Optimal segmentation and packaging process
Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.
1999-01-01
A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.
Optimal segmentation and packaging process
Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.
1999-08-10
A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.
Development and Use of an Open-Source, User-Friendly Package to Simulate Voltammetry Experiments
ERIC Educational Resources Information Center
Wang, Shuo; Wang, Jing; Gao, Yanjing
2017-01-01
An open-source electrochemistry simulation package has been developed that simulates the electrode processes of four reaction mechanisms and two typical electroanalysis techniques: cyclic voltammetry and chronoamperometry. Unlike other open-source simulation software, this package balances the features with ease of learning and implementation and…
User's guide to the Variably Saturated Flow (VSF) process to MODFLOW
Thoms, R. Brad; Johnson, Richard L.; Healy, Richard W.
2006-01-01
A new process for simulating three-dimensional (3-D) variably saturated flow (VSF) using Richards' equation has been added to the 3-D modular finite-difference ground-water model MODFLOW. Five new packages are presented here as part of the VSF Process--the Richards' Equation Flow (REF1) Package, the Seepage Face (SPF1) Package, the Surface Ponding (PND1) Package, the Surface Evaporation (SEV1) Package, and the Root Zone Evapotranspiration (RZE1) Package. Additionally, a new Adaptive Time-Stepping (ATS1) Package is presented for use by both the Ground-Water Flow (GWF) Process and VSF. The VSF Process allows simulation of flow in unsaturated media above the ground-water zone and facilitates modeling of ground-water/surface-water interactions. Model performance is evaluated by comparison to an analytical solution for one-dimensional (1-D) constant-head infiltration (Dirichlet boundary condition), field experimental data for a 1-D constant-head infiltration, laboratory experimental data for two-dimensional (2-D) constant-flux infiltration (Neumann boundary condition), laboratory experimental data for 2-D transient drainage through a seepage face, and numerical model results (VS2DT) of a 2-D flow-path simulation using realistic surface boundary conditions. A hypothetical 3-D example case also is presented to demonstrate the new capability using periodic boundary conditions (for example, daily precipitation) and varied surface topography over a larger spatial scale (0.133 square kilometer). The new model capabilities retain the modular structure of the MODFLOW code and preserve MODFLOW's existing capabilities as well as compatibility with commercial pre-/post-processors. The overall success of the VSF Process in simulating mixed boundary conditions and variable soil types demonstrates its utility for future hydrologic investigations. This report presents a new flow package implementing the governing equations for variably saturated ground-water flow, four new boundary condition packages unique to unsaturated flow, the Adaptive Time-Stepping Package for use with both the GWF Process and the new VSF Process, detailed descriptions of the input and output files for each package, and six simulation examples verifying model performance.
Ohmic Heating of an Electrically Conductive Food Package.
Kanogchaipramot, Kanyawee; Tongkhao, Kullanart; Sajjaanantakul, Tanaboon; Kamonpatana, Pitiya
2016-12-01
Ohmic heating through an electrically conductive food package is a new approach to heat the food and its package as a whole after packing to avoid post-process contamination and to serve consumer needs for convenience. This process has been successfully completed using polymer film integrated with an electrically conductive film to form a conductive package. Orange juice packed in the conductive package surrounded with a conductive medium was pasteurized in an ohmic heater. A mathematical model was developed to simulate the temperature distribution within the package and its surroundings. A 3-D thermal-electric model showed heating uniformity inside the food package while the hot zone appeared in the orange juice adjacent to the conductive film. The accuracy of the model was determined by comparing the experimental results with the simulated temperature and current drawn; the model showed good agreement between the actual and simulated results. An inoculated pack study using Escherichia coli O157:H7 indicated negative growth of viable microorganisms at the target and over target lethal process temperatures, whereas the microorganism was present in the under target temperature treatment. Consequently, our developed ohmic heating system with conductive packaging offers potential for producing safe food. © 2016 Institute of Food Technologists®.
Ge, Changfeng; Cheng, Yujie; Shen, Yan
2013-01-01
This study demonstrated an attempt to predict temperatures of a perishable product such as vaccine inside an insulated packaging container during transport through finite element analysis (FEA) modeling. In order to use the standard FEA software for simulation, an equivalent heat conduction coefficient is proposed and calculated to describe the heat transfer of the air trapped inside the insulated packaging container. The three-dimensional, insulated packaging container is regarded as a combination of six panels, and the heat flow at each side panel is a one-dimension diffusion process. The transit-thermal analysis was applied to simulate the heat transition process from ambient environment to inside the container. Field measurements were carried out to collect the temperature during transport, and the collected data were compared to the FEA simulation results. Insulated packaging containers are used to transport temperature-sensitive products such as vaccine and other pharmaceutical products. The container is usually made of an extruded polystyrene foam filled with gel packs. World Health Organization guidelines recommend that all vaccines except oral polio vaccine be distributed in an environment where the temperature ranges between +2 to +8 °C. The primary areas of concern in designing the packaging for vaccine are how much of the foam thickness and gel packs should be used in order to keep the temperature in a desired range, and how to prevent the vaccine from exposure to freezing temperatures. This study uses numerical simulation to predict temperature change within an insulated packaging container in vaccine cold chain. It is our hope that this simulation will provide the vaccine industries with an alternative engineering tool to validate vaccine packaging and project thermal equilibrium within the insulated packaging container.
van Ooijen, Iris; Fransen, Marieke L; Verlegh, Peeter W J; Smit, Edith G
2017-02-01
Three studies show that product packaging shape serves as a cue that communicates healthiness of food products. Inspired by embodiment accounts, we show that packaging that simulates a slim body shape acts as a symbolic cue for product healthiness (e.g., low in calories), as opposed to packaging that simulates a wide body shape. Furthermore, we show that the effect of slim package shape on consumer behaviour is goal dependent. Whereas simulation of a slim (vs. wide) body shape increases choice likelihood and product attitude when consumers have a health-relevant shopping goal, packaging shape does not affect these outcomes when consumers have a hedonic shopping goal. In Study 3, we adopt a realistic shopping paradigm using a shelf with authentic products, and find that a slim (as opposed to wide) package shape increases on-shelf product recognition and increases product attitude for healthy products. We discuss results and implications regarding product positioning and the packaging design process. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, José A. M., E-mail: joadiazme@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co
2016-07-07
The deposited energy and dose distribution of beams of protons and carbon over a head are simulated using the free tool package Geant4 and the data analysis package ROOT-C++. The present work shows a methodology to understand the microscopical process occurring in a session of hadron-therapy using advance simulation tools.
ERIC Educational Resources Information Center
Gagne, Phill; Furlow, Carolyn; Ross, Terris
2009-01-01
In item response theory (IRT) simulation research, it is often necessary to use one software package for data generation and a second software package to conduct the IRT analysis. Because this can substantially slow down the simulation process, it is sometimes offered as a justification for using very few replications. This article provides…
Air-cooling characteristics of simulated grape packages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, R.L.; Comunian, F.
Experimental simulation of the external forced convection on the outside of grape packages was performed. Average heat transfer coefficients for air flow around such containers were found to range from 8 to 13.4 W/(m[sup 2]K). A physical description of the convective process was formulated on the basis of data obtained in three types of experiment. Expressions for the average heat transfer coefficient from single packages in air flow were proposed.
Prediction of drug-packaging interactions via molecular dynamics (MD) simulations.
Feenstra, Peter; Brunsteiner, Michael; Khinast, Johannes
2012-07-15
The interaction between packaging materials and drug products is an important issue for the pharmaceutical industry, since during manufacturing, processing and storage a drug product is continuously exposed to various packaging materials. The experimental investigation of a great variety of different packaging material-drug product combinations in terms of efficacy and safety can be a costly and time-consuming task. In our work we used molecular dynamics (MD) simulations in order to evaluate the applicability of such methods to pre-screening of the packaging material-solute compatibility. The solvation free energy and the free energy of adsorption of diverse solute/solvent/solid systems were estimated. The results of our simulations agree with experimental values previously published in the literature, which indicates that the methods in question can be used to semi-quantitatively reproduce the solid-liquid interactions of the investigated systems. Copyright © 2012 Elsevier B.V. All rights reserved.
A MODFLOW Infiltration Device Package for Simulating Storm Water Infiltration.
Jeppesen, Jan; Christensen, Steen
2015-01-01
This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two-way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage-like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface-Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales. © 2014, National Ground Water Association.
Leake, S.A.; Prudic, David E.
1988-01-01
The process of permanent compaction is not routinely included in simulations of groundwater flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U. S. Geological Survey modular finite-difference groundwater flow model. The new program is called the Interbed-Storage Package. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of skeletal component of elastic specific storage and thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the groundwater flow model by adding an additional term to the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum head. Another package that allows for a time-varying specified-head boundary is also documented. This package was written to reduce the data requirements for test simulations of the Interbed-Storage Package. (USGS)
Code of Federal Regulations, 2014 CFR
2014-01-01
... data made available to the NSPM (the validation data package) includes the aircraft manufacturer's... longer in business), and if appropriate, with the person who supplied the aircraft data package for the FFS for the purposes of receiving notification of data package changes. E1.13. A policy, process, or...
Code of Federal Regulations, 2012 CFR
2012-01-01
... data made available to the NSPM (the validation data package) includes the aircraft manufacturer's... longer in business), and if appropriate, with the person who supplied the aircraft data package for the FFS for the purposes of receiving notification of data package changes. E1.13. A policy, process, or...
Migration and sorption phenomena in packaged foods.
Gnanasekharan, V; Floros, J D
1997-10-01
Rapidly developing analytical capabilities and continuously evolving stringent regulations have made food/package interactions a subject of intense research. This article focuses on: (1) the migration of package components such as oligomers and monomers, processing aids, additives, and residual reactants in to packaged foods, and (2) sorption of food components such as flavors, lipids, and moisture into packages. Principles of diffusion and thermodynamics are utilized to describe the mathematics of migration and sorption. Mathematical models are developed from first principles, and their applicability is illustrated using numerical simulations and published data. Simulations indicate that available models are system (polymer-penetrant) specific. Furthermore, some models best describe the early stages of migration/sorption, whereas others should be used for the late stages of these phenomena. Migration- and/or sorption-related problems with respect to glass, metal, paper-based and polymeric packaging materials are discussed, and their importance is illustrated using published examples. The effects of migrating and absorbed components on food safety, quality, and the environment are presented for various foods and packaging materials. The impact of currently popular packaging techniques such as microwavable, ovenable, and retortable packaging on migration and sorption are discussed with examples. Analytical techniques for investigating migration and sorption phenomena in food packaging are critically reviewed, with special emphasis on the use and characteristics of food-simulating liquids (FSLs). Finally, domestic and international regulations concerning migration in packaged foods, and their impact on food packaging is briefly presented.
Structural and thermodynamic principles of viral packaging.
Petrov, Anton S; Harvey, Stephen C
2007-01-01
Packaging of genetic material inside a capsid is one of the major processes in the lifecycle of bacteriophages. To establish the basic principles of packing double-stranded DNA into a phage, we present a low-resolution model of bacteriophage varphi29 and report simulations of DNA packaging. The simulations show excellent agreement with available experimental data, including the forces of packaging and the average structures seen in cryo-electron microscopy. The conformation of DNA inside the bacteriophage is primarily determined by the shape of the capsid and the elastic properties of DNA, but the energetics of packaging are dominated by electrostatic repulsions and the large entropic penalty associated with DNA confinement. In this slightly elongated capsid, the DNA assumes a folded toroidal conformation, rather than a coaxial spool. The model can be used to study packaging of other bacteriophages with different shapes under a range of environmental conditions.
The R package 'RLumModel': Simulating charge transfer in quartz
NASA Astrophysics Data System (ADS)
Friedrich, Johannes; Kreutzer, Sebastian; Schmidt, Christoph
2017-04-01
Kinetic models of quartz luminescence have gained an important role for predicting experimental results and for understanding charge transfers in (natural) quartz as well as for other dosimetric materials, e.g., Al2O3:C. We present the R package 'RLumModel', offering an easy-to-use tool for simulating quartz luminescence signals (TL, OSL, LM-OSL and RF) based on five integrated and published parameter sets as well as the possibility to use own parameters. Simulation commands can be created (a) using the Risø Sequence Editor, (b) a built-in SAR sequence generator or (c) self-explanatory keywords for customised sequences. Results can be analysed seamlessly using the R package 'Luminescence' along with a visualisation of concentrations of electrons and holes in every trap/centre as well as in the valence and conduction band during all stages of the simulation. Modelling luminescence signals can help understanding charge transfer processes occurring in nature or during measurements in the laboratory. This will lead to a better understanding of several processes concerning geoscientific questions, because quartz is the second most abundant mineral in the Earth's continental crust.
Benchmark tests for a Formula SAE Student car prototyping
NASA Astrophysics Data System (ADS)
Mariasiu, Florin
2011-12-01
Aerodynamic characteristics of a vehicle are important elements in its design and construction. A low drag coefficient brings significant fuel savings and increased engine power efficiency. In designing and developing vehicles trough computer simulation process to determine the vehicles aerodynamic characteristics are using dedicated CFD (Computer Fluid Dynamics) software packages. However, the results obtained by this faster and cheaper method, are validated by experiments in wind tunnels tests, which are expensive and were complex testing equipment are used in relatively high costs. Therefore, the emergence and development of new low-cost testing methods to validate CFD simulation results would bring great economic benefits for auto vehicles prototyping process. This paper presents the initial development process of a Formula SAE Student race-car prototype using CFD simulation and also present a measurement system based on low-cost sensors through which CFD simulation results were experimentally validated. CFD software package used for simulation was Solid Works with the FloXpress add-on and experimental measurement system was built using four piezoresistive force sensors FlexiForce type.
ROMI-3: Rough-Mill Simulator Version 3.0: User's Guide
Joel M. Weiss; R. Edward Thomas; R. Edward Thomas
2005-01-01
ROMI-3 Rough-Mill Simulator is a software package that simulates current industrial practices for rip-first and chop-first lumber processing. This guide shows the user how to set up and examine the results of simulations of current or proposed mill practices. ROMI-3 accepts cutting bills with as many as 600 combined solid and/or panel part sizes. Plots of processed...
Modelling robotic systems with DADS
NASA Technical Reports Server (NTRS)
Churchill, L. W.; Sharf, I.
1993-01-01
With the appearance of general off-the-shelf software packages for the simulation of mechanical systems, modelling and simulation of mechanisms has become an easier task. The authors have recently used one such package, DADS, to model the dynamics of rigid and flexible-link robotic manipulators. In this paper, we present this overview of our learning experiences with DADS, in the hope that it will shorten the learning process for others interested in this software.
Facilitating hydrological data analysis workflows in R: the RHydro package
NASA Astrophysics Data System (ADS)
Buytaert, Wouter; Moulds, Simon; Skoien, Jon; Pebesma, Edzer; Reusser, Dominik
2015-04-01
The advent of new technologies such as web-services and big data analytics holds great promise for hydrological data analysis and simulation. Driven by the need for better water management tools, it allows for the construction of much more complex workflows, that integrate more and potentially more heterogeneous data sources with longer tool chains of algorithms and models. With the scientific challenge of designing the most adequate processing workflow comes the technical challenge of implementing the workflow with a minimal risk for errors. A wide variety of new workbench technologies and other data handling systems are being developed. At the same time, the functionality of available data processing languages such as R and Python is increasing at an accelerating pace. Because of the large diversity of scientific questions and simulation needs in hydrology, it is unlikely that one single optimal method for constructing hydrological data analysis workflows will emerge. Nevertheless, languages such as R and Python are quickly gaining popularity because they combine a wide array of functionality with high flexibility and versatility. The object-oriented nature of high-level data processing languages makes them particularly suited for the handling of complex and potentially large datasets. In this paper, we explore how handling and processing of hydrological data in R can be facilitated further by designing and implementing a set of relevant classes and methods in the experimental R package RHydro. We build upon existing efforts such as the sp and raster packages for spatial data and the spacetime package for spatiotemporal data to define classes for hydrological data (HydroST). In order to handle simulation data from hydrological models conveniently, a HM class is defined. Relevant methods are implemented to allow for an optimal integration of the HM class with existing model fitting and simulation functionality in R. Lastly, we discuss some of the design challenges of the RHydro package, including integration with big data technologies, web technologies, and emerging data models in hydrology.
Automated Sequence Processor: Something Old, Something New
NASA Technical Reports Server (NTRS)
Streiffert, Barbara; Schrock, Mitchell; Fisher, Forest; Himes, Terry
2012-01-01
High productivity required for operations teams to meet schedules Risk must be minimized. Scripting used to automate processes. Scripts perform essential operations functions. Automated Sequence Processor (ASP) was a grass-roots task built to automate the command uplink process System engineering task for ASP revitalization organized. ASP is a set of approximately 200 scripts written in Perl, C Shell, AWK and other scripting languages.. ASP processes/checks/packages non-interactive commands automatically.. Non-interactive commands are guaranteed to be safe and have been checked by hardware or software simulators.. ASP checks that commands are non-interactive.. ASP processes the commands through a command. simulator and then packages them if there are no errors.. ASP must be active 24 hours/day, 7 days/week..
Use of optical technique for inspection of warpage of IC packages
NASA Astrophysics Data System (ADS)
Toh, Siew-Lok; Chau, Fook S.; Ong, Sim Heng
2001-06-01
The packaging of IC packages has changed over the years, form dual-in-line, wire-bond, and pin-through-hole in printed wiring board technologies in the 1970s to ball grid array, chip scale and surface mount technologies in the 1990s. Reliability has been a big problem for manufacturers for some moisture-sensitive packages. One of the potential problems in plastic IC packages is moisture-induced popcorn effect which can arise during the reflow process. Shearography is a non-destructive inspection technique that may be used to detect the delamination and warpage of IC packages. It is non-contacting and permits a full-field observation of surface displacement derivatives. Another advantage of this technique is that it is able to give the real-time formation of the fringes which indicate flaws in the IC package under real-time simulation condition of Surface Mount Technology (SMT) IR reflow profile. It is extremely fast and convenient to study the true behavior of the packaging deformation during the SMT process. It can be concluded that shearography has the potential for the real- time detection, in situ and non-destructive inspection of IC packages during the surface mount process.
Niswonger, R.G.; Prudic, David E.
2009-01-01
Twarakavi et al (2008) compared four packages that can be used to estimate recharge for regional-scale groundwater flow simulations using MODFLOW (Harbaugh, 2005). This comment is focused on the comparisons made between two of these packages, namely, UZF1 (Niswonger et al., 2006) and a derivative of HYDRUS referred to herein as HYDRUS (Seo et al., 2007). In their paper, Twarakavi et al. (2008) stated that HYDRUS more accurately simulates unsaturated flow processes and groundwater recharge as compared to UZF1. However, Twarakavi et al. (2008) did not address several important differences between these models that undermine the advantages of HYDRUS as compared to UZF1 for simulating recharge. These differences were not revealed by the comparisons presented by Twarakavi et al. because the test simulations used to compare the models were too simple
DNA packaging in viral capsids with peptide arms.
Cao, Qianqian; Bachmann, Michael
2017-01-18
Strong chain rigidity and electrostatic self-repulsion of packed double-stranded DNA in viruses require a molecular motor to pull the DNA into the capsid. However, what is the role of electrostatic interactions between different charged components in the packaging process? Though various theories and computer simulation models were developed for the understanding of viral assembly and packaging dynamics of the genome, long-range electrostatic interactions and capsid structure have typically been neglected or oversimplified. By means of molecular dynamics simulations, we explore the effects of electrostatic interactions on the packaging dynamics of DNA based on a coarse-grained DNA and capsid model by explicitly including peptide arms (PAs), linked to the inner surface of the capsid, and counterions. Our results indicate that the electrostatic interactions between PAs, DNA, and counterions have a significant influence on the packaging dynamics. We also find that the packed DNA conformations are largely affected by the structure of the PA layer, but the packaging rate is insensitive to the layer structure.
Fuzzy simulation in concurrent engineering
NASA Technical Reports Server (NTRS)
Kraslawski, A.; Nystrom, L.
1992-01-01
Concurrent engineering is becoming a very important practice in manufacturing. A problem in concurrent engineering is the uncertainty associated with the values of the input variables and operating conditions. The problem discussed in this paper concerns the simulation of processes where the raw materials and the operational parameters possess fuzzy characteristics. The processing of fuzzy input information is performed by the vertex method and the commercial simulation packages POLYMATH and GEMS. The examples are presented to illustrate the usefulness of the method in the simulation of chemical engineering processes.
Knowledge-based simulation for aerospace systems
NASA Technical Reports Server (NTRS)
Will, Ralph W.; Sliwa, Nancy E.; Harrison, F. Wallace, Jr.
1988-01-01
Knowledge-based techniques, which offer many features that are desirable in the simulation and development of aerospace vehicle operations, exhibit many similarities to traditional simulation packages. The eventual solution of these systems' current symbolic processing/numeric processing interface problem will lead to continuous and discrete-event simulation capabilities in a single language, such as TS-PROLOG. Qualitative, totally-symbolic simulation methods are noted to possess several intrinsic characteristics that are especially revelatory of the system being simulated, and capable of insuring that all possible behaviors are considered.
Realistic Simulations of Coronagraphic Observations with WFIRST
NASA Astrophysics Data System (ADS)
Rizzo, Maxime; Zimmerman, Neil; Roberge, Aki; Lincowski, Andrew; Arney, Giada; Stark, Chris; Jansen, Tiffany; Turnbull, Margaret; WFIRST Science Investigation Team (Turnbull)
2018-01-01
We present a framework to simulate observing scenarios with the WFIRST Coronagraphic Instrument (CGI). The Coronagraph and Rapid Imaging Spectrograph in Python (crispy) is an open-source package that can be used to create CGI data products for analysis and development of post-processing routines. The software convolves time-varying coronagraphic PSFs with realistic astrophysical scenes which contain a planetary architecture, a consistent dust structure, and a background field composed of stars and galaxies. The focal plane can be read out by a WFIRST electron-multiplying CCD model directly, or passed through a WFIRST integral field spectrograph model first. Several elementary post-processing routines are provided as part of the package.
Kassiopeia: a modern, extensible C++ particle tracking package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furse, Daniel; Groh, Stefan; Trost, Nikolaus
The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less
Kassiopeia: a modern, extensible C++ particle tracking package
Furse, Daniel; Groh, Stefan; Trost, Nikolaus; ...
2017-05-16
The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less
Kassiopeia: a modern, extensible C++ particle tracking package
NASA Astrophysics Data System (ADS)
Furse, Daniel; Groh, Stefan; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.; Behrens, Jan; Buzinsky, Nicholas; Corona, Thomas; Enomoto, Sanshiro; Erhard, Moritz; Formaggio, Joseph A.; Glück, Ferenc; Harms, Fabian; Heizmann, Florian; Hilk, Daniel; Käfer, Wolfgang; Kleesiek, Marco; Leiber, Benjamin; Mertens, Susanne; Oblath, Noah S.; Renschler, Pascal; Schwarz, Johannes; Slocum, Penny L.; Wandkowsky, Nancy; Wierman, Kevin; Zacher, Michael
2017-05-01
The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle’s state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.
NASA Astrophysics Data System (ADS)
Rozanov, V. V.; Dinter, T.; Rozanov, A. V.; Wolanin, A.; Bracher, A.; Burrows, J. P.
2017-06-01
SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18-40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean-atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de.
Simulating reservoir leakage in ground-water models
Fenske, J.P.; Leake, S.A.; Prudic, David E.
1997-01-01
Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.
TESSIM: a simulator for the Athena-X-IFU
NASA Astrophysics Data System (ADS)
Wilms, J.; Smith, S. J.; Peille, P.; Ceballos, M. T.; Cobo, B.; Dauser, T.; Brand, T.; den Hartog, R. H.; Bandler, S. R.; de Plaa, J.; den Herder, J.-W. A.
2016-07-01
We present the design of tessim, a simulator for the physics of transition edge sensors developed in the framework of the Athena end to end simulation effort. Designed to represent the general behavior of transition edge sensors and to provide input for engineering and science studies for Athena, tessim implements a numerical solution of the linearized equations describing these devices. The simulation includes a model for the relevant noise sources and several implementations of possible trigger algorithms. Input and output of the software are standard FITS- files which can be visualized and processed using standard X-ray astronomical tool packages. Tessim is freely available as part of the SIXTE package (http://www.sternwarte.uni-erlangen.de/research/sixte/).
TESSIM: A Simulator for the Athena-X-IFU
NASA Technical Reports Server (NTRS)
Wilms, J.; Smith, S. J.; Peille, P.; Ceballos, M. T.; Cobo, B.; Dauser, T.; Brand, T.; Den Hartog, R. H.; Bandler, S. R.; De Plaa, J.;
2016-01-01
We present the design of tessim, a simulator for the physics of transition edge sensors developed in the framework of the Athena end to end simulation effort. Designed to represent the general behavior of transition edge sensors and to provide input for engineering and science studies for Athena, tessim implements a numerical solution of the linearized equations describing these devices. The simulation includes a model for the relevant noise sources and several implementations of possible trigger algorithms. Input and output of the software are standard FITS-les which can be visualized and processed using standard X-ray astronomical tool packages. Tessim is freely available as part of the SIXTE package (http:www.sternwarte.uni-erlangen.deresearchsixte).
NASA Astrophysics Data System (ADS)
Roellig, Mike; Meier, Karsten; Metasch, Rene
2010-11-01
The recent development of 3D-integrated electronic packages is characterized by the need to increase the diversity of functions and to miniaturize. Currently many 3D-integration concepts are being developed and all of them demand new materials, new designs and new processing technologies. The combination of simulation and experimental investigation becomes increasingly accepted since simulations help to shorten the R&D cycle time and reduce costs. Numerical calculations like the Finite-Element-Method are strong tools to calculate stress conditions in electronic packages resulting from thermal strains due to the manufacturing process and environmental loads. It is essential for the application of numerical calculations that the material data is accurate and describes sufficiently the physical behaviour. The developed machine allows the measurement of time and temperature dependent micromechanical properties of solder joints. Solder joints, which are used to mechanically and electrically connect different packages, are physically measured as they leave the process. This allows accounting for process influences, which may change material properties. Additionally, joint sizes and metallurgical interactions between solder and under bump metallization can be respected by this particular measurement. The measurement allows the determination of material properties within a temperature range of 20° C-200° C. Further, the time dependent creep deformation can be measured within a strain-rate range of 10-31/s-10-81/s. Solder alloys based on Sn-Ag/Sn-Ag-Cu with additionally impurities and joint sizes down to O/ 200 μm were investigated. To finish the material characterization process the material model coefficient were extracted by FEM-Simulation to increase the accuracy of data.
Numerical Simulation of Cast Distortion in Gas Turbine Engine Components
NASA Astrophysics Data System (ADS)
Inozemtsev, A. A.; Dubrovskaya, A. S.; Dongauser, K. A.; Trufanov, N. A.
2015-06-01
In this paper the process of multiple airfoilvanes manufacturing through investment casting is considered. The mathematical model of the full contact problem is built to determine stress strain state in a cast during the process of solidification. Studies are carried out in viscoelastoplastic statement. Numerical simulation of the explored process is implemented with ProCASTsoftware package. The results of simulation are compared with the real production process. By means of computer analysis the optimization of technical process parameters is done in order to eliminate the defect of cast walls thickness variation.
NASA Astrophysics Data System (ADS)
Johnson, Daniel; Huerta, E. A.; Haas, Roland
2018-01-01
Numerical simulations of Einstein’s field equations provide unique insights into the physics of compact objects moving at relativistic speeds, and which are driven by strong gravitational interactions. Numerical relativity has played a key role to firmly establish gravitational wave astrophysics as a new field of research, and it is now paving the way to establish whether gravitational wave radiation emitted from compact binary mergers is accompanied by electromagnetic and astro-particle counterparts. As numerical relativity continues to blend in with routine gravitational wave data analyses to validate the discovery of gravitational wave events, it is essential to develop open source tools to streamline these studies. Motivated by our own experience as users and developers of the open source, community software, the Einstein Toolkit, we present an open source, Python package that is ideally suited to monitor and post-process the data products of numerical relativity simulations, and compute the gravitational wave strain at future null infinity in high performance environments. We showcase the application of this new package to post-process a large numerical relativity catalog and extract higher-order waveform modes from numerical relativity simulations of eccentric binary black hole mergers and neutron star mergers. This new software fills a critical void in the arsenal of tools provided by the Einstein Toolkit consortium to the numerical relativity community.
van Oordt, Thomas; Barb, Yannick; Smetana, Jan; Zengerle, Roland; von Stetten, Felix
2013-08-07
Stick-packaging of goods in tubular-shaped composite-foil pouches has become a popular technology for food and drug packaging. We miniaturized stick-packaging for use in lab-on-a-chip (LOAC) systems to pre-store and on-demand release the liquid and dry reagents in a volume range of 80-500 μl. An integrated frangible seal enables the pressure-controlled release of reagents and simplifies the layout of LOAC systems, thereby making the package a functional microfluidic release unit. The frangible seal is adjusted to defined burst pressures ranging from 20 to 140 kPa. The applied ultrasonic welding process allows the packaging of temperature sensitive reagents. Stick-packs have been successfully tested applying recovery tests (where 99% (STDV = 1%) of 250 μl pre-stored liquid is released), long-term storage tests (where there is loss of only <0.5% for simulated 2 years) and air transport simulation tests. The developed technology enables the storage of a combination of liquid and dry reagents. It is a scalable technology suitable for rapid prototyping and low-cost mass production.
Lianou, Alexandra; Geornaras, Ifigenia; Kendall, Patricia A; Scanga, John A; Sofos, John N
2007-08-01
Uncured turkey breast, commercially available with or without a mixture of potassium lactate and sodium diacetate, was sliced, inoculated with a 10-strain composite of Listeria monocytogenes, vacuum-packaged, and stored at 4 degrees C, to simulate contamination after a lethal processing step at the plant. At 5, 15, 25 and 50 days of storage, packages were opened, slices were tested, and bags with remaining slices were reclosed with rubber bands; this simulated home use of plant-sliced and -packaged product. At the same above time intervals, portions of original product (stored at 4 degrees C in original processing bags) were sliced and inoculated as above, and packaged in delicatessen bags, simulating contamination during slicing/handling at retail or home. Both sets of bags were stored aerobically at 7 degrees C for 12 days to simulate home storage. L. monocytogenes populations were lower (P<0.05) during storage in turkey breast containing a combination of lactate and diacetate compared to product without antimicrobials under both contamination scenarios. Due to prolific growth of the pathogen under the plant-contamination scenario in product without lactate-diacetate during vacuum-packaged storage (4 degrees C), populations at 3 days of aerobic storage (7 degrees C) of such product ranged from 4.6 to 7.4 log cfu/cm(2). Under the retail/home-contamination scenario, mean growth rates (log cfu/cm(2)/day) of the organism during aerobic storage ranged from 0.14 to 0.16, and from 0.25 to 0.51, in product with and without lactate-diacetate, respectively; growth rates in turkey breast without antimicrobials decreased (P<0.05) with age of the product. Overall, product without antimicrobials inoculated to simulate plant-contamination and product with lactate-diacetate inoculated to simulate retail/home-contamination were associated with the highest and lowest pathogen levels during aerobic storage at 7 degrees C, respectively. However, 5- and 15-day-old turkey breast without lactate-diacetate stored aerobically for 12 days resulted in similar pathogen levels (7.3-7.7 log cfu/cm(2)), irrespective of contamination scenario.
Borsia, I.; Rossetto, R.; Schifani, C.; Hill, Mary C.
2013-01-01
In this paper two modifications to the MODFLOW code are presented. One concerns an extension of Local Grid Refinement (LGR) to Variable Saturated Flow process (VSF) capability. This modification allows the user to solve the 3D Richards’ equation only in selected parts of the model domain. The second modification introduces a new package, named CFL (Cascading Flow), which improves the computation of overland flow when ground surface saturation is simulated using either VSF or the Unsaturated Zone Flow (UZF) package. The modeling concepts are presented and demonstrated. Programmer documentation is included in appendices.
Polymeric Packaging for Fully Implantable Wireless Neural Microsensors
Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.
2014-01-01
We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999
Evaluating Process Sustainability Using Flowsheet Monitoring
Environmental metric software can be used to evaluate the sustainability of a chemical based on data from the chemical process that is used to manufacture it. One problem in developing environmental metric software is that chemical process simulation packages typically do not rea...
gadfly: A pandas-based Framework for Analyzing GADGET Simulation Data
NASA Astrophysics Data System (ADS)
Hummel, Jacob A.
2016-11-01
We present the first public release (v0.1) of the open-source gadget Dataframe Library: gadfly. The aim of this package is to leverage the capabilities of the broader python scientific computing ecosystem by providing tools for analyzing simulation data from the astrophysical simulation codes gadget and gizmo using pandas, a thoroughly documented, open-source library providing high-performance, easy-to-use data structures that is quickly becoming the standard for data analysis in python. Gadfly is a framework for analyzing particle-based simulation data stored in the HDF5 format using pandas DataFrames. The package enables efficient memory management, includes utilities for unit handling, coordinate transformations, and parallel batch processing, and provides highly optimized routines for visualizing smoothed-particle hydrodynamics data sets.
Fast simulation of reconstructed phylogenies under global time-dependent birth-death processes.
Höhna, Sebastian
2013-06-01
Diversification rates and patterns may be inferred from reconstructed phylogenies. Both the time-dependent and the diversity-dependent birth-death process can produce the same observed patterns of diversity over time. To develop and test new models describing the macro-evolutionary process of diversification, generic and fast algorithms to simulate under these models are necessary. Simulations are not only important for testing and developing models but play an influential role in the assessment of model fit. In the present article, I consider as the model a global time-dependent birth-death process where each species has the same rates but rates may vary over time. For this model, I derive the likelihood of the speciation times from a reconstructed phylogenetic tree and show that each speciation event is independent and identically distributed. This fact can be used to simulate efficiently reconstructed phylogenetic trees when conditioning on the number of species, the time of the process or both. I show the usability of the simulation by approximating the posterior predictive distribution of a birth-death process with decreasing diversification rates applied on a published bird phylogeny (family Cettiidae). The methods described in this manuscript are implemented in the R package TESS, available from the repository CRAN (http://cran.r-project.org/web/packages/TESS/). Supplementary data are available at Bioinformatics online.
Du, Likai; Lan, Zhenggang
2015-04-14
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
ROMI 4.0: Rough mill simulator 4.0 users manual
R. Edward Thomas; Timo Grueneberg; Urs Buehlmann
2015-01-01
The Rough MIll simulator (ROMI Version 4.0) is a computer software package for personal computers (PCs) that simulates current industrial practices for rip-first, chop-first, and rip and chop-first lumber processing. This guide shows how to set up the software; design, implement, and execute simulations; and examine the results. ROMI 4.0 accepts cutting bills with as...
Evaluating Process Sustainability Using Flowsheet Monitoring (Abstract)
Environmental metric software can be used to evaluate the sustainability of a chemical based upon data from the chemical process that is used to manufacture it. One problem in developing environmental metric software is that chemical process simulation packages typically do not p...
Modelling groundwater seepage zones in an unconfined aquifer with MODFLOW: different approaches
NASA Astrophysics Data System (ADS)
Leterme, Bertrand; Gedeon, Matej
2014-05-01
In areas where groundwater level occurs close to surface topography, the discharge of groundwater flow to the ground surface (or seepage) can be an important aspect of catchment hydrological cycle. It is also associated with valuable zones from an ecological point of view, often having a permanent shallow water table and constant lithotrophic water quality (Batelaan et al., 2003). In the present study, we try to implement a correct representation of this seepage process in a MODFLOW-HYDRUS coupled model for a small catchment (18.6 km²) of north-east Belgium. We started from an exisiting transient groundwater model of the unconfined aquifer in the study area (Gedeon and Mallants, 2009) discretized in 50x50 m cells. As the model did not account for seepage, hydraulic heads were simulated above the surface topography in certain zones. In the coupled MODFLOW-HYDRUS setup, transient boundary conditions (potential evapotranspiration and precipitation) are used to calculate the recharge with the HYDRUS package (Seo et al., 2007) for MODFLOW-2000 (Harbaugh et al., 2000). Coupling HYDRUS to MODFLOW involves the definition of a number of zones based on similarity in estimated groundwater depth, soil type and land cover. Concerning simulation of seepage, several existing packages are tested, including the DRAIN package (as in Reeve et al., 2006), the SPF package (from VSF Process; Thoms et al., 2006) and the PBC package (Post, 2011). Alternatively to the HYDRUS package for MODFLOW, the UZF package (Niswonger et al., 2006) for the simulation of recharge (and seepage) is also tested. When applicable, the parameterization of drain conductance in the top layer is critical and is investigated in relation to the soil hydraulic conductivity values used for the unsaturated zone (HYDRUS). Furthermore, stability issues are discussed, and where successful model runs are obtained, simulation results are compared with observed groundwater levels from a piezometric network. Spatial and temporal variability of the seepage zones is obtained and can be compared against seepage indicators such as soil maps or types of plant habitat. References Batelaan, O., De Smedt, F., Triest, L., 2003. Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. Journal of Hydrology 275, 86-108. Gedeon, M., Mallants, D., 2009. Local-scale transient groundwater flow calculations. Project near surface disposal of category A waste at Dessel, NIRAS/ONDRAF, 74 p. Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G., 2000. MODFLOW-2000, the U.S. Geological Survey modular ground-water model user guide to modularization concepts and the ground-water flow process. USGS, Denver, CO. Niswonger, R.G., Prudic, D.E., Regan, R.S., 2006. Documentation of the Unsaturated-Zone Flow (UZF1) package for modeling unsaturated flow between the land surface and the water table with MODFLOW-2005. Techniques and Methods 6-A19, USGS, Denver, CO. Post, V.E.A., 2011. A new package for simulating periodic boundary conditions in MODFLOW and SEAWAT. Computers & Geosciences 37, 1843-1849. Reeve, A.S., Evensen, R., Glaser, P.H., Siegel, D.I., Rosenberry, D., 2006. Flow path oscillations in transient ground-water simulations of large peatland systems. Journal of Hydrology 316, 313-324. Seo, H.S., Šimůnek, J., Poeter, E.P., 2007. Documentation of the HYDRUS Package for MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model. Colorado School of Mines, Golden, CO. Thoms, R.B., Johnson, R.L., Healy, R.W., 2006. User's guide to the Variably Saturated Flow (VSF) Process for MODFLOW. U.S. Geological Survey Techniques and Methods 6-A18, p. 58.
An Object-Oriented Serial DSMC Simulation Package
NASA Astrophysics Data System (ADS)
Liu, Hongli; Cai, Chunpei
2011-05-01
A newly developed three-dimensional direct simulation Monte Carlo (DSMC) simulation package, named GRASP ("Generalized Rarefied gAs Simulation Package"), is reported in this paper. This package utilizes the concept of simulation engine, many C++ features and software design patterns. The package has an open architecture which can benefit further development and maintenance of the code. In order to reduce the engineering time for three-dimensional models, a hybrid grid scheme, combined with a flexible data structure compiled by C++ language, are implemented in this package. This scheme utilizes a local data structure based on the computational cell to achieve high performance on workstation processors. This data structure allows the DSMC algorithm to be very efficiently parallelized with domain decomposition and it provides much flexibility in terms of grid types. This package can utilize traditional structured, unstructured or hybrid grids within the framework of a single code to model arbitrarily complex geometries and to simulate rarefied gas flows. Benchmark test cases indicate that this package has satisfactory accuracy for complex rarefied gas flows.
Using virtualization to protect the proprietary material science applications in volunteer computing
NASA Astrophysics Data System (ADS)
Khrapov, Nikolay P.; Rozen, Valery V.; Samtsevich, Artem I.; Posypkin, Mikhail A.; Sukhomlin, Vladimir A.; Oganov, Artem R.
2018-04-01
USPEX is a world-leading software for computational material design. In essence, USPEX splits simulation into a large number of workunits that can be processed independently. This scheme ideally fits the desktop grid architecture. Workunit processing is done by a simulation package aimed at energy minimization. Many of such packages are proprietary and should be protected from unauthorized access when running on a volunteer PC. In this paper we present an original approach based on virtualization. In a nutshell, the proprietary code and input files are stored in an encrypted folder and run inside a virtual machine image that is also password protected. The paper describes this approach in detail and discusses its application in USPEX@home volunteer project.
NASA Astrophysics Data System (ADS)
Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Gongadze, A.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Solovov, V.; Van Esch, P.; Zeitelhack, K.
2013-05-01
The software package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations), developed for simulation of Anger-type gaseous detectors for thermal neutron imaging was extended to include a module for experimental data processing. Data recorded with a sensor array containing up to 100 photomultiplier tubes (PMT) or silicon photomultipliers (SiPM) in a custom configuration can be loaded and the positions and energies of the events can be reconstructed using the Center-of-Gravity, Maximum Likelihood or Least Squares algorithm. A particular strength of the new module is the ability to reconstruct the light response functions and relative gains of the photomultipliers from flood field illumination data using adaptive algorithms. The performance of the module is demonstrated with simulated data generated in ANTS and experimental data recorded with a 19 PMT neutron detector. The package executables are publicly available at http://coimbra.lip.pt/~andrei/
FINAL REPORT FOR VERIFICATION OF THE METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFPPT)
The United States Environmental Protection Agency (USEPA) has prepared a computer process simulation package for the metal finishing industry that enables users to predict process outputs based upon process inputs and other operating conditions. This report documents the developm...
Leake, S.A.; Prudic, David E.
1991-01-01
Removal of ground water by pumping from aquifers may result in compaction of compressible fine-grained beds that are within or adjacent to the aquifers. Compaction of the sediments and resulting land subsidence may be permanent if the head declines result in vertical stresses beyond the previous maximum stress. The process of permanent compaction is not routinely included in simulations of ground-water flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U.S. Geological Survey modular finite-difference ground- water flow model. The new program, the Interbed-Storage Package, is designed to be incorporated into this model. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of the skeletal component of elastic specific storage and the thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the ground-water flow model by adding an additional term to the right-hand side of the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum (preconsolidation) head. Two tests were performed to verify that the package works correctly. The first test compared model-calculated storage and compaction changes to hand-calculated values for a three-dimensional simulation. Model and hand-calculated values were essentially equal. The second test was performed to compare the results of the Interbed-Storage Package with results of the one-dimensional Helm compaction model. This test problem simulated compaction in doubly draining confining beds stressed by head changes in adjacent aquifers. The Interbed-Storage Package and the Helm model computed essentially equal values of compaction. Documentation of the Interbed-Storage Package includes data input instructions, flow charts, narratives, and listings for each of the five modules included in the package. The documentation also includes an appendix describing input instructions and a listing of a computer program for time-variant specified-head boundaries. That package was developed to reduce the amount of data input and output associated with one of the Interbed-Storage Package test problems.
Dual Arm Work Package performance estimates and telerobot task network simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, J.V.; Blair, L.M.
1997-02-01
This paper describes the methodology and results of a network simulation study of the Dual Arm Work Package (DAWP), to be employed for dismantling the Argonne National Laboratory CP-5 reactor. The development of the simulation model was based upon the results of a task analysis for the same system. This study was performed by the Oak Ridge National Laboratory (ORNL), in the Robotics and Process Systems Division. Funding was provided the US Department of Energy`s Office of Technology Development, Robotics Technology Development Program (RTDP). The RTDP is developing methods of computer simulation to estimate telerobotic system performance. Data were collectedmore » to provide point estimates to be used in a task network simulation model. Three skilled operators performed six repetitions of a pipe cutting task representative of typical teleoperation cutting operations.« less
WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations.
Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald
2016-08-01
This article describes the WavePropaGator ( WPG ) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimization and improvement of X-ray optics to meet their experimental requirements. The package uses the Synchrotron Radiation Workshop ( SRW ) C/C++ library and its Python binding for numerical wavefront propagation simulations. The framework runs reliably under Linux, Microsoft Windows 7 and Apple Mac OS X and is distributed under an open-source license. The available tools allow for varying source parameters and optics layouts and visualizing the results interactively. The wavefront history structure can be used for tracking changes in every particular wavefront during propagation. The batch propagation mode enables processing of multiple wavefronts in workflow mode. The paper presents a general description of the package and gives some recent application examples, including modeling of full X-ray FEL beamlines and start-to-end simulation of experiments.
Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes
NASA Astrophysics Data System (ADS)
Cropper, A. E.; Wang, Z.
1995-08-01
Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.
User’s guide for MapMark4GUI—A graphical user interface for the MapMark4 R package
Shapiro, Jason
2018-05-29
MapMark4GUI is an R graphical user interface (GUI) developed by the U.S. Geological Survey to support user implementation of the MapMark4 R statistical software package. MapMark4 was developed by the U.S. Geological Survey to implement probability calculations for simulating undiscovered mineral resources in quantitative mineral resource assessments. The GUI provides an easy-to-use tool to input data, run simulations, and format output results for the MapMark4 package. The GUI is written and accessed in the R statistical programming language. This user’s guide includes instructions on installing and running MapMark4GUI and descriptions of the statistical output processes, output files, and test data files.
Hernández-Muñoz, P; Catalá, R; Gavara, R
2002-01-01
Knowledge of the extent of food/packaging interactions is essential to provide assurance of food quality and shelf life, especially in migration and sorption processes that commonly reach equilibrium during the lifetime of a commercial packaged foodstuff. The limits of sorption and migration must be measured in the presence of the specific food or an appropriate food simulant. The partition equilibrium of food aroma compounds between plastic films and foods or food simulants (K(A,P/L) has been characterized. Two polymers (LLDPE and PET), three organic compounds (ethyl caproate, hexanal and 2-phenylethanol), four food products with varying fat content (milk cream, mayonnaise, margarine and oil) and three simulants (ethanol 95%, n-heptane and isooctane) were selectedfor study. The results show the effect of the aroma compound volatility, and polarity, as well as its compatibility with the polymer and the food or food simulant. Equilibrium constants for the organic compound between the polymers and a gaseous phase (K(A,P/V)) as well as between the food (or food simulant) and a gaseous phase (K(A,L/V)) were also determined. An approach is presented to estimate K(A,P/V) from the binary equilibrium constants K(A,P/V) and K(A,L/V). Calculated results were shown to describe experimental data very well and indicated that compatibility between the aroma and the food or food simulant is the main contributing factor to the partition equilibrium describing the extent of food/packaging interactions. Therefore, the measurement of liquid/vapour equilibrium can be regarded as a powerful tool to compare the effectiveness of food simulants as substitutes of a particular food product and can be used as a guide for the selection of the appropriate simulant.
Hannon, Joseph Christopher; Kerry, Joseph P; Cruz-Romero, Malco; Azlin-Hasim, Shafrina; Morris, Michael; Cummins, Enda
2016-01-01
An experimental nanosilver-coated low-density polyethylene (LDPE) food packaging was incubated with food simulants using a conventional oven and tested for migration according to European Commission Regulation No. 10/2011. The commercial LDPE films were coated using a layer-by-layer (LbL) technique and three levels of silver (Ag) precursor concentration (0.5%, 2% and 5% silver nitrate (AgNO3), respectively) were used to attach antimicrobial Ag. The experimental migration study conditions (time, temperature and food simulant) under conventional oven heating (10 days at 60°C, 2 h at 70°C, 2 h at 60°C or 10 days at 70°C) were chosen to simulate the worst-case storage period of over 6 months. In addition, migration was quantified under microwave heating. The total Ag migrant levels in the food simulants were quantified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Mean migration levels obtained by ICP-AES for oven heating were in the range 0.01-1.75 mg l(-1). Migration observed for microwave heating was found to be significantly higher when compared with oven heating for similar temperatures (100°C) and identical exposure times (2 min). In each of the packaging materials and food simulants tested, the presence of nanoparticles (NPs) was confirmed by scanning electron microscopy (SEM). On inspection of the migration observed under conventional oven heating, an important finding was the significant reduction in migration resulting from the increased Ag precursor concentration used to attach Ag on the LDPE LbL-coated films. This observation merits further investigation into the LbL coating process used, as it suggests potential for process modifications to reduce migration. In turn, any reduction in NP migration below regulatory limits could greatly support the antimicrobial silver nanoparticle (AgNP)-LDPE LbL-coated films being used as a food packaging material.
Visualization Methods for Viability Studies of Inspection Modules for the Space Shuttle
NASA Technical Reports Server (NTRS)
Mobasher, Amir A.
2005-01-01
An effective simulation of an object, process, or task must be similar to that object, process, or task. A simulation could consist of a physical device, a set of mathematical equations, a computer program, a person, or some combination of these. There are many reasons for the use of simulators. Although some of the reasons are unique to a specific situation, there are many general reasons and purposes for using simulators. Some are listed but not limited to (1) Safety, (2) Scarce resources, (3) Teaching/education, (4) Additional capabilities, (5) Flexibility and (6) Cost. Robot simulators are in use for all of these reasons. Virtual environments such as simulators will eliminate physical contact with humans and hence will increase the safety of work environment. Corporations with limited funding and resources may utilize simulators to accomplish their goals while saving manpower and money. A computer simulation is safer than working with a real robot. Robots are typically a scarce resource. Schools typically don t have a large number of robots, if any. Factories don t want the robots not performing useful work unless absolutely necessary. Robot simulators are useful in teaching robotics. A simulator gives a student hands-on experience, if only with a simulator. The simulator is more flexible. A user can quickly change the robot configuration, workcell, or even replace the robot with a different one altogether. In order to be useful, a robot simulator must create a model that accurately performs like the real robot. A powerful simulator is usually thought of as a combination of a CAD package with simulation capabilities. Computer Aided Design (CAD) techniques are used extensively by engineers in virtually all areas of engineering. Parts are designed interactively aided by the graphical display of both wireframe and more realistic shaded renderings. Once a part s dimensions have been specified to the CAD package, designers can view the part from any direction to examine how it will look and perform in relation to other parts. If changes are deemed necessary, the designer can easily make the changes and view the results graphically. However, a complex process of moving parts intended for operation in a complex environment can only be fully understood through the process of animated graphical simulation. A CAD package with simulation capabilities allows the designer to develop geometrical models of the process being designed, as well as the environment in which the process will be used, and then test the process in graphical animation much as the actual physical system would be run . By being able to operate the system of moving and stationary parts, the designer is able to see in simulation how the system will perform under a wide variety of conditions. If, for example, undesired collisions occur between parts of the system, design changes can be easily made without the expense or potential danger of testing the physical system.
An ARM data-oriented diagnostics package to evaluate the climate model simulation
NASA Astrophysics Data System (ADS)
Zhang, C.; Xie, S.
2016-12-01
A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.
PLATSIM: An efficient linear simulation and analysis package for large-order flexible systems
NASA Technical Reports Server (NTRS)
Maghami, Periman; Kenny, Sean P.; Giesy, Daniel P.
1995-01-01
PLATSIM is a software package designed to provide efficient time and frequency domain analysis of large-order generic space platforms implemented with any linear time-invariant control system. Time domain analysis provides simulations of the overall spacecraft response levels due to either onboard or external disturbances. The time domain results can then be processed by the jitter analysis module to assess the spacecraft's pointing performance in a computationally efficient manner. The resulting jitter analysis algorithms have produced an increase in speed of several orders of magnitude over the brute force approach of sweeping minima and maxima. Frequency domain analysis produces frequency response functions for uncontrolled and controlled platform configurations. The latter represents an enabling technology for large-order flexible systems. PLATSIM uses a sparse matrix formulation for the spacecraft dynamics model which makes both the time and frequency domain operations quite efficient, particularly when a large number of modes are required to capture the true dynamics of the spacecraft. The package is written in MATLAB script language. A graphical user interface (GUI) is included in the PLATSIM software package. This GUI uses MATLAB's Handle graphics to provide a convenient way for setting simulation and analysis parameters.
