoVs after HPP is poorly understood because these viruses cannot be propagated in vitro. In this study, we estimated the survival of different HuNoV strains within genogroup II (GII) after HPP treatment using viral receptor-binding ability as an indicator. Four HuNoV strains (one GII genotype 1 [GII.1] strain, two GII.4 strains, and one GII.6 strain) were treated at high pressures ranging from 200 to 600 MPa. After treatment, the intact viral particles were captured by porcine gastric mucin-conjugated magnetic beads (PGM-MBs) that contained histo-blood group antigens, the functional receptors for HuNoVs. The genomic RNA copies of the captured HuNoVs were quantified by real-time reverse transcriptase PCR (RT-PCR). Two GII.4 HuNoVs had similar sensitivities to HPP. The resistance of HuNoV strains against HPP ranked as follows: GII.1 > GII.6 > GII.4, with GII.4 being the most sensitive. Evaluation of temperature and matrix effects on HPP-mediated inactivation of HuNoV GII.4, GII.1, and GII.6 strains showed that HuNoV was more easily inactivated at lower temperatures and at a neutral pH. In addition, phosphate-buffered saline (PBS) and minimal essential medium (MEM) can provide protective effects against HuNoV inactivation compared to H2O. Collectively, this study demonstrated that (i) different HuNoV strains within GII exhibited different sensitivities to high pressure, and (ii) HPP is capable of inactivating HuNoV GII strains by optimizing pressure parameters. IMPORTANCE Human norovirus (HuNoV) is a leading cause of foodborne disease worldwide. Noroviruses are highly diverse, both antigenically and genetically. Genogroup II (GII) contains the majority of HuNoVs, with GII genotype 4 (GII.4) being the most prevalent

  20. Longitudinal Changes in Behavioral Approach System Sensitivity and Brain Structures Involved in Reward Processing during Adolescence

    ERIC Educational Resources Information Center

    Urosevic, Snezana; Collins, Paul; Muetzel, Ryan; Lim, Kelvin; Luciana, Monica

    2012-01-01

    Adolescence is a period of radical normative changes and increased risk for substance use, mood disorders, and physical injury. Researchers have proposed that increases in reward sensitivity (i.e., sensitivity of the behavioral approach system [BAS]) and/or increases in reactivity to all emotional stimuli (i.e., reward and threat sensitivities)…

  1. Formative Processes of a Sliding Zone in Pelitic Schist - Implications of Microscopic Analyses on High-quality Drilled Cores

    NASA Astrophysics Data System (ADS)

    Yamasaki, S.; Chigira, M.

    2009-04-01

    Pelitic schist has been known to be easily deformed by gravitational force to form characteristic topographic and geologic features, but little is known about how they develop. This is mainly due to the fact that deformed politic schist is so fragile that it could not be obtained from subsurface without disturbance. We analyzed high-quality undisturbed cores obtained by using a sophisticated drilling technique from two typical pelitic schist landslide sites in Japan. We made analyses on physical, chemical, mineralogical properties and observations from mesoscopic to microscopic rock textures of these cores and found that a special layering of rock-forming minerals determines the locations of shearing by gravity and that there is specific water-rock interaction processes in pelitic schist. Pelitic schist consists of thinly alternating beds of black layers and quartz-rich layers, and a black layer has numerous microscopic layers containing abundant pyrite and graphite grains (pyrite-graphite layers). Many of the black layers were observed to have microfractures connected to open cracks, suggesting that relatively thick, continuous black layers are easily sheared to form an incipient sliding layer. Thus unevenly distributed pyrite-graphite layers likely to determine the potential location of microscopic slip in a rock mass. Shear displacement along black layers occurs unevenly, depending upon the microscopic heterogeneity in mineral composition as well as undulating shape of the layers. Open micro-cracks nearly perpendicular to the schistosity were commonly observed in quartz-rich layers in contact with black layers, suggesting that the shearing occurred with heterogeneous displacements along the black layer and that it occurred under the low confining pressure. This is in the incipient stage of a fracture zone. When shearing occurs along two thick neighboring black layers, the rock in between would be fractured, rotated and pulverized. In some cases, quartz

  2. Solution-processed, nanostructured hybrid solar cells with broad spectral sensitivity and stability.

    PubMed

    Zhou, Renjia; Zheng, Ying; Qian, Lei; Yang, Yixing; Holloway, Paul H; Xue, Jiangeng

    2012-06-07

    Hybrid organic-inorganic solar cells, as an alternative to all-organic solar cells, have received significant attention for their potential advantages in combining the solution-processability and versatility of organic materials with high charge mobility and environmental stability of inorganic semiconductors. Here we report efficient and air-stable hybrid organic-inorganic solar cells with broad spectral sensitivity based on a low-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and spherical CdSe nanoparticles. The solvents used for depositing the hybrid PCPDTBT:CdSe active layer were shown to strongly influence the film morphology, and subsequently the photovoltaic performance of the resulted solar cells. Appropriate post-deposition annealing of the hybrid film was also shown to improve the solar cell efficiency. The inclusion of a thin ZnO nanoparticle layer between the active layer and the metal cathode leads to a significant increase in device efficiency especially at long wavelengths, due to a combination of optical and electronic effects including more optimal light absorption in the active layer and elimination of unwanted hole leakage into the cathode. Overall, maximum power conversion efficiencies up to 3.7 ± 0.2% and spectral sensitivity extending above 800 nm were achieved in such PCPDTBT:CdSe nanosphere hybrid solar cells. Furthermore, the devices with a ZnO nanoparticle layer retained ∼70% of the original efficiency after storage under ambient laboratory conditions for over 60 days without any encapsulation.

  3. Experimental measurement of cooling tower emissions using image processing of sensitive papers

    NASA Astrophysics Data System (ADS)

    Ruiz, J.; Kaiser, A. S.; Ballesta, M.; Gil, A.; Lucas, M.

    2013-04-01

    Cooling tower emissions are harmful for several reasons such as air polluting, wetting, icing and solid particle deposition, but mainly due to human health hazards (i.e. Legionella). There are several methods for measuring drift drops. This paper is focussed on the sensitive paper technique, which is suitable in low drift scenarios and real conditions. The lack of an automatic classification method motivated the development of a digital image process algorithm for the Sensitive Paper method. This paper presents a detailed description of this method, in which, drop-like elements are identified by means of the Canny edge detector combined with some morphological operations. Afterwards, the application of a J48 decision tree is proposed as one of the most relevant contributions. This classification method allows us to discern between stains whose origin is a drop and stains whose origin is not a drop. The method is applied to a real case and results are presented in terms of drift and PM10 emissions. This involves the calculation of the main features of the droplet distribution at the cooling tower exit surface in terms of drop size distribution data, cumulative mass distribution curve and characteristic drop diameters. The Log-normal and the Rosin-Rammler distribution functions have been fitted to the experimental data collected in the tests and it can been concluded that the first one is the most suitable for experimental data among the functions tested (whereas the second one is less suitable). Realistic PM10 calculations include the measurement of drift emissions and Total Dissolved Solids as well as the size and number of drops. Results are compared to the method proposed by the U.S. Environmental Protection Agency assessing its overestimation. Drift emissions have found to be 0.0517% of the recirculating water, which is over the Spanish standards limit (0.05%).

  4. A Process-based, Climate-Sensitive Model to Derive Methane Emissions from Natural Wetlands: Application to 5 Wetland Sites, Sensitivity to Model Parameters and Climate

    NASA Technical Reports Server (NTRS)

    Walter, Bernadette P.; Heimann, Martin

    1999-01-01

    Methane emissions from natural wetlands constitutes the largest methane source at present and depends highly on the climate. In order to investigate the response of methane emissions from natural wetlands to climate variations, a 1-dimensional process-based climate-sensitive model to derive methane emissions from natural wetlands is developed. In the model the processes leading to methane emission are simulated within a 1-dimensional soil column and the three different transport mechanisms diffusion, plant-mediated transport and ebullition are modeled explicitly. The model forcing consists of daily values of soil temperature, water table and Net Primary Productivity, and at permafrost sites the thaw depth is included. The methane model is tested using observational data obtained at 5 wetland sites located in North America, Europe and Central America, representing a large variety of environmental conditions. It can be shown that in most cases seasonal variations in methane emissions can be explained by the combined effect of changes in soil temperature and the position of the water table. Our results also show that a process-based approach is needed, because there is no simple relationship between these controlling factors and methane emissions that applies to a variety of wetland sites. The sensitivity of the model to the choice of key model parameters is tested and further sensitivity tests are performed to demonstrate how methane emissions from wetlands respond to climate variations.

  5. Early sensitivity for eyes within faces: a new neuronal account of holistic and featural processing

    PubMed Central

    Nemrodov, Dan; Anderson, Thomas; Preston, Frank F.; Itier, Roxane J.

    2017-01-01

    Eyes are central to face processing however their role in early face encoding as reflected by the N170 ERP component is unclear. Using eye tracking to enforce fixation on specific facial features, we found that the N170 was larger for fixation on the eyes compared to fixation on the forehead, nasion, nose or mouth, which all yielded similar amplitudes. This eye sensitivity was seen in both upright and inverted faces and was lost in eyeless faces, demonstrating it was due to the presence of eyes at fovea. Upright eyeless faces elicited largest N170 at nose fixation. Importantly, the N170 face inversion effect (FIE) was strongly attenuated in eyeless faces when fixation was on the eyes but was less attenuated for nose fixation and was normal when fixation was on the mouth. These results suggest the impact of eye removal on the N170 FIE is a function of the angular distance between the fixated feature and the eye location. We propose the Lateral Inhibition, Face Template and Eye Detector based (LIFTED) model which accounts for all the present N170 results including the FIE and its interaction with eye removal. Although eyes elicit the largest N170 response, reflecting the activity of an eye detector, the processing of upright faces is holistic and entails an inhibitory mechanism from neurons coding parafoveal information onto neurons coding foveal information. The LIFTED model provides a neuronal account of holistic and featural processing involved in upright and inverted faces and offers precise predictions for further testing. PMID:24768932

  6. Assessment of the Sensitizing Potential of Processed Peanut Proteins in Brown Norway Rats: Roasting Does Not Enhance Allergenicity

    PubMed Central

    Kroghsbo, Stine; Rigby, Neil M.; Johnson, Philip E.; Adel-Patient, Karine; Bøgh, Katrine L.; Salt, Louise J.; Mills, E. N. Clare; Madsen, Charlotte B.

    2014-01-01

    Background IgE-binding of process-modified foods or proteins is the most common method for examination of how food processing affects allergenicity of food allergens. How processing affects sensitization capacity is generally studied by administration of purified food proteins or food extracts and not allergens present in their natural food matrix. Objectives The aim was to investigate if thermal processing increases sensitization potential of whole peanuts via the oral route. In parallel, the effect of heating on sensitization potential of the major peanut allergen Ara h 1 was assessed via the intraperitoneal route. Methods Sensitization potential of processed peanut products and Ara h 1 was examined in Brown Norway (BN) rats by oral administration of blanched or oil-roasted peanuts or peanut butter or by intraperitoneal immunization of purified native (N-), heated (H-) or heat glycated (G-)Ara h 1. Levels of specific IgG and IgE were determined by ELISA and IgE functionality was examined by rat basophilic leukemia (RBL) cell assay. Results In rats dosed orally, roasted peanuts induced significant higher levels of specific IgE to NAra h 1 and 2 than blanched peanuts or peanut butter but with the lowest level of RBL degranulation. However, extract from roasted peanuts was found to be a superior elicitor of RBL degranulation. Process-modified Ara h 1 had similar sensitizing capacity as NAra h 1 but specific IgE reacted more readily with process-modified Ara h 1 than with native. Conclusions Peanut products induce functional specific IgE when dosed orally to BN rats. Roasted peanuts do not have a higher sensitizing capacity than blanched peanuts. In spite of this, extract from roasted peanuts is a superior elicitor of RBL cell degranulation irrespectively of the peanut product used for sensitization. The results also suggest that new epitopes are formed or disclosed by heating Ara h 1 without glucose. PMID:24805813

  7. Intense pain influences the cortical processing of visual stimuli projected onto the sensitized skin

    PubMed Central

    Torta, DM; Van Den Broeke, EN; Filbrich, L; Jacob, B; Lambert, J; Mouraux, A

    2017-01-01

    Sensitization is a form of implicit learning produced by the exposure to a harmful stimulus. In humans and other mammals, sensitization following skin injury increases the responsiveness of peripheral nociceptors, and enhances the synaptic transmission of nociceptive input in the central nervous system (CNS). Here, we show that sensitization-related changes in the CNS are not restricted to nociceptive pathways and, instead, also affect other sensory modalities, especially if that modality conveys information relevant for the sensitized body part. Specifically, we show that after sensitizing the forearm using high-frequency electrical stimulation of the skin (HFS), visual stimuli projected onto the sensitized forearm elicit significantly enhanced brain responses. Whereas mechanical hyperalgesia was present both 20 and 45 minutes after HFS, the enhanced responsiveness to visual stimuli was present only 20 minutes after HFS. Taken together, our results indicate that sensitization involves both nociceptive-specific and multimodal mechanisms, having distinct time courses. PMID:28030473

  8. Lower Stratospheric Temperature Differences Between Meteorological Analyses in two cold Arctic Winters and their Impact on Polar Processing Studies

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley; Atlas, Robert (Technical Monitor)

    2001-01-01

    A quantitative intercomparison of six meteorological analyses is presented for the cold 1999-2000 and 1995-1996 Arctic winters. The impacts of using different analyzed temperatures in calculations of polar stratospheric cloud (PSC) formation potential, and of different winds in idealized trajectory-based temperature histories, are substantial. The area with temperatures below a PSC formation threshold commonly varies by approximately 25% among the analyses, with differences of over 50% at some times/locations. Freie University at Berlin analyses are often colder than others at T is less than or approximately 205 K. Biases between analyses vary from year to year; in January 2000. U.K. Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses warmest. while NCEP analyses were usually coldest in 1995-1996 and Met Office or NCEP[National Center for Atmospheric Research Reanalysis (REAN) warmest. European Centre for Medium Range Weather Forecasting (ECMWF) temperatures agreed better with other analyses in 1999-2000, after improvements in the assimilation model. than in 1995-1996. Case-studies of temperature histories show substantial differences using Met Office, NCEP, REAN and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), qualitatively similar results were obtained for all analyses. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with large cold regions near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly among the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days. while in the 1996 periods, they were at 1-3 days. Thus different meteorological conditions in comparably cold winters had a large impact on expectations for PSC formation and on the

  9. Sensitivity of transatlantic dust transport to chemical aging and related atmospheric processes

    NASA Astrophysics Data System (ADS)

    Abdelkader, Mohamed; Metzger, Swen; Steil, Benedikt; Klingmüller, Klaus; Tost, Holger; Pozzer, Andrea; Stenchikov, Georgiy; Barrie, Leonard; Lelieveld, Jos

    2017-03-01

    We present a sensitivity study on transatlantic dust transport, a process which has many implications for the atmosphere, the ocean and the climate. We investigate the impact of key processes that control the dust outflow, i.e., the emission flux, convection schemes and the chemical aging of mineral dust, by using the EMAC model following Abdelkader et al. (2015). To characterize the dust outflow over the Atlantic Ocean, we distinguish two geographic zones: (i) dust interactions within the Intertropical Convergence Zone (ITCZ), or the dust-ITCZ interaction zone (DIZ), and (ii) the adjacent dust transport over the Atlantic Ocean (DTA) zone. In the latter zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean since particle sedimentation is the dominant removal process, whereas in the DIZ zone aerosol-cloud interactions, wet deposition and scavenging processes determine the extent of the dust outflow. Generally, the EMAC simulated dust compares well with CALIPSO observations; however, our reference model configuration tends to overestimate the dust extinction at a lower elevation and underestimates it at a higher elevation. The aerosol optical depth (AOD) over the Caribbean responds to the dust emission flux only when the emitted dust mass is significantly increased over the source region in Africa by a factor of 10. These findings point to the dominant role of dust removal (especially wet deposition) in transatlantic dust transport. Experiments with different convection schemes have indeed revealed that the transatlantic dust transport is more sensitive to the convection scheme than to the dust emission flux parameterization. To study the impact of dust chemical aging, we focus on a major dust outflow in July 2009. We use the calcium cation as a proxy for the overall chemical reactive dust fraction and consider the uptake of major inorganic acids (i.e., H2SO4, HNO3 and HCl) and their anions, i.e., sulfate (SO42-), bisulfate (HSO4

  10. Using multi-scale stable isotopes analyses to study the microbial processes of soil organic matter stabilization

    NASA Astrophysics Data System (ADS)

    Hatton, P.; Remusat, L.; Zeller, B.; Bode, S.; Brewer, E.; Boeckx, P. F.; Derrien, D.

    2012-12-01

    Soil microorganisms are increasingly recognized as important drivers for the stabilization of soil organic matter (OM) with soil assemblages, but the way they act remains not fully explored. Here, we used a multi-scale approach to investigate the attachment of microbial products with soil organo-mineral assemblages. A surface acidic Cambisol was amended with 13C15N labeled glycine and leaf fragments prior to sequential density separation of plant debris, aggregates and non-aggregates mineral grains with little OM attached. Labels were tracked using elemental analyzer coupled to isotope ratio mass spectrometry (EA-IRMS), liquid chromatography (LC) coupled to IRMS and nano-scale secondary ions MS (NanoSIMS). After 8h of glycine incubation, the comparison between γ-irradiated and non-sterile soils revealed that more than 90% and 85% of the stabilized glycine-derived 13C and 15N were found in microbial products, with a higher occurrence in aggregates than in plant debris and mineral grains. NanoSIMS images showed that these stabilized microbial products are principally not confined to the microbial cells, but evenly spread at the surface of the mineral-attached OM as extracellular products. After calibration, the comparison of their C/N ratios with the C/N ratios of the corresponding soil particles suggested that the microbial products are stabilized through physico-chemical interactions most likely mediated by the reactivity of the underlying minerals. Unlike NanoSIMS, LC-IRMS analyses allow the tracing of 13C tracers within microbial biomasses using amino sugars as biomarkers. After 3 months of incubation, freshly produced amino sugars deriving from the readily accessible glycine and finely ground leaf fragments clearly peaked in microbial aggregates and plant debris, respectively. Differences in distributions indicated that bacteria and fungi both grow where the resource is, but accumulate in microbial aggregates. These results suggested either a higher

  11. The role of punishment and reward sensitivity in the emotional labor process: a within-person perspective.

    PubMed

    Schreurs, Bert; Guenter, Hannes; Hülsheger, Ute; van Emmerik, Hetty

    2014-01-01

    In this diary study, we tested the possibility that dispositional reward and punishment sensitivity, two central constructs of reinforcement sensitivity theory, would modify the relationship between emotional labor and job-related well-being (i.e., work engagement, emotional exhaustion, depersonalization). Specifically, based on a social functional account of emotion, we hypothesized that surface acting entails the risk of social disapproval and therefore may be more detrimental for high than for low punishment-sensitive individuals. In contrast, deep acting is hypothesized to hold the promise of social approval and therefore may be more beneficial for high than for low reward-sensitive individuals. Hypotheses were tested in a sample of 237 service workers (N = 1,584 daily reports) who completed a general survey and daily surveys over the course of 10 working days. Multilevel analyses showed that surface acting was detrimental to well-being, and more strongly so for high than for low punishment-sensitive individuals. The results are consistent with the idea that heightened sensitivity to social disapproval aggravates the negative effects of surface acting.

  12. Musical ability and non-native speech-sound processing are linked through sensitivity to pitch and spectral information.

    PubMed

    Kempe, Vera; Bublitz, Dennis; Brooks, Patricia J

    2015-05-01

    Is the observed link between musical ability and non-native speech-sound processing due to enhanced sensitivity to acoustic features underlying both musical and linguistic processing? To address this question, native English speakers (N = 118) discriminated Norwegian tonal contrasts and Norwegian vowels. Short tones differing in temporal, pitch, and spectral characteristics were used to measure sensitivity to the various acoustic features implicated in musical and speech processing. Musical ability was measured using Gordon's Advanced Measures of Musical Audiation. Results showed that sensitivity to specific acoustic features played a role in non-native speech-sound processing: Controlling for non-verbal intelligence, prior foreign language-learning experience, and sex, sensitivity to pitch and spectral information partially mediated the link between musical ability and discrimination of non-native vowels and lexical tones. The findings suggest that while sensitivity to certain acoustic features partially mediates the relationship between musical ability and non-native speech-sound processing, complex tests of musical ability also tap into other shared mechanisms.

  13. Modeling and sensitivity analysis study of the reduction of NO sub x by HNCO. [RAPRENOx process

    SciTech Connect

    Brown, N.J.; Garay, J.

    1992-05-01

    A chemical mechanism for the reduction of NO{sub x} by HNCO has been constructed to allow for the modeling of NO{sub x} in exhausts typical of natural gas combustion (RAPRENOx process). The reduction was modeled assuming plug flow, and either isothermal combustion or constant pressure adiabatic combustion. Variables were initial concentrations of NO, NO{sub 2}, CO, CH{sub 4}, H{sub 2}, and HNCO as well as initial temperatures. Exhaust residence time was nominally 1 s. Reduction was not achieved for prototypical natural gas exhaust'' for a reasonable residence time. Radical generation is crucial for reduction. H{sub 2} addition enhanced ignition and reduction. The final combustion temperature determines where NO{sub x} reduction ceases and NO{sub x} production increases. Reduction increases with HNCO, and breakthrough of NH{sub 3} and HNCO increses as well. N{sub 2}O production is due to NCO + NO, but the reduction of NO also occurs through reactions associated with the Thermal De-NOx chemistry. NH{sub 3} production and reactions are important to the reduction of NO. Sensitivity analysis under easy ignition conditions indicated that the same reactions involving nitrogen species, NH{sub 2} and NNH, important in De-NOx, are important when HNCO is used to reduce NO{sub x}. A real combustion exhaust would contain radicals, but it would be neither isothermal nor adiabatic, and heat release and loss would accompany the reduction process. Three-body recombination reactions are important and need further study.(DLC)

  14. Exposure assessment and process sensitivity analysis of the contamination of Campylobacter in poultry products.

    PubMed

    Osiriphun, S; Iamtaweejaloen, P; Kooprasertying, P; Koetsinchai, W; Tuitemwong, K; Erickson, L E; Tuitemwong, P

    2011-07-01

    Studies were conducted in a Thai poultry plant to identify the factors that affected numbers of Campylobacter jejuni in chicken carcasses. The concentrations of Campylobacter were determined using the SimPlate most probable number and modified charcoal cefoperazone deoxycholate plating methods. Results indicated that the mean concentrations of C. jejuni in carcasses after scalding, plucking, and chilling were 2.93 ± 0.31, 2.98 ± 0.38, 2.88 ± 0.31, and 0.85 ± 0.95 log cfu, whereas the concentrations of C. jejuni in the scalding tank water, plucked feathers, and chicken breast portion were 1.39 ± 0.70, 3.28 ± 0.52, and 0.50 ± 1.22 log cfu, respectively. Sensitivity analysis using tornado order correlation analysis showed that risk parameters affecting the contamination of C. jejuni in the chicken slaughter and processing plant could be ranked as chilling water pH, number of pathogens in the scald tank water, scalding water temperature, number of C. jejuni on plucked feathers, and residual chlorine in the chill water, respectively. The exposure assessment and analysis of process parameters indicated that some of the current critical control points were not effective. The suggested interventions included preventing fecal contamination during transportation; increasing the scalding temperature, giving the scalding water a higher countercurrent flow rate; reducing contamination of feathers in the scalding tank to decrease C. jejuni in the scalding water; spraying water to reduce contamination at the plucking step; monitoring and maintaining the chill water pH at 6.0 to 6.5; and increasing the residual chlorine in the chill water. These interventions were recommended for inclusion in the hazard analysis and critical control point plan of the plant.

  15. Pre-processing in sentence comprehension: Sensitivity to likely upcoming meaning and structure

    PubMed Central

    DeLong, Katherine A.; Troyer, Melissa; Kutas, Marta

    2016-01-01

    For more than a decade, views of sentence comprehension have been shifting toward wider acceptance of a role for linguistic pre-processing—that is, anticipation, expectancy, (neural) pre-activation, or prediction—of upcoming semantic content and syntactic structure. In this survey, we begin by examining the implications of each of these “brands” of predictive comprehension, including the issue of potential costs and consequences to not encountering highly constrained sentence input. We then describe a number of studies (many using online methodologies) that provide results consistent with prospective sensitivity to various grains and levels of semantic and syntactic information, acknowledging that such pre-processing is likely to occur in other linguistic and extralinguistic domains, as well. This review of anticipatory findings also includes some discussion on the relationship of priming to prediction. We conclude with a brief examination of some possible limits to prediction, and with a suggestion for future work to probe whether and how various strands of prediction may integrate during real-time comprehension. PMID:27525035

  16. Selection of infectious medical waste disposal firms by using the analytic hierarchy process and sensitivity analysis

    SciTech Connect

    Hsu, P.-F. Wu, C.-R. Li, Y.-T.

    2008-07-01

    While Taiwanese hospitals dispose of large amounts of medical waste to ensure sanitation and personal hygiene, doing so inefficiently creates potential environmental hazards and increases operational expenses. However, hospitals lack objective criteria to select the most appropriate waste disposal firm and evaluate its performance, instead relying on their own subjective judgment and previous experiences. Therefore, this work presents an analytic hierarchy process (AHP) method to objectively select medical waste disposal firms based on the results of interviews with experts in the field, thus reducing overhead costs and enhancing medical waste management. An appropriate weight criterion based on AHP is derived to assess the effectiveness of medical waste disposal firms. The proposed AHP-based method offers a more efficient and precise means of selecting medical waste firms than subjective assessment methods do, thus reducing the potential risks for hospitals. Analysis results indicate that the medical sector selects the most appropriate infectious medical waste disposal firm based on the following rank: matching degree, contractor's qualifications, contractor's service capability, contractor's equipment and economic factors. By providing hospitals with an effective means of evaluating medical waste disposal firms, the proposed AHP method can reduce overhead costs and enable medical waste management to understand the market demand in the health sector. Moreover, performed through use of Expert Choice software, sensitivity analysis can survey the criterion weight of the degree of influence with an alternative hierarchy.

  17. Continuous Measurements of Eyeball Area and Their Spectrum Analyses -- Toward the Quantification of Rest Rhythm of Horses by Image Processing

    DTIC Science & Technology

    2007-11-02

    analyses of electroencephalogram at half- closed eye and fully closed eye. This study aimed at quantitative estimating rest rhythm of horses by the...analyses of eyeball movement. The mask attached with a miniature CCD camera was newly developed. The continuous images of the horse eye for about 24...eyeball area were calculated. As for the results, the fluctuating status of eyeball area was analyzed quantitatively, and the rest rhythm of horses was

  18. Analyses of Sensitivity to the Missing-at-Random Assumption Using Multiple Imputation With Delta Adjustment: Application to a Tuberculosis/HIV Prevalence Survey With Incomplete HIV-Status Data.

    PubMed

    Leacy, Finbarr P; Floyd, Sian; Yates, Tom A; White, Ian R

    2017-01-10

    Multiple imputation with delta adjustment provides a flexible and transparent means to impute univariate missing data under general missing-not-at-random mechanisms. This facilitates the conduct of analyses assessing sensitivity to the missing-at-random (MAR) assumption. We review the delta-adjustment procedure and demonstrate how it can be used to assess sensitivity to departures from MAR, both when estimating the prevalence of a partially observed outcome and when performing parametric causal mediation analyses with a partially observed mediator. We illustrate the approach using data from 34,446 respondents to a tuberculosis and human immunodeficiency virus (HIV) prevalence survey that was conducted as part of the Zambia-South Africa TB and AIDS Reduction Study (2006-2010). In this study, information on partially observed HIV serological values was supplemented by additional information on self-reported HIV status. We present results from 2 types of sensitivity analysis: The first assumed that the degree of departure from MAR was the same for all individuals with missing HIV serological values; the second assumed that the degree of departure from MAR varied according to an individual's self-reported HIV status. Our analyses demonstrate that multiple imputation offers a principled approach by which to incorporate auxiliary information on self-reported HIV status into analyses based on partially observed HIV serological values.