Lowe, B K; Bohrer, B M; Holmer, S F; Boler, D D; Dilger, A C
2014-06-01
Objectives were to characterize differences in pork bellies that were stored frozen for different durations prior to processing and characterize sensory properties of the bacon derived from those bellies when stored in either retail or food service style packaging. Bellies (n = 102) were collected from 4 different time periods, fresh bellies (never frozen) and bellies frozen for 2, 5, or 7 mo, and manufactured into bacon under commercial conditions. Food service bacon was packaged in oxygen-permeable polyvinyl lined boxes layered on wax-covered lined paper and blast frozen (-33 °C) for 45 or 90 d after slicing. Retail bacon was vacuum-packaged in retail packages and refrigerated (2 °C) in the dark for 60 or 120 d after slicing. At the end of respective storage times after slicing, bacon was analyzed for sensory attributes and lipid oxidation. Off-flavor and oxidized odor of bacon increased (P < 0.01) with increasing storage time in both packaging types. Lipid oxidation increased (P < 0.01) as storage time increased from day 0 to day 45 in food service packaged bacon from frozen bellies, but was unchanged (P ≥ 0.07) with time in food service packaged bacon from fresh bellies. Lipid oxidation was also unchanged (P ≥ 0.21) over time in retail packaged bacon, with the exception of bellies frozen for 5 mo, which was increased from day 0 to day 90. Overall, off-flavor, oxidized odor, and lipid oxidation increased as storage time after processing increased. Freezing bellies before processing may exacerbate lipid oxidation as storage time after processing was extended. Bacon can be packaged and managed several different ways before it reaches the consumer. This research simulated food service (frozen) and retail packaged (refrigerated) bacon over a range of storage times after slicing. Off-flavor and oxidized odor increased as storage time after processing increased in both packaging types. Lipid oxidation increased as storage time after slicing increased to a greater extent in food service packaging. © 2014 Institute of Food Technologists®
USDA-ARS?s Scientific Manuscript database
On-farm activities associated with fluid milk production contribute approximately 70% of total greenhouse gas (GHG) emissions while off-farm activities arising from milk processing, packaging, and refrigeration, contribute the remainder in the form of energy-related carbon dioxide (CO2) emissions. W...
USDA-ARS?s Scientific Manuscript database
Fluid milk processing (FMP) has significant environmental impact because of its high energy use. High temperature short time (HTST) pasteurization is the third most energy intensive operation comprising about 16% of total energy use, after clean-in-place operations and packaging. Nonthermal processe...
Genetic Algorithms and Their Application to the Protein Folding Problem
1993-12-01
and symbolic methods, random methods such as Monte Carlo simulation and simulated annealing, distance geometry, and molecular dynamics. Many of these...calculated energies with those obtained using the molecular simulation software package called CHARMm. 10 9) Test both the simple and parallel simpie genetic...homology-based, and simplification techniques. 3.21 Molecular Dynamics. Perhaps the most natural approach is to actually simulate the folding process. This
Capable Copper Electrodeposition Process for Integrated Circuit - substrate Packaging Manufacturing
NASA Astrophysics Data System (ADS)
Ghanbari, Nasrin
This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20microm to 100microm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by photolithography. Photolithography defined pattern regions incorporate a wide variety of feature sizes including large circular pad structures with diameter of 20microm - 200microm, fine traces with varying widths of 3microm - 30microm and additional planar regions to define a IC substrate package. Electrodeposition of copper is performed to establish the desired circuit. Electrodeposition of copper in IC substrate applications holds certain unique challenges in that they require a low cost manufacturing process that enables a void-free gap fill inside the microvia along with uniform deposition of copper on exposed patterned regions. Deposition time scales to establish the desired metal thickness for such packages could range from several minutes to few hours. This work showcases a reverse pulse electrodeposition methodology that achieves void-free gap fill inside the microvia and uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher deposition rates than traditional approaches. In order to achieve this capability, systematic experimental and simulation studies were performed. A strong correlation of independent parameters that govern the electrodeposition process such as bath temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is shown to the deposition kinetics and deposition uniformity in fine patterned regions and gap fill rate inside the microvia. Additionally, insight into the physics of via fill process is presented with secondary and tertiary current simulation efforts. Such efforts lead to show "smart" control of deposition rate at the top and bottom of via to avoid void formation. Finally, a parametric effect on grain size and the ensuing copper metallurgical characteristics of bulk copper is also shown to enable high reliability substrate packages for the IC packaging industry.
Kinematics Simulation Analysis of Packaging Robot with Joint Clearance
NASA Astrophysics Data System (ADS)
Zhang, Y. W.; Meng, W. J.; Wang, L. Q.; Cui, G. H.
2018-03-01
Considering the influence of joint clearance on the motion error, repeated positioning accuracy and overall position of the machine, this paper presents simulation analysis of a packaging robot — 2 degrees of freedom(DOF) planar parallel robot based on the characteristics of high precision and fast speed of packaging equipment. The motion constraint equation of the mechanism is established, and the analysis and simulation of the motion error are carried out in the case of turning the revolute clearance. The simulation results show that the size of the joint clearance will affect the movement accuracy and packaging efficiency of the packaging robot. The analysis provides a reference point of view for the packaging equipment design and selection criteria and has a great significance on the packaging industry automation.
The Fireball integrated code package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobranich, D.; Powers, D.A.; Harper, F.T.
1997-07-01
Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state ofmore » the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.« less
NASA Astrophysics Data System (ADS)
Mahdaoui, O.; Agassant, J.-F.; Laure, P.; Valette, R.; Silva, L.
2007-04-01
The polymer coextrusion process is a new method of sheet metal lining. It allows to substitute lacquers for steel protection in food packaging industry. The coextrusion process may exhibit flow instabilities at the interface between the two polymer layers. The objective of this study is to check the influence of processing and rheology parameters on the instabilities. Finite elements numerical simulations of the coextrusion allow to investigate various stable and instable flow configurations.
treeman: an R package for efficient and intuitive manipulation of phylogenetic trees.
Bennett, Dominic J; Sutton, Mark D; Turvey, Samuel T
2017-01-07
Phylogenetic trees are hierarchical structures used for representing the inter-relationships between biological entities. They are the most common tool for representing evolution and are essential to a range of fields across the life sciences. The manipulation of phylogenetic trees-in terms of adding or removing tips-is often performed by researchers not just for reasons of management but also for performing simulations in order to understand the processes of evolution. Despite this, the most common programming language among biologists, R, has few class structures well suited to these tasks. We present an R package that contains a new class, called TreeMan, for representing the phylogenetic tree. This class has a list structure allowing phylogenetic trees to be manipulated more efficiently. Computational running times are reduced because of the ready ability to vectorise and parallelise methods. Development is also improved due to fewer lines of code being required for performing manipulation processes. We present three use cases-pinning missing taxa to a supertree, simulating evolution with a tree-growth model and detecting significant phylogenetic turnover-that demonstrate the new package's speed and simplicity.
Computer simulation of a space SAR using a range-sequential processor for soil moisture mapping
NASA Technical Reports Server (NTRS)
Fujita, M.; Ulaby, F. (Principal Investigator)
1982-01-01
The ability of a spaceborne synthetic aperture radar (SAR) to detect soil moisture was evaluated by means of a computer simulation technique. The computer simulation package includes coherent processing of the SAR data using a range-sequential processor, which can be set up through hardware implementations, thereby reducing the amount of telemetry involved. With such a processing approach, it is possible to monitor the earth's surface on a continuous basis, since data storage requirements can be easily met through the use of currently available technology. The Development of the simulation package is described, followed by an examination of the application of the technique to actual environments. The results indicate that in estimating soil moisture content with a four-look processor, the difference between the assumed and estimated values of soil moisture is within + or - 20% of field capacity for 62% of the pixels for agricultural terrain and for 53% of the pixels for hilly terrain. The estimation accuracy for soil moisture may be improved by reducing the effect of fading through non-coherent averaging.
NASA Astrophysics Data System (ADS)
Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu
2005-08-01
Since 1996, Japan Research Institute Limited (JRI) has been providing a sheet metal forming simulation system called JSTAMP-Works packaged the FEM solvers of LS-DYNA and JOH/NIKE, which might be the first multistage system at that time and has been enjoying good reputation among users in Japan. To match the recent needs, "faster, more accurate and easier", of process designers and CAE engineers, a new metal forming simulation system JSTAMP-Works/NV is developed. The JSTAMP-Works/NV packaged the automatic healing function of CAD and had much more new capabilities such as prediction of 3D trimming lines for flanging or hemming, remote control of solver execution for multi-stage forming processes and shape evaluation between FEM and CAD. On the other way, a multi-stage multi-purpose inverse FEM solver HYSTAMP is developed and will be soon put into market, which is approved to be very fast, quite accurate and robust. Lastly, authors will give some application examples of user defined ductile damage subroutine in LS-DYNA for the estimation of material failure and springback in metal forming simulation.
O' Callaghan, Karen A M; Papkovsky, Dmitri B; Kerry, Joseph P
2016-06-20
The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure.
O’ Callaghan, Karen A.M.; Papkovsky, Dmitri B.; Kerry, Joseph P.
2016-01-01
The establishment and control of oxygen levels in packs of oxygen-sensitive food products such as cheese is imperative in order to maintain product quality over a determined shelf life. Oxygen sensors quantify oxygen concentrations within packaging using a reversible optical measurement process, and this non-destructive nature ensures the entire supply chain can be monitored and can assist in pinpointing negative issues pertaining to product packaging. This study was carried out in a commercial cheese packaging plant and involved the insertion of 768 sensors into 384 flow-wrapped cheese packs (two sensors per pack) that were flushed with 100% carbon dioxide prior to sealing. The cheese blocks were randomly assigned to two different storage groups to assess the effects of package quality, packaging process efficiency, and handling and distribution on package containment. Results demonstrated that oxygen levels increased in both experimental groups examined over the 30-day assessment period. The group subjected to a simulated industrial distribution route and handling procedures of commercial retailed cheese exhibited the highest level of oxygen detected on every day examined and experienced the highest rate of package failure. The study concluded that fluctuating storage conditions, product movement associated with distribution activities, and the possible presence of cheese-derived contaminants such as calcium lactate crystals were chief contributors to package failure. PMID:27331815
ProtPOS: a python package for the prediction of protein preferred orientation on a surface.
Ngai, Jimmy C F; Mak, Pui-In; Siu, Shirley W I
2016-08-15
Atomistic molecular dynamics simulation is a promising technique to investigate the energetics and dynamics in the protein-surface adsorption process which is of high relevance to modern biotechnological applications. To increase the chance of success in simulating the adsorption process, favorable orientations of the protein at the surface must be determined. Here, we present ProtPOS which is a lightweight and easy-to-use python package that can predict low-energy protein orientations on a surface of interest. It combines a fast conformational sampling algorithm with the energy calculation of GROMACS. The advantage of ProtPOS is it allows users to select any force fields suitable for the system at hand and provide structural output readily available for further simulation studies. ProtPOS is freely available for academic and non-profit uses at http://cbbio.cis.umac.mo/software/protpos Supplementary data are available at Bioinformatics online. shirleysiu@umac.mo. © The Author 2016. Published by Oxford University Press.
ProtPOS: a python package for the prediction of protein preferred orientation on a surface
Ngai, Jimmy C. F.; Mak, Pui-In; Siu, Shirley W. I.
2016-01-01
Summary: Atomistic molecular dynamics simulation is a promising technique to investigate the energetics and dynamics in the protein–surface adsorption process which is of high relevance to modern biotechnological applications. To increase the chance of success in simulating the adsorption process, favorable orientations of the protein at the surface must be determined. Here, we present ProtPOS which is a lightweight and easy-to-use python package that can predict low-energy protein orientations on a surface of interest. It combines a fast conformational sampling algorithm with the energy calculation of GROMACS. The advantage of ProtPOS is it allows users to select any force fields suitable for the system at hand and provide structural output readily available for further simulation studies. Availability and Implementation: ProtPOS is freely available for academic and non-profit uses at http://cbbio.cis.umac.mo/software/protpos Supplementary information: Supplementary data are available at Bioinformatics online. Contact: shirleysiu@umac.mo PMID:27153619
Lin, Zhuangsheng; Goddard, Julie
2018-02-01
Synthetic metal chelators (for example, ethylenediaminetetraacetic acid, EDTA) are widely used as additives to control trace transition metal induced oxidation in consumer products. To enable removal of synthetic chelators in response to increasing consumer demand for clean label products, metal-chelating active food packaging technologies have been developed with demonstrated antioxidant efficacy in simulated food systems. However, prior work in fabrication of metal-chelating materials leveraged batch chemical reactions to tether metal-chelating ligands, a process with limited industrial translatability for large-scale fabrication. To improve the industrial translatability, we have designed a 2-step laminated photo-grafting process to introduce metal chelating functionality onto common polymeric packaging materials. Iminodiacetic acid (IDA) functionalized materials were fabricated by photo-grafting poly(acrylic acid) onto polypropylene (PP) films, followed by a second photo-grafting process to graft-polymerize an IDA functionalized vinyl monomer (GMA-IDA). The photo-grafting was conducted under atmospheric conditions and was completed in 2 min. The resulting IDA functionalized metal-chelating material was able to chelate iron and copper, and showed antioxidant efficacy against ascorbic acid degradation, supporting its potential to be used synergistically with natural antioxidants for preservation of food and beverage products. The 2-step photo-grafting process improves the throughput of active packaging coatings, enabling potential roll-to-roll fabrication of metal-chelating active packaging materials for antioxidant food packaging applications. To address consumer and retail demands for "clean label" foods and beverages without a corresponding loss in product quality and shelf life, producers are seeking next generation technologies such as active packaging. In this work, we will report the synthesis of metal-chelating active packaging films, which enable removal of the synthetic additive, ethylenediamine tetraacetic acid. The new synthesis technique improves the throughput of metal-chelating active packaging coatings, enabling potential roll-to-roll fabrication of the materials for antioxidant food packaging applications. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Van Esch, P.; Zeitelhack, K.
2012-08-01
A custom and fully interactive simulation package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations) has been developed to optimize the design and operation conditions of secondary scintillation Anger-camera type gaseous detectors for thermal neutron imaging. The simulation code accounts for all physical processes related to the neutron capture, energy deposition pattern, drift of electrons of the primary ionization and secondary scintillation. The photons are traced considering the wavelength-resolved refraction and transmission of the output window. Photo-detection accounts for the wavelength-resolved quantum efficiency, angular response, area sensitivity, gain and single-photoelectron spectra of the photomultipliers (PMTs). The package allows for several geometrical shapes of the PMT photocathode (round, hexagonal and square) and offers a flexible PMT array configuration: up to 100 PMTs in a custom arrangement with the square or hexagonal packing. Several read-out patterns of the PMT array are implemented. Reconstruction of the neutron capture position (projection on the plane of the light emission) is performed using the center of gravity, maximum likelihood or weighted least squares algorithm. Simulation results reproduce well the preliminary results obtained with a small-scale detector prototype. ANTS executables can be downloaded from http://coimbra.lip.pt/~andrei/.
Mcclenny, Levi D; Imani, Mahdi; Braga-Neto, Ulisses M
2017-11-25
Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays.
SpectraPLOT, Visualization Package with a User-Friendly Graphical Interface
NASA Astrophysics Data System (ADS)
Sebald, James; Macfarlane, Joseph; Golovkin, Igor
2017-10-01
SPECT3D is a collisional-radiative spectral analysis package designed to compute detailed emission, absorption, or x-ray scattering spectra, filtered images, XRD signals, and other synthetic diagnostics. The spectra and images are computed for virtual detectors by post-processing the results of hydrodynamics simulations in 1D, 2D, and 3D geometries. SPECT3D can account for a variety of instrumental response effects so that direct comparisons between simulations and experimental measurements can be made. SpectraPLOT is a user-friendly graphical interface for viewing a wide variety of results from SPECT3D simulations, and applying various instrumental effects to the simulated images and spectra. We will present SpectraPLOT's ability to display a variety of data, including spectra, images, light curves, streaked spectra, space-resolved spectra, and drilldown plasma property plots, for an argon-doped capsule implosion experiment example. Future SpectraPLOT features and enhancements will also be discussed.
Fast emulation of track reconstruction in the CMS simulation
NASA Astrophysics Data System (ADS)
Komm, Matthias; CMS Collaboration
2017-10-01
Simulated samples of various physics processes are a key ingredient within analyses to unlock the physics behind LHC collision data. Samples with more and more statistics are required to keep up with the increasing amounts of recorded data. During sample generation, significant computing time is spent on the reconstruction of charged particle tracks from energy deposits which additionally scales with the pileup conditions. In CMS, the FastSimulation package is developed for providing a fast alternative to the standard simulation and reconstruction workflow. It employs various techniques to emulate track reconstruction effects in particle collision events. Several analysis groups in CMS are utilizing the package, in particular those requiring many samples to scan the parameter space of physics models (e.g. SUSY) or for the purpose of estimating systematic uncertainties. The strategies for and recent developments in this emulation are presented, including a novel, flexible implementation of tracking emulation while retaining a sufficient, tuneable accuracy.
Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover
NASA Technical Reports Server (NTRS)
Flick, John J.; Toniolo, Matthew D.
2005-01-01
The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.
Ahlfeld, David P.; Barlow, Paul M.; Baker, Kristine M.
2011-01-01
Many groundwater-management problems are concerned with the control of one or more variables that reflect the state of a groundwater-flow system or a coupled groundwater/surface-water system. These system state variables include the distribution of heads within an aquifer, streamflow rates within a hydraulically connected stream, and flow rates into or out of aquifer storage. This report documents the new State Variables Package for the Groundwater-Management Process of MODFLOW-2005 (GWM-2005). The new package provides a means to explicitly represent heads, streamflows, and changes in aquifer storage as state variables in a GWM-2005 simulation. The availability of these state variables makes it possible to include system state in the objective function and enhances existing capabilities for constructing constraint sets for a groundwater-management formulation. The new package can be used to address groundwater-management problems such as the determination of withdrawal strategies that meet water-supply demands while simultaneously maximizing heads or streamflows, or minimizing changes in aquifer storage. Four sample problems are provided to demonstrate use of the new package for typical groundwater-management applications.
MODFLOW-OWHM v2: The next generation of fully integrated hydrologic simulation software
NASA Astrophysics Data System (ADS)
Boyce, S. E.; Hanson, R. T.; Ferguson, I. M.; Reimann, T.; Henson, W.; Mehl, S.; Leake, S.; Maddock, T.
2016-12-01
The One-Water Hydrologic Flow Model (One-Water) is a MODFLOW-based integrated hydrologic flow model designed for the analysis of a broad range of conjunctive-use and climate-related issues. One-Water fully links the movement and use of groundwater, surface water, and imported water for consumption by agriculture and natural vegetation on the landscape, and for potable and other uses within a supply-and-demand framework. One-Water includes linkages for deformation-, flow-, and head-dependent flows; additional observation and parameter options for higher-order calibrations; and redesigned code for facilitation of self-updating models and faster simulation run times. The next version of One-Water, currently under development, will include a new surface-water operations module that simulates dynamic reservoir operations, a new sustainability analysis package that facilitates the estimation and simulation of reduced storage depletion and captured discharge, a conduit-flow process for karst aquifers and leaky pipe networks, a soil zone process that adds an enhanced infiltration process, interflow, deep percolation and soil moisture, and a new subsidence and aquifer compaction package. It will also include enhancements to local grid refinement, and additional features to facilitate easier model updates, faster execution, better error messages, and more integration/cross communication between the traditional MODFLOW packages. By retaining and tracking the water within the hydrosphere, One-Water accounts for "all of the water everywhere and all of the time." This philosophy provides more confidence in the water accounting by the scientific community and provides the public a foundation needed to address wider classes of problems. Ultimately, more complex questions are being asked about water resources, so they require a more complete answer about conjunctive-use and climate-related issues.
ARM Data-Oriented Metrics and Diagnostics Package for Climate Model Evaluation Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chengzhu; Xie, Shaocheng
A Python-based metrics and diagnostics package is currently being developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Infrastructure Team at Lawrence Livermore National Laboratory (LLNL) to facilitate the use of long-term, high-frequency measurements from the ARM Facility in evaluating the regional climate simulation of clouds, radiation, and precipitation. This metrics and diagnostics package computes climatological means of targeted climate model simulation and generates tables and plots for comparing the model simulation with ARM observational data. The Coupled Model Intercomparison Project (CMIP) model data sets are also included in the package to enable model intercomparison as demonstratedmore » in Zhang et al. (2017). The mean of the CMIP model can serve as a reference for individual models. Basic performance metrics are computed to measure the accuracy of mean state and variability of climate models. The evaluated physical quantities include cloud fraction, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, and radiative fluxes, with plan to extend to more fields, such as aerosol and microphysics properties. Process-oriented diagnostics focusing on individual cloud- and precipitation-related phenomena are also being developed for the evaluation and development of specific model physical parameterizations. The version 1.0 package is designed based on data collected at ARM’s Southern Great Plains (SGP) Research Facility, with the plan to extend to other ARM sites. The metrics and diagnostics package is currently built upon standard Python libraries and additional Python packages developed by DOE (such as CDMS and CDAT). The ARM metrics and diagnostic package is available publicly with the hope that it can serve as an easy entry point for climate modelers to compare their models with ARM data. In this report, we first present the input data, which constitutes the core content of the metrics and diagnostics package in section 2, and a user's guide documenting the workflow/structure of the version 1.0 codes, and including step-by-step instruction for running the package in section 3.« less
Simulation studies on the effect of positioning tolerances on optical coupling efficiency
NASA Astrophysics Data System (ADS)
Pamidighantam, Ramana V.; Yeo, Yongkee; Sudharsanam, Krishnamachari; Lee, Sik Pong; Iyer, Mahadevan K.
2002-08-01
The development of Optoelectronic components for communications is converging towards access networks where device cost makes a significant impact on the market acceptance. Thus, the device design engineer needs to input assembly, fabrication and process constraints into the design at an early stage. The present study is part of a Project on Packaging of Optical Components that IME, Singapore has initiated as part of an ongoing Electronics Packaging Research Consortium with industry partnership. In the present study, the coupling of optical radiation from a laser diode to optical fiber is simulated for a fiber optic transmitter component development project. Different optical configurations based on direct coupling, spherical ball lenses, integral lensed fibers and thermally expanded fibers are created within the commercially available transmitter package space. The effect of optical element variables on the placement tolerance is analyzed and will be reported. The effect of alignment tolerances on the optical coupling is analyzed. Simulation results are presented recommending realizable alignment and placement tolerances to develop a low cost short range link distance transmitter.
Space-Shuttle Emulator Software
NASA Technical Reports Server (NTRS)
Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram;
2007-01-01
A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.
Ares I-X Range Safety Simulation Verification and Analysis Independent Validation and Verification
NASA Technical Reports Server (NTRS)
Merry, Carl M.; Tarpley, Ashley F.; Craig, A. Scott; Tartabini, Paul V.; Brewer, Joan D.; Davis, Jerel G.; Dulski, Matthew B.; Gimenez, Adrian; Barron, M. Kyle
2011-01-01
NASA s Ares I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. To obtain approval for launch, a range safety final flight data package was generated to meet the data requirements defined in the Air Force Space Command Manual 91-710 Volume 2. The delivery included products such as a nominal trajectory, trajectory envelopes, stage disposal data and footprints, and a malfunction turn analysis. The Air Force s 45th Space Wing uses these products to ensure public and launch area safety. Due to the criticality of these data, an independent validation and verification effort was undertaken to ensure data quality and adherence to requirements. As a result, the product package was delivered with the confidence that independent organizations using separate simulation software generated data to meet the range requirements and yielded consistent results. This document captures Ares I-X final flight data package verification and validation analysis, including the methodology used to validate and verify simulation inputs, execution, and results and presents lessons learned during the process
HIDE & SEEK: End-to-end packages to simulate and process radio survey data
NASA Astrophysics Data System (ADS)
Akeret, J.; Seehars, S.; Chang, C.; Monstein, C.; Amara, A.; Refregier, A.
2017-01-01
As several large single-dish radio surveys begin operation within the coming decade, a wealth of radio data will become available and provide a new window to the Universe. In order to fully exploit the potential of these datasets, it is important to understand the systematic effects associated with the instrument and the analysis pipeline. A common approach to tackle this is to forward-model the entire system-from the hardware to the analysis of the data products. For this purpose, we introduce two newly developed, open-source Python packages: the HI Data Emulator (HIDE) and the Signal Extraction and Emission Kartographer (SEEK) for simulating and processing single-dish radio survey data. HIDE forward-models the process of collecting astronomical radio signals in a single-dish radio telescope instrument and outputs pixel-level time-ordered-data. SEEK processes the time-ordered-data, removes artifacts from Radio Frequency Interference (RFI), automatically applies flux calibration, and aims to recover the astronomical radio signal. The two packages can be used separately or together depending on the application. Their modular and flexible nature allows easy adaptation to other instruments and datasets. We describe the basic architecture of the two packages and examine in detail the noise and RFI modeling in HIDE, as well as the implementation of gain calibration and RFI mitigation in SEEK. We then apply HIDE &SEEK to forward-model a Galactic survey in the frequency range 990-1260 MHz based on data taken at the Bleien Observatory. For this survey, we expect to cover 70% of the full sky and achieve a median signal-to-noise ratio of approximately 5-6 in the cleanest channels including systematic uncertainties. However, we also point out the potential challenges of high RFI contamination and baseline removal when examining the early data from the Bleien Observatory. The fully documented HIDE &SEEK packages are available at http://hideseek.phys.ethz.ch/ and are published under the GPLv3 license on GitHub.
Efficient parallel simulation of CO2 geologic sequestration insaline aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Keni; Doughty, Christine; Wu, Yu-Shu
2007-01-01
An efficient parallel simulator for large-scale, long-termCO2 geologic sequestration in saline aquifers has been developed. Theparallel simulator is a three-dimensional, fully implicit model thatsolves large, sparse linear systems arising from discretization of thepartial differential equations for mass and energy balance in porous andfractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics andthermophysical properties of H2O-NaCl- CO2 mixtures, modeling singleand/or two-phase isothermal or non-isothermal flow processes, two-phasemixtures, fluid phases appearing or disappearing, as well as saltprecipitation or dissolution. The newmore » parallel simulator uses MPI forparallel implementation, the METIS software package for simulation domainpartitioning, and the iterative parallel linear solver package Aztec forsolving linear equations by multiple processors. In addition, theparallel simulator has been implemented with an efficient communicationscheme. Test examples show that a linear or super-linear speedup can beobtained on Linux clusters as well as on supercomputers. Because of thesignificant improvement in both simulation time and memory requirement,the new simulator provides a powerful tool for tackling larger scale andmore complex problems than can be solved by single-CPU codes. Ahigh-resolution simulation example is presented that models buoyantconvection, induced by a small increase in brine density caused bydissolution of CO2.« less
MODFLOW-2005 : the U.S. Geological Survey modular ground-water model--the ground-water flow process
Harbaugh, Arlen W.
2005-01-01
This report presents MODFLOW-2005, which is a new version of the finite-difference ground-water model commonly called MODFLOW. Ground-water flow is simulated using a block-centered finite-difference approach. Layers can be simulated as confined or unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and rivers, also can be simulated. The report includes detailed explanations of physical and mathematical concepts on which the model is based, an explanation of how those concepts are incorporated in the modular structure of the computer program, instructions for using the model, and details of the computer code. The modular structure consists of a MAIN Program and a series of highly independent subroutines. The subroutines are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system that is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving the set of simultaneous equations resulting from the finite-difference method. Several solution methods are incorporated, including the Preconditioned Conjugate-Gradient method. The division of the program into packages permits the user to examine specific hydrologic features of the model independently. This also facilitates development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program also are designed to permit maximum flexibility. The program is designed to allow other capabilities, such as transport and optimization, to be incorporated, but this report is limited to describing the ground-water flow capability. The program is written in Fortran 90 and will run without modification on most computers that have a Fortran 90 compiler.
Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'
NASA Astrophysics Data System (ADS)
Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.
2017-12-01
The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008). Due to complex interactions at the groundwater table, certain modifications of the pressure head (compared to the original coupling) and solute concentration profiles were incorporated into the HYDRUS package. The developed integrated model is verified using HYDRUS-2D and analyzed for its computational time requirements.
Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill
NASA Astrophysics Data System (ADS)
Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang
2017-08-01
Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.
An Algorithm and R Program for Fitting and Simulation of Pharmacokinetic and Pharmacodynamic Data.
Li, Jijie; Yan, Kewei; Hou, Lisha; Du, Xudong; Zhu, Ping; Zheng, Li; Zhu, Cairong
2017-06-01
Pharmacokinetic/pharmacodynamic link models are widely used in dose-finding studies. By applying such models, the results of initial pharmacokinetic/pharmacodynamic studies can be used to predict the potential therapeutic dose range. This knowledge can improve the design of later comparative large-scale clinical trials by reducing the number of participants and saving time and resources. However, the modeling process can be challenging, time consuming, and costly, even when using cutting-edge, powerful pharmacological software. Here, we provide a freely available R program for expediently analyzing pharmacokinetic/pharmacodynamic data, including data importation, parameter estimation, simulation, and model diagnostics. First, we explain the theory related to the establishment of the pharmacokinetic/pharmacodynamic link model. Subsequently, we present the algorithms used for parameter estimation and potential therapeutic dose computation. The implementation of the R program is illustrated by a clinical example. The software package is then validated by comparing the model parameters and the goodness-of-fit statistics generated by our R package with those generated by the widely used pharmacological software WinNonlin. The pharmacokinetic and pharmacodynamic parameters as well as the potential recommended therapeutic dose can be acquired with the R package. The validation process shows that the parameters estimated using our package are satisfactory. The R program developed and presented here provides pharmacokinetic researchers with a simple and easy-to-access tool for pharmacokinetic/pharmacodynamic analysis on personal computers.
Scripting MODFLOW model development using Python and FloPy
Bakker, Mark; Post, Vincent E. A.; Langevin, Christian D.; Hughes, Joseph D.; White, Jeremy; Starn, Jeffrey; Fienen, Michael N.
2016-01-01
Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.
NASA Astrophysics Data System (ADS)
Griffiths, K. R.; Hicks, B. J.; Keogh, P. S.; Shires, D.
2016-08-01
In general, vehicle vibration is non-stationary and has a non-Gaussian probability distribution; yet existing testing methods for packaging design employ Gaussian distributions to represent vibration induced by road profiles. This frequently results in over-testing and/or over-design of the packaging to meet a specification and correspondingly leads to wasteful packaging and product waste, which represent 15bn per year in the USA and €3bn per year in the EU. The purpose of the paper is to enable a measured non-stationary acceleration signal to be replaced by a constructed signal that includes as far as possible any non-stationary characteristics from the original signal. The constructed signal consists of a concatenation of decomposed shorter duration signals, each having its own kurtosis level. Wavelet analysis is used for the decomposition process into inner and outlier signal components. The constructed signal has a similar PSD to the original signal, without incurring excessive acceleration levels. This allows an improved and more representative simulated input signal to be generated that can be used on the current generation of shaker tables. The wavelet decomposition method is also demonstrated experimentally through two correlation studies. It is shown that significant improvements over current international standards for packaging testing are achievable; hence the potential for more efficient packaging system design is possible.
Quantitative computer simulations of extraterrestrial processing operations
NASA Technical Reports Server (NTRS)
Vincent, T. L.; Nikravesh, P. E.
1989-01-01
The automation of a small, solid propellant mixer was studied. Temperature control is under investigation. A numerical simulation of the system is under development and will be tested using different control options. Control system hardware is currently being put into place. The construction of mathematical models and simulation techniques for understanding various engineering processes is also studied. Computer graphics packages were utilized for better visualization of the simulation results. The mechanical mixing of propellants is examined. Simulation of the mixing process is being done to study how one can control for chaotic behavior to meet specified mixing requirements. An experimental mixing chamber is also being built. It will allow visual tracking of particles under mixing. The experimental unit will be used to test ideas from chaos theory, as well as to verify simulation results. This project has applications to extraterrestrial propellant quality and reliability.
NASA Astrophysics Data System (ADS)
Istomin, V. A.
2018-05-01
The software package Planet Atmosphere Investigator of Non-equilibrium Thermodynamics (PAINeT) has been devel-oped for studying the non-equilibrium effects associated with electronic excitation, chemical reactions and ionization. These studies are necessary for modeling process in shock tubes, in high enthalpy flows, in nozzles or jet engines, in combustion and explosion processes, in modern plasma-chemical and laser technologies. The advantages and possibilities of the package implementation are stated. Within the framework of the package implementation, based on kinetic theory approximations (one-temperature and state-to-state approaches), calculations are carried out, and the limits of applicability of a simplified description of shock-heated air flows and any other mixtures chosen by the user are given. Using kinetic theory algorithms, a numerical calculation of the heat fluxes and relaxation terms can be performed, which is necessary for further comparison of engineering simulation with experi-mental data. The influence of state-to-state distributions over electronic energy levels on the coefficients of thermal conductivity, diffusion, heat fluxes and diffusion velocities of the components of various gas mixtures behind shock waves is studied. Using the software package the accuracy of different approximations of the kinetic theory of gases is estimated. As an example state-resolved atomic ionized mixture of N/N+/O/O+/e- is considered. It is shown that state-resolved diffusion coefficients of neutral and ionized species vary from level to level. Comparing results of engineering applications with those given by PAINeT, recommendations for adequate models selection are proposed.
Accelerated Monte Carlo Simulation on the Chemical Stage in Water Radiolysis using GPU
Tian, Zhen; Jiang, Steve B.; Jia, Xun
2018-01-01
The accurate simulation of water radiolysis is an important step to understand the mechanisms of radiobiology and quantitatively test some hypotheses regarding radiobiological effects. However, the simulation of water radiolysis is highly time consuming, taking hours or even days to be completed by a conventional CPU processor. This time limitation hinders cell-level simulations for a number of research studies. We recently initiated efforts to develop gMicroMC, a GPU-based fast microscopic MC simulation package for water radiolysis. The first step of this project focused on accelerating the simulation of the chemical stage, the most time consuming stage in the entire water radiolysis process. A GPU-friendly parallelization strategy was designed to address the highly correlated many-body simulation problem caused by the mutual competitive chemical reactions between the radiolytic molecules. Two cases were tested, using a 750 keV electron and a 5 MeV proton incident in pure water, respectively. The time-dependent yields of all the radiolytic species during the chemical stage were used to evaluate the accuracy of the simulation. The relative differences between our simulation and the Geant4-DNA simulation were on average 5.3% and 4.4% for the two cases. Our package, executed on an Nvidia Titan black GPU card, successfully completed the chemical stage simulation of the two cases within 599.2 s and 489.0 s. As compared with Geant4-DNA that was executed on an Intel i7-5500U CPU processor and needed 28.6 h and 26.8 h for the two cases using a single CPU core, our package achieved a speed-up factor of 171.1-197.2. PMID:28323637
Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU
NASA Astrophysics Data System (ADS)
Tian, Zhen; Jiang, Steve B.; Jia, Xun
2017-04-01
The accurate simulation of water radiolysis is an important step to understand the mechanisms of radiobiology and quantitatively test some hypotheses regarding radiobiological effects. However, the simulation of water radiolysis is highly time consuming, taking hours or even days to be completed by a conventional CPU processor. This time limitation hinders cell-level simulations for a number of research studies. We recently initiated efforts to develop gMicroMC, a GPU-based fast microscopic MC simulation package for water radiolysis. The first step of this project focused on accelerating the simulation of the chemical stage, the most time consuming stage in the entire water radiolysis process. A GPU-friendly parallelization strategy was designed to address the highly correlated many-body simulation problem caused by the mutual competitive chemical reactions between the radiolytic molecules. Two cases were tested, using a 750 keV electron and a 5 MeV proton incident in pure water, respectively. The time-dependent yields of all the radiolytic species during the chemical stage were used to evaluate the accuracy of the simulation. The relative differences between our simulation and the Geant4-DNA simulation were on average 5.3% and 4.4% for the two cases. Our package, executed on an Nvidia Titan black GPU card, successfully completed the chemical stage simulation of the two cases within 599.2 s and 489.0 s. As compared with Geant4-DNA that was executed on an Intel i7-5500U CPU processor and needed 28.6 h and 26.8 h for the two cases using a single CPU core, our package achieved a speed-up factor of 171.1-197.2.
Accelerated Monte Carlo simulation on the chemical stage in water radiolysis using GPU.
Tian, Zhen; Jiang, Steve B; Jia, Xun
2017-04-21
The accurate simulation of water radiolysis is an important step to understand the mechanisms of radiobiology and quantitatively test some hypotheses regarding radiobiological effects. However, the simulation of water radiolysis is highly time consuming, taking hours or even days to be completed by a conventional CPU processor. This time limitation hinders cell-level simulations for a number of research studies. We recently initiated efforts to develop gMicroMC, a GPU-based fast microscopic MC simulation package for water radiolysis. The first step of this project focused on accelerating the simulation of the chemical stage, the most time consuming stage in the entire water radiolysis process. A GPU-friendly parallelization strategy was designed to address the highly correlated many-body simulation problem caused by the mutual competitive chemical reactions between the radiolytic molecules. Two cases were tested, using a 750 keV electron and a 5 MeV proton incident in pure water, respectively. The time-dependent yields of all the radiolytic species during the chemical stage were used to evaluate the accuracy of the simulation. The relative differences between our simulation and the Geant4-DNA simulation were on average 5.3% and 4.4% for the two cases. Our package, executed on an Nvidia Titan black GPU card, successfully completed the chemical stage simulation of the two cases within 599.2 s and 489.0 s. As compared with Geant4-DNA that was executed on an Intel i7-5500U CPU processor and needed 28.6 h and 26.8 h for the two cases using a single CPU core, our package achieved a speed-up factor of 171.1-197.2.
A New Streamflow-Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000
Prudic, David E.; Konikow, Leonard F.; Banta, Edward R.
2004-01-01
The increasing concern for water and its quality require improved methods to evaluate the interaction between streams and aquifers and the strong influence that streams can have on the flow and transport of contaminants through many aquifers. For this reason, a new Streamflow-Routing (SFR1) Package was written for use with the U.S. Geological Survey's MODFLOW-2000 ground-water flow model. The SFR1 Package is linked to the Lake (LAK3) Package, and both have been integrated with the Ground-Water Transport (GWT) Process of MODFLOW-2000 (MODFLOW-GWT). SFR1 replaces the previous Stream (STR1) Package, with the most important difference being that stream depth is computed at the midpoint of each reach instead of at the beginning of each reach, as was done in the original Stream Package. This approach allows for the addition and subtraction of water from runoff, precipitation, and evapotranspiration within each reach. Because the SFR1 Package computes stream depth differently than that for the original package, a different name was used to distinguish it from the original Stream (STR1) Package. The SFR1 Package has five options for simulating stream depth and four options for computing diversions from a stream. The options for computing stream depth are: a specified value; Manning's equation (using a wide rectangular channel or an eight-point cross section); a power equation; or a table of values that relate flow to depth and width. Each stream segment can have a different option. Outflow from lakes can be computed using the same options. Because the wetted perimeter is computed for the eight-point cross section and width is computed for the power equation and table of values, the streambed conductance term no longer needs to be calculated externally whenever the area of streambed changes as a function of flow. The concentration of solute is computed in a stream network when MODFLOW-GWT is used in conjunction with the SFR1 Package. The concentration of a solute in a stream reach is based on a mass-balance approach and accounts for exchanges with (inputs from or losses to) ground-water systems. Two test examples are used to illustrate some of the capabilities of the SFR1 Package. The first test simulation was designed to illustrate how pumping of ground water from an aquifer connected to streams can affect streamflow, depth, width, and streambed conductance using the different options. The second test simulation was designed to illustrate solute transport through interconnected lakes, streams, and aquifers. Because of the need to examine time series results from the model simulations, the Gage Package first described in the LAK3 documentation was revised to include time series results of selected variables (streamflows, stream depth and width, streambed conductance, solute concentrations, and solute loads) for specified stream reaches. The mass-balance or continuity approach for routing flow and solutes through a stream network may not be applicable for all interactions between streams and aquifers. The SFR1 Package is best suited for modeling long-term changes (months to hundreds of years) in ground-water flow and solute concentrations using averaged flows in streams. The Package is not recommended for modeling the transient exchange of water between streams and aquifers when the objective is to examine short-term (minutes to days) effects caused by rapidly changing streamflows.
airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models
NASA Astrophysics Data System (ADS)
Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre
2017-04-01
Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated discharges, which are updated immediately (a calibration only needs a couple of seconds or less, a simulation is almost immediate). In addition, time series of internal variables, live-visualisation of internal variables evolution and performance statistics are provided. This interface allows for hands-on exercises that can include for instance the analysis by students of: - The effects of each parameter and model components on simulated discharge - The effects of objective functions based on high flows- or low flows-focused criteria on simulated discharge - The seasonality of the model components. References Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2016). shiny: Web Application Framework for R. R package version 0.13.2. https://CRAN.R-project.org/package=shiny Coron L., Thirel G., Perrin C., Delaigue O., Andréassian V., airGR: a suite of lumped hydrological models in an R-package, Environmental Modelling and software, 2017, submitted. Coron, L., Perrin, C. and Michel, C. (2016). airGR: Suite of GR hydrological models for precipitation-runoff modelling. R package version 1.0.3. https://webgr.irstea.fr/airGR/?lang=en. Olivier Delaigue and Laurent Coron (2016). airGRteaching: Tools to simplify the use of the airGR hydrological package by students. R package version 0.0.1. https://webgr.irstea.fr/airGR/?lang=en R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
NASA Technical Reports Server (NTRS)
1987-01-01
A new spinoff product was derived from Geospectra Corporation's expertise in processing LANDSAT data in a software package. Called ATOM (for Automatic Topographic Mapping), it's capable of digitally extracting elevation information from stereo photos taken by spaceborne cameras. ATOM offers a new dimension of realism in applications involving terrain simulations, producing extremely precise maps of an area's elevations at a lower cost than traditional methods. ATOM has a number of applications involving defense training simulations and offers utility in architecture, urban planning, forestry, petroleum and mineral exploration.
A Virtual Environment for Process Management. A Step by Step Implementation
ERIC Educational Resources Information Center
Mayer, Sergio Valenzuela
2003-01-01
In this paper it is presented a virtual organizational environment, conceived with the integration of three computer programs: a manufacturing simulation package, an automation of businesses processes (workflows), and business intelligence (Balanced Scorecard) software. It was created as a supporting tool for teaching IE, its purpose is to give…
Community-based benchmarking of the CMIP DECK experiments
NASA Astrophysics Data System (ADS)
Gleckler, P. J.
2015-12-01
A diversity of community-based efforts are independently developing "diagnostic packages" with little or no coordination between them. A short list of examples include NCAR's Climate Variability Diagnostics Package (CVDP), ORNL's International Land Model Benchmarking (ILAMB), LBNL's Toolkit for Extreme Climate Analysis (TECA), PCMDI's Metrics Package (PMP), the EU EMBRACE ESMValTool, the WGNE MJO diagnostics package, and CFMIP diagnostics. The full value of these efforts cannot be realized without some coordination. As a first step, a WCRP effort has initiated a catalog to document candidate packages that could potentially be applied in a "repeat-use" fashion to all simulations contributed to the CMIP DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. Some coordination of community-based diagnostics has the additional potential to improve how CMIP modeling groups analyze their simulations during model-development. The fact that most modeling groups now maintain a "CMIP compliant" data stream means that in principal without much effort they could readily adopt a set of well organized diagnostic capabilities specifically designed to operate on CMIP DECK experiments. Ultimately, a detailed listing of and access to analysis codes that are demonstrated to work "out of the box" with CMIP data could enable model developers (and others) to select those codes they wish to implement in-house, potentially enabling more systematic evaluation during the model development process.
Influence of different materials on the thermal behavior of a CDIP-8 ceramic package
NASA Astrophysics Data System (ADS)
Weide, Kirsten; Keck, Christian
1999-08-01
The temperature distribution inside a package is determined by the heat transfer from the package to the ambient, depending on the heat conductivities of the different used materials. With the help of finite element simulations the thermal behavior of the package can be characterized. In precise simulations convection and radiation effects have to be taken into account. In this paper the influence of different materials like the ceramic, the pin and die attach material and adhesive material between the chip and the die attach on the thermal resistance of the ceramic package will be investigated. A finite element model of the ceramic package including a voltage regulator on the chip was created. The simulations were carried out with the finite element program ANSYS. An easy way to take the radiation effect into account, which normally is difficult to handle in the simulation, will be shown. The results of the simulations are verified by infrared measurements. A comparison of the thermal resistance between the best case and worst case for different package materials was done. The thermal conductivity of the ceramic material shows the strongest influence on the thermal resistance.
Magnetic thermometry in the aseptic processing of foods containing particulates (abstract)
NASA Astrophysics Data System (ADS)
Ghiron, Kenneth; Litchfield, Bruce
1997-04-01
Aseptic processing of foods has many advantages over canning, including higher efficiency, lighter packaging, better taste, and higher nutritional value. Aseptic processing is different from canning where the food and container are sterilized together. Instead, a thin stream of food is heated and the packaging is independently sterilized before the food is placed in the package. However, no aseptic processes have been successfully filed with the FDA for foods containing sizable solid particles because of uncertainties in the thermal sterilization of the particles (e.g., soup). We have demonstrated that by inserting small paramagnetic particles in the interior of the simulated and real food particles, the local temperature can be measured. With this information, any questions about the adequate sterilization of the particles can be resolved. The measurements were done by directing the food stream through a magnetic field and sensing the voltages induced in a pickup coil by the motion of the magnetized particles. Details of the equipment design and data analysis will be discussed along with an introduction to the aseptic processing of foods.
Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.
2004-01-01
A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng
2017-02-01
High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.
A CAD approach to magnetic bearing design
NASA Technical Reports Server (NTRS)
Jeyaseelan, M.; Anand, D. K.; Kirk, J. A.
1988-01-01
A design methodology has been developed at the Magnetic Bearing Research Laboratory for designing magnetic bearings using a CAD approach. This is used in the algorithm of an interactive design software package. The package is a design tool developed to enable the designer to simulate the entire process of design and analysis of the system. Its capabilities include interactive input/modification of geometry, finding any possible saturation at critical sections of the system, and the design and analysis of a control system that stabilizes and maintains magnetic suspension.
NASA Astrophysics Data System (ADS)
Pranav Nithin, R.; Gopikrishnan, S.; Sumesh, A.
2018-02-01
Cooling towers are the heat transfer devices commonly found in industries which are used to extract the high temperature from the coolants and make it reusable in various plants. Basically, the cooling towers has Fills made of PVC sheets stacked together to increase the surface area exposure of the cooling liquid flowing through it. This paper focuses on the study in such a manufacturing plant where fills are being manufactured. The productivity using the current manufacturing method was only 6 to 8 fills per day, where the ideal capacity was of 14 fills per day. In this plant manual labor was employed in the manufacturing process. A change in the process modification designed and implemented will help the industry to increase the productivity to 14. In this paper, initially the simulation study was done using ARENA the simulation package and later the new design was done using CAD Package and validated using Ansys Mechanical APDL. It’s found that, by the implementation of the safe design the productivity can be increased to 196 Units.
Seismic waveform modeling over cloud
NASA Astrophysics Data System (ADS)
Luo, Cong; Friederich, Wolfgang
2016-04-01
With the fast growing computational technologies, numerical simulation of seismic wave propagation achieved huge successes. Obtaining the synthetic waveforms through numerical simulation receives an increasing amount of attention from seismologists. However, computational seismology is a data-intensive research field, and the numerical packages usually come with a steep learning curve. Users are expected to master considerable amount of computer knowledge and data processing skills. Training users to use the numerical packages, correctly access and utilize the computational resources is a troubled task. In addition to that, accessing to HPC is also a common difficulty for many users. To solve these problems, a cloud based solution dedicated on shallow seismic waveform modeling has been developed with the state-of-the-art web technologies. It is a web platform integrating both software and hardware with multilayer architecture: a well designed SQL database serves as the data layer, HPC and dedicated pipeline for it is the business layer. Through this platform, users will no longer need to compile and manipulate various packages on the local machine within local network to perform a simulation. By providing users professional access to the computational code through its interfaces and delivering our computational resources to the users over cloud, users can customize the simulation at expert-level, submit and run the job through it.
ROMI-RIP: Rough mill rip-first simulator. Forest Service general technical report (Final)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, R.E.
1995-07-01
The ROugh Mill Rip-First Simulator (ROMI-RIP) is a computer software package that simulates the gang-ripping of lumber. ROMI-RIP was designed to closely simulate current machines and industrial practice. This simulator allows the user to perform `what if` analyses on various gang-rip-first rough mill operations with fixed, floating outer blade and all-movable blade arbors. ROMI-RIP accepts cutting bills with up to 300 different part sizes. Plots of processed boards are easily viewed or printed. Detailed summaries of processing steps (number of rips and crosscuts) and yields (single boards or entire board files) can also be viewed of printed. ROMI-RIP requires IBMmore » personal computers with 80286 of higher processors.« less
pysimm: A Python Package for Simulation of Molecular Systems
NASA Astrophysics Data System (ADS)
Fortunato, Michael; Colina, Coray
pysimm, short for python simulation interface for molecular modeling, is a python package designed to facilitate the structure generation and simulation of molecular systems through convenient and programmatic access to object-oriented representations of molecular system data. This poster presents core features of pysimm and design philosophies that highlight a generalized methodology for incorporation of third-party software packages through API interfaces. The integration with the LAMMPS simulation package is explained to demonstrate this methodology. pysimm began as a back-end python library that powered a cloud-based application on nanohub.org for amorphous polymer simulation. The extension from a specific application library to general purpose simulation interface is explained. Additionally, this poster highlights the rapid development of new applications to construct polymer chains capable of controlling chain morphology such as molecular weight distribution and monomer composition.
Simulation and flavor compound analysis of dealcoholized beer via one-step vacuum distillation.
Andrés-Iglesias, Cristina; García-Serna, Juan; Montero, Olimpio; Blanco, Carlos A
2015-10-01
The coupled operation of vacuum distillation process to produce alcohol free beer at laboratory scale and Aspen HYSYS simulation software was studied to define the chemical changes during the dealcoholization process in the aroma profiles of 2 different lager beers. At the lab-scale process, 2 different parameters were chosen to dealcoholize beer samples, 102mbar at 50°C and 200mbar at 67°C. Samples taken at different steps of the process were analyzed by HS-SPME-GC-MS focusing on the concentration of 7 flavor compounds, 5 alcohols and 2 esters. For simulation process, the EoS parameters of the Wilson-2 property package were adjusted to the experimental data and one more pressure was tested (60mbar). Simulation methods represent a viable alternative to predict results of the volatile compound composition of a final dealcoholized beer. Copyright © 2015 Elsevier Ltd. All rights reserved.
INDOOR AIR QUALITY AND INHALATION EXPOSURE - SIMULATION TOOL KIT
A Microsoft Windows-based indoor air quality (IAQ) simulation software package is presented. Named Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short, this package complements and supplements existing IAQ simulation programs and is desi...