  19. Numerical Simulation of Hurricane Bonnie (1998). Part II: Sensitivity to Varying Cloud Microphysical Processes.

    NASA Astrophysics Data System (ADS)

    Zhu, Tong; Zhang, Da-Lin

    2006-01-01

    In this study, the effects of various cloud microphysics processes on the hurricane intensity, precipitation, and inner-core structures are examined with a series of 5-day explicit simulations of Hurricane Bonnie (1998), using the results presented in Part I as a control run. It is found that varying cloud microphysics processes produces little sensitivity in hurricane track, except for very weak and shallow storms, but it produces pronounced departures in hurricane intensity and inner-core structures.Specifically, removing ice microphysics produces the weakest (15-hPa underdeepening) and shallowest storm with widespread cloud water but little rainwater in the upper troposphere. Removing graupel from the control run generates a weaker hurricane with a wider area of precipitation and more cloud coverage in the eyewall due to the enhanced horizontal advection of hydrometeors relative to the vertical fallouts (or increased water loading). Turning off the evaporation of cloud water and rainwater leads to the most rapid deepening storm (i.e., 90 hPa in 48 h) with the smallest radius but a wider eyewall and the strongest eyewall updrafts. The second strongest storm, but with the most amount of rainfall, is obtained when the melting effect is ignored. It is found that the cooling due to melting is more pronounced in the eyewall where more frozen hydrometeors, especially graupel, are available, whereas the evaporative cooling occurs more markedly when the storm environment is more unsaturated.It is shown that stronger storms tend to show more compact eyewalls with heavier precipitation and more symmetric structures in the warm-cored eye and in the eyewall. It is also shown that although the eyewall replacement scenarios occur as the simulated storms move into weak-sheared environments, the associated inner-core structural changes, timing, and location differ markedly, depending on the hurricane intensity. That is, the eyewall convection in weak storms tends to diminish

  20. Development of a model community to evaluate efficient removal of genetic signatures from spacecraft surfaces: issues pertaining to sampling, sample processing, and molecular analyses

    NASA Astrophysics Data System (ADS)

    La Duc, Myron; Kwan, Kelly; Cooper, Moogega; Stam, Christina; Vaishampayan, Parag; Benardini, James Nick; Moissl-Eichinger, Christine; Andersen, Gary; Spry, James A.; Venkateswaran, Kasthuri

    Despite advances in the specificity and sensitivity of molecular biological technologies, the ef-ficient recovery of DNA from low-biomass samples remains extremely challenging. Optimal methods to extract these biomolecules should 1) achieve the greatest total yield; 2) reflect comprehensive microbial diversity of the sampled environment; and 3) assert reproducible re-sults. For an in-depth assessment of the wide spectrum of microorganisms present in the low-biomass spacecraft assembly clean room environment, technologies facilitating efficient col-lection, sample processing, and analysis are needed. To this end, a homogenous mixture of equal concentrations of 11 distinct microbial lineages having significant relevance to planetary protection (bacteria, archaea, and fungi; aerobes and anaerobes; cells and spores; rods and cocci) was prepared. Suitable aliquots of this "model" community were then characterized us-ing a parallel set of downstream molecular analyses which revealed the level of microbial DNA, extracellular DNA, dissolved organic matter, and particulate non-microbial substances present in the community. Appropriate subsamples of this model community were dried on stainless steel metal surfaces, and procedures targeting the efficient removal and recovery of community member DNAs were evaluated. The collection and release of genetic materials from cotton and flocked nylon swabs were compared. Several automated nucleic acid extraction methods were assessed for both total DNA yield and conservation of microbial community structure. Uni-versal small subunit rrn Q-PCR, species-specific Q-PCR, and DNA microarray methodologies were used in concert to estimate the recovery of both individual members, and the community as a whole. Results of this study will enable consideration of future planetary protection policy amendments based on modern molecular methods.

  1. Rule based processing of the CD4000, CD3200 and CD Sapphire analyser output using the Cerner Discern Expert Module.

    PubMed

    Burgess, P; Robin, H; Langshaw, M; Kershaw, G; Pathiraja, R; Yuen, S; Coad, C; Xiros, N; Mansy, G; Coleman, R; Brown, R; Gibson, J; Holman, R; Hubbard, J; Wick, V; Lammers, M; Johnson, R; Huffman, K; Bell, J; Ibrahim, A; Estepa, F; Lovegrove, J; Joshua, D

    2009-12-01

    The latest version of our Laboratory Information System haematology laboratory expert system that handles the output of Abbott Cell-Dyn Sapphires, CD4000s and a CD3200 full blood count analyser in three high-volume haematology laboratories is described. The three hospital laboratories use Cerner Millennium Version 2007.02 software and the expert system uses Cerner Millennium Discern Expert rules and some small Cerner Command Language in-house programs. The entire expert system is totally integrated with the area-wide database and has been built and maintained by haematology staff members, as has the haematology database. Using patient demographic data, analyser numeric results, analyser error and morphology flags and previous results for the patient, this expert system decides whether to validate the main full blood count indices and white cell differential, or if the analyser results warrant further operator intervention/investigation before verifying, whether a blood film is required for microscopic review and if abnormal results require phoning to the staff treating the patient. The principles of this expert system can be generalized to different haematology analysers and haematology laboratories that have different workflows and different software.

  2. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers.

    PubMed

    Hearon, Keith; Smith, Sarah E; Maher, Cameron A; Wilson, Thomas S; Maitland, Duncan J

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities-that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization

  3. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    PubMed Central

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2012-01-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150°C for up to five hours or to 125°C for up to 24 hours if stabilized with 10,000 ppm BQ and could also be heated to 125°C for up to 5 hours if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal

  4. The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers

    NASA Astrophysics Data System (ADS)

    Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-02-01

    The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities—that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization; however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 °C for up to 5 h or to 125 °C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 °C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of

  5. Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water.

    PubMed

    Schwartz, Thomas; Armant, Olivier; Bretschneider, Nancy; Hahn, Alexander; Kirchen, Silke; Seifert, Martin; Dötsch, Andreas

    2015-01-01

    The fitness of sensitive and resistant Pseudomonas aeruginosa in different aquatic environments depends on genetic capacities and transcriptional regulation. Therefore, an antibiotic-sensitive isolate PA30 and a multi-resistant isolate PA49 originating from waste waters were compared via whole genome and transcriptome Illumina sequencing after exposure to municipal waste water and tap water. A number of different genomic islands (e.g. PAGIs, PAPIs) were identified in the two environmental isolates beside the highly conserved core genome. Exposure to tap water and waste water exhibited similar transcriptional impacts on several gene clusters (antibiotic and metal resistance, genetic mobile elements, efflux pumps) in both environmental P. aeruginosa isolates. The MexCD-OprJ efflux pump was overexpressed in PA49 in response to waste water. The expression of resistance genes, genetic mobile elements in PA49 was independent from the water matrix. Consistently, the antibiotic sensitive strain PA30 did not show any difference in expression of the intrinsic resistance determinants and genetic mobile elements. Thus, the exposure of both isolates to polluted waste water and oligotrophic tap water resulted in similar expression profiles of mentioned genes. However, changes in environmental milieus resulted in rather unspecific transcriptional responses than selected and stimuli-specific gene regulation.

  6. Determination of 16O and 18O sensitivity factors and charge-exchange processes in low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Téllez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Brongersma, H. H.; Kilner, J. A.

    2012-10-01

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He+ scattered by 18O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for Ei < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for Ei > 2 keV. The ion fractions P+ were determined for Si and O using the characteristic velocity method to quantify the surface density. The 18O/16O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  7. Improved PID controller design for unstable time delay processes based on direct synthesis method and maximum sensitivity

    NASA Astrophysics Data System (ADS)

    Vanavil, B.; Krishna Chaitanya, K.; Seshagiri Rao, A.

    2015-06-01

    In this paper, a proportional-integral-derivative controller in series with a lead-lag filter is designed for control of the open-loop unstable processes with time delay based on direct synthesis method. Study of the performance of the designed controllers has been carried out on various unstable processes. Set-point weighting is considered to reduce the undesirable overshoot. The proposed scheme consists of only one tuning parameter, and systematic guidelines are provided for selection of the tuning parameter based on the peak value of the sensitivity function (Ms). Robustness analysis has been carried out based on sensitivity and complementary sensitivity functions. Nominal and robust control performances are achieved with the proposed method and improved closed-loop performances are obtained when compared to the recently reported methods in the literature.

  8. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models

    USGS Publications Warehouse

    McGuire, A.D.; Sitch, S.; Clein, J.S.; Dargaville, R.; Esser, G.; Foley, J.; Heimann, Martin; Joos, F.; Kaplan, J.; Kicklighter, D.W.; Meier, R.A.; Melillo, J.M.; Moore, B.; Prentice, I.C.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Tian, H.; Williams, L.J.; Wittenberg, U.

    2001-01-01

    The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects

  9. Sensitivity analysis of the add-on price estimate for the edge-defined film-fed growth process

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.; Kachare, A. H.

    1981-01-01

    The analysis is in terms of cost parameters and production parameters. The cost parameters include equipment, space, direct labor, materials, and utilities. The production parameters include growth rate, process yield, and duty cycle. A computer program was developed specifically to do the sensitivity analysis.

  10. Heat processing of peanut seed enhances the sensitization potential of the major peanut allergen Ara h 6

    PubMed Central

    Guillon, Blanche; Bernard, Hervé; Drumare, Marie‐Françoise; Hazebrouck, Stéphane

    2016-01-01

    1 Scope Processing of food has been shown to impact IgE binding and functionality of food allergens. In the present study, we investigated the impact of heat processing on the sensitization capacity of Ara h 6, a major peanut allergen and one of the most potent elicitors of the allergic reaction. 2 Methods and results Peanut extracts obtained from raw or heat‐processed peanut and some fractions thereof were biochemically and immunochemically characterized. These extracts/fractions, purified Ara h 6, or recombinant Ara h 6 including Ara h 6 mutants lacking disulfide bridges were used in in vitro digestion tests and mouse models of experimental sensitization. Peanut roasting led to the formation of complexes of high molecular weight, notably between Ara h 6 and Ara h 1, which supported the induction of IgE specific to native Ara h 6. On the contrary, a fraction containing free monomeric 2S albumins or purified native Ara h 6 displayed no intrinsic allergenicity. In addition to complex formation, heat denaturation and/or partial destabilization enhanced Ara h 6 immunogenicity and increased its sensitivity to digestion. 3 Conclusion These results suggest that sensitization potency and IgE binding capacity can be supported by different structures, modified and/or produced during food processing in interaction with other food constituents. PMID:27374416

  11. Inhibition, Reinforcement Sensitivity and Temporal Information Processing in ADHD and ADHD+ODD: Evidence of a Separate Entity?

    ERIC Educational Resources Information Center

    Luman, Marjolein; van Noesel, Steffen J. P.; Papanikolau, Alky; Van Oostenbruggen-Scheffer, Janneke; Veugelers, Diane; Sergeant, Joseph A.; Oosterlaan, Jaap

    2009-01-01

    This study compared children with ADHD-only, ADHD+ODD and normal controls (age 8-12) on three key neurocognitive functions: response inhibition, reinforcement sensitivity, and temporal information processing. The goal was twofold: (a) to investigate neurocognitive impairments in children with ADHD-only and children with ADHD+ODD, and (b) to test…

  12. An Evaluation of Foods Processed in Tray Pack Versus Two Standard Food Service Containers. Part 2. Nutritional Analyses

    DTIC Science & Technology

    1986-02-01

    cylindrical no. 10 can entrees were 26 and 56 percent, respectively. Moisture retention was maximized the Tray Pack entrees in comparison to both the...entrees (Chicken Cacciatore, Smoky Pork, and Swiss Steak) and one meat/ pasta combination entree (Beef Burgundy) were formulated and produced at the U.S...duplicate. Proximate and mineral analyses were conducted singularly. All five replicates of each test variable were analyzed for moisture , fat, and

  13. Wetland and Sensitive Species Survey Report for Y-12: Proposed Uranium Processing Facility (UPF)

    SciTech Connect

    Giffen, N.; Peterson, M.; Reasor, S.; Pounds, L.; Byrd, G.; Wiest, M. C.; Hill, C. C.

    2009-11-01

    This report summarizes the results of an environmental survey conducted at sites associated with the proposed Uranium Processing Facility (UPF) at the Y-12 National Security Complex in September-October 2009. The survey was conducted in order to evaluate potential impacts of the overall project. This project includes the construction of a haul road, concrete batch plant, wet soil storage area and dry soil storage area. The environmental surveys were conducted by natural resource experts at ORNL who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). Natural resource staff assistance on this project included the collection of environmental information that can aid in project location decisions that minimize impacts to sensitive resource such as significant wildlife populations, rare plants and wetlands. Natural resources work was conducted in various habitats, corresponding to the proposed areas of impact. Thc credentials/qualifications of the researchers are contained in Appendix A. The proposed haul road traverses a number of different habitats including a power-line right-of-way. wetlands, streams, forest and mowed areas. It extends from what is known as the New Salvage Yard on the west to the Polaris Parking Lot on the east. This haul road is meant to connect the proposed concrete batch plant to the UPF building site. The proposed site of the concrete batch plant itself is a highly disturbed fenced area. This area of the project is shown in Fig. 1. The proposed Wet Soils Disposal Area is located on the north side of Bear Creek Road at the former Control Burn Study Area. This is a second growth arce containing thick vegetation, and extensive dead and down woody material. This area of the project is shown in Fig. 2. Thc dry soils storage area is proposed for what is currently known as the West Borrow Area. This site is located on the west side of Reeves Road south of Bear Creek Road. The site is an early successional

  14. Proposal of the Methodology for Analysing the Structural Relationship in the System of Random Process Using the Data Mining Methods

    NASA Astrophysics Data System (ADS)

    Michaľčonok, German; Kalinová, Michaela Horalová; Németh, Martin

    2014-12-01

    The aim of this paper is to present the possibilities of applying data mining techniques to the problem of analysis of structural relationships in the system of stationary random processes. In this paper, we will approach the area of the random processes, present the process of structural analysis and select suitable circuit data mining methods applicable to the area of structural analysis. We will propose the methodology for the structural analysis in the system of stationary stochastic processes using data mining methods for active experimental approach, based on the theoretical basis.

  15. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    SciTech Connect

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  16. Process Sensitivity, Performance, and Direct Verification Testing of Adhesive Locking Features

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.; Leatherwood, Michael D.; Montoya, Michael D.; Kato, Ken A.; Akers, Ed

    2012-01-01

    Phase I: The use of adhesive locking features or liquid locking compounds (LLCs) (e.g., Loctite) as a means of providing a secondary locking feature has been used on NASA programs since the Apollo program. In many cases Loctite was used as a last resort when (a) self-locking fasteners were no longer functioning per their respective drawing specification, (b) access was limited for removal & replacement, or (c) replacement could not be accomplished without severe impact to schedule. Long-term use of Loctite became inevitable in cases where removal and replacement of worn hardware was not cost effective and Loctite was assumed to be fully cured and working. The NASA Engineering & Safety Center (NESC) and United Space Alliance (USA) recognized the need for more extensive testing of Loctite grades to better understand their capabilities and limitations as a secondary locking feature. These tests, identified as Phase I, were designed to identify processing sensitivities, to determine proper cure time, the correct primer to use on aerospace nutplate, insert and bolt materials such as A286 and MP35N, and the minimum amount of Loctite that is required to achieve optimum breakaway torque values. The .1900-32 was the fastener size tested, due to wide usage in the aerospace industry. Three different grades of Loctite were tested. Results indicate that, with proper controls, adhesive locking features can be successfully used in the repair of locking features and should be considered for design. Phase II: Threaded fastening systems used in aerospace programs typically have a requirement for a redundant locking feature. The primary locking method is the fastener preload and the traditional redundant locking feature is a self-locking mechanical device that may include deformed threads, non-metallic inserts, split beam features, or other methods that impede movement between threaded members. The self-locking resistance of traditional locking features can be directly verified

  17. Dynamic modeling and analyses of simultaneous saccharification and fermentation process to produce bio-ethanol from rice straw.

    PubMed

    Ko, Jordon; Su, Wen-Jun; Chien, I-Lung; Chang, Der-Ming; Chou, Sheng-Hsin; Zhan, Rui-Yu

    2010-02-01

    The rice straw, an agricultural waste from Asians' main provision, was collected as feedstock to convert cellulose into ethanol through the enzymatic hydrolysis and followed by the fermentation process. When the two process steps are performed sequentially, it is referred to as separate hydrolysis and fermentation (SHF). The steps can also be performed simultaneously, i.e., simultaneous saccharification and fermentation (SSF). In this research, the kinetic model parameters of the cellulose saccharification process step using the rice straw as feedstock is obtained from real experimental data of cellulase hydrolysis. Furthermore, this model can be combined with a fermentation model at high glucose and ethanol concentrations to form a SSF model. The fermentation model is based on cybernetic approach from a paper in the literature with an extension of including both the glucose and ethanol inhibition terms to approach more to the actual plants. Dynamic effects of the operating variables in the enzymatic hydrolysis and the fermentation models will be analyzed. The operation of the SSF process will be compared to the SHF process. It is shown that the SSF process is better in reducing the processing time when the product (ethanol) concentration is high. The means to improve the productivity of the overall SSF process, by properly using aeration during the batch operation will also be discussed.

  18. Global sensitivity analysis of an in-sewer process model for the study of sulfide-induced corrosion of concrete.

    PubMed

    Donckels, B M R; Kroll, S; Van Dorpe, M; Weemaes, M

    2014-01-01

    The presence of high concentrations of hydrogen sulfide in the sewer system can result in corrosion of the concrete sewer pipes. The formation and fate of hydrogen sulfide in the sewer system is governed by a complex system of biological, chemical and physical processes. Therefore, mechanistic models have been developed to describe the underlying processes. In this work, global sensitivity analysis was applied to an in-sewer process model (aqua3S) to determine the most important model input factors with regard to sulfide formation in rising mains and the concrete corrosion rate downstream of a rising main. The results of the sensitivity analysis revealed the most influential model parameters, but also the importance of the characteristics of the organic matter, the alkalinity of the concrete and the movement of the sewer gas phase.

  19. Public Speaking Anxiety as a Function of Sensitization and Habituation Processes

    ERIC Educational Resources Information Center

    Behnke, Ralph R.; Sawyer, Chris R.

    2004-01-01

    In the present study, it was hypothesized that (1) changes in (1) state anxiety from rest to the beginning of a speech (sensitization), in (2) changes in state anxiety during the first minute of the speech presentation (habituation 1), and in (3) state anxiety during the last minute of the speech presentation (habituation 2) are all significant…

  20. The generic MESSy submodel TENDENCY (v1.0) for process-based analyses in Earth system models

    NASA Astrophysics Data System (ADS)

    Eichinger, R.; Jöckel, P.

    2014-07-01

    The tendencies of prognostic variables in Earth system models are usually only accessible, e.g. for output, as a sum over all physical, dynamical and chemical processes at the end of one time integration step. Information about the contribution of individual processes to the total tendency is lost, if no special precautions are implemented. The knowledge on individual contributions, however, can be of importance to track down specific mechanisms in the model system. We present the new MESSy (Modular Earth Submodel System) infrastructure submodel TENDENCY and use it exemplarily within the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to trace process-based tendencies of prognostic variables. The main idea is the outsourcing of the tendency accounting for the state variables from the process operators (submodels) to the TENDENCY submodel itself. In this way, a record of the tendencies of all process-prognostic variable pairs can be stored. The selection of these pairs can be specified by the user, tailor-made for the desired application, in order to minimise memory requirements. Moreover, a standard interface allows the access to the individual process tendencies by other submodels, e.g. for on-line diagnostics or for additional parameterisations, which depend on individual process tendencies. An optional closure test assures the correct treatment of tendency accounting in all submodels and thus serves to reduce the model's susceptibility. TENDENCY is independent of the time integration scheme and therefore the concept is applicable to other model systems as well. Test simulations with TENDENCY show an increase of computing time for the EMAC model (in a setup without atmospheric chemistry) of 1.8 ± 1% due to the additional subroutine calls when using TENDENCY. Exemplary results reveal the dissolving mechanisms of the stratospheric tape recorder signal in height over time. The separation of the tendency of the specific humidity into the respective processes (large

  1. The generic MESSy submodel TENDENCY (v1.0) for process-based analyses in Earth System Models

    NASA Astrophysics Data System (ADS)

    Eichinger, R.; Jöckel, P.

    2014-04-01

    The tendencies of prognostic variables in Earth System Models are usually only accessible, e.g., for output, as sum over all physical, dynamical and chemical processes at the end of one time integration step. Information about the contribution of individual processes to the total tendency is lost, if no special precautions are implemented. The knowledge on individual contributions, however, can be of importance to track down specific mechanisms in the model system. We present the new MESSy (Modular Earth Submodel System) infrastructure submodel TENDENCY and use it exemplarily within the EMAC (ECHAM/MESSy Atmospheric Chemistry) model to trace process-based tendencies of prognostic variables. The main idea is the outsourcing of the tendency accounting for the state variables from the process operators (submodels) to the TENDENCY submodel itself. In this way, a record of the tendencies of all process-prognostic variable pairs can be stored. The selection of these pairs can be specified by the user, tailor-made for the desired application, in order to minimise memory requirements. Moreover a standard interface allows the access to the individual process tendencies by other submodels, e.g., for on-line diagnostics or for additional parameterisations, which depend on individual process tendencies. An optional closure test assures the correct treatment of tendency accounting in all submodels and thus serves to reduce the models susceptibility. TENDENCY is independent of the time integration scheme and therefore applicable to other model systems as well. Test simulations with TENDENCY show an increase of computing time for the EMAC model (in a setup without atmospheric chemistry) of 1.8 ± 1% due to the additional subroutine calls when using TENDENCY. Exemplary results reveal the dissolving mechanisms of the stratospheric tape recorder signal in height over time. The separation of the tendency of the specific humidity into the respective processes (large-scale clouds

  2. Thermoreception and nociception of the skin: a classic paper of Bessou and Perl and analyses of thermal sensitivity during a student laboratory exercise.

    PubMed

    Kuhtz-Buschbeck, Johann P; Andresen, Wiebke; Göbel, Stephan; Gilster, René; Stick, Carsten

    2010-06-01

    About four decades ago, Perl and collaborators were the first ones who unambiguously identified specifically nociceptive neurons in the periphery. In their classic work, they recorded action potentials from single C-fibers of a cutaneous nerve in cats while applying carefully graded stimuli to the skin (Bessou P, Perl ER. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32: 1025-1043, 1969). They discovered polymodal nociceptors, which responded to mechanical, thermal, and chemical stimuli in the noxious range, and differentiated them from low-threshold thermoreceptors. Their classic findings form the basis of the present method that undergraduate medical students experience during laboratory exercises of sensory physiology, namely, quantitative testing of the thermal detection and pain thresholds. This diagnostic method examines the function of thin afferent nerve fibers. We collected data from nearly 300 students that showed that 1) women are more sensitive to thermal detection and thermal pain at the thenar than men, 2) habituation shifts thermal pain thresholds during repetititve testing, 3) the cold pain threshold is rather variable and lower when tested after heat pain than in the reverse case (order effect), and 4) ratings of pain intensity on a visual analog scale are correlated with the threshold temperature for heat pain but not for cold pain. Median group results could be reproduced in a retest. Quantitative sensory testing of thermal thresholds is feasible and instructive in the setting of a laboratory exercise and is appreciated by the students as a relevant and interesting technique.

  3. In-Situ Spectroscopic Analyses of the Dye Uptake on ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells.

    PubMed

    Shahzad, Nadia; Pugliese, Diego; Shahzad, Muhammad Imran; Tresso, Elena

    2015-08-01

    UV-Vis spectroscopic measurements have been performed on Dye-Sensitized Solar Cell (DSSC) photoanodes at different dye impregnation times ranging from few minutes to 24 hours. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance of dye impregnated thin films and on the desorption of dye molecules from the photoanodes by means of a basic solution, an alternative in-situ solution depletion measurement, which enables fast and continuous evaluation of dye uptake, has been employed. Two different nanostructured semiconducting oxide films (mesoporous TiO2 and sponge-like ZnO) and two different dyes, the traditional Ruthenizer 535-bisTBA (N719) and a newly introduced metal-free organic dye based on a hemi-squaraine molecule (CT1), have been analyzed. DSSCs have been fabricated with the dye-impregnated photoanodes using a customized microfluidic architecture. The dye adsorption results are discussed and correlated to the obtained DSSC electrical performances such as photovoltaic conversion efficiencies and Incident Photon-to-electron Conversion Efficiency (IPCE) spectra. It is shown that simple UV-Vis measurements can give useful insights on the dye adsorption mechanisms and on the evaluation of the optimal impregnation times.

  4. Interindividual differences in stress sensitivity: basal and stress-induced cortisol levels differentially predict neural vigilance processing under stress.

    PubMed

    Henckens, Marloes J A G; Klumpers, Floris; Everaerd, Daphne; Kooijman, Sabine C; van Wingen, Guido A; Fernández, Guillén

    2016-04-01

    Stress exposure is known to precipitate psychological disorders. However, large differences exist in how individuals respond to stressful situations. A major marker for stress sensitivity is hypothalamus-pituitary-adrenal (HPA)-axis function. Here, we studied how interindividual variance in both basal cortisol levels and stress-induced cortisol responses predicts differences in neural vigilance processing during stress exposure. Implementing a randomized, counterbalanced, crossover design, 120 healthy male participants were exposed to a stress-induction and control procedure, followed by an emotional perception task (viewing fearful and happy faces) during fMRI scanning. Stress sensitivity was assessed using physiological (salivary cortisol levels) and psychological measures (trait questionnaires). High stress-induced cortisol responses were associated with increased stress sensitivity as assessed by psychological questionnaires, a stronger stress-induced increase in medial temporal activity and greater differential amygdala responses to fearful as opposed to happy faces under control conditions. In contrast, high basal cortisol levels were related to relative stress resilience as reflected by higher extraversion scores, a lower stress-induced increase in amygdala activity and enhanced differential processing of fearful compared with happy faces under stress. These findings seem to reflect a critical role for HPA-axis signaling in stress coping; higher basal levels indicate stress resilience, whereas higher cortisol responsivity to stress might facilitate recovery in those individuals prone to react sensitively to stress.

  5. Neural prediction errors reveal a risk-sensitive reinforcement-learning process in the human brain.

    PubMed

    Niv, Yael; Edlund, Jeffrey A; Dayan, Peter; O'Doherty, John P

    2012-01-11

    Humans and animals are exquisitely, though idiosyncratically, sensitive to risk or variance in the outcomes of their actions. Economic, psychological, and neural aspects of this are well studied when information about risk is provided explicitly. However, we must normally learn about outcomes from experience, through trial and error. Traditional models of such reinforcement learning focus on learning about the mean reward value of cues and ignore higher order moments such as variance. We used fMRI to test whether the neural correlates of human reinforcement learning are sensitive to experienced risk. Our analysis focused on anatomically delineated regions of a priori interest in the nucleus accumbens, where blood oxygenation level-dependent (BOLD) signals have been suggested as correlating with quantities derived from reinforcement learning. We first provide unbiased evidence that the raw BOLD signal in these regions corresponds closely to a reward prediction error. We then derive from this signal the learned values of cues that predict rewards of equal mean but different variance and show that these values are indeed modulated by experienced risk. Moreover, a close neurometric-psychometric coupling exists between the fluctuations of the experience-based evaluations of risky options that we measured neurally and the fluctuations in behavioral risk aversion. This suggests that risk sensitivity is integral to human learning, illuminating economic models of choice, neuroscientific models of affective learning, and the workings of the underlying neural mechanisms.

  6. Bilateral widespread mechanical pain sensitivity in carpal tunnel syndrome: evidence of central processing in unilateral neuropathy.

    PubMed

    Fernández-de-las-Peñas, César; de la Llave-Rincón, Ana Isabel; Fernández-Carnero, Josué; Cuadrado, María Luz; Arendt-Nielsen, Lars; Pareja, Juan A

    2009-06-01

    The aim of this study was to investigate whether bilateral widespread pressure hypersensitivity exists in patients with unilateral carpal tunnel syndrome. A total of 20 females with carpal tunnel syndrome (aged 22-60 years), and 20 healthy matched females (aged 21-60 years old) were recruited. Pressure pain thresholds were assessed bilaterally over median, ulnar, and radial nerve trunks, the C5-C6 zygapophyseal joint, the carpal tunnel and the tibialis anterior muscle in a blinded design. The results showed that pressure pain threshold levels were significantly decreased bilaterally over the median, ulnar, and radial nerve trunks, the carpal tunnel, the C5-C6 zygapophyseal joint, and the tibialis anterior muscle in patients with unilateral carpal tunnel syndrome as compared to healthy controls (all, P < 0.001). Pressure pain threshold was negatively correlated to both hand pain intensity and duration of symptoms (all, P < 0.001). Our findings revealed bilateral widespread pressure hypersensitivity in subjects with carpal tunnel syndrome, which suggest that widespread central sensitization is involved in patients with unilateral carpal tunnel syndrome. The generalized decrease in pressure pain thresholds associated with pain intensity and duration of symptoms supports a role of the peripheral drive to initiate and maintain central sensitization. Nevertheless, both central and peripheral sensitization mechanisms are probably involved at the same time in carpal tunnel syndrome.

  7. Analysing the Opportunities and Challenges to Use of Information and Communication Technology Tools in Teaching-Learning Process

    ERIC Educational Resources Information Center

    Dastjerdi, Negin Barat

    2016-01-01

    The research aims at the evaluation of ICT use in teaching-learning process to the students of Isfahan elementary schools. The method of this research is descriptive-surveying. The statistical population of the study was all teachers of Isfahan elementary schools. The sample size was determined 350 persons that selected through cluster sampling…

  8. Magnesium production by the Pidgeon process involving dolomite calcination and MgO silicothermic reduction: Thermodynamic and environmental analyses

    SciTech Connect

    Halmann, M.; Frei, A.; Steinfeld, A.

    2008-04-15

    Thermochemical equilibrium calculations indicate the possibility of considerable fuel savings and CO{sub 2} emission avoidance in the three steps of the Pidgeon process: (a) calcination of dolomite; (b) production of ferrosilicon from quartz sand, coal, and iron oxide; (c) silicothermic reduction of calcined dolomite by ferrosilicon to magnesium. All three steps should benefit from application of concentrated solar energy as the source of high-temperature process heat, while the first two steps may be adapted to the coproduction of syngas. For the production of ferrosilicon, an experimental study was carried out by thermogravimetry as a model for a solar-driven process. The net reaction at 1823 K was shown to be represented by Fe{sub 2}O{sub 3} + 4SiO{sub 2} + 11C {yields} 2FeSi{sub s} + 10CO{sub g} + SiC{sub s} + SiO{sub g}, confirmed by gas chromatographic analysis of the evolved CO and by XRD identification of the solid products FeSi and SiC. This product mixture agrees with that predicted for the thermochemical equilibrium, but differs from that reported in the literature for the electric arc process.

  9. Study the sensitivity of molecular functional groups to bioethanol processing in lipid biopolymer of co-products using DRIFT molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2011-11-01

    To date, there is no study on bioethanol processing-induced changes in molecular structural profiles mainly related to lipid biopolymer. The objectives of this study were to: (1) determine molecular structural changes of lipid related functional groups in the co-products that occurred during bioethanol processing; (2) relatively quantify the antisymmetric CH 3 and CH 2 (ca. 2959 and 2928 cm -1, respectively), symmetric CH 3 and CH 2 (ca. 2871 and 2954 cm -1, respectively) functional groups, carbonyl C dbnd O ester (ca. 1745 cm -1) and unsaturated groups (CH attached to C dbnd C) (ca. 3007 cm -1) spectral intensities as well as their ratios of antisymmetric CH 3 to antisymmetric CH 2, and (3) illustrate the molecular spectral analyses as a research tool to detect for the sensitivity of individual moleculars to the bioethanol processing in a complex plant-based feed and food system without spectral parameterization. The hypothesis of this study was that bioethanol processing changed the molecular structure profiles in the co-products as opposed to original cereal grains. These changes could be detected by infrared molecular spectroscopy and will be related to nutrient utilization. The results showed that bioethanol processing had effects on the functional groups spectral profiles in the co-products. It was found that the CH 3-antisymmetric to CH 2-antisymmetric stretching intensity ratio was changed. The spectral features of carbonyl C dbnd O ester group and unsaturated group were also different. Since the different types of cereal grains (wheat vs. corn) had different sensitivity to the bioethanol processing, the spectral patterns and band component profiles differed between their co-products (wheat DDGS vs. corn DDGS). The multivariate molecular spectral analyses, cluster analysis and principal component analysis of original spectra (without spectral parameterization), distinguished the structural differences between the wheat and wheat DDGS and between the corn

  10. Study the sensitivity of molecular functional groups to bioethanol processing in lipid biopolymer of co-products using DRIFT molecular spectroscopy.

    PubMed

    Yu, Peiqiang

    2011-11-01

    To date, there is no study on bioethanol processing-induced changes in molecular structural profiles mainly related to lipid biopolymer. The objectives of this study were to: (1) determine molecular structural changes of lipid related functional groups in the co-products that occurred during bioethanol processing; (2) relatively quantify the antisymmetric CH(3) and CH(2) (ca. 2959 and 2928 cm(-1), respectively), symmetric CH(3) and CH(2) (ca. 2871 and 2954 cm(-1), respectively) functional groups, carbonyl C=O ester (ca. 1745 cm(-1)) and unsaturated groups (CH attached to C=C) (ca. 3007 cm(-1)) spectral intensities as well as their ratios of antisymmetric CH(3) to antisymmetric CH(2), and (3) illustrate the molecular spectral analyses as a research tool to detect for the sensitivity of individual moleculars to the bioethanol processing in a complex plant-based feed and food system without spectral parameterization. The hypothesis of this study was that bioethanol processing changed the molecular structure profiles in the co-products as opposed to original cereal grains. These changes could be detected by infrared molecular spectroscopy and will be related to nutrient utilization. The results showed that bioethanol processing had effects on the functional groups spectral profiles in the co-products. It was found that the CH(3)-antisymmetric to CH(2)-antisymmetric stretching intensity ratio was changed. The spectral features of carbonyl C=O ester group and unsaturated group were also different. Since the different types of cereal grains (wheat vs. corn) had different sensitivity to the bioethanol processing, the spectral patterns and band component profiles differed between their co-products (wheat DDGS vs. corn DDGS). The multivariate molecular spectral analyses, cluster analysis and principal component analysis of original spectra (without spectral parameterization), distinguished the structural differences between the wheat and wheat DDGS and between the corn and

  11. Organic Matter Sulfurization in the Cariaco Water Column Revealed by High-Sensitivity and Compound-Specific d34S Analyses.

    NASA Astrophysics Data System (ADS)

    Raven, M. R.; Sessions, A. L.; Adkins, J. F.; Thunell, R.

    2015-12-01

    Organic matter burial in marine sediments is a major process in the global carbon cycle, and enhanced organic matter burial is often associated with periods of global climatic and ecological change. Still, we have only a limited understanding of the processes that drive enhanced OM burial during oxygen-deficient conditions. Abiotic OM sulfurization has the potential to enhance the preservation of OM, but for this process to be significant it must compete with heterotrophic remineralization, most of which occurs before sinking particles reach the sea floor. We investigate the sources of sulfur to sinking particles in a modern marine basin using samples from the CARIACO fixed sediment trap time-series, applying recently developed methods for d34S analysis of small (≥20 nmol) sulfur pools and individual volatile organosulfur compounds. Relative to expectations for planktonic biomass, we find that sinking particles are both sulfur-rich and 34S-depleted. Higher apparent fluxes of 34S-depleted organic sulfur are associated with high OM export from the surface ocean, low terrestrial inputs, and high concentrations of both elemental S and the dominant non-polar organosulfur compound, C20 thiophene. We conclude that OM sulfurization is occurring in particles sinking through the Cariaco water column on timescales of days or less. Depending on the frequency of high OM export events, we estimate that this rapid sulfurization delivers roughly half of the total organic S present at 5 cm depth in underlying sediments. Accordingly, many OM-rich deposits in the geologic record may represent the products of water column sulfurization. This process provides a strong mechanistic feedback between oxygen deficiency and OM preservation.

  12. Anxiety sensitivity and cognitive-based smoking processes: testing the mediating role of emotion dysregulation among treatment-seeking daily smokers.

    PubMed

    Johnson, Kirsten A; Farris, Samantha G; Schmidt, Norman B; Zvolensky, Michael J

    2012-01-01

    The current study investigated whether emotion dysregulation (difficulties in the self-regulation of affective states) mediated relationships between anxiety sensitivity (fear of anxiety and related sensations) and cognitive-based smoking processes. Participants (n = 197; 57.5% male; mean age = 38.0 years) were daily smokers recruited as part of a randomized control trial for smoking cessation. Anxiety sensitivity was uniquely associated with all smoking processes. Moreover, emotion dysregulation significantly mediated relationships between anxiety sensitivity and the smoking processes. Findings suggest that emotion dysregulation is an important construct to consider in relationships between anxiety sensitivity and cognitive-based smoking processes among adult treatment-seeking smokers.

  13. The pupil response is sensitive to divided attention during speech processing.

    PubMed

    Koelewijn, Thomas; Shinn-Cunningham, Barbara G; Zekveld, Adriana A; Kramer, Sophia E

    2014-06-01

    Dividing attention over two streams of speech strongly decreases performance compared to focusing on only one. How divided attention affects cognitive processing load as indexed with pupillometry during speech recognition has so far not been investigated. In 12 young adults the pupil response was recorded while they focused on either one or both of two sentences that were presented dichotically and masked by fluctuating noise across a range of signal-to-noise ratios. In line with previous studies, the performance decreases when processing two target sentences instead of one. Additionally, dividing attention to process two sentences caused larger pupil dilation and later peak pupil latency than processing only one. This suggests an effect of attention on cognitive processing load (pupil dilation) during speech processing in noise.

  14. A mechanistic model of H{sub 2}{sup 18}O and C{sup 18}OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses

    SciTech Connect

    Riley, W.J.; Still, C.J.; Torn, M.S.; Berry, J.A.

    2002-01-01

    The concentration of 18O in atmospheric CO2 and H2O is a potentially powerful tracer of ecosystem carbon and water fluxes. In this paper we describe the development of an isotope model (ISOLSM) that simulates the 18O content of canopy water vapor, leaf water, and vertically resolved soil water; leaf photosynthetic 18OC16O (hereafter C18OO) fluxes; CO2 oxygen isotope exchanges with soil and leaf water; soil CO2 and C18OO diffusive fluxes (including abiotic soil exchange); and ecosystem exchange of H218O and C18OO with the atmosphere. The isotope model is integrated into the land surface model LSM, but coupling with other models should be straightforward. We describe ISOLSM and apply it to evaluate (a) simplified methods of predicting the C18OO soil-surface flux; (b) the impacts on the C18OO soil-surface flux of the soil-gas diffusion coefficient formulation, soil CO2 source distribution, and rooting distribution; (c) the impacts on the C18OO fluxes of carbonic anhydrase (CA) activity in soil and leaves; and (d) the sensitivity of model predictions to the d18O value of atmospheric water vapor and CO2. Previously published simplified models are unable to capture the seasonal and diurnal variations in the C18OO soil-surface fluxes simulated by ISOLSM. Differences in the assumed soil CO2 production and rooting depth profiles, carbonic anhydrase activity in soil and leaves, and the d18O value of atmospheric water vapor have substantial impacts on the ecosystem CO2 flux isotopic composition. We conclude that accurate prediction of C18OO ecosystem fluxes requires careful representation of H218O and C18OO exchanges and transport in soils and plants.

  15. In situ analyses on negative ions in the sputtering process to deposit Al-doped ZnO films

    SciTech Connect

    Tsukamoto, Naoki; Watanabe, Daisuke; Saito, Motoaki; Sato, Yasushi; Oka, Nobuto; Shigesato, Yuzo

    2010-07-15

    The origin of high energy negative ions during deposition of aluminum doped zinc oxide (AZO) films by dc magnetron sputtering of an AZO (Al{sub 2}O{sub 3}: 2.0 wt %) target was investigated by in situ analyses using the quadrupole mass spectrometer combined with the electrostatic energy analyzer. High energy negative oxygen (O{sup -}) ions which possessed the kinetic energy corresponding to the cathode sheath voltage were detected. The maximum flux of the O{sup -} ions was clearly observed at the location opposite to the erosion track area on the target. The flux of the O{sup -} ions changed hardly with increasing O{sub 2} flow ratio [O{sub 2}/(Ar+O{sub 2})] from 0% to 5%. The kinetic energy of the O{sup -} ions decreased with decreasing cathode sheath voltage from 403 to 337 V due to the enhancement of the vertical maximum magnetic field strength at the cathode surface from 0.025 to 0.100 T. The AZO films deposited with the lower O{sup -} bombardment energy showed the higher crystallinity and improved the electrical conductivity.

  16. Compound specific carbon and hydrogen stable isotope analyses of volatile organic compounds in various emissions of combustion processes.

    PubMed

    Vitzthum von Eckstaedt, Christiane D; Grice, Kliti; Ioppolo-Armanios, Marisa; Kelly, David; Gibberd, Mark

    2012-11-01

    This study presents carbon (δ(13)C) and hydrogen (δD) isotope values of volatile organic compounds (VOCs) in various emission sources using thermal desorption-gas chromatography-isotope ratio mass spectrometry (TD-GC-irMS). The investigated VOCs ranged from C6 to C10. Samples were taken from (i) car exhaust emissions as well as from plant combustion experiments of (ii) various C3 and (iii) various C4 plants. We found significant differences in δ values of analysed VOCs between these sources, e.g. δ(13)C of benzene ranged between (i) -21.7 ± 0.2 ‰, (ii) -27.6 ± 1.6 ‰ and (iii) -16.3 ± 2.2 ‰, respectively and δD of benzene ranged between (i) -73 ± 13 ‰, (ii) -111 ± 10 ‰ and (iii) -70 ± 24 ‰, respectively. Results of VOCs present in investigated emission sources were compared to values from the literature (aluminium refinery emission). All source groups could be clearly distinguished using the dual approach of δ(13)C and δD analysis. The results of this study indicate that the correlation of compound specific carbon and hydrogen isotope analysis provides the potential for future research to trace the fate and to determine the origin of VOCs in the atmosphere using thermal desorption compound specific isotope analysis.

  17. Hydrogeochemical Processes of Groundwater Using Multivariate Statistical Analyses and Inverse Geochemical Modeling in Samrak Park of Nakdong River Basin, Korea

    NASA Astrophysics Data System (ADS)

    Chung, Sang Yong

    2015-04-01

    Multivariate statistical methods and inverse geochemical modelling were used to assess the hydrogeochemical processes of groundwater in Nakdong River basin. The study area is located in a part of Nakdong River basin, the Busan Metropolitan City, Kora. Quaternary deposits forms Samrak Park region and are underlain by intrusive rocks of Bulkuksa group and sedimentary rocks of Yucheon group in the Cretaceous Period. The Samrak park region is acting as two aquifer systems of unconfined aquifer and confined aquifer. The unconfined aquifer consists of upper sand, and confined aquifer is comprised of clay, lower sand, gravel, weathered rock. Porosity and hydraulic conductivity of the area is 37 to 59% and 1.7 to 200m/day, respectively. Depth of the wells ranges from 9 to 77m. Piper's trilinear diagram, CaCl2 type was useful for unconfined aquifer and NaCl type was dominant for confined aquifer. By hierarchical cluster analysis (HCA), Group 1 and Group 2 are fully composed of unconfined aquifer and confined aquifer, respectively. In factor analysis (FA), Factor 1 is described by the strong loadings of EC, Na, K, Ca, Mg, Cl, HCO3, SO4 and Si, and Factor 2 represents the strong loadings of pH and Al. Base on the Gibbs diagram, the unconfined and confined aquifer samples are scattered discretely in the rock and evaporation areas. The principal hydrogeochemical processes occurring in the confined and unconfined aquifers are the ion exchange due to the phenomena of freshening under natural recharge and water-rock interactions followed by evaporation and dissolution. The saturation index of minerals such as Ca-montmorillonite, dolomite and calcite represents oversaturated, and the albite, gypsum and halite show undersaturated. Inverse geochemical modeling using PHREEQC code demonstrated that relatively few phases were required to derive the differences in groundwater chemistry along the flow path in the area. It also suggested that dissolution of carbonate and ion exchange

  18. Effects of energy related activities on the stress-sensitive microbial processes in mangrove detrital food webs

    SciTech Connect

    Fell, J.W.

    1984-01-01

    Nutrient flows from leaf litter decomposition are evaluated in terms of their contributions to the ecosystem. The roles of the stress sensitive microbial processes are being determined. Emphasis is on the following aspects: (1) nitrogen immobilization; (2) transport of particulate carbon to the estuary; (3) role of flocculent materials produced from leachates; (4) invertebrate utilization of carbon and nitrogen flows; and (5) possible effects on these systems if the Gulf oil spill reaches the south Florida coast. 19 references. (ACR)

  19. Analyses by the Defense Waste Processing Facility Laboratory of Thorium Glasses from the Sludge Batch 6 Variability Study

    SciTech Connect

    Edwards, T.; Click, D.; Feller, M.

    2011-02-28

    The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 6 (SB6) with Frit 418. At times during the processing of this glass system, thorium is expected to be at concentrations in the final wasteform that make it a reportable element for the first time since startup of radioactive operations at the DWPF. The Savannah River National Laboratory (SRNL) supported the qualification of the processing of this glass system at the DWPF. A recommendation from the SRNL studies was the need for the DWPF Laboratory to establish a method to measure thorium by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICPAES). This recommendation led to the set of thorium-bearing glasses from the SB6 Variability Study (VS) being submitted to the DWPF Laboratory for chemical composition measurement. The measurements were conducted by the DWPF Laboratory using the sodium peroxide fusion preparation method routinely employed for analysis of samples from the Slurry Mix Evaporator (SME). These measurements are presented and reviewed in this report. The review indicates that the measurements provided by the DWPF Laboratory are comparable to those provided by Analytical Development's laboratory at SRNL for these same glasses. As a result, the authors of this report recommend that the DWPF Laboratory begin using its routine peroxide fusion dissolution method for the measurement of thorium in SME samples of SB6. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for the SB6 VS glasses and to compare the measurements to the targeted compositions for these VS glasses as well as to SRNL's measurements (both sets, targeted and measured, of compositional values were reported by SRNL in [2]). The goal of these comparisons is to provide information that will lead to the qualification of peroxide fusion dissolution as a method for the measurement by the DWPF Laboratory of thorium in SME

  20. The dominance of cold and dry alteration processes on recent Mars, as revealed through pan-spectral orbital analyses

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Mustard, J. F.; Head, J. W.; Rogers, A. D.; Cooper, R. F.

    2014-10-01

    Classic low-albedo regions of the martian surface are investigated using combined reflectance and emission (“pan-spectral”) data to constrain the types of alteration mineral phases that are present at spectrally significant abundances (>10-15%). The lack of hydrated mineral species observed using near-infrared data suggests that anhydrous chemical alteration dominates at the regional scale. Spectral characteristics in the VNIR and TIR are consistent with those associated with weathering processes identified in the hyper-arid, hypo-thermal, and geologically stable McMurdo Dry Valleys of Antarctica, where oxidative weathering processes dominate and significant aqueous alteration does not occur. In addition, the spectral trends associated with oxidative weathering processes are similar to regional trends in VNIR spectral characteristics observed on Mars and potentially complicate the spectral interpretation of basaltic terrains. Collectively, these relationships suggest that the martian surface has been dominated by cold, dry, and stable conditions since the formation of these low-albedo regions. While significant at regional scales early in martian history, aqueous alteration appears to be predominantly absent from large-scale basaltic regions on Mars.

  1. DEM analyses of the whole failure process of shallow foundation in plate load test on dense sand

    NASA Astrophysics Data System (ADS)

    Li, L.; Jiang, M. J.; Li, T.; Chen, S. L.

    2015-09-01

    Shallow foundations are widely used in civil engineering practice, but the instability mechanism is still unclear yet. Previously, the Finite Element Method (FEM) was commonly used to analyze the failure process of shallow foundations, but it meets difficulty in properly simulating the whole failure process of shallow foundation on the strain-softening material. Hence, the Discrete Element Method (DEM) is employed in this paper to study the instability mechanism of the shallow foundation via numerical plate load test with focus on the microscopic features evolution during vertical loading. In the simulation, an amplified gravity was applied to a dense granular ground to reproduce a gravity stress state at a large scale. Then, a plate was put on the granular ground to simulate the plate load test. Deformation pattern, particle velocity and distribution of void ratio in the ground were examined to illustrate the microscopic features in the whole failure process of the granular ground. The results show that: 1) There are a marked peak value and a settlement softening branch in the stress-settlement relationship. 2) The grids close to the edge of the plate are peculiarly extended and twisted. 3) Four particle motion patterns were observed in the velocity fields and the percentage of each motion pattern changes during loading. 4) The void ratio field varies during loading, and the distinguishing interface tends to be similar to Terzaghi's shear failure surface.

  2. Quality control of cultured tissues requires tools for quantitative analyses of heterogeneous features developed in manufacturing process.

    PubMed

    Kino-Oka, Masahiro; Takezawa, Yasunori; Taya, Masahito

    2009-02-01

    Tissue engineering and related technology have attracted a great deal of medical attention as promising fields for curing defective tissues in vivo. Nowadays, many companies have been established for supplying the reconstructed grafts of cultured tissues for transplantation. The manufacturing processes generally deals with the handlings of starter cells offered by patients (or donors) as raw materials to cultured tissues as products, requiring the construction of novel ex vivo methodologies based on principles different from conventional processes for chemical and pharmaceutical productions. In addition, the raw materials have heterogeneity depending on the state of patients and location of cell harvests, and the products possess spatial cell distribution in the three dimensional structure. These features request a unique strategy in manufacturing process accompanied with the quality control for raw materials and products. This review article describes the contribution of tissue bankers and biochemical engineers to the quality control of cultured tissues during manufacturing, introducing the advances in methodologies to evaluate spatial heterogeneity of cells (or aggregates) and matrices in cultured tissues.

  3. Proficiency and Working Memory Based Explanations for Nonnative Speakers' Sensitivity to Agreement in Sentence Processing

    ERIC Educational Resources Information Center

    Coughlin, Caitlin E.; Tremblay, Annie

    2013-01-01

    This study examines the roles of proficiency and working memory (WM) capacity in second-/foreign-language (L2) learners' processing of agreement morphology. It investigates the processing of grammatical and ungrammatical short- and long-distance number agreement dependencies by native English speakers at two proficiencies in French, and the…

  4. Using Simulation Module, PCLAB, for Steady State Disturbance Sensitivity Analysis in Process Control

    ERIC Educational Resources Information Center

    Ali, Emad; Idriss, Arimiyawo

    2009-01-01

    Recently, chemical engineering education moves towards utilizing simulation soft wares to enhance the learning process especially in the field of process control. These training simulators provide interactive learning through visualization and practicing which will bridge the gap between the theoretical abstraction of textbooks and the…

  5. INCORPORATION OF HUMAN FACTORS ENGINEERING ANALYSES AND TOOLS INTO THE DESIGN PROCESS FOR DIGITAL CONTROL ROOM UPGRADES.

    SciTech Connect

    O'HARA,J.M.; BROWN,W.

    2004-09-19

    Many nuclear power plants are modernizing with digital instrumentation and control systems and computer-based human-system interfaces (HSIs). The purpose of this paper is to summarize the human factors engineering (HFE) activities that can help to ensure that the design meets personnel needs. HFE activities should be integrated into the design process as a regular part of the engineering effort of a plant modification. The HFE activities will help ensure that human performance issues are addressed, that new technology supports task performance, and that the HSIs are designed in a manner that is compatible with human physiological, cognitive and social characteristics.

  6. Solution processable titanium dioxide precursor and nanoparticulated ink: application in Dye Sensitized Solar Cells.

    PubMed

    Bosch-Jimenez, Pau; Yu, Youhai; Lira-Cantu, Mónica; Domingo, Concepción; Ayllón, José A

    2014-02-15

    Colloidal TiO2 anatase nanoparticles of 4-8 nm diameter capped with 3,6,9-trioxadecanoic acid (TODA) were synthesized at low temperature using water and ethanol as the solvents. ATR-FTIR and (1)H NMR characterization showed the capping acid capability of stabilizing the TiO2 nanoparticles through labile hydrogen bonds. The presence of the capping ligand permitted the further preparation of homogeneous and stable colloidal dispersions of the TiO2 powder in aqueous media. Moreover, after solvent evaporation, the ligand could be easily eliminated by soft treatments, such as UV irradiation or low-temperature thermal annealing. These properties have been used in this work to fabricate mesoporous TiO2 electrodes, which can be applied as photoanodes in Dye Sensitized Solar Cells (DSSCs). For the preparation of the electrodes, the as-synthesized mesoporous TiO2 nanoparticles were mixed with commercial TiO2 (Degussa P25) and deposited on FTO substrates by using the doctor blade technique. A mixture of water and ethanol was used as the solvent. A soft thermal treatment at 140 °C for 2h eliminated the organic compound and produced a sintered mesoporous layer of 6 μm thickness. The photovoltaic performance of the DSSCs applying these electrodes sensitized with the N3 dye resulted in 5.6% power conversion efficiency.

  7. Identification of sensitive parameters in the modeling of SVOCs reemission processes from soil to atmosphere

    NASA Astrophysics Data System (ADS)

    Loizeau, Vincent; Ciffroy, Philippe; Musson Genon, Luc; Roustan, Yelva

    2013-04-01

    Many studies have shown that semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport (LRAT) and that such a transport may occur through a series of deposition-reemission events at the soil surface-air interface. This periodic movement of pollutants between soil and atmosphere is called the 'grasshopper effect'. Thus, it appears necessary to take into account the exchange between soil and atmosphere to properly simulate the fate of these pollutants at regional or global scale. The prediction of reemission from soils is however associated with large uncertainties, which can be schematically classified into three main sources : (i) natural variability, including nature of soil (organic matter content, porosity, water content) and meteorological conditions ; (ii) uncertainty about intrinsic properties of chemicals, like degradation rate or partitioning between environmental components, which govern the dynamics of chemicals in air and soils ; (iii) model structure, and particularly the discretization of soil compartment. Considering this background, a major challenge is to identify the most sensitive sources of uncertainty in modelling the reemission of chemicals from soils, in order to know where the priority has to be set for upgrading SVOC dispersion estimation. To answer this question, we studied a multi-layer soil model, including exchanges between soil and atmosphere. A sensitivity analysis was conducted by affecting probability density functions for each of model parameters. Four chemicals were selected (Benzo(a)Pyrene, PCB-28, Lindane and Hexachlorobenzene) because of their contrasted behaviors in soils, as expected by their partition and degradation properties. For this first exercise, simple emission scenarii were considered, i.e. a period of constant concentration in air (where realistic concentrations were estimated for each chemical from monitoring data provided by EMEP) followed by a zero-concentration in air. Although

  8. Late Bilinguals Are Sensitive to Unique Aspects of Second Language Processing: Evidence from Clitic Pronouns Word-Order

    PubMed Central

    Rossi, Eleonora; Diaz, Michele; Kroll, Judith F.; Dussias, Paola E.