Arrieta, Marina Patricia; Castro-López, María del Mar; Rayón, Emilio; Barral-Losada, Luis Fernando; López-Vilariño, José Manuel; López, Juan; González-Rodríguez, María Victoria
2014-10-15
Active biobased packaging materials based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends were prepared by melt blending and fully characterized. Catechin incorporation, as antioxidant compound, enhanced the thermal stability, whereas its release was improved by the addition of acetyl(tributyl citrate) (ATBC) as plasticizer. Whereas the incorporation of ATBC resulted in a reduction of elastic modulus and hardness, catechin addition produced more rigid materials due to hydrogen-bonding interactions between catechin hydroxyl groups and carbonyl groups of PLA and PHB. The quantification of catechin released into a fatty food simulant and the antioxidant effectiveness after the release process were demonstrated. The effect of the materials' exposure to a food simulant was also investigated. PHB-added materials maintained their structural and mechanical properties after 10 days in a test medium that represents the worst foreseeable conditions of the intended use. Thus, plasticized PLA-PHB blends with catechin show their potential as biobased active packaging for fatty food.
Translating building information modeling to building energy modeling using model view definition.
Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei
2014-01-01
This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.
Translating Building Information Modeling to Building Energy Modeling Using Model View Definition
Kim, Jong Bum; Clayton, Mark J.; Haberl, Jeff S.
2014-01-01
This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process. PMID:25309954
DNA packaging and ejection forces in bacteriophage
Kindt, James; Tzlil, Shelly; Ben-Shaul, Avinoam; Gelbart, William M.
2001-01-01
We calculate the forces required to package (or, equivalently, acting to eject) DNA into (from) a bacteriophage capsid, as a function of the loaded (ejected) length, under conditions for which the DNA is either self-repelling or self-attracting. Through computer simulation and analytical theory, we find the loading force to increase more than 10-fold (to tens of piconewtons) during the final third of the loading process; correspondingly, the internal pressure drops 10-fold to a few atmospheres (matching the osmotic pressure in the cell) upon ejection of just a small fraction of the phage genome. We also determine an evolution of the arrangement of packaged DNA from toroidal to spool-like structures. PMID:11707588
NASA Astrophysics Data System (ADS)
Ivancic, B.; Riedmann, H.; Frey, M.; Knab, O.; Karl, S.; Hannemann, K.
2016-07-01
The paper summarizes technical results and first highlights of the cooperation between DLR and Airbus Defence and Space (DS) within the work package "CFD Modeling of Combustion Chamber Processes" conducted in the frame of the Propulsion 2020 Project. Within the addressed work package, DLR Göttingen and Airbus DS Ottobrunn have identified several test cases where adequate test data are available and which can be used for proper validation of the computational fluid dynamics (CFD) tools. In this paper, the first test case, the Penn State chamber (RCM1), is discussed. Presenting the simulation results from three different tools, it is shown that the test case can be computed properly with steady-state Reynolds-averaged Navier-Stokes (RANS) approaches. The achieved simulation results reproduce the measured wall heat flux as an important validation parameter very well but also reveal some inconsistencies in the test data which are addressed in this paper.
Application of a neural network to simulate analysis in an optimization process
NASA Technical Reports Server (NTRS)
Rogers, James L.; Lamarsh, William J., II
1992-01-01
A new experimental software package called NETS/PROSSS aimed at reducing the computing time required to solve a complex design problem is described. The software combines a neural network for simulating the analysis program with an optimization program. The neural network is applied to approximate results of a finite element analysis program to quickly obtain a near-optimal solution. Results of the NETS/PROSSS optimization process can also be used as an initial design in a normal optimization process and make it possible to converge to an optimum solution with significantly fewer iterations.
Mesocell study area snow distributions for the Cold Land Processes Experiment (CLPX)
Glen E. Liston; Christopher A. Hiemstra; Kelly Elder; Donald W. Cline
2008-01-01
The Cold Land Processes Experiment (CLPX) had a goal of describing snow-related features over a wide range of spatial and temporal scales. This required linking disparate snow tools and datasets into one coherent, integrated package. Simulating realistic high-resolution snow distributions and features requires a snow-evolution modeling system (SnowModel) that can...
ROMPS critical design review data package
NASA Technical Reports Server (NTRS)
Dobbs, M. E.
1992-01-01
The design elements of the Robot-Operated Material Processing in Space (ROMPS) system are described in outline and graphical form. The following subsystems/topics are addressed: servo system, testbed and simulation results, System V Controller, robot module, furnace module, SCL experiment supervisor and script sample processing control, battery system, watchdog timers, mechanical/thermal considerations, and fault conditions and recovery.
NASA Astrophysics Data System (ADS)
Gumuła-Kawęcka, Anna; Szymkiewicz, Adam; Angulo-Jaramillo, Rafael; Šimůnek, Jirka; Jaworska-Szulc, Beata; Pruszkowska-Caceres, Małgorzata; Gorczewska-Langner, Wioletta; Leterme, Bertrand; Jacques, Diederik
2017-04-01
ABSTRACT Groundwater recharge is a complex process, which depends on several factors, including the hydraulic properties of soils in the vadose zone. On the other hand, the rate of recharge is one of the main input data in hydrogeological models for saturated groundwater flow. Thus, there is an increasing understanding of the need for more complete representation of vadose zone processes in groundwater modeling. One of the possible approaches is to use a 1D model of water flow in the unsaturated zone coupled with 3D groundwater model for the saturated zone. Such an approach was implemented in the Hydrus for Modflow package (Seo et al. 2007), which combines two well-known and thoroughly tested modeling tools: groundwater flow simulator MODFLOW (Harbaugh 2005) and one-dimensional vadose zone simulator HYDRUS 1D (Šimůnek et al. 2016), based on the Richards equation. The Hydrus for Modflow package has been recently enhanced by implementing the BEST model of soil hydraulic properties (Lassabatere et al. 2006), which is a combination of van Genuchten - type retention function with Brooks-Corey type hydraulic conductivity function. The parameters of these functions can be divided into texture-related and structure-related and can be obtained from relatively simple lab and field tests. The method appears a promising tool for obtaining input data for vadose zone flow models. The main objective of this work is to evaluate the sensitivity of the recharge rates to the values of various parameters of the BEST model. Simulations are performed for a range of soil textural classes and plant covers, using meteorological data typical for northern Poland. ACKNOWLEDGEMENTS This work has been supported by National Science Centre, Poland in the framework of the project 2015/17/B/ST10/03233 "Groundwater recharge on outwash plain". REFERENCES [1]Harbaugh, A.W. (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. Reston, VA, USA. [2]Lassabatere L. et al. (2006) Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Science Society of America Journal 70.2: 521-532. [3]Seo, H.S., Šimůnek J., Poeter E.P. (2007) Documentation of the Hydrus package for Modflow-2000, the US Geological Survey modular ground-water model. [4]Šimůnek, J., van Genuchten, M.Th., and Šejna, M. (2016) Recent developments and applications of the HYDRUS computer software packages, Vadose Zone Journal, 15(7), pp. 25, doi: 10.2136/vzj2016.04.0033.
NASA Astrophysics Data System (ADS)
Kodama, C.; Noda, A. T.; Satoh, M.
2012-06-01
This study presents an assessment of three-dimensional structures of hydrometeors simulated by the NICAM, global nonhydrostatic atmospheric model without cumulus parameterization, using multiple satellite data sets. A satellite simulator package (COSP: the CFMIP Observation Simulator Package) is employed to consistently compare model output with ISCCP, CALIPSO, and CloudSat satellite observations. Special focus is placed on high thin clouds, which are not observable in the conventional ISCCP data set, but can be detected by the CALIPSO observations. For the control run, the NICAM simulation qualitatively captures the geographical distributions of the high, middle, and low clouds, even though the horizontal mesh spacing is as coarse as 14 km. The simulated low cloud is very close to that of the CALIPSO low cloud. Both the CloudSat observations and NICAM simulation show a boomerang-type pattern in the radar reflectivity-height histogram, suggesting that NICAM realistically simulates the deep cloud development process. A striking difference was found in the comparisons of high thin cirrus, showing overestimated cloud and higher cloud top in the model simulation. Several model sensitivity experiments are conducted with different cloud microphysical parameters to reduce the model-observation discrepancies in high thin cirrus. In addition, relationships among clouds, Hadley circulation, outgoing longwave radiation and precipitation are discussed through the sensitivity experiments.
Mass decomposition of galaxies using DECA software package
NASA Astrophysics Data System (ADS)
Mosenkov, A. V.
2014-01-01
The new DECA software package, which is designed to perform photometric analysis of the images of disk and elliptical galaxies having a regular structure, is presented. DECA is written in Python interpreted language and combines the capabilities of several widely used packages for astronomical data processing such as IRAF, SExtractor, and the GALFIT code used to perform two-dimensional decomposition of galaxy images into several photometric components (bulge+disk). DECA has the advantage that it can be applied to large samples of galaxies with different orientations with respect to the line of sight (including edge-on galaxies) and requires minimum human intervention. Examples of using the package to study a sample of simulated galaxy images and a sample of real objects are shown to demonstrate that DECA can be a reliable tool for the study of the structure of galaxies.
Use of modflow drain package for simulating inter-basin transfer in abandoned coal mines
Kozar, Mark D.; McCoy, Kurt J.
2017-01-01
Simulation of groundwater flow in abandoned mines is difficult, especially where flux to and from mines is unknown or poorly quantified, and inter-basin transfer of groundwater occurs. A 3-year study was conducted in the Elkhorn area, West Virginia to better understand groundwater-flow processes and inter-basin transfer in above drainage abandoned coal mines. The study area was specifically selected, as all mines are located above the elevation of tributary receiving streams, to allow accurate measurements of discharge from mine portals and tributaries for groundwater model calibration. Abandoned mine workings were simulated in several ways, initially as a layer of high hydraulic conductivity bounded by lower permeability rock in adjacent strata, and secondly as rows of higher hydraulic conductivity embedded within a lower hydraulic conductivity coal aquifer matrix. Regardless of the hydraulic conductivity assigned to mine workings, neither approach to simulate mine workings could accurately reproduce the inter-basin transfer of groundwater from adjacent watersheds. To resolve the problem, a third approach was developed. The MODFLOW DRAIN package was used to simulate seepage into and through mine workings discharging water under unconfined conditions to Elkhorn Creek, North Fork, and tributaries of the Bluestone River. Drain nodes were embedded in a matrix of uniform hydraulic conductivity cells that represented the coal mine aquifer. Drain heads were empirically defined from well observations, and elevations were based on structure contours for the Pocahontas No. 3 mine workings. Use of the DRAIN package to simulate mine workings as an internal boundary condition resolved the inter-basin transfer problem, and effectively simulated a shift from a topographic- dominated to a dip-dominated flow system, by dewatering overlying unmined strata and shifting the groundwater drainage divide up dip within the Pocahontas No. 3 coal seam several kilometers into the adjacent Bluestone River Watershed. Model simulations prior to use of the DRAIN package for simulating mine workings produced estimated flows of 0.32 to 0.34 m3/s in each of the similar sized Elkhorn Creek and North Fork Watersheds, but failed to estimate inter-basin transfer of groundwater from the adjacent Bluestone River Watershed. The simulation of mine entries and discharge using the MODFLOW DRAIN package produced estimated flows of 0.46 and 0.26 m3/s for the Elkhorn Creek and North Fork watersheds respectively, which matched well measured flows for the respective watersheds of 0.47 and 0.26 m3/s.
Real time flight simulation methodology
NASA Technical Reports Server (NTRS)
Parrish, E. A.; Cook, G.; Mcvey, E. S.
1977-01-01
Substitutional methods for digitization, input signal-dependent integrator approximations, and digital autopilot design were developed. The software framework of a simulator design package is described. Included are subroutines for iterative designs of simulation models and a rudimentary graphics package.
Scientific computations section monthly report, November 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckner, M.R.
1993-12-30
This progress report from the Savannah River Technology Center contains abstracts from papers from the computational modeling, applied statistics, applied physics, experimental thermal hydraulics, and packaging and transportation groups. Specific topics covered include: engineering modeling and process simulation, criticality methods and analysis, plutonium disposition.
2008-10-01
and UTCHEM (Clement et al., 1998). While all four of these software packages use conservation of mass as the basic principle for tracking NAPL...simulate dissolution of a single NAPL component. UTCHEM can be used to simulate dissolution of a multiple NAPL components using either linear or first...parameters. No UTCHEM a/ 3D model, general purpose NAPL simulator. Yes Virulo a/ Probabilistic model for predicting leaching of viruses in unsaturated
GPU-accelerated Red Blood Cells Simulations with Transport Dissipative Particle Dynamics.
Blumers, Ansel L; Tang, Yu-Hang; Li, Zhen; Li, Xuejin; Karniadakis, George E
2017-08-01
Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterizes scalability. We observe a speedup of 10.1 on one GPU over all 16 cores within a single node, and a weak scaling efficiency of 91% across 256 nodes. The program enables quick-turnaround and high-throughput numerical simulations for investigating chemical-driven red blood cell phenomena and disorders.
Reverse logistics system planning for recycling computers hardware: A case study
NASA Astrophysics Data System (ADS)
Januri, Siti Sarah; Zulkipli, Faridah; Zahari, Siti Meriam; Shamsuri, Siti Hajar
2014-09-01
This paper describes modeling and simulation of reverse logistics networks for collection of used computers in one of the company in Selangor. The study focuses on design of reverse logistics network for used computers recycling operation. Simulation modeling, presented in this work allows the user to analyze the future performance of the network and to understand the complex relationship between the parties involved. The findings from the simulation suggest that the model calculates processing time and resource utilization in a predictable manner. In this study, the simulation model was developed by using Arena simulation package.
Scripting MODFLOW Model Development Using Python and FloPy.
Bakker, M; Post, V; Langevin, C D; Hughes, J D; White, J T; Starn, J J; Fienen, M N
2016-09-01
Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy. © 2016, National Ground Water Association.
JetWeb: A WWW interface and database for Monte Carlo tuning and validation
NASA Astrophysics Data System (ADS)
Butterworth, J. M.; Butterworth, S.
2003-06-01
A World Wide Web interface to a Monte Carlo tuning facility is described. The aim of the package is to allow rapid and reproducible comparisons to be made between detailed measurements at high-energy physics colliders and general physics simulation packages. The package includes a relational database, a Java servlet query and display facility, and clean interfaces to simulation packages and their parameters.
NASA Astrophysics Data System (ADS)
Rogiers, Bart
2015-04-01
Since a few years, an increasing number of contributed R packages is becoming available, in the field of hydrology. Hydrological time series analysis packages, lumped conceptual rainfall-runoff models, distributed hydrological models, weather generators, and different calibration and uncertainty estimation methods are all available. Also a few packages are available for solving partial differential equations. Subsurface hydrological modelling is however still seldomly performed in R, or with codes interfaced with R, despite the fact that excellent geostatistical packages, model calibration/inversion options and state-of-the-art visualization libraries are available. Moreover, other popular scientific programming languages like matlab and python have packages for pre- and post-processing files of MODFLOW (Harbaugh 2005) and MT3DMS (Zheng 2010) models. To fill this gap, we present here the development versions of the RMODFLOW and RMT3DMS packages, which allow pre- and post-processing MODFLOW and MT3DMS input and output files from within R. File reading and writing functions are currently available for different packages, and plotting functions are foreseen making use of the ggplot2 package (plotting system based on the grammar of graphics; Wickham 2009). The S3 generic-function object oriented programming style is used for this. An example is provided, making modifications to an existing model, and visualization of the model output. References Harbaugh, A. (2005). MODFLOW-2005: The US Geological Survey Modular Ground-water Model--the Ground-water Flow Process, U.S. Geological Survey Techniques and Methods 6-A16 (p. 253). Wickham, H. (2009). ggplot2: elegant graphics for data analysis. Springer New York, 2009. Zheng, C. (2010). MT3DMS v5.3, a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Supplemental User's Guide. (p. 56).
GneimoSim: A Modular Internal Coordinates Molecular Dynamics Simulation Package
Larsen, Adrien B.; Wagner, Jeffrey R.; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan
2014-01-01
The Generalized Newton Euler Inverse Mass Operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this paper we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. PMID:25263538
GneimoSim: a modular internal coordinates molecular dynamics simulation package.
Larsen, Adrien B; Wagner, Jeffrey R; Kandel, Saugat; Salomon-Ferrer, Romelia; Vaidehi, Nagarajan; Jain, Abhinandan
2014-12-05
The generalized Newton-Euler inverse mass operator (GNEIMO) method is an advanced method for internal coordinates molecular dynamics (ICMD). GNEIMO includes several theoretical and algorithmic advancements that address longstanding challenges with ICMD simulations. In this article, we describe the GneimoSim ICMD software package that implements the GNEIMO method. We believe that GneimoSim is the first software package to include advanced features such as the equipartition principle derived for internal coordinates, and a method for including the Fixman potential to eliminate systematic statistical biases introduced by the use of hard constraints. Moreover, by design, GneimoSim is extensible and can be easily interfaced with third party force field packages for ICMD simulations. Currently, GneimoSim includes interfaces to LAMMPS, OpenMM, and Rosetta force field calculation packages. The availability of a comprehensive Python interface to the underlying C++ classes and their methods provides a powerful and versatile mechanism for users to develop simulation scripts to configure the simulation and control the simulation flow. GneimoSim has been used extensively for studying the dynamics of protein structures, refinement of protein homology models, and for simulating large scale protein conformational changes with enhanced sampling methods. GneimoSim is not limited to proteins and can also be used for the simulation of polymeric materials. © 2014 Wiley Periodicals, Inc.
Chi, Yujie; Tian, Zhen; Jia, Xun
2016-08-07
Monte Carlo (MC) particle transport simulation on a graphics-processing unit (GPU) platform has been extensively studied recently due to the efficiency advantage achieved via massive parallelization. Almost all of the existing GPU-based MC packages were developed for voxelized geometry. This limited application scope of these packages. The purpose of this paper is to develop a module to model parametric geometry and integrate it in GPU-based MC simulations. In our module, each continuous region was defined by its bounding surfaces that were parameterized by quadratic functions. Particle navigation functions in this geometry were developed. The module was incorporated to two previously developed GPU-based MC packages and was tested in two example problems: (1) low energy photon transport simulation in a brachytherapy case with a shielded cylinder applicator and (2) MeV coupled photon/electron transport simulation in a phantom containing several inserts of different shapes. In both cases, the calculated dose distributions agreed well with those calculated in the corresponding voxelized geometry. The averaged dose differences were 1.03% and 0.29%, respectively. We also used the developed package to perform simulations of a Varian VS 2000 brachytherapy source and generated a phase-space file. The computation time under the parameterized geometry depended on the memory location storing the geometry data. When the data was stored in GPU's shared memory, the highest computational speed was achieved. Incorporation of parameterized geometry yielded a computation time that was ~3 times of that in the corresponding voxelized geometry. We also developed a strategy to use an auxiliary index array to reduce frequency of geometry calculations and hence improve efficiency. With this strategy, the computational time ranged in 1.75-2.03 times of the voxelized geometry for coupled photon/electron transport depending on the voxel dimension of the auxiliary index array, and in 0.69-1.23 times for photon only transport.
Large-scale 3D simulations of ICF and HEDP targets
NASA Astrophysics Data System (ADS)
Marinak, Michael M.
2000-10-01
The radiation hydrodynamics code HYDRA continues to be developed and applied to 3D simulations of a variety of targets for both inertial confinement fusion (ICF) and high energy density physics. Several packages have been added enabling this code to perform ICF target simulations with similar accuracy as two-dimensional codes of long-time historical use. These include a laser ray trace and deposition package, a heavy ion deposition package, implicit Monte Carlo photonics, and non-LTE opacities, derived from XSN or the linearized response matrix approach.(R. More, T. Kato, Phys. Rev. Lett. 81, 814 (1998), S. Libby, F. Graziani, R. More, T. Kato, Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, (AIP, New York, 1997).) LTE opacities can also be calculated for arbitrary mixtures online by combining tabular values generated by different opacity codes. Thermonuclear burn, charged particle transport, neutron energy deposition, electron-ion coupling and conduction, and multigroup radiation diffusion packages are also installed. HYDRA can employ ALE hydrodynamics; a number of grid motion algorithms are available. Multi-material flows are resolved using material interface reconstruction. Results from large-scale simulations run on up to 1680 processors, using a combination of massively parallel processing and symmetric multiprocessing, will be described. A large solid angle simulation of Rayleigh-Taylor instability growth in a NIF ignition capsule has resolved simultaneously the full spectrum of the most dangerous modes that grow from surface roughness. Simulations of a NIF hohlraum illuminated with the initial 96 beam configuration have also been performed. The effect of the hohlraum’s 3D intrinsic drive asymmetry on the capsule implosion will be considered. We will also discuss results from a Nova experiment in which a copper sphere is crushed by a planar shock. Several interacting hydrodynamic instabilities, including the Widnall instability, cause breakup of the resulting vortex ring.
Monte Carlo Simulations for VLBI2010
NASA Astrophysics Data System (ADS)
Wresnik, J.; Böhm, J.; Schuh, H.
2007-07-01
Monte Carlo simulations are carried out at the Institute of Geodesy and Geophysics (IGG), Vienna, and at Goddard Space Flight Center (GSFC), Greenbelt (USA), with the goal to design a new geodetic Very Long Baseline Interferometry (VLBI) system. Influences of the schedule, the network geometry and the main stochastic processes on the geodetic results are investigated. Therefore schedules are prepared with the software package SKED (Vandenberg 1999), and different strategies are applied to produce temporally very dense schedules which are compared in terms of baseline length repeatabilities. For the simulation of VLBI observations a Monte Carlo Simulator was set up which creates artificial observations by randomly simulating wet zenith delay and clock values as well as additive white noise representing the antenna errors. For the simulation at IGG the VLBI analysis software OCCAM (Titov et al. 2004) was adapted. Random walk processes with power spectrum densities of 0.7 and 0.1 psec2/sec are used for the simulation of wet zenith delays. The clocks are simulated with Allan Standard Deviations of 1*10^-14 @ 50 min and 2*10^-15 @ 15 min and three levels of white noise, 4 psec, 8 psec and, 16 psec, are added to the artificial observations. The variations of the power spectrum densities of the clocks and wet zenith delays, and the application of different white noise levels show clearly that the wet delay is the critical factor for the improvement of the geodetic VLBI system. At GSFC the software CalcSolve is used for the VLBI analysis, therefore a comparison between the software packages OCCAM and CalcSolve was done with simulated data. For further simulations the wet zenith delay was modeled by a turbulence model. This data was provided by Nilsson T. and was added to the simulation work. Different schedules have been run.
GillesPy: A Python Package for Stochastic Model Building and Simulation.
Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R
2016-09-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.
GillesPy: A Python Package for Stochastic Model Building and Simulation
Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.
2017-01-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community. PMID:28630888
Rough mill simulator version 3.0: an analysis tool for refining rough mill operations
Edward Thomas; Joel Weiss
2006-01-01
ROMI-3 is a rough mill computer simulation package designed to be used by both rip-first and chop-first rough mill operators and researchers. ROMI-3 allows users to model and examine the complex relationships among cutting bill, lumber grade mix, processing options, and their impact on rough mill yield and efficiency. Integrated into the ROMI-3 software is a new least-...
SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport
Langevin, Christian D.; Thorne, Daniel T.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing
2008-01-01
The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant-head boundaries with the Time-Variant Constant-Head (CHD) Package. These options allow for increased flexibility when using CHD flow boundaries with the zero-dispersive flux solute boundaries implemented by MT3DMS at constant-head cells. This report contains revised input instructions for the MT3DMS Dispersion (DSP) Package, Variable-Density Flow (VDF) Package, Viscosity (VSC) Package, and CHD Package. The report concludes with seven cases of an example problem designed to highlight many of the new features.
Automated simulation as part of a design workstation
NASA Technical Reports Server (NTRS)
Cantwell, E.; Shenk, T.; Robinson, P.; Upadhye, R.
1990-01-01
A development project for a design workstation for advanced life-support systems incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulations, such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The paper reports on the Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components.
The ATLAS Simulation Infrastructure
Aad, G.; Abbott, B.; Abdallah, J.; ...
2010-09-25
The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, andmore » the validation of the simulated output against known physics processes.« less
Athena X-IFU event reconstruction software: SIRENA
NASA Astrophysics Data System (ADS)
Ceballos, Maria Teresa; Cobo, Beatriz; Peille, Philippe; Wilms, Joern; Brand, Thorsten; Dauser, Thomas; Bandler, Simon; Smith, Stephen
2015-09-01
This contribution describes the status and technical details of the SIRENA package, the software currently in development to perform the on board event energy reconstruction for the Athena calorimeter X-IFU. This on board processing will be done in the X-IFU DRE unit and it will consist in an initial triggering of event pulses followed by an analysis (with the SIRENA package) to determine the energy content of such events.The current algorithm used by SIRENA is the optimal filtering technique (also used by ASTRO-H processor) although some other algorithms are also being tested.Here we present these studies and some preliminary results about the energy resolution of the instrument based on simulations done with the SIXTE simulator (http://www.sternwarte.uni-erlangen.de/research/sixte/) in which SIRENA is integrated.
Jaffer, Usman; Normahani, Pasha; Singh, Prashant; Aslam, Mohammed; Standfield, Nigel J
2015-01-01
In vascular surgery, duplex ultrasonography is a valuable diagnostic tool in patients with peripheral vascular disease, and there is increasing demand for vascular surgeons to be able to perform duplex scanning. This study evaluates the role of a novel simulation training package on vascular ultrasound (US) skill acquisition. A total of 19 novices measured predefined stenosis in a simulated pulsatile vessel using both peak systolic velocity ratio (PSVR) and diameter reduction (DR) methods before and after a short period of training using a simulated training package. The training package consisted of a simulated pulsatile vessel phantom, a set of instructional videos, duplex ultrasound objective structured assessment of technical skills (DUOSATS) tool, and a portable US scanner. Quantitative metrics (procedure time, percentage error using PSVR and DR methods, DUOSAT scores, and global rating scores) before and after training were compared. Subjects spent a median time of 144 mins (IQR: 60-195) training using the simulation package. Subjects exhibited statistically significant improvements when comparing pretraining and posttraining DUOSAT scores (pretraining = 17 [16-19.3] vs posttraining = 30 [27.8-31.8]; p < 0.01), global rating score (pretraining = 1 [1-2] vs posttraining = 4 [3.8-4]; p < 0.01), percentage error using both the DR (pretraining = 12.6% [9-29.6] vs posttraining = 10.3% [8.9-11.1]; p = 0.03) and PSVR (pretraining = 60% [40-60] vs posttraining = 20% [6.7-20]; p < 0.01) methods. In this study, subjects with no previous practical US experience developed the ability to both acquire and interpret arterial duplex images in a pulsatile simulated phantom following a short period of goal direct training using a simulation training package. A simulation training package may be a valuable tool for integration into a vascular training program. However, further work is needed to explore whether these newly attained skills are translated into clinical assessment. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Validation of thermal effects of LED package by using Elmer finite element simulation method
NASA Astrophysics Data System (ADS)
Leng, Lai Siang; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Taniselass, Steven; Bin Ab Aziz, Muhamad Hafiz; Vairavan, Rajendaran; Kirtsaeng, Supap
2017-02-01
The overall performance of the Light-emitting diode, LED package is critically affected by the heat attribution. In this study, open source software - Elmer FEM has been utilized to study the thermal analysis of the LED package. In order to perform a complete simulation study, both Salome software and ParaView software were introduced as Pre and Postprocessor. The thermal effect of the LED package was evaluated by this software. The result has been validated with commercially licensed software based on previous work. The percentage difference from both simulation results is less than 5% which is tolerable and comparable.
Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation
NASA Astrophysics Data System (ADS)
Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.
2017-07-01
This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.
Weighted Ensemble Simulation: Review of Methodology, Applications, and Software.
Zuckerman, Daniel M; Chong, Lillian T
2017-05-22
The weighted ensemble (WE) methodology orchestrates quasi-independent parallel simulations run with intermittent communication that can enhance sampling of rare events such as protein conformational changes, folding, and binding. The WE strategy can achieve superlinear scaling-the unbiased estimation of key observables such as rate constants and equilibrium state populations to greater precision than would be possible with ordinary parallel simulation. WE software can be used to control any dynamics engine, such as standard molecular dynamics and cell-modeling packages. This article reviews the theoretical basis of WE and goes on to describe successful applications to a number of complex biological processes-protein conformational transitions, (un)binding, and assembly processes, as well as cell-scale processes in systems biology. We furthermore discuss the challenges that need to be overcome in the next phase of WE methodological development. Overall, the combined advances in WE methodology and software have enabled the simulation of long-timescale processes that would otherwise not be practical on typical computing resources using standard simulation.
Phi29 Connector-DNA Interactions Govern DNA Crunching and Rotation, Supporting the Check-Valve Model
Kumar, Rajendra; Grubmüller, Helmut
2016-01-01
During replication of the ϕ29 bacteriophage inside a bacterial host cell, a DNA packaging motor transports the viral DNA into the procapsid against a pressure difference of up to 40 ± 20 atm. Several models have been proposed for the underlying molecular mechanism. Here we have used molecular dynamics simulations to examine the role of the connector part of the motor, and specifically the one-way revolution and the push-roll model. We have focused at the structure and intermolecular interactions between the DNA and the connector, for which a near-complete structure is available. The connector is found to induce considerable DNA deformations with respect to its canonical B-form. We further assessed by force-probe simulations to which extent the connector is able to prevent DNA leakage and found that the connector can act as a partial one-way valve by a check-valve mechanism via its mobile loops. Analysis of the geometry, flexibility, and energetics of channel lysine residues suggested that this arrangement of residues is incompatible with the observed DNA packaging step-size of ∼2.5 bp, such that the step-size is probably determined by the other components of the motor. Previously proposed DNA revolution and rolling motions inside the connector channel are both found implausible due to structural entanglement between the DNA and connector loops that have not been resolved in the crystal structure. Rather, in the simulations, the connector facilitates minor DNA rotation during the packaging process compatible with recent optical-tweezers experiments. Combined with the available experimental data, our simulation results suggest that the connector acts as a check-valve that prevents DNA leakage and induces DNA compression and rotation during DNA packaging. PMID:26789768
Anderman, Evan R.; Hill, Mary Catherine
2001-01-01
Observations of the advective component of contaminant transport in steady-state flow fields can provide important information for the calibration of ground-water flow models. This report documents the Advective-Transport Observation (ADV2) Package, version 2, which allows advective-transport observations to be used in the three-dimensional ground-water flow parameter-estimation model MODFLOW-2000. The ADV2 Package is compatible with some of the features in the Layer-Property Flow and Hydrogeologic-Unit Flow Packages, but is not compatible with the Block-Centered Flow or Generalized Finite-Difference Packages. The particle-tracking routine used in the ADV2 Package duplicates the semi-analytical method of MODPATH, as shown in a sample problem. Particles can be tracked in a forward or backward direction, and effects such as retardation can be simulated through manipulation of the effective-porosity value used to calculate velocity. Particles can be discharged at cells that are considered to be weak sinks, in which the sink applied does not capture all the water flowing into the cell, using one of two criteria: (1) if there is any outflow to a boundary condition such as a well or surface-water feature, or (2) if the outflow exceeds a user specified fraction of the cell budget. Although effective porosity could be included as a parameter in the regression, this capability is not included in this package. The weighted sum-of-squares objective function, which is minimized in the Parameter-Estimation Process, was augmented to include the square of the weighted x-, y-, and z-components of the differences between the simulated and observed advective-front locations at defined times, thereby including the direction of travel as well as the overall travel distance in the calibration process. The sensitivities of the particle movement to the parameters needed to minimize the objective function are calculated for any particle location using the exact sensitivity-equation approach; the equations are derived by taking the partial derivatives of the semi-analytical particle-tracking equation with respect to the parameters. The ADV2 Package is verified by showing that parameter estimation using advective-transport observations produces the true parameter values in a small but complicated test case when exact observations are used. To demonstrate how the ADV2 Package can be used in practice, a field application is presented. In this application, the ADV2 Package is used first in the Sensitivity-Analysis mode of MODFLOW-2000 to calculate measures of the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Cape Cod, Massachusetts. The ADV2 Package is then used in the Parameter-Estimation mode of MODFLOW-2000 to determine best-fit parameter values. It is concluded that, for this problem, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and the use of formal parameter-estimation methods and related techniques produced significant insight into the physical system.
Evaluation of films for packaging applications in high pressure processing
NASA Astrophysics Data System (ADS)
Largeteau, A.; Angulo, I.; Coulet, J. P.; Demazeau, G.
2010-03-01
Food treatments implying high pressures used pre-packaging systems; consequently it appeared necessary to validate different packaging films able to be used in such processes. Two different packaging films from AMCOR FLEXIBLES have been evaluated: VIROFLEXAL: BOLSA 80 MICRAS, coextrusion PA/PE (20/60μm) RILTHENE: SEMI 20/60 MICRAS, laminate PA/PE (20/60μm) Three different physico-chemical characterizations have been developed for the evaluation of films behaviour after High Hydrostatic Pressure (HHP): (i) Mechanical properties (tensile strength and sealing strength), (ii) Oxygen permeability, (iii) Migration, through the contact with four food simulating liquids FSLs (water, acetic acid 3%, ethyl alcohol 10%, iso-octane). Two different pressures values (P = 400MPa and 500MPa) have been tested, with a duration of 15 min, at ambient temperature (+20°C) and only one pressure (P = 200MPa) for the experiments at low temperature (T = -20°C) with the same duration (15min). The selection of such values can be justified taking into account that experimental conditions as a temperature close to +20°C and a pressure between 400 and 500MPa are appropriated to inactivate bacteria and different others micro-organisms. Due to the efficiency of the association of hydrostatic pressure processing and low temperature (HHP/LT) [1, 2], the same films have been tested under high pressure processing (200MPa) but at negative temperature (-20°C).
Diode laser soldering using a lead-free filler material for electronic packaging structures
NASA Astrophysics Data System (ADS)
Chaminade, C.; Fogarassy, E.; Boisselier, D.
2006-04-01
As of today, several lead-free soldering pastes have been qualified for currently used soldering process. Regarding the new potential of laser-assisted soldering processes, the behaviour of the SnAgCu soldering paste requires, however, new investigations. In the first part of this study, the specific temperature profile of a laser soldering process is investigated using a high power diode laser (HPDL). These experimental results are compared to a thermal simulation developed for this specific application. The second part of this work deals with the diffusion of the tin-based filler material through the nickel barrier using the information extracted from the temperature simulations.
MPPhys—A many-particle simulation package for computational physics education
NASA Astrophysics Data System (ADS)
Müller, Thomas
2014-03-01
In a first course to classical mechanics elementary physical processes like elastic two-body collisions, the mass-spring model, or the gravitational two-body problem are discussed in detail. The continuation to many-body systems, however, is deferred to graduate courses although the underlying equations of motion are essentially the same and although there is a strong motivation for high-school students in particular because of the use of particle systems in computer games. The missing link between the simple and the more complex problem is a basic introduction to solve the equations of motion numerically which could be illustrated, however, by means of the Euler method. The many-particle physics simulation package MPPhys offers a platform to experiment with simple particle simulations. The aim is to give a principle idea how to implement many-particle simulations and how simulation and visualization can be combined for interactive visual explorations. Catalogue identifier: AERR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 111327 No. of bytes in distributed program, including test data, etc.: 608411 Distribution format: tar.gz Programming language: C++, OpenGL, GLSL, OpenCL. Computer: Linux and Windows platforms with OpenGL support. Operating system: Linux and Windows. RAM: Source Code 4.5 MB Complete package 242 MB Classification: 14, 16.9. External routines: OpenGL, OpenCL Nature of problem: Integrate N-body simulations, mass-spring models Solution method: Numerical integration of N-body-simulations, 3D-Rendering via OpenGL. Running time: Problem dependent
Through-process modelling of texture and anisotropy in AA5182
NASA Astrophysics Data System (ADS)
Crumbach, M.; Neumann, L.; Goerdeler, M.; Aretz, H.; Gottstein, G.; Kopp, R.
2006-07-01
A through-process texture and anisotropy prediction for AA5182 sheet production from hot rolling through cold rolling and annealing is reported. Thermo-mechanical process data predicted by the finite element method (FEM) package T-Pack based on the software LARSTRAN were fed into a combination of physics based microstructure models for deformation texture (GIA), work hardening (3IVM), nucleation texture (ReNuc), and recrystallization texture (StaRT). The final simulated sheet texture was fed into a FEM simulation of cup drawing employing a new concept of interactively updated texture based yield locus predictions. The modelling results of texture development and anisotropy were compared to experimental data. The applicability to other alloys and processes is discussed.
A user's guide to the ssWavelets package
J.H. Gove
2017-01-01
ssWavelets is an R package that is meant to be used in conjunction with the sampSurf package (Gove, 2012) to perform wavelet decomposition on the results of a sampling surface simulation. In general, the wavelet filter decomposes the sampSurf simulation results by scale (distance), with each scale corresponding to a different level of the...
ERIC Educational Resources Information Center
DesJardins, Stephen L.; McCall, Brian P.
2010-01-01
This study investigates the impact that different financial aid packages have on student stopout, reenrollment, and graduation probabilities. The authors simulate how various financial aid packaging regimes affect the occurrence and timing of these events. Their findings indicate that the number and duration of enrollment and stopout spells affect…
Performance Assessments of Generic Nuclear Waste Repositories in Shale
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.
2017-12-01
Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017- 8305 A
A User-Friendly Software Package for HIFU Simulation
NASA Astrophysics Data System (ADS)
Soneson, Joshua E.
2009-04-01
A freely-distributed, MATLAB (The Mathworks, Inc., Natick, MA)-based software package for simulating axisymmetric high-intensity focused ultrasound (HIFU) beams and their heating effects is discussed. The package (HIFU_Simulator) consists of a propagation module which solves the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and a heating module which solves Pennes' bioheat transfer (BHT) equation. The pressure, intensity, heating rate, temperature, and thermal dose fields are computed, plotted, the output is released to the MATLAB workspace for further user analysis or postprocessing.
spMC: an R-package for 3D lithological reconstructions based on spatial Markov chains
NASA Astrophysics Data System (ADS)
Sartore, Luca; Fabbri, Paolo; Gaetan, Carlo
2016-09-01
The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced methods for data inspection, besides spMC implements Markov Chain models to estimate experimental transition probabilities of categorical lithological data. Furthermore, simulation methods based on most known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package. Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive geostatistical computations, part of the code is implemented for parallel computations via the OpenMP constructs. A final analysis of this computational efficiency compares the simulation/prediction algorithms by using different numbers of CPU cores, and considering the example data set of the case study included in the package.
Data fusion: principles and applications in air defense
NASA Astrophysics Data System (ADS)
Maltese, Dominique; Lucas, Andre
1998-07-01
Within a Surveillance and Reconnaissance System, the Fusion Process is an essential part of the software package since the different sensors measurements are combined by this process; each sensor sends its data to a fusion center whose task is to elaborate the best tactical situation. In this paper, a practical algorithm of data fusion applied to a military application context is presented; the case studied here is a medium-range surveillance situation featuring a dual-sensor platform which combines a surveillance Radar and an IRST; both sensors are collocated. The presented performances were obtained on validation scenarios via simulations performed by SAGEM with the ESSOR ('Environnement de Simulation de Senseurs Optroniques et Radar') multisensor simulation test bench.
Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.
NASA Astrophysics Data System (ADS)
Wang, Han; Zhang, Linfeng; Han, Jiequn; E, Weinan
2018-07-01
Recent developments in many-body potential energy representation via deep learning have brought new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations. Here we describe DeePMD-kit, a package written in Python/C++ that has been designed to minimize the effort required to build deep learning based representation of potential energy and force field and to perform molecular dynamics. Potential applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to chemically bonded systems. DeePMD-kit is interfaced with TensorFlow, one of the most popular deep learning frameworks, making the training process highly automatic and efficient. On the other end, DeePMD-kit is interfaced with high-performance classical molecular dynamics and quantum (path-integral) molecular dynamics packages, i.e., LAMMPS and the i-PI, respectively. Thus, upon training, the potential energy and force field models can be used to perform efficient molecular simulations for different purposes. As an example of the many potential applications of the package, we use DeePMD-kit to learn the interatomic potential energy and forces of a water model using data obtained from density functional theory. We demonstrate that the resulted molecular dynamics model reproduces accurately the structural information contained in the original model.
DNA Packaging in Bacteriophage: Is Twist Important?
Spakowitz, Andrew James; Wang, Zhen-Gang
2005-01-01
We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces. PMID:15805174
DNA packaging in bacteriophage: is twist important?
Spakowitz, Andrew James; Wang, Zhen-Gang
2005-06-01
We study the packaging of DNA into a bacteriophage capsid using computer simulation, specifically focusing on the potential impact of twist on the final packaged conformation. We perform two dynamic simulations of packaging a polymer chain into a spherical confinement: one where the chain end is rotated as it is fed, and one where the chain is fed without end rotation. The final packaged conformation exhibits distinct differences in these two cases: the packaged conformation from feeding with rotation exhibits a spool-like character that is consistent with experimental and previous theoretical work, whereas feeding without rotation results in a folded conformation inconsistent with a spool conformation. The chain segment density shows a layered structure, which is more pronounced for packaging with rotation. However, in both cases, the conformation is marked by frequent jumps of the polymer chain from layer to layer, potentially influencing the ability to disentangle during subsequent ejection. Ejection simulations with and without Brownian forces show that Brownian forces are necessary to achieve complete ejection of the polymer chain in the absence of external forces.
NASA Astrophysics Data System (ADS)
Wi, S.; Ray, P. A.; Brown, C.
2015-12-01
A software package developed to facilitate building distributed hydrologic models in a modular modeling system is presented. The software package provides a user-friendly graphical user interface that eases its practical use in water resources-related research and practice. The modular modeling system organizes the options available to users when assembling models according to the stages of hydrological cycle, such as potential evapotranspiration, soil moisture accounting, and snow/glacier melting processes. The software is intended to be a comprehensive tool that simplifies the task of developing, calibrating, validating, and using hydrologic models through the inclusion of intelligent automation to minimize user effort, and reduce opportunities for error. Processes so far automated include the definition of system boundaries (i.e., watershed delineation), climate and geographical input generation, and parameter calibration. Built-in post-processing toolkits greatly improve the functionality of the software as a decision support tool for water resources system management and planning. Example post-processing toolkits enable streamflow simulation at ungauged sites with predefined model parameters, and perform climate change risk assessment by means of the decision scaling approach. The software is validated through application to watersheds representing a variety of hydrologic regimes.
Analysis of simulated image sequences from sensors for restricted-visibility operations
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar
1991-01-01
A real time model of the visible output from a 94 GHz sensor, based on a radiometric simulation of the sensor, was developed. A sequence of images as seen from an aircraft as it approaches for landing was simulated using this model. Thirty frames from this sequence of 200 x 200 pixel images were analyzed to identify and track objects in the image using the Cantata image processing package within the visual programming environment provided by the Khoros software system. The image analysis operations are described.
Simulations of Operation Dynamics of Different Type GaN Particle Sensors
Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas; Pavlov, Jevgenij; Vysniauskas, Juozas
2015-01-01
The operation dynamics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the software package Synopsys TCAD Sentaurus. The monopolar and bipolar drift regimes have been analyzed by using dynamic models based on the Shockley-Ramo theorem. The carrier multiplication processes determined by impact ionization have been considered in order to compensate carrier lifetime reduction due to introduction of radiation defects into GaN detector material. PMID:25751080
Differential maneuvering simulator data reduction and analysis software
NASA Technical Reports Server (NTRS)
Beasley, G. P.; Sigman, R. S.
1972-01-01
A multielement data reduction and analysis software package has been developed for use with the Langley differential maneuvering simulator (DMS). This package, which has several independent elements, was developed to support all phases of DMS aircraft simulation studies with a variety of both graphical and tabular information. The overall software package is considered unique because of the number, diversity, and sophistication of the element programs available for use in a single study. The purpose of this paper is to discuss the overall DMS data reduction and analysis package by reviewing the development of the various elements of the software, showing typical results that can be obtained, and discussing how each element can be used.
Leake, S.A.; Leahy, P.P.; Navoy, A.S.
1994-01-01
Transient leakage into or out of a compressible fine-grained confining unit results from ground- water storage changes within the unit. The computer program described in this report provides a new method of simulating transient leakage using the U.S. Geological Survey modular finite- difference ground-water flow model (MODFLOW). The new program is referred to as the Transient- Leakage Package. The Transient-Leakage Package solves integrodifferential equations that describe flow across the upper and lower boundaries of confining units. For each confining unit, vertical hydraulic conductivity, thickness, and specific storage are specified in input arrays. These properties can vary from cell to cell and the confining unit need not be present at all locations in the grid; however, the confining units must be bounded above and below by model layers in which head is calculated or specified. The package was used in an example problem to simulate drawdown around a pumping well in a system with two aquifers separated by a confining unit. For drawdown values in excess of 1 centimeter, the solution using the new package closely matched an exact analytical solution. The problem also was simulated without the new package by using a separate model layer to represent the confining unit. That simulation was refined by using two model layers to represent the confining unit. The simulation using the Transient-Leakage Package was faster and more accurate than either of the simulations using model layers to represent the confining unit.
Moving from Batch to Field Using the RT3D Reactive Transport Modeling System
NASA Astrophysics Data System (ADS)
Clement, T. P.; Gautam, T. R.
2002-12-01
The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.
Shipboard communications center modernization network simulation report
DOT National Transportation Integrated Search
1995-08-01
Commercially available simulation packages were investigated to determine their suitability for modeling the USCG Cutter Communications Center (CCC). The suitability of a candidate package was based upon it meeting the operational goals and hardware ...
Effectiveness of Simulation in a Hybrid and Online Networking Course.
ERIC Educational Resources Information Center
Cameron, Brian H.
2003-01-01
Reports on a study that compares the performance of students enrolled in two sections of a Web-based computer networking course: one utilizing a simulation package and the second utilizing a static, graphical software package. Analysis shows statistically significant improvements in performance in the simulation group compared to the…
NASA Astrophysics Data System (ADS)
Koepferl, Christine M.; Robitaille, Thomas P.
2017-11-01
When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory. Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepferl, Christine M.; Robitaille, Thomas P., E-mail: koepferl@usm.lmu.de
When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied tomore » compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory . Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.« less
Sáiz, Jorge; Gómara, Belén
2017-08-09
Plasticizers and plastic monomers are commonly used in packaging. Most of them act as endocrine disrupters and are susceptible to migrate from the packaging to the food. We evaluated the migration of endocrine disrupting compounds from three different household food containers to four food simulants under different domestic treatments and for different periods of time, with the aim of reproducing real domestic conditions. The results showed that the migration to the simulants increased with the storage time, up to more than 50 times in certain cases. The heating power seemed to increase the migration processes (up to more than 30 times), and reusing containers produced an increase or decrease of the concentrations depending on the container type and the simulant. The concentrations found were lower than other concentrations reported (always less than 4000 pg/mL, down to less than 20 pg/mL), which might be a consequence of the domestic conditions used.
Otero-Pazos, Pablo; Rodríguez-Bernaldo de Quirós, Ana; Sendón, Raquel; Benito-Peña, Elena; González-Vallejo, Victoria; Moreno-Bondi, M Cruz; Angulo, Immaculada; Paseiro-Losada, Perfecto
2014-11-19
A novel active packaging based on molecularly imprinted polymer (MIP) was developed for the controlled release of ferulic acid. The release kinetics of ferulic acid from the active system to food simulants (10, 20, and 50% ethanol (v/v), 3% acetic acid (w/v), and vegetable oil), substitutes (95% ethanol (v/v) and isooctane), and real food samples at different temperatures were studied. The key parameters of the diffusion process were calculated by using a mathematical modeling based on Fick's second law. The ferulic acid release was affected by the temperature as well as the percentage of ethanol of the simulant. The fastest release occurred in 95% ethanol (v/v) at 20 °C. The diffusion coefficients (D) obtained ranged between 1.8 × 10(-11) and 4.2 × 10(-9) cm(2)/s. A very good correlation between experimental and estimated data was obtained, and consequently the model could be used to predict the release of ferulic acid into food simulants and real food samples.
Prediction of normalized biodiesel properties by simulation of multiple feedstock blends.
García, Manuel; Gonzalo, Alberto; Sánchez, José Luis; Arauzo, Jesús; Peña, José Angel
2010-06-01
A continuous process for biodiesel production has been simulated using Aspen HYSYS V7.0 software. As fresh feed, feedstocks with a mild acid content have been used. The process flowsheet follows a traditional alkaline transesterification scheme constituted by esterification, transesterification and purification stages. Kinetic models taking into account the concentration of the different species have been employed in order to simulate the behavior of the CSTR reactors and the product distribution within the process. The comparison between experimental data found in literature and the predicted normalized properties, has been discussed. Additionally, a comparison between different thermodynamic packages has been performed. NRTL activity model has been selected as the most reliable of them. The combination of these models allows the prediction of 13 out of 25 parameters included in standard EN-14214:2003, and confers simulators a great value as predictive as well as optimization tool. (c) 2010 Elsevier Ltd. All rights reserved.
Automated simulation as part of a design workstation
NASA Technical Reports Server (NTRS)
Cantwell, Elizabeth; Shenk, T.; Robinson, P.; Upadhye, R.
1990-01-01
A development project for a design workstation for advanced life-support systems (called the DAWN Project, for Design Assistant Workstation), incorporating qualitative simulation, required the implementation of a useful qualitative simulation capability and the integration of qualitative and quantitative simulation such that simulation capabilities are maximized without duplication. The reason is that to produce design solutions to a system goal, the behavior of the system in both a steady and perturbed state must be represented. The Qualitative Simulation Tool (QST), on an expert-system-like model building and simulation interface toll called ScratchPad (SP), and on the integration of QST and SP with more conventional, commercially available simulation packages now being applied in the evaluation of life-support system processes and components are discussed.
ERIC Educational Resources Information Center
Sneider, Cary; DeVore, Edna
1986-01-01
Reviews software packages under these headings: (1) simulations of experiments; (2) space flight simulators; (3) planetariums; (4) space adventure games; and (5) drill and practice packages (designed for testing purposes or for helping students learn basic astronomy vocabulary). (JN)
Documentation of the seawater intrusion (SWI2) package for MODFLOW
Bakker, Mark; Schaars, Frans; Hughes, Joseph D.; Langevin, Christian D.; Dausman, Alyssa M.