    2017-01-01

    In two self-paced reading experiments we asked whether late, highly proficient, English–Spanish bilinguals are able to process language-specific morpho-syntactic information in their second language (L2). The processing of Spanish clitic pronouns’ word order was tested in two sentential constructions. Experiment 1 showed that English–Spanish bilinguals performed similarly to Spanish–English bilinguals and revealed sensitivity to word order violations for a grammatical structure unique to the L2. Experiment 2 replicated the pattern observed for native speakers in Experiment 1 with a group of monolingual Spanish speakers, demonstrating the stability of processing clitic pronouns in the native language. Taken together, the results show that late bilinguals can process aspects of grammar that are encoded in L2-specific linguistic constructions even when the structure is relatively subtle and not affected for native speakers by the presence of a second language. PMID:28367130

  9. Late Bilinguals Are Sensitive to Unique Aspects of Second Language Processing: Evidence from Clitic Pronouns Word-Order.

    PubMed

    Rossi, Eleonora; Diaz, Michele; Kroll, Judith F; Dussias, Paola E

    2017-01-01

    In two self-paced reading experiments we asked whether late, highly proficient, English-Spanish bilinguals are able to process language-specific morpho-syntactic information in their second language (L2). The processing of Spanish clitic pronouns' word order was tested in two sentential constructions. Experiment 1 showed that English-Spanish bilinguals performed similarly to Spanish-English bilinguals and revealed sensitivity to word order violations for a grammatical structure unique to the L2. Experiment 2 replicated the pattern observed for native speakers in Experiment 1 with a group of monolingual Spanish speakers, demonstrating the stability of processing clitic pronouns in the native language. Taken together, the results show that late bilinguals can process aspects of grammar that are encoded in L2-specific linguistic constructions even when the structure is relatively subtle and not affected for native speakers by the presence of a second language.

  10. Process sensitivity studies of the Westinghouse sulfur cycle for hydrogen generation

    NASA Technical Reports Server (NTRS)

    Carty, R. H.; Cox, K. E.; Funk, J. E.; Soliman, M. A.; Conger, W. L.; Brecher, L. E.; Spewock, S.

    1976-01-01

    The effect of variations of acid concentration, pressure, and temperature on the thermal process efficiency of the Westinghouse sulfur cycle was examined using the HYDRGN program. Modifications to the original program were made to duplicate the process flowsheet and take into account combined cycle heat-to-work efficiencies for electrochemical work requirements, aqueous solutions, and heat-of-mixing effects. A total of 125 process variations were considered (acid concentration: 50-90 w/o; pressure: 15-750 psia; temperature: 922K - 1366K). The methods of analysis, results, and conclusions are presented.

  11. Process sensitivity studies of the Westinghouse Sulfur Cycle for hydrogen generation

    NASA Technical Reports Server (NTRS)

    Carty, R.; Funk, J.; Soliman, M.; Conger, W.; Brecher, L.; Spewock, S.; Cox, K.

    1976-01-01

    The effect of variations of acid concentration, pressure, and temperature on the thermal process efficiency of the Westinghouse Sulfur Cycle was examined using the University of Kentucky's HYDRGN program. Modifications to the original program were made to duplicate the process flow sheet and take into account combined-cycle heat-to-work efficiencies for electrochemical work requirements, aqueous solutions, and heat-of-mixing effects. A total of 125 process variations were considered (acid concentration: 50-90 w/o; pressure: 15-750 psia; temperature: 922-1366 K (2000 F)). The methods of analysis, results, and conclusions are presented.

  12. The mental health care model in Brazil: analyses of the funding, governance processes, and mechanisms of assessment

    PubMed Central

    Trapé, Thiago Lavras; Campos, Rosana Onocko

    2017-01-01

    ABSTRACT OBJECTIVE This study aims to analyze the current status of the mental health care model of the Brazilian Unified Health System, according to its funding, governance processes, and mechanisms of assessment. METHODS We have carried out a documentary analysis of the ordinances, technical reports, conference reports, normative resolutions, and decrees from 2009 to 2014. RESULTS This is a time of consolidation of the psychosocial model, with expansion of the health care network and inversion of the funding for community services with a strong emphasis on the area of crack cocaine and other drugs. Mental health is an underfunded area within the chronically underfunded Brazilian Unified Health System. The governance model constrains the progress of essential services, which creates the need for the incorporation of a process of regionalization of the management. The mechanisms of assessment are not incorporated into the health policy in the bureaucratic field. CONCLUSIONS There is a need to expand the global funding of the area of health, specifically mental health, which has been shown to be a successful policy. The current focus of the policy seems to be archaic in relation to the precepts of the psychosocial model. Mechanisms of assessment need to be expanded. PMID:28355335

  13. Evaluation of the processes affecting vertical water chemistry in an alluvial aquifer of Mankyeong Watershed, Korea, using multivariate statistical analyses

    NASA Astrophysics Data System (ADS)

    Choi, Byoung-Young; Kim, Hyeon-Jung; Kim, Kangjoo; Kim, Seok-Hwi; Jeong, Hwa-Jin; Park, Eungyu; Yun, Seong-Taek

    2008-03-01

    Vertical variations of redox chemistry and groundwater quality were investigated in an alluvial aquifer beneath an agricultural area, in which deep groundwaters are free of NO3, Fe, and Mn problems that are frequently encountered during the development of alluvial groundwaters. This study was performed to identify and evaluate vertical chemical processes attenuating these chemical species in the study area. For this study, the processes affecting groundwater chemistry were identified by factor analysis (FA) and the groundwater samples collected from six multilevel samplers were hierarchically classified into three different redox zones by cluster analysis (CA) based on the similarity of geochemical features. FA results indicated three major factors affecting the overall water chemistry: agricultural activities (factor 1), redox reactions (factor 2), and remnant seawater (factor 3). The groundwater quality in the study area was revealed to be controlled by a series of different redox reactions, resulting in different redox zones as a function of depth. It was also revealed that the low Fe and Mn levels in the groundwater of the deeper part are associated with sulfate reduction, which led to precipitation of Fe as iron sulfide and adsorption of Mn on it.

  14. Multiobjective Sensitivity Analysis Of Sediment And Nitrogen Processes With A Watershed Model

    EPA Science Inventory

    This paper presents a computational analysis for evaluating critical non-point-source sediment and nutrient (specifically nitrogen) processes and management actions at the watershed scale. In the analysis, model parameters that bear key uncertainties were presumed to reflect the ...

  15. Sensitivity analysis of roll load, torque and material properties in the roll forming process

    NASA Astrophysics Data System (ADS)

    Abeyrathna, Buddhika; Rolfe, Bernard; Hodgson, Peter; Weiss, Matthias

    2013-12-01

    Advanced High Strength Steel (AHSS) and Ultra High Strength Steel (UHSS) are increasingly used in the current automotive industry because of their high strength and weight saving potential. As a sheet forming process, roll forming is capable of forming such materials with precise dimensions, however a small change in processing may results in significant change in the material properties such as yield strength and hardening exponent from coil to coil or within the same coil. This paper presents the effect of yield strength and the hardening exponent on roll load, torque of the roll forming process and the longitudinal bow. The roll forming process is numerically simulated, and then the regression analysis and Analysis of Variance (ANOVA) techniques are employed to establish the relationships among the aforementioned parameters and to determine the percentage influence of material properties on longitudinal bow, roll load and torque.

  16. Development of High Sensitivity X-Ray and Electron Beam Resist Processes.

    DTIC Science & Technology

    1985-05-01

    VLSI. A first-principles fluid dynamics model for the spin coating of PMMA has been developed. Non-Newtonian effects were taken into account by using...use a ultrahigh molecular weight polymers, the plasma degradation of polyni, r materials, and the modeling of spin coating processes. High Molecular...uniformity. Many process variables influence the above film properties. As a result, attempts have been made to model the spin coating of silicon wafers with

  17. Neural sensitivity to statistical regularities as a fundamental biological process that underlies auditory learning: the role of musical practice.

    PubMed

    François, Clément; Schön, Daniele

    2014-02-01

    There is increasing evidence that humans and other nonhuman mammals are sensitive to the statistical structure of auditory input. Indeed, neural sensitivity to statistical regularities seems to be a fundamental biological property underlying auditory learning. In the case of speech, statistical regularities play a crucial role in the acquisition of several linguistic features, from phonotactic to more complex rules such as morphosyntactic rules. Interestingly, a similar sensitivity has been shown with non-speech streams: sequences of sounds changing in frequency or timbre can be segmented on the sole basis of conditional probabilities between adjacent sounds. We recently ran a set of cross-sectional and longitudinal experiments showing that merging music and speech information in song facilitates stream segmentation and, further, that musical practice enhances sensitivity to statistical regularities in speech at both neural and behavioral levels. Based on recent findings showing the involvement of a fronto-temporal network in speech segmentation, we defend the idea that enhanced auditory learning observed in musicians originates via at least three distinct pathways: enhanced low-level auditory processing, enhanced phono-articulatory mapping via the left Inferior Frontal Gyrus and Pre-Motor cortex and increased functional connectivity within the audio-motor network. Finally, we discuss how these data predict a beneficial use of music for optimizing speech acquisition in both normal and impaired populations.

  18. Detailed analyses of the bacterial populations in processed cocoa beans of different geographic origin, subject to varied fermentation conditions.

    PubMed

    Bortolini, Cristian; Patrone, Vania; Puglisi, Edoardo; Morelli, Lorenzo

    2016-11-07

    The quality of chocolate is influenced by several parameters, one of which is bacterial diversity during fermentation and drying; a crucial factor for the generation of the optimal cocoa flavor precursors. Our understanding of the bacterial populations involved in chocolate fermentation can be improved by the use of high-throughput sequencing technologies (HTS), combined with PCR amplification of the 16S rRNA subunit. Here, we have conducted a high-throughput assessment of bacterial diversity in four processed samples of cocoa beans from different geographic origins. As part of this study, we also assessed whether different DNA extraction methods could affect the quality of our data. The dynamics of microbial populations were analyzed postharvest (fermentation and sun drying) and shipment, before entry to the industrial process. A total of 691,867 high quality sequences were obtained by Illumina MiSeq sequencing of the two bacterial 16S rRNA hypervariable regions, V3 and V4, following paired-read assembly of the raw reads. Manual curation of the 16S database allowed us to assign the correct taxonomic classifications, at species level, for 83.8% of those reads. This approach revealed a limited biodiversity and population dynamics for both the lactic acid bacteria (LAB) and acetic acid bacteria (AAB), both of which are key players during the acetification and lactic acid fermentation phases. Among the LAB, the most abundant species were Lactobacillus fermentum, Enterococcus casseliflavus, Weissella paramesenteroides, and Lactobacillus plantarum/paraplantarum. Among the AAB, Acetobacter syzygii, was most abundant, then Acetobacter senegalensis and Acetobacter pasteriuanus. Our results indicate that HTS approach has the ability to provide a comprehensive view of the cocoa bean microbiota at the species level.

  19. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    PubMed Central

    Saha, Rajib; Liu, Deng; Hoynes-O’Connor, Allison; Liberton, Michelle; Yu, Jingjie; Bhattacharyya-Pakrasi, Maitrayee; Balassy, Andrea; Zhang, Fuzhong; Maranas, Costas D.

    2016-01-01

    ABSTRACT Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper) were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H), and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium. PMID:27143387

  20. Sensitivity and uncertainty analyses applied to one-dimensional radionuclide transport in a layered fractured rock: MULTFRAC --Analytic solutions and local sensitivities; Phase 2, Iterative performance assessment: Volume 1

    SciTech Connect

    Gureghian, A.B.; Wu, Y.T.; Sagar, B.; Codell, R.A.

    1992-12-01

    Exact analytical solutions based on the Laplace transforms are derived for describing the one-dimensional space-time-dependent, advective transport of a decaying species in a layered, saturated rock system intersected by a planar fracture of varying aperture. These solutions, which account for advection in fracture, molecular diffusion into the rock matrix, adsorption in both fracture and matrix, and radioactive decay, predict the concentrations in both fracture and rock matrix and the cumulative mass in the fracture. The solute migration domain in both fracture and rock is assumed to be semi-infinite with non-zero initial conditions. The concentration of each nuclide at the source is allowed to decay either continuously or according to some periodical fluctuations where both are subjected to either a step or band release mode. Two numerical examples related to the transport of Np-237 and Cm-245 in a five-layered system of fractured rock were used to verify these solutions with several well established evaluation methods of Laplace inversion integrals in the real and complex domain. In addition, with respect to the model parameters, a comparison of the analytically derived local sensitivities for the concentration and cumulative mass of Np-237 in the fracture with the ones obtained through a finite-difference method of approximation is also reported.

  1. The contributions of Maternal Sensitivity and Maternal Depressive Symptoms to Epigenetic Processes and Neuroendocrine Functioning

    PubMed Central

    Conradt, Elisabeth; Hawes, Katheleen; Guerin, Dylan; Armstrong, David A.; Marsit, Carmen J.; Tronick, Edward; Lester, Barry M.

    2015-01-01

    This study tested whether maternal responsiveness may buffer the child to the effects of maternal depressive symptoms on DNA methylation of NR3C1, 11β-HSD2, and neuroendocrine functioning. DNA was derived from buccal epithelial cells and pre-stress cortisol was obtained from the saliva of 128 infants. Mothers with depressive symptoms who were more responsive and who engaged in more appropriate touch during face-to-face play had infants with less DNA methylation of NR3C1 and 11β-HSD2 compared to mothers with depressive symptoms who were also insensitive. The combination of exposure to maternal depressive symptoms and maternal sensitivity was related to the highest pre-stress cortisol levels whereas exposure to maternal depressive symptoms and maternal insensitivity was related to the lowest pre-stress cortisol levels. PMID:26822444

  2. Unique neurobiology during the sensitive period for attachment produces distinctive infant trauma processing

    PubMed Central

    Opendak, Maya; Sullivan, Regina M.

    2016-01-01

    Background Trauma has neurobehavioral effects when experienced at any stage of development, but trauma experienced in early life has unique neurobehavioral outcomes related to later life psychiatric sequelae. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences. Trauma experienced from an attachment figure, such as occurs in cases of caregiver child maltreatment, is particularly detrimental. Methods Using data primarily from rodent models, we review the literature on the interaction between trauma and attachment in early life, which highlights the role of the caregiver’s presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. We then consider how trauma with and without the caregiver produces long-term changes in emotionality and behavior, and suggest that these experiences initiate distinct pathways to pathology. Results Together these data suggest that infant trauma processing and its enduring effects are impacted by both the immaturity of brain areas for processing trauma and the unique functioning of the early-life brain, which is biased toward processing information within the attachment circuitry. Conclusion An understanding of developmental differences in trauma processing as well as the critical role of the caregiver in further altering early life brain processing of trauma is important for developing age-relevant treatment and interventions. Highlights of this article Trauma experienced in early life has been linked with life-long outcomes for mental health through a mechanism that remains unclear. Trauma experienced in the presence of a caregiver has unique consequences. The infant brain is predisposed toward processing information using attachment circuitry rather than threat circuitry. Data from rodent models suggest that repeated trauma in the presence of a caregiver prematurely engages brain areas important

  3. Plasma sprayed manganese-cobalt spinel coatings: Process sensitivity on phase, electrical and protective performance

    NASA Astrophysics Data System (ADS)

    Han, Su Jung; Pala, Zdenek; Sampath, Sanjay

    2016-02-01

    Manganese cobalt spinel (Mn1.5Co1.5O4, MCO) coatings are prepared by the air plasma spray (APS) process to examine their efficacy in serving as protective coatings from Cr-poisoning of the cathode side in intermediate temperature-solid oxide fuel cells (IT-SOFCs). These complex oxides are susceptible to process induced stoichiometric and phase changes which affect their functional performance. To critically examine these effects, MCO coatings are produced with deliberate modifications to the spray process parameters to explore relationship among process conditions, microstructure and functional properties. The resultant interplay among particle thermal and kinetic energies are captured through process maps, which serve to characterize the parametric effects on properties. The results show significant changes to the chemistry and phase composition of the deposited material resulting from preferential evaporation of oxygen. Post deposition annealing recovers oxygen in the coatings and allows partial recovery of the spinel phase, which is confirmed through thermo-gravimetric analysis (TGA)/differential scanning calorimetry (DSC), X-ray Diffraction (XRD), and magnetic hysteresis measurements. In addition, coatings with high density after sintering show excellent electrical conductivity of 40 S cm-1 at 800 °C while simultaneously providing requisite protection characteristics against Cr-poisoning. This study provides a framework for optimal evaluation of MCO coatings in intermediate temperature SOFCs.

  4. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression

    PubMed Central

    Lasonder, Edwin; Rijpma, Sanna R.; van Schaijk, Ben C.L.; Hoeijmakers, Wieteke A.M.; Kensche, Philip R.; Gresnigt, Mark S.; Italiaander, Annet; Vos, Martijn W.; Woestenenk, Rob; Bousema, Teun; Mair, Gunnar R.; Khan, Shahid M.; Janse, Chris J.; Bártfai, Richárd; Sauerwein, Robert W.

    2016-01-01

    Sexual differentiation of malaria parasites into gametocytes in the vertebrate host and subsequent gamete fertilization in mosquitoes is essential for the spreading of the disease. The molecular processes orchestrating these transitions are far from fully understood. Here, we report the first transcriptome analysis of male and female Plasmodium falciparum gametocytes coupled with a comprehensive proteome analysis. In male gametocytes there is an enrichment of proteins involved in the formation of flagellated gametes; proteins involved in DNA replication, chromatin organization and axoneme formation. On the other hand, female gametocytes are enriched in proteins required for zygote formation and functions after fertilization; protein-, lipid- and energy-metabolism. Integration of transcriptome and proteome data revealed 512 highly expressed maternal transcripts without corresponding protein expression indicating large scale translational repression in P. falciparum female gametocytes for the first time. Despite a high degree of conservation between Plasmodium species, 260 of these ‘repressed transcripts’ have not been previously described. Moreover, for some of these genes, protein expression is only reported in oocysts and sporozoites indicating that repressed transcripts can be partitioned into short- and long-term storage. Finally, these data sets provide an essential resource for identification of vaccine/drug targets and for further mechanistic studies. PMID:27298255

  5. Thermal and convection analyses of the dendrite remelting rocket experiment; Experiment 74-21 in the space processing rocket program

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.; Pond, J. E.; Spradley, J. W.; Johnson, M. H.

    1976-01-01

    The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g.

  6. Isolation and Functional Gene Analyses of Aromatic-Hydrocarbon-Degrading Bacteria from a Polychlorinated-Dioxin-Dechlorinating Process

    PubMed Central

    Kaiya, Shinichi; Utsunomiya, Sati; Suzuki, Saori; Yoshida, Naoko; Futamata, Hiroyuki; Yamada, Takeshi; Hiraishi, Akira

    2012-01-01

    Aerobic aromatic-hydrocarbon-degrading bacteria from a semi-anaerobic microbial microcosm that exhibited apparent complete dechlorination of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) were isolated through enrichment and plating culture procedures with dibenzofuran as the model substrate. By 16S rRNA gene sequence comparisons, these dibenzofuran-degrading isolates were identified as being members of the phyla Actinobacteria, Firmicutes, and Proteobacteria, among which those of the genera Paenibacillus and Rhizobium were most abundant. All of the isolates utilized naphthalene as the sole carbon and energy source and degraded dibenzofuran metabolically or co-metabolically; however, they hardly attacked monochlorinated dibenzofuran and dibenzo-p-dioxin. By PCR cloning and sequencing, genes predicted to encode aromatic-ring-hydroxylating dioxygenase (AhDO) were detected in all test isolates. Real-time quantitative PCR assays with specific primer sets detected approximately 105 copies of the AhDO large subunit genes g−1 wet wt in the microcosm from which the isolates were obtained. This order of the copy number corresponded to approximately 1% of the 16S rRNA gene copies from “Dehalococcoides” and its relatives present as potent dechlorinators. These results suggest that aerobic AhDO-containing bacteria co-exist and play a role in the oxidative degradation of less chlorinated and completely dechlorinated products in the PCDD/F-dechlorinating process, thereby achieving the apparent complete dechlorination of PCDD/Fs. PMID:22791044

  7. Proteomic analyses identify a diverse array of nuclear processes affected by small ubiquitin-like modifier conjugation in Arabidopsis.

    PubMed

    Miller, Marcus J; Barrett-Wilt, Gregory A; Hua, Zhihua; Vierstra, Richard D

    2010-09-21

    The covalent attachment of SUMO (small ubiquitin-like modifier) to other intracellular proteins affects a broad range of nuclear processes in yeast and animals, including chromatin maintenance, transcription, and transport across the nuclear envelope, as well as protects proteins from ubiquitin addition. Substantial increases in SUMOylated proteins upon various stresses have also implicated this modification in the general stress response. To help understand the role(s) of SUMOylation in plants, we developed a stringent method to isolate SUMO-protein conjugates from Arabidopsis thaliana that exploits a tagged SUMO1 variant that faithfully replaces the wild-type protein. Following purification under denaturing conditions, SUMOylated proteins were identified by tandem mass spectrometry from both nonstressed plants and those exposed to heat and oxidative stress. The list of targets is enriched for factors that direct SUMOylation and for nuclear proteins involved in chromatin remodeling/repair, transcription, RNA metabolism, and protein trafficking. Targets of particular interest include histone H2B, components in the LEUNIG/TOPLESS corepressor complexes, and proteins that control histone acetylation and DNA methylation, which affect genome-wide transcription. SUMO attachment site(s) were identified in a subset of targets, including SUMO1 itself to confirm the assembly of poly-SUMO chains. SUMO1 also becomes conjugated with ubiquitin during heat stress, thus connecting these two posttranslational modifications in plants. Taken together, we propose that SUMOylation represents a rapid and global mechanism for reversibly manipulating plant chromosomal functions, especially during environmental stress.

  8. A novel intrusion signal processing method for phase-sensitive optical time-domain reflectometry (Φ-OTDR)

    NASA Astrophysics Data System (ADS)

    Wu, Huijuan; Li, Xiaoyu; Peng, Zhengpu; Rao, Yunjiang

    2014-05-01

    Phase-sensitive Optical-Time-Domain Reflectometry (Φ-OTDR) is a useful distributed fiber-optic sensing technology to detect and locate multiple dynamic disturbances, offering a cost-effective and sensitive solution for intrusion monitoring of long perimeters. The Φ-OTDR is affected by laser frequency drift, air movement, transient acoustic interference and environmental noises. resulting in high Nuisance Alarm Rates (NARs). In this paper, we proposed a novel intrusion signal processing method based on the singular spectrum analysis of the longitudinal time sequence of the Φ-OTDR. The experimental results shows that true intrusions can be correctly distinguished from varying background noises and sound or air movement interferences. The probability for correct detection can be improved up to ~94% and false alarm rate can be controlled as low as ~6%.

  9. Component flow processes at four streams in the Catskill Mountains, New York, analysed using episodic concentration/discharge relationship

    USGS Publications Warehouse

    Evans, C.; Davies, T.D.; Murdoch, Peter S.

    1999-01-01

    Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the study basins. Using a large natural sea-salt sodium input as a tracer for precipitation, it is argued that an additional distinction can be made between pre-event and event water travelling along the shallow subsurface flow path. Pre-event water is thought to be displaced by infiltrating event water, which becomes dominant on the falling limb of the hydrograph. Where, as appears to be the case for sulfate, a solute equilibrates rapidly within the soil, the pre-event-event water distinction is unimportant. However, for some solutes there are clear and consistent compositional differences between water from the two sources, evident as a hysteresis loop in concentration-discharge plots. Nitrate and acidity, in particular, appear to be elevated in event water following percolation through the organic horizon. Consequently, the most acidic, high nitrate conditions during an episode generally occur after peak discharge. A simple conceptual model of episode runoff generation is presented on the basis of these results.Plots of solute concentration against discharge have been used to relate stream hydrochemical variations to processes of flow generation, using data collected at four streams in the Catskill Mountains, New York, during the Episodic Response Project of the US Environmental Protection Agency. Results suggest that a two-component system of shallow and deep saturated subsurface flow, in which the two components respond simultaneously during hydrologic events, may be applicable to the

  10. Combining Internet monitoring processes, packaging and isotopic analyses to determine the market structure: example of Gamma Butyrolactone.

    PubMed

    Pazos, Diego; Giannasi, Pauline; Rossy, Quentin; Esseiva, Pierre

    2013-07-10

    The Internet is becoming more and more popular among drug users. The use of websites and forums to obtain illicit drugs and relevant information about the means of consumption is a growing phenomenon mainly for new synthetic drugs. Gamma Butyrolactone (GBL), a chemical precursor of Gamma Hydroxy Butyric acid (GHB), is used as a "club drug" and also in drug facilitated sexual assaults. Its market takes place mainly on the Internet through online websites but the structure of the market remains unknown. This research aims to combine digital, physical and chemical information to help understand the distribution routes and the structure of the GBL market. Based on an Internet monitoring process, thirty-nine websites selling GBL, mainly in the Netherlands, were detected between January 2010 and December 2011. Seventeen websites were categorized into six groups based on digital traces (e.g. IP addresses and contact information). In parallel, twenty-five bulk GBL specimens were purchased from sixteen websites for packaging comparisons and carbon isotopic measurements. Packaging information showed a high correlation with digital data confirming the links previously established whereas chemical information revealed undetected links and provided complementary information. Indeed, while digital and packaging data give relevant information about the retailers, the supply routes and the distribution close to the consumer, the carbon isotopic data provides upstream information about the production level and in particular the synthesis pathways and the chemical precursors. A three-level structured market has been thereby identified with a production level mainly located in China and in Germany, an online distribution level mainly hosted in the Netherlands and the customers who order on the Internet.

  11. Synchrotron FT-IR analyses of microstructured biomineral domains: Hints to the biomineralization processes in freshwater cultured pearls.

    NASA Astrophysics Data System (ADS)

    Soldati, A. L.; Vicente-Vilas, V.; Gasharova, B.; Jacob, D. E.

    2009-04-01

    Recent investigations in freshwater cultured pearls (bio-carbonate) by micro-Raman spectroscopy (Wehrmeister et al., 2008; Soldati et al., 2008), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) imaging (Jacob et al., 2008) show that the pearl biomineralisation starts with a self assembling process in which an existing gel matrix of amorphous calcium carbonate (ACC) and organic substances reorganizes and conglomerates in small domains; these conglomerates then form prisms and mature nacreous tablets of aragonite or vaterite. Raman spectroscopy shows that the calcium carbonate polymorphs have decreasing luminescence in the order ACC>Vaterite>Aragonite, coinciding with decreasing quantities of S and P (related to the organic matrix) measured by Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and Electron Probe Micro Analyzer (EPMA). Although little is known about the process of transformation of the ACC gel into vaterite and aragonite, it is speculated that this probably involves dehydration and change of the accompanying organic matrix. This is also supported by our laboratory FT-IR analysis. However, due to the small size of the areas of ACC (about 10 ?m) and the biogenic crystals an in-situ high spatially resolved IR-method is needed to record how the water content and organic matrix change in the biomineralisation sequence, to understand which processes take place in the self-organization. The beamline IR-1 at the ANKA synchrotron source (Karlsruhe, Germany) was used for this experiment. Freshwater cultured pearls from China cultured in Hyriopsis cumingii mussels by tissue nucleation methods (so-called beadless pearls) as well as by bead implantation methods (aragonite nucleus) were studied. The pearls were cut in half with a diamond-plated saw and polished with diamond paste on a copper plate. Micro-Raman spectroscopy maps (Department of Geosciences, at the Johannes Gutenberg-University, Mainz) were generated

  12. Sensitivity Analysis of Algan/GAN High Electron Mobility Transistors to Process Variation

    DTIC Science & Technology

    2008-02-01

    29 2.10.1 Lack of Bulk Substrates ... production is still in its infancy when compared to conventional semiconductors like Si and GaAs and is a much more complex process which can make...to decrease gate resistance by using mushroom or T gate designs. Cgd can be reduced by increasing the gate to drain spacing 8 (Lgd), which also

  13. Striatal Sensitivity during Reward Processing in Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Paloyelis, Yannis; Mehta, Mitul A.; Faraone, Stephen V.; Asherson, Philip; Kuntsi, Jonna

    2012-01-01

    Objective: Attention-deficit/hyperactivity disorder (ADHD) has been linked to deficits in the dopaminergic reward-processing circuitry; yet, existing evidence is limited, and the influence of genetic variation affecting dopamine signaling remains unknown. We investigated striatal responsivity to rewards in ADHD combined type (ADHD-CT) using…

  14. Early Parenting Intervention Aimed at Maternal Sensitivity and Discipline: A Process Evaluation

    ERIC Educational Resources Information Center

    Stolk, Mirjam N.; Mesman, Judi; van Zeijl, Jantien; Alink, Lenneke R. A.; Bakermans-Kranenburg, Marian J.; van IJzendoorn, Marinus H.; Juffer, Femmie; Koot, Hans M.

    2008-01-01

    This study investigated the influence of the intervention process on the effectiveness of a program aimed at promoting positive parenting. The study involved a homogeneous intervention sample (N = 120) of mothers and their 1-, 2-, or 3-year-old children screened for high levels of externalizing problems. The alliance between mother and intervener,…

  15. Sad mood increases pain sensitivity upon thermal grill illusion stimulation: implications for central pain processing.

    PubMed

    Boettger, Michael Karl; Schwier, Christiane; Bär, Karl-Jürgen

    2011-01-01

    In different fields of neuroscience research, illusions have successfully been used to unravel underlying mechanisms of stimulus processing. One such illusion existing for the field of pain research is the so-called thermal grill illusion. Here, painful sensations are elicited by interlacing warm and cold bars, with stimulus intensities (temperatures) of these bars being below the respective heat pain or cold pain thresholds. To date, the underlying mechanisms of this phenomenon are not completely understood. There is some agreement, however, that the sensation evoked by this stimulation is generated by central nervous interactions. Therefore, we followed two approaches in this study: firstly, we aimed at developing and validating a water-driven device which might be used in fMRI scanners in future studies - subject to minor adaptations. Secondly, we aimed to interfere with this illusion by induction of a sad mood state, a procedure which is suggested to influence central nervous structures that are also involved in pain processing. The newly developed device induced thermal grill sensations similar to those reported in the literature. Induction of sad, but not neutral mood states, resulted in higher pain and unpleasantness ratings of the painful illusion. These findings might be of importance for the understanding of pain processing in healthy volunteers, but putatively even more so in patients with major depressive disorder. Moreover, our results might indicate that central nervous structures involved in the affective domain or cognitive domain of pain processing might be involved in the perception of the illusion.

  16. Effect of process variables on the sulfate reduction process in bioreactors treating metal-containing wastewaters: factorial design and response surface analyses.

    PubMed

    Villa-Gomez, D K; Pakshirajan, K; Maestro, R; Mushi, S; Lens, P N L

    2015-07-01

    The individual and combined effect of the pH, chemical oxygen demand (COD) and SO4 (2-) concentration, metal to sulfide (M/S(2-)) ratio and hydraulic retention time (HRT) on the biological sulfate reduction (SR) process was evaluated in an inverse fluidized bed reactor by factorial design analysis (FDA) and response surface analysis (RSA). The regression-based model of the FDA described the experimental results well and revealed that the most significant variable affecting the process was the pH. The combined effect of the pH and HRT was barely observable, while the pH and COD concentration positive effect (up to 7 and 3 gCOD/L, respectively) enhanced the SR process. Contrary, the individual COD concentration effect only enhanced the COD removal efficiency, suggesting changes in the microbial pathway. The RSA showed that the M/S(2-) ratio determined whether the inhibition mechanism to the SR process was due to the presence of free metals or precipitated metal sulfides.

  17. Context sensitive formulations of antenna pattern correction and side lobe compensation for NOSS/LAMMR real time processing

    NASA Technical Reports Server (NTRS)

    Chin, R. T.; Beaudet, P. R.

    1981-01-01

    Large antenna multi-channel microwave radiometer (LAMMR) software specifications were written for LAMMR ground processing. There is a need to determine more computationally-efficient antenna temperature correction methods in compensating side lobe contributions especially near continents, islands and weather fronts. One of the major conclusions was that the antenna pattern corrections (APC) processes did not accomplish the implied goals of compensating for the antenna side lobe influences on brightness temperature. A-priori knowledge of land/water locations was shown to be needed and had to be incorporated in a context sensitive APC process if the artifacts caused by land presence is to be avoided. The high temperatures in land regions can severely bias the lower ocean response.

  18. Engineering analyses for evaluation of gasification and gas-cleanup processes for use in molten-carbonate fuel-cell power plants. Task C

    SciTech Connect

    Hamm, J.R.; Vidt, E.J.

    1982-02-01

    This report satisfies the Task C requirement for DOE contract DE-AC21-81MC16220 to provide engineering analyses of power systems utilizing coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants. The process information and data necessary for this study were extracted from sources in the public domain, including reports from DOE, EPRI, and EPA; work sponsored in whole or in part by Federal agencies; and from trade journals, MCFC developers, and manufacturers. The computer model used by Westinghouse, designated AHEAD, is proprietary and so is not provided in this report. The engineering analyses provide relative power system efficiency data for ten gasifier/gas cleanup fuel supply systems, including air- and oxygen-blown gasification, hot and cold desulfurization, and a range of MCFC operating pressure from 345 kPaa (50 psia) to 2069 kPaa (300 psia).

  19. Modeling of Convective-Stratiform Precipitation Processes: Sensitivity to Partitioning Methods and Numerical Advection Schemes

    NASA Technical Reports Server (NTRS)

    Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. The simulations are made using two different numerical advection schemes: 4th order and positive definite advection. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain. The midlatitude PRESTORM simulation was found to be nearly invariant with respect to advection type for most quantities while for TOGA COARE fourth order advection produced numerous shallow convective cores and positive definite advection fewer cells that were both broader and deeper penetrating above the freezing level.

  20. Up-conversion processes in Yb-sensitized Tm:ZBLAN

    NASA Astrophysics Data System (ADS)

    Carrig, Timothy J.; Cockroft, Nigel J.

    1996-11-01

    A systematic spectroscopic study of 22 rate-earth-ion doped ZBLAN glass samples was conducted to investigate the feasibility of sensitizing Tm:ZBLAN with Yb to facilitate the development of an efficient and conveniently pumped blue upconversion fiber laser. It was determined that, under conditions of single-color pumping, 480 nm emission from Tm3+ is strongest when Yb, Tm:ZBLAN is excited at a wavelength of approximately 975 nm. In this case, the strongest blue emission was obtained from a ZBLAN glass sample with a nominal dopant concentration of approximately 2.0 wt percent Yb + 0.3 wt percent Tm. Additionally, it was demonstrated that for weak 975 nm pump intensities, the strength of the blue upconversion emission can be greatly enhanced by simultaneously pumping at approximately 785 nm. This increase in upconversion efficiency is due to a reduction in the number of energy transfer steps needed to populate the Tm3+ 1G4 energy level. Measurements of fluorescence lifetimes as a function of dopant concentration wee also made for Yb3+, and Pr3+ transitions in ZBLAN in order to better characterize concentration quenching effects. Energy transfer between Tm3+ and Pr3+ in ZBLAN is also described.

  1. Fast and Sensitive Solution-Processed Visible-Blind Perovskite UV Photodetectors.

    PubMed

    Adinolfi, Valerio; Ouellette, Olivier; Saidaminov, Makhsud I; Walters, Grant; Abdelhady, Ahmed L; Bakr, Osman M; Sargent, Edward H

    2016-09-01

    The first visible-blind UV photodetector based on MAPbCl3 integrated on a substrate exhibits excellent performance, with responsivities reaching 18 A W(-1) below 400 nm and imaging-compatible response times of 1 ms. This is achieved by using substrate-integrated single crystals, thus overcoming the severe limitations affecting thin films and offering a new application of efficient, solution-processed, visible-transparent perovskite optoelectronics.

  2. Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations

    NASA Technical Reports Server (NTRS)

    Igel, Adele L.; Van Den Heever, Susan C.; Naud, Catherine M.; Saleeby, Stephen M.; Posselt, Derek J.

    2013-01-01

    An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front.

  3. Sensitivities of Earth's core and mantle compositions to accretion and differentiation processes

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Campbell, Andrew J.; Ciesla, Fred J.

    2017-01-01

    The Earth and other terrestrial planets formed through the accretion of smaller bodies, with their core and mantle compositions primarily set by metal-silicate interactions during accretion. The conditions of these interactions are poorly understood, but could provide insight into the mechanisms of planetary core formation and the composition of Earth's core. Here we present modeling of Earth's core formation, combining results of 100 N-body accretion simulations with high pressure-temperature metal-silicate partitioning experiments. We explored how various aspects of accretion and core formation influence the resulting core and mantle chemistry: depth of equilibration, amounts of metal and silicate that equilibrate, initial distribution of oxidation states in the disk, temperature distribution in the planet, and target:impactor ratio of equilibrating silicate. Virtually all sets of model parameters that are able to reproduce the Earth's mantle composition result in at least several weight percent of both silicon and oxygen in the core, with more silicon than oxygen. This implies that the core's light element budget may be dominated by these elements, and is consistent with ≤1-2 wt% of other light elements. Reproducing geochemical and geophysical constraints requires that Earth formed from reduced materials that equilibrated at temperatures near or slightly above the mantle liquidus during accretion. The results indicate a strong tradeoff between the compositional effects of the depth of equilibration and the amounts of metal and silicate that equilibrate, so these aspects should be targeted in future studies aiming to better understand core formation conditions. Over the range of allowed parameter space, core and mantle compositions are most sensitive to these factors as well as stochastic variations in what the planet accreted as a function of time, so tighter constraints on these parameters will lead to an improved understanding of Earth's core composition.

  4. On the mechanism of influence of explosive compounds: Destruction process on sensitivity of these compounds to mechanic impacts

    SciTech Connect

    Filin, V.P.; Loboyko, B.G.; Averin, A.N.; Litvinov, B.V.; Korotkikh, I.G.; Alekseev, A.V.; Belenovsky, Y.A.; Taibinov, N.P.

    1996-05-01

    The results of investigations into sensitivity of the HMX-based explosive compound samples to mechanic stimuli are shown in the presented report. As a result of experimental studies it was illustrated, that explosives deformation and destruction processes under mechanical stimuli are accompanied by occurrence of different electric phenomena. The hypothesis on possible influence of electric phenomena occurring under deformation and destruction on the mechanism of formation of zones with high density of energy is discussed in the report. {copyright} {ital 1996 American Institute of Physics.}

  5. A Sensitivity Analysis of the BRL Message Processing Model (BRLMPM) Data Inputs.

    DTIC Science & Technology

    1982-12-01

    areas including artillery system training, decision and control theory applications, man-machine interface requirements, and the application of arti...ficial Intelligence, gaming theory , and distributed decision-making processes to fire support control automation. Specific plans for the short term...34’" " - - "" " " Ŕ.10 ’ " " . . . . .. . . . . . U.. 0 00 U- U- 00 C ICI z ~0 W ccI U- UJ zk z o . CIO 0 In%- 4- U =I) Asno SANal 0 NOInV~ - U- 37 ,. . *i o

  6. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process.

    PubMed

    Ghosal, Abhisek; Sekar, Thillai V; Said, Hamid M

    2014-08-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na(+)-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na(+)-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS.

  7. Analyses of requirements for computer control and data processing experiment subsystems: Image data processing system (IDAPS) software description (7094 version), volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A description of each of the software modules of the Image Data Processing System (IDAPS) is presented. The changes in the software modules are the result of additions to the application software of the system and an upgrade of the IBM 7094 Mod(1) computer to a 1301 disk storage configuration. Necessary information about IDAPS sofware is supplied to the computer programmer who desires to make changes in the software system or who desires to use portions of the software outside of the IDAPS system. Each software module is documented with: module name, purpose, usage, common block(s) description, method (algorithm of subroutine) flow diagram (if needed), subroutines called, and storage requirements.

  8. Adaptive smoothing based on Gaussian processes regression increases the sensitivity and specificity of fMRI data.

    PubMed

    Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z

    2017-03-01

    Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc.

  9. A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies.

    PubMed

    Estrada, José M; Kraakman, N J R Bart; Lebrero, Raquel; Muñoz, Raúl

    2012-01-01

    The sensitivity of the economics of the five most commonly applied odour abatement technologies (biofiltration, biotrickling filtration, activated carbon adsorption, chemical scrubbing and a hybrid technology consisting of a biotrickling filter coupled with carbon adsorption) towards design parameters and commodity prices was evaluated. Besides, the influence of the geographical location on the Net Present Value calculated for a 20 years lifespan (NPV20) of each technology and its robustness towards typical process fluctuations and operational upsets were also assessed. This comparative analysis showed that biological techniques present lower operating costs (up to 6 times) and lower sensitivity than their physical/chemical counterparts, with the packing material being the key parameter affecting their operating costs (40-50% of the total operating costs). The use of recycled or partially treated water (e.g. secondary effluent in wastewater treatment plants) offers an opportunity to significantly reduce costs in biological techniques. Physical/chemical technologies present a high sensitivity towards H2S concentration, which is an important drawback due to the fluctuating nature of malodorous emissions. The geographical analysis evidenced high NPV20 variations around the world for all the technologies evaluated, but despite the differences in wage and price levels, biofiltration and biotrickling filtration are always the most cost-efficient alternatives (NPV20). When, in an economical evaluation, the robustness is as relevant as the overall costs (NPV20), the hybrid technology would move up next to BTF as the most preferred technologies.

  10. Numerical methods for improving sensitivity analysis and parameter estimation of virus transport simulated using sorptive-reactive processes

    USGS Publications Warehouse

    Barth, G.; Hill, M.C.

    2005-01-01

    Using one- and two-dimensional homogeneous simulations, this paper addresses challenges associated with sensitivity analysis and parameter estimation for virus transport simulated using sorptive-reactive processes. Head, flow, and conservative- and virus-transport observations are considered. The paper examines the use of (1) observed-value weighting, (2) breakthrough-curve temporal moment observations, and (3) the significance of changes in the transport time-step size. The results suggest that (1) sensitivities using observed-value weighting are more susceptible to numerical solution variability, (2) temporal moments of the breakthrough curve are a more robust measure of sensitivity than individual conservative-transport observations, and (3) the transport-simulation time step size is more important than the inactivation rate in solution and about as important as at least two other parameters, reflecting the ease with which results can be influenced by numerical issues. The approach presented allows more accurate evaluation of the information provided by observations for estimation of parameters and generally improves the potential for reasonable parameter-estimation results. ?? 2004 Elsevier B.V. All rights reserved.

  11. Anatomical dissociation of melanocortin receptor agonist effects on taste- and gut-sensitive feeding processes

    PubMed Central

    Palacios, Mariana; LaRiviere, Michael; Grigg, Lindsay A.; Lim, Christopher; Matute, Eduardo; Lord, Julia

    2011-01-01

    Injections of the melanocortin 3/4 receptor (MCR) agonist melanotan II (MTII) to a variety of brain structures produces anorexia, suggesting distributed brain MCR control of food intake. We performed a detailed analysis of feeding behavior (licking microstructure analysis) after a range of MTII doses (0.005 nM to 1 nM) was targeted to the forebrain (third ventricle, 3V) or hindbrain (fourth ventricle, 4V) regions. MTII (0.1 nM and 1 nM) delivered to the 3V or 4V significantly reduced 0.8 M sucrose intake. The anorexia was mediated by reductions in the number of licking bursts in the meal, intrameal ingestion rate, and meal duration; these measures have been associated with postingestive feedback inhibition of feeding. Anorexia after 3V but not 4V MTII injection was also associated with a reduced rate of licking in the first minute (initial lick rate) and reduced mean duration of licking bursts; these measures have been associated with taste evaluation. MTII effects on taste evaluation were further explored: In experiment 2, 3V MTII (1 nM) significantly reduced intake of noncaloric 4 mM saccharin and 0.1 M and 1 M sucrose solutions, but not water. The anorexia was again associated with reduced number of licking bursts, ingestion rate, meal duration, initial lick rate, and mean burst duration. In experiments 3 and 4, brief access (20 s) licking responses for sweet sucrose (0.015 M to 0.25 M) and bitter quinine hydrochloride (0.01 mM to 1 mM) solutions were evaluated. Licking responses for sucrose were suppressed, whereas those for quinine solutions were increased after 3V MTII, but not after 4V MTII injections (0.1 nM and 1 nM). The results suggest that multiple brain MCR sites influence sensitivity to visceral feedback, whereas forebrain MCR stimulation is necessary to influence taste responsiveness, possibly through attenuation of the perceived intensity of taste stimuli. PMID:21734020

  12. Social defeat stress potentiates thermal sensitivity in operant models of pain processing

    PubMed Central

    Marcinkiewcz, Catherine A.; Green, Megan K.; Devine, Darragh P.; Duarte, Peter; Vierck, Charles J.; Yezierski, Robert P.

    2013-01-01

    Higher-order processing of nociceptive input is distributed in corticolimbic regions of the brain, including the anterior cingulate, parieto-insular and prefrontal cortices, as well as subcortical structures such as the bed nucleus of stria terminalis and amygdala. In addition to their role in pain processing, these regions encode or modulate emotional, motivational and sensory responses to stress. Thus, pain and stress pathways in the brain intersect at cortical and subcortical forebrain structures. Accordingly, previous work has shown that acute restraint stress in female rats induces heat hyperalgesia in a forebrain-dependent operant test of thermal escape. In the present study, we investigated the effects of social defeat stress in male rats on the operant escape task, as well as in a test of nociceptive thermal preference. After establishing baseline behaviors in these tests, separate groups of rats were socially defeated by dominant “resident” male rats. They were tested for thermal preference after 5 successive social defeat sessions. Escape from cold, heat and a neutral warm temperature also was evaluated after social defeat. Defeated rats exhibited a significant increase in cold preference after social defeat compared to the baseline. In the escape task, the rats exhibited increased escape from warm and nociceptive cold and heat temperatures. Thus, chronic social stress produces hyperalgesia for both hot and cold stimuli in male rats, suggesting a mutually facilitatory cross-regulation between central pathways regulating stress and pain. PMID:19059227

  13. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    NASA Astrophysics Data System (ADS)

    Skov, Daniel S.; Egholm, David L.

    2016-04-01

    Surface erosion and sediment production seem to have accelerated globally as climate cooled in the Late Cenozoic, [Molnar, P. 2004, Herman et al 2013]. Glaciers emerged in many high mountain ranges during the Quaternary, and glaciation therefore represents a likely explanation for faster erosion in such places. Still, observations and measurements point to increases in erosion rates also in landscapes where erosion is driven mainly by fluvial processes [Lease and Ehlers (2013), Reusser (2004)]. Flume experiments and fieldwork have shown that rates of incision are to a large degree controlled by the sediment load of streams [e.g. Sklar and Dietrich (2001), Beer and Turowski (2015)]. This realization led to the formulation of sediment-flux dependent incision models [Sklar and Dietrich (2004)]. The sediment-flux dependence links incision in the channels to hillslope processes that supply sediment to the channels. The rates of weathering and soil transport on the hillslopes are processes that are likely to respond to changing temperatures, e.g. because of vegetation changes or the occurrence of frost. In this study, we perform computational landscape evolution experiments, where the coupling between fluvial incision and hillslope processes is accounted for by coupling a sediment-flux-dependent model for fluvial incision to a climate-dependent model for weathering and hillslope sediment transport. The computational experiments first of all demonstrate a strong positive feedback between channel and hillslope processes. In general, faster weathering leads to higher rates of channel incision, which further increases the weathering rates, mainly because of hillslope steepening. Slower weathering leads to the opposite result. The experiments also demonstrate, however, that the feedbacks vary significantly between different parts of a drainage network. For example, increasing hillslope sediment production may accelerate incision in the upper parts of the catchment, while at

  14. Sociopolitical Analyses.

    ERIC Educational Resources Information Center

    Van Galen, Jane, Ed.; And Others

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains four articles devoted to the topic of "Sociopolitical Analyses." In "An Interview with Peter L. McLaren," Mary Leach presented the views of Peter L. McLaren on topics of local and national discourses, values, and the politics of difference. Landon E.…

  15. Climate-sensitive feedbacks between hillslope processes and fluvial erosion in sediment-driven incision models

    NASA Astrophysics Data System (ADS)

    Skov, Daniel; Egholm, David

    2015-04-01

    Surface erosion and sediment production accelerated dramatically in most parts of the world as the climate cooled in the Late Cenozoic, (e.g. Molnar, Annu. Rev. Earth Planet. Sci. 32, 2004). In many high mountain ranges, glaciers emerged for the first time during the Quaternary, and they represent a likely explanation for the accelerated erosion in such places. Still, observations and measurements point to increases in erosion rate also in landscapes where erosion is driven mainly by fluvial processes (e.g. Lease and Ehlers, Science 341, 2013). Why fluvial incision responds to climate change remains enigmatic, in particular because the obvious links to variations in precipitation, and hence water flux, are not generally supported by erosion rate measures (Stock et al., GSA Bulletin 117, 2005). This study explores potential links between accelerating rates of river incision and sediment production on hillslopes that surround the channel network. Hillslope soil production and soil transport are processes that are likely to respond to decreasing temperatures, because the density of vegetation and for example the occurrence of frost influence rates of weathering and sediment flow. We perform computational landscape evolution experiments where a sediment-flux-dependent model for fluvial incision (e.g. Sklar and Dietrich, Geology 29, 2001) is coupled to models for sediment production and transport on hillslopes. The resulting coupled landscape dynamics is of a highly nonlinear nature, where even small changes in hillslope sediment production far up in a drainage network propagate all the way through the downstream fluvial system. Dependent on the total sediment load, the fluvial system may respond with increased incision that steepens the hillslopes and starts a positive feedback loop that accelerates overall erosion.

  16. Photoperiod-sensitive cytoplasmic male sterility in wheat: nuclear-mitochondrial incompatibility results in differential processing of the mitochondrial orf25 gene.

    PubMed

    Ogihara, Y; Kurihara, Y; Futami, K; Tsuji, K; Murai, K

    1999-12-01

    An alloplasmic wheat line with the cytoplasm of Aegilops crassa expresses photoperiod-sensitive cytoplasmic male sterility (PCMS). Southern- and Northern-hybridization analyses showed that this line contains alterations in both the gene structure and transcription patterns of the mitochondrial gene orf25. In this study, the nucleotide sequence around the orf25 gene of Ae. crassa (CR-orf25) and common wheat (AE-orf25) was determined, and we found that the upstream region of CR-orf25 had been replaced by that of rps7 of common wheat (AE-rps7) through recombination. A novel open reading frame (orf48) is present upstream of CR-orf25. In these three genes, transcription was initiated from the consensus promoter motif of plant mitochondrial genes located in the upstream regions. Processing enzymes in Ae. crassa and common wheat cleave the respective precursor mRNAs, namely CR-orf25 and AE-rps7, at sites similar to that of the premature mitochondrial 26S rRNA. In contrast, the precursor mRNA is not effectively processed at the target sequence of CR-orf25 in the alloplasmic wheat line. Because major transcripts of the euplasmic CR-orf25 and AE-rps7 genes would result in a truncated orf48 product, one possibility is that the orf48 protein might disturb mitochondrial function at a specific stage and hence affect the expression of the PCMS trait.

  17. Tailoring a video-feedback intervention for sensitive discipline to parents with intellectual disabilities: a process evaluation.

    PubMed

    Hodes, Marja W; Meppelder, H Marieke; Schuengel, Carlo; Kef, Sabina

    2014-01-01

    Parenting support programs for the general population may not be effective for parents with intellectual disabilities (ID). A videobased intervention program based on attachment and coercion theory (Video-feedback Intervention to promote Positive Parenting with additional focus on Sensitive Discipline; VIPP-SD) was tailored to parents with ID and the implementation of the adapted program was evaluated by the home visitors conducting the program. Home visitors (N = 17) of 36 families rated the intervention process during each session. Home visitors' evaluations showed a significant increase in positive ratings of parents' easiness to work with, amenability to influence, and openness. Cooperation remained stable. A case example illustrated this process, showing how feedback using video facilitated changes in the perceptions and attributions of a mother with mild ID.

  18. Delivering culturally sensitive health messages: the process of adapting brochures for grandparents raising grandchildren in Hawai'i.

    PubMed

    Yancura, Loriena A

    2010-05-01

    The efficacy of programs to reduce health disparities depends on their ability to deliver messages in a culturally sensitive manner. This article describes the process of designing a series of brochures for grandparents raising grandchildren. National source material on topics important to grandparents (self-care, service use, addiction, and grandchildren's difficult behaviors) was put into draft brochures and pilot tested in two focus groups drawn from Native Hawaiian Asian and Pacific Islander populations. Elements of surface and deep levels directed the form and content of the final brochures. On a surface level, these brochures reflect local culture through pictures and language. On a deep level, which integrates cultural beliefs and practices, they reflect the importance of indirect communication and harmonious relationships. The final brochures have been received favorably in the community. The process of adapting educational material with attention to surface and deep levels can serve as a guide for other health promotion materials.

  19. Wheat-based foods and non celiac gluten/wheat sensitivity: Is drastic processing the main key issue?

    PubMed

    Fardet, Anthony

    2015-12-01

    While gluten and wheat must be absolutely avoided in coeliac disease and allergy, respectively, nutritional recommendations are largely more confused about non-coeliac wheat/gluten sensitivity (NCWGS). Today, some even recommend avoiding all cereal-based foods. In this paper, the increased NCWGS prevalence is hypothesized to parallel the use of more and more drastic processes applied to the original wheat grain. First, a parallel between gluten-related disorders and wheat processing and consumption evolution is briefly proposed. Notably, increased use of exogenous vital gluten is considered. Drastic processing in wheat technology are mainly grain fractionation and refining followed by recombination and salt, sugars and fats addition, being able to render ultra-processed cereal-based foods more prone to trigger chronic low-grade inflammation. Concerning bread, intensive kneading and the choice of wheat varieties with high baking quality may have rendered gluten less digestible, moving digestion from pancreatic to intestinal proteases. The hypothesis of a gluten resistant fraction reaching colon and interacting with microflora is also considered in relation with increased inflammation. Besides, wheat flour refining removes fiber co-passenger which have potential anti-inflammatory property able to protect digestive epithelium. Finally, some research tracks are proposed, notably the comparison of NCWGS prevalence in populations consuming ultra-versus minimally-processed cereal-based foods.

  20. Inhibition, reinforcement sensitivity and temporal information processing in ADHD and ADHD+ODD: evidence of a separate entity?

    PubMed

    Luman, Marjolein; van Noesel, Steffen J P; Papanikolau, Alky; Van Oostenbruggen-Scheffer, Janneke; Veugelers, Diane; Sergeant, Joseph A; Oosterlaan, Jaap

    2009-11-01

    This study compared children with ADHD-only, ADHD+ODD and normal controls (age 8-12) on three key neurocognitive functions: response inhibition, reinforcement sensitivity, and temporal information processing. The goal was twofold: (a) to investigate neurocognitive impairments in children with ADHD-only and children with ADHD+ODD, and (b) to test whether ADHD+ODD is a more severe from of ADHD in terms of neurocognitive performance. In Experiment 1, inhibition abilities were measured using the Stop Task. In Experiment 2, reinforcement sensitivity and temporal information processing abilities were measured using a Timing Task with both a reward and penalty condition. Compared to controls, children with ADHD-only demonstrated impaired inhibitory control, showed more time underestimations, and showed performance deterioration in the face of reward and penalty. Children with ADHD+ODD performed in-between children with ADHD-only and controls in terms of inhibitory controls and the tendency to underestimate time, but were more impaired than controls and children with ADHD-only in terms of timing variability. In the face of reward and penalty children with ADHD+ODD improved their performance compared to a neutral condition, in contrast to children with ADHD-only. In the face of reward, the performance improvement in the ADHD+ODD group was disproportionally larger than that of controls. Taken together the findings suggest that, in terms of neurocognitive functioning, comorbid ADHD+ODD is a substantial different entity than ADHD-only.