2013-01-01
The SWI2 Package is the latest release of the Seawater Intrusion (SWI) Package for MODFLOW. The SWI2 Package allows three-dimensional vertically integrated variable-density groundwater flow and seawater intrusion in coastal multiaquifer systems to be simulated using MODFLOW-2005. Vertically integrated variable-density groundwater flow is based on the Dupuit approximation in which an aquifer is vertically discretized into zones of differing densities, separated from each other by defined surfaces representing interfaces or density isosurfaces. The numerical approach used in the SWI2 Package does not account for diffusion and dispersion and should not be used where these processes are important. The resulting differential equations are equivalent in form to the groundwater flow equation for uniform-density flow. The approach implemented in the SWI2 Package allows density effects to be incorporated into MODFLOW-2005 through the addition of pseudo-source terms to the groundwater flow equation without the need to solve a separate advective-dispersive transport equation. Vertical and horizontal movement of defined density surfaces is calculated separately using a combination of fluxes calculated through solution of the groundwater flow equation and a simple tip and toe tracking algorithm. Use of the SWI2 Package in MODFLOW-2005 only requires the addition of a single additional input file and modification of boundary heads to freshwater heads referenced to the top of the aquifer. Fluid density within model layers can be represented using zones of constant density (stratified flow) or continuously varying density (piecewise linear in the vertical direction) in the SWI2 Package. The main advantage of using the SWI2 Package instead of variable-density groundwater flow and dispersive solute transport codes, such as SEAWAT and SUTRA, is that fewer model cells are required for simulations using the SWI2 Package because every aquifer can be represented by a single layer of cells. This reduction in number of required model cells and the elimination of the need to solve the advective-dispersive transport equation results in substantial model run-time savings, which can be large for regional aquifers. The accuracy and use of the SWI2 Package is demonstrated through comparison with existing exact solutions and numerical solutions with SEAWAT. Results for an unconfined aquifer are also presented to demonstrate application of the SWI2 Package to a large-scale regional problem.
Verification of component mode techniques for flexible multibody systems
NASA Technical Reports Server (NTRS)
Wiens, Gloria J.
1990-01-01
Investigations were conducted in the modeling aspects of flexible multibodies undergoing large angular displacements. Models were to be generated and analyzed through application of computer simulation packages employing the 'component mode synthesis' techniques. Multibody Modeling, Verification and Control Laboratory (MMVC) plan was implemented, which includes running experimental tests on flexible multibody test articles. From these tests, data was to be collected for later correlation and verification of the theoretical results predicted by the modeling and simulation process.
Langevin Dynamics Simulations of Genome Packing in Bacteriophage
Forrey, Christopher; Muthukumar, M.
2006-01-01
We use Langevin dynamics simulations to study the process by which a coarse-grained DNA chain is packaged within an icosahedral container. We focus our inquiry on three areas of interest in viral packing: the evolving structure of the packaged DNA condensate; the packing velocity; and the internal buildup of energy and resultant forces. Each of these areas has been studied experimentally, and we find that we can qualitatively reproduce experimental results. However, our findings also suggest that the phage genome packing process is fundamentally different than that suggested by the inverse spool model. We suggest that packing in general does not proceed in the deterministic fashion of the inverse-spool model, but rather is stochastic in character. As the chain configuration becomes compressed within the capsid, the structure, energy, and packing velocity all become dependent upon polymer dynamics. That many observed features of the packing process are rooted in condensed-phase polymer dynamics suggests that statistical mechanics, rather than mechanics, should serve as the proper theoretical basis for genome packing. Finally we suggest that, as a result of an internal protein unique to bacteriophage T7, the T7 genome may be significantly more ordered than is true for bacteriophage in general. PMID:16617089
Langevin dynamics simulations of genome packing in bacteriophage.
Forrey, Christopher; Muthukumar, M
2006-07-01
We use Langevin dynamics simulations to study the process by which a coarse-grained DNA chain is packaged within an icosahedral container. We focus our inquiry on three areas of interest in viral packing: the evolving structure of the packaged DNA condensate; the packing velocity; and the internal buildup of energy and resultant forces. Each of these areas has been studied experimentally, and we find that we can qualitatively reproduce experimental results. However, our findings also suggest that the phage genome packing process is fundamentally different than that suggested by the inverse spool model. We suggest that packing in general does not proceed in the deterministic fashion of the inverse-spool model, but rather is stochastic in character. As the chain configuration becomes compressed within the capsid, the structure, energy, and packing velocity all become dependent upon polymer dynamics. That many observed features of the packing process are rooted in condensed-phase polymer dynamics suggests that statistical mechanics, rather than mechanics, should serve as the proper theoretical basis for genome packing. Finally we suggest that, as a result of an internal protein unique to bacteriophage T7, the T7 genome may be significantly more ordered than is true for bacteriophage in general.
Hoffmann, Jörn; Leake, S.A.; Galloway, D.L.; Wilson, Alicia M.
2003-01-01
This report documents a computer program, the Subsidence and Aquifer-System Compaction (SUB) Package, to simulate aquifer-system compaction and land subsidence using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. The SUB Package simulates elastic (recoverable) compaction and expansion, and inelastic (permanent) compaction of compressible fine-grained beds (interbeds) within the aquifers. The deformation of the interbeds is caused by head or pore-pressure changes, and thus by changes in effective stress, within the interbeds. If the stress is less than the preconsolidation stress of the sediments, the deformation is elastic; if the stress is greater than the preconsolidation stress, the deformation is inelastic. The propagation of head changes within the interbeds is defined by a transient, one-dimensional (vertical) diffusion equation. This equation accounts for delayed release of water from storage or uptake of water into storage in the interbeds. Properties that control the timing of the storage changes are vertical hydraulic diffusivity and interbed thickness. The SUB Package supersedes the Interbed Storage Package (IBS1) for MODFLOW, which assumes that water is released from or taken into storage with changes in head in the aquifer within a single model time step and, therefore, can be reasonably used to simulate only thin interbeds. The SUB Package relaxes this assumption and can be used to simulate time-dependent drainage and compaction of thick interbeds and confining units. The time-dependent drainage can be turned off, in which case the SUB Package gives results identical to those from IBS1. Three sample problems illustrate the usefulness of the SUB Package. One sample problem verifies that the package works correctly. This sample problem simulates the drainage of a thick interbed in response to a step change in head in the adjacent aquifer and closely matches the analytical solution. A second sample problem illustrates the effects of seasonally varying discharge and recharge to an aquifer system with a thick interbed. A third sample problem simulates a multilayered regional ground-water basin. Model input files for the third sample problem are included in the appendix.
Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.
2013-01-01
A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton-Raphson formulation, respectively.
Weighted Ensemble Simulation: Review of Methodology, Applications, and Software
Zuckerman, Daniel M.; Chong, Lillian T.
2018-01-01
The weighted ensemble (WE) methodology orchestrates quasi-independent parallel simulations run with intermittent communication that can enhance sampling of rare events such as protein conformational changes, folding, and binding. The WE strategy can achieve superlinear scaling—the unbiased estimation of key observables such as rate constants and equilibrium state populations to greater precision than would be possible with ordinary parallel simulation. WE software can be used to control any dynamics engine, such as standard molecular dynamics and cell-modeling packages. This article reviews the theoretical basis of WE and goes on to describe successful applications to a number of complex biological processes—protein conformational transitions, (un)binding, and assembly processes, as well as cell-scale processes in systems biology. We furthermore discuss the challenges that need to be overcome in the next phase of WE methodological development. Overall, the combined advances in WE methodology and software have enabled the simulation of long-timescale processes that would otherwise not be practical on typical computing resources using standard simulation. PMID:28301772
NASA Technical Reports Server (NTRS)
Willis, Jerry; Willis, Dee Anna; Walsh, Clare; Stephens, Elizabeth; Murphy, Timothy; Price, Jerry; Stevens, William; Jackson, Kevin; Villareal, James A.; Way, Bob
1994-01-01
An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application under development is LiteraCity, a simulation-based instructional package for adults who do not have functional reading skills. Using fuzzy logic routines and other technologies developed by NASA's Information Systems Directorate and hypermedia sound, graphics, and animation technologies the project attempts to overcome the limited impact of adult literacy assessment and instruction by involving the adult in an interactive simulation of real-life literacy activities. The project uses a recursive instructional development model and authentic instruction theory. This paper describes one component of a project to design, develop, and produce a series of computer-based, multimedia instructional packages. The packages are being developed for use in adult literacy programs, particularly in correctional education centers. They use the concepts of authentic instruction and authentic assessment to guide development. All the packages to be developed are instructional simulations. The first is a simulation of 'finding a friend a job.'
Tondare, Vipin N; Villarrubia, John S; Vlada R, András E
2017-10-01
Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.
HyDe: a Python Package for Genome-Scale Hybridization Detection.
Blischak, Paul D; Chifman, Julia; Wolfe, Andrea D; Kubatko, Laura S
2018-03-19
The analysis of hybridization and gene flow among closely related taxa is a common goal for researchers studying speciation and phylogeography. Many methods for hybridization detection use simple site pattern frequencies from observed genomic data and compare them to null models that predict an absence of gene flow. The theory underlying the detection of hybridization using these site pattern probabilities exploits the relationship between the coalescent process for gene trees within population trees and the process of mutation along the branches of the gene trees. For certain models, site patterns are predicted to occur in equal frequency (i.e., their difference is 0), producing a set of functions called phylogenetic invariants. In this paper we introduce HyDe, a software package for detecting hybridization using phylogenetic invariants arising under the coalescent model with hybridization. HyDe is written in Python, and can be used interactively or through the command line using pre-packaged scripts. We demonstrate the use of HyDe on simulated data, as well as on two empirical data sets from the literature. We focus in particular on identifying individual hybrids within population samples and on distinguishing between hybrid speciation and gene flow. HyDe is freely available as an open source Python package under the GNU GPL v3 on both GitHub (https://github.com/pblischak/HyDe) and the Python Package Index (PyPI: https://pypi.python.org/pypi/phyde).
Using the TSAR electromagnetic modeling system
NASA Astrophysics Data System (ADS)
Pennock, S. T.; Laguna, G. W.
1993-09-01
A new user, upon receipt of the TSAR EM modeling system, may be overwhelmed by the number of software packages to learn and the number of manuals associated with those packages. This is a document to describe the creation of a simple TSAR model, beginning with an MGED solid and continuing the process through final results from TSAR. It is not intended to be a complete description of all the parts of the TSAR package. Rather, it is intended simply to touch on all the steps in the modeling process and to take a new user through the system from start to finish. There are six basic parts to the TSAR package. The first, MGED, is part of the BRL-CAD package and is used to create a solid model. The second part, ANASTASIA, is the program used to sample the solid model and create a finite-difference mesh. The third program, IMAGE, lets the user view the mesh itself and verify its accuracy. If everything about the mesh is correct, the process continues to the fourth step, SETUP-TSAR, which creates the parameter files for compiling TSAR and the input file for running a particular simulation. The fifth step is actually running TSAR, the field modeling program. Finally, the output from TSAR is placed into SIG, B2RAS or another program for post-processing and plotting. Each of these steps will be described below. The best way to learn to use the TSAR software is to actually create and run a simple test problem. As an example of how to use the TSAR package, let's create a sphere with a rectangular internal cavity, with conical and cylindrical penetrations connecting the outside to the inside, and find the electric field inside the cavity when the object is exposed to a Gaussian plane wave. We will begin with the solid modeling software, MGED, a part of the BRL-CAD modeling release.
Using the TSAR Electromagnetic modeling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennock, S.T.; Laguna, G.W.
1993-09-01
A new user, upon receipt of the TSAR EM modeling system, may be overwhelmed by the number of software packages to learn and the number of manuals associated with those packages. This is a document to describe the creation of a simple TSAR model, beginning with an MGED solid and continuing the process through final results from TSAR. It is not intended to be a complete description of all the parts of the TSAR package. Rather, it is intended simply to touch on all the steps in the modeling process and to take a new user through the system frommore » start to finish. There are six basic parts to the TSAR package. The first, MGED, is part of the BRL-CAD package and is used to create a solid model. The second part, ANASTASIA, is the program used to sample the solid model and create a finite -- difference mesh. The third program, IMAGE, lets the user view the mesh itself and verify its accuracy. If everything about the mesh is correct, the process continues to the fourth step, SETUP-TSAR, which creates the parameter files for compiling TSAR and the input file for running a particular simulation. The fifth step is actually running TSAR, the field modeling program. Finally, the output from TSAR is placed into SIG, B2RAS or another program for post-processing and plotting. Each of these steps will be described below. The best way to learn to use the TSAR software is to actually create and run a simple test problem. As an example of how to use the TSAR package, let`s create a sphere with a rectangular internal cavity, with conical and cylindrical penetrations connecting the outside to the inside, and find the electric field inside the cavity when the object is exposed to a Gaussian plane wave. We will begin with the solid modeling software, MGED, a part of the BRL-CAD modeling release.« less
Flight simulation software at NASA Dryden Flight Research Center
NASA Technical Reports Server (NTRS)
Norlin, Ken A.
1995-01-01
The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.
Carrasco, Juan A; Dormido, Sebastián
2006-04-01
The use of industrial control systems in simulators facilitates the execution of engineering activities related with the installation and the optimization of the control systems in real plants. "Industrial control system" intends to be a valid term that would represent all the control systems which can be installed in an industrial plant, ranging from complex distributed control systems and SCADA packages to small single control devices. This paper summarizes the current alternatives for the development of simulators of industrial plants and presents an analysis of the process of integrating an industrial control system into a simulator, with the aim of helping in the installation of real control systems in simulators.
NASA Astrophysics Data System (ADS)
Gruyters, Willem; Verboven, Pieter; Rogge, Seppe; Vanmaercke, Simon; Ramon, Herman; Nicolai, Bart
2017-10-01
Freshly harvested horticultural produce require a proper temperature management to maintain their high economic value. Towards this end, low temperature storage is of crucial importance to maintain a high product quality. Optimizing both the package design of packed produce and the different steps in the postharvest cold chain can be achieved by numerical modelling of the relevant transport phenomena. This work presents a novel methodology to accurately model both the random filling of produce in a package and the subsequent cooling process. First, a cultivar-specific database of more than 100 realistic CAD models of apple and pear fruit is built with a validated geometrical 3D shape model generator. To have an accurate representation of a realistic picking season, the model generator also takes into account the biological variability of the produce shape. Next, a discrete element model (DEM) randomly chooses surface meshed bodies from the database to simulate the gravitational filling process of produce in a box or bin, using actual mechanical properties of the fruit. A computational fluid dynamics (CFD) model is then developed with the final stacking arrangement of the produce to study the cooling efficiency of packages under several conditions and configurations. Here, a typical precooling operation is simulated to demonstrate the large differences between using actual 3D shapes of the fruit and an equivalent spheres approach that simplifies the problem drastically. From this study, it is concluded that using a simplified representation of the actual fruit shape may lead to a severe overestimation of the cooling behaviour.
Computer simulation of the human respiratory system for educational purposes.
Botsis, Taxiarhis; Halkiotis, Stelios-Chris; Kourlaba, Georgia
2004-01-01
The main objective of this study was the development of a computer simulation system for the human respiratory system, in order to educate students of nursing. This approach was based on existing mathematical models and on our own constructed specific functions. For the development of this educational tool the appropriate software packages were used according to the special demands of this process. This system is called ReSim (Respiratory Simulation) and consists of two parts: the first part deals with pulmonary volumes and the second one represents the mechanical behavior of lungs. The target group evaluated ReSim. The outcomes of the evaluation process were positive and helped us realize the system characteristics that needed improvements. Our basic conclusion is that the extended use of such systems supports the educational process and offers new potential for learning.
NASA Astrophysics Data System (ADS)
Hashim, N. A.; Mudalip, S. K. Abdul; Harun, N.; Che Man, R.; Sulaiman, S. Z.; Arshad, Z. I. M.; Shaarani, S. M.
2018-05-01
Mahkota Dewa (Phaleria Macrocarpa), a good source of saponin, flavanoid, polyphenol, alkaloid, and mangiferin has an extensive range of medicinal effects. The intermolecular interactions between solute and solvents such as hydrogen bonding considered as an important factor that affect the extraction of bioactive compounds. In this work, molecular dynamics simulation was performed to elucidate the hydrogen bonding exists between Mahkota Dewa extracts and water during subcritical extraction process. A bioactive compound in the Mahkota Dewa extract, namely mangiferin was selected as a model compound. The simulation was performed at 373 K and 4.0 MPa using COMPASS force field and Ewald summation method available in Material Studio 7.0 simulation package. The radial distribution functions (RDF) between mangiferin and water signify the presence of hydrogen bonding in the extraction process. The simulation of the binary mixture of mangiferin:water shows that strong hydrogen bonding was formed. It is suggested that, the intermolecular interaction between OH2O••HMR4(OH1) has been identified to be responsible for the mangiferin extraction process.
chipPCR: an R package to pre-process raw data of amplification curves.
Rödiger, Stefan; Burdukiewicz, Michał; Schierack, Peter
2015-09-01
Both the quantitative real-time polymerase chain reaction (qPCR) and quantitative isothermal amplification (qIA) are standard methods for nucleic acid quantification. Numerous real-time read-out technologies have been developed. Despite the continuous interest in amplification-based techniques, there are only few tools for pre-processing of amplification data. However, a transparent tool for precise control of raw data is indispensable in several scenarios, for example, during the development of new instruments. chipPCR is an R: package for the pre-processing and quality analysis of raw data of amplification curves. The package takes advantage of R: 's S4 object model and offers an extensible environment. chipPCR contains tools for raw data exploration: normalization, baselining, imputation of missing values, a powerful wrapper for amplification curve smoothing and a function to detect the start and end of an amplification curve. The capabilities of the software are enhanced by the implementation of algorithms unavailable in R: , such as a 5-point stencil for derivative interpolation. Simulation tools, statistical tests, plots for data quality management, amplification efficiency/quantification cycle calculation, and datasets from qPCR and qIA experiments are part of the package. Core functionalities are integrated in GUIs (web-based and standalone shiny applications), thus streamlining analysis and report generation. http://cran.r-project.org/web/packages/chipPCR. Source code: https://github.com/michbur/chipPCR. stefan.roediger@b-tu.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation
Nutaro, James
2014-11-03
In this article, a new back-end and run-time system is described for the OpenModelica compiler. This new back-end transforms a Modelica model into a module for the adevs discrete event simulation package, thereby extending adevs to encompass complex, hybrid dynamical systems. The new run-time system that has been built within the adevs simulation package supports models with state-events and time-events and that comprise differential-algebraic systems with high index. Finally, although the procedure for effecting this transformation is based on adevs and the Discrete Event System Specification, it can be adapted to any discrete event simulation package.
Simulation of the Two Stages Stretch-Blow Molding Process: Infrared Heating and Blowing Modeling
NASA Astrophysics Data System (ADS)
Bordival, M.; Schmidt, F. M.; Le Maoult, Y.; Velay, V.
2007-05-01
In the Stretch-Blow Molding (SBM) process, the temperature distribution of the reheated perform affects drastically the blowing kinematic, the bottle thickness distribution, as well as the orientation induced by stretching. Consequently, mechanical and optical properties of the final bottle are closely related to heating conditions. In order to predict the 3D temperature distribution of a rotating preform, numerical software using control-volume method has been developed. Since PET behaves like a semi-transparent medium, the radiative flux absorption was computed using Beer Lambert law. In a second step, 2D axi-symmetric simulations of the SBM have been developed using the finite element package ABAQUS®. Temperature profiles through the preform wall thickness and along its length were computed and applied as initial condition. Air pressure inside the preform was not considered as an input variable, but was automatically computed using a thermodynamic model. The heat transfer coefficient applied between the mold and the polymer was also measured. Finally, the G'sell law was used for modeling PET behavior. For both heating and blowing stage simulations, a good agreement has been observed with experimental measurements. This work is part of the European project "APT_PACK" (Advanced knowledge of Polymer deformation for Tomorrow's PACKaging).
NASA Astrophysics Data System (ADS)
Kaplinger, Brian Douglas
For the past few decades, both the scientific community and the general public have been becoming more aware that the Earth lives in a shooting gallery of small objects. We classify all of these asteroids and comets, known or unknown, that cross Earth's orbit as near-Earth objects (NEOs). A look at our geologic history tells us that NEOs have collided with Earth in the past, and we expect that they will continue to do so. With thousands of known NEOs crossing the orbit of Earth, there has been significant scientific interest in developing the capability to deflect an NEO from an impacting trajectory. This thesis applies the ideas of Smoothed Particle Hydrodynamics (SPH) theory to the NEO disruption problem. A simulation package was designed that allows efficacy simulation to be integrated into the mission planning and design process. This is done by applying ideas in high-performance computing (HPC) on the computer graphics processing unit (GPU). Rather than prove a concept through large standalone simulations on a supercomputer, a highly parallel structure allows for flexible, target dependent questions to be resolved. Built around nonclassified data and analysis, this computer package will allow academic institutions to better tackle the issue of NEO mitigation effectiveness.
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a coal gasification system design and mass and energy balance simulation program for the TVA and other similar facilities is described. The materials-process-product model (MPPM) and the advanced system for process engineering (ASPEN) computer program were selected from available steady state and dynamic models. The MPPM was selected to serve as the basis for development of system level design model structure because it provided the capability for process block material and energy balance and high-level systems sizing and costing. The ASPEN simulation serves as the basis for assessing detailed component models for the system design modeling program. The ASPEN components were analyzed to identify particular process blocks and data packages (physical properties) which could be extracted and used in the system design modeling program. While ASPEN physical properties calculation routines are capable of generating physical properties required for process simulation, not all required physical property data are available, and must be user-entered.
Computer aided analysis, simulation and optimisation of thermal sterilisation processes.
Narayanan, C M; Banerjee, Arindam
2013-04-01
Although thermal sterilisation is a widely employed industrial process, little work is reported in the available literature including patents on the mathematical analysis and simulation of these processes. In the present work, software packages have been developed for computer aided optimum design of thermal sterilisation processes. Systems involving steam sparging, jacketed heating/cooling, helical coils submerged in agitated vessels and systems that employ external heat exchangers (double pipe, shell and tube and plate exchangers) have been considered. Both batch and continuous operations have been analysed and simulated. The dependence of del factor on system / operating parameters such as mass or volume of substrate to be sterilised per batch, speed of agitation, helix diameter, substrate to steam ratio, rate of substrate circulation through heat exchanger and that through holding tube have been analysed separately for each mode of sterilisation. Axial dispersion in the holding tube has also been adequately accounted for through an appropriately defined axial dispersion coefficient. The effect of exchanger characteristics/specifications on the system performance has also been analysed. The multiparameter computer aided design (CAD) software packages prepared are thus highly versatile in nature and they permit to make the most optimum choice of operating variables for the processes selected. The computed results have been compared with extensive data collected from a number of industries (distilleries, food processing and pharmaceutical industries) and pilot plants and satisfactory agreement has been observed between the two, thereby ascertaining the accuracy of the CAD softwares developed. No simplifying assumptions have been made during the analysis and the design of associated heating / cooling equipment has been performed utilising the most updated design correlations and computer softwares.
NASA Astrophysics Data System (ADS)
Kraus, E. I.; Shabalin, I. I.; Shabalin, T. I.
2018-04-01
The main points of development of numerical tools for simulation of deformation and failure of complex technical objects under nonstationary conditions of extreme loading are presented. The possibility of extending the dynamic method for construction of difference grids to the 3D case is shown. A 3D realization of discrete-continuum approach to the deformation and failure of complex technical objects is carried out. The efficiency of the existing software package for 3D modelling is shown.
The Cloud Feedback Model Intercomparison Project Observational Simulator Package: Version 2
NASA Astrophysics Data System (ADS)
Swales, Dustin J.; Pincus, Robert; Bodas-Salcedo, Alejandro
2018-01-01
The Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP) gathers together a collection of observation proxies or satellite simulators
that translate model-simulated cloud properties to synthetic observations as would be obtained by a range of satellite observing systems. This paper introduces COSP2, an evolution focusing on more explicit and consistent separation between host model, coupling infrastructure, and individual observing proxies. Revisions also enhance flexibility by allowing for model-specific representation of sub-grid-scale cloudiness, provide greater clarity by clearly separating tasks, support greater use of shared code and data including shared inputs across simulators, and follow more uniform software standards to simplify implementation across a wide range of platforms. The complete package including a testing suite is freely available.
ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package
NASA Astrophysics Data System (ADS)
Jaggi, S.
1993-02-01
The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.
NASA Astrophysics Data System (ADS)
Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma
2015-10-01
A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).
XCAT/DRASIM: a realistic CT/human-model simulation package
NASA Astrophysics Data System (ADS)
Fung, George S. K.; Stierstorfer, Karl; Segars, W. Paul; Taguchi, Katsuyuki; Flohr, Thomas G.; Tsui, Benjamin M. W.
2011-03-01
The aim of this research is to develop a complete CT/human-model simulation package by integrating the 4D eXtended CArdiac-Torso (XCAT) phantom, a computer generated NURBS surface based phantom that provides a realistic model of human anatomy and respiratory and cardiac motions, and the DRASIM (Siemens Healthcare) CT-data simulation program. Unlike other CT simulation tools which are based on simple mathematical primitives or voxelized phantoms, this new simulation package has the advantages of utilizing a realistic model of human anatomy and physiological motions without voxelization and with accurate modeling of the characteristics of clinical Siemens CT systems. First, we incorporated the 4D XCAT anatomy and motion models into DRASIM by implementing a new library which consists of functions to read-in the NURBS surfaces of anatomical objects and their overlapping order and material properties in the XCAT phantom. Second, we incorporated an efficient ray-tracing algorithm for line integral calculation in DRASIM by computing the intersection points of the rays cast from the x-ray source to the detector elements through the NURBS surfaces of the multiple XCAT anatomical objects along the ray paths. Third, we evaluated the integrated simulation package by performing a number of sample simulations of multiple x-ray projections from different views followed by image reconstruction. The initial simulation results were found to be promising by qualitative evaluation. In conclusion, we have developed a unique CT/human-model simulation package which has great potential as a tool in the design and optimization of CT scanners, and the development of scanning protocols and image reconstruction methods for improving CT image quality and reducing radiation dose.
A New PC and LabVIEW Package Based System for Electrochemical Investigations.
Stević, Zoran; Andjelković, Zoran; Antić, Dejan
2008-03-15
The paper describes a new PC and LabVIEW software package based system forelectrochemical research. An overview of well known electrochemical methods, such aspotential measurements, galvanostatic and potentiostatic method, cyclic voltammetry andEIS is given. Electrochemical impedance spectroscopy has been adapted for systemscontaining large capacitances. For signal generation and recording of the response ofinvestigated electrochemical cell, a measurement and control system was developed, basedon a PC P4. The rest of the hardware consists of a commercially available AD-DA converterand an external interface for analog signal processing. The interface is a result of authorsown research. The software platform for desired measurement methods is LabVIEW 8.2package, which is regarded as a high standard in the area of modern virtual instruments. Thedeveloped system was adjusted, tested and compared with commercially available systemand ORCAD simulation.
Merritt, Michael L.; Konikow, Leonard F.
2000-01-01
Heads and flow patterns in surficial aquifers can be strongly influenced by the presence of stationary surface-water bodies (lakes) that are in direct contact, vertically and laterally, with the aquifer. Conversely, lake stages can be significantly affected by the volume of water that seeps through the lakebed that separates the lake from the aquifer. For these reasons, a set of computer subroutines called the Lake Package (LAK3) was developed to represent lake/aquifer interaction in numerical simulations using the U.S. Geological Survey three-dimensional, finite-difference, modular ground-water flow model MODFLOW and the U.S. Geological Survey three-dimensional method-of-characteristics solute-transport model MOC3D. In the Lake Package described in this report, a lake is represented as a volume of space within the model grid which consists of inactive cells extending downward from the upper surface of the grid. Active model grid cells bordering this space, representing the adjacent aquifer, exchange water with the lake at a rate determined by the relative heads and by conductances that are based on grid cell dimensions, hydraulic conductivities of the aquifer material, and user-specified leakance distributions that represent the resistance to flow through the material of the lakebed. Parts of the lake may become ?dry? as upper layers of the model are dewatered, with a concomitant reduction in lake surface area, and may subsequently rewet when aquifer heads rise. An empirical approximation has been encoded to simulate the rewetting of a lake that becomes completely dry. The variations of lake stages are determined by independent water budgets computed for each lake in the model grid. This lake budget process makes the package a simulator of the response of lake stage to hydraulic stresses applied to the aquifer. Implementation of a lake water budget requires input of parameters including those representing the rate of lake atmospheric recharge and evaporation, overland runoff, and the rate of any direct withdrawal from, or augmentation of, the lake volume. The lake/aquifer interaction may be simulated in both transient and steady-state flow conditions, and the user may specify that lake stages be computed explicitly, semi-implicitly, or fully-implicitly in transient simulations. The lakes, and all sources of water entering the lakes, may have solute concentrations associated with them for use in solute-transport simulations using MOC3D. The Stream Package of MODFLOW-2000 and MOC3D represents stream connections to lakes, either as inflows or outflows. Because lakes with irregular bathymetry can exist as separate pools of water at lower stages, that coalesce to become a single body of water at higher stages, logic was added to the Lake Package to allow the representation of this process as a user option. If this option is selected, a system of linked pools (sublakes) is identified in each time step and stages are equalized based on current relative sublake surface areas.
A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R.
Wang, W; Hallow, K M; James, D A
2016-01-01
This tutorial presents the application of an R package, RxODE, that facilitates quick, efficient simulations of ordinary differential equation models completely within R. Its application is illustrated through simulation of design decision effects on an adaptive dosing regimen. The package provides an efficient, versatile way to specify dosing scenarios and to perform simulation with variability with minimal custom coding. Models can be directly translated to Rshiny applications to facilitate interactive, real-time evaluation/iteration on simulation scenarios.
Next-generation acceleration and code optimization for light transport in turbid media using GPUs
Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar
2010-01-01
A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498
A Process for the Creation of T-MATS Propulsion System Models from NPSS data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink (Math Works, Inc.) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Trademark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes.
Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J; Wang, Liliang; Lin, Jianguo
2016-12-13
The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions.
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Registered TradeMark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
Knowledge Based Cloud FE Simulation of Sheet Metal Forming Processes
Zhou, Du; Yuan, Xi; Gao, Haoxiang; Wang, Ailing; Liu, Jun; El Fakir, Omer; Politis, Denis J.; Wang, Liliang; Lin, Jianguo
2016-01-01
The use of Finite Element (FE) simulation software to adequately predict the outcome of sheet metal forming processes is crucial to enhancing the efficiency and lowering the development time of such processes, whilst reducing costs involved in trial-and-error prototyping. Recent focus on the substitution of steel components with aluminum alloy alternatives in the automotive and aerospace sectors has increased the need to simulate the forming behavior of such alloys for ever more complex component geometries. However these alloys, and in particular their high strength variants, exhibit limited formability at room temperature, and high temperature manufacturing technologies have been developed to form them. Consequently, advanced constitutive models are required to reflect the associated temperature and strain rate effects. Simulating such behavior is computationally very expensive using conventional FE simulation techniques. This paper presents a novel Knowledge Based Cloud FE (KBC-FE) simulation technique that combines advanced material and friction models with conventional FE simulations in an efficient manner thus enhancing the capability of commercial simulation software packages. The application of these methods is demonstrated through two example case studies, namely: the prediction of a material's forming limit under hot stamping conditions, and the tool life prediction under multi-cycle loading conditions. PMID:28060298
Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W.; Xia, Yinglin; Tu, Xin M.
2011-01-01
Summary The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. PMID:21671252
Advances in HYDRA and its application to simulations of Inertial Confinement Fusion targets
NASA Astrophysics Data System (ADS)
Marinak, M. M.; Kerbel, G. D.; Koning, J. M.; Patel, M. V.; Sepke, S. M.; Brown, P. N.; Chang, B.; Procassini, R.; Veitzer, S. A.
2008-11-01
We will outline new capabilities added to the HYDRA 2D/3D multiphysics ICF simulation code. These include a new SN multigroup radiation transport package (1D), constitutive models for elastic-plastic (strength) effects, and a mix model. A Monte Carlo burn package is being incorporated to model diagnostic signatures of neutrons, gamma rays and charged particles. A 3D MHD package that treats resistive MHD is available. Improvements to HYDRA's implicit Monte Carlo photonics package, including the addition of angular biasing, now enable integrated hohlraum simulations to complete in substantially shorter time. The heavy ion beam deposition package now includes a new model for ion stopping power developed by the Tech-X Corporation, with improved accuracy below the Bragg peak. Examples will illustrate HYDRA's enhanced capabilities to simulate various aspects of inertial confinement fusion targets.This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. The work of Tech-X personnel was funded by the Department of Energy under Small Business Innovation Research Contract No. DE-FG02-03ER83797.
Implementation of interconnect simulation tools in spice
NASA Technical Reports Server (NTRS)
Satsangi, H.; Schutt-Aine, J. E.
1993-01-01
Accurate computer simulation of high speed digital computer circuits and communication circuits requires a multimode approach to simulate both the devices and the interconnects between devices. Classical circuit analysis algorithms (lumped parameter) are needed for circuit devices and the network formed by the interconnected devices. The interconnects, however, have to be modeled as transmission lines which incorporate electromagnetic field analysis. An approach to writing a multimode simulator is to take an existing software package which performs either lumped parameter analysis or field analysis and add the missing type of analysis routines to the package. In this work a traditionally lumped parameter simulator, SPICE, is modified so that it will perform lossy transmission line analysis using a different model approach. Modifying SPICE3E2 or any other large software package is not a trivial task. An understanding of the programming conventions used, simulation software, and simulation algorithms is required. This thesis was written to clarify the procedure for installing a device into SPICE3E2. The installation of three devices is documented and the installations of the first two provide a foundation for installation of the lossy line which is the third device. The details of discussions are specific to SPICE, but the concepts will be helpful when performing installations into other circuit analysis packages.
Regional demand forecasting and simulation model: user's manual. Task 4, final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parhizgari, A M
1978-09-25
The Department of Energy's Regional Demand Forecasting Model (RDFOR) is an econometric and simulation system designed to estimate annual fuel-sector-region specific consumption of energy for the US. Its purposes are to (1) provide the demand side of the Project Independence Evaluation System (PIES), (2) enhance our empirical insights into the structure of US energy demand, and (3) assist policymakers in their decisions on and formulations of various energy policies and/or scenarios. This report provides a self-contained user's manual for interpreting, utilizing, and implementing RDFOR simulation software packages. Chapters I and II present the theoretical structure and the simulation of RDFOR,more » respectively. Chapter III describes several potential scenarios which are (or have been) utilized in the RDFOR simulations. Chapter IV presents an overview of the complete software package utilized in simulation. Chapter V provides the detailed explanation and documentation of this package. The last chapter describes step-by-step implementation of the simulation package using the two scenarios detailed in Chapter III. The RDFOR model contains 14 fuels: gasoline, electricity, natural gas, distillate and residual fuels, liquid gases, jet fuel, coal, oil, petroleum products, asphalt, petroleum coke, metallurgical coal, and total fuels, spread over residential, commercial, industrial, and transportation sectors.« less
Heising, Jenneke K; Claassen, G D H; Dekker, Matthijs
2017-10-01
Optimising supply chain management can help to reduce food waste. This paper describes how intelligent packaging can be used to reduce food waste when used in supply chain management based on quality-controlled logistics (QCL). Intelligent packaging senses compounds in the package that correlate with the critical quality attribute of a food product. The information on the quality of each individual packaged food item that is provided by the intelligent packaging can be used for QCL. In a conceptual approach it is explained that monitoring food quality by intelligent packaging sensors makes it possible to obtain information about the variation in the quality of foods and to use a dynamic expiration date (IP-DED) on a food package. The conceptual approach is supported by quantitative data from simulations on the effect of using the information of intelligent packaging in supply chain management with the goal to reduce food waste. This simulation shows that by using the information on the quality of products that is provided by intelligent packaging, QCL can substantially reduce food waste. When QCL is combined with dynamic pricing based on the predicted expiry dates, a further waste reduction is envisaged.
Implementation and use of direct-flow connections in a coupled ground-water and surface-water model
Swain, Eric D.
1994-01-01
The U.S. Geological Survey's MODFLOW finite-difference ground-water flow model has been coupled with three surface-water packages - the MODBRANCH, River, and Stream packages - to simulate surface water and its interaction with ground water. Prior to the development of the coupling packages, the only interaction between these modeling packages was that leakage values could be passed between MODFLOW and the three surface-water packages. To facilitate wider and more flexible uses of the models, a computer program was developed and added to MODFLOW to allow direct flows or stages to be passed between any of the packages and MODFLOW. The flows or stages calculated in one package can be set as boundary discharges or stages to be used in another package. Several modeling packages can be used in the same simulation depending upon the level of sophistication needed in the various reaches being modeled. This computer program is especially useful when any of the River, Stream, or MODBRANCH packages are used to model a river flowing directly into or out of wetlands in direct connection with the aquifer and represented in the model as an aquifer block. A field case study is shown to illustrate an application.
ERIC Educational Resources Information Center
Leger, Pierre-Majorique; Charland, Patrick; Feldstein, Harvey D.; Robert, Jacques; Babin, Gilbert; Lyle, Derick
2011-01-01
Enterprise Resource Planning (ERP) systems are commercial software packages that enable the integration of transactions-oriented data and business processes throughout an organization. Most of the world's largest organizations have already adopted an ERP system, and many mid-size organizations are turning to them as well. The implementation of an…
NASA Astrophysics Data System (ADS)
Murrill, Steven R.; Tipton, Charles W.; Self, Charles T.
1991-03-01
The dose absorbed in an integrated circuit (IC) die exposed to a pulse of low-energy electrons is a strong function of both electron energy and surrounding packaging materials. This report describes an experiment designed to measure how well the Integrated TIGER Series one-dimensional (1-D) electron transport simulation program predicts dose correction factors for a state-of-the-art IC package and package/printed circuit board (PCB) combination. These derived factors are compared with data obtained experimentally using thermoluminescent dosimeters (TLD's) and the FX-45 flash x-ray machine (operated in electron-beam (e-beam) mode). The results of this experiment show that the TIGER 1-D simulation code can be used to accurately predict FX-45 e-beam dose deposition correction factors for reasonably complex IC packaging configurations.
Trick Simulation Environment 07
NASA Technical Reports Server (NTRS)
Lin, Alexander S.; Penn, John M.
2012-01-01
The Trick Simulation Environment is a generic simulation toolkit used for constructing and running simulations. This release includes a Monte Carlo analysis simulation framework and a data analysis package. It produces all auto documentation in XML. Also, the software is capable of inserting a malfunction at any point during the simulation. Trick 07 adds variable server output options and error messaging and is capable of using and manipulating wide characters for international support. Wide character strings are available as a fundamental type for variables processed by Trick. A Trick Monte Carlo simulation uses a statistically generated, or predetermined, set of inputs to iteratively drive the simulation. Also, there is a framework in place for optimization and solution finding where developers may iteratively modify the inputs per run based on some analysis of the outputs. The data analysis package is capable of reading data from external simulation packages such as MATLAB and Octave, as well as the common comma-separated values (CSV) format used by Excel, without the use of external converters. The file formats for MATLAB and Octave were obtained from their documentation sets, and Trick maintains generic file readers for each format. XML tags store the fields in the Trick header comments. For header files, XML tags for structures and enumerations, and the members within are stored in the auto documentation. For source code files, XML tags for each function and the calling arguments are stored in the auto documentation. When a simulation is built, a top level XML file, which includes all of the header and source code XML auto documentation files, is created in the simulation directory. Trick 07 provides an XML to TeX converter. The converter reads in header and source code XML documentation files and converts the data to TeX labels and tables suitable for inclusion in TeX documents. A malfunction insertion capability allows users to override the value of any simulation variable, or call a malfunction job, at any time during the simulation. Users may specify conditions, use the return value of a malfunction trigger job, or manually activate a malfunction. The malfunction action may consist of executing a block of input file statements in an action block, setting simulation variable values, call a malfunction job, or turn on/off simulation jobs.
Development of an electromechanical principle for wet and dry milling
NASA Astrophysics Data System (ADS)
Halbedel, Bernd; Kazak, Oleg
2018-05-01
The paper presents a novel electromechanical principle for wet and dry milling of different materials, in which the milling beads are moved under a time- and local-variable magnetic field. A possibility to optimize the milling process in such a milling machine by simulation of the vector gradient distribution of the electromagnetic field in the process room is presented. The mathematical model and simulation methods based on standard software packages are worked out. The results of numerical simulations and experimental measurements of the electromagnetic field in the working chamber of a developed and manufactured laboratory plant correlate well with each other. Using the obtained operating parameters, dry milling experiments with crushed cement clinker and wet milling experiments of organic agents in the laboratory plant are performed and the results are discussed here.
Zhu, Sha; Degnan, James H; Goldstien, Sharyn J; Eldon, Bjarki
2015-09-15
There has been increasing interest in coalescent models which admit multiple mergers of ancestral lineages; and to model hybridization and coalescence simultaneously. Hybrid-Lambda is a software package that simulates gene genealogies under multiple merger and Kingman's coalescent processes within species networks or species trees. Hybrid-Lambda allows different coalescent processes to be specified for different populations, and allows for time to be converted between generations and coalescent units, by specifying a population size for each population. In addition, Hybrid-Lambda can generate simulated datasets, assuming the infinitely many sites mutation model, and compute the F ST statistic. As an illustration, we apply Hybrid-Lambda to infer the time of subdivision of certain marine invertebrates under different coalescent processes. Hybrid-Lambda makes it possible to investigate biogeographic concordance among high fecundity species exhibiting skewed offspring distribution.
SiMon: Simulation Monitor for Computational Astrophysics
NASA Astrophysics Data System (ADS)
Xuran Qian, Penny; Cai, Maxwell Xu; Portegies Zwart, Simon; Zhu, Ming
2017-09-01
Scientific discovery via numerical simulations is important in modern astrophysics. This relatively new branch of astrophysics has become possible due to the development of reliable numerical algorithms and the high performance of modern computing technologies. These enable the analysis of large collections of observational data and the acquisition of new data via simulations at unprecedented accuracy and resolution. Ideally, simulations run until they reach some pre-determined termination condition, but often other factors cause extensive numerical approaches to break down at an earlier stage. In those cases, processes tend to be interrupted due to unexpected events in the software or the hardware. In those cases, the scientist handles the interrupt manually, which is time-consuming and prone to errors. We present the Simulation Monitor (SiMon) to automatize the farming of large and extensive simulation processes. Our method is light-weight, it fully automates the entire workflow management, operates concurrently across multiple platforms and can be installed in user space. Inspired by the process of crop farming, we perceive each simulation as a crop in the field and running simulation becomes analogous to growing crops. With the development of SiMon we relax the technical aspects of simulation management. The initial package was developed for extensive parameter searchers in numerical simulations, but it turns out to work equally well for automating the computational processing and reduction of observational data reduction.
Teaching Science and Mathematics Subjects Using the Excel Spreadsheet Package
ERIC Educational Resources Information Center
Ibrahim, Dogan
2009-01-01
The teaching of scientific subjects usually require laboratories where students can put the theory they have learned into practice. Traditionally, electronic programmable calculators, dedicated software, or expensive software simulation packages, such as MATLAB have been used to simulate scientific experiments. Recently, spreadsheet programs have…
PLATSIM: A Simulation and Analysis Package for Large-Order Flexible Systems. Version 2.0
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Kenny, Sean P.; Giesy, Daniel P.
1997-01-01
The software package PLATSIM provides efficient time and frequency domain analysis of large-order generic space platforms. PLATSIM can perform open-loop analysis or closed-loop analysis with linear or nonlinear control system models. PLATSIM exploits the particular form of sparsity of the plant matrices for very efficient linear and nonlinear time domain analysis, as well as frequency domain analysis. A new, original algorithm for the efficient computation of open-loop and closed-loop frequency response functions for large-order systems has been developed and is implemented within the package. Furthermore, a novel and efficient jitter analysis routine which determines jitter and stability values from time simulations in a very efficient manner has been developed and is incorporated in the PLATSIM package. In the time domain analysis, PLATSIM simulates the response of the space platform to disturbances and calculates the jitter and stability values from the response time histories. In the frequency domain analysis, PLATSIM calculates frequency response function matrices and provides the corresponding Bode plots. The PLATSIM software package is written in MATLAB script language. A graphical user interface is developed in the package to provide convenient access to its various features.
NASA Astrophysics Data System (ADS)
Boyce, S. E.; Hanson, R. T.
2015-12-01
The One-Water Hydrologic Flow Model (MF-OWHM) is a MODFLOW-based integrated hydrologic flow model that is the most complete version, to date, of the MODFLOW family of hydrologic simulators needed for the analysis of a broad range of conjunctive-use issues. MF-OWHM fully links the movement and use of groundwater, surface water, and imported water for consumption by agriculture and natural vegetation on the landscape, and for potable and other uses within a supply-and-demand framework. MF-OWHM is based on the Farm Process for MODFLOW-2005 combined with Local Grid Refinement, Streamflow Routing, Surface-water Routing Process, Seawater Intrusion, Riparian Evapotranspiration, and the Newton-Raphson solver. MF-OWHM also includes linkages for deformation-, flow-, and head-dependent flows; additional observation and parameter options for higher-order calibrations; and redesigned code for facilitation of self-updating models and faster simulation run times. The next version of MF-OWHM, currently under development, will include a new surface-water operations module that simulates dynamic reservoir operations, the conduit flow process for karst aquifers and leaky pipe networks, a new subsidence and aquifer compaction package, and additional features and enhancements to enable more integration and cross communication between traditional MODFLOW packages. By retaining and tracking the water within the hydrosphere, MF-OWHM accounts for "all of the water everywhere and all of the time." This philosophy provides more confidence in the water accounting by the scientific community and provides the public a foundation needed to address wider classes of problems such as evaluation of conjunctive-use alternatives and sustainability analysis, including potential adaptation and mitigation strategies, and best management practices. By Scott E. Boyce and Randall T. Hanson
Johnson, Timothy R; Kuhn, Kristine M
2015-12-01
This paper introduces the ltbayes package for R. This package includes a suite of functions for investigating the posterior distribution of latent traits of item response models. These include functions for simulating realizations from the posterior distribution, profiling the posterior density or likelihood function, calculation of posterior modes or means, Fisher information functions and observed information, and profile likelihood confidence intervals. Inferences can be based on individual response patterns or sets of response patterns such as sum scores. Functions are included for several common binary and polytomous item response models, but the package can also be used with user-specified models. This paper introduces some background and motivation for the package, and includes several detailed examples of its use.
NASA Astrophysics Data System (ADS)
Mehta, Sohan Singh; Yeung, Marco; Mirza, Fahad; Raman, Thiagarajan; Longenbach, Travis; Morgan, Justin; Duggan, Mark; Soedibyo, Rio A.; Reidy, Sean; Rabie, Mohamed; Cho, Jae Kyu; Premachandran, C. S.; Faruqui, Danish
2018-03-01
In this paper, we demonstrate photosensitive polyimide (PSPI) profile optimization to effectively reduce stress concentrations and enable PSPI as protection package-induced stress. Through detailed package simulation, we demonstrate 45% reduction in stress as the sidewall angle (SWA) of PSPI is increased from 45 to 80 degrees in Cu pillar package types. Through modulation of coating and develop multi-step baking temperature and time, as well as dose energy and post litho surface treatments, we demonstrate a method for reliably obtaining PSPI sidewall angle >75 degree. Additionally, we experimentally validate the simulation findings that PSPI sidewall angle impacts chip package interaction (CPI). Finally, we conclude this paper with PSPI material and tool qualification requirements for future technology node based on current challenges.
Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W; Xia, Yinglin; Zhu, Liang; Tu, Xin M
2011-09-10
The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. Copyright © 2011 John Wiley & Sons, Ltd.
A New PC and LabVIEW Package Based System for Electrochemical Investigations
Stević, Zoran; Andjelković, Zoran; Antić, Dejan
2008-01-01
The paper describes a new PC and LabVIEW software package based system for electrochemical research. An overview of well known electrochemical methods, such as potential measurements, galvanostatic and potentiostatic method, cyclic voltammetry and EIS is given. Electrochemical impedance spectroscopy has been adapted for systems containing large capacitances. For signal generation and recording of the response of investigated electrochemical cell, a measurement and control system was developed, based on a PC P4. The rest of the hardware consists of a commercially available AD-DA converter and an external interface for analog signal processing. The interface is a result of authors own research. The software platform for desired measurement methods is LabVIEW 8.2 package, which is regarded as a high standard in the area of modern virtual instruments. The developed system was adjusted, tested and compared with commercially available system and ORCAD simulation. PMID:27879794
A cross-validation package driving Netica with python
Fienen, Michael N.; Plant, Nathaniel G.
2014-01-01
Bayesian networks (BNs) are powerful tools for probabilistically simulating natural systems and emulating process models. Cross validation is a technique to avoid overfitting resulting from overly complex BNs. Overfitting reduces predictive skill. Cross-validation for BNs is known but rarely implemented due partly to a lack of software tools designed to work with available BN packages. CVNetica is open-source, written in Python, and extends the Netica software package to perform cross-validation and read, rebuild, and learn BNs from data. Insights gained from cross-validation and implications on prediction versus description are illustrated with: a data-driven oceanographic application; and a model-emulation application. These examples show that overfitting occurs when BNs become more complex than allowed by supporting data and overfitting incurs computational costs as well as causing a reduction in prediction skill. CVNetica evaluates overfitting using several complexity metrics (we used level of discretization) and its impact on performance metrics (we used skill).
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Stueber, Thomas
2012-01-01
An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10-foot by 10-foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Stueber, Thomas J.
2012-01-01
An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Renke; Jin, Shuangshuang; Chen, Yousu
This paper presents a faster-than-real-time dynamic simulation software package that is designed for large-size power system dynamic simulation. It was developed on the GridPACKTM high-performance computing (HPC) framework. The key features of the developed software package include (1) faster-than-real-time dynamic simulation for a WECC system (17,000 buses) with different types of detailed generator, controller, and relay dynamic models, (2) a decoupled parallel dynamic simulation algorithm with optimized computation architecture to better leverage HPC resources and technologies, (3) options for HPC-based linear and iterative solvers, (4) hidden HPC details, such as data communication and distribution, to enable development centered on mathematicalmore » models and algorithms rather than on computational details for power system researchers, and (5) easy integration of new dynamic models and related algorithms into the software package.« less
Beltrán, F R; Lorenzo, V; Acosta, J; de la Orden, M U; Martínez Urreaga, J
2018-06-15
The aim of this work is to study the effects of different simulated mechanical recycling processes on the structure and properties of PLA. A commercial grade of PLA was melt compounded and compression molded, then subjected to two different recycling processes. The first recycling process consisted of an accelerated ageing and a second melt processing step, while the other recycling process included an accelerated ageing, a demanding washing process and a second melt processing step. The intrinsic viscosity measurements indicate that both recycling processes produce a degradation in PLA, which is more pronounced in the sample subjected to the washing process. DSC results suggest an increase in the mobility of the polymer chains in the recycled materials; however the degree of crystallinity of PLA seems unchanged. The optical, mechanical and gas barrier properties of PLA do not seem to be largely affected by the degradation suffered during the different recycling processes. These results suggest that, despite the degradation of PLA, the impact of the different simulated mechanical recycling processes on the final properties is limited. Thus, the potential use of recycled PLA in packaging applications is not jeopardized. Copyright © 2017 Elsevier Ltd. All rights reserved.