  1. Integrated Process Monitoring based on Systems of Sensors for Enhanced Nuclear Safeguards Sensitivity and Robustness

    SciTech Connect

    Humberto E. Garcia

    2014-07-01

    This paper illustrates safeguards benefits that process monitoring (PM) can have as a diversion deterrent and as a complementary safeguards measure to nuclear material accountancy (NMA). In order to infer the possible existence of proliferation-driven activities, the objective of NMA-based methods is often to statistically evaluate materials unaccounted for (MUF) computed by solving a given mass balance equation related to a material balance area (MBA) at every material balance period (MBP), a particular objective for a PM-based approach may be to statistically infer and evaluate anomalies unaccounted for (AUF) that may have occurred within a MBP. Although possibly being indicative of proliferation-driven activities, the detection and tracking of anomaly patterns is not trivial because some executed events may be unobservable or unreliably observed as others. The proposed similarity between NMA- and PM-based approaches is important as performance metrics utilized for evaluating NMA-based methods, such as detection probability (DP) and false alarm probability (FAP), can also be applied for assessing PM-based safeguards solutions. To this end, AUF count estimates can be translated into significant quantity (SQ) equivalents that may have been diverted within a given MBP. A diversion alarm is reported if this mass estimate is greater than or equal to the selected value for alarm level (AL), appropriately chosen to optimize DP and FAP based on the particular characteristics of the monitored MBA, the sensors utilized, and the data processing method employed for integrating and analyzing collected measurements. To illustrate the application of the proposed PM approach, a protracted diversion of Pu in a waste stream was selected based on incomplete fuel dissolution in a dissolver unit operation, as this diversion scenario is considered to be problematic for detection using NMA-based methods alone. Results demonstrate benefits of conducting PM under a system

  2. Sensitivity Analysis of Coupled Groundwater Processes within a Land Surface Model

    SciTech Connect

    Maxwell, R M; Miller, N L; Kollet, S J

    2004-05-05

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budgets that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, models for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM2.0) and a variably-saturated groundwater model (ParFlow) have been coupled as single model, in single-column and distributed form. An initial set of single column simulations based on data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) and synthetic data demonstrate the temporal dynamics of both of the coupled models. A 15-year single-column simulation using the data from the Usadievskiy catchment in Valdai, Russia demonstrate the coupled model's ability to accurately predict the soil moisture profile and location of the water table, in addition to water and energy balance within the watershed. The distributed coupled model will also be demonstrated using a series of spatially variable subsurface parameter runs, which will be used to investigate upscaling in land-surface models. The coupled model will ultimately be used to assist

  3. Immunoassays in a porous silicon interferometric biosensor combined with sensitive signal processing

    NASA Astrophysics Data System (ADS)

    Tinsley-Bown, A.; Smith, R. G.; Hayward, S.; Anderson, M. H.; Koker, L.; Green, A.; Torrens, R.; Wilkinson, A.-S.; Perkins, E. A.; Squirrell, D. J.; Nicklin, S.; Hutchinson, A.; Simons, A. J.; Cox, T. I.

    2005-06-01

    Orthogonal subspace signal processing algorithms (OSPA) have been developed to extract the optical thickness of a porous silicon layer to within one part in 105 from its reflectivity spectrum. This is equivalent to a limit of detection (LOD) of 40 pm change in optical thickness for a 3 μm thick layer, or an LOD of 1/2000 of a monolayer coverage with antibodies, of molecular weight 160 k Daltons, within a layer with pores of 100 nm diameter. A large molecule {horseradish peroxidase (HRP), MWt 40 kDa} has been detected at a concentration of 1 μg/ml by measuring its direct binding to anti-HRP antibodies immobilised within a porous silicon layer. A competitive assay has been demonstrated for the detection of a small molecule {2, 4, 6 trinitrotoluene (TNT), MWt 227 Da} at 10 μg/ml. The projected LODs for HRP and TNT by these assays are 50 ng/ml and 1 μg/ml respectively.

  4. Probing into regional O3 and particulate matter pollution in the United States: 2. An examination of formation mechanisms through a process analysis technique and sensitivity study

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Wen, Xin-Yu; Wang, Kai; Vijayaraghavan, Krish; Jacobson, Mark Z.

    2009-11-01

    Following a comprehensive model evaluation in part 1, this part 2 paper describes results from 1 year process analysis and a number of sensitivity simulations using the Community Multiscale Air Quality (CMAQ) modeling system aimed to understand the formation mechanisms of O3 and PM2.5, their impacts on global environment, and implications for pollution control policies. Process analyses show that the most influential processes for O3 in the planetary boundary layer (PBL) are vertical and horizontal transport, gas-phase chemistry, and dry deposition and those for PM2.5 are primary PM emissions, horizontal transport, PM processes, and cloud processes. Exports of O3 and Ox from the U.S. PBL to free troposphere occur primarily in summer and at a rate of 0.16 and 0.65 Gmoles day-1, respectively. In contrast, export of PM2.5 is found to occur during all seasons and at rates of 25.68-34.18 Ggrams day-1, indicating a need to monitor and control PM2.5 throughout the year. Among nine photochemical indicators examined, the most robust include PH2O2/PHNO3, HCHO/NOy, and HCHO/NOz in winter and summer, H2O2/(O3 + NO2) in winter, and NOy in summer. They indicate a VOC-limited O3 chemistry in most areas in winter, but a NOx-limited O3 chemistry in most areas except for major cities in April-November, providing a rationale for nationwide NOx emission control and integrated control of NOx and VOCs emissions for large cities during high O3 seasons (May-September). For sensitivity of PM2.5 to its precursors, the adjusted gas ratio provides a more robust indicator than that without adjustment, especially for areas with insufficient sulfate neutralization in winter. NH4NO3 can be formed in most of the domain. Integrated control of emissions of PM precursors such as SO2, NOx, and NH3 are necessary for PM2.5 attainment. Among four types of VOCs examined, O3 formation is primarily affected by isoprene and low molecular weight anthropogenic VOCs, and PM2.5 formation is affected largely by

  5. Numerical investigation of sensitivity of the Black Sea mixed layer to vertical turbulent diffusion processes

    NASA Astrophysics Data System (ADS)

    Kvaratskhelia, Diana; Demetrashvili, Demuri

    2015-04-01

    The upper mixed-layer of seas and oceans is one of the important water areas, the thermodynamic state of which defines many important physical, chemical or biological processes in the sea- atmosphere environment. The same can be note concerning the Black Sea turbulent mixed layer, which represents the object of our investigation. It is well known that the depth of the mixed layer is generaly determined by measurements of water properties: temperature and sigma-t (density) but here the depth of the mixed layer and its variability are investigated by using of the basin-scale numerical model of the Black Sea dynamics of M. Nodia Institute of Geophysics (BSM-IG, Tbilisi, Georgia). The main object of this study is to investigate the Black Sea upper mixed-layer generation and its evolution in connection with the nonstationarity atmospheric circulation and thermohaline action in the inner-annual time scale. Besides, how the temperature and salinity fields of the Black Sea upper layer are substantially reacted by the vertical diffusion coefficient are the centre of our attention. Therefore, the coefficient of vertical turbulent diffusion for heat and salt are tested as constant equal to 10 cm2s-1 and it was parameterized by modified Oboukhov's formula. The results of the numerical investigations show that: in wintertime for any choosing of this vertical diffusion coefficient the intense wind-driven turbulence promotes mixing aproximetly till 16-26 m in deep layers of the Black Sea. Except for that, cold fluxes through the surface and precipitation-evapuration system play aditionally role on the mixed layer forming as well. During the transitive spring season (in difference from the cold season), when the depth of the mixed layer is aproxometly 2-4 m., the role of vertical turbulent viscosity insignificantly grows. In the warm season (summer), when the mixed layer does not observe in the upper layer of the Black Sea, the role of the vertical diffusion coefficient is more

  6. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells.

    PubMed

    Liu, Hsiao-Wei; Liang, Sheng-Ping; Wu, Ting-Jui; Chang, Haoming; Kao, Peng-Kai; Hsu, Cheng-Che; Chen, Jian-Zhang; Chou, Pi-Tai; Cheng, I-Chun

    2014-09-10

    In this work, we present the use of reduced graphene oxide (rGO) as the counter electrode materials in dye-sensitized solar cells (DSSCs). rGO was first deposited on a fluorine-doped tin oxide glass substrate by screen-printing, followed by post-treatment to remove excessive organic additives. We investigated the effect of atmospheric pressure plasma jet (APPJ) treatment on the DSSC performance. A power conversion efficiency of 5.19% was reached when DSSCs with an rGO counter electrode were treated by APPJs in the ambient air for a few seconds. For comparison, it requires a conventional calcination process at 400 °C for 15 min to obtain comparable efficiency. Scanning electron micrographs show that the APPJ treatment modifies the rGO structure, which may reduce its conductivity in part but simultaneously greatly enhances its catalytic activity. Combined with the rapid removal of organic additives by the highly reactive APPJ, DSSCs with APPJ-treated rGO counter electrode show comparable efficiencies to furnace-calcined rGO counter electrodes with greatly reduced process time. This ultrashort process time renders an estimated energy consumption per unit area of 1.1 kJ/cm(2), which is only one-third of that consumed in a conventional furnace calcination process. This new methodology thus saves energy, cost, and time, which is greatly beneficial to future mass production.

  7. Cross-linking of β-lactoglobulin enhances allergic sensitization through changes in cellular uptake and processing.

    PubMed

    Stojadinovic, Marija; Pieters, Raymond; Smit, Joost; Velickovic, Tanja Cirkovic

    2014-07-01

    Cross-linking of proteins has been exploited by the food industry to change food texture and functionality but the effects of these manipulations on food allergenicity still remain unclear. To model the safety assessment of these food biopolymers, we created cross-linked bovine β-lactoglobulin (CL-BLG) by laccase treatment. The purpose of the present study was to compare the immunogenicity and allergenicity of CL-BLG with native BLG in a mouse model of food allergy. First, BALB/c mice were intragastrically sensitized and orally challenged with BLG or CL-BLG and BLG-specific serum antibodies and splenic leukocyte cytokine production and cell proliferation were measured. Hereafter, epithelial protein uptake was monitored in vitro and in vivo and the effects of BLG cross-linking on interactions with dendritic cells were analyzed in vitro. Sensitization of mice with CL-BLG resulted in higher levels of IgE, IgG1, and IgG2a. In contrast, a subsequent oral challenge with CL-BLG resulted in lower mast cell degranulation. Cross-linking of BLG reduced its epithelial uptake but promoted sampling through Peyer's patches. Differences in endocytosis by dendritic cells (DCs) and in vitro endolysosomal processing were observed between BLG and CL-BLG. CL-BLG primed DCs induced higher Th2 response in vitro. Cross-linking of BLG increased its sensitizing capacity, implying that the assessment of highly polymerized food proteins is of clinical importance in food allergy. Moreover, manufacturers of foods or therapeutic proteins should pay considerate attention to the health risk of protein aggregation.

  8. Regional Homogeneity of Resting-State Brain Activity Suppresses the Effect of Dopamine-Related Genes on Sensory Processing Sensitivity

    PubMed Central

    Chen, Chuansheng; Moyzis, Robert; Xia, Mingrui; He, Yong; Xue, Gui; Li, Jin; He, Qinghua; Lei, Xuemei; Wang, Yunxin; Liu, Bin; Chen, Wen; Zhu, Bi; Dong, Qi

    2015-01-01

    Sensory processing sensitivity (SPS) is an intrinsic personality trait whose genetic and neural bases have recently been studied. The current study used a neural mediation model to explore whether resting-state brain functions mediated the effects of dopamine-related genes on SPS. 298 healthy Chinese college students (96 males, mean age = 20.42 years, SD = 0.89) were scanned with magnetic resonance imaging during resting state, genotyped for 98 loci within the dopamine system, and administered the Highly Sensitive Person Scale. We extracted a “gene score” that summarized the genetic variations representing the 10 loci that were significantly linked to SPS, and then used path analysis to search for brain regions whose resting-state data would help explain the gene-behavior association. Mediation analysis revealed that temporal homogeneity of regional spontaneous activity (ReHo) in the precuneus actually suppressed the effect of dopamine-related genes on SPS. The path model explained 16% of the variance of SPS. This study represents the first attempt at using a multi-gene voxel-based neural mediation model to explore the complex relations among genes, brain, and personality. PMID:26308205

  9. Strain-rate sensitivity of powder metallurgy superalloys associated with steady-state DRX during hot compression process

    NASA Astrophysics Data System (ADS)

    Ning, Y. Q.; Xie, B. C.; Zhou, C.; Liang, H. Q.; Fu, M. W.

    2017-03-01

    Strain-rate sensitivity (SRS) is an important parameter to describe the thermodynamic behavior in plastic deformation process. In this research, the variation of SRS associated with steady-state DRX in P/M superalloys was quantitatively investigated. Based on the theoretical analysis and microstructural observation of the alloy after deformation, the SRS coefficient was employed to identify the deformation mechanism of the alloy. Meanwhile, the corresponding relationship between SRS coefficient m, stress exponent n and deformation mechanism was revealed. The stress exponent n in the Arrhenius constitutive model of P/M superalloys was calculated. In addition, it is found there is a relatively stable stress exponent range ( n = 4-6), indicating that dislocation evolution played as the major hot deformation mechanism for P/M FGH4096 superalloy. Furthermore, the Bergstrom model and Senkov model were used and combined together to estimate the SRS coefficient in the steady-state DRX and the m value maintains at 0.2-0.22, which are consistent with the microstructural evolution during hot deformation process. The SRS coefficient distribution map and power dissipation efficiency distribution map were finally constructed associated with the microstructural evolution during hot deformation, which can be used to optimize the processing parameters of the superalloys.

  10. Tropical Convective Responses to Microphysical and Radiative Processes: A Sensitivity Study With a 2D Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.

    2004-01-01

    Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.

  11. Dye-sensitized solar cells with reduced graphene oxide as the counter electrode prepared by a green photothermal reduction process.

    PubMed

    Yeh, Min-Hsin; Lin, Lu-Yin; Chang, Ling-Yu; Leu, Yow-An; Cheng, Wan-Yu; Lin, Jiang-Jen; Ho, Kuo-Chuan

    2014-04-14

    Highly conductive reduced graphene oxide (rGO) with good electrocatalytic ability for reducing triiodide ions (I3(-)) is a promising catalyst for the counter electrode (CE) of dye-sensitized solar cells (DSSCs). However, hazardous chemical reducing agents or energy-consuming thermal treatments are required for preparing rGO from graphene oxide (GO). Therefore, it is necessary to find other effective and green reduction processes for the preparation of rGO and to fabricate rGO-based DSSCs. In this study, GO was prepared using a modified Hummers method from graphite powder, and further reduced to rGO through a photothermal reduction process (to give P-rGO). P-rGO shows better electrocatalytic ability due mainly to its high standard heterogeneous rate constant for I3(-) reduction and in part to its considerable electrochemical surface area. The corresponding DSSC shows a higher cell efficiency (η) of 7.62% than that of the cell with a GO-based CE (η=0.03%). When the low-temperature photothermal reduction process is applied to all-flexible plastic DSSCs, the DSSC with a P-rGO CE shows an η of 4.16%.

  12. Are semantic and phonological fluency based on the same or distinct sets of cognitive processes? Insights from factor analyses in healthy adults and stroke patients.

    PubMed

    Schmidt, Charlotte S M; Schumacher, Lena V; Römer, Pia; Leonhart, Rainer; Beume, Lena; Martin, Markus; Dressing, Andrea; Weiller, Cornelius; Kaller, Christoph P

    2017-02-28

    Verbal fluency for semantic categories and phonological letters is frequently applied to studies of language and executive functions. Despite its popularity, it is still debated whether measures of semantic and phonological fluency reflect the same or distinct sets of cognitive processes. Word generation in the two task variants is believed to involve different types of search processes. Findings from the lesion and neuroimaging literature further suggest a stronger reliance of phonological and semantic fluency on frontal and temporal brain areas, respectively. This evidence for differential cognitive and neural contributions is, however, strongly challenged by findings from factor analyses, which have consistently yielded only one explanatory factor. As all previous factor-analytical approaches were based on very small item sets, this apparent discrepancy may be due to methodological limitations. In this study, we therefore applied a German version of the verbal fluency task with 8 semantic (i.e. categories) and 8 phonological items (i.e. letters). An exploratory factor analysis with oblique rotation in N=69 healthy young adults indeed revealed a two-factor solution with markedly different loadings for semantic and phonological items. This pattern was corroborated by a confirmatory factor analysis in a sample of N=174 stroke patients. As results from both samples also revealed a substantial portion of common variance between the semantic and phonological factor, the present data further demonstrate that semantic and phonological verbal fluency are based on clearly distinct but also on shared sets of cognitive processes.

  13. Constraints on Martian Differentiation Processes from Rb-Sr and Sm-Nd Isotopic Analyses of the Basaltic Shergottite QUE 94201

    NASA Technical Reports Server (NTRS)

    Borg, Lars E.; Nyquist, Larry E.; Taylor, Larry A.; Wiesmann, Henry; Shih, Chi-Y.

    1997-01-01

    Isotopic analyses of mineral, leachate, and whole rock fractions from the Martian shergottite meteorite QUE 94201 yield Rb-Sr and Sm-Nd crystallization ages of 327 +/- 12 and 327 +/- 19 Ma, respectively. These ages are concordant, although the isochrons are defined by different fractions within the meteorite. Comparison of isotope dilution Sm and Nd data for the various QUE 94201 fractions with in situ ion microprobe data for QUE 94201 minerals from the literature demonstrate the presence of a leachable crustal component in the meteorite. This component is likely to have been added to QUE 94201 by secondary alteration processes on Mars, and can affect the isochrons by selectively altering the isotopic systematics of the leachates and some of the mineral fractions. The absence of crustal recycling processes on Mars may preserve the geochemical evidence for early differentiation and the decoupling of the Rb-Sr and Sm-Nd isotopic systems, underscoring one of the fundamental differences between geologic processes on Mars and the Earth.

  14. [Effect of degradation succession process on the temperature sensitivity of ecosystem respiration in alpine Potentilla fruticosa scrub meadow].

    PubMed

    Li, Dong; Luo, Xu-Peng; Cao, Guang-Min; Wu, Qin; Hu, Qi-Wu; Zhuo, Ma-Cuo; Li, Hui-Mei

    2015-03-01

    Grazing is one of the main artificial driving forces for the degradation succession process of alpine meadow. In order to quantitatively study the temperature sensitivity of alpine meadow ecosystem respiration in different degradation stages, we conducted the research in Haibei Alpine Meadow Ecosystem Research Station, CAS from July 2003 to July 2004. The static chamber-chromatography methodology was used to observe the seasonal changes of alpine scrub ecosystem respiration flux during different degradation stages. The results showed that: (1) The seasonal changes of ecosystem respiration flux in different degradation stages of alpine shrub presented a unimodal curve. The maximum appeared in August and the minimum appeared during the period from October to next April. The degradation succession process significantly decreased the ecosystem respiratory CO2 release rate. The respiratory rate ranges of alpine Potentilla fruticosa scrub (GG), Kobresia capillifolia meadow (GC) and bare land (GL) were 34.21-1 168.23, 2.30-1 112.38 and 20.40-509.72 mg (m2 x h)(-1), respectively. The average respiration rate of GG was 1.29 and 2.56 times of that of GC and GL, respectively; (2) Temperature was the main factor that affected the ecosystem respiration rate, and contributed 25% - 79% of the variation of the ecosystem respiration. The degradation succession process significantly changed the correlation between ecosystem respiration rate and temperature. The correlation (R2) between ecosystem respiration rate and each temperature indicator (T(s), T(d) and T(a)) was reduced by 47.23%, 46.95% and 55.28%, respectively when the ground vegetation disappeared and the scrub was degraded into secondary bare land; (3) The difference of Q10 between warm and cool seasons was significant (P < 0.05), and the value of cold season was larger than that of warm season. Degradation succession process apparently changed the temperature sensitivity of ecosystem respiration. The Q10 values of GG, GC

  15. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model

    NASA Astrophysics Data System (ADS)

    Stocker, B. D.; Strassmann, K.; Joos, F.

    2011-01-01

    A Dynamic Global Vegetation model coupled to a simplified Earth system model is used to simulate the impact of anthropogenic land cover changes (ALCC) on Holocene atmospheric CO2 and the contemporary carbon cycle. The model results suggest that early agricultural activities cannot explain the mid to late Holocene CO2 rise of 20 ppm measured on ice cores and that proposed upward revisions of Holocene ALCC imply a smaller contemporary terrestrial carbon sink. A set of illustrative scenarios is applied to test the robustness of these conclusions and to address the large discrepancies between published ALCC reconstructions. Simulated changes in atmospheric CO2 due to ALCC are less than 1 ppm before 1000 AD and 30 ppm at 2004 AD when the HYDE 3.1 ALCC reconstruction is prescribed for the past 12 000 years. Cumulative emissions of 69 GtC at 1850 and 233 GtC at 2004 AD are comparable to earlier estimates. CO2 changes due to ALCC exceed the simulated natural interannual variability only after 1000 AD. To consider evidence that land area used per person was higher before than during early industrialisation, agricultural areas from HYDE 3.1 were increased by a factor of two prior to 1700 AD (scenario H2). For the H2 scenario, the contemporary terrestrial carbon sink required to close the atmospheric CO2 budget is reduced by 0.5 GtC yr-1. Simulated CO2 remains small even in scenarios where average land use per person is increased beyond the range of published estimates. Even extreme assumptions for preindustrial land conversion and high per-capita land use do not result in simulated CO2 emissions that are sufficient to explain the magnitude and the timing of the late Holocene CO2 increase.

  16. Integrating the context-appropriate balanced attention model and reinforcement sensitivity theory: Towards a domain-general personality process model.

    PubMed

    Collins, Michael D; Jackson, Chris J; Walker, Benjamin R; O'Connor, Peter J; Gardiner, Elliroma

    2017-01-01

    Over the last 40 years or more the personality literature has been dominated by trait models based on the Big Five (B5). Trait-based models describe personality at the between-person level but cannot explain the within-person mental mechanisms responsible for personality. Nor can they adequately account for variations in emotion and behavior experienced by individuals across different situations and over time. An alternative, yet understated, approach to personality architecture can be found in neurobiological theories of personality, most notably reinforcement sensitivity theory (RST). In contrast to static trait-based personality models like the B5, RST provides a more plausible basis for a personality process model, namely, one that explains how emotions and behavior arise from the dynamic interaction between contextual factors and within-person mental mechanisms. In this article, the authors review the evolution of a neurobiologically based personality process model based on RST, the response modulation model and the context-appropriate balanced attention model. They argue that by integrating this complex literature, and by incorporating evidence from personality neuroscience, one can meaningfully explain personality at both the within- and between-person levels. This approach achieves a domain-general architecture based on RST and self-regulation that can be used to align within-person mental mechanisms, neurobiological systems and between-person measurement models. (PsycINFO Database Record

  17. Early life adversity during the infant sensitive period for attachment: Programming of behavioral neurobiology of threat processing and social behavior.

    PubMed

    Opendak, Maya; Gould, Elizabeth; Sullivan, Regina

    2017-02-16

    Animals, including humans, require a highly coordinated and flexible system of social behavior and threat evaluation. However, trauma can disrupt this system, with the amygdala implicated as a mediator of these impairments in behavior. Recent evidence has further highlighted the context of infant trauma as a critical variable in determining its immediate and enduring consequences, with trauma experienced from an attachment figure, such as occurs in cases of caregiver-child maltreatment, as particularly detrimental. This review focuses on the unique role of caregiver presence during early-life trauma in programming deficits in social behavior and threat processing. Using data primarily from rodent models, we describe the interaction between trauma and attachment during a sensitive period in early life, which highlights the role of the caregiver's presence in engagement of attachment brain circuitry and suppressing threat processing by the amygdala. These data suggest that trauma experienced directly from an abusive caregiver and trauma experienced in the presence of caregiver cues produce similar neurobehavioral deficits, which are unique from those resulting from trauma alone. We go on to integrate this information into social experience throughout the lifespan, including consequences for complex scenarios, such as dominance hierarchy formation and maintenance.

  18. Fabrication of CuInS2-sensitized solar cells via an improved SILAR process and its interface electron recombination.

    PubMed

    Xu, Xueqing; Wan, Qingcui; Luan, Chunyan; Mei, Fengjiao; Zhao, Qian; An, Ping; Liang, Zhurong; Xu, Gang; Zapien, Juan Antonio

    2013-11-13

    Tetragonal CuInS2 (CIS) has been successfully deposited onto mesoporous TiO2 films by in-sequence growth of InxS and CuyS via a successive ionic layer absorption and reaction (SILAR) process and postdeposition annealing in sulfur ambiance. X-ray diffraction and Raman measurements showed that the obtained tetragonal CIS consisted of a chalcopyrite phase and Cu-Au ordering, which related with the antisite defect states. For a fixed Cu-S deposition cycle, an interface layer of β-In2S3 formed at the TiO2/CIS interface with suitable excess deposition of In-S. In the meantime, the content of the Cu-Au ordering phase decreased to a reasonable level. These facts resulted in the retardance of electron recombination in the cells, which is proposed to be dominated by electron transfer from the conduction band of TiO2 to the unoccupied defect states in CIS via exponentially distributed surface states. As a result, a relatively high efficiency of ~0.92% (V(oc) = 0.35 V, J(sc) = 8.49 mA cm(-2), and FF = 0.31) has been obtained. Last, but not least, with an overloading of the sensitizers, a decrease in the interface area between the sensitized TiO2 and electrolytes resulted in deceleration of hole extraction from CIS to the electrolytes, leading to a decrease in the fill factor of the solar cells. It is indicated that the unoccupied states in CIS with energy levels below EF0 of the TiO2 films play an important role in the interface electron recombination at low potentials and has a great influence on the fill factor of the solar cells.

  19. Chemical input and I-V output: stepwise chemical information processing in dye-sensitized solar cells.

    PubMed

    Satoh, Norifusa; Han, Liyuan

    2012-12-14

    As a complex system, a dye-sensitized solar cell (DSC) exhibits emergent photovoltaics not obvious from the properties of the individual components. The chemical input of 4-tert-butylpyridine (TBP) into DSC improves the open circuit voltage (V(oc)) and reduces the short circuit current (I(sc)) in I-V output through multiple interactions with the components, yet it has been difficult to distinguish the multiple interactions and correlate the interactions with the influences on I-V output due to the complexity of the system. To deal with the multiple interactions, we have adapted a conceptual framework and methodology from coordination chemistry. First, we titrated the photovoltaic interface and electrolyte with TBP to identify the stepwise chemical interaction processes. An isopotential point observed in I-V output indicates that most of the inputted chemicals interact with the electrolyte. Cyclic voltammetric titration of the electrolyte demonstrates asymmetric redox peaks and two different isopotential points, indicating that the two-step coordination-decoordination process inhibits the reduction current of the electrolyte. Second, we set an interaction model bridging the hierarchical gaps between the multiple interactions and the I-V output to address the influences on outputs from the amount of the inputs. From the viewpoint of the interaction model and interactions observed, we are able to comprehend the processes of the complex system and suggest a direction to improve V(oc) without sacrificing I(sc) in DSCs. We conclude that the conceptual framework and methodology adapted from coordination chemistry is beneficial to enhance the emergent outputs of complex systems.

  20. Writer-Reader Contagion of Inspiration and Related States: Conditional Process Analyses Within a Cross-Classified Writer × Reader Framework.