Siracusa, Valentina; Blanco, Ignazio; Romani, Santina; Tylewicz, Urszula; Dalla Rosa, Marco
2012-10-01
This work reports an experimental study on the permeability and thermal behavior of commercial polypropylene (PP) film used for fresh-cut potatoes packaging. The permeability was tested using oxygen, carbon dioxide, nitrogen, mix of these 3 gases, normally used for modified atmosphere packaging (MAP) and Air, to understand if it would be possible to extend the shelf life of this food product designed for the catering field in respect to the packaging behavior. The temperature influence on permeability data, from 5 to 40 °C, was analyzed, before and after 4, 8, 12, 15, and 20 d of food contact, pointing out the dependence between temperature and gas transmission rate (GTR), solubility (S), diffusion coefficient (D), and time lag (t(L)) parameters. The activation energies (E) of the permeation process were determined with the different gases used in the experiments. The thermal behavior of PP film was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) to well understand its thermal stability. Fourier transformed-infrared with attenuated total reflectance (FT-IR/ATR) spectroscopy was also performed in order to study the influence of the food contact on the chemical characteristics of the polymer film. The results obtained were discussed and compared each other. Studied samples showed, for all investigated gases, an increase of gas permeability and S values at higher temperature. Heat resistance classification among the sample as it is and stored in modified atmospheres was made. Finally all performed experiments have showed good polymer stability for the shelf-life storage potatoes under study. Study of packaging material was performed in a range of temperature, which can simulate the service condition to assess the suitability of a commercial polymer film for modified atmosphere packaging of fresh-cut potatoes minimally processed designed for catering purpose. © 2012 Institute of Food Technologists®
Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN
NASA Astrophysics Data System (ADS)
Rozanov, V. V.; Rozanov, A. V.; Kokhanovsky, A. A.; Burrows, J. P.
2014-01-01
SCIATRAN is a comprehensive software package for the modeling of radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18 - 40 μm) including multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The software is capable of modeling spectral and angular distributions of the intensity or the Stokes vector of the transmitted, scattered, reflected, and emitted radiation assuming either a plane-parallel or a spherical atmosphere. Simulations are done either in the scalar or in the vector mode (i.e. accounting for the polarization) for observations by space-, air-, ship- and balloon-borne, ground-based, and underwater instruments in various viewing geometries (nadir, off-nadir, limb, occultation, zenith-sky, off-axis). All significant radiative transfer processes are accounted for. These are, e.g. the Rayleigh scattering, scattering by aerosol and cloud particles, absorption by gaseous components, and bidirectional reflection by an underlying surface including Fresnel reflection from a flat or roughened ocean surface. The software package contains several radiative transfer solvers including finite difference and discrete-ordinate techniques, an extensive database, and a specific module for solving inverse problems. In contrast to many other radiative transfer codes, SCIATRAN incorporates an efficient approach to calculate the so-called Jacobians, i.e. derivatives of the intensity with respect to various atmospheric and surface parameters. In this paper we discuss numerical methods used in SCIATRAN to solve the scalar and vector radiative transfer equation, describe databases of atmospheric, oceanic, and surface parameters incorporated in SCIATRAN, and demonstrate how to solve some selected radiative transfer problems using the SCIATRAN package. During the last decades, a lot of studies have been published demonstrating that SCIATRAN is a valuable tool for a wide range of remote sensing applications. Here, we present some selected comparisons of SCIATRAN simulations to published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship instruments. Methods for solving inverse problems related to remote sensing of the Earth's atmosphere using the SCIATRAN software are outside the scope of this study and will be discussed in a follow-up paper. The SCIATRAN software package along with a detailed User's Guide is freely available for non-commercial use via the webpage of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de/sciatran.
Chemical vapor deposition fluid flow simulation modelling tool
NASA Technical Reports Server (NTRS)
Bullister, Edward T.
1992-01-01
Accurate numerical simulation of chemical vapor deposition (CVD) processes requires a general purpose computational fluid dynamics package combined with specialized capabilities for high temperature chemistry. In this report, we describe the implementation of these specialized capabilities in the spectral element code NEKTON. The thermal expansion of the gases involved is shown to be accurately approximated by the low Mach number perturbation expansion of the incompressible Navier-Stokes equations. The radiative heat transfer between multiple interacting radiating surfaces is shown to be tractable using the method of Gebhart. The disparate rates of reaction and diffusion in CVD processes are calculated via a point-implicit time integration scheme. We demonstrate the use above capabilities on prototypical CVD applications.
Kang, Kyungmo; Chang, Yoonjee; Choi, Jae Chun; Park, Se-Jong; Han, Jaejoon
2018-04-01
Safety concerns have emerged over the increased use of polypropylene (PP) in food-packaging markets. Some antioxidants in PP can migrate to foods and cause undesirable effects in humans. In this study, migration behaviors of butylated hydroxytoluene (BHT) and Irganox 1010 (I-1010) in PP sheets were determined according to the US FDA migration test conditions. In particular, we tested the effects of severe conditions of food processing and storage, such as autoclave heating (sterilization at about 121 °C), microwave radiation (700 W), and deep freezing (-30 °C) on migration of antioxidants. Migrant concentrations were higher in 95% ethanol as lipid food simulant, because of the hydrophobic nature of both PP and antioxidants. Autoclave heating treatment increased migrant concentrations compared with other processing conditions. Moreover, increased migrant concentrations by deep freezing condition were attributed to the brittleness of PP at freezing temperature. Regardless of processing conditions, BHT which has a lower molecular weight, migrated faster than I-1010. The antioxidants with hydrophobic nature such as butylated hydroxytoluene (BHT) and Irganox 1010 (I-1010) in polypropylene sheets would be migrated to foods, which is an important issue for industrial production food packaging materials. Migration behavior was promoted by severe processing conditions such as autoclave heating, microwave radiation, freezing, and especially autoclave heating treatment led the highest migration among them. Therefore, control of chemical additive migration from polypropylene food packaging is needed for safe food processing. © 2018 Institute of Food Technologists®.
Multi-dimensional simulation package for ultrashort pulse laser-matter interactions
NASA Astrophysics Data System (ADS)
Suslova, Anastassiya; Hassanein, Ahmed
2017-10-01
Advanced simulation models recently became a popular tool of investigation of ultrashort pulse lasers (USPLs) to enhance understanding of the physics and allow minimizing the experimental costs for optimization of laser and target parameters for various applications. Our research interest is focused on developing multi-dimensional simulation package FEMTO-2D to investigate the USPL-matter interactions and laser induced effects. The package is based on solution of two heat conduction equations for electron and lattice sub-systems - enhanced two temperature model (TTM). We have implemented theoretical approach based on the collision theory to define the thermal dependence of target material optical properties and thermodynamic parameters. Our approach allowed elimination of fitted parameters commonly used in TTM based simulations. FEMTO-2D is used to simulated the light absorption and interactions for several metallic targets as a function of wavelength and pulse duration for wide range of laser intensity. The package has capability to consider different angles of incidence and polarization. It has also been used to investigate the damage threshold of the gold coated optical components with the focus on the role of the film thickness and substrate heat sink effect. This work was supported by the NSF, PIRE project.
HydroApps: An R package for statistical simulation to use in regional analysis
NASA Astrophysics Data System (ADS)
Ganora, D.
2013-12-01
The HydroApps package is a newborn R extension initially developed to support the use of a recent model for flood frequency estimation developed for applications in Northwestern Italy; it also contains some general tools for regional analyses and can be easily extended to include other statistical models. The package is currently at an experimental level of development. The HydroApps is a corollary of the SSEM project for regional flood frequency analysis, although it was developed independently to support various instances of regional analyses. Its aim is to provide a basis for interplay between statistical simulation and practical operational use. In particular, the main module of the package deals with the building of the confidence bands of flood frequency curves expressed by means of their L-moments. Other functions include pre-processing and visualization of hydrologic time series, analysis of the optimal design-flood under uncertainty, but also tools useful in water resources management for the estimation of flow duration curves and their sensitivity to water withdrawals. Particular attention is devoted to the code granularity, i.e. the level of detail and aggregation of the code: a greater detail means more low-level functions, which entails more flexibility but reduces the ease of use for practical use. A balance between detail and simplicity is necessary and can be resolved with appropriate wrapping functions and specific help pages for each working block. From a more general viewpoint, the package has not really and user-friendly interface, but runs on multiple operating systems and it's easy to update, as many other open-source projects., The HydroApps functions and their features are reported in order to share ideas and materials to improve the ';technological' and information transfer between scientist communities and final users like policy makers.
Modeling of radiation damage recovery in particle detectors based on GaN
NASA Astrophysics Data System (ADS)
Gaubas, E.; Ceponis, T.; Pavlov, J.
2015-12-01
The pulsed characteristics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the commercial software package Synopsys TCAD Sentaurus. The bipolar drift regime has been analyzed. The possible internal gain in charge collection through carrier multiplication processes determined by impact ionization has been considered in order to compensate carrier lifetime reduction due to radiation defects introduced into GaN material of detector.
SU-C-BRC-06: OpenCL-Based Cross-Platform Monte Carlo Simulation Package for Carbon Ion Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, N; Tian, Z; Pompos, A
2016-06-15
Purpose: Monte Carlo (MC) simulation is considered to be the most accurate method for calculation of absorbed dose and fundamental physical quantities related to biological effects in carbon ion therapy. Its long computation time impedes clinical and research applications. We have developed an MC package, goCMC, on parallel processing platforms, aiming at achieving accurate and efficient simulations for carbon therapy. Methods: goCMC was developed under OpenCL framework. It supported transport simulation in voxelized geometry with kinetic energy up to 450 MeV/u. Class II condensed history algorithm was employed for charged particle transport with stopping power computed via Bethe-Bloch equation. Secondarymore » electrons were not transported with their energy locally deposited. Energy straggling and multiple scattering were modeled. Production of secondary charged particles from nuclear interactions was implemented based on cross section and yield data from Geant4. They were transported via the condensed history scheme. goCMC supported scoring various quantities of interest e.g. physical dose, particle fluence, spectrum, linear energy transfer, and positron emitting nuclei. Results: goCMC has been benchmarked against Geant4 with different phantoms and beam energies. For 100 MeV/u, 250 MeV/u and 400 MeV/u beams impinging to a water phantom, range difference was 0.03 mm, 0.20 mm and 0.53 mm, and mean dose difference was 0.47%, 0.72% and 0.79%, respectively. goCMC can run on various computing devices. Depending on the beam energy and voxel size, it took 20∼100 seconds to simulate 10{sup 7} carbons on an AMD Radeon GPU card. The corresponding CPU time for Geant4 with the same setup was 60∼100 hours. Conclusion: We have developed an OpenCL-based cross-platform carbon MC simulation package, goCMC. Its accuracy, efficiency and portability make goCMC attractive for research and clinical applications in carbon therapy.« less
ARM Cloud Radar Simulator Package for Global Climate Models Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuying; Xie, Shaocheng
It has been challenging to directly compare U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground-based cloud radar measurements with climate model output because of limitations or features of the observing processes and the spatial gap between model and the single-point measurements. To facilitate the use of ARM radar data in numerical models, an ARM cloud radar simulator was developed to converts model data into pseudo-ARM cloud radar observations that mimic the instrument view of a narrow atmospheric column (as compared to a large global climate model [GCM] grid-cell), thus allowing meaningful comparison between model outputmore » and ARM cloud observations. The ARM cloud radar simulator value-added product (VAP) was developed based on the CloudSat simulator contained in the community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), which has been widely used in climate model evaluation with satellite data (Klein et al., 2013, Zhang et al., 2010). The essential part of the CloudSat simulator is the QuickBeam radar simulator that is used to produce CloudSat-like radar reflectivity, but is capable of simulating reflectivity for other radars (Marchand et al., 2009; Haynes et al., 2007). Adapting QuickBeam to the ARM cloud radar simulator within COSP required two primary changes: one was to set the frequency to 35 GHz for the ARM Ka-band cloud radar, as opposed to 94 GHz used for the CloudSat W-band radar, and the second was to invert the view from the ground to space so as to attenuate the beam correctly. In addition, the ARM cloud radar simulator uses a finer vertical resolution (100 m compared to 500 m for CloudSat) to resolve the more detailed structure of clouds captured by the ARM radars. The ARM simulator has been developed following the COSP workflow (Figure 1) and using the capabilities available in COSP wherever possible. The ARM simulator is written in Fortran 90, just as is the COSP. It is incorporated into COSP to facilitate use by the climate modeling community. In order to evaluate simulator output, the observational counterpart of the simulator output, radar reflectivity-height histograms (CFAD) is also generated from the ARM observations. This report includes an overview of the ARM cloud radar simulator VAP and the required simulator-oriented ARM radar data product (radarCFAD) for validating simulator output, as well as a user guide for operating the ARM radar simulator VAP.« less
Unmanned Air Vehicle -Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred Oppel, SNL 06134
2013-04-17
This package contains modules that model the mobility of systems such as helicopters and fixed wing flying in the air. This package currently models first order physics - basically a velocity integrator. UAV mobility uses an internal clock to maintain stable, high-fidelity simulations over large time steps This package depends on interface that reside in the Mobility package.
Calculating phase diagrams using PANDAT and panengine
NASA Astrophysics Data System (ADS)
Chen, S.-L.; Zhang, F.; Xie, F.-Y.; Daniel, S.; Yan, X.-Y.; Chang, Y. A.; Schmid-Fetzer, R.; Oates, W. A.
2003-12-01
Knowledge of phase equilibria or phase diagrams and thermodynamic properties is important in alloy design and materials-processing simulation. In principle, stable phase equilibrium is uniquely determined by the thermodynamic properties of the system, such as the Gibbs energy functions of the phases. PANDAT, a new computer software package for multicomponent phase-diagram calculation, was developed under the guidance of this principle.
NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics.
Johnsen, Stian F; Taylor, Zeike A; Clarkson, Matthew J; Hipwell, John; Modat, Marc; Eiben, Bjoern; Han, Lianghao; Hu, Yipeng; Mertzanidou, Thomy; Hawkes, David J; Ourselin, Sebastien
2015-07-01
NiftySim, an open-source finite element toolkit, has been designed to allow incorporation of high-performance soft tissue simulation capabilities into biomedical applications. The toolkit provides the option of execution on fast graphics processing unit (GPU) hardware, numerous constitutive models and solid-element options, membrane and shell elements, and contact modelling facilities, in a simple to use library. The toolkit is founded on the total Lagrangian explicit dynamics (TLEDs) algorithm, which has been shown to be efficient and accurate for simulation of soft tissues. The base code is written in C[Formula: see text], and GPU execution is achieved using the nVidia CUDA framework. In most cases, interaction with the underlying solvers can be achieved through a single Simulator class, which may be embedded directly in third-party applications such as, surgical guidance systems. Advanced capabilities such as contact modelling and nonlinear constitutive models are also provided, as are more experimental technologies like reduced order modelling. A consistent description of the underlying solution algorithm, its implementation with a focus on GPU execution, and examples of the toolkit's usage in biomedical applications are provided. Efficient mapping of the TLED algorithm to parallel hardware results in very high computational performance, far exceeding that available in commercial packages. The NiftySim toolkit provides high-performance soft tissue simulation capabilities using GPU technology for biomechanical simulation research applications in medical image computing, surgical simulation, and surgical guidance applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plimpton, Steve; Jones, Matt; Crozier, Paul
2006-01-01
Pizza.py is a loosely integrated collection of tools, many of which provide support for the LAMMPS molecular dynamics and ChemCell cell modeling packages. There are tools to create input files. convert between file formats, process log and dump files, create plots, and visualize and animate simulation snapshots. Software packages that are wrapped by Pizza.py. so they can invoked from within Python, include GnuPlot, MatLab, Raster3d. and RasMol. Pizza.py is written in Python and runs on any platform that supports Python. Pizza.py enhances the standard Python interpreter in a few simple ways. Its tools are Python modules which can be invokedmore » interactively, from scripts, or from GUIs when appropriate. Some of the tools require additional Python packages to be installed as part of the users Python. Others are wrappers on software packages (as listed above) which must be available on the users system. It is easy to modify or extend Pizza.py with new functionality or new tools, which need not have anything to do with LAMMPS or ChemCell.« less
"FluSpec": A Simulated Experiment in Fluorescence Spectroscopy
ERIC Educational Resources Information Center
Bigger, Stephen W.; Bigger, Andrew S.; Ghiggino, Kenneth P.
2014-01-01
The "FluSpec" educational software package is a fully contained tutorial on the technique of fluorescence spectroscopy as well as a simulator on which experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that are obtained using the software.
Network design and quality checks in automatic orientation of close-range photogrammetric blocks.
Dall'Asta, Elisa; Thoeni, Klaus; Santise, Marina; Forlani, Gianfranco; Giacomini, Anna; Roncella, Riccardo
2015-04-03
Due to the recent improvements of automatic measurement procedures in photogrammetry, multi-view 3D reconstruction technologies are becoming a favourite survey tool. Rapidly widening structure-from-motion (SfM) software packages offer significantly easier image processing workflows than traditional photogrammetry packages. However, while most orientation and surface reconstruction strategies will almost always succeed in any given task, estimating the quality of the result is, to some extent, still an open issue. An assessment of the precision and reliability of block orientation is necessary and should be included in every processing pipeline. Such a need was clearly felt from the results of close-range photogrammetric surveys of in situ full-scale and laboratory-scale experiments. In order to study the impact of the block control and the camera network design on the block orientation accuracy, a series of Monte Carlo simulations was performed. Two image block configurations were investigated: a single pseudo-normal strip and a circular highly-convergent block. The influence of surveying and data processing choices, such as the number and accuracy of the ground control points, autofocus and camera calibration was investigated. The research highlights the most significant aspects and processes to be taken into account for adequate in situ and laboratory surveys, when modern SfM software packages are used, and evaluates their effect on the quality of the results of the surface reconstruction.
RIP-ET: A riparian evapotranspiration package for MODFLOW-2005
Maddock, Thomas; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori
2012-01-01
A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting transpiration. The fractional cover within a cell has two components: (1) the polygonal fraction of active habitat (excluding area of bare ground, dead trees, or brush) in a cell, and (2) fraction of plant type area or bare ground area in a polygon. RIP-ET determines the transpiration rate for each plant functional group and evaporation from bare ground/open water in a cell, the total ET in the cell, and the total ET rate over the region of simulation.
Alin, Jonas; Hakkarainen, Minna
2011-05-25
Microwave heating of commercial microwavable polypropylene packaging in contact with fatty food simulants caused significant antioxidant degradation and increased specific migration as shown by electrospray ionization-mass spectrometry (ESI-MS) and gas chromatography-mass spectrometry (GC-MS). Degradation of the antioxidants Irgafos 168 and Irganox 1010 was not detected during conventional heating of polypropylene packaging at the same temperature. The migration into aqueous food simulants was primarily restricted by the water solubility of the migrants. Using isooctane as fatty food simulant caused significant swelling and greatly enhanced overall migration values compared to the other fatty food simulant, 99.9% ethanol, or the aqueous food simulants 10% ethanol, 3% acetic acid, or water. ESI-MS spectra clearly reflected the overall migration values, and the number and amount of compounds detected decreased as the hydrophilicity of the food simulant increased. ESI-MS was shown to be an excellent tool for the analysis of semivolatile migrants and a good complement to GC-MS analysis of volatile migrants.
A Java-Enabled Interactive Graphical Gas Turbine Propulsion System Simulator
NASA Technical Reports Server (NTRS)
Reed, John A.; Afjeh, Abdollah A.
1997-01-01
This paper describes a gas turbine simulation system which utilizes the newly developed Java language environment software system. The system provides an interactive graphical environment which allows the quick and efficient construction and analysis of arbitrary gas turbine propulsion systems. The simulation system couples a graphical user interface, developed using the Java Abstract Window Toolkit, and a transient, space- averaged, aero-thermodynamic gas turbine analysis method, both entirely coded in the Java language. The combined package provides analytical, graphical and data management tools which allow the user to construct and control engine simulations by manipulating graphical objects on the computer display screen. Distributed simulations, including parallel processing and distributed database access across the Internet and World-Wide Web (WWW), are made possible through services provided by the Java environment.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Chun, Donghoon; Katehi, Linda P. B.; Yook, Jong-Gwan
1999-01-01
Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior 3D-FEM electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually increases coupling between the lines; however, if the top of the via posts are connected by a metal Strip, coupling is reduced. In this paper, experimental verification of the 3D-FEM simulations Is demonstrated for commercially fabricated LTCC packages.
A Comparison of Three Approaches to Model Human Behavior
NASA Astrophysics Data System (ADS)
Palmius, Joel; Persson-Slumpi, Thomas
2010-11-01
One way of studying social processes is through the use of simulations. The use of simulations for this purpose has been established as its own field, social simulations, and has been used for studying a variety of phenomena. A simulation of a social setting can serve as an aid for thinking about that social setting, and for experimenting with different parameters and studying the outcomes caused by them. When using the simulation as an aid for thinking and experimenting, the chosen simulation approach will implicitly steer the simulationist towards thinking in a certain fashion in order to fit the model. To study the implications of model choice on the understanding of a setting where human anticipation comes into play, a simulation scenario of a coffee room was constructed using three different simulation approaches: Cellular Automata, Systems Dynamics and Agent-based modeling. The practical implementations of the models were done in three different simulation packages: Stella for Systems Dynamic, CaFun for Cellular automata and SesAM for Agent-based modeling. The models were evaluated both using Randers' criteria for model evaluation, and through introspection where the authors reflected upon how their understanding of the scenario was steered through the model choice. Further the software used for implementing the simulation models was evaluated, and practical considerations for the choice of software package are listed. It is concluded that the models have very different strengths. The Agent-based modeling approach offers the most intuitive support for thinking about and modeling a social setting where the behavior of the individual is in focus. The Systems Dynamics model would be preferable in situations where populations and large groups would be studied as wholes, but where individual behavior is of less concern. The Cellular Automata models would be preferable where processes need to be studied from the basis of a small set of very simple rules. It is further concluded that in most social simulation settings the Agent-based modeling approach would be the probable choice. This since the other models does not offer much in the way of supporting the modeling of the anticipatory behavior of humans acting in an organization.
Passing in Command Line Arguments and Parallel Cluster/Multicore Batching in R with batch.
Hoffmann, Thomas J
2011-03-01
It is often useful to rerun a command line R script with some slight change in the parameters used to run it - a new set of parameters for a simulation, a different dataset to process, etc. The R package batch provides a means to pass in multiple command line options, including vectors of values in the usual R format, easily into R. The same script can be setup to run things in parallel via different command line arguments. The R package batch also provides a means to simplify this parallel batching by allowing one to use R and an R-like syntax for arguments to spread a script across a cluster or local multicore/multiprocessor computer, with automated syntax for several popular cluster types. Finally it provides a means to aggregate the results together of multiple processes run on a cluster.
Optimizing the Performance of Reactive Molecular Dynamics Simulations for Multi-core Architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aktulga, Hasan Metin; Coffman, Paul; Shan, Tzu-Ray
2015-12-01
Hybrid parallelism allows high performance computing applications to better leverage the increasing on-node parallelism of modern supercomputers. In this paper, we present a hybrid parallel implementation of the widely used LAMMPS/ReaxC package, where the construction of bonded and nonbonded lists and evaluation of complex ReaxFF interactions are implemented efficiently using OpenMP parallelism. Additionally, the performance of the QEq charge equilibration scheme is examined and a dual-solver is implemented. We present the performance of the resulting ReaxC-OMP package on a state-of-the-art multi-core architecture Mira, an IBM BlueGene/Q supercomputer. For system sizes ranging from 32 thousand to 16.6 million particles, speedups inmore » the range of 1.5-4.5x are observed using the new ReaxC-OMP software. Sustained performance improvements have been observed for up to 262,144 cores (1,048,576 processes) of Mira with a weak scaling efficiency of 91.5% in larger simulations containing 16.6 million particles.« less
Path selection system simulation and evaluation for a Martian roving vehicle
NASA Technical Reports Server (NTRS)
Boheim, S. L.; Prudon, W. C.
1972-01-01
The simulation and evaluation of proposed path selection systems for an autonomous Martian roving vehicle was developed. The package incorporates a number of realistic features, such as the simulation of random effects due to vehicle bounce and sensor-reading uncertainty, to increase the reliability of the results. Qualitative and quantitative evaluation criteria were established. The performance of three different path selection systems was evaluated to determine the effectiveness of the simulation package, and to form some preliminary conclusions regarding the tradeoffs involved in a path selection system design.
Python-based geometry preparation and simulation visualization toolkits for STEPS
Chen, Weiliang; De Schutter, Erik
2014-01-01
STEPS is a stochastic reaction-diffusion simulation engine that implements a spatial extension of Gillespie's Stochastic Simulation Algorithm (SSA) in complex tetrahedral geometries. An extensive Python-based interface is provided to STEPS so that it can interact with the large number of scientific packages in Python. However, a gap existed between the interfaces of these packages and the STEPS user interface, where supporting toolkits could reduce the amount of scripting required for research projects. This paper introduces two new supporting toolkits that support geometry preparation and visualization for STEPS simulations. PMID:24782754
McStas 1.7 - a new version of the flexible Monte Carlo neutron scattering package
NASA Astrophysics Data System (ADS)
Willendrup, Peter; Farhi, Emmanuel; Lefmann, Kim
2004-07-01
Current neutron instrumentation is both complex and expensive, and accurate simulation has become essential both for building new instruments and for using them effectively. The McStas neutron ray-trace simulation package is a versatile tool for producing such simulations, developed in collaboration between Risø and ILL. The new version (1.7) has many improvements, among these added support for the popular Microsoft Windows platform. This presentation will demonstrate a selection of the new features through a simulation of the ILL IN6 beamline.
CONRAD—A software framework for cone-beam imaging in radiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Andreas; Choi, Jang-Hwan; Riess, Christian
2013-11-15
Purpose: In the community of x-ray imaging, there is a multitude of tools and applications that are used in scientific practice. Many of these tools are proprietary and can only be used within a certain lab. Often the same algorithm is implemented multiple times by different groups in order to enable comparison. In an effort to tackle this problem, the authors created CONRAD, a software framework that provides many of the tools that are required to simulate basic processes in x-ray imaging and perform image reconstruction with consideration of nonlinear physical effects.Methods: CONRAD is a Java-based state-of-the-art software platform withmore » extensive documentation. It is based on platform-independent technologies. Special libraries offer access to hardware acceleration such as OpenCL. There is an easy-to-use interface for parallel processing. The software package includes different simulation tools that are able to generate up to 4D projection and volume data and respective vector motion fields. Well known reconstruction algorithms such as FBP, DBP, and ART are included. All algorithms in the package are referenced to a scientific source.Results: A total of 13 different phantoms and 30 processing steps have already been integrated into the platform at the time of writing. The platform comprises 74.000 nonblank lines of code out of which 19% are used for documentation. The software package is available for download at http://conrad.stanford.edu. To demonstrate the use of the package, the authors reconstructed images from two different scanners, a table top system and a clinical C-arm system. Runtimes were evaluated using the RabbitCT platform and demonstrate state-of-the-art runtimes with 2.5 s for the 256 problem size and 12.4 s for the 512 problem size.Conclusions: As a common software framework, CONRAD enables the medical physics community to share algorithms and develop new ideas. In particular this offers new opportunities for scientific collaboration and quantitative performance comparison between the methods of different groups.« less
speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification.
Beirnaert, Charlie; Meysman, Pieter; Vu, Trung Nghia; Hermans, Nina; Apers, Sandra; Pieters, Luc; Covaci, Adrian; Laukens, Kris
2018-03-01
Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq).
speaq 2.0: A complete workflow for high-throughput 1D NMR spectra processing and quantification
Pieters, Luc; Covaci, Adrian
2018-01-01
Nuclear Magnetic Resonance (NMR) spectroscopy is, together with liquid chromatography-mass spectrometry (LC-MS), the most established platform to perform metabolomics. In contrast to LC-MS however, NMR data is predominantly being processed with commercial software. Meanwhile its data processing remains tedious and dependent on user interventions. As a follow-up to speaq, a previously released workflow for NMR spectral alignment and quantitation, we present speaq 2.0. This completely revised framework to automatically analyze 1D NMR spectra uses wavelets to efficiently summarize the raw spectra with minimal information loss or user interaction. The tool offers a fast and easy workflow that starts with the common approach of peak-picking, followed by grouping, thus avoiding the binning step. This yields a matrix consisting of features, samples and peak values that can be conveniently processed either by using included multivariate statistical functions or by using many other recently developed methods for NMR data analysis. speaq 2.0 facilitates robust and high-throughput metabolomics based on 1D NMR but is also compatible with other NMR frameworks or complementary LC-MS workflows. The methods are benchmarked using a simulated dataset and two publicly available datasets. speaq 2.0 is distributed through the existing speaq R package to provide a complete solution for NMR data processing. The package and the code for the presented case studies are freely available on CRAN (https://cran.r-project.org/package=speaq) and GitHub (https://github.com/beirnaert/speaq). PMID:29494588
Erickson, Collin B; Ankenman, Bruce E; Sanchez, Susan M
2018-06-01
This data article provides the summary data from tests comparing various Gaussian process software packages. Each spreadsheet represents a single function or type of function using a particular input sample size. In each spreadsheet, a row gives the results for a particular replication using a single package. Within each spreadsheet there are the results from eight Gaussian process model-fitting packages on five replicates of the surface. There is also one spreadsheet comparing the results from two packages performing stochastic kriging. These data enable comparisons between the packages to determine which package will give users the best results.
[A research of letter color visibility in package insert information using simulator].
Kamimura, Naoki; Kinoshita, Noriyuki; Onaga, Midori; Watanabe, Yurika; Ijuin, Kazushige; Shikamura, Yoshiaki; Negishi, Kenichi; Kaiho, Fusao; Ohta, Takafumi
2012-01-01
Package insert of pharmaceutical drug is one of the most prioritized information for pharmacists to secure safety of patients. However, the color of character, size, font and so on are various company by company product to product from a viewpoint of visibility. It may be cause a serious accident in case visibility is unclear, although it is the most important information. Moreover, package insert with high visibility is required for color vision defectives from a viewpoint of a universal design. Then, the authors selected the package insert which has the boxed warning in the ethical pharmaceutical currently stored mostly in the present health insurance pharmacy and quantified the red color using the color meter. We advocate the state of a suitable package insert from a viewpoint of a universal design, whether the red color is high visible or not for color vision defectives using simulator.
The influence of arc plasma parameters on the form of a welding pool
NASA Astrophysics Data System (ADS)
Frolov, V. Ya.; Toropchin, A. I.
2015-07-01
The influence of the Marangoni force on the form of a welding pool has been considered. Results of computer simulation of the processes of welding arc generation with a non-consumable tungsten electrode in inert gas are shown. The experimental results are reported and comparatively analyzed. The calculations were carried out in a package of applied programs at various currents.
Probabilistic exposure assessment model to estimate aseptic-UHT product failure rate.
Pujol, Laure; Albert, Isabelle; Magras, Catherine; Johnson, Nicholas Brian; Membré, Jeanne-Marie
2015-01-02
Aseptic-Ultra-High-Temperature (UHT) products are manufactured to be free of microorganisms capable of growing in the food at normal non-refrigerated conditions at which the food is likely to be held during manufacture, distribution and storage. Two important phases within the process are widely recognised as critical in controlling microbial contamination: the sterilisation steps and the following aseptic steps. Of the microbial hazards, the pathogen spore formers Clostridium botulinum and Bacillus cereus are deemed the most pertinent to be controlled. In addition, due to a relatively high thermal resistance, Geobacillus stearothermophilus spores are considered a concern for spoilage of low acid aseptic-UHT products. A probabilistic exposure assessment model has been developed in order to assess the aseptic-UHT product failure rate associated with these three bacteria. It was a Modular Process Risk Model, based on nine modules. They described: i) the microbial contamination introduced by the raw materials, either from the product (i.e. milk, cocoa and dextrose powders and water) or the packaging (i.e. bottle and sealing component), ii) the sterilisation processes, of either the product or the packaging material, iii) the possible recontamination during subsequent processing of both product and packaging. The Sterility Failure Rate (SFR) was defined as the sum of bottles contaminated for each batch, divided by the total number of bottles produced per process line run (10(6) batches simulated per process line). The SFR associated with the three bacteria was estimated at the last step of the process (i.e. after Module 9) but also after each module, allowing for the identification of modules, and responsible contamination pathways, with higher or lower intermediate SFR. The model contained 42 controlled settings associated with factory environment, process line or product formulation, and more than 55 probabilistic inputs corresponding to inputs with variability conditional to a mean uncertainty. It was developed in @Risk and run through Monte Carlo simulations. Overall, the highest SFR was associated with G. stearothermophilus (380000 bottles contaminated in 10(11) bottles produced) and the lowest to C. botulinum (3 bottles contaminated in 10(11) bottles produced). Unsurprisingly, SFR due to G. stearothermophilus was due to its ability to survive the UHT treatment. More interestingly, it was identified that SFR due to B. cereus (17000 bottles contaminated in 10(11) bottles produced) was due to an airborne recontamination of the aseptic tank (49%) and a post-sterilisation packaging contamination (33%). A deeper analysis (sensitivity and scenario analyses) was done to investigate how the SFR due to B. cereus could be reduced by changing the process settings related to potential air recontamination source. Copyright © 2014 Elsevier B.V. All rights reserved.
A user-friendly software package to ease the use of VIC hydrologic model for practitioners
NASA Astrophysics Data System (ADS)
Wi, S.; Ray, P.; Brown, C.
2016-12-01
The VIC (Variable Infiltration Capacity) hydrologic and river routing model simulates the water and energy fluxes that occur near the land surface and provides users with useful information regarding the quantity and timing of available water at points of interest within the basin. However, despite its popularity (proved by numerous applications in the literature), its wider adoption is hampered by the considerable effort required to prepare model inputs; e.g., input files storing spatial information related to watershed topography, soil properties, and land cover. This study presents a user-friendly software package (named VIC Setup Toolkit) developed within the MATLAB (matrix laboratory) framework and accessible through an intuitive graphical user interface. The VIC Setup Toolkit enables users to navigate the model building process confidently through prompts and automation, with an intention to promote the use of the model for both practical and academic purposes. The automated processes include watershed delineation, climate and geographical input set-up, model parameter calibration, graph generation and output evaluation. We demonstrate the package's usefulness in various case studies with the American River, Oklahoma River, Feather River and Zambezi River basins.
NASA Astrophysics Data System (ADS)
Manninen, L. M.
1993-12-01
The document describes TKKMOD, a simulation model developed at Helsinki University of Technology for a specific wind-diesel system layout, with special emphasis on the battery submodel and its use in simulation. The model has been included into the European wind-diesel modeling software package WDLTOOLS under the CEC JOULE project 'Engineering Design Tools for Wind-Diesel Systems' (JOUR-0078). WDLTOOLS serves as the user interface and processes the input and output data of different logistic simulation models developed by the project participants. TKKMOD cannot be run without this shell. The report only describes the simulation principles and model specific parameters of TKKMOD and gives model specific user instructions. The input and output data processing performed outside this model is described in the documentation of the shell. The simulation model is utilized for calculation of long-term performance of the reference system configuration for given wind and load conditions. The main results are energy flows, losses in the system components, diesel fuel consumption, and the number of diesel engine starts.
ProtSqueeze: simple and effective automated tool for setting up membrane protein simulations.
Yesylevskyy, Semen O
2007-01-01
The major challenge in setting up membrane protein simulations is embedding the protein into the pre-equilibrated lipid bilayer. Several techniques were proposed to achieve optimal packing of the lipid molecules around the protein. However, all of them possess serious disadvantages, which limit their applicability and discourage the users of simulation packages from using them. In the present work, we analyzed existing approaches and proposed a new procedure of protein insertion into the lipid bilayer, which is implemented in the ProtSqueeze software. The advantages of ProtSqueeze are as follows: (1) the insertion algorithm is simple, understandable, and controllable; (2) the software can work with virtually any simulation package on virtually any platform; (3) no modification of the source code of the simulation package is needed; (4) the procedure of insertion is as automated as possible; (5) ProtSqueeze is distributed for free under a general public license. In this work, we present the architecture and the algorithm of ProtSqueeze and demonstrate its usage in case studies.
JGromacs: a Java package for analyzing protein simulations.
Münz, Márton; Biggin, Philip C
2012-01-23
In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license .
JGromacs: A Java Package for Analyzing Protein Simulations
2011-01-01
In this paper, we introduce JGromacs, a Java API (Application Programming Interface) that facilitates the development of cross-platform data analysis applications for Molecular Dynamics (MD) simulations. The API supports parsing and writing file formats applied by GROMACS (GROningen MAchine for Chemical Simulations), one of the most widely used MD simulation packages. JGromacs builds on the strengths of object-oriented programming in Java by providing a multilevel object-oriented representation of simulation data to integrate and interconvert sequence, structure, and dynamics information. The easy-to-learn, easy-to-use, and easy-to-extend framework is intended to simplify and accelerate the implementation and development of complex data analysis algorithms. Furthermore, a basic analysis toolkit is included in the package. The programmer is also provided with simple tools (e.g., XML-based configuration) to create applications with a user interface resembling the command-line interface of GROMACS applications. Availability: JGromacs and detailed documentation is freely available from http://sbcb.bioch.ox.ac.uk/jgromacs under a GPLv3 license. PMID:22191855
VS2DI: Model use, calibration, and validation
Healy, Richard W.; Essaid, Hedeff I.
2012-01-01
VS2DI is a software package for simulating water, solute, and heat transport through soils or other porous media under conditions of variable saturation. The package contains a graphical preprocessor for constructing simulations, a postprocessor for displaying simulation results, and numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). Flow is described by the Richards equation, and solute and heat transport are described by advection-dispersion equations; the finite-difference method is used to solve these equations. Problems can be simulated in one, two, or three (assuming radial symmetry) dimensions. This article provides an overview of calibration techniques that have been used with VS2DI; included is a detailed description of calibration procedures used in simulating the interaction between groundwater and a stream fed by drainage from agricultural fields in central Indiana. Brief descriptions of VS2DI and the various types of problems that have been addressed with the software package are also presented.
A web-based rapid assessment tool for production publishing solutions
NASA Astrophysics Data System (ADS)
Sun, Tong
2010-02-01
Solution assessment is a critical first-step in understanding and measuring the business process efficiency enabled by an integrated solution package. However, assessing the effectiveness of any solution is usually a very expensive and timeconsuming task which involves lots of domain knowledge, collecting and understanding the specific customer operational context, defining validation scenarios and estimating the expected performance and operational cost. This paper presents an intelligent web-based tool that can rapidly assess any given solution package for production publishing workflows via a simulation engine and create a report for various estimated performance metrics (e.g. throughput, turnaround time, resource utilization) and operational cost. By integrating the digital publishing workflow ontology and an activity based costing model with a Petri-net based workflow simulation engine, this web-based tool allows users to quickly evaluate any potential digital publishing solutions side-by-side within their desired operational contexts, and provides a low-cost and rapid assessment for organizations before committing any purchase. This tool also benefits the solution providers to shorten the sales cycles, establishing a trustworthy customer relationship and supplement the professional assessment services with a proven quantitative simulation and estimation technology.
Migration of perfluoroalkyl acids from food packaging to food simulants.
Xu, Y; Noonan, G O; Begley, T H
2013-01-01
A broad range of fluorochemicals is used to impart oil and water barrier properties to paper and paperboard food packaging. Many of the fluorochemicals are applied to paper and paperboard as complex mixtures containing reaction products and by-products and unreacted starting materials. This work primarily focussed on the determination of seven perfluorocarboxylic acids (PFCAs) in two commercially available food contact papers: a di-perfluoro-alkyloxy-amino-acid and a perfluoroalkyl phosphate surfactant. In addition, the migration of the PFCAs into five food simulants from two commercial packages was evaluated. All seven PFCAs were detected in the range of 700-2220 µg kg⁻¹ of paper, while three perfluoroalkyl sulphonates were under the LOD. Results from migration tests showed that migration depends on paper characteristics, time and food simulant. The percentage of migration after 10 days at 40°C ranged from 4.8% to 100% for the two papers and different food simulants.
TU-AB-BRC-12: Optimized Parallel MonteCarlo Dose Calculations for Secondary MU Checks
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, S; Nazareth, D; Bellor, M
Purpose: Secondary MU checks are an important tool used during a physics review of a treatment plan. Commercial software packages offer varying degrees of theoretical dose calculation accuracy, depending on the modality involved. Dose calculations of VMAT plans are especially prone to error due to the large approximations involved. Monte Carlo (MC) methods are not commonly used due to their long run times. We investigated two methods to increase the computational efficiency of MC dose simulations with the BEAMnrc code. Distributed computing resources, along with optimized code compilation, will allow for accurate and efficient VMAT dose calculations. Methods: The BEAMnrcmore » package was installed on a high performance computing cluster accessible to our clinic. MATLAB and PYTHON scripts were developed to convert a clinical VMAT DICOM plan into BEAMnrc input files. The BEAMnrc installation was optimized by running the VMAT simulations through profiling tools which indicated the behavior of the constituent routines in the code, e.g. the bremsstrahlung splitting routine, and the specified random number generator. This information aided in determining the most efficient compiling parallel configuration for the specific CPU’s available on our cluster, resulting in the fastest VMAT simulation times. Our method was evaluated with calculations involving 10{sup 8} – 10{sup 9} particle histories which are sufficient to verify patient dose using VMAT. Results: Parallelization allowed the calculation of patient dose on the order of 10 – 15 hours with 100 parallel jobs. Due to the compiler optimization process, further speed increases of 23% were achieved when compared with the open-source compiler BEAMnrc packages. Conclusion: Analysis of the BEAMnrc code allowed us to optimize the compiler configuration for VMAT dose calculations. In future work, the optimized MC code, in conjunction with the parallel processing capabilities of BEAMnrc, will be applied to provide accurate and efficient secondary MU checks.« less
Mendoza, Rosario; Tolentino-Mayo, Lizbeth; Hernández-Barrera, Lucia; Nieto, Claudia; Monterrubio-Flores, Eric A; Barquera, Simón
2018-01-19
A Mexican Committee of Nutrition Experts (MCNE) from the National Institute of Public Health (INSP), free from conflict of interest, established food content standards to place the front-of-package (FOP) logo on foods that meet these nutrition criteria. The objectives were to simulate the effect on nutrient intake in the Mexican adult population (20-59 years old) after replacing commonly consumed processed foods with those that meet the FOP nutrition-labeling criteria. Twenty-four hour dietary recalls were collected from the 2012 Mexican National Health and Nutrition Survey ( n = 2164 adults). A food database from the INSP was used. Weighted medians and 25-75 inter-quartile ranges (IQR) of energy and nutrient intake were calculated for all subjects by sociodemographic characteristics before and after replacing foods. Significant decreases were observed in energy (-5.4%), saturated fatty acids (-18.9%), trans-fatty acids (-20%), total sugar (-36.8%) and sodium (-10.7%) intake and a significant increase in fiber intake (+15.5%) after replacing foods, using the MCNE nutrition criteria. Replacing commonly consumed processed foods in the diet with foods that meet the FOP nutrition-labeling criteria set by the MCNE can lead to improvements in energy and nutrient intake in the Mexican adult population.
Mendoza, Rosario; Tolentino-Mayo, Lizbeth; Hernández-Barrera, Lucia; Monterrubio-Flores, Eric A.; Barquera, Simón
2018-01-01
A Mexican Committee of Nutrition Experts (MCNE) from the National Institute of Public Health (INSP), free from conflict of interest, established food content standards to place the front-of-package (FOP) logo on foods that meet these nutrition criteria. The objectives were to simulate the effect on nutrient intake in the Mexican adult population (20–59 years old) after replacing commonly consumed processed foods with those that meet the FOP nutrition-labeling criteria. Twenty-four hour dietary recalls were collected from the 2012 Mexican National Health and Nutrition Survey (n = 2164 adults). A food database from the INSP was used. Weighted medians and 25–75 inter-quartile ranges (IQR) of energy and nutrient intake were calculated for all subjects by sociodemographic characteristics before and after replacing foods. Significant decreases were observed in energy (−5.4%), saturated fatty acids (−18.9%), trans-fatty acids (−20%), total sugar (−36.8%) and sodium (−10.7%) intake and a significant increase in fiber intake (+15.5%) after replacing foods, using the MCNE nutrition criteria. Replacing commonly consumed processed foods in the diet with foods that meet the FOP nutrition-labeling criteria set by the MCNE can lead to improvements in energy and nutrient intake in the Mexican adult population. PMID:29351257
TIERRAS: A package to simulate high energy cosmic ray showers underground, underwater and under-ice
NASA Astrophysics Data System (ADS)
Tueros, Matías; Sciutto, Sergio
2010-02-01
In this paper we present TIERRAS, a Monte Carlo simulation program based on the well-known AIRES air shower simulations system that enables the propagation of particle cascades underground, providing a tool to study particles arriving underground from a primary cosmic ray on the atmosphere or to initiate cascades directly underground and propagate them, exiting into the atmosphere if necessary. We show several cross-checks of its results against CORSIKA, FLUKA, GEANT and ZHS simulations and we make some considerations regarding its possible use and limitations. The first results of full underground shower simulations are presented, as an example of the package capabilities. Program summaryProgram title: TIERRAS for AIRES Catalogue identifier: AEFO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 36 489 No. of bytes in distributed program, including test data, etc.: 3 261 669 Distribution format: tar.gz Programming language: Fortran 77 and C Computer: PC, Alpha, IBM, HP, Silicon Graphics and Sun workstations Operating system: Linux, DEC Unix, AIX, SunOS, Unix System V RAM: 22 Mb bytes Classification: 1.1 External routines: TIERRAS requires AIRES 2.8.4 to be installed on the system. AIRES 2.8.4 can be downloaded from http://www.fisica.unlp.edu.ar/auger/aires/eg_AiresDownload.html. Nature of problem: Simulation of high and ultra high energy underground particle showers. Solution method: Modification of the AIRES 2.8.4 code to accommodate underground conditions. Restrictions: In AIRES some processes that are not statistically significant on the atmosphere are not simulated. In particular, it does not include muon photonuclear processes. This imposes a limitation on the application of this package to a depth of 1 km of standard rock (or 2.5 km of water equivalent). Neutrinos are not tracked on the simulation, but their energy is taken into account in decays. Running time: A TIERRAS for AIRES run of a 10 eV shower with statistical sampling (thinning) below 10 eV and 0.2 weight factor (see [1]) uses approximately 1 h of CPU time on an Intel Core 2 Quad Q6600 at 2.4 GHz. It uses only one core, so 4 simultaneous simulations can be run on this computer. Aires includes a spooling system to run several simultaneous jobs of any type. References:S. Sciutto, AIRES 2.6 User Manual, http://www.fisica.unlp.edu.ar/auger/aires/.
Getting started with package sampSurf
Jeffrey H. Gove
2014-01-01
The sampSurf package is designed to facilitate the comparison of new and existing areal sampling methods through simulation. The package is thoroughly documented in several vignettes as mentioned below. This document is meant to point you in the right direction in finding the needed information to get started using sampSurf.
Brian hears: online auditory processing using vectorization over channels.
Fontaine, Bertrand; Goodman, Dan F M; Benichoux, Victor; Brette, Romain
2011-01-01
The human cochlea includes about 3000 inner hair cells which filter sounds at frequencies between 20 Hz and 20 kHz. This massively parallel frequency analysis is reflected in models of auditory processing, which are often based on banks of filters. However, existing implementations do not exploit this parallelism. Here we propose algorithms to simulate these models by vectorizing computation over frequency channels, which are implemented in "Brian Hears," a library for the spiking neural network simulator package "Brian." This approach allows us to use high-level programming languages such as Python, because with vectorized operations, the computational cost of interpretation represents a small fraction of the total cost. This makes it possible to define and simulate complex models in a simple way, while all previous implementations were model-specific. In addition, we show that these algorithms can be naturally parallelized using graphics processing units, yielding substantial speed improvements. We demonstrate these algorithms with several state-of-the-art cochlear models, and show that they compare favorably with existing, less flexible, implementations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Natale, Francesco
2017-06-01
MaestroWF is a Python tool and software package for loading YAML study specifications that represents a simulation campaign. The package is capable of parameterizing a study, pulling dependencies automatically, formatting output directories, and managing the flow and execution of the campaign. MaestroWF also provides a set of abstracted objects that can also be used to develop user specific scripts for launching simulation campaigns.
Desktop microsimulation: a tool to improve efficiency in the medical office practice.
Montgomery, James B; Linville, Beth A; Slonim, Anthony D
2013-01-01
Because the economic crisis in the United States continues to have an impact on healthcare organizations, industry leaders must optimize their decision making. Discrete-event computer simulation is a quality tool with a demonstrated track record of improving the precision of analysis for process redesign. However, the use of simulation to consolidate practices and design efficiencies into an unfinished medical office building was a unique task. A discrete-event computer simulation package was used to model the operations and forecast future results for four orthopedic surgery practices. The scenarios were created to allow an evaluation of the impact of process change on the output variables of exam room utilization, patient queue size, and staff utilization. The model helped with decisions regarding space allocation and efficient exam room use by demonstrating the impact of process changes in patient queues at check-in/out, x-ray, and cast room locations when compared to the status quo model. The analysis impacted decisions on facility layout, patient flow, and staff functions in this newly consolidated practice. Simulation was found to be a useful tool for process redesign and decision making even prior to building occupancy. © 2011 National Association for Healthcare Quality.
Simulation of a manual electric-arc welding in a working gas pipeline. 1. Formulation of the problem
NASA Astrophysics Data System (ADS)
Baikov, V. I.; Gishkelyuk, I. A.; Rus', A. M.; Sidorovich, T. V.; Tonkonogov, B. A.
2010-11-01
Problems of mathematical simulation of the temperature stresses arising in the wall of a pipe of a cross-country gas pipeline in the process of electric-arc welding of defects in it have been considered. Mathematical models of formation of temperatures, deformations, and stresses in a gas pipe subjected to phase transformations have been developed. These models were numerically realized in the form of algorithms representing a part of an application-program package. Results of verification of the computational complex and calculation results obtained with it are presented.
ModFossa: A library for modeling ion channels using Python.
Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C
2016-06-01
The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.
Temperature-package power correlations for open-mode geologic disposal concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest.
2013-02-01
Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in amore » repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.« less
Volumetric neuroimage analysis extensions for the MIPAV software package.
Bazin, Pierre-Louis; Cuzzocreo, Jennifer L; Yassa, Michael A; Gandler, William; McAuliffe, Matthew J; Bassett, Susan S; Pham, Dzung L
2007-09-15
We describe a new collection of publicly available software tools for performing quantitative neuroimage analysis. The tools perform semi-automatic brain extraction, tissue classification, Talairach alignment, and atlas-based measurements within a user-friendly graphical environment. They are implemented as plug-ins for MIPAV, a freely available medical image processing software package from the National Institutes of Health. Because the plug-ins and MIPAV are implemented in Java, both can be utilized on nearly any operating system platform. In addition to the software plug-ins, we have also released a digital version of the Talairach atlas that can be used to perform regional volumetric analyses. Several studies are conducted applying the new tools to simulated and real neuroimaging data sets.
NASA Astrophysics Data System (ADS)
Faller, Lisa-Marie; Zangl, Hubert
2017-05-01
To guarantee high performance of Micro Optical Electro Mechanical Systems (MOEMS), precise position feedback is crucial. To overcome drawbacks of widely used optical feedback, we propose an inkjet-printed capacitive position sensor as smart packaging solution. Printing processes suffer from tolerances in excess of those from standard processes. Thus, FEM simulations covering assumed tolerances of the system are adopted. These simulations are structured following a Design Of Computer Experiments (DOCE) and are then employed to determine a optimal sensor design. Based on the simulation results, statistical models are adopted for the dynamic system. These models are to be used together with specifically designed hardware, considered to cope with challenging requirements of ≍50nm position accuracy at 10MS/s with 1000μm measurement range. Noise analysis is performed considering the influence of uncertainties to assess resolution and bandwidth capabilities.
Simulation of argon response and light detection in the DarkSide-50 dual phase TPC
NASA Astrophysics Data System (ADS)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Vincenzi, M.; Derbin, A. V.; De Rosa, G.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Martoff, C. J.; Meyers, P. D.; Milincic, R.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Sablone, D.; Sands, W.; Sanfilippo, S.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Zhu, C.; Zuzel, G.
2017-10-01
A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~107, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.
NASA Astrophysics Data System (ADS)
Reisgen, Uwe; Schleser, Markus; Mokrov, Oleg; Zabirov, Alexander
2011-06-01
A two dimensional transient numerical analysis and computational module for simulation of electrical and thermal characteristics during electrode melting and metal transfer involved in Gas-Metal-Arc-Welding (GMAW) processes is presented. Solution of non-linear transient heat transfer equation is carried out using a control volume finite difference technique. The computational module also includes controlling and regulation algorithms of industrial welding power sources. The simulation results are the current and voltage waveforms, mean voltage drops at different parts of circuit, total electric power, cathode, anode and arc powers and arc length. We describe application of the model for normal process (constant voltage) and for pulsed processes with U/I and I/I-modulation modes. The comparisons with experimental waveforms of current and voltage show that the model predicts current, voltage and electric power with a high accuracy. The model is used in simulation package SimWeld for calculation of heat flux into the work-piece and the weld seam formation. From the calculated heat flux and weld pool sizes, an equivalent volumetric heat source according to Goldak model, can be generated. The method was implemented and investigated with the simulation software SimWeld developed by the ISF at RWTH Aachen University.
Effecting aging time of epoxy molding compound to molding process for integrated circuit packaging
NASA Astrophysics Data System (ADS)
Tachapitunsuk, Jirayu; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon
2017-09-01
This research studied about effecting aging time of epoxy molding compound (EMC) that effect to reliability performance of integrated circuit (IC) package in molding process. Molding process is so important of IC packaging process for protecting IC chip (or die) from temperature and humidity environment using encapsulated EMC. For general molding process, EMC are stored in the frozen at 5°C and left at room temperature at 25 °C for aging time on self before molding of die onto lead frame is 24 hours. The aging time effect to reliability performance of IC package due to different temperature and humidity inside the package. In experiment, aging time of EMC were varied from 0 to 24 hours for molding process of SOIC-8L packages. For analysis, these packages were tested by x-ray and scanning acoustic microscope to analyze properties of EMC with an aging time and also analyzed delamination, internal void, and wire sweep inside the packages with different aging time. The results revealed that different aging time of EMC effect to properties and reliability performance of molding process.
EggLib: processing, analysis and simulation tools for population genetics and genomics
2012-01-01
Background With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. Results In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. Conclusions EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded. PMID:22494792
EggLib: processing, analysis and simulation tools for population genetics and genomics.
De Mita, Stéphane; Siol, Mathieu
2012-04-11
With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded.
Automation of a Wave-Optics Simulation and Image Post-Processing Package on Riptide
NASA Astrophysics Data System (ADS)
Werth, M.; Lucas, J.; Thompson, D.; Abercrombie, M.; Holmes, R.; Roggemann, M.
Detailed wave-optics simulations and image post-processing algorithms are computationally expensive and benefit from the massively parallel hardware available at supercomputing facilities. We created an automated system that interfaces with the Maui High Performance Computing Center (MHPCC) Distributed MATLAB® Portal interface to submit massively parallel waveoptics simulations to the IBM iDataPlex (Riptide) supercomputer. This system subsequently postprocesses the output images with an improved version of physically constrained iterative deconvolution (PCID) and analyzes the results using a series of modular algorithms written in Python. With this architecture, a single person can simulate thousands of unique scenarios and produce analyzed, archived, and briefing-compatible output products with very little effort. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.
Virtual Plant Tissue: Building Blocks for Next-Generation Plant Growth Simulation
De Vos, Dirk; Dzhurakhalov, Abdiravuf; Stijven, Sean; Klosiewicz, Przemyslaw; Beemster, Gerrit T. S.; Broeckhove, Jan
2017-01-01
Motivation: Computational modeling of plant developmental processes is becoming increasingly important. Cellular resolution plant tissue simulators have been developed, yet they are typically describing physiological processes in an isolated way, strongly delimited in space and time. Results: With plant systems biology moving toward an integrative perspective on development we have built the Virtual Plant Tissue (VPTissue) package to couple functional modules or models in the same framework and across different frameworks. Multiple levels of model integration and coordination enable combining existing and new models from different sources, with diverse options in terms of input/output. Besides the core simulator the toolset also comprises a tissue editor for manipulating tissue geometry and cell, wall, and node attributes in an interactive manner. A parameter exploration tool is available to study parameter dependence of simulation results by distributing calculations over multiple systems. Availability: Virtual Plant Tissue is available as open source (EUPL license) on Bitbucket (https://bitbucket.org/vptissue/vptissue). The project has a website https://vptissue.bitbucket.io. PMID:28523006
Modeling hydraulic regenerative hybrid vehicles using AMESim and Matlab/Simulink
NASA Astrophysics Data System (ADS)
Lynn, Alfred; Smid, Edzko; Eshraghi, Moji; Caldwell, Niall; Woody, Dan
2005-05-01
This paper presents the overview of the simulation modeling of a hydraulic system with regenerative braking used to improve vehicle emissions and fuel economy. Two simulation software packages were used together to enhance the simulation capability for fuel economy results and development of vehicle and hybrid control strategy. AMESim, a hydraulic simulation software package modeled the complex hydraulic circuit and component hardware and was interlinked with a Matlab/Simulink model of the vehicle, engine and the control strategy required to operate the vehicle and the hydraulic hybrid system through various North American and European drive cycles.
IN-PACKAGE CHEMISTRY ABSTRACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Thomas
2005-07-14
This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6more » geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.« less
McDonald, Thomas O; Michor, Franziska
2017-07-15
SIApopr (Simulating Infinite-Allele populations) is an R package to simulate time-homogeneous and inhomogeneous stochastic branching processes under a very flexible set of assumptions using the speed of C ++. The software simulates clonal evolution with the emergence of driver and passenger mutations under the infinite-allele assumption. The software is an application of the Gillespie Stochastic Simulation Algorithm expanded to a large number of cell types and scenarios, with the intention of allowing users to easily modify existing models or create their own. SIApopr is available as an R library on Github ( https://github.com/olliemcdonald/siapopr ). Supplementary data are available at Bioinformatics online. michor@jimmy.harvard.edu. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NY TBO Research: Integrated Demand Management (IDM): IDM Concept, Tools, and Training Package
NASA Technical Reports Server (NTRS)
Smith, Nancy
2016-01-01
A series of human-in-the-loop simulation sessions were conducted in the Airspace Operations Laboratory (AOL) to evaluate a new traffic management concept called Integrated Demand Management (IDM). The simulation explored how to address chronic equity, throughput and delay issues associated with New Yorks high-volume airports by operationally integrating three current and NextGen capabilities the Collaborative Trajectory Options Program (CTOP), Time-Based Flow Management (TBFM) and Required Time of Arrival (RTA) in order to better manage traffic demand within the National Air Traffic System. A package of presentation slides was developed to describe the concept, tools, and training materials used in the simulation sessions. The package will be used to outbrief our stakeholders by both presenting orally and disseminating of the materials via email.
Efficient finite element simulation of slot spirals, slot radomes and microwave structures
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, J. L.
1995-01-01
This progress report contains the following two documents: (1) 'Efficient Finite Element Simulation of Slot Antennas using Prismatic Elements' - A hybrid finite element-boundary integral (FE-BI) simulation technique is discussed to treat narrow slot antennas etched on a planar platform. Specifically, the prismatic elements are used to reduce the redundant sampling rates and ease the mesh generation process. Numerical results for an antenna slot and frequency selective surfaces are presented to demonstrate the validity and capability of the technique; and (2) 'Application and Design Guidelines of the PML Absorber for Finite Element Simulations of Microwave Packages' - The recently introduced perfectly matched layer (PML) uniaxial absorber for frequency domain finite element simulations has several advantages. In this paper we present the application of PML for microwave circuit simulations along with design guidelines to obtain a desired level of absorption. Different feeding techniques are also investigated for improved accuracy.
NASA Astrophysics Data System (ADS)
Kao, C.-Y. J.; Smith, W. S.
1999-05-01
A physically based cloud parameterization package, which includes the Arakawa-Schubert (AS) scheme for subgrid-scale convective clouds and the Sundqvist (SUN) scheme for nonconvective grid-scale layered clouds (hereafter referred to as the SUNAS cloud package), is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, Version 2 (CCM2). The AS scheme is used for a more reasonable heating distribution due to convective clouds and their associated precipitation. The SUN scheme allows for the prognostic computation of cloud water so that the cloud optical properties are more physically determined for shortwave and longwave radiation calculations. In addition, the formation of anvil-like clouds from deep convective systems is able to be simulated with the SUNAS package. A 10-year simulation spanning the period from 1980 to 1989 is conducted, and the effect of the cloud package on the January climate is assessed by comparing it with various available data sets and the National Center for Environmental Protection/NCAR reanalysis. Strengths and deficiencies of both the SUN and AS methods are identified and discussed. The AS scheme improves some aspects of the model dynamics and precipitation, especially with respect to the Pacific North America (PNA) pattern. CCM2's tendency to produce a westward bias of the 500 mbar stationary wave (time-averaged zonal anomalies) in the PNA sector is remedied apparently because of a less "locked-in" heating pattern in the tropics. The additional degree of freedom added by the prognostic calculation of cloud water in the SUN scheme produces interesting results in the modeled cloud and radiation fields compared with data. In general, too little cloud water forms in the tropics, while excessive cloud cover and cloud liquid water are simulated in midlatitudes. This results in a somewhat degraded simulation of the radiation budget. The overall simulated precipitation by the SUNAS package is, however, substantially improved over the original CCM2.
Column compression strength of tubular packaging forms made from paper
Thomas J. Urbanik; Sung K. Lee; Charles G. Johnson
2006-01-01
Tubular packaging forms fabricated and shaped from rolled paper are used as reinforcing corner posts for major appliances packaged in corrugated containers. Tests of column compression strength simulate the expected performance loads from appliances stacked in warehouses. Column strength depends on tube geometry, paper properties, basis weight, and number of...
ERIC Educational Resources Information Center
Rupp, André A.; van Rijn, Peter W.
2018-01-01
We review the GIDNA and CDM packages in R for fitting cognitive diagnosis/diagnostic classification models. We first provide a summary of their core capabilities and then use both simulated and real data to compare their functionalities in practice. We found that the most relevant routines in the two packages appear to be more similar than…
49 CFR 178.609 - Test requirements for packagings for infectious substances.
Code of Federal Regulations, 2012 CFR
2012-10-01
... solid infectious substance should be replaced by water or, where conditioning at −18 °C (0 °F) is specified, by water/antifreeze. Each primary receptacle must be filled to 98 percent capacity. Packagings... packaging. (e) The samples must be subjected to a water spray to simulate exposure to rainfall of...
49 CFR 178.609 - Test requirements for packagings for infectious substances.
Code of Federal Regulations, 2014 CFR
2014-10-01
... solid infectious substance should be replaced by water or, where conditioning at −18 °C (0 °F) is specified, by water/antifreeze. Each primary receptacle must be filled to 98 percent capacity. Packagings... packaging. (e) The samples must be subjected to a water spray to simulate exposure to rainfall of...
49 CFR 178.609 - Test requirements for packagings for infectious substances.
Code of Federal Regulations, 2013 CFR
2013-10-01
... solid infectious substance should be replaced by water or, where conditioning at −18 °C (0 °F) is specified, by water/antifreeze. Each primary receptacle must be filled to 98 percent capacity. Packagings... packaging. (e) The samples must be subjected to a water spray to simulate exposure to rainfall of...
Efficient analysis of large-scale genome-wide data with two R packages: bigstatsr and bigsnpr.
Privé, Florian; Aschard, Hugues; Ziyatdinov, Andrey; Blum, Michael G B
2017-03-30
Genome-wide datasets produced for association studies have dramatically increased in size over the past few years, with modern datasets commonly including millions of variants measured in dozens of thousands of individuals. This increase in data size is a major challenge severely slowing down genomic analyses, leading to some software becoming obsolete and researchers having limited access to diverse analysis tools. Here we present two R packages, bigstatsr and bigsnpr, allowing for the analysis of large scale genomic data to be performed within R. To address large data size, the packages use memory-mapping for accessing data matrices stored on disk instead of in RAM. To perform data pre-processing and data analysis, the packages integrate most of the tools that are commonly used, either through transparent system calls to existing software, or through updated or improved implementation of existing methods. In particular, the packages implement fast and accurate computations of principal component analysis and association studies, functions to remove SNPs in linkage disequilibrium and algorithms to learn polygenic risk scores on millions of SNPs. We illustrate applications of the two R packages by analyzing a case-control genomic dataset for celiac disease, performing an association study and computing Polygenic Risk Scores. Finally, we demonstrate the scalability of the R packages by analyzing a simulated genome-wide dataset including 500,000 individuals and 1 million markers on a single desktop computer. https://privefl.github.io/bigstatsr/ & https://privefl.github.io/bigsnpr/. florian.prive@univ-grenoble-alpes.fr & michael.blum@univ-grenoble-alpes.fr. Supplementary materials are available at Bioinformatics online.
Solernou, Albert; Hanson, Benjamin S; Richardson, Robin A; Welch, Robert; Read, Daniel J; Harlen, Oliver G; Harris, Sarah A
2018-03-01
Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package.
NASA Technical Reports Server (NTRS)
Bacmeister, Julio; Rienecker, Michele; Suarez, Max; Norris, Peter
2007-01-01
The GEOS-5 atmospheric model is being developed as a weather-and-climate capable model. It must perform well in assimilation mode as well as in weather and climate simulations and forecasts and in coupled chemistry-climate simulations. In developing GEOS-5, attention has focused on the representation of moist processes. The moist physics package uses a single phase prognostic condensate and a prognostic cloud fraction. Two separate cloud types are distinguished by their source: "anvil" cloud originates in detraining convection, and large-scale cloud originates in a PDF-based condensation calculation. Ice and liquid phases for each cloud type are considered. Once created, condensate and fraction from the anvil and statistical cloud types experience the same loss processes: evaporation of condensate and fraction, auto-conversion of liquid or mixed phase condensate, sedimentation of frozen condensate, and accretion of condensate by falling precipitation. The convective parameterization scheme is the Relaxed Arakawa-Schubert, or RAS, scheme. Satellite data are used to evaluate the performance of the moist physics packages and help in their tuning. In addition, analysis of and comparisons to cloud-resolving models such as the Goddard Cumulus Ensemble model are used to help improve the PDFs used in the moist physics. The presentation will show some of our evaluations including precipitation diagnostics.
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Arrigo, Kevin; Murtugudde, Ragu; Signorini, Sergio R.; Tai, King-Sheng
1998-01-01
This TM describes the development, testing, and application of a 4-component (phytoplankton, zooplankton, nitrate, and ammonium) ecosystem model capable of simulating oceanic biological processes. It also reports and documents an in-house software package (Interactive Data Analysis Package - IDAPAK) for interactive data analysis of geophysical fields, including those related to the forcing, verification, and analysis of the ecosystem model. Two regions were studied in the Pacific: the Warm Pool (WP) in the Equatorial Pacific (165 deg. E at the equator) and at Ocean Weather Station P (OWS P) in the Northeast Pacific (50 deg. N, 145 deg. W). The WP results clearly indicate that the upwelling at 100 meters correlates well with surface blooms. The upwelling events in late 1987 and 1990 produced dramatic increases in the surface layer values of all 4 ecosystem components, whereas the spring-summer deep mixing events, do not seem to incur a significant response in any of the ecosystem quantities. The OWS P results show that the monthly profiles of temperature, the annual cycles of solar irradiance, and 0- to 50-m integrated nitrate accurately reproduce observed values. Annual primary production is 190 gC/m(exp 2)/yr, which is consistent with recent observations but is much greater than earlier estimates.
Application of MODFLOW’s farm process to California’s Central Valley
Faunt, Claudia; Hanson, Randall T.; Schmid, Wolfgang; Belitz, Kenneth
2008-01-01
landscape processes. The FMP provides coupled simulation of the ground-water and surface-water components of the hydrologic cycle for irrigated and non-irrigated areas. A dynamic allocation of ground-water recharge and ground-water pumping is simulated on the basis of residual crop-water demand after surface-water deliveries and root uptake from shallow ground water. The FMP links with the Streamflow Routing Package SFR1) to facilitate the simulated conveyance of surface-water deliveries. Ground-water Pumpage through both single-aquifer and multi-node wells, irrigation return flow, and variable irrigation efficiencies also are simulated by the FMP. The simulated deliveries and ground-water pumpage in the updated model reflect climatic differences, differences among defined water-balance regions, and changes in the waterdelivery system, during the 1961–2003 simulation period. The model is designed to accept forecasts from Global Climate Models (GCMs) to simulate the potential effects on surface-water delivery, ground-water pumpage, and ground-water storage in response to climate change. The model provides a detailed transient analysis of changes in ground-water availability in relation to climatic variability, urbanization, and changes in irrigated agriculture.
Energetics of genome ejection from phage revealed by isothermal titration calorimetry
NASA Astrophysics Data System (ADS)
Jeembaeva, Meerim; Jonsson, Bengt; Castelnovo, Martin; Evilevitch, Alex
2009-03-01
It has been experimentally shown that ejection of double-stranded DNA from phage is driven by internal pressure reaching tens of atmospheres. This internal pressure is partially responsible for delivery of DNA into the host cell. While several theoretical models and simulations nicely describe the experimental data of internal forces either resisting active packaging or equivalently favoring spontaneous ejection, there are no direct energy measurements available that would help to verify how quantitative these theories are. We performed direct measurements of the enthalpy responsible for DNA ejection from phage λ, using Isothermal Titration Calorimetry. The phage capsids were ``opened'' in vitro by titrating λ into a solution with LamB receptor and the enthalpy of DNA ejection process was measured. In his way, enthalpy stored in λ was determined as a function of packaged DNA length comparing wild-type phage λ (48.5 kb) with a shorter λ-DNA length mutant (37.7 kb). The temperature dependence of the ejection enthalpy was also investigated. The values obtained were in good agreement with existing models and provide a better understanding of ds- DNA packaging and release mechanisms in motor-packaged viruses (e.g., tailed bacteriophages, Herpes Simplex, and adenoviruses).
ERIC Educational Resources Information Center
Science Teacher, 1988
1988-01-01
Reviews four software packages available for IBM PC or Apple II. Includes "Graphical Analysis III"; "Space Max: Space Station Construction Simulation"; "Guesstimation"; and "Genetic Engineering Toolbox." Focuses on each packages' strengths in a high school context. (CW)
Stochastic approach for radionuclides quantification
NASA Astrophysics Data System (ADS)
Clement, A.; Saurel, N.; Perrin, G.
2018-01-01
Gamma spectrometry is a passive non-destructive assay used to quantify radionuclides present in more or less complex objects. Basic methods using empirical calibration with a standard in order to quantify the activity of nuclear materials by determining the calibration coefficient are useless on non-reproducible, complex and single nuclear objects such as waste packages. Package specifications as composition or geometry change from one package to another and involve a high variability of objects. Current quantification process uses numerical modelling of the measured scene with few available data such as geometry or composition. These data are density, material, screen, geometric shape, matrix composition, matrix and source distribution. Some of them are strongly dependent on package data knowledge and operator backgrounds. The French Commissariat à l'Energie Atomique (CEA) is developing a new methodology to quantify nuclear materials in waste packages and waste drums without operator adjustment and internal package configuration knowledge. This method suggests combining a global stochastic approach which uses, among others, surrogate models available to simulate the gamma attenuation behaviour, a Bayesian approach which considers conditional probability densities of problem inputs, and Markov Chains Monte Carlo algorithms (MCMC) which solve inverse problems, with gamma ray emission radionuclide spectrum, and outside dimensions of interest objects. The methodology is testing to quantify actinide activity in different kind of matrix, composition, and configuration of sources standard in terms of actinide masses, locations and distributions. Activity uncertainties are taken into account by this adjustment methodology.
Romanian experience on packaging testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieru, G.
2007-07-01
With more than twenty years ago, the Institute for Nuclear Research Pitesti (INR), through its Reliability and Testing Laboratory, was licensed by the Romanian Nuclear Regulatory Body- CNCAN and to carry out qualification tests [1] for packages intended to be used for the transport and storage of radioactive materials. Radioactive materials, generated by Romanian nuclear facilities [2] are packaged in accordance with national [3] and the IAEA's Regulations [1,6] for a safe transport to the disposal center. Subjecting these packages to the normal and simulating test conditions accomplish the evaluation and certification in order to prove the package technical performances.more » The paper describes the qualification tests for type A and B packages used for transport and storage of radioactive materials, during a period of 20 years of experience. Testing is used to substantiate assumption in analytical models and to demonstrate package structural response. The Romanian test facilities [1,3,6] are used to simulate the required qualification tests and have been developed at INR Pitesti, the main supplier of type A packages used for transport and storage of low radioactive wastes in Romania. The testing programme will continue to be a strong option to support future package development, to perform a broad range of verification and certification tests on radioactive material packages or component sections, such as packages used for transport of radioactive sources to be used for industrial or medical purposes [2,8]. The paper describes and contain illustrations showing some of the various tests packages which have been performed during certain periods and how they relate to normal conditions and minor mishaps during transport. Quality assurance and quality controls measures taken in order to meet technical specification provided by the design there are also presented and commented. (authors)« less
Implications of Sea Level Rise on Coastal Flood Hazards
NASA Astrophysics Data System (ADS)
Roeber, V.; Li, N.; Cheung, K.; Lane, P.; Evans, R. L.; Donnelly, J. P.; Ashton, A. D.
2012-12-01
Recent global and local projections suggest the sea level will be on the order of 1 m or higher than the current level by the end of the century. Coastal communities and ecosystems in low-lying areas are vulnerable to impacts resulting from hurricane or large swell events in combination with sea-level rise. This study presents the implementation and results of an integrated numerical modeling package to delineate coastal inundation due to storm landfalls at future sea levels. The modeling package utilizes a suite of numerical models to capture both large-scale phenomena in the open ocean and small-scale processes in coastal areas. It contains four components to simulate (1) meteorological conditions, (2) astronomical tides and surge, (3) wave generation, propagation, and nearshore transformation, and (4) surf-zone processes and inundation onto dry land associated with a storm event. Important aspects of this package are the two-way coupling of a spectral wave model and a storm surge model as well as a detailed representation of surf and swash zone dynamics by a higher-order Boussinesq-type wave model. The package was validated with field data from Hurricane Ivan of 2005 on the US Gulf coast and applied to tropical and extratropical storm scenarios respectively at Eglin, Florida and Camp Lejeune, North Carolina. The results show a nonlinear increase of storm surge level and nearshore wave energy with a rising sea level. The exacerbated flood hazard can have major consequences for coastal communities with respect to erosion and damage to infrastructure.
Spectral-element Seismic Wave Propagation on CUDA/OpenCL Hardware Accelerators
NASA Astrophysics Data System (ADS)
Peter, D. B.; Videau, B.; Pouget, K.; Komatitsch, D.
2015-12-01
Seismic wave propagation codes are essential tools to investigate a variety of wave phenomena in the Earth. Furthermore, they can now be used for seismic full-waveform inversions in regional- and global-scale adjoint tomography. Although these seismic wave propagation solvers are crucial ingredients to improve the resolution of tomographic images to answer important questions about the nature of Earth's internal processes and subsurface structure, their practical application is often limited due to high computational costs. They thus need high-performance computing (HPC) facilities to improving the current state of knowledge. At present, numerous large HPC systems embed many-core architectures such as graphics processing units (GPUs) to enhance numerical performance. Such hardware accelerators can be programmed using either the CUDA programming environment or the OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted by additional hardware accelerators, like e.g. AMD graphic cards, ARM-based processors as well as Intel Xeon Phi coprocessors. For seismic wave propagation simulations using the open-source spectral-element code package SPECFEM3D_GLOBE, we incorporated an automatic source-to-source code generation tool (BOAST) which allows us to use meta-programming of all computational kernels for forward and adjoint runs. Using our BOAST kernels, we generate optimized source code for both CUDA and OpenCL languages within the source code package. Thus, seismic wave simulations are able now to fully utilize CUDA and OpenCL hardware accelerators. We show benchmarks of forward seismic wave propagation simulations using SPECFEM3D_GLOBE on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
Mehl, Steffen W.; Hill, Mary C.
2013-01-01
This report documents the addition of ghost node Local Grid Refinement (LGR2) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference groundwater flow model. LGR2 provides the capability to simulate groundwater flow using multiple block-shaped higher-resolution local grids (a child model) within a coarser-grid parent model. LGR2 accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the grid-refinement interface boundary. LGR2 can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems. Traditional one-way coupled telescopic mesh refinement methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled ghost-node method of LGR2 provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR2, evaluates accuracy and performance for two-and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH2) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR2.
Mehl, Steffen W.; Hill, Mary C.
2006-01-01
This report documents the addition of shared node Local Grid Refinement (LGR) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference ground-water flow model. LGR provides the capability to simulate ground-water flow using one block-shaped higher-resolution local grid (a child model) within a coarser-grid parent model. LGR accomplishes this by iteratively coupling two separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundary. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. Traditional one-way coupled telescopic mesh refinement (TMR) methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled shared-node method of LGR provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR, evaluates LGR accuracy and performance for two- and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR.
Alegre, Isabel; Viñas, Inmaculada; Usall, Josep; Anguera, Marina; Altisent, Rosa; Abadias, Maribel
2013-04-01
Recently, we reported that the application of the strain CPA-7 of Pseudomonas graminis, previously isolated from apple, could reduce the population of foodborne pathogens on minimally processed (MP) apples and peaches under laboratory conditions. Therefore, the objective of the present work was to find an antioxidant treatment and a packaging atmosphere condition to improve CPA-7 efficacy in reducing a cocktail of four Salmonella and five Listeria monocytogenes strains on MP apples under simulated commercial processing. The effect of CPA-7 application on apple quality and its survival to simulated gastric stress were also evaluated. Ascorbic acid (2%, w/v) and N-acetyl-l-cysteine (1%, w/v) as antioxidant treatments reduced Salmonella, L. monocytogenes and CPA-7 recovery, meanwhile no reduction was observed with NatureSeal(®) AS1 (NS, 6%, w/v). The antagonistic strain was effective on NS-treated apple wedges stored at 10 °C with or without modified atmosphere packaging (MAP). Then, in a semi-commercial assay, efficacy of CPA-7 inoculated at 10(5) and 10(7) cfu mL(-1) against Salmonella and L. monocytogenes strains on MP apples with NS and MAP and stored at 5 and 10 °C was evaluated. Although high CPA-7 concentrations/populations avoided Salmonella growth at 10 °C and lowered L. monocytogenes population increases were observed at both temperatures, the effect was not instantaneous. No effect on apple quality was detected and CPA-7 did not survived to simulated gastric stress throughout storage. Therefore, CPA-7 could avoid pathogens growth on MP apples during storage when use as part of a hurdle technology in combination with disinfection techniques, low storage temperature and MAP. Copyright © 2012 Elsevier Ltd. All rights reserved.
Development Of A Three-Dimensional Circuit Integration Technology And Computer Architecture
NASA Astrophysics Data System (ADS)
Etchells, R. D.; Grinberg, J.; Nudd, G. R.
1981-12-01
This paper is the first of a series 1,2,3 describing a range of efforts at Hughes Research Laboratories, which are collectively referred to as "Three-Dimensional Microelectronics." The technology being developed is a combination of a unique circuit fabrication/packaging technology and a novel processing architecture. The packaging technology greatly reduces the parasitic impedances associated with signal-routing in complex VLSI structures, while simultaneously allowing circuit densities orders of magnitude higher than the current state-of-the-art. When combined with the 3-D processor architecture, the resulting machine exhibits a one- to two-order of magnitude simultaneous improvement over current state-of-the-art machines in the three areas of processing speed, power consumption, and physical volume. The 3-D architecture is essentially that commonly referred to as a "cellular array", with the ultimate implementation having as many as 512 x 512 processors working in parallel. The three-dimensional nature of the assembled machine arises from the fact that the chips containing the active circuitry of the processor are stacked on top of each other. In this structure, electrical signals are passed vertically through the chips via thermomigrated aluminum feedthroughs. Signals are passed between adjacent chips by micro-interconnects. This discussion presents a broad view of the total effort, as well as a more detailed treatment of the fabrication and packaging technologies themselves. The results of performance simulations of the completed 3-D processor executing a variety of algorithms are also presented. Of particular pertinence to the interests of the focal-plane array community is the simulation of the UNICORNS nonuniformity correction algorithms as executed by the 3-D architecture.
diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data.
Lun, Aaron T L; Smyth, Gordon K
2015-08-19
Chromatin conformation capture with high-throughput sequencing (Hi-C) is a technique that measures the in vivo intensity of interactions between all pairs of loci in the genome. Most conventional analyses of Hi-C data focus on the detection of statistically significant interactions. However, an alternative strategy involves identifying significant changes in the interaction intensity (i.e., differential interactions) between two or more biological conditions. This is more statistically rigorous and may provide more biologically relevant results. Here, we present the diffHic software package for the detection of differential interactions from Hi-C data. diffHic provides methods for read pair alignment and processing, counting into bin pairs, filtering out low-abundance events and normalization of trended or CNV-driven biases. It uses the statistical framework of the edgeR package to model biological variability and to test for significant differences between conditions. Several options for the visualization of results are also included. The use of diffHic is demonstrated with real Hi-C data sets. Performance against existing methods is also evaluated with simulated data. On real data, diffHic is able to successfully detect interactions with significant differences in intensity between biological conditions. It also compares favourably to existing software tools on simulated data sets. These results suggest that diffHic is a viable approach for differential analyses of Hi-C data.
CalcHEP 3.4 for collider physics within and beyond the Standard Model
NASA Astrophysics Data System (ADS)
Belyaev, Alexander; Christensen, Neil D.; Pukhov, Alexander
2013-07-01
We present version 3.4 of the CalcHEP software package which is designed for effective evaluation and simulation of high energy physics collider processes at parton level. The main features of CalcHEP are the computation of Feynman diagrams, integration over multi-particle phase space and event simulation at parton level. The principle attractive key-points along these lines are that it has: (a) an easy startup and usage even for those who are not familiar with CalcHEP and programming; (b) a friendly and convenient graphical user interface (GUI); (c) the option for the user to easily modify a model or introduce a new model by either using the graphical interface or by using an external package with the possibility of cross checking the results in different gauges; (d) a batch interface which allows to perform very complicated and tedious calculations connecting production and decay modes for processes with many particles in the final state. With this features set, CalcHEP can efficiently perform calculations with a high level of automation from a theory in the form of a Lagrangian down to phenomenology in the form of cross sections, parton level event simulation and various kinematical distributions. In this paper we report on the new features of CalcHEP 3.4 which improves the power of our package to be an effective tool for the study of modern collider phenomenology. Program summaryProgram title: CalcHEP Catalogue identifier: AEOV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 78535 No. of bytes in distributed program, including test data, etc.: 818061 Distribution format: tar.gz Programming language: C. Computer: PC, MAC, Unix Workstations. Operating system: Unix. RAM: Depends on process under study Classification: 4.4, 5. External routines: X11 Nature of problem: Implement new models of particle interactions. Generate Feynman diagrams for a physical process in any implemented theoretical model. Integrate phase space for Feynman diagrams to obtain cross sections or particle widths taking into account kinematical cuts. Simulate collisions at modern colliders and generate respective unweighted events. Mix events for different subprocesses and connect them with the decays of unstable particles. Solution method: Symbolic calculations. Squared Feynman diagram approach Vegas Monte Carlo algorithm. Restrictions: Up to 2→4 production (1→5 decay) processes are realistic on typical computers. Higher multiplicities sometimes possible for specific 2→5 and 2→6 processes. Unusual features: Graphical user interface, symbolic algebra calculation of squared matrix element, parallelization on a pbs cluster. Running time: Depends strongly on the process. For a typical 2→2 process it takes seconds. For 2→3 processes the typical running time is of the order of minutes. For higher multiplicities it could take much longer.
Results of intravehicular manned cargo-transfer studies in simulated weightlessness
NASA Technical Reports Server (NTRS)
Spady, A. A., Jr.; Beasley, G. P.; Yenni, K. R.; Eisele, D. F.
1972-01-01
A parametric investigation was conducted in a water immersion simulator to determine the effect of package mass, moment of inertia, and size on the ability of man to transfer cargo in simulated weightlessness. Results from this study indicate that packages with masses of at least 744 kg and moments of inertia of at least 386 kg-m2 can be manually handled and transferred satisfactorily under intravehicular conditions using either one- or two-rail motion aids. Data leading to the conclusions and discussions of test procedures and equipment are presented.
Allende, Ana; Jacxsens, Liesbeth; Devlieghere, Frank; Debevere, Johan; Artés, Francisco
2002-10-01
Atmospheres with O2 levels higher than 70 kPa have recently been suggested as an innovation to modified atmosphere packaging (MAP) for fresh processed vegetables to maintain sensory quality and safety. In the present work, mixed vegetable salad collected from a commercial processing plant and stored with the MAP technique was studied. Two gas mixtures were actively generated by using an initial O2 concentration of 95 kPa and combined with two plastic films. The low-barrier film permeability for O2 was 1,629 mlO2/m2 x 24 h x atm with 30 microm of thickness (Hyplast, Hoogstraten, Belgium) and the O2 permeability of the high-barrier film was 2 mlO2/m2 x 24h x atm with 150 microm of thickness (Euralpack, Wommelgen, Belgium) at 23 degrees C. As control, active conventional MAP with application of 3 to 5 kPa of O2 and 6 to 8 kPa of CO2 was used. Packaged salads were stored up to 8 days at 4 degrees C and at temperatures simulating chilled distribution chain conditions. Microbial safety and sensory quality, as well as the survival of inoculated Listeria monocytogenes and Aeromonas caviae, were monitored. The effect of superatmospheric O2 on the growth of aerobic microflora was variable. Under superatmospheric conditions, lactic acid bacteria and members of Enterobacteriaceae were inhibited. Nevertheless, growth of yeast and A. caviae seem to be stimulated by superatmospheric O2, whereas growth of psychrotrophic bacteria and L monocytogenes was not affected. The overall visual appearance (mainly color) of the mixed vegetable salads was better maintained and the shelf life prolonged when packaged under O2 concentrations greater than 50 kPa.
Anderman, E.R.; Hill, M.C.
2000-01-01
This report documents the Hydrogeologic-Unit Flow (HUF) Package for the groundwater modeling computer program MODFLOW-2000. The HUF Package is an alternative internal flow package that allows the vertical geometry of the system hydrogeology to be defined explicitly within the model using hydrogeologic units that can be different than the definition of the model layers. The HUF Package works with all the processes of MODFLOW-2000. For the Ground-Water Flow Process, the HUF Package calculates effective hydraulic properties for the model layers based on the hydraulic properties of the hydrogeologic units, which are defined by the user using parameters. The hydraulic properties are used to calculate the conductance coefficients and other terms needed to solve the ground-water flow equation. The sensitivity of the model to the parameters defined within the HUF Package input file can be calculated using the Sensitivity Process, using observations defined with the Observation Process. Optimal values of the parameters can be estimated by using the Parameter-Estimation Process. The HUF Package is nearly identical to the Layer-Property Flow (LPF) Package, the major difference being the definition of the vertical geometry of the system hydrogeology. Use of the HUF Package is illustrated in two test cases, which also serve to verify the performance of the package by showing that the Parameter-Estimation Process produces the true parameter values when exact observations are used.
NASA Astrophysics Data System (ADS)
Nallatamby, Jean-Christophe; Abdelhadi, Khaled; Jacquet, Jean-Claude; Prigent, Michel; Floriot, Didier; Delage, Sylvain; Obregon, Juan
2013-03-01
Commercially available simulators present considerable advantages in performing accurate DC, AC and transient simulations of semiconductor devices, including many fundamental and parasitic effects which are not generally taken into account in house-made simulators. Nevertheless, while the TCAD simulators of the public domain we have tested give accurate results for the simulation of diffusion noise, none of the tested simulators perform trap-assisted GR noise accurately. In order to overcome the aforementioned problem we propose a robust solution to accurately simulate GR noise due to traps. It is based on numerical processing of the output data of one of the simulators available in the public-domain, namely SENTAURUS (from Synopsys). We have linked together, through a dedicated Data Access Component (DAC), the deterministic output data available from SENTAURUS and a powerful, customizable post-processing tool developed on the mathematical SCILAB software package. Thus, robust simulations of GR noise in semiconductor devices can be performed by using GR Langevin sources associated to the scalar Green functions responses of the device. Our method takes advantage of the accuracy of the deterministic simulations of electronic devices obtained with SENTAURUS. A Comparison between 2-D simulations and measurements of low frequency noise on InGaP-GaAs heterojunctions, at low as well as high injection levels, demonstrates the validity of the proposed simulation tool.
Item Response Data Analysis Using Stata Item Response Theory Package
ERIC Educational Resources Information Center
Yang, Ji Seung; Zheng, Xiaying
2018-01-01
The purpose of this article is to introduce and review the capability and performance of the Stata item response theory (IRT) package that is available from Stata v.14, 2015. Using a simulated data set and a publicly available item response data set extracted from Programme of International Student Assessment, we review the IRT package from…
Design and Evaluation of an Integrated Online Motion Control Training Package
ERIC Educational Resources Information Center
Buiu, C.
2009-01-01
The aim of this paper is to present an integrated Internet-based package for teaching the fundamentals of motion control by using a wide range of resources: theory, videos, simulators, games, quizzes, and a remote lab. The package is aimed at automation technicians, pupils at vocational schools and students taking an introductory course in…
The State System Exercise. Learning Packages in International Relations. Learning Package One.
ERIC Educational Resources Information Center
Coplin, William D.
Learning package 1, the first in a series of four, incorporates a simulation exercise designed to help students in higher education understand factors that affect the stability of the international relations system. Focus is on a "system" perspective in order to show the historical development and to point up the operation of various…
High Resolution Aerospace Applications using the NASA Columbia Supercomputer
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.; Aftosmis, Michael J.; Berger, Marsha
2005-01-01
This paper focuses on the parallel performance of two high-performance aerodynamic simulation packages on the newly installed NASA Columbia supercomputer. These packages include both a high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver, and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complementary combination of these two simulation codes enables high-fidelity characterization of aerospace vehicle design performance over the entire flight envelope through extensive parametric analysis and detailed simulation of critical regions of the flight envelope. Both packages. are industrial-level codes designed for complex geometry and incorpor.ats. CuStomized multigrid solution algorithms. The performance of these codes on Columbia is examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 CPUs using the NUMAIink4 interconnect, with measured computational rates in the vicinity of 3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts, particularly with multigrid. Nonetheless, the results are encouraging enough to indicate that larger test cases using combined MPI/OpenMP communication should scale well on even more processors.
An Integrated Software Package to Enable Predictive Simulation Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Fitzhenry, Erin B.; Jin, Shuangshuang
The power grid is increasing in complexity due to the deployment of smart grid technologies. Such technologies vastly increase the size and complexity of power grid systems for simulation and modeling. This increasing complexity necessitates not only the use of high-performance-computing (HPC) techniques, but a smooth, well-integrated interplay between HPC applications. This paper presents a new integrated software package that integrates HPC applications and a web-based visualization tool based on a middleware framework. This framework can support the data communication between different applications. Case studies with a large power system demonstrate the predictive capability brought by the integrated software package,more » as well as the better situational awareness provided by the web-based visualization tool in a live mode. Test results validate the effectiveness and usability of the integrated software package.« less
Wave Resource Characterization Using an Unstructured Grid Modeling Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei-Cheng; Yang, Zhaoqing; Wang, Taiping
This paper presents a modeling study conducted on the central Oregon coast for wave resource characterization using the unstructured-grid SWAN model coupled with a nested-grid WWIII model. The flexibility of models of various spatial resolutions and the effects of open- boundary conditions simulated by a nested-grid WWIII model with different physics packages were evaluated. The model results demonstrate the advantage of the unstructured-grid modeling approach for flexible model resolution and good model skills in simulating the six wave resource parameters recommended by the International Electrotechnical Commission in comparison to the observed data in Year 2009 at National Data Buoy Centermore » Buoy 46050. Notably, spectral analysis indicates that the ST4 physics package improves upon the model skill of the ST2 physics package for predicting wave power density for large waves, which is important for wave resource assessment, device load calculation, and risk management. In addition, bivariate distributions show the simulated sea state of maximum occurrence with the ST4 physics package matched the observed data better than that with the ST2 physics package. This study demonstrated that the unstructured-grid wave modeling approach, driven by the nested-grid regional WWIII outputs with the ST4 physics package, can efficiently provide accurate wave hindcasts to support wave resource characterization. Our study also suggests that wind effects need to be considered if the dimension of the model domain is greater than approximately 100 km, or O (10^2 km).« less
Parallel 3D Finite Element Numerical Modelling of DC Electron Guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prudencio, E.; Candel, A.; Ge, L.
2008-02-04
In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation timemore » from days to some hours.« less
A system study for the application of microcomputers to research flight test techniques
NASA Technical Reports Server (NTRS)
Smyth, R. K.
1983-01-01
The onboard simulator is a three degree of freedom aircraft behavior simulator which provides parameters used by the interception procedure. These parameters can be used for verifying closed loop performance before flight. The air to air intercept mode is a software package integrated in the simulation process that generates a target motion and performs a tracking procedure that predicts the most likely next target position, for a defined time step. This procedure also updates relative position parameters and gives adequate fire commands. A microcomputer based on an aircraft spin warning system periodically samples the assymetric thrust and yaw rate of an airplane and then issues voice synthesized warnings and /or suggests to the ilot how to respond to the situation.
Surface acoustic wave resonators
NASA Astrophysics Data System (ADS)
Avitabile, Gianfranco; Roselli, Luca; Atzeni, Carlo; Manes, Gianfranco
1991-10-01
The development of surface acoustic wave (SAW) resonators is reviewed with attention given to the design of a simulation package for CAD-assisted SAW resonator design. Basic design configurations and operation parameters are set forth for the SAW resonators including the phase of the reflection factor, evaluation of the stopband center frequency, stopband width, and the free propagation speed. The use of synchronous designs is shown to reduce device sensitivity to variations in the technological process but generate higher insertion losses. The existence of transverse modes and propagation losses is shown to affect the rejection of spurious modes and the achievement of low insertion losses. Several SAW resonators are designed and fabricated with the CAD process, and the resonators in the VHF-UHF bands perform in a manner predicted by simulated results.
Pryor, Alan; Ophus, Colin; Miao, Jianwei
2017-10-25
Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less
Pryor, Alan; Ophus, Colin; Miao, Jianwei
2017-01-01
Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. Here, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditional multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic , using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, Alan; Ophus, Colin; Miao, Jianwei
Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less
Shen, Wen-Wei; Lin, Yu-Min; Wu, Sheng-Tsai; Lee, Chia-Hsin; Huang, Shin-Yi; Chang, Hsiang-Hung; Chang, Tao-Chih; Chen, Kuan-Neng
2018-08-01
In this study, through silicon via (TSV)-less interconnection using the fan-out wafer-level-packaging (FO-WLP) technology and a novel redistribution layer (RDL)-first wafer level packaging are investigated. Since warpage of molded wafer is a critical issue and needs to be optimized for process integration, the evaluation of the warpage issue on a 12-inch wafer using finite element analysis (FEA) at various parameters is presented. Related parameters include geometric dimension (such as chip size, chip number, chip thickness, and mold thickness), materials' selection and structure optimization. The effect of glass carriers with various coefficients of thermal expansion (CTE) is also discussed. Chips are bonded onto a 12-inch reconstituted wafer, which includes 2 RDL layers, 3 passivation layers, and micro bumps, followed by using epoxy molding compound process. Furthermore, an optical surface inspector is adopted to measure the surface profile and the results are compared with the results from simulation. In order to examine the quality of the TSV-less interconnection structure, electrical measurement is conducted and the respective results are presented.
Chemical effect on diffusion in intermetallic compounds
NASA Astrophysics Data System (ADS)
Chen, Yi-Ting
With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion activation enthalpy and diffusion pre-factor by using lattice structure simulation. Last but not the least, X-ray photoelectron spectroscopy and First principal calculation simulation were used to observe the electron binding energies in the intermetallic compound and illustrate the partial covalent bonding behavior in the intermetallic compounds.
Numerical simulation of electron beam welding with beam oscillations
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Permyakov, G. L.
2017-02-01
This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.
Quality Improvement With Discrete Event Simulation: A Primer for Radiologists.
Booker, Michael T; O'Connell, Ryan J; Desai, Bhushan; Duddalwar, Vinay A
2016-04-01
The application of simulation software in health care has transformed quality and process improvement. Specifically, software based on discrete-event simulation (DES) has shown the ability to improve radiology workflows and systems. Nevertheless, despite the successful application of DES in the medical literature, the power and value of simulation remains underutilized. For this reason, the basics of DES modeling are introduced, with specific attention to medical imaging. In an effort to provide readers with the tools necessary to begin their own DES analyses, the practical steps of choosing a software package and building a basic radiology model are discussed. In addition, three radiology system examples are presented, with accompanying DES models that assist in analysis and decision making. Through these simulations, we provide readers with an understanding of the theory, requirements, and benefits of implementing DES in their own radiology practices. Copyright © 2016 American College of Radiology. All rights reserved.
OpenMP-accelerated SWAT simulation using Intel C and FORTRAN compilers: Development and benchmark
NASA Astrophysics Data System (ADS)
Ki, Seo Jin; Sugimura, Tak; Kim, Albert S.
2015-02-01
We developed a practical method to accelerate execution of Soil and Water Assessment Tool (SWAT) using open (free) computational resources. The SWAT source code (rev 622) was recompiled using a non-commercial Intel FORTRAN compiler in Ubuntu 12.04 LTS Linux platform, and newly named iOMP-SWAT in this study. GNU utilities of make, gprof, and diff were used to develop the iOMP-SWAT package, profile memory usage, and check identicalness of parallel and serial simulations. Among 302 SWAT subroutines, the slowest routines were identified using GNU gprof, and later modified using Open Multiple Processing (OpenMP) library in an 8-core shared memory system. In addition, a C wrapping function was used to rapidly set large arrays to zero by cross compiling with the original SWAT FORTRAN package. A universal speedup ratio of 2.3 was achieved using input data sets of a large number of hydrological response units. As we specifically focus on acceleration of a single SWAT run, the use of iOMP-SWAT for parameter calibrations will significantly improve the performance of SWAT optimization.
BoolNet--an R package for generation, reconstruction and analysis of Boolean networks.
Müssel, Christoph; Hopfensitz, Martin; Kestler, Hans A
2010-05-15
As the study of information processing in living cells moves from individual pathways to complex regulatory networks, mathematical models and simulation become indispensable tools for analyzing the complex behavior of such networks and can provide deep insights into the functioning of cells. The dynamics of gene expression, for example, can be modeled with Boolean networks (BNs). These are mathematical models of low complexity, but have the advantage of being able to capture essential properties of gene-regulatory networks. However, current implementations of BNs only focus on different sub-aspects of this model and do not allow for a seamless integration into existing preprocessing pipelines. BoolNet efficiently integrates methods for synchronous, asynchronous and probabilistic BNs. This includes reconstructing networks from time series, generating random networks, robustness analysis via perturbation, Markov chain simulations, and identification and visualization of attractors. The package BoolNet is freely available from the R project at http://cran.r-project.org/ or http://www.informatik.uni-ulm.de/ni/mitarbeiter/HKestler/boolnet/ under Artistic License 2.0. hans.kestler@uni-ulm.de Supplementary data are available at Bioinformatics online.
Food choice: the battle between package, taste and consumption situation.
Gutjar, Swetlana; de Graaf, Cees; Palascha, Aikaterini; Jager, Gerry
2014-09-01
The present study compared how intrinsic (sensory) and extrinsic (packaging) product properties influence actual food choice in combination with the concept of product appropriateness in a specific consumption context. Food choice of seven test products was measured in three breakfast sessions within a simulated cafeteria setting with subsequent product consumption. Test products were five breakfast drinks and two dessert products considered as inappropriate for breakfast. One hundred and three participants took part in a blind taste session, after which they chose one out of the seven foods to consume for breakfast. In a second session (familiar package session), the same participants based their choice on the package of the seven foods they tasted in the first session. An additional group of 65 participants took part in a third naïve package session, where they chose just on the basis of package without being previously exposed to the foods. Results showed that food choices in the naïve package session were guided by the package that labelled the products as "breakfast product". Food choices in the blind session were strongly correlated (r = 0.8) with the liking of the products. Food choice in the "familiar package session" lay between the blind and naïve package session. It is concluded that food choice in a simulated cafeteria setting is guided by extrinsic (package) as well as intrinsic (sensory) properties and both can act as a cue for product appropriateness given a specific consumption context. Depending on the salience of either intrinsic or extrinsic properties during the choice moment their impact on choice is stronger. Copyright © 2014 Elsevier Ltd. All rights reserved.
Radio frequency interference mitigation using deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Akeret, J.; Chang, C.; Lucchi, A.; Refregier, A.
2017-01-01
We propose a novel approach for mitigating radio frequency interference (RFI) signals in radio data using the latest advances in deep learning. We employ a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. We train and assess the performance of this network using the HIDE &SEEK radio data simulation and processing packages, as well as early Science Verification data acquired with the 7m single-dish telescope at the Bleien Observatory. We find that our U-Net implementation is showing competitive accuracy to classical RFI mitigation algorithms such as SEEK's SUMTHRESHOLD implementation. We publish our U-Net software package on GitHub under GPLv3 license.
SMOG 2: A Versatile Software Package for Generating Structure-Based Models.
Noel, Jeffrey K; Levi, Mariana; Raghunathan, Mohit; Lammert, Heiko; Hayes, Ryan L; Onuchic, José N; Whitford, Paul C
2016-03-01
Molecular dynamics simulations with coarse-grained or simplified Hamiltonians have proven to be an effective means of capturing the functionally important long-time and large-length scale motions of proteins and RNAs. Originally developed in the context of protein folding, structure-based models (SBMs) have since been extended to probe a diverse range of biomolecular processes, spanning from protein and RNA folding to functional transitions in molecular machines. The hallmark feature of a structure-based model is that part, or all, of the potential energy function is defined by a known structure. Within this general class of models, there exist many possible variations in resolution and energetic composition. SMOG 2 is a downloadable software package that reads user-designated structural information and user-defined energy definitions, in order to produce the files necessary to use SBMs with high performance molecular dynamics packages: GROMACS and NAMD. SMOG 2 is bundled with XML-formatted template files that define commonly used SBMs, and it can process template files that are altered according to the needs of each user. This computational infrastructure also allows for experimental or bioinformatics-derived restraints or novel structural features to be included, e.g. novel ligands, prosthetic groups and post-translational/transcriptional modifications. The code and user guide can be downloaded at http://smog-server.org/smog2.
Li, Yang; Chen, Zhangxing; Xu, Hongyi; ...