    PubMed

    Thrash, Todd M; Maruskin, Laura A; Moldovan, Emil G; Oleynick, Victoria C; Belzak, Will C

    2016-04-28

    A longstanding tradition in the humanities holds that a writer's inspiration is infectious, but this thesis has not been tested. We hypothesized that (a) inspiration is infectious, such that inspired writers are more inspiring to the average reader; (b) contagion is mediated by the insightfulness of the text; and (c) contagion is moderated by readers' openness to experience, such that open readers are more prone to contagion. To test these hypotheses, a sample of 195 student writers, each of whom wrote 1 poem, was crossed with a sample of 220 student readers, who read all poems. Data were available for 36,020 cells of the resulting Writer × Reader matrix. Our analytic approach integrated cross-classified multilevel modeling with conditional process analysis. As hypothesized, writers who were more inspired elicited higher levels of inspiration in the average reader. Inspiration contagion was mediated by the insightfulness and pleasantness of the text and was partially suppressed by originality. Inspiration contagion was moderated by reader openness. Moderated mediation analyses indicated that open readers were prone to contagion because they were tolerant of the originality and sublimity of inspired writing. Additional analyses differentiated contagion of inspiration from contagion of its covariates (awe, positive affect), documented effects of writer inspiration on reader enthrallment (awe, chills), and showed that writer effort is a poor predictor of reader states. The infectiousness of inspiration-through poetry, if not also through scripture and academic writing-suggests that a given instance of inspiration may have far-reaching cultural implications, including dissemination of innovations and ideologies. (PsycINFO Database Record

  1. Fluorescently tagged laminin subunits facilitate analyses of the properties, assembly and processing of laminins in live and fixed lung epithelial cells and keratinocytes.

    PubMed

    Hopkinson, Susan B; DeBiase, Phillip J; Kligys, Kristina; Hamill, Kevin; Jones, Jonathan C R

    2008-09-01

    Recent analyses of collagen, elastin and fibronectin matrix assembly, organization and remodeling have been facilitated by the use of tagged proteins that can be visualized without the need for antibody labeling. Here, we report the generation of C-terminal tagged, full-length and "processed" (alpha3DeltaLG4-5) human alpha3 as well as C-terminal tagged, full-length human beta3 laminin subunits in adenoviral vectors. Human epidermal keratinocytes (HEKs) and human bronchial epithelial (BEP2D) cells, which assemble laminin-332-rich matrices, as well as primary rat lung alveolar type II (ATII) cells, which elaborate a fibrous network rich in laminin-311, were infected with adenovirus encoding the tagged human laminin subunits. In HEKs and BEP2D cells, tagged, full-length alpha3, alpha3DeltaLG4-5 and beta3 laminin subunits incorporate into arrays of matrix organized into patterns that are comparable to those observed when such cells are stained using laminin-332 subunit antibody probes. Moreover, HEKs and BEP2Ds move over these tagged, laminin-332-rich matrix arrays. We have also used the tagged beta3 laminin subunit-containing matrices to demonstrate that assembled laminin-332 arrays influence laminin matrix secretion and/or assembly. In the case of rat ATII cells, although tagged alpha3 laminin subunits are not detected in the matrix of rat ATII cells infected with virus encoding full-length human alpha3 laminin protein, processed human alpha3 laminin subunits are incorporated into an extracellular fibrous array. We discuss how these novel laminin reagents can be used to study the organization, processing and assembly of laminin matrices and how they provide new insights into the potential functional importance of laminin fragments.

  2. Comparative proteomic and biochemical analyses reveal different molecular events occurring in the process of fiber initiation between wild-type allotetraploid cotton and its fuzzless-lintless mutant.

    PubMed

    Yao, Yuan; Zhang, Bing; Dong, Chun-Juan; Du, Ying; Jiang, Lin; Liu, Jin-Yuan

    2015-01-01

    To explore lint fiber initiation-related proteins in allotetraploid cotton (Gossypium hirsutum L.), a comparative proteomic analysis was performed between wild-type cotton (Xu-142) and its fuzzless-lintless mutant (Xu-142-fl) at five developmental time points for lint fiber initiation from -3 to +3 days post-anthesis (dpa). Using two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS) analyses, 91 differentially accumulated protein (DAP) species that are related to fiber initiation were successfully identified, of which 58 preferentially accumulated in the wild-type and 33 species in the fl mutant. These DAPs are involved in various cellular and metabolic processes, mainly including important energy/carbohydrate metabolism, redox homeostasis, amino acid and fatty acid biosynthesis, protein quality control, cytoskeleton dynamics, and anthocyanidin metabolism. Further physiological and biochemical experiments revealed dynamic changes in the carbohydrate flux and H2O2 levels in the cotton fiber initiation process. Compared with those in the fl mutant, the contents of glucose and fructose in wild-type ovules sharply increased after anthesis with a relatively higher rate of amino acid biosynthesis. The relative sugar starvation and lower rate of amino acid biosynthesis in the fl mutant ovules may impede the carbohydrate/energy supply and cell wall synthesis, which is consistent with the proteomic results. However, the H2O2 burst was only observed in the wild-type ovules on the day of anthesis. Cotton boll injection experiments in combination with electron microscope observation collectively indicated that H2O2 burst, which is negatively regulated by ascorbate peroxidases (APx), plays an important role in the fiber initiation process. Taken together, our study demonstrates a putative network of DAP species related to fiber initiation in cotton ovules and provides a foundation for future studies on the specific functions of these proteins in fiber

  3. Far-red Sensitive Dark Processes Essential for Light- and Gibberellin-induced Germination of Lettuce Seed

    PubMed Central

    Negbi, M.; Black, M.; Bewley, J. D.

    1968-01-01

    The action of prolonged far-red on seed germination was studied in Lactuca sativa L. var. Grand Rapids. Exposure of imbibed seeds to 6 hours far-red before the application of gibberellic acid (GA3) and thiourea completely prevented germination. Using GA3, this far-red was effective after the sixth hour of imbibition. At 6, 12, and 18 hours of imbibition equal durations of far-red had equal effects. The kinetics of far-red action was investigated: it was found that although far-red for several hours, irrespective of the energy level, was needed for maximum inhibition, shorter durations (15 and 30 mins) were also appreciably effective provided they were followed by several hours darkness before the supply of GA3. This is taken to indicate the existence of labile product(s) of the action of a far-red sensitive pigment. Evidence is provided for the existence of promotive dark processes controlled by this pigment, which are essential for germination whether triggered by GA3, thiourea or red-light. A model for the operation of the pigment system is proposed and its role in the germination mechanism of this seed is discussed. PMID:16656733

  4. Genetic interactions and functional analyses of the fission yeast gsk3 and amk2 single and double mutants defective in TORC1-dependent processes

    PubMed Central

    Rallis, Charalampos; Townsend, StJohn; Bähler, Jürg

    2017-01-01

    The Target of Rapamycin (TOR) signalling network plays important roles in aging and disease. The AMP-activated protein kinase (AMPK) and the Gsk3 kinase inhibit TOR during stress. We performed genetic interaction screens using synthetic genetic arrays (SGA) with gsk3 and amk2 as query mutants, the latter encoding the regulatory subunit of AMPK. We identified 69 negative and 82 positive common genetic interactors, with functions related to cellular growth and stress. The 120 gsk3-specific negative interactors included genes functioning in translation and ribosomes. The 215 amk2-specific negative interactors included genes functioning in chromatin silencing and DNA damage repair. Both amk2- and gsk3-specific interactors were enriched in phenotype categories related to abnormal cell size and shape. We also performed SGA screen with the amk2 gsk3 double mutant as a query. Mutants sensitive to 5-fluorouracil, an anticancer drug are under-represented within the 305 positive interactors specific for the amk2 gsk3 query. The triple-mutant SGA screen showed higher number of negative interactions than the double mutant SGA screens and uncovered additional genetic network information. These results reveal common and specialized roles of AMPK and Gsk3 in mediating TOR-dependent processes, indicating that AMPK and Gsk3 act in parallel to inhibit TOR function in fission yeast. PMID:28281664

  5. Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold-shock response in wheat.

    PubMed

    Kalapos, Balázs; Dobrev, Petre; Nagy, Tibor; Vítámvás, Pavel; Györgyey, János; Kocsy, Gábor; Marincs, Ferenc; Galiba, Gábor

    2016-12-01

    The effect of one-day cold-shock on the transcriptome and phytohormones (auxin, cytokinins, abscisic, jasmonic and salicylic acids) was characterised in freezing-sensitive (Chinese Spring), highly freezing-tolerant (Cheyenne) and moderately freezing-tolerant (Chinese Spring substituted with Cheyenne's 5A chromosome) wheat genotypes. Altogether, 636 differentially expressed genes responding to cold-shock were identified. Defence genes encoding LEA proteins, dehydrins, chaperons and other temperature-stress responsive proteins were up-regulated in a genotype-independent manner. Abscisic acid was up-regulated by cold accompanied by adherent expression of its metabolic genes. Data revealed the involvement of particular routes within ABA-dependent signalling in response to cold-shock in the examined genotypes. Cold-shock affected gene expression along carbohydrate metabolic pathways. In photosynthesis, cold-shock changed the expression of a number of genes in the same way as it was previously reported for ABA. Overrepresentation analysis of the differentially expressed genes supported the ABA-signalling and carbohydrate metabolism results, and revealed some pronounced biological process GO categories associated with the cold-shock response of the genotypes. Protein network analysis indicated differences between the genotypes in the information flow along their signal perception and transduction, suggesting different biochemical and cellular strategies in their reaction to cold-shock.

  6. Population genetic analyses of Hypoplectrus coral reef fishes provide evidence that local processes are operating during the early stages of marine adaptive radiations.

    PubMed

    Puebla, Oscar; Bermingham, Eldredge; Guichard, Frédéric

    2008-03-01

    Large-scale, spatially explicit models of adaptive radiation suggest that the spatial genetic structure within a species sampled early in the evolutionary history of an adaptive radiation might be higher than the genetic differentiation between different species formed during the same radiation over all locations. Here we test this hypothesis with a spatial population genetic analysis of Hypoplectrus coral reef fishes (Serranidae), one of the few potential cases of a recent adaptive radiation documented in the marine realm. Microsatellite analyses of Hypoplectrus puella (barred hamlet) and Hypoplectrus nigricans (black hamlet) from Belize, Panama and Barbados validate the population genetic predictions at the regional scale for H. nigricans despite the potential for high levels of gene flow between populations resulting from the 3-week planktonic larval phase of Hypoplectrus. The results are different for H. puella, which is characterized by significantly lower levels of spatial genetic structure than H. nigricans. An extensive field survey of Hypoplectrus population densities complemented by individual-based simulations shows that the higher abundance and more continuous distribution of H. puella could account for the reduced spatial genetic structure within this species. The genetic and demographic data are also consistent with the hypothesis that H. puella might represent the ancestral form of the Hypoplectrus radiation, and that H. nigricans might have evolved repeatedly from H. puella through ecological speciation. Altogether, spatial genetic analysis within and between Hypoplectrus species indicate that local processes can operate at a regional scale within recent marine adaptive radiations.

  7. The Role of the Amygdala in Facial Trustworthiness Processing: A Systematic Review and Meta-Analyses of fMRI Studies

    PubMed Central

    Oliveiros, Bárbara

    2016-01-01

    Background Faces play a key role in signaling social cues such as signals of trustworthiness. Although several studies identify the amygdala as a core brain region in social cognition, quantitative approaches evaluating its role are scarce. Objectives This review aimed to assess the role of the amygdala in the processing of facial trustworthiness, by analyzing its amplitude BOLD response polarity to untrustworthy versus trustworthy facial signals under fMRI tasks through a Meta-analysis of effect sizes (MA). Activation Likelihood Estimation (ALE) analyses were also conducted. Data sources Articles were retrieved from MEDLINE, ScienceDirect and Web-of-Science in January 2016. Following the PRISMA statement guidelines, a systematic review of original research articles in English language using the search string “(face OR facial) AND (trustworthiness OR trustworthy OR untrustworthy OR trustee) AND fMRI” was conducted. Study selection and data extraction The MA concerned amygdala responses to facial trustworthiness for the contrast Untrustworthy vs. trustworthy faces, and included whole-brain and ROI studies. To prevent potential bias, results were considered even when at the single study level they did not survive correction for multiple comparisons or provided non-significant results. ALE considered whole-brain studies, using the same methodology to prevent bias. A summary of the methodological options (design and analysis) described in the articles was finally used to get further insight into the characteristics of the studies and to perform a subgroup analysis. Data were extracted by two authors and checked independently. Data synthesis Twenty fMRI studies were considered for systematic review. An MA of effect sizes with 11 articles (12 studies) showed high heterogeneity between studies [Q(11) = 265.68, p < .0001; I2 = 95.86%, 94.20% to 97.05%, with 95% confidence interval, CI]. Random effects analysis [RE(183) = 0.851, .422 to .969, 95% CI] supported the

  8. Biochemical and physiological processes associated with the differential ozone response in ozone-tolerant and sensitive soybean genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochemical and physiological traits of two soybean [Glycine max (L.) Merr.] genotypes that differ in sensitivity to ozone (O3) were investigated to determine the possible basis for the differential response. Fiskeby III (O3-tolerant) and Mandarin (Ottawa) (O3-sensitive) were grown in a greenhouse ...

  9. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains

    NASA Astrophysics Data System (ADS)

    Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P.

    2015-07-01

    the effect of interannual climatic variability on river flow to be inferred. We infer the existence of two subsurface reservoirs. The groundwater reservoir (providing 40 % of annual discharge) recharges in spring and summer and releases slowly during autumn and winter, when it provides the only source for river discharge. A not fully constrained shallow reservoir with very rapid retention times buffers meltwaters during spring and summer. The negative glacier mass balance (-0.6 m w.e. yrprocesses, which are essentially confined to glaciated catchments in late summer, when glacier runoff is the only source of surface runoff. Only this precise constraint of the hydrologic cycle in this complex region allows for unravelling of the surface processes and natural hazards such as floods and landslides as well as water availability in the downstream areas. The proposed conceptual model has a tremendous importance for the understanding of the denudation processes in the region. In the Pamirs, large releases of running water that control erosion intensity are primarily controlled by temperature and the availability of snow and glaciers, thus making the region particularly sensitive to climatic variations.

  10. Synthesis and processing of ELISA polymer substitute: The influence of surface chemistry and morphology on detection sensitivity

    NASA Astrophysics Data System (ADS)

    Hosseini, Samira; Ibrahim, Fatimah; Djordjevic, Ivan; Rothan, Hussin A.; Yusof, Rohana; van der Marel, Cees; Koole, Leo H.

    2014-10-01

    Despite the known drawbacks of enzyme-linked immunosorbent assay (ELISA), one of the deficiencies that have relatively been ignored is the performance of ELISA substrate itself. Polystyrene (PS), as the cost effective material of choice for mass production of ELISA well-plates, has shown obvious lacks of suitable physical and chemical properties for protein attachment. The general concept of this work was to develop a potential substrate that can be suggested as a material of choice for production of a new generation of ELISA analytical kits. Spin-coated thin films of polymethyl methacrylate-co-methacrylic acid (PMMA-co-MAA) on silicon surfaces were designed and processed for detection of dengue virus. Coated surfaces of different molar ratios have been investigated as carboxyl-functionalized layers for obtaining platform for biomolecule immobilization with high level of protein activity. To improve the sensitivity of detection, we have used amine functional "spacers", hexamethylenediamine (HMDA) and polyethyleneimine (PEI), which were covalently bonded to the surfaces of PMMA-co-MAA coatings. Results demonstrate that the variation of surface concentration of carboxyl groups of PMMA-co-MAA can be used to control the amine surface concentration after carbodiimide coupling with HMDA and PEI spacers. The presence of amine spacers increases hydrophilicity of the coatings and significantly impacts the polymer surface morphology. In particular, protein immobilization via amine-bearing spacers has been achieved in two effective steps: (1) carbodiimide bonding between amine spacer molecules and PMMA-co-MAA polymer coatings; and (2) covalent immobilization of antibody via glutaraldehyde reaction with amine groups from amine-treated surfaces. The application of PEI spacer in comparison to HMDA has shown much higher intensity of detection signal in ELISA experiment, indicating better immobilization efficiency and preservation of antibody activity upon attachment to the

  11. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  12. Magma Degassing and Evolution Processes of the 2000 Eruption of Miyakejima Volcano, Japan, Deduced From of Olivine-Hosted Melt Inclusion Analyses

    NASA Astrophysics Data System (ADS)

    Saito, G.; Morishita, Y.

    2008-12-01

    Chemical analyses of melt inclusions in Mg-poor (Mg#68-73) and Mg-rich (Mg#76-84)"@olivines from a bomb and lapilli from the 18 August 2000 eruption of Miyakejima volcano, Japan, were carried out in order to investigate degassing and evolution process "Íf the magma. Analyses of major elements, S and Cl of the melt inclusions were made by EPMA, and H2O and CO2 by FTIR and SIMS (Miyagi et al., 1995; Hauri et al., 2002). Major element composition of Mg-poor olivine-hosted melt inclusions (Mg-poor Ol MIs) is similar to that of groundmass in the bomb, indicating the melt entrapment just before the eruption. The Mg-poor Ol MIs have volatile contents of 0.7-2.5 wt.% H2O, 0.005-0.02 wt.% CO2, 0.05-0.17 wt. % S, and 0.06-0.1 wt. % Cl, that are roughly similar to those of plagioclase-hosted melt inclusions (Saito et al., 2005). Gas saturation pressure of the magma is calculated to be 20-100 MPa on the basis of the H2O and CO2 contents of Mg-poor Ol MIs, corresponds to the depth of 1-4 km. On the other hand, the Mg-rich olivine-hosted melt inclusions (Mg-rich Ol MIs) have SiO2 and K2O-poor but Al2O3-rich composition than the whole rock composition of the bomb and lapilli. They have volatile contents of 1.9-3.5 wt.% H2O, 0.003-0.025 wt.% CO2, 0.06-0.21 wt.% S, and 0.04-0.07 wt.% Cl, that are a little higher H2O and S and lower Cl contents than those of Mg-rich Ol MIs. Gas saturation pressure of the magma is calculated to be 50-150 MPa on the basis of the H2O and CO2 contents of Mg-rich Ol MIs. Ratios of H2O and S contents of both the Mg-poor and Mg-rich Ol MIs are similar to that of volcanic gas emitted from the summit after the 2000 eruption, while their ratios of CO2 and H2O contents are lower than that of volcanic gas. Existence of the Al2O3-rich less-evolved melt with high H2O content is consistent with the petrological and experimental studies that low-MgO high-alumina basalt is derived from primary magma with high H2O content (Uto, 1986; Sisson and Grove, 1993). The

  13. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    NASA Astrophysics Data System (ADS)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be

  14. Anxiety sensitivity as a moderator of association between smoking status and panic-related processes in a representative sample of adults.

    PubMed

    Zvolensky, Michael J; Kotov, Roman; Bonn-Miller, Marcel O; Schmidt, Norman B; Antipova, Anna V

    2008-01-01

    The present investigation evaluated a moderational role of anxiety sensitivity (fear of anxiety and anxiety-related states; [McNally RJ. Anxiety sensitivity and panic disorder. Biological Psychiatry 2002; 52:938-946.]) in the relation between smoking status and anxiety/depressive symptoms in a Russian epidemiological sample (n = 390; 197 females, Mean age = 43.55). Consistent with prediction, anxiety sensitivity moderated the association of smoking status with indices of anxiety and depressive symptoms; the effects were evident after controlling for the variance accounted for by alcohol use problems, environmental stress (past month), and gender. These findings are discussed with regard to the role of anxiety sensitivity in etiologic connection between smoking and panic-related processes.

  15. Anxiety Sensitivity and Pre-Cessation Smoking Processes: Testing the Independent and Combined Mediating Effects of Negative Affect–Reduction Expectancies and Motives

    PubMed Central

    Farris, Samantha G.; Leventhal, Adam M.; Schmidt, Norman B.; Zvolensky, Michael J.

    2015-01-01

    Objective: Anxiety sensitivity appears to be relevant in understanding the nature of emotional symptoms and disorders associated with smoking. Negative-reinforcement smoking expectancies and motives are implicated as core regulatory processes that may explain, in part, the anxiety sensitivity–smoking interrelations; however, these pathways have received little empirical attention. Method: Participants (N = 471) were adult treatment-seeking daily smokers assessed for a smoking-cessation trial who provided baseline data; 157 participants provided within-treatment (pre-cessation) data. Anxiety sensitivity was examined as a cross-sectional predictor of several baseline smoking processes (nicotine dependence, perceived barriers to cessation, severity of prior withdrawal-related quit problems) and pre-cessation processes including nicotine withdrawal and smoking urges (assessed during 3 weeks before the quit day). Baseline negative-reinforcement smoking expectancies and motives were tested as simultaneous mediators via parallel multiple mediator models. Results: Higher levels of anxiety sensitivity were related to higher levels of nicotine dependence, greater perceived barriers to smoking cessation, more severe withdrawal-related problems during prior quit attempts, and greater average withdrawal before the quit day; effects were indirectly explained by the combination of both mediators. Higher levels of anxiety sensitivity were not directly related to pre-cessation smoking urges but were indirectly related through the independent and combined effects of the mediators. Conclusions: These empirical findings bolster theoretical models of anxiety sensitivity and smoking and identify targets for nicotine dependence etiology research and cessation interventions. PMID:25785807

  16. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant.

  17. Determination of {sup 16}O and {sup 18}O sensitivity factors and charge-exchange processes in low-energy ion scattering

    SciTech Connect

    Tellez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Kilner, J. A.; Brongersma, H. H.

    2012-10-08

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He{sup +} scattered by {sup 18}O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for E{sub i} < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for E{sub i} > 2 keV. The ion fractions P{sup +} were determined for Si and O using the characteristic velocity method to quantify the surface density. The {sup 18}O/{sup 16}O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  18. Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells.

    PubMed

    De Angelis, Filippo

    2014-11-18

    CONSPECTUS: Over the last 2 decades, researchers have invested enormous research effort into hybrid/organic photovoltaics, leading to the recent launch of the first commercial products that use this technology. Dye-sensitized solar cells (DSCs) have shown clear advantages over competing technologies. The top certified efficiency of DSCs exceeds 11%, and the laboratory-cell efficiency is greater than 13%. In 2012, the first reports of high efficiency solid-state DSCs based on organohalide lead perovskites completely revolutionized the field. These materials are used as light absorbers in DSCs and as light-harvesting materials and electron conductors in meso-superstructured and flat heterojunction solar cells and show certified efficiencies that exceed 17%. To effectively compete with conventional photovoltaics, emerging technologies such as DSCs need to achieve higher efficiency and stability, while maintaining low production costs. Many of the advances in the DSC field have relied on the computational design and screening of new materials, with researchers examining material characteristics that can improve device performance or stability. Suitable modeling strategies allow researchers to observe the otherwise inaccessible but crucial heterointerfaces that control the operation of DSCs, offering the opportunity to develop new and more efficient materials and optimize processes. In this Account, we present a unified view of recent computational modeling research examining DSCs, illustrating how the principles and simulation tools used for these systems can also be adapted to study the emerging field of perovskite solar cells. Researchers have widely applied first-principles modeling to the DSC field and, more recently, to perovskite-based solar cells. DFT/TDDFT methods provide the basic framework to describe most of the desired materials and interfacial properties, and Car-Parrinello molecular dynamics allow researchers the further ability to sample local minima and

  19. The Roles of Explicit Information and Grammatical Sensitivity in Processing Instruction: Nominative-Accusative Case Marking and Word Order in German L2

    ERIC Educational Resources Information Center

    VanPatten, Bill; Borst, Stefanie

    2012-01-01

    In this study, we examine explicit information and aptitude within processing instruction. Forty-six learners of German in their third semester of study were divided into two groups: those who received explicit information prior to treatment (+EI) and those who did not (-EI). Participants also took the grammatical sensitivity portion of the Modern…

  20. The Roles of Explicit Information and Grammatical Sensitivity in the Processing of Clitic Direct Object Pronouns and Word Order in Spanish L2

    ERIC Educational Resources Information Center

    VanPatten, Bill; Borst, Stefanie

    2012-01-01

    In the present study, we examine the roles of 1) explicit information about language provided to learners prior to treatment and 2) aptitude (specifically grammatical sensitivity) within Processing Instruction. Forty-two learners of Spanish in their third-semester of study were divided into two groups: those who received explicit information (EI)…

  1. Meat authentication: a new HPLC-MS/MS based method for the fast and sensitive detection of horse and pork in highly processed food.

    PubMed

    von Bargen, Christoph; Brockmeyer, Jens; Humpf, Hans-Ulrich

    2014-10-01

    Fraudulent blending of food products with meat from undeclared species is a problem on a global scale, as exemplified by the European horse meat scandal in 2013. Routinely used methods such as ELISA and PCR can suffer from limited sensitivity or specificity when processed food samples are analyzed. In this study, we have developed an optimized method for the detection of horse and pork in different processed food matrices using MRM and MRM(3) detection of species-specific tryptic marker peptides. Identified marker peptides were sufficiently stable to resist thermal processing of different meat products and thus allow the sensitive and specific detection of pork or horse in processed food down to 0.24% in a beef matrix system. In addition, we were able to establish a rapid 2-min extraction protocol for the efficient protein extraction from processed food using high molar urea and thiourea buffers. Together, we present here the specific and sensitive detection of horse and pork meat in different processed food matrices using MRM-based detection of marker peptides. Notably, prefractionation of proteins using 2D-PAGE or off-gel fractionation is not necessary. The presented method is therefore easily applicable in analytical routine laboratories without dedicated proteomics background.

  2. 1-Aminocyclopropane-1-Carboxylate Oxidase Induction in Tomato Flower Pedicel Phloem and Abscission Related Processes Are Differentially Sensitive to Ethylene

    PubMed Central

    Chersicola, Marko; Kladnik, Aleš; Tušek Žnidarič, Magda; Mrak, Tanja; Gruden, Kristina; Dermastia, Marina

    2017-01-01

    Ethylene has impact on several physiological plant processes, including abscission, during which plants shed both their vegetative and reproductive organs. Cell separation and programmed cell death are involved in abscission, and these have also been correlated with ethylene action. However, the detailed spatiotemporal pattern of the molecular events during abscission remains unknown. We examined the expression of two tomato ACO genes, LeACO1, and LeACO4 that encode the last enzyme in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylate oxidase (ACO), together with the expression of other abscission-associated genes involved in cell separation and programmed cell death, during a period of 0–12 h after abscission induction in the tomato flower pedicel abscission zone and nearby tissues. In addition, we determined their localization in specific cell layers of the flower pedicel abscission zone and nearby tissues obtained by laser microdissection before and 8 h after abscission induction. The expression of both ACO genes was localized to the vascular tissues in the pedicel. While LeACO4 was more uniformly expressed in all examined cell layers, the main expression site of LeACO1 was in cell layers just outside the abscission zone in its proximal and distal part. We showed that after abscission induction, ACO1 protein was synthesized in phloem companion cells, in which it was localized mainly in the cytoplasm. Samples were additionally treated with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene actions, and analyzed 8 h after abscission induction. Cell-layer-specific changes in gene expression were observed together with the specific localization and ethylene sensitivity of the hallmarks of cell separation and programmed cell death. While treatment with 1-MCP prevented separation of cells through inhibition of the expression of polygalacturonases, which are the key enzymes involved in degradation of the middle lamella, this had less impact on

  3. A program for mass spectrometer control and data processing analyses in isotope geology; written in BASIC for an 8K Nova 1120 computer

    USGS Publications Warehouse

    Stacey, J.S.; Hope, J.

    1975-01-01

    A system is described which uses a minicomputer to control a surface ionization mass spectrometer in the peak switching mode, with the object of computing isotopic abundance ratios of elements of geologic interest. The program uses the BASIC language and is sufficiently flexible to be used for multiblock analyses of any spectrum containing from two to five peaks. In the case of strontium analyses, ratios are corrected for rubidium content and normalized for mass spectrometer fractionation. Although almost any minicomputer would be suitable, the model used was the Data General Nova 1210 with 8K memory. Assembly language driver program and interface hardware-descriptions for the Nova 1210 are included.