2017-01-02
Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Chen, Zhangxing; Xu, Hongyi
Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial softwaremore » packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In this study, SMC plaques are prepared through compression molding process. The corresponding simulation models are built in Autodesk Moldflow with the same part geometry and processing conditions as in the molding tests. The output variables of the compression molding simulations, including press force history and fiber orientation of the part, are compared with experimental data. Influence of the processing conditions to the fiber orientation of the SMC plaque is also discussed. It is found that generally Autodesk Moldflow can achieve a good simulation of the compression molding process for chopped carbon fiber SMC, yet quantitative discrepancies still remain between predicted variables and experimental results.« less
Computing the Thermodynamic State of a Cryogenic Fluid
NASA Technical Reports Server (NTRS)
Willen, G. Scott; Hanna, Gregory J.; Anderson, Kevin R.
2005-01-01
The Cryogenic Tank Analysis Program (CTAP) predicts the time-varying thermodynamic state of a cryogenic fluid in a tank or a Dewar flask. CTAP is designed to be compatible with EASY5x, which is a commercial software package that can be used to simulate a variety of processes and equipment systems. The mathematical model implemented in CTAP is a first-order differential equation for the pressure as a function of time.
Evaluation of the Effectiveness of Training Devices: Literature Review and Preliminary Model
1976-04-01
After Smith, 1965) 11 2. Interactions of task categories with training strategies 23 3. Training techniques related to classes of behavior 26 4...necessarily best served by "hands on" experience with real equipment. Instead, these processes may be better served by the simulative device, since It, unlike...could be contrasted in terms of their predicted effectiveness, with the best design package being selected for prototype development and broad- scale
Solernou, Albert
2018-01-01
Fluctuating Finite Element Analysis (FFEA) is a software package designed to perform continuum mechanics simulations of proteins and other globular macromolecules. It combines conventional finite element methods with stochastic thermal noise, and is appropriate for simulations of large proteins and protein complexes at the mesoscale (length-scales in the range of 5 nm to 1 μm), where there is currently a paucity of modelling tools. It requires 3D volumetric information as input, which can be low resolution structural information such as cryo-electron tomography (cryo-ET) maps or much higher resolution atomistic co-ordinates from which volumetric information can be extracted. In this article we introduce our open source software package for performing FFEA simulations which we have released under a GPLv3 license. The software package includes a C ++ implementation of FFEA, together with tools to assist the user to set up the system from Electron Microscopy Data Bank (EMDB) or Protein Data Bank (PDB) data files. We also provide a PyMOL plugin to perform basic visualisation and additional Python tools for the analysis of FFEA simulation trajectories. This manuscript provides a basic background to the FFEA method, describing the implementation of the core mechanical model and how intermolecular interactions and the solvent environment are included within this framework. We provide prospective FFEA users with a practical overview of how to set up an FFEA simulation with reference to our publicly available online tutorials and manuals that accompany this first release of the package. PMID:29570700
Ares I-X Range Safety Simulation and Analysis IV and V
NASA Technical Reports Server (NTRS)
Merry, Carl M.; Brewer, Joan D.; Dulski, Matt B.; Gimenez, Adrian; Barron, Kyle; Tarpley, Ashley F.; Craig, A. Scott; Beaty, Jim R.; Starr, Brett R.
2011-01-01
NASA s Ares I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. NASA generated a Range Safety (RS) product data package to meet the RS trajectory data requirements defined in the Air Force Space Command Manual (AFSPCMAN) 91-710. Some products included were a nominal ascent trajectory, ascent flight envelopes, and malfunction turn data. These products are used by the Air Force s 45th Space Wing (45SW) to ensure public safety and to make flight termination decisions on launch day. Due to the criticality of the RS data, an independent validation and verification (IV&V) effort was undertaken to accompany the data generation analyses to ensure utmost data quality and correct adherence to requirements. As a result of the IV&V efforts, the RS product package was delivered with confidence that two independent organizations using separate simulation software generated data to meet the range requirements and yielded similar results. This document captures the Ares I-X RS product IV&V analysis, including the methodology used to verify inputs, simulation, and output data for certain RS products. Additionally a discussion of lessons learned is presented to capture advantages and disadvantages to the IV&V processes used.
Fast quantum Monte Carlo on a GPU
NASA Astrophysics Data System (ADS)
Lutsyshyn, Y.
2015-02-01
We present a scheme for the parallelization of quantum Monte Carlo method on graphical processing units, focusing on variational Monte Carlo simulation of bosonic systems. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent utilization of the accelerator. The CUDA code is provided along with a package that simulates liquid helium-4. The program was benchmarked on several models of Nvidia GPU, including Fermi GTX560 and M2090, and the Kepler architecture K20 GPU. Special optimization was developed for the Kepler cards, including placement of data structures in the register space of the Kepler GPUs. Kepler-specific optimization is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radojcic, Riko; Nowak, Matt; Nakamoto, Mark
The status of the development of a Design-for-Stress simulation flow that captures the stress effects in packaged 3D-stacked Si products like integrated circuits (ICs) using advanced via-middle Through Si Via technology is outlined. The next set of challenges required to proliferate the methodology and to deploy it for making and dispositioning real Si product decisions are described here. These include the adoption and support of a Process Design Kit (PDK) that includes the relevant material properties, the development of stress simulation methodologies that operate at higher levels of abstraction in a design flow, and the development and adoption of suitablemore » models required to make real product reliability decisions.« less
Use of the Inverse Approach for the Manufacture and Decoration of Food Cans
NASA Astrophysics Data System (ADS)
Duffett, G. A.; Forgas, A.; Neamtu, L.; Naceur, H.; Batoz, J. L.; Guo, Y. Q.
2005-08-01
Innovation is a key objective in the metal packaging industry in order to produce new concepts, designs, shapes and printing. Simulation technology now allows both the can design as well as the manufacturing process to be carefully analysed before any physical prototypes or dies have been manufactured. These simulations are traditionally carried out using incremental simulation methodologies. However, much information may also be attained by using the inverse approach: the initial blank format for the can body as well as its lid may be optimised much faster, the actual decoration of the can may be evaluated and even calculated when deformation printing techniques are utilised. This paper presents some of the technical details relating to the inverse approach employed in Stampack to carry out simulations important for the manufacture of food cans that are shown via industrial.
ReaDDy - A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments
Schöneberg, Johannes; Noé, Frank
2013-01-01
We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics. PMID:24040218
NASA Astrophysics Data System (ADS)
Jusufi, Arben
2013-11-01
We report on two recent developments in molecular simulations of self-assembly processes of amphiphilic solutions. We focus on the determination of micelle formation of ionic surfactants which exhibit the archetype of self-assembling compounds in solution. The first approach is centred on the challenge in predicting micellisation properties through explicit solvent molecular dynamics simulations. Even with a coarse-grained (CG) approach and the use of highly optimised software packages run on graphics processing unit hardware, it remains in many cases computationally infeasible to directly extract the critical micelle concentration (cmc). However, combined with a recently presented theoretical mean-field model this task becomes resolved. An alternative approach to study self-assembly is through implicit solvent modelling of the surfactants. Here we review some latest results and present new ones regarding capabilities of such a modelling approach in determining the cmc, and the aggregate structures in the dilute regime, that is currently not accessible through explicit solvent simulations, neither through atomistic nor through CG approaches. A special focus is put on surfactant concentration effects and surfactant correlations quantified by scattering intensities that are compared to recently published small-angle X-ray scattering data.
Luiten, Claire M; Steenhuis, Ingrid Hm; Eyles, Helen; Ni Mhurchu, Cliona; Waterlander, Wilma E
2016-02-01
To examine the availability of packaged food products in New Zealand supermarkets by level of industrial processing, nutrient profiling score (NPSC), price (energy, unit and serving costs) and brand variety. Secondary analysis of cross-sectional survey data on packaged supermarket food and non-alcoholic beverages. Products were classified according to level of industrial processing (minimally, culinary and ultra-processed) and their NPSC. Packaged foods available in four major supermarkets in Auckland, New Zealand. Packaged supermarket food products for the years 2011 and 2013. The majority (84% in 2011 and 83% in 2013) of packaged foods were classified as ultra-processed. A significant positive association was found between the level of industrial processing and NPSC, i.e., ultra-processed foods had a worse nutrient profile (NPSC=11.63) than culinary processed foods (NPSC=7.95), which in turn had a worse nutrient profile than minimally processed foods (NPSC=3.27), P<0.001. No clear associations were observed between the three price measures and level of processing. The study observed many variations of virtually the same product. The ten largest food manufacturers produced 35% of all packaged foods available. In New Zealand supermarkets, ultra-processed foods comprise the largest proportion of packaged foods and are less healthy than less processed foods. The lack of significant price difference between ultra- and less processed foods suggests ultra-processed foods might provide time-poor consumers with more value for money. These findings highlight the need to improve the supermarket food supply by reducing numbers of ultra-processed foods and by reformulating products to improve their nutritional profile.
Browndye: A Software Package for Brownian Dynamics
McCammon, J. Andrew
2010-01-01
A new software package, Browndye, is presented for simulating the diffusional encounter of two large biological molecules. It can be used to estimate second-order rate constants and encounter probabilities, and to explore reaction trajectories. Browndye builds upon previous knowledge and algorithms from software packages such as UHBD, SDA, and Macrodox, while implementing algorithms that scale to larger systems. PMID:21132109
EQS Goes R: Simulations for SEM Using the Package REQS
ERIC Educational Resources Information Center
Mair, Patrick; Wu, Eric; Bentler, Peter M.
2010-01-01
The REQS package is an interface between the R environment of statistical computing and the EQS software for structural equation modeling. The package consists of 3 main functions that read EQS script files and import the results into R, call EQS script files from R, and run EQS script files from R and import the results after EQS computations.…
Hill, Mary C.; Banta, E.R.; Harbaugh, A.W.; Anderman, E.R.
2000-01-01
This report documents the Observation, Sensitivity, and Parameter-Estimation Processes of the ground-water modeling computer program MODFLOW-2000. The Observation Process generates model-calculated values for comparison with measured, or observed, quantities. A variety of statistics is calculated to quantify this comparison, including a weighted least-squares objective function. In addition, a number of files are produced that can be used to compare the values graphically. The Sensitivity Process calculates the sensitivity of hydraulic heads throughout the model with respect to specified parameters using the accurate sensitivity-equation method. These are called grid sensitivities. If the Observation Process is active, it uses the grid sensitivities to calculate sensitivities for the simulated values associated with the observations. These are called observation sensitivities. Observation sensitivities are used to calculate a number of statistics that can be used (1) to diagnose inadequate data, (2) to identify parameters that probably cannot be estimated by regression using the available observations, and (3) to evaluate the utility of proposed new data. The Parameter-Estimation Process uses a modified Gauss-Newton method to adjust values of user-selected input parameters in an iterative procedure to minimize the value of the weighted least-squares objective function. Statistics produced by the Parameter-Estimation Process can be used to evaluate estimated parameter values; statistics produced by the Observation Process and post-processing program RESAN-2000 can be used to evaluate how accurately the model represents the actual processes; statistics produced by post-processing program YCINT-2000 can be used to quantify the uncertainty of model simulated values. Parameters are defined in the Ground-Water Flow Process input files and can be used to calculate most model inputs, such as: for explicitly defined model layers, horizontal hydraulic conductivity, horizontal anisotropy, vertical hydraulic conductivity or vertical anisotropy, specific storage, and specific yield; and, for implicitly represented layers, vertical hydraulic conductivity. In addition, parameters can be defined to calculate the hydraulic conductance of the River, General-Head Boundary, and Drain Packages; areal recharge rates of the Recharge Package; maximum evapotranspiration of the Evapotranspiration Package; pumpage or the rate of flow at defined-flux boundaries of the Well Package; and the hydraulic head at constant-head boundaries. The spatial variation of model inputs produced using defined parameters is very flexible, including interpolated distributions that require the summation of contributions from different parameters. Observations can include measured hydraulic heads or temporal changes in hydraulic heads, measured gains and losses along head-dependent boundaries (such as streams), flows through constant-head boundaries, and advective transport through the system, which generally would be inferred from measured concentrations. MODFLOW-2000 is intended for use on any computer operating system. The program consists of algorithms programmed in Fortran 90, which efficiently performs numerical calculations and is fully compatible with the newer Fortran 95. The code is easily modified to be compatible with FORTRAN 77. Coordination for multiple processors is accommodated using Message Passing Interface (MPI) commands. The program is designed in a modular fashion that is intended to support inclusion of new capabilities.
Parallelization of Rocket Engine System Software (Press)
NASA Technical Reports Server (NTRS)
Cezzar, Ruknet
1996-01-01
The main goal is to assess parallelization requirements for the Rocket Engine Numeric Simulator (RENS) project which, aside from gathering information on liquid-propelled rocket engines and setting forth requirements, involve a large FORTRAN based package at NASA Lewis Research Center and TDK software developed by SUBR/UWF. The ultimate aim is to develop, test, integrate, and suitably deploy a family of software packages on various aspects and facets of rocket engines using liquid-propellants. At present, all project efforts by the funding agency, NASA Lewis Research Center, and the HBCU participants are disseminated over the internet using world wide web home pages. Considering obviously expensive methods of actual field trails, the benefits of software simulators are potentially enormous. When realized, these benefits will be analogous to those provided by numerous CAD/CAM packages and flight-training simulators. According to the overall task assignments, Hampton University's role is to collect all available software, place them in a common format, assess and evaluate, define interfaces, and provide integration. Most importantly, the HU's mission is to see to it that the real-time performance is assured. This involves source code translations, porting, and distribution. The porting will be done in two phases: First, place all software on Cray XMP platform using FORTRAN. After testing and evaluation on the Cray X-MP, the code will be translated to C + + and ported to the parallel nCUBE platform. At present, we are evaluating another option of distributed processing over local area networks using Sun NFS, Ethernet, TCP/IP. Considering the heterogeneous nature of the present software (e.g., first started as an expert system using LISP machines) which now involve FORTRAN code, the effort is expected to be quite challenging.
Ares I-X Range Safety Simulation Verification and Analysis IV and V
NASA Technical Reports Server (NTRS)
Tarpley, Ashley; Beaty, James; Starr, Brett
2010-01-01
NASA s ARES I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. NASA generated a Range Safety (RS) flight data package to meet the RS trajectory data requirements defined in the Air Force Space Command Manual 91-710. Some products included in the flight data package were a nominal ascent trajectory, ascent flight envelope trajectories, and malfunction turn trajectories. These data are used by the Air Force s 45th Space Wing (45SW) to ensure Eastern Range public safety and to make flight termination decisions on launch day. Due to the criticality of the RS data in regards to public safety and mission success, an independent validation and verification (IV&V) effort was undertaken to accompany the data generation analyses to ensure utmost data quality and correct adherence to requirements. Multiple NASA centers and contractor organizations were assigned specific products to IV&V. The data generation and IV&V work was coordinated through the Launch Constellation Range Safety Panel s Trajectory Working Group, which included members from the prime and IV&V organizations as well as the 45SW. As a result of the IV&V efforts, the RS product package was delivered with confidence that two independent organizations using separate simulation software generated data to meet the range requirements and yielded similar results. This document captures ARES I-X RS product IV&V analysis, including the methodology used to verify inputs, simulation, and output data for an RS product. Additionally a discussion of lessons learned is presented to capture advantages and disadvantages to the IV&V processes used.
Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.
Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan
2016-04-20
Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.
Simulating ground water-lake interactions: Approaches and insights
Hunt, R.J.; Haitjema, H.M.; Krohelski, J.T.; Feinstein, D.T.
2003-01-01
Approaches for modeling lake-ground water interactions have evolved significantly from early simulations that used fixed lake stages specified as constant head to sophisticated LAK packages for MODFLOW. Although model input can be complex, the LAK package capabilities and output are superior to methods that rely on a fixed lake stage and compare well to other simple methods where lake stage can be calculated. Regardless of the approach, guidelines presented here for model grid size, location of three-dimensional flow, and extent of vertical capture can facilitate the construction of appropriately detailed models that simulate important lake-ground water interactions without adding unnecessary complexity. In addition to MODFLOW approaches, lake simulation has been formulated in terms of analytic elements. The analytic element lake package had acceptable agreement with a published LAK1 problem, even though there were differences in the total lake conductance and number of layers used in the two models. The grid size used in the original LAK1 problem, however, violated a grid size guideline presented in this paper. Grid sensitivity analyses demonstrated that an appreciable discrepancy in the distribution of stream and lake flux was related to the large grid size used in the original LAK1 problem. This artifact is expected regardless of MODFLOW LAK package used. When the grid size was reduced, a finite-difference formulation approached the analytic element results. These insights and guidelines can help ensure that the proper lake simulation tool is being selected and applied.
Method to simulate and analyse induced stresses for laser crystal packaging technologies.
Ribes-Pleguezuelo, Pol; Zhang, Site; Beckert, Erik; Eberhardt, Ramona; Wyrowski, Frank; Tünnermann, Andreas
2017-03-20
A method to simulate induced stresses for a laser crystal packaging technique and the consequent study of birefringent effects inside the laser cavities has been developed. The method has been implemented by thermo-mechanical simulations implemented with ANSYS 17.0. ANSYS results were later imported in VirtualLab Fusion software where input/output beams in terms of wavelengths and polarization were analysed. The study has been built in the context of a low-stress soldering technique implemented for glass or crystal optics packaging's called the solderjet bumping technique. The outcome of the analysis showed almost no difference between the input and output laser beams for the laser cavity constructed with an yttrium aluminum garnet active laser crystal, a second harmonic generator beta-barium borate, and the output laser mirror made of fused silica assembled by the low-stress solderjet bumping technique.
WebGL-enabled 3D visualization of a Solar Flare Simulation
NASA Astrophysics Data System (ADS)
Chen, A.; Cheung, C. M. M.; Chintzoglou, G.
2016-12-01
The visualization of magnetohydrodynamic (MHD) simulations of astrophysical systems such as solar flares often requires specialized software packages (e.g. Paraview and VAPOR). A shortcoming of using such software packages is the inability to share our findings with the public and scientific community in an interactive and engaging manner. By using the javascript-based WebGL application programming interface (API) and the three.js javascript package, we create an online in-browser experience for rendering solar flare simulations that will be interactive and accessible to the general public. The WebGL renderer displays objects such as vector flow fields, streamlines and textured isosurfaces. This allows the user to explore the spatial relation between the solar coronal magnetic field and the thermodynamic structure of the plasma in which the magnetic field is embedded. Plans for extending the features of the renderer will also be presented.
Low, Diana H P; Motakis, Efthymios
2013-10-01
Binding free energy calculations obtained through molecular dynamics simulations reflect intermolecular interaction states through a series of independent snapshots. Typically, the free energies of multiple simulated series (each with slightly different starting conditions) need to be estimated. Previous approaches carry out this task by moving averages at certain decorrelation times, assuming that the system comes from a single conformation description of binding events. Here, we discuss a more general approach that uses statistical modeling, wavelets denoising and hierarchical clustering to estimate the significance of multiple statistically distinct subpopulations, reflecting potential macrostates of the system. We present the deltaGseg R package that performs macrostate estimation from multiple replicated series and allows molecular biologists/chemists to gain physical insight into the molecular details that are not easily accessible by experimental techniques. deltaGseg is a Bioconductor R package available at http://bioconductor.org/packages/release/bioc/html/deltaGseg.html.
NASA Astrophysics Data System (ADS)
Al-Jader, M. A.; Cullen, J. D.; Shaw, Andy; Al-Shamma'a, A. I.
2011-08-01
Currently there are about 4300 weld points on the average steel vehicle. Errors and problems due to tip damage and wear can cause great losses due to production line downtime. Current industrial monitoring systems check the quality of the nugget after processing 15 cars average once every two weeks. The nuggets are examined off line using a destructive process, which takes approximately 10 days to complete causing a long delay in the production process. In this paper a simulation results using software package, SORPAS, will be presented to determined the sustainability factors in spot welding process including Voltage, Current, Force, Water cooling rates, Material thicknesses and usage. The experimental results of various spot welding processes will be investigated and reported. The correlation of experimental results shows that SORPAS simulations can be used as an off line measurement to reduce factory energy usage. This paper also provides an overview of electrode current selection and its variance over the lifetime of the electrode tip, and describes the proposed analysis system for the selection of welding parameters for the spot welding process, as the electrode tip wears.
1988-03-01
PACKAGE BODY ) TLCSC P661 (CATALOG #P106-0) This package contains the CAMP parts required to do the vaypoint steering portion of navigation. The...3.3.4.1.6 PROCESSING The following describes the processing performed by this part: package body WaypointSteering is package body ...Steering_Vector_Operations is separate; package body Steering_Vector_Operations_with_Arcsin is separate; procedure Compute Turn_Angle_and Direction (UnitNormal C
Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Sola, Isabel
2013-01-01
Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3′ end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies. PMID:23966403
NASA Astrophysics Data System (ADS)
Aono, T.; Kazama, A.; Okada, R.; Iwasaki, T.; Isono, Y.
2018-03-01
We developed a eutectic-based wafer-level-packaging (WLP) technique for piezoresistive micro-electromechanical systems (MEMS) accelerometers on the basis of molecular dynamics analyses and shear tests of WLP accelerometers. The bonding conditions were experimentally and analytically determined to realize a high shear strength without solder material atoms diffusing to adhesion layers. Molecular dynamics (MD) simulations and energy dispersive x-ray (EDX) spectrometry done after the shear tests clarified the eutectic reaction of the solder materials used in this research. Energy relaxation calculations in MD showed that the diffusion of solder material atoms into the adhesive layer was promoted at a higher temperature. Tensile creep MD simulations also suggested that the local potential energy in a solder material model determined the fracture points of the model. These numerical results were supported by the shear tests and EDX analyses for WLP accelerometers. Consequently, a bonding load of 9.8 kN and temperature of 300 °C were found to be rational conditions because the shear strength was sufficient to endure the polishing process after the WLP process and there was little diffusion of solder material atoms to the adhesion layer. Also, eutectic-bonding-based WLP was effective for controlling the attenuation of the accelerometers by determining the thickness of electroplated solder materials that played the role of a cavity between the accelerometers and lids. If the gap distance between the two was less than 6.2 µm, the signal gains for x- and z-axis acceleration were less than 20 dB even at the resonance frequency due to air-damping.
PlasmaPy: beginning a community developed Python package for plasma physics
NASA Astrophysics Data System (ADS)
Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration
2016-10-01
In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.
Baldan, Damiano; Porporato, Erika Maria Diletta; Pastres, Roberto
2018-01-01
A new R software package, RAC, is presented. RAC allows to simulate the rearing cycle of 4 species, finfish and shellfish, highly important in terms of production in the Mediterranean Sea. The package works both at the scale of the individual and of the farmed population. Mathematical models included in RAC were all validated in previous works, and account for growth and metabolism, based on input data characterizing the forcing functions—water temperature, and food quality/quantity. The package provides a demo dataset of forcings for each species, as well as a typical set of husbandry parameters for Mediterranean conditions. The present work illustrates RAC main features, and its current capabilities/limitations. Three test cases are presented as a proof of concept of RAC applicability, and to demonstrate its potential for integrating different open products nowadays provided by remote sensing and operational oceanography. PMID:29723208
NORTICA—a new code for cyclotron analysis
NASA Astrophysics Data System (ADS)
Gorelov, D.; Johnson, D.; Marti, F.
2001-12-01
The new package NORTICA (Numerical ORbit Tracking In Cyclotrons with Analysis) of computer codes for beam dynamics simulations is under development at NSCL. The package was started as a replacement for the code MONSTER [1] developed in the laboratory in the past. The new codes are capable of beam dynamics simulations in both CCF (Coupled Cyclotron Facility) accelerators, the K500 and K1200 superconducting cyclotrons. The general purpose of this package is assisting in setting and tuning the cyclotrons taking into account the main field and extraction channel imperfections. The computer platform for the package is Alpha Station with UNIX operating system and X-Windows graphic interface. A multiple programming language approach was used in order to combine the reliability of the numerical algorithms developed over the long period of time in the laboratory and the friendliness of modern style user interface. This paper describes the capability and features of the codes in the present state.
Brian Hears: Online Auditory Processing Using Vectorization Over Channels
Fontaine, Bertrand; Goodman, Dan F. M.; Benichoux, Victor; Brette, Romain
2011-01-01
The human cochlea includes about 3000 inner hair cells which filter sounds at frequencies between 20 Hz and 20 kHz. This massively parallel frequency analysis is reflected in models of auditory processing, which are often based on banks of filters. However, existing implementations do not exploit this parallelism. Here we propose algorithms to simulate these models by vectorizing computation over frequency channels, which are implemented in “Brian Hears,” a library for the spiking neural network simulator package “Brian.” This approach allows us to use high-level programming languages such as Python, because with vectorized operations, the computational cost of interpretation represents a small fraction of the total cost. This makes it possible to define and simulate complex models in a simple way, while all previous implementations were model-specific. In addition, we show that these algorithms can be naturally parallelized using graphics processing units, yielding substantial speed improvements. We demonstrate these algorithms with several state-of-the-art cochlear models, and show that they compare favorably with existing, less flexible, implementations. PMID:21811453
High-Performance Computing for the Electromagnetic Modeling and Simulation of Interconnects
NASA Technical Reports Server (NTRS)
Schutt-Aine, Jose E.
1996-01-01
The electromagnetic modeling of packages and interconnects plays a very important role in the design of high-speed digital circuits, and is most efficiently performed by using computer-aided design algorithms. In recent years, packaging has become a critical area in the design of high-speed communication systems and fast computers, and the importance of the software support for their development has increased accordingly. Throughout this project, our efforts have focused on the development of modeling and simulation techniques and algorithms that permit the fast computation of the electrical parameters of interconnects and the efficient simulation of their electrical performance.
Easy GROMACS: A Graphical User Interface for GROMACS Molecular Dynamics Simulation Package
NASA Astrophysics Data System (ADS)
Dizkirici, Ayten; Tekpinar, Mustafa
2015-03-01
GROMACS is a widely used molecular dynamics simulation package. Since it is a command driven program, it is difficult to use this program for molecular biologists, biochemists, new graduate students and undergraduate researchers who are interested in molecular dynamics simulations. To alleviate the problem for those researchers, we wrote a graphical user interface that simplifies protein preparation for a classical molecular dynamics simulation. Our program can work with various GROMACS versions and it can perform essential analyses of GROMACS trajectories as well as protein preparation. We named our open source program `Easy GROMACS'. Easy GROMACS can give researchers more time for scientific research instead of dealing with technical intricacies.
Numerical Simulation and Chaotic Analysis of an Aluminum Holding Furnace
NASA Astrophysics Data System (ADS)
Wang, Ji-min; Zhou, Yuan-yuan; Lan, Shen; Chen, Tao; Li, Jie; Yan, Hong-jie; Zhou, Jie-min; Tian, Rui-jiao; Tu, Yan-wu; Li, Wen-ke
2014-12-01
To achieve high heat efficiency, low pollutant emission and homogeneous melt temperature during thermal process of secondary aluminum, taking into account the features of aluminum alloying process, a CFD process model was developed and integrated with heat load and aluminum temperature control model. This paper presented numerical simulation of aluminum holding furnaces using the customized code based on FLUENT packages. Thermal behaviors of aluminum holding furnaces were investigated by probing into main physical fields such as flue gas temperature, velocity, and concentration, and combustion instability of aluminum holding process was represented by chaos theory. The results show that aluminum temperature uniform coefficient firstly decreases during heating phase, then increases and reduces alternately during holding phase, lastly rises during standing phase. Correlation dimension drops with fuel velocity. Maximal Lyapunov exponent reaches to a maximum when air-fuel ratio is close to 1. It would be a clear comprehension about each phase of aluminum holding furnaces to find new technology, retrofit furnace design, and optimize parameters combination.
Advanced Manufacturing Systems in Food Processing and Packaging Industry
NASA Astrophysics Data System (ADS)
Shafie Sani, Mohd; Aziz, Faieza Abdul
2013-06-01
In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.
In-Package Chemistry Abstraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Thomas
2004-11-09
This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, amore » batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.« less
Polymer dispensing and embossing technology for the lens type LED packaging
NASA Astrophysics Data System (ADS)
Chien, Chien-Lin Chang; Huang, Yu-Che; Hu, Syue-Fong; Chang, Chung-Min; Yip, Ming-Chuen; Fang, Weileun
2013-06-01
This study presents a ring-type micro-structure design on the substrate and its corresponding micro fabrication processes for a lens-type light-emitting diode (LED) package. The dome-type or crater-type silicone lenses are achieved by a dispensing and embossing process rather than a molding process. Silicone with a high viscosity and thixotropy index is used as the encapsulant material. The ring-type micro structure is adopted to confine the dispensed silicone encapsulant so as to form the packaged lens. With the architecture and process described, this LED package technology herein has three merits: (1) the flexibility of lens-type LED package designs is enhanced; (2) a dome-type package design is used to enhance the intensity; (3) a crater-type package design is used to enhance the view angle. Measurement results show the ratio between the lens height and lens radius can vary from 0.4 to 1 by changing the volume of dispensed silicone. The view angles of dome-type and crater-type packages can reach 155° ± 5° and 175° ± 5°, respectively. As compared with the commercial plastic leaded chip carrier-type package, the luminous flux of a monochromatic blue light LED is improved by 15% by the dome-type package (improved by 7% by the crater-type package) and the luminous flux of a white light LED is improved by 25% by the dome-type package (improved by 13% by the crater-type package). The luminous flux of monochromatic blue light LED and white light LED are respectively improved by 8% and 12% by the dome-type package as compare with the crater-type package.
Introducing Computer Simulation into the High School: An Applied Mathematics Curriculum.
ERIC Educational Resources Information Center
Roberts, Nancy
1981-01-01
A programing language called DYNAMO, developed especially for writing simulation models, is promoted. Details of six, self-teaching curriculum packages recently developed for simulation-oriented instruction are provided. (MP)
NASA Technical Reports Server (NTRS)
Hesser, R. J.; Gershman, R.
1975-01-01
A valve opening-response problem encountered during development of a control valve for the Skylab thruster attitude control system (TACS) is described. The problem involved effects of dynamic interaction among valves in the quad-redundant valve package. Also described is a detailed computer simulation of the quad-valve package which was helpful in resolving the problem.
Mehl, Steffen W.; Hill, Mary C.
2007-01-01
This report documents the addition of the multiple-refined-areas capability to shared node Local Grid Refinement (LGR) and Boundary Flow and Head (BFH) Package of MODFLOW-2005, the U.S. Geological Survey modular, three-dimensional, finite-difference ground-water flow model. LGR now provides the capability to simulate ground-water flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. The ability to have multiple, nonoverlapping areas of refinement is important in situations where there is more than one area of concern within a regional model. In this circumstance, LGR can be used to simulate these distinct areas with higher resolution grids. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. The BFH Package can be used to simulate these situations by using either the parent or child models independently.
Comprehensive testing to measure the response of butyl rubber to Hanford tank waste simulant
DOE Office of Scientific and Technical Information (OSTI.GOV)
NIGREY,PAUL J.
This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the authors performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Butyl rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. From the analyses, they determined that butyl rubber has relatively good resistance to radiation, this simulant, and a combination of these factors. These results suggest that butyl rubber is a relatively good seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less
Response of ethylene propylene diene monomer rubber (EPDM) to simulant Hanford tank waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
NIGREY,PAUL J.
2000-02-01
This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposuresmore » to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.« less
Bucher, O; Fazil, A; Rajić, A; Farrar, A; Wills, R; McEwen, S A
2012-05-01
A scoping study and systematic review-meta-analyses (SR-MAs) were conducted to evaluate the effectiveness of various interventions for Salmonella in broiler chicken, from grow-out farm to secondary processing. The resulting information was used to inform a quantitative exposure assessment (QEA) comparing various control options within the context of broiler chicken production in Ontario, Canada. Multiple scenarios, including use of two separate on-farm interventions (CF3 competitive exclusion culture and a 2% lactose water additive), a package of processing interventions (a sodium hydroxide scald water disinfectant, a chlorinated post-evisceration spray, a trisodium phosphate pre-chill spray and chlorinated immersion chilling) a package consisting of these farm and processing interventions and a hypothetical scenario (reductions in between-flock prevalence and post-transport concentration), were simulated and compared to a baseline scenario. The package of on-farm and processing interventions was the most effective in achieving relative reductions (compared to baseline with no interventions) in the concentration and prevalence of Salmonella by the end of chilling ranging from 89·94% to 99·87% and 43·88% to 87·78%, respectively. Contaminated carcasses entering defeathering, reductions in concentration due to scalding and post-evisceration washing, and the potential for cross-contamination during chilling had the largest influence on the model outcomes under the current assumptions. Scoping study provided a transparent process for mapping out and selecting promising interventions, while SR-MA was useful for generating more precise and robust intervention effect estimates for QEA. Realization of the full potential of these methods was hampered by low methodological soundness and reporting of primary research in this area.
Simulation of Magnetic Field Assisted Finishing (MFAF) Process Utilizing Smart MR Polishing Tool
NASA Astrophysics Data System (ADS)
Barman, Anwesa; Das, Manas
2017-02-01
Magnetic field assisted finishing process is an advanced finishing process. This process is capable of producing nanometer level surface finish. In this process magnetic field is applied to control the finishing forces using magnetorheological polishing medium. In the current study, permanent magnet is used to provide the required magnetic field in the finishing zone. The working gap between the workpiece and the magnet is filled with MR fluid which is used as the polishing brush to remove surface undulations from the top surface of the workpiece. In this paper, the distribution of magnetic flux density on the workpiece surface and behaviour of MR polishing medium during finishing are analyzed using commercial finite element packages (Ansys Maxwell® and Comsol®). The role of magnetic force in the indentation of abrasive particles on the workpiece surface is studied. A two-dimensional simulation study of the steady, laminar, and incompressible MR fluid flow behaviour during finishing process is carried out. The material removal and surface roughness modelling of the finishing process are also presented. The indentation force by a single active abrasive particle on the workpiece surface is modelled during simulation. The velocity profile of MR fluid with and without application of magnetic field is plotted. It shows non-Newtonian property without application of magnetic field. After that the total material displacement due to one abrasive particle is plotted. The simulated roughness profile is in a good agreement with the experimental results. The conducted study will help in understanding the fluid behavior and the mechanism of finishing during finishing process. Also, the modelling and simulation of the process will help in achieving better finishing performance.
Simpson, Robin; Devenyi, Gabriel A; Jezzard, Peter; Hennessy, T Jay; Near, Jamie
2017-01-01
To introduce a new toolkit for simulation and processing of magnetic resonance spectroscopy (MRS) data, and to demonstrate some of its novel features. The FID appliance (FID-A) is an open-source, MATLAB-based software toolkit for simulation and processing of MRS data. The software is designed specifically for processing data with multiple dimensions (eg, multiple radiofrequency channels, averages, spectral editing dimensions). It is equipped with functions for importing data in the formats of most major MRI vendors (eg, Siemens, Philips, GE, Agilent) and for exporting data into the formats of several common processing software packages (eg, LCModel, jMRUI, Tarquin). This paper introduces the FID-A software toolkit and uses examples to demonstrate its novel features, namely 1) the use of a spectral registration algorithm to carry out useful processing routines automatically, 2) automatic detection and removal of motion-corrupted scans, and 3) the ability to perform several major aspects of the MRS computational workflow from a single piece of software. This latter feature is illustrated through both high-level processing of in vivo GABA-edited MEGA-PRESS MRS data, as well as detailed quantum mechanical simulations to generate an accurate LCModel basis set for analysis of the same data. All of the described processing steps resulted in a marked improvement in spectral quality compared with unprocessed data. Fitting of MEGA-PRESS data using a customized basis set resulted in improved fitting accuracy compared with a generic MEGA-PRESS basis set. The FID-A software toolkit enables high-level processing of MRS data and accurate simulation of in vivo MRS experiments. Magn Reson Med 77:23-33, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Finite Element Modeling of Reheat Stretch Blow Molding of PET
NASA Astrophysics Data System (ADS)
Krishnan, Dwarak; Dupaix, Rebecca B.
2004-06-01
Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.
Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach
NASA Astrophysics Data System (ADS)
Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer
2016-11-01
This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.
UFMulti: A new parallel processing software system for HEP
NASA Astrophysics Data System (ADS)
Avery, Paul; White, Andrew
1989-12-01
UFMulti is a multiprocessing software package designed for general purpose high energy physics applications, including physics and detector simulation, data reduction and DST physics analysis. The system is particularly well suited for installations where several workstation or computers are connected through a local area network (LAN). The initial configuration of the software is currently running on VAX/VMS machines with a planned extension to ULTRIX, using the new RISC CPUs from Digital, in the near future.
4.3 μm quantum cascade detector in pixel configuration.
Harrer, A; Schwarz, B; Schuler, S; Reininger, P; Wirthmüller, A; Detz, H; MacFarland, D; Zederbauer, T; Andrews, A M; Rothermund, M; Oppermann, H; Schrenk, W; Strasser, G
2016-07-25
We present the design simulation and characterization of a quantum cascade detector operating at 4.3μm wavelength. Array integration and packaging processes were investigated. The device operates in the 4.3μm CO2 absorption region and consists of 64 pixels. The detector is designed fully compatible to standard processing and material growth methods for scalability to large pixel counts. The detector design is optimized for a high device resistance at elevated temperatures. A QCD simulation model was enhanced for resistance and responsivity optimization. The substrate illuminated pixels utilize a two dimensional Au diffraction grating to couple the light to the active region. A single pixel responsivity of 16mA/W at room temperature with a specific detectivity D* of 5⋅107 cmHz/W was measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; et al.
A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, andmore » electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.« less
FESetup: Automating Setup for Alchemical Free Energy Simulations.
Loeffler, Hannes H; Michel, Julien; Woods, Christopher
2015-12-28
FESetup is a new pipeline tool which can be used flexibly within larger workflows. The tool aims to support fast and easy setup of alchemical free energy simulations for molecular simulation packages such as AMBER, GROMACS, Sire, or NAMD. Post-processing methods like MM-PBSA and LIE can be set up as well. Ligands are automatically parametrized with AM1-BCC, and atom mappings for a single topology description are computed with a maximum common substructure search (MCSS) algorithm. An abstract molecular dynamics (MD) engine can be used for equilibration prior to free energy setup or standalone. Currently, all modern AMBER force fields are supported. Ease of use, robustness of the code, and automation where it is feasible are the main development goals. The project follows an open development model, and we welcome contributions.
Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry
2013-08-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.
Luzardo, S; Woerner, D R; Geornaras, I; Hess, A M; Belk, K E
2016-06-01
Two studies were conducted to evaluate the influence of packaging during storage of strip loins (to simulate export shipment) from steers fattened on intensive grazing systems (Uruguay; UR) or on a high-concentrate diet (United States; US) on retail display life microbial growth. Four or 3 different packaging treatments were applied to UR and US strip loin roasts or steaks during 35 d of storage; treatments were applied 7 d following slaughter. After 35 d of storage, the samples were evaluated during simulated retail display for up to 6 d. In Exp. 1, the treatments were vacuum packaging (VP), low-oxygen modified atmosphere packaging (MAP) with N and CO (MAP/CO), low-oxygen MAP with N plus CO and CO, and VP plus an application of peroxyacetic acid (VP/PAA). In Exp. 2, block 1, the treatments were VP, MAP/CO, and VP with ethyl--lauroyl--arginate HCl incorporated into the film as an antimicrobial agent (VP/AM). In Exp. 2, block 2, the treatments were VP, MAP/CO, MAP/CO, and VP/AM. For retail display, VP treatments were sliced and repackaged in PVC overwrap, and MAP treatments were actually PVC overwrap trays that were removed from a master bag with the prescribed gas treatment. Regardless of production system and packaging treatment, mesophilic and psychrotrophic counts of 6.9 to 7.8 and 6.7 to 7.7 log10 CFU/cm, respectively, were obtained at the end of retail display, except for US samples in Exp. 2 (5.5 to 6.3 log CFU/cm). No differences ( > 0.05) were detected for spp. counts among packaging treatments in US steaks at the end of the display time in Exp.1, whereas, for UR steaks, both MAP treatments had lower ( < 0.05) spp. counts than VP treatments. spp. counts were lower ( < 0.05) in the MAP/CO treatment than in the other 3 treatments in US samples on d 6 of retail display for Exp. 2. At the end of display time and for Exp. 1, US steaks under MAP/CO had greater ( < 0.05) lactic acid bacteria (LAB) counts than samples in both VP treatments; no differences ( > 0.05) among packaging were detected for UR steaks. Both MAP and VP/AM treatments in the US samples for Exp. 2 had lower ( < 0.05) LAB counts on d 6 of display than the VP treatment, but no differences ( > 0.05) were found among packaging treatments for the UR samples. To maximize shelf life (storage and display life) of exported fresh beef, it is critical to minimize bacterial populations during processing and storage.
Physical and digital simulations for IVA robotics
NASA Technical Reports Server (NTRS)
Hinman, Elaine; Workman, Gary L.
1992-01-01
Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.
Geant4 Modifications for Accurate Fission Simulations
NASA Astrophysics Data System (ADS)
Tan, Jiawei; Bendahan, Joseph
Monte Carlo is one of the methods to simulate the generation and transport of radiation through matter. The most widely used radiation simulation codes are MCNP and Geant4. The simulation of fission production and transport by MCNP has been thoroughly benchmarked. There is an increasing number of users that prefer using Geant4 due to the flexibility of adding features. However, it has been found that Geant4 does not have the proper fission-production cross sections and does not produce the correct fission products. To achieve accurate results for studies in fissionable material applications, Geant4 was modified to correct these inaccuracies and to add new capabilities. The fission model developed by the Lawrence Livermore National Laboratory was integrated into the neutron-fission modeling package. The photofission simulation capability was enabled using the same neutron-fission library under the assumption that nuclei fission in the same way, independent of the excitation source. The modified fission code provides the correct multiplicity of prompt neutrons and gamma rays, and produces delayed gamma rays and neutrons with time and energy dependencies that are consistent with ENDF/B-VII. The delayed neutrons are now directly produced by a custom package that bypasses the fragment cascade model. The modifications were made for U-235, U-238 and Pu-239 isotopes; however, the new framework allows adding new isotopes easily. The SLAC nuclear data library is used for simulation of isotopes with an atomic number above 92 because it is not available in Geant4. Results of the modified Geant4.10.1 package of neutron-fission and photofission for prompt and delayed radiation are compared with ENDFB-VII and with results produced with the original package.
Simal-Gándara, J; Sarria-Vidal, M; Koorevaar, A; Rijk, R
2000-08-01
The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick oriented PP) into the food stimulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.
CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator
NASA Astrophysics Data System (ADS)
Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.
2010-04-01
Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.
Kontis, A.L.
2001-01-01
The Variable-Recharge Package is a computerized method designed for use with the U.S. Geological Survey three-dimensional finitedifference ground-water flow model (MODFLOW-88) to simulate areal recharge to an aquifer. It is suitable for simulations of aquifers in which the relation between ground-water levels and land surface can affect the amount and distribution of recharge. The method is based on the premise that recharge to an aquifer cannot occur where the water level is at or above land surface. Consequently, recharge will vary spatially in simulations in which the Variable- Recharge Package is applied, if the water levels are sufficiently high. The input data required by the program for each model cell that can potentially receive recharge includes the average land-surface elevation and a quantity termed ?water available for recharge,? which is equal to precipitation minus evapotranspiration. The Variable-Recharge Package also can be used to simulate recharge to a valley-fill aquifer in which the valley fill and the adjoining uplands are explicitly simulated. Valley-fill aquifers, which are the most common type of aquifer in the glaciated northeastern United States, receive much of their recharge from upland sources as channeled and(or) unchanneled surface runoff and as lateral ground-water flow. Surface runoff in the uplands is generated in the model when the applied water available for recharge is rejected because simulated water levels are at or above land surface. The surface runoff can be distributed to other parts of the model by (1) applying the amount of the surface runoff that flows to upland streams (channeled runoff) to explicitly simulated streams that flow onto the valley floor, and(or) (2) applying the amount that flows downslope toward the valley- fill aquifer (unchanneled runoff) to specified model cells, typically those near the valley wall. An example model of an idealized valley- fill aquifer is presented to demonstrate application of the method and the type of information that can be derived from its use. Documentation of the Variable-Recharge Package is provided in the appendixes and includes listings of model code and of program variables. Comment statements in the program listings provide a narrative of the code. Input-data instructions and printed model output for the package are included.
The application of virtual reality systems as a support of digital manufacturing and logistics
NASA Astrophysics Data System (ADS)
Golda, G.; Kampa, A.; Paprocka, I.
2016-08-01
Modern trends in development of computer aided techniques are heading toward the integration of design competitive products and so-called "digital manufacturing and logistics", supported by computer simulation software. All phases of product lifecycle: starting from design of a new product, through planning and control of manufacturing, assembly, internal logistics and repairs, quality control, distribution to customers and after-sale service, up to its recycling or utilization should be aided and managed by advanced packages of product lifecycle management software. Important problems for providing the efficient flow of materials in supply chain management of whole product lifecycle, using computer simulation will be described on that paper. Authors will pay attention to the processes of acquiring relevant information and correct data, necessary for virtual modeling and computer simulation of integrated manufacturing and logistics systems. The article describes possibilities of use an applications of virtual reality software for modeling and simulation the production and logistics processes in enterprise in different aspects of product lifecycle management. The authors demonstrate effective method of creating computer simulations for digital manufacturing and logistics and show modeled and programmed examples and solutions. They pay attention to development trends and show options of the applications that go beyond enterprise.
Pressurized storm sewer simulation : model enhancement.
DOT National Transportation Integrated Search
1991-01-01
A modified Pressurized Flow Simulation Model, PFSM, was developed and attached to the Federal Highway Administration, FHWA, Pool Funded PFP-HYDRA Package. Four hydrograph options are available for simulating inflow to a sewer system under surcharge o...
Microcomputer Simulated CAD for Engineering Graphics.
ERIC Educational Resources Information Center
Huggins, David L.; Myers, Roy E.
1983-01-01
Describes a simulated computer-aided-graphics (CAD) program at The Pennsylvania State University. Rationale for the program, facilities, microcomputer equipment (Apple) used, and development of a software package for simulating applied engineering graphics are considered. (JN)
NASA Astrophysics Data System (ADS)
Anwar, R. W.; Sugiarto; Warsiki, E.
2018-03-01
Contamination after the processing of products during storage, distribution and marketing is one of the main causes of food safety issues. Handling of food products after processing can be done during the packaging process. Antimicrobial (AM) active packaging is one of the concept of packaging product development by utilize the interaction between the product and the packaging environment that can delay the bacterial damage by killing or reducing bacterial growth. The active system is formed by incorporating an antimicrobial agent against a packaging matrix that will function as a carrier. Many incorporation methods have been developed in this packaging-making concept which were direct mixing, polishing, and encapsulation. The aims of this research were to examine the different of the AM packaging performances including its stability and effectiveness of its function that would be produced by three different methods. The stability of the packaging function was analyzed by looking at the diffusivity of the active ingredient to the matrix using SEM. The effectiveness was analyzed by the ability of the packaging to prevent the growing of the microbial. The results showed that different incorporation methods resulted on different characteristics of the AM packaging.
Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.
2016-12-01
A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Electron tunneling in proteins program.
Hagras, Muhammad A; Stuchebrukhov, Alexei A
2016-06-05
We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
2006-11-01
WE RECOMMEND Critical mass Philip Ball explores the idea of the physics of society. Eurekas and Euphorias A humorous yet insightful collection of scientific anecdotes. Wind turbine Low-cost wind turbine produces excellent results. Science Center Nemo Hands-on science centre has some great displays for teenagers. Crocodile Physics There’s something for everyone in this lesson software package. Wireless Dynamics Sensor System A fun way to measure and record altitude and acceleration. WORTH A LOOK Climate Change Begins at Home This well researched book tackles the issue of saving our planet. The Little Doctor Datalogger Datalogger has lots of facilities but needs some manual processing. HANDLE WITH CARE The Physics of Basketball Only of interest to budding physicists obsessed with basketball. Virtual Physics This package offers nice simulations but not a lot else. WEB WATCH An eclectic mix of nuclear- and general-physics websites.
Gro2mat: a package to efficiently read gromacs output in MATLAB.
Dien, Hung; Deane, Charlotte M; Knapp, Bernhard
2014-07-30
Molecular dynamics (MD) simulations are a state-of-the-art computational method used to investigate molecular interactions at atomic scale. Interaction processes out of experimental reach can be monitored using MD software, such as Gromacs. Here, we present the gro2mat package that allows fast and easy access to Gromacs output files from Matlab. Gro2mat enables direct parsing of the most common Gromacs output formats including the binary xtc-format. No openly available Matlab parser currently exists for this format. The xtc reader is orders of magnitudes faster than other available pdb/ascii workarounds. Gro2mat is especially useful for scientists with an interest in quick prototyping of new mathematical and statistical approaches for Gromacs trajectory analyses. © 2014 Wiley Periodicals, Inc. Copyright © 2014 Wiley Periodicals, Inc.
Prudic, David E.
1989-01-01
Computer models are widely used to simulate groundwater flow for evaluating and managing the groundwater resource of many aquifers, but few are designed to also account for surface flow in streams. A computer program was written for use in the US Geological Survey modular finite difference groundwater flow model to account for the amount of flow in streams and to simulate the interaction between surface streams and groundwater. The new program is called the Streamflow-Routing Package. The Streamflow-Routing Package is not a true surface water flow model, but rather is an accounting program that tracks the flow in one or more streams which interact with groundwater. The program limits the amount of groundwater recharge to the available streamflow. It permits two or more streams to merge into one with flow in the merged stream equal to the sum of the tributary flows. The program also permits diversions from streams. The groundwater flow model with the Streamflow-Routing Package has an advantage over the analytical solution in simulating the interaction between aquifer and stream because it can be used to simulate complex systems that cannot be readily solved analytically. The Streamflow-Routing Package does not include a time function for streamflow but rather streamflow entering the modeled area is assumed to be instantly available to downstream reaches during each time period. This assumption is generally reasonable because of the relatively slow rate of groundwater flow. Another assumption is that leakage between streams and aquifers is instantaneous. This assumption may not be reasonable if the streams and aquifers are separated by a thick unsaturated zone. Documentation of the Streamflow-Routing Package includes data input instructions; flow charts, narratives, and listings of the computer program for each of four modules; and input data sets and printed results for two test problems, and one example problem. (Lantz-PTT)
NASA Technical Reports Server (NTRS)
1982-01-01
Design and test data for packaging, deploying, and assembling structures for near term space platform systems, were provided by testing light type hardware in the Neutral Buoyancy Simulator. An optimum or near optimum structural configuration for varying degrees of deployment utilizing different levels of EVA and RMS was achieved. The design of joints and connectors and their lock/release mechanisms were refined to improve performance and operational convenience. The incorporation of utilities into structural modules to determine their effects on packaging and deployment was evaluated. By simulation tests, data was obtained for stowage, deployment, and assembly of the final structural system design to determine construction timelines, and evaluate system functioning and techniques.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Chun, Donghoon; Yook, Jong-Gwan; Katehi, Linda P. B.
2001-01-01
Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior three-dimensional-finite element method (3-D-FEM) electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually Increases coupling between the lines: however, if the top of the via posts are connected by a metal strip, coupling is reduced. In this paper, experimental verification of the 3-D-FEM simulations is demonstrated for commercially fabricated low temperature cofired ceramic (LTCC) packages. In addition, measured attenuation of microstrip lines surrounded by the shielding structures is presented and shows that shielding structures do not change the attenuation characteristics of the line.
NASA Technical Reports Server (NTRS)
Kavi, K. M.