  4. Basic auditory processing and sensitivity to prosodic structure in children with specific language impairments: a new look at a perceptual hypothesis

    PubMed Central

    Cumming, Ruth; Wilson, Angela; Goswami, Usha

    2015-01-01

    Children with specific language impairments (SLIs) show impaired perception and production of spoken language, and can also present with motor, auditory, and phonological difficulties. Recent auditory studies have shown impaired sensitivity to amplitude rise time (ART) in children with SLIs, along with non-speech rhythmic timing difficulties. Linguistically, these perceptual impairments should affect sensitivity to speech prosody and syllable stress. Here we used two tasks requiring sensitivity to prosodic structure, the DeeDee task and a stress misperception task, to investigate this hypothesis. We also measured auditory processing of ART, rising pitch and sound duration, in both speech (“ba”) and non-speech (tone) stimuli. Participants were 45 children with SLI aged on average 9 years and 50 age-matched controls. We report data for all the SLI children (N = 45, IQ varying), as well as for two independent SLI subgroupings with intact IQ. One subgroup, “Pure SLI,” had intact phonology and reading (N = 16), the other, “SLI PPR” (N = 15), had impaired phonology and reading. Problems with syllable stress and prosodic structure were found for all the group comparisons. Both sub-groups with intact IQ showed reduced sensitivity to ART in speech stimuli, but the PPR subgroup also showed reduced sensitivity to sound duration in speech stimuli. Individual differences in processing syllable stress were associated with auditory processing. These data support a new hypothesis, the “prosodic phrasing” hypothesis, which proposes that grammatical difficulties in SLI may reflect perceptual difficulties with global prosodic structure related to auditory impairments in processing amplitude rise time and duration. PMID:26217286

  5. Sensitivity of Calibration Gains to Ocean Color Processing in Coastal and Open Waters Using Ensembles Members for NPP-VIIRS

    DTIC Science & Technology

    2014-07-01

    DATE (DD-MM-YYYY) 31-07-2014 REPORT TYPE Conference Proceedine 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Sensitivity of Calibration...34The marine optical buoy (MOBY) radiometric calibration and uncertainty budget for ocean color satellite sensor vicarious calibration," Proc. SPIE

  6. The Negative Affect Hypothesis of Noise Sensitivity

    PubMed Central

    Shepherd, Daniel; Heinonen-Guzejev, Marja; Heikkilä, Kauko; Dirks, Kim N.; Hautus, Michael J.; Welch, David; McBride, David

    2015-01-01

    Some studies indicate that noise sensitivity is explained by negative affect, a dispositional tendency to negatively evaluate situations and the self. Individuals high in such traits may report a greater sensitivity to other sensory stimuli, such as smell, bright light and pain. However, research investigating the relationship between noise sensitivity and sensitivity to stimuli associated with other sensory modalities has not always supported the notion of a common underlying trait, such as negative affect, driving them. Additionally, other explanations of noise sensitivity based on cognitive processes have existed in the clinical literature for over 50 years. Here, we report on secondary analyses of pre-existing laboratory (n = 74) and epidemiological (n = 1005) data focusing on the relationship between noise sensitivity to and annoyance with a variety of olfactory-related stimuli. In the first study a correlational design examined the relationships between noise sensitivity, noise annoyance, and perceptual ratings of 16 odors. The second study sought differences between mean noise and air pollution annoyance scores across noise sensitivity categories. Results from both analyses failed to support the notion that, by itself, negative affectivity explains sensitivity to noise. PMID:25993104

  7. Characteristics of TiO2/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    NASA Astrophysics Data System (ADS)

    Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana

    2016-07-01

    In this study, titanium dioxide (TiO2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.

  8. The Discounted Method and Equivalence of Average Criteria for Risk-Sensitive Markov Decision Processes on Borel Spaces

    SciTech Connect

    Cavazos-Cadena, Rolando; Salem-Silva, Francisco

    2010-04-15

    This note concerns discrete-time controlled Markov chains with Borel state and action spaces. Given a nonnegative cost function, the performance of a control policy is measured by the superior limit risk-sensitive average criterion associated with a constant and positive risk sensitivity coefficient. Within such a framework, the discounted approach is used (a) to establish the existence of solutions for the corresponding optimality inequality, and (b) to show that, under mild conditions on the cost function, the optimal value functions corresponding to the superior and inferior limit average criteria coincide on a certain subset of the state space. The approach of the paper relies on standard dynamic programming ideas and on a simple analytical derivation of a Tauberian relation.

  9. Sensitivity and Calibration of Non-Destructive Evaluation Method That Uses Neural-Net Processing of Characteristic Fringe Patterns

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Weiland, Kenneth E.

    2003-01-01

    This paper answers some performance and calibration questions about a non-destructive-evaluation (NDE) procedure that uses artificial neural networks to detect structural damage or other changes from sub-sampled characteristic patterns. The method shows increasing sensitivity as the number of sub-samples increases from 108 to 6912. The sensitivity of this robust NDE method is not affected by noisy excitations of the first vibration mode. A calibration procedure is proposed and demonstrated where the output of a trained net can be correlated with the outputs of the point sensors used for vibration testing. The calibration procedure is based on controlled changes of fastener torques. A heterodyne interferometer is used as a displacement sensor for a demonstration of the challenges to be handled in using standard point sensors for calibration.

  10. Biochemical and physiological processes associated with the differential ozone response in ozone-tolerant and sensitive soybean genotypes.

    PubMed

    Chutteang, C; Booker, F L; Na-Ngern, P; Burton, A; Aoki, M; Burkey, K O

    2016-01-01

    Biochemical and physiological traits of two soybean [Glycine max (L.) Merr.] genotypes differing in sensitivity to ozone (O3 ) were investigated to determine the possible basis for the differential response. Fiskeby III (O3 -tolerant) and Mandarin (Ottawa) (O3 -sensitive) were grown in a greenhouse with charcoal-filtered air for 4 weeks, then treated with O3 for 7 h·day(-1) in greenhouse chambers. Mandarin (Ottawa) showed significantly more leaf injury and hydrogen peroxide (H2 O2 ) and superoxide (O2 (-) ) production compared with Fiskeby III. Peroxidase activity in Mandarin (Ottawa) was 31% higher with O3 but was not significantly different in Fiskeby III. Ozone did not affect superoxide dismutase or glutathione reductase activities, or leaf concentrations of glutathione or ascorbic acid. Thus, variation in O3 response between Fiskeby III and Mandarin (Ottawa) was not explained by differences in antioxidant enzymes and metabolites tested. Ethylene emission from leaves declined in Fiskeby III following O3 exposure but not in Mandarin (Ottawa). Ozone exposure reduced quantum yield (ΦPSII ), electron transport rate (ETR) and photochemical quenching (qp ) in Mandarin (Ottawa) more than in Fiskeby III, indicating that efficiency of energy conversion of PSII and photosynthetic electron transport was altered differently in the two genotypes. Short-term exposure to O3 had minimal effects on net carbon exchange rates of both soybean cultivars. A trend toward higher stomatal conductance in Mandarin (Ottawa) suggested stomatal exclusion might contribute to differential O3 sensitivity of the two genotypes. Increased sensitivity of Mandarin (Ottawa) to O3 was associated with higher H2 O2 and O2 (-) production compared with Fiskeby III, possibly associated with genotype differences in stomatal function or regulation of ethylene during the initial phases of O3 response.

  11. Final Shape of Precision Molded Optics: Part 2 - Validation and Sensitivity to Material Properties and Process Parameters

    DTIC Science & Technology

    2012-06-27

    and a steep meniscus lens. In the current study, after validating the computational approach for both lens types, an extensive sensitivity The views...shape from the mold shape is achieved for both a bi-convex lens and a steep meniscus lens. In the current study, after validating the computational...shape from the mold shape is achieved for both a bi-convex lens and a steep meniscus lens. In the current study, after validating the computational

  12. CdS and CdS/CdSe sensitized ZnO nanorod array solar cells prepared by a solution ions exchange process

    SciTech Connect

    Chen, Ling; Gong, Haibo; Zheng, Xiaopeng; Zhu, Min; Zhang, Jun; Yang, Shikuan; Cao, Bingqiang

    2013-10-15

    Graphical abstract: - Highlights: • CdS and CdS/CdSe quantum dots are assembled on ZnO nanorods by ion exchange process. • The CdS/CdSe sensitization of ZnO effectively extends the absorption spectrum. • The performance of ZnO/CdS/CdSe cell is improved by extending absorption spectrum. - Abstract: In this paper, cadmium sulfide (CdS) and cadmium sulfide/cadmium selenide (CdS/CdSe) quantum dots (QDs) are assembled onto ZnO nanorod arrays by a solution ion exchange process for QD-sensitized solar cell application. The morphology, composition and absorption properties of different photoanodes were characterized with scanning electron microscope, transmission electron microscope, energy-dispersive X-ray spectrum and Raman spectrum in detail. It is shown that conformal and uniform CdS and CdS/CdSe shells can grow on ZnO nanorod cores. Quantum dot sensitized solar cells based on ZnO/CdS and ZnO/CdS/CdSe nanocable arrays were assembled with gold counter electrode and polysulfide electrolyte solution. The CdS/CdSe sensitization of ZnO can effectively extend the absorption spectrum up to 650 nm, which has a remarkable impact on the performance of a photovoltaic device by extending the absorption spectrum. Preliminary results show one fourth improvement in solar cell efficiency.

  13. Development and qualification of a high sensitivity, high throughput Q-PCR assay for quantitation of residual host cell DNA in purification process intermediate and drug substance samples.

    PubMed

    Zhang, Wei; Wu, Meng; Menesale, Emily; Lu, Tongjun; Magliola, Aeona; Bergelson, Svetlana

    2014-11-01

    Methods of high sensitivity, accuracy and throughput are needed for quantitation of low level residual host cell DNA in purification process intermediates and drug substances of therapeutic proteins. In this study, we designed primer/probe sets targeting repetitive Alu repeats or Alu-equivalent sequences in the human, Chinese hamster and murine genomes. When used in quantitative polymerase chain reactions (Q-PCRs), these primer/probe sets showed high species specificity and gave significantly higher sensitivity compared to those targeting the low copy number GAPDH gene. This allowed for detection of residual host cell DNA of much lower concentrations and, for some samples, eliminated the need for DNA extraction. By combining the high sensitivity Alu Q-PCR with high throughput automated DNA extraction using an automated MagMAX magnetic particle processor, we successfully developed and qualified a highly accurate, specific, sensitive and efficient method for the quantitation of residual host cell DNA in process intermediates and drug substances of multiple therapeutic proteins purified from cells of multiple species. Compared to the previous method using manual DNA extraction and primer/probe sets targeting the GAPDH gene, this new method increased our DNA extraction throughput by over sevenfold, and lowered the lower limit of quantitation by up to eightfold.

  14. Final Report. Evaluating the Climate Sensitivity of Dissipative Subgrid-Scale Mixing Processes and Variable Resolution in NCAR's Community Earth System Model

    SciTech Connect

    Jablonowski, Christiane

    2015-12-14

    The goals of this project were to (1) assess and quantify the sensitivity and scale-dependency of unresolved subgrid-scale mixing processes in NCAR’s Community Earth System Model (CESM), and (2) to improve the accuracy and skill of forthcoming CESM configurations on modern cubed-sphere and variable-resolution computational grids. The research thereby contributed to the description and quantification of uncertainties in CESM’s dynamical cores and their physics-dynamics interactions.

  15. MODFLOW-2000, the U.S. Geological Survey modular ground-water model; user guide to the observation, sensitivity, and parameter-estimation processes and three post-processing programs

    USGS Publications Warehouse

    Hill, Mary Catherine; Banta, E.R.; Harbaugh, A.W.; Anderman, E.R.

    2000-01-01

    This report documents the Observation, Sensitivity, and Parameter-Estimation Processes of the ground-water modeling computer program MODFLOW-2000. The Observation Process generates model-calculated values for comparison with measured, or observed, quantities. A variety of statistics is calculated to quantify this comparison, including a weighted least-squares objective function. In addition, a number of files are produced that can be used to compare the values graphically. The Sensitivity Process calculates the sensitivity of hydraulic heads throughout the model with respect to specified parameters using the accurate sensitivity-equation method. These are called grid sensitivities. If the Observation Process is active, it uses the grid sensitivities to calculate sensitivities for the simulated values associated with the observations. These are called observation sensitivities. Observation sensitivities are used to calculate a number of statistics that can be used (1) to diagnose inadequate data, (2) to identify parameters that probably cannot be estimated by regression using the available observations, and (3) to evaluate the utility of proposed new data. The Parameter-Estimation Process uses a modified Gauss-Newton method to adjust values of user-selected input parameters in an iterative procedure to minimize the value of the weighted least-squares objective function. Statistics produced by the Parameter-Estimation Process can be used to evaluate estimated parameter values; statistics produced by the Observation Process and post-processing program RESAN-2000 can be used to evaluate how accurately the model represents the actual processes; statistics produced by post-processing program YCINT-2000 can be used to quantify the uncertainty of model simulated values. Parameters are defined in the Ground-Water Flow Process input files and can be used to calculate most model inputs, such as: for explicitly defined model layers, horizontal hydraulic conductivity

  16. Aryl Bridged 1-Hydroxypyridin-2-one: Effect of the Bridge on the Eu(III) Sensitization Process

    SciTech Connect

    D'Aleo, Anthony; Moore, Evan G.; Szigethy, Geza; Xu, Jide; Raymond, Kenneth N.

    2009-06-17

    The efficiency of Eu3+ luminescence by energy transfer from an antenna ligand can be strongly dependent on the metal ion coordination geometry. The geometric component of the Eu(III) sensitization has been probed using series of tetradentate 1,2-HOPO derivatives that are connected by bridges of varying length and geometry. The ligands are N,N'-(1,2-phenylene)bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) for the ligand (L{sup 1}), 1-hydroxy-N-(2-(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamido)benzyl)-6-oxo-1,6-dihydropyridine-2-carboxamide (L{sup 2}) and N,N'-(1,2-phenylenebis(methylene))bis(1-hydroxy-6-oxo-1,6-dihydropyridine-2-carboxamide) (L{sup 3}). Spectroscopic characterization of both the Gd(III) and Eu(III) metal complexes, TD-DFT analysis of model compounds and evaluation of the kinetic parameters for the europium emission were completed. Some striking differences were observed in the luminescence quantum yield by altering the bridging unit. The [Eu(L{sup 2}){sub 2}]{sup -} derivative shows efficient sensitization coupled with good metal centered emission. For [Eu(L{sup 3}){sub 2}]{sup -}, the large quenching of the luminescence quantum yield compared to [Eu(L{sup 2}){sub 2}]{sup -} is primarily a result of one inner sphere water molecule bound to the europium cation while for [Eu(L{sup 1}){sub 2}]{sup -}, the low luminescence quantum yield can be attributed to inefficient sensitization of the europium ion.

  17. Strain rate sensitivity of mechanical properties and related thermal activation process in a two-phase {gamma} titanium aluminide

    SciTech Connect

    Lin, D.; Wang, Y.; Lin, Y.; Kim, Y.W.

    1997-12-31

    Tensile properties of a two-phase {gamma} titanium aluminide with duplex microstructure are tested under different strain rates from 5 {times} 10{sup {minus}5} to 5 {times} 10{sup {minus}3}s{sup {minus}1} at temperature from 1,123 K to 1,273 K. It is found that there exists approximate linear relationship between the flow stresses and the logarithm of the strain rate at different temperatures. The strain rate sensitivity can be explained by thermal activation theory, and dislocation climbing is identified as the rate controlling mechanism.

  18. Pressure Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Bencic, T.; Sullivan, J. P.

    1999-01-01

    This article reviews new advances and applications of pressure sensitive paints in aerodynamic testing. Emphasis is placed on important technical aspects of pressure sensitive paint including instrumentation, data processing, and uncertainty analysis.

  19. Geologic analyses of LANDSAT-1 multispectral imagery of a possible power plant site employing digital and analog image processing. [in Pennsylvania

    NASA Technical Reports Server (NTRS)

    Lovegreen, J. R.; Prosser, W. J.; Millet, R. A.

    1975-01-01

    A site in the Great Valley subsection of the Valley and Ridge physiographic province in eastern Pennsylvania was studied to evaluate the use of digital and analog image processing for geologic investigations. Ground truth at the site was obtained by a field mapping program, a subsurface exploration investigation and a review of available published and unpublished literature. Remote sensing data were analyzed using standard manual techniques. LANDSAT-1 imagery was analyzed using digital image processing employing the multispectral Image 100 system and using analog color processing employing the VP-8 image analyzer. This study deals primarily with linears identified employing image processing and correlation of these linears with known structural features and with linears identified manual interpretation; and the identification of rock outcrops in areas of extensive vegetative cover employing image processing. The results of this study indicate that image processing can be a cost-effective tool for evaluating geologic and linear features for regional studies encompassing large areas such as for power plant siting. Digital image processing can be an effective tool for identifying rock outcrops in areas of heavy vegetative cover.

  20. Mineralomimetic sodalite- and muscovite-type coordination frameworks. Dynamic crystal-to-crystal interconversion processes sensitive to ion pair recognition.

    PubMed

    Barea, Elisa; Navarro, Jorge A R; Salas, Juan M; Masciocchi, Norberto; Galli, Simona; Sironi, Angelo

    2004-03-17

    A flexible sodalite-type metal organic framework [Cu(pyrimidine-2-olate)2]n (1R) is obtained in a self-assembly process involving Cu2+ ions and pyrimidine-2-olate ligands. 1R suffers a series of sequential and reversible structural changes upon solid-liquid sorption processes of metal nitrates. The 1C-to-1O transformation occurs only with large cations.

  1. Comparative Study of Morphometric and Fourier Transform Infrared Spectroscopy Analyses of the Collagen Fibers in the Repair Process of Cutaneous Lesions

    PubMed Central

    Nogueira, Veruska Cronemberger; Raniero, Leandro; Costa, Guilherme Bueno; de Freitas Coelho, Nayana Pinheiro Machado; Miranda, Fernando Cronemberger; Arisawa, Emília Ângela Loschiavo

    2016-01-01

    Objective: Compare the efficacy of light-emitting diode (LED) and therapeutic ultrasound (TUS), combined with a semipermeable dressing (D), at forming collagen in skin lesions by morphometry and Fourier transform infrared spectroscopy (FT-IR). Materials and Methods: Surgical skin wounds (2.5 cm) were created on 84 male Wistar rats divided into four groups (n=21): Group I (Control), Group II (LED), Group III (LED+D), and Group IV (US+D). On days 7, 14, and 21, the tissue samples were removed and divided into two pieces, one was used for histological examination (collagen) and the other for FT-IR. Results: The histomorphometric analysis showed no significant differences among groups for collagen deposition at 7 days. However, at 14 days, more deposition of collagen was noted in the groups LED (p<0.05) and LED+D (p<0.001) than in the control. At 21 days, the groups LED, LED+D, and US+D presented significantly greater deposition of collagen when compared with the control. The FT-IR spectra, at 14 days, LED+D had greater amounts of type I collagen, a better organization of fibers, and greater difference of mean separation between the groups, not observed at 7 and 21 days. Innovation: The histomorphometric and FT-IR analyses suggest that the association of semipermeable dressing to LED therapy and to TUS modulates biological events, increasing fibroblast/collagen response and accelerating dermal maturation. Conclusion: The histomorphometric and FT-IR analyses showed that LED therapy is more efficacious than TUS, when combined with a semipermeable dressing, and induced the collagen production in skin lesions. PMID:26862463

  2. Site-Selective Controlled Dealloying Process of Gold-Silver Nanowire Array: a Simple Approach towards Long-Term Stability and Sensitivity Improvement of SERS Substrate.

    PubMed

    Wiriyakun, Natta; Pankhlueab, Karuna; Boonrungsiman, Suwimon; Laocharoensuk, Rawiwan

    2016-12-13

    Limitations of achieving highly sensitive and stable surface-enhanced Raman scattering (SERS) substrate greatly concern the suitable method for fabrication of large-area plasmonic nanostructures. Herein we report a simple approach using template-based synthesis to create a highly ordered two-dimensional array of gold-silver alloy nanowires, followed by the controlled dealloying process. This particular step of mild acid etching (15%v/v nitric acid for 5 min) allowed the formation of Raman hot spots on the nanowire tips while maintaining the integrity of highly active alloy composition and rigid nanowire array structure. Full consideration of SERS substrate performance was accomplished using 4-mercaptobenzoic acid (4-MBA) as a probe molecule. Exceedingly higher SERS signal (150-fold) can be achieved with respect to typical gold film substrate. Moreover, an excellent stability of SERS substrate was also determined for over 3 months storage time. In contrast to the previous studies which stability improvement was accomplished at a cost of sensitivity reduction, the simultaneous improvement of sensitivity and stability makes the controlled dealloying process an excellent choice of SERS substrate fabrication. In addition, uniformity and reproducibility studies indicated satisfactory results with the acceptable values of relative standard deviation.

  3. Site-Selective Controlled Dealloying Process of Gold-Silver Nanowire Array: a Simple Approach towards Long-Term Stability and Sensitivity Improvement of SERS Substrate

    PubMed Central

    Wiriyakun, Natta; Pankhlueab, Karuna; Boonrungsiman, Suwimon; Laocharoensuk, Rawiwan

    2016-01-01

    Limitations of achieving highly sensitive and stable surface-enhanced Raman scattering (SERS) substrate greatly concern the suitable method for fabrication of large-area plasmonic nanostructures. Herein we report a simple approach using template-based synthesis to create a highly ordered two-dimensional array of gold-silver alloy nanowires, followed by the controlled dealloying process. This particular step of mild acid etching (15%v/v nitric acid for 5 min) allowed the formation of Raman hot spots on the nanowire tips while maintaining the integrity of highly active alloy composition and rigid nanowire array structure. Full consideration of SERS substrate performance was accomplished using 4-mercaptobenzoic acid (4-MBA) as a probe molecule. Exceedingly higher SERS signal (150-fold) can be achieved with respect to typical gold film substrate. Moreover, an excellent stability of SERS substrate was also determined for over 3 months storage time. In contrast to the previous studies which stability improvement was accomplished at a cost of sensitivity reduction, the simultaneous improvement of sensitivity and stability makes the controlled dealloying process an excellent choice of SERS substrate fabrication. In addition, uniformity and reproducibility studies indicated satisfactory results with the acceptable values of relative standard deviation. PMID:27958367

  4. Site-Selective Controlled Dealloying Process of Gold-Silver Nanowire Array: a Simple Approach towards Long-Term Stability and Sensitivity Improvement of SERS Substrate

    NASA Astrophysics Data System (ADS)

    Wiriyakun, Natta; Pankhlueab, Karuna; Boonrungsiman, Suwimon; Laocharoensuk, Rawiwan

    2016-12-01

    Limitations of achieving highly sensitive and stable surface-enhanced Raman scattering (SERS) substrate greatly concern the suitable method for fabrication of large-area plasmonic nanostructures. Herein we report a simple approach using template-based synthesis to create a highly ordered two-dimensional array of gold-silver alloy nanowires, followed by the controlled dealloying process. This particular step of mild acid etching (15%v/v nitric acid for 5 min) allowed the formation of Raman hot spots on the nanowire tips while maintaining the integrity of highly active alloy composition and rigid nanowire array structure. Full consideration of SERS substrate performance was accomplished using 4-mercaptobenzoic acid (4-MBA) as a probe molecule. Exceedingly higher SERS signal (150-fold) can be achieved with respect to typical gold film substrate. Moreover, an excellent stability of SERS substrate was also determined for over 3 months storage time. In contrast to the previous studies which stability improvement was accomplished at a cost of sensitivity reduction, the simultaneous improvement of sensitivity and stability makes the controlled dealloying process an excellent choice of SERS substrate fabrication. In addition, uniformity and reproducibility studies indicated satisfactory results with the acceptable values of relative standard deviation.

  5. Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range.

    PubMed

    Chen, Sujie; Zhuo, Bengang; Guo, Xiaojun

    2016-08-10

    Once the requirement of sensitivity has been met, to enable a flexible pressure sensor technology to be widely adopted as an economic and convenient way for sensing diverse human body motions, critical factors need to be considered including low manufacturing cost, a large pressure detection range, and low power consumption. In this work, a facile approach is developed for one-step processing of a large area microstructured elastomer film with high density microfeatures of air voids, which can be seamlessly integrated into the process flow for fabricating flexible capacitive sensors. The fabricated sensors exhibit fast response and high sensitivity in the low pressure range to be able to detect very weak pressure down to 1 Pa and perform reliable wrist pulse monitoring. Compared to previous work, more advantageous features of this sensor are relatively high sensitivity being maintained in a wide pressure range up to 250 kPa and excellent durability under heavy load larger than 1 MPa, attributed to the formed dense air voids inside the film. A smart insole made with the sensor can accurately monitor the real-time walking or running behaviors and even a small weight change less than 1 kg under a heavy load of a 70 kg adult. For both application examples of wrist pulse monitoring and smart insole, the sensors are operated in a 3.3 V electronic system powered by a Li-ion battery, showing the potential for power-constrained wearable applications.

  6. Sensitivity to Spatiotemporal Percepts Predicts the Perception of Emotion

    PubMed Central

    Castro, Vanessa L.; Boone, R. Thomas

    2015-01-01

    The present studies examined how sensitivity to spatiotemporal percepts such as rhythm, angularity, configuration, and force predicts accuracy in perceiving emotion. In Study 1, participants (N = 99) completed a nonverbal test battery consisting of three nonverbal emotion perception tests and two perceptual sensitivity tasks assessing rhythm sensitivity and angularity sensitivity. Study 2 (N = 101) extended the findings of Study 1 with the addition of a fourth nonverbal test, a third configural sensitivity task, and a fourth force sensitivity task. Regression analyses across both studies revealed partial support for the association between perceptual sensitivity to spatiotemporal percepts and greater emotion perception accuracy. Results indicate that accuracy in perceiving emotions may be predicted by sensitivity to specific percepts embedded within channel- and emotion-specific displays. The significance of such research lies in the understanding of how individuals acquire emotion perception skill and the processes by which distinct features of percepts are related to the perception of emotion. PMID:26339111

  7. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs.

    PubMed

    Planque, M; Arnould, T; Dieu, M; Delahaut, P; Renard, P; Gillard, N

    2016-09-16

    Sensitive detection of food allergens is affected by food processing and foodstuff complexity. It is therefore a challenge to detect cross-contamination in food production that could endanger an allergic customer's life. Here we used ultra-high performance liquid chromatography coupled to tandem mass spectrometry for simultaneous detection of traces of milk (casein, whey protein), egg (yolk, white), soybean, and peanut allergens in different complex and/or heat-processed foodstuffs. The method is based on a single protocol (extraction, trypsin digestion, and purification) applicable to the different tested foodstuffs: chocolate, ice cream, tomato sauce, and processed cookies. The determined limits of quantitation, expressed in total milk, egg, peanut, or soy proteins (and not soluble proteins) per kilogram of food, are: 0.5mg/kg for milk (detection of caseins), 5mg/kg for milk (detection of whey), 2.5mg/kg for peanut, 5mg/kg for soy, 3.4mg/kg for egg (detection of egg white), and 30.8mg/kg for egg (detection of egg yolk). The main advantage is the ability of the method to detect four major food allergens simultaneously in processed and complex matrices with very high sensitivity and specificity.

  8. A method to generate fully multi-scale optimal interpolation by combining efficient single process analyses, illustrated by a DINEOF analysis spiced with a local optimal interpolation

    NASA Astrophysics Data System (ADS)

    Beckers, J.-M.; Barth, A.; Tomazic, I.; Alvera-Azcárate, A.

    2014-10-01

    We present a method in which the optimal interpolation of multi-scale processes can be expanded into a succession of simpler interpolations. First, we prove how the optimal analysis of a superposition of two processes can be obtained by different mathematical formulations involving iterations and analysis focusing on a single process. From the different mathemat