1984-01-01
There have been a number of simulation packages developed for the purpose of designing, testing and validating computer systems, digital systems and software systems. Complex analytical tools based on Markov and semi-Markov processes have been designed to estimate the reliability and performance of simulated systems. Petri nets have received wide acceptance for modeling complex and highly parallel computers. In this research data flow models for computer systems are investigated. Data flow models can be used to simulate both software and hardware in a uniform manner. Data flow simulation techniques provide the computer systems designer with a CAD environment which enables highly parallel complex systems to be defined, evaluated at all levels and finally implemented in either hardware or software. Inherent in data flow concept is the hierarchical handling of complex systems. In this paper we will describe how data flow can be used to model computer system.
Platform technologies for hybrid optoelectronic integration and packaging
NASA Astrophysics Data System (ADS)
Datta, Madhumita
In order to bring fiber-optics closer to individual home and business services, the optical network components have to be inexpensive and reliable. Integration and packaging of optoelectronic devices holds the key to high-volume low-cost component manufacturing. The goal of this dissertation is to propose, study, and demonstrate various ways to integrate optoelectronic devices on a packaging platform to implement cost-effective, functional optical modules. Two types of hybrid integration techniques have been proposed: flip-chip solder bump bonding for high-density two-dimensional array packaging of surface-emitting devices, and solder preform bonding for fiber-coupled edge-emitting semiconductor devices. For flip-chip solder bump bonding, we developed a simple, inexpensive remetallization process called "electroless plating", which converts the aluminum bond pads of foundry-made complementary metal oxide semiconductor (CMOS) chips into solder-bondable and wire-bondable gold surfaces. We have applied for a patent on this remetallization technique. For fiber-pigtailed edge-emitting laser modules, we have studied the coupling characteristics of different types of lensed single-mode fibers including semispherically lensed fiber, cylindrically lensed fiber and conically lensed fiber. We have experimentally demonstrated 66% coupling efficiency with semispherically lensed fiber and 50% efficiency with conically lensed fibers. We have proposed and designed a packaging platform on which lensed fibers can be actively aligned to a laser and solder-attached reliably to the platform so that the alignment is retained. We have designed thin-film nichrome heaters on fused quartz platforms as local heat source to facilitate on-board solder alignment and attachment of fiber. The thermal performance of the heaters was simulated using finite element analysis tool ANSYS prior to fabrication. Using the heater's reworkability advantage, we have estimated the shift of the fiber due to solder shrinkage and introduced a pre-correction in the alignment process to restore optimum coupling efficiency close to 50% with conically lensed fibers. We have applied for a patent on this unique active alignment method through the University of Maryland's Technology Commercialization Office. Although we have mostly concentrated on active alignment platforms, we have proposed the idea of combining the passive alignment advantages of silicon optical benches to the on-board heater-assisted active alignment technique. This passive-active alignment process has the potential of cost-effective array packaging of edge-emitting devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek
Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less
Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek; ...
2017-04-24
Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less
Radiation treatment for sterilization of packaging materials
NASA Astrophysics Data System (ADS)
Haji-Saeid, Mohammad; Sampa, Maria Helena O.; Chmielewski, Andrzej G.
2007-08-01
Treatment with gamma and electron radiation is becoming a common process for the sterilization of packages, mostly made of natural or synthetic plastics, used in the aseptic processing of foods and pharmaceuticals. The effect of irradiation on these materials is crucial for packaging engineering to understand the effects of these new treatments. Packaging material may be irradiated either prior to or after filling. The irradiation prior to filling is usually chosen for dairy products, processed food, beverages, pharmaceutical, and medical device industries in the United States, Europe, and Canada. Radiation effects on packaging material properties still need further investigation. This paper summarizes the work done by different groups and discusses recent developments in regulations and testing procedures in the field of packaging technology.
Niswonger, Richard G.; Prudic, David E.; Regan, R. Steven
2006-01-01
Percolation of precipitation through unsaturated zones is important for recharge of ground water. Rain and snowmelt at land surface are partitioned into different pathways including runoff, infiltration, evapotranspiration, unsaturated-zone storage, and recharge. A new package for MODFLOW-2005 called the Unsaturated-Zone Flow (UZF1) Package was developed to simulate water flow and storage in the unsaturated zone and to partition flow into evapotranspiration and recharge. The package also accounts for land surface runoff to streams and lakes. A kinematic wave approximation to Richards? equation is solved by the method of characteristics to simulate vertical unsaturated flow. The approach assumes that unsaturated flow occurs in response to gravity potential gradients only and ignores negative potential gradients; the approach further assumes uniform hydraulic properties in the unsaturated zone for each vertical column of model cells. The Brooks-Corey function is used to define the relation between unsaturated hydraulic conductivity and water content. Variables used by the UZF1 Package include initial and saturated water contents, saturated vertical hydraulic conductivity, and an exponent in the Brooks-Corey function. Residual water content is calculated internally by the UZF1 Package on the basis of the difference between saturated water content and specific yield. The UZF1 Package is a substitution for the Recharge and Evapotranspiration Packages of MODFLOW-2005. The UZF1 Package differs from the Recharge Package in that an infiltration rate is applied at land surface instead of a specified recharge rate directly to ground water. The applied infiltration rate is further limited by the saturated vertical hydraulic conductivity. The UZF1 Package differs from the Evapotranspiration Package in that evapotranspiration losses are first removed from the unsaturated zone above the evapotranspiration extinction depth, and if the demand is not met, water can be removed directly from ground water whenever the depth to ground water is less than the extinction depth. The UZF1 Package also differs from the Evapotranspiration Package in that water is discharged directly to land surface whenever the altitude of the water table exceeds land surface. Water that is discharged to land surface, as well as applied infiltration in excess of the saturated vertical hydraulic conductivity, may be routed directly as inflow to specified streams or lakes if these packages are active; otherwise, this water is removed from the model. The UZF1 Package was tested against the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model for a vertical unsaturated flow problem that includes evapotranspiration losses. This report also includes an example in which MODFLOW-2005 with the UZF1 Package was used to simulate a realistic surface-water/ground-water flow problem that includes time and space variable infiltration, evapotranspiration, runoff, and ground-water discharge to land surface and to streams. Another simpler problem is presented so that the user may use the input files as templates for new problems and to verify proper code installation.
POLLUTANT CONTROL TECHNIQUES FOR PACKAGE BOILERS: HARDWARE MODIFICATIONS AND ALTERNATE FUELS
The report gives results of investigations of four ways to control nitrogen oxide (NOx) emissions from package boilers (both field operating boilers and boiler simulators): (1) variations in combustor operating procedure; (2) combustion modification (flue gas recirculation and st...
TRANSIENT SUPPRESSION PACKAGING FOR REDUCED EMISSIONS FROM ROTARY KILN INCINERATORS
Experiments were performed on a 73 kW rotary kiln incinerator simulator to determine whether innovative waste packaging designs might reduce transient emissions of products of incomplete combustion due to batch charging of containerized liquid surrogate waste compounds bound on g...
Modelling of optoelectronic circuits based on resonant tunneling diodes
NASA Astrophysics Data System (ADS)
Rei, João. F. M.; Foot, James A.; Rodrigues, Gil C.; Figueiredo, José M. L.
2017-08-01
Resonant tunneling diodes (RTDs) are the fastest pure electronic semiconductor devices at room temperature. When integrated with optoelectronic devices they can give rise to new devices with novel functionalities due to their highly nonlinear properties and electrical gain, with potential applications in future ultra-wide-band communication systems (see e.g. EU H2020 iBROW Project). The recent coverage on these devices led to the need to have appropriated simulation tools. In this work, we present RTD based optoelectronic circuits simulation packages to provide circuit signal level analysis such as transient and frequency responses. We will present and discuss the models, and evaluate the simulation packages.
magnum.fe: A micromagnetic finite-element simulation code based on FEniCS
NASA Astrophysics Data System (ADS)
Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter
2013-11-01
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The first flight of the Advanced Thin Ionization Calorimeter (ATIC) experiment from McMurdo, Antarctica lasted for 16 days, starting in December, 2000. The ATIC instrument consists of a fully active 320-crystal, 960-channel Bismuth Germanate (BGO) calorimeter, 202 scintillator strips in 3 hodoscopes interleaved with a graphite target, and a 4480-pixel silicon matrix charge detector. We have developed an Object Oriented data processing package based on ROOT. In this paper, we will describe the data processing scheme used in handling the accumulated 45 GB of flight data. We will also discuss trigger issues by comparing the measured energy-dependent trigger efficiency with its simulation and calibration issues by considering the time-dependence of housekeeping information, etc.
NASA Technical Reports Server (NTRS)
Harvey, Jason; Moore, Michael
2013-01-01
The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.
Improvements in simulation of multiple scattering effects in ATLAS fast simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basalaev, A. E., E-mail: artem.basalaev@cern.ch
Fast ATLAS Tracking Simulation (Fatras) package was verified on single layer geometry with respect to full simulation with GEANT4. Fatras hadronic interactions and multiple scattering simulation were studied in comparison with GEANT4. Disagreement was found in multiple scattering distributions of primary charged particles (μ, π, e). A new model for multiple scattering simulation was implemented in Fatras. The model was based on R. Frühwirth’s mixture models. New model was tested on single layer geometry and a good agreement with GEANT4 was achieved. Also a comparison of reconstructed tracks’ parameters was performed for Inner Detector geometry, and Fatras with new multiplemore » scattering model proved to have better agreement with GEANT4. New model of multiple scattering was added as a part of Fatras package in the development release of ATLAS software—ATHENA.« less
Simulation of complex pharmacokinetic models in Microsoft Excel.
Meineke, Ingolf; Brockmöller, Jürgen
2007-12-01
With the arrival of powerful personal computers in the office numerical methods are accessible to everybody. Simulation of complex processes therefore has become an indispensible tool in research and education. In this paper Microsoft EXCEL is used as a platform for a universal differential equation solver. The software is designed as an add-in aiming at a minimum of required user input to perform a given task. Four examples are included to demonstrate both, the simplicity of use and the versatility of possible applications. While the layout of the program is admittedly geared to the needs of pharmacokineticists, it can be used in any field where sets of differential equations are involved. The software package is available upon request.
Samapundo, Simbarashe; Mujuru, Felix Mugove; de Baenst, Ilse; Denon, Quenten; Devlieghere, Frank
2016-02-01
This study evaluated the effect of residual O2 level (0% to 5%) on microbial growth and volatile metabolite production on par-fried French fries packaged in a modified atmosphere with 60% CO2 (rest N2 ) at 4 °C. The results obtained showed that the initial headspace (IH) O2 level had an effect on growth of Leuconostoc mesenteroides on French fry simulation agar, whereby growth was slightly faster under 5% O2 . In terms of quantity, ethanol, 2-methyl-1-propanol, and dimethyl disulphide were the most significant volatile metabolites produced by L. mesenteroides. The production of ethanol by L. mesenteroides was highest on simulation agar packaged under low IH O2 levels (0% to 1%), indicating that the fermentative metabolism was induced under these conditions. In agreement with the results observed on the simulation medium, growth of native lactic acid bacteria was faster under an IH O2 level of 5%. In addition, ethanol, 2-methyl-1-propanol, and dimethyl disulphide were also quantitatively the most important volatile metabolites. However, in contrast, greater quantities of ethanol and dimethyl disulphide were produced on par-fried French fries packaged under 5% O2 . This was attributed to the limited growth of the native flora on the par-fried French fries under residual O2 levels of 0% and 1%. Although some significant differences (P < 0.05) occurred between the French fries packaged in 0%, 1%, and 5 % residual O2 during storage, all products were considered to be acceptable for consumption. The results of this study can be used to optimize the shelf-life of packaged chill stored potato products. © 2016 Institute of Food Technologists®
Guillard, V; Mauricio-Iglesias, M; Gontard, N
2010-11-01
Classical stabilization techniques (thermal treatments) usually involve food to be packed after being processed. On the contrary and increasingly, novel food processing methods, such as high pressure or microwaves, imply that both packaging and foodstuff undergo the stabilization treatment. Moreover, novel treatments (UV light, irradiation, ozone, cold plasma) are specifically used for disinfection and sterilization of the packaging material itself. Therefore, in the last several years a number of papers have focused on the effects of these new treatments on food-packaging interactions with a special emphasis on chemical migration and safety concerns. New packaging materials merged on the market with specific interest regarding the environment (i.e. bio-sourced materials) or mechanical and barrier properties (i.e. nanocomposites packaging materials). It is time to evaluate the knowledge about how these in-package food technologies affect food/packaging interactions, and especially for novel biodegradable and/or active materials. This article presents the effect of high pressure treatment, microwave heating, irradiation, UV-light, ozone and, cold plasma treatment on food/packaging interactions.
Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits
NASA Technical Reports Server (NTRS)
Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.
2011-01-01
As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.
ELAS: A powerful, general purpose image processing package
NASA Technical Reports Server (NTRS)
Walters, David; Rickman, Douglas
1991-01-01
ELAS is a software package which has been utilized as an image processing tool for more than a decade. It has been the source of several commercial packages. Now available on UNIX workstations it is a very powerful, flexible set of software. Applications at Stennis Space Center have included a very wide range of areas including medicine, forestry, geology, ecological modeling, and sonar imagery. It remains one of the most powerful image processing packages available, either commercially or in the public domain.
Crew coordination concepts: Continental Airlines CRM training
NASA Technical Reports Server (NTRS)
Christian, Darryl; Morgan, Alice
1987-01-01
The outline of the crew coordination concepts at Continental airlines is: (1) Present relevant theory: Contained in a pre-work package and in lecture/discussion form during the work course, (2) Discuss case examples: Contained in the pre-work for study and use during the course; and (3) Simulate practice problems: Introduced during the course as the beginning of an ongoing process. These concepts which are designed to address the problem pilots have in understanding the interaction between situations and their own theories of practice are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; Albuquerque, I. F. M.; Alexander, T.
Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~10^7, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon.
Hanford spent nuclear fuel hot conditioning system test procedure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, K.J.
1997-09-16
This document provides the test procedures for cold testing of the prototype Hot Conditioning System (HCS) at the 306E Facility. The primary objective of this testing is to confirm design choices and provide data for the detailed design package prior to procurement of the process equipment. The current scope of testing in this document includes a fabricability study of the HCS, equipment performance testing of the HCS components, heat-up and cool-down cycle simulation, and robotic arm testing.
MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.
McGibbon, Robert T; Beauchamp, Kyle A; Harrigan, Matthew P; Klein, Christoph; Swails, Jason M; Hernández, Carlos X; Schwantes, Christian R; Wang, Lee-Ping; Lane, Thomas J; Pande, Vijay S
2015-10-20
As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories
McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.; Klein, Christoph; Swails, Jason M.; Hernández, Carlos X.; Schwantes, Christian R.; Wang, Lee-Ping; Lane, Thomas J.; Pande, Vijay S.
2015-01-01
As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. PMID:26488642
SU-E-T-558: Monte Carlo Photon Transport Simulations On GPU with Quadric Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, Y; Tian, Z; Jiang, S
Purpose: Monte Carlo simulation on GPU has experienced rapid advancements over the past a few years and tremendous accelerations have been achieved. Yet existing packages were developed only in voxelized geometry. In some applications, e.g. radioactive seed modeling, simulations in more complicated geometry are needed. This abstract reports our initial efforts towards developing a quadric geometry module aiming at expanding the application scope of GPU-based MC simulations. Methods: We defined the simulation geometry consisting of a number of homogeneous bodies, each specified by its material composition and limiting surfaces characterized by quadric functions. A tree data structure was utilized tomore » define geometric relationship between different bodies. We modified our GPU-based photon MC transport package to incorporate this geometry. Specifically, geometry parameters were loaded into GPU’s shared memory for fast access. Geometry functions were rewritten to enable the identification of the body that contains the current particle location via a fast searching algorithm based on the tree data structure. Results: We tested our package in an example problem of HDR-brachytherapy dose calculation for shielded cylinder. The dose under the quadric geometry and that under the voxelized geometry agreed in 94.2% of total voxels within 20% isodose line based on a statistical t-test (95% confidence level), where the reference dose was defined to be the one at 0.5cm away from the cylinder surface. It took 243sec to transport 100million source photons under this quadric geometry on an NVidia Titan GPU card. Compared with simulation time of 99.6sec in the voxelized geometry, including quadric geometry reduced efficiency due to the complicated geometry-related computations. Conclusion: Our GPU-based MC package has been extended to support photon transport simulation in quadric geometry. Satisfactory accuracy was observed with a reduced efficiency. Developments for charged particle transport in this geometry are currently in progress.« less
NASA Astrophysics Data System (ADS)
Kempka, T.; Norden, B.; Tillner, E.; Nakaten, B.; Kühn, M.
2012-04-01
Geological modelling and dynamic flow simulations were conducted at the Ketzin pilot site showing a good agreement of history matched geological models with CO2 arrival times in both observation wells and timely development of reservoir pressure determined in the injection well. Recently, a re-evaluation of the seismic 3D data enabled a refinement of the structural site model and the implementation of the fault system present at the top of the Ketzin anticline. The updated geological model (model size: 5 km x 5 km) shows a horizontal discretization of 5 x 5 m and consists of three vertical zones, with the finest discretization at the top (0.5 m). According to the revised seismic analysis, the facies modelling to simulate the channel and floodplain facies distribution at Ketzin was updated. Using a sequential Gaussian simulator for the distribution of total and effective porosities and an empiric porosity-permeability relationship based on site and literature data available, the structural model was parameterized. Based on this revised reservoir model of the Stuttgart formation, numerical simulations using the TOUGH2-MP/ECO2N and Schlumberger Information Services (SIS) ECLIPSE 100 black-oil simulators were undertaken in order to evaluate the long-term (up to 10,000 years) migration of the injected CO2 (about 57,000 t at the end of 2011) and the development of reservoir pressure over time. The simulation results enabled us to quantitatively compare both reservoir simulators based on current operational data considering the long-term effects of CO2 storage including CO2 dissolution in the formation fluid. While the integration of the static geological model developed in the SIS Petrel modelling package into the ECLIPSE simulator is relatively flawless, a work-flow allowing for the export of Petrel models into the TOUGH2-MP input file format had to be implemented within the scope of this study. The challenge in this task was mainly determined by the presence of a complex faulted system in the revised reservoir model demanding for an integrated concept to deal with connections between the elements aligned to faults in the TOUGH2-MP simulator. Furthermore, we developed a methodology to visualize and compare the TOUGH2-MP simulation results with those of the Eclipse simulator using the Petrel software package. The long-term simulation results of both simulators are generally in good agreement. Spatial and timely migration of the CO2 plume as well as residual gas saturation are almost identical for both simulators, even though a time-dependent approach of CO2 dissolution in the formation fluid was chosen in the ECLIPSE simulator. Our results confirmed that a scientific open-source simulator as the TOUGH2-MP software package is capable to provide the same accuracy as the industrial standard simulator ECLIPSE 100. However, the computational time and additional efforts to implement a suitable workflow for using the TOUGH2-MP simulator are significantly higher, while the open-source concept of TOUGH2 provides more flexibility regarding process adaptation.
Design of FPGA ICA for hyperspectral imaging processing
NASA Astrophysics Data System (ADS)
Nordin, Anis; Hsu, Charles C.; Szu, Harold H.
2001-03-01
The remote sensing problem which uses hyperspectral imaging can be transformed into a blind source separation problem. Using this model, hyperspectral imagery can be de-mixed into sub-pixel spectra which indicate the different material present in the pixel. This can be further used to deduce areas which contain forest, water or biomass, without even knowing the sources which constitute the image. This form of remote sensing allows previously blurred images to show the specific terrain involved in that region. The blind source separation problem can be implemented using an Independent Component Analysis algorithm. The ICA Algorithm has previously been successfully implemented using software packages such as MATLAB, which has a downloadable version of FastICA. The challenge now lies in implementing it in a form of hardware, or firmware in order to improve its computational speed. Hardware implementation also solves insufficient memory problem encountered by software packages like MATLAB when employing ICA for high resolution images and a large number of channels. Here, a pipelined solution of the firmware, realized using FPGAs are drawn out and simulated using C. Since C code can be translated into HDLs or be used directly on the FPGAs, it can be used to simulate its actual implementation in hardware. The simulated results of the program is presented here, where seven channels are used to model the 200 different channels involved in hyperspectral imaging.
DBCC Software as Database for Collisional Cross-Sections
NASA Astrophysics Data System (ADS)
Moroz, Daniel; Moroz, Paul
2014-10-01
Interactions of species, such as atoms, radicals, molecules, electrons, and photons, in plasmas used for materials processing could be very complex, and many of them could be described in terms of collisional cross-sections. Researchers involved in plasma simulations must select reasonable cross-sections for collisional processes for implementing them into their simulation codes to be able to correctly simulate plasmas. However, collisional cross-section data are difficult to obtain, and, for some collisional processes, the cross-sections are still not known. Data on collisional cross-sections can be obtained from numerous sources including numerical calculations, experiments, journal articles, conference proceedings, scientific reports, various universities' websites, national labs and centers specifically devoted to collecting data on cross-sections. The cross-sections data received from different sources could be partial, corresponding to limited energy ranges, or could even not be in agreement. The DBCC software package was designed to help researchers in collecting, comparing, and selecting cross-sections, some of which could be constructed from others or chosen as defaults. This is important as different researchers may place trust in different cross-sections or in different sources. We will discuss the details of DBCC and demonstrate how it works and why it is beneficial to researchers working on plasma simulations.
Multi-stage FE simulation of hot ring rolling
NASA Astrophysics Data System (ADS)
Wang, C.; Geijselaers, H. J. M.; van den Boogaard, A. H.
2013-05-01
As a unique and important member of the metal forming family, ring rolling provides a cost effective process route to manufacture seamless rings. Applications of ring rolling cover a wide range of products in aerospace, automotive and civil engineering industries [1]. Above the recrystallization temperature of the material, hot ring rolling begins with the upsetting of the billet cut from raw stock. Next a punch pierces the hot upset billet to form a hole through the billet. This billet, referred to as preform, is then rolled by the ring rolling mill. For an accurate simulation of hot ring rolling, it is crucial to include the deformations, stresses and strains from the upsetting and piercing process as initial conditions for the rolling stage. In this work, multi-stage FE simulations of hot ring rolling process were performed by mapping the local deformation state of the workpiece from one step to the next one. The simulations of upsetting and piercing stages were carried out by 2D axisymmetric models using adaptive remeshing and element erosion. The workpiece for the ring rolling stage was subsequently obtained after performing a 2D to 3D mapping. The commercial FE package LS-DYNA was used for the study and user defined subroutines were implemented to complete the control algorithm. The simulation results were analyzed and also compared with those from the single-stage FE model of hot ring rolling.
Van der Linden, Inge; Avalos Llano, Karina R; Eriksson, Markus; De Vos, Winnok H; Van Damme, Els J M; Uyttendaele, Mieke; Devlieghere, Frank
2016-12-05
The influence of a selection of minimal processing techniques (sanitizing wash prior to packaging, modified atmosphere, storage conditions under light or in the dark) was investigated in relation to the survival of, attachment to and internalization of enteric pathogens in fresh produce. Cut Iceberg lettuce was chosen as a model for fresh produce, Escherichia coli O157:H7 (E. coli O157) and Salmonella enterica were chosen as pathogen models. Care was taken to simulate industrial post-harvest processing. A total of 50±0.1g of fresh-cut Iceberg lettuce was packed in bags under near ambient atmospheric air with approximately 21% O 2 (NAA) conditions or equilibrium modified atmosphere with 3% O 2 (EMAP). Two lettuce pieces inoculated with E. coli O157 BRMSID 188 or Salmonella Typhimurium labeled with green fluorescent protein (GFP) were added to each package. The bags with cut lettuce were stored under either dark or light conditions for 2days at 7°C. The pathogens' capacity to attach to the lettuce surface and cut edge was evaluated 2days after inoculation using conventional plating technique and the internalization of the bacteria was investigated and quantified using confocal microscopy. The effect of a sanitizing wash step (40mg/L NaClO or 40mg/L peracetic acid+1143mg/L lactic acid) of the cut lettuce prior to packaging was evaluated as well. Our results indicate that both pathogens behaved similarly under the investigated conditions. Pathogen growth was not observed, nor was there any substantial influence of the investigated atmospheric conditions or light/dark storage conditions on their attachment/internalization. The pathogens attached to and internalized via cut edges and wounds, from which they were able to penetrate into the parenchyma. Internalization through the stomata into the parenchyma was not observed, although some bacteria were found in the substomatal cavity. Washing the cut edges with sanitizing agents to reduce enteric pathogen numbers was not more effective than a rinse with precooled tap water prior to packaging. Our results confirm that cut surfaces are the main risk for postharvest attachment and internalization of E. coli O157 and Salmonella during minimal processing and that storage and packaging conditions have no important effect. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zygoura, Panagiota D.; Paleologos, Evangelos K.; Kontominas, Michael G.
2011-08-01
The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 °C for 10 days for the aqueous simulants, and at 20 °C for 2 days for the fatty food simulant (EC, 1997; EEC, 1993). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [60Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected, since ATBC did not undergo chemical decomposition upon irradiation up to 25 kGy. Finally, specific migration decreased proportionally with increasing polarity of the food-simulating solvent.
PHT3D-UZF: A reactive transport model for variably-saturated porous media
Wu, Ming Zhi; Post, Vincent E. A.; Salmon, S. Ursula; Morway, Eric D.; Prommer, H.
2016-01-01
A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.
ARTSN: An Automated Real-Time Spacecraft Navigation System
NASA Technical Reports Server (NTRS)
Burkhart, P. Daniel; Pollmeier, Vincent M.
1996-01-01
As part of the Deep Space Network (DSN) advanced technology program an effort is underway to design a filter to automate the deep space navigation process.The automated real-time spacecraft navigation (ARTSN) filter task is based on a prototype consisting of a FORTRAN77 package operating on an HP-9000/700 workstation running HP-UX 9.05. This will be converted to C, and maintained as the operational version. The processing tasks required are: (1) read a measurement, (2) integrate the spacecraft state to the current measurement time, (3) compute the observable based on the integrated state, and (4) incorporate the measurement information into the state using an extended Kalman filter. This filter processes radiometric data collected by the DSN. The dynamic (force) models currently include point mass gravitational terms for all planets, the Sun and Moon, solar radiation pressure, finite maneuvers, and attitude maintenance activity modeled quadratically. In addition, observable errors due to troposphere are included. Further data types, force and observable models will be ncluded to enhance the accuracy of the models and the capability of the package. The heart of the ARSTSN is a currently available continuous-discrete extended Kalman filter. Simulated data used to test the implementation at various stages of development and the results from processing actual mission data are presented.
Use of multi-node wells in the Groundwater-Management Process of MODFLOW-2005 (GWM-2005)
Ahlfeld, David P.; Barlow, Paul M.
2013-01-01
Many groundwater wells are open to multiple aquifers or to multiple intervals within a single aquifer. These types of wells can be represented in numerical simulations of groundwater flow by use of the Multi-Node Well (MNW) Packages developed for the U.S. Geological Survey’s MODFLOW model. However, previous versions of the Groundwater-Management (GWM) Process for MODFLOW did not allow the use of multi-node wells in groundwater-management formulations. This report describes modifications to the MODFLOW–2005 version of the GWM Process (GWM–2005) to provide for such use with the MNW2 Package. Multi-node wells can be incorporated into a management formulation as flow-rate decision variables for which optimal withdrawal or injection rates will be determined as part of the GWM–2005 solution process. In addition, the heads within multi-node wells can be used as head-type state variables, and, in that capacity, be included in the objective function or constraint set of a management formulation. Simple head bounds also can be defined to constrain water levels at multi-node wells. The report provides instructions for including multi-node wells in the GWM–2005 data-input files and a sample problem that demonstrates use of multi-node wells in a typical groundwater-management problem.
eSBMTools 1.0: enhanced native structure-based modeling tools.
Lutz, Benjamin; Sinner, Claude; Heuermann, Geertje; Verma, Abhinav; Schug, Alexander
2013-11-01
Molecular dynamics simulations provide detailed insights into the structure and function of biomolecular systems. Thus, they complement experimental measurements by giving access to experimentally inaccessible regimes. Among the different molecular dynamics techniques, native structure-based models (SBMs) are based on energy landscape theory and the principle of minimal frustration. Typically used in protein and RNA folding simulations, they coarse-grain the biomolecular system and/or simplify the Hamiltonian resulting in modest computational requirements while achieving high agreement with experimental data. eSBMTools streamlines running and evaluating SBM in a comprehensive package and offers high flexibility in adding experimental- or bioinformatics-derived restraints. We present a software package that allows setting up, modifying and evaluating SBM for both RNA and proteins. The implemented workflows include predicting protein complexes based on bioinformatics-derived inter-protein contact information, a standardized setup of protein folding simulations based on the common PDB format, calculating reaction coordinates and evaluating the simulation by free-energy calculations with weighted histogram analysis method or by phi-values. The modules interface with the molecular dynamics simulation program GROMACS. The package is open source and written in architecture-independent Python2. http://sourceforge.net/projects/esbmtools/. alexander.schug@kit.edu. Supplementary data are available at Bioinformatics online.
LavaNet—Neural network development environment in a general mine planning package
NASA Astrophysics Data System (ADS)
Kapageridis, Ioannis Konstantinou; Triantafyllou, A. G.
2011-04-01
LavaNet is a series of scripts written in Perl that gives access to a neural network simulation environment inside a general mine planning package. A well known and a very popular neural network development environment, the Stuttgart Neural Network Simulator, is used as the base for the development of neural networks. LavaNet runs inside VULCAN™—a complete mine planning package with advanced database, modelling and visualisation capabilities. LavaNet is taking advantage of VULCAN's Perl based scripting environment, Lava, to bring all the benefits of neural network development and application to geologists, mining engineers and other users of the specific mine planning package. LavaNet enables easy development of neural network training data sets using information from any of the data and model structures available, such as block models and drillhole databases. Neural networks can be trained inside VULCAN™ and the results be used to generate new models that can be visualised in 3D. Direct comparison of developed neural network models with conventional and geostatistical techniques is now possible within the same mine planning software package. LavaNet supports Radial Basis Function networks, Multi-Layer Perceptrons and Self-Organised Maps.
Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhanagopalan, Shriram; Zhang, Chao; Sprague, Michael A.
2016-06-01
Models capture the force response for single-cell and cell-string levels to within 15%-20% accuracy and predict the location for the origin of failure based on the deformation data from the experiments. At the module level, there is some discrepancy due to poor mechanical characterization of the packaging material between the cells. The thermal response (location and value of maximum temperature) agrees qualitatively with experimental data. In general, the X-plane results agree with model predictions to within 20% (pending faulty thermocouples, etc.); the Z-plane results show a bigger variability both between the models and test-results, as well as among multiple repeatsmore » of the tests. The models are able to capture the timing and sequence in voltage drop observed in the multi-cell experiments; the shapes of the current and temperature profiles need more work to better characterize propagation. The cells within packaging experience about 60% less force under identical impact test conditions, so the packaging on the test articles is robust. However, under slow-crush simulations, the maximum deformation of the cell strings with packaging is about twice that of cell strings without packaging.« less
Hannon, Joseph Christopher; Kerry, Joseph P; Cruz-Romero, Malco; Azlin-Hasim, Shafrina; Morris, Michael; Cummins, Enda
2016-09-01
To examine the human exposure to a novel silver and copper nanoparticle (AgNP and CuNP)/polystyrene-polyethylene oxide block copolymer (PS-b-PEO) food packaging coating, the migration of Ag and Cu into 3% acetic acid (3% HAc) food simulant was assessed at 60 °C for 10 days. Significantly lower migration was observed for Ag (0.46 mg/kg food) compared to Cu (0.82 mg/kg food) measured by inductively coupled plasma - atomic emission spectrometry (ICP-AES). In addition, no distinct population of AgNPs or CuNPs were observed in 3% HAc by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The predicted human exposure to Ag and Cu was used to calculate a margin of exposure (MOE) for ionic species of Ag and Cu, which indicated the safe use of the food packaging in a hypothetical scenario (e.g. as fruit juice packaging). While migration exceeded regulatory limits, the calculated MOE suggests current migration limits may be conservative for specific nano-packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
21 CFR 500.23 - Thermally processed low-acid foods packaged in hermetically sealed containers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Thermally processed low-acid foods packaged in hermetically sealed containers. 500.23 Section 500.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Administrative Rulings and Decisions § 500.23 Thermally processed low-acid foods packaged in hermetically sealed...
21 CFR 500.23 - Thermally processed low-acid foods packaged in hermetically sealed containers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Thermally processed low-acid foods packaged in hermetically sealed containers. 500.23 Section 500.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Administrative Rulings and Decisions § 500.23 Thermally processed low-acid foods packaged in hermetically sealed...
21 CFR 500.23 - Thermally processed low-acid foods packaged in hermetically sealed containers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Thermally processed low-acid foods packaged in hermetically sealed containers. 500.23 Section 500.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Administrative Rulings and Decisions § 500.23 Thermally processed low-acid foods packaged in hermetically sealed...
21 CFR 500.23 - Thermally processed low-acid foods packaged in hermetically sealed containers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Thermally processed low-acid foods packaged in hermetically sealed containers. 500.23 Section 500.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Administrative Rulings and Decisions § 500.23 Thermally processed low-acid foods packaged in hermetically sealed...
21 CFR 500.23 - Thermally processed low-acid foods packaged in hermetically sealed containers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Thermally processed low-acid foods packaged in hermetically sealed containers. 500.23 Section 500.23 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... Administrative Rulings and Decisions § 500.23 Thermally processed low-acid foods packaged in hermetically sealed...
Process Variability and Capability in Candy Production and Packaging
ERIC Educational Resources Information Center
Lembke, Ronald S.
2016-01-01
In this short, in-class activity, students use fun size packages of M&Ms to study process variability, including a real-world application of C[subscript pk]. How process variability and legal requirements force the company to put "Not Labeled for Individual Retail Sale" on each fun size package is discussed, as is the economics of…
Simulations in nursing practice: toward authentic leadership.
Shapira-Lishchinsky, Orly
2014-01-01
Aim This study explores nurses' ethical decision-making in team simulations in order to identify the benefits of these simulations for authentic leadership. Background While previous studies have indicated that team simulations may improve ethics in the workplace by reducing the number of errors, those studies focused mainly on clinical aspects and not on nurses' ethical experiences or on the benefits of authentic leadership. Methods Fifty nurses from 10 health institutions in central Israel participated in the study. Data about nurses' ethical experiences were collected from 10 teams. Qualitative data analysis based on Grounded Theory was applied, using the atlas.ti 5.0 software package. Findings Simulation findings suggest four main benefits that reflect the underlying components of authentic leadership: self-awareness, relational transparency, balanced information processing and internalized moral perspective. Conclusions Team-based simulation as a training tool may lead to authentic leadership among nurses. Implications for nursing management Nursing management should incorporate team simulations into nursing practice to help resolve power conflicts and to develop authentic leadership in nursing. Consequently, errors will decrease, patients' safety will increase and optimal treatment will be provided. © 2012 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Müller, Simon; Weygand, Sabine M.
2018-05-01
Axisymmetric stretch forming processes of aluminium-polymer laminate foils (e.g. consisting of PA-Al-PVC layers) are analyzed numerically by finite element modeling of the multi-layer material as well as experimentally in order to identify a suitable damage initiation criterion. A simple ductile fracture criterion is proposed to predict the forming limits. The corresponding material constants are determined from tensile tests and then applied in forming simulations with different punch geometries. A comparison between the simulations and the experimental results shows that the determined failure constants are not applicable. Therefore, one forming experiment was selected and in the corresponding simulation the failure constant was fitted to its measured maximum stretch. With this approach it is possible to predict the forming limit of the laminate foil with satisfying accuracy for different punch geometries.
Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Chenn Zhou
2012-08-15
The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has beenmore » developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.« less
Original Courseware for Introductory Psychology: Implementation and Evaluation.
ERIC Educational Resources Information Center
Slotnick, Robert S.
1988-01-01
Describes the implementation and field testing of PsychWare, a courseware package for introductory psychology developed and field tested at New York Institute of Technology. Highlights include the courseware package (10 software programs, a faculty manual, and a student workbook), and instructional design features (simulations, real-time…
Cleanup Verification Package for the 300 VTS Waste Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. W. Clark and T. H. Mitchell
2006-03-13
This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.
ON UPGRADING THE NUMERICS IN COMBUSTION CHEMISTRY CODES. (R824970)
A method of updating and reusing legacy FORTRAN codes for combustion simulations is presented using the DAEPACK software package. The procedure is demonstrated on two codes that come with the CHEMKIN-II package, CONP and SENKIN, for the constant-pressure batch reactor simulati...
NASA Astrophysics Data System (ADS)
Peanpunga, Udom; Ugsornrat, Kessararat; Thorlor, Panakamol; Sumithpibul, Chalermsak
2017-09-01
This research studied about an epoxy molding compound (EMC) floor life to reliability performance of integrated circuit (IC) package. Molding is the process for protecting the die of IC package form mechanical and chemical reaction from external environment by shaping EMC. From normal manufacturing process, the EMC is stored in the frozen at 5oC and left at around room temperature for aging time or floor life before molding process. The EMC floor life effect to its properties and reliability performance of IC package. Therefore, this work interested in varied the floor life of EMC before molding process to analyze properties of EMC such as spiral flow length, gelation time, and viscosity. In experiment, the floor life of EMC was varied to check the effect of its property to reliability performance. The EMC floor life were varied from 0 hours to 60 hours with a step of 12 hours and observed wire sweep, incomplete EMC, and delamination inside the packages for 3x3, 5x5 and 8x8 mm2 of QFN packages. The evaluation showed about clearly effect of EMC floor life to IC packaging reliability. EMC floor life is not any concern for EMC property, moldabilty, and reliability from 0 hours to 48 hours for molding process of 3x3,5x5 and 8x8 mm2 QFN packaging manufacturing
A new computer code for discrete fracture network modelling
NASA Astrophysics Data System (ADS)
Xu, Chaoshui; Dowd, Peter
2010-03-01
The authors describe a comprehensive software package for two- and three-dimensional stochastic rock fracture simulation using marked point processes. Fracture locations can be modelled by a Poisson, a non-homogeneous, a cluster or a Cox point process; fracture geometries and properties are modelled by their respective probability distributions. Virtual sampling tools such as plane, window and scanline sampling are included in the software together with a comprehensive set of statistical tools including histogram analysis, probability plots, rose diagrams and hemispherical projections. The paper describes in detail the theoretical basis of the implementation and provides a case study in rock fracture modelling to demonstrate the application of the software.
VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.
Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R
2018-01-29
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.
ERIC Educational Resources Information Center
Horne, Thomas
1988-01-01
Describes four IBM compatible flight simulator software packages: (1) "Falcon," air to air combat in an F-16 fighter; (2) "Chuck Yeager's Advanced Flight Trainer," test flight 14 different aircraft; (3) "Jet," air to air combat; and (4) "Flight Simulator," a realistic PC flight simulator program. (MVL)
Optimization of a Thermodynamic Model Using a Dakota Toolbox Interface
NASA Astrophysics Data System (ADS)
Cyrus, J.; Jafarov, E. E.; Schaefer, K. M.; Wang, K.; Clow, G. D.; Piper, M.; Overeem, I.
2016-12-01
Scientific modeling of the Earth physical processes is an important driver of modern science. The behavior of these scientific models is governed by a set of input parameters. It is crucial to choose accurate input parameters that will also preserve the corresponding physics being simulated in the model. In order to effectively simulate real world processes the models output data must be close to the observed measurements. To achieve this optimal simulation, input parameters are tuned until we have minimized the objective function, which is the error between the simulation model outputs and the observed measurements. We developed an auxiliary package, which serves as a python interface between the user and DAKOTA. The package makes it easy for the user to conduct parameter space explorations, parameter optimizations, as well as sensitivity analysis while tracking and storing results in a database. The ability to perform these analyses via a Python library also allows the users to combine analysis techniques, for example finding an approximate equilibrium with optimization then immediately explore the space around it. We used the interface to calibrate input parameters for the heat flow model, which is commonly used in permafrost science. We performed optimization on the first three layers of the permafrost model, each with two thermal conductivity coefficients input parameters. Results of parameter space explorations indicate that the objective function not always has a unique minimal value. We found that gradient-based optimization works the best for the objective functions with one minimum. Otherwise, we employ more advanced Dakota methods such as genetic optimization and mesh based convergence in order to find the optimal input parameters. We were able to recover 6 initially unknown thermal conductivity parameters within 2% accuracy of their known values. Our initial tests indicate that the developed interface for the Dakota toolbox could be used to perform analysis and optimization on a `black box' scientific model more efficiently than using just Dakota.
SIMULATION TOOL KIT FOR INDOOR AIR QUALITY AND INHALATION EXPOSURE (IAQX) VERSION 1.0 USER'S GUIDE
The User's Guide describes a Microsoft Windows-based indoor air quality (IAQ) simulation software package designed Simulation Tool Kit for Indoor Air Quality and Inhalation Exposure, or IAQX for short. This software complements and supplements existing IAQ simulation programs and...
Update of global TC simulations using a variable resolution non-hydrostatic model
NASA Astrophysics Data System (ADS)
Park, S. H.
2017-12-01
Using in a variable resolution meshes in MPAS during 2017 summer., Tropical cyclone (TC) forecasts are simulated. Two physics suite are tested to explore performance and bias of each physics suite for TC forecasting. A WRF physics suite is selected from experience on weather forecasting and CAM (Community Atmosphere Model) physics is taken from a AMIP type climate simulation. Based on the last year results from CAM5 physical parameterization package and comparing with WRF physics, we investigated a issue with intensity bias using updated version of CAM physics (CAM6). We also compared these results with coupled version of TC simulations. During this talk, TC structure will be compared specially around of boundary layer and investigate their relationship between TC intensity and different physics package.
A generic multibody simulation
NASA Technical Reports Server (NTRS)
Hopping, K. A.; Kohn, W.
1986-01-01
Described is a dynamic simulation package which can be configured for orbital test scenarios involving multiple bodies. The rotational and translational state integration methods are selectable for each individual body and may be changed during a run if necessary. Characteristics of the bodies are determined by assigning components consisting of mass properties, forces, and moments, which are the outputs of user-defined environmental models. Generic model implementation is facilitated by a transformation processor which performs coordinate frame inversions. Transformations are defined in the initialization file as part of the simulation configuration. The simulation package includes an initialization processor, which consists of a command line preprocessor, a general purpose grammar, and a syntax scanner. These permit specifications of the bodies, their interrelationships, and their initial states in a format that is not dependent on a particular test scenario.
Pegg, Elise C; Gill, Harinderjit S
2016-09-06
A new software tool to assign the material properties of bone to an ABAQUS finite element mesh was created and compared with Bonemat, a similar tool originally designed to work with Ansys finite element models. Our software tool (py_bonemat_abaqus) was written in Python, which is the chosen scripting language for ABAQUS. The purpose of this study was to compare the software packages in terms of the material assignment calculation and processing speed. Three element types were compared (linear hexahedral (C3D8), linear tetrahedral (C3D4) and quadratic tetrahedral elements (C3D10)), both individually and as part of a mesh. Comparisons were made using a CT scan of a hemi-pelvis as a test case. A small difference, of -0.05kPa on average, was found between Bonemat version 3.1 (the current version) and our Python package. Errors were found in the previous release of Bonemat (version 3.0 downloaded from www.biomedtown.org) during calculation of the quadratic tetrahedron Jacobian, and conversion of the apparent density to modulus when integrating over the Young׳s modulus field. These issues caused up to 2GPa error in the modulus assignment. For these reasons, we recommend users upgrade to the most recent release of Bonemat. Processing speeds were assessed for the three different element types. Our Python package took significantly longer (110s on average) to perform the calculations compared with the Bonemat software (10s). Nevertheless, the workflow advantages of the package and added functionality makes 'py_bonemat_abaqus' a useful tool for ABAQUS users. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model
McDonald, Michael G.; Harbaugh, Arlen W.; Guo, Weixing; Lu, Guoping
1988-01-01
This report presents a finite-difference model and its associated modular computer program. The model simulates flow in three dimensions. The report includes detailed explanations of physical and mathematical concepts on which the model is based and an explanation of how those concepts are incorporated in the modular structure of the computer program. The modular structure consists of a Main Program and a series of highly independent subroutines called 'modules.' The modules are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system which is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving linear equations which describe the flow system, such as the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The division of the program into modules permits the user to examine specific hydrologic features of the model independently. This also facilita development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program are also designed to permit maximum flexibility. Ground-water flow within the aquifer is simulated using a block-centered finite-difference approach. Layers can be simulated as confined, unconfined, or a combination of confined and unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and streams, can also be simulated. The finite-difference equations can be solved using either the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The program is written in FORTRAN 77 and will run without modification on most computers that have a FORTRAN 77 compiler. For each program ,module, this report includes a narrative description, a flow chart, a list of variables, and a module listing.
NetMOD Version 2.0 Mathematical Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merchant, Bion J.; Young, Christopher J.; Chael, Eric P.
2015-08-01
NetMOD ( Net work M onitoring for O ptimal D etection) is a Java-based software package for conducting simulation of seismic, hydroacoustic and infrasonic networks. Network simulations have long been used to study network resilience to station outages and to determine where additional stations are needed to reduce monitoring thresholds. NetMOD makes use of geophysical models to determine the source characteristics, signal attenuation along the path between the source and station, and the performance and noise properties of the station. These geophysical models are combined to simulate the relative amplitudes of signal and noise that are observed at each ofmore » the stations. From these signal-to-noise ratios (SNR), the probabilities of signal detection at each station and event detection across the network of stations can be computed given a detection threshold. The purpose of this document is to clearly and comprehensively present the mathematical framework used by NetMOD, the software package developed by Sandia National Laboratories to assess the monitoring capability of ground-based sensor networks. Many of the NetMOD equations used for simulations are inherited from the NetSim network capability assessment package developed in the late 1980s by SAIC (Sereno et al., 1990).« less
Dong, Han; Sharma, Diksha; Badano, Aldo
2014-12-01
Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridmantis, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webmantis and visualmantis to facilitate the setup of computational experiments via hybridmantis. The visualization tools visualmantis and webmantis enable the user to control simulation properties through a user interface. In the case of webmantis, control via a web browser allows access through mobile devices such as smartphones or tablets. webmantis acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridmantis. The users can download the output images and statistics through a zip file for future reference. In addition, webmantis provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. The visualization tools visualmantis and webmantis provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.
NASA Astrophysics Data System (ADS)
Walter, Nathan P.; Jaiswal, Abhishek; Cai, Zhikun; Zhang, Yang
2018-07-01
Neutron scattering is a powerful experimental technique for characterizing the structure and dynamics of materials on the atomic or molecular scale. However, the interpretation of experimental data from neutron scattering is oftentimes not trivial, partly because scattering methods probe ensemble-averaged information in the reciprocal space. Therefore, computer simulations, such as classical and ab initio molecular dynamics, are frequently used to unravel the time-dependent atomistic configurations that can reproduce the scattering patterns and thus assist in the understanding of the microscopic origin of certain properties of materials. LiquidLib is a post-processing package for analyzing the trajectory of atomistic simulations of liquids and liquid-like matter with application to neutron scattering experiments. From an atomistic simulation, LiquidLib provides the computation of various statistical quantities including the pair distribution function, the weighted and unweighted structure factors, the mean squared displacement, the non-Gaussian parameter, the four-point correlation function, the velocity auto correlation function, the self and collective van Hove correlation functions, the self and collective intermediate scattering functions, and the bond orientational order parameter. LiquidLib analyzes atomistic trajectories generated from packages such as LAMMPS, GROMACS, and VASP. It also offers an extendable platform to conveniently integrate new quantities into the library and integrate simulation trajectories of other file formats for analysis. Weighting the quantities by element-specific neutron-scattering lengths provides results directly comparable to neutron scattering measurements. Lastly, LiquidLib is independent of dimensionality, which allows analysis of trajectories in two, three, and higher dimensions. The code is beginning to find worldwide use.
Chemical compatibility screening results of plastic packaging to mixed waste simulants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigrey, P.J.; Dickens, T.G.
1995-12-01
We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specificmore » gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.« less
WebbPSF: Updated PSF Models Based on JWST Ground Testing Results
NASA Astrophysics Data System (ADS)
Osborne, Shannon; Perrin, Marshall D.; Melendez Hernandez, Marcio
2018-06-01
WebbPSF is a widely-used package that allows astronomers to create simulated point spread functions (PSFs) for the James Webb Space Telescope (JWST). WebbPSF provides the user with the flexibility to produce PSFs for direct imaging and coronographic modes, for a range of filters and masks, and across all the JWST instruments. These PSFs can then be analyzed with built-in evaluation tools or can be output to be used with users’ own tools. In the most recent round of updates, the accuracy of the PSFs have been improved with updated analyses of the instrument test data from NASA Goddard and with the new data from the testing of the combined Optical Telescope Element and Integrated Science Instrument Module (OTIS) at NASA Johnson. A post-processing function applying detector effects and pupil distortions to input PSFs has also been added to the WebbPSF package.
Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating.
Hu, Run; Luo, Xiaobing; Zheng, Huai; Qin, Zong; Gan, Zhiqiang; Wu, Bulong; Liu, Sheng
2012-06-18
A conformal phosphor coating can realize a phosphor layer with uniform thickness, which could enhance the angular color uniformity (ACU) of light-emitting diode (LED) packaging. In this study, a novel freeform lens was designed for simultaneous realization of LED uniform illumination and conformal phosphor coating. The detailed algorithm of the design method, which involves an extended light source and double refractions, was presented. The packaging configuration of the LED modules and the modeling of the light-conversion process were also presented. Monte Carlo ray-tracing simulations were conducted to validate the design method by comparisons with a conventional freeform lens. It is demonstrated that for the LED module with the present freeform lens, the illumination uniformity and ACU was 0.89 and 0.9283, respectively. The present freeform lens can realize equivalent illumination uniformity, but the angular color uniformity can be enhanced by 282.3% when compared with the conventional freeform lens.
XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, William; Lindberg, Ryan; Kim, K-J
The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinalmore » and transverse coherence of the radiation output.« less
NASA Astrophysics Data System (ADS)
Wang, Fuliang; Zhao, Zhipeng; Wang, Feng; Wang, Yan; Nie, Nantian
2017-12-01
Through-silicon via (TSV) filling by electrochemical deposition is still a challenge for 3D IC packaging, and three-component additive systems (accelerator, suppressor, and leveler) were commonly used in the industry to achieve void-free filling. However, models considering three additive systems and the current density effect have not been fully studied. In this paper, a novel three-component model was developed to study the TSV filling mechanism and process, where the interaction behavior of the three additives (accelerator, suppressor, and leveler) were considered, and the adsorption, desorption, and consumption coefficient of the three additives were changed with the current density. Based on this new model, the three filling types (seam void, ‘V’ shape, and key hole) were simulated under different current density conditions, and the filling results were verified by experiments. The effect of the current density on the copper ion concentration, additives surface coverage, and local current density distribution during the TSV filling process were obtained. Based on the simulation and experimental results, the diffusion-adsorption-desorption-consumption competition behavior between the suppressor, the accelerator, and the leveler were discussed. The filling mechanisms under different current densities were also analyzed.
Kim, Yoonsang; Emery, Sherry
2013-01-01
Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415
Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus
2009-01-01
The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations.
Tu, Yun; Ye, Lin; Zhou, Shao-Ping; Tu, Shan-Tung
2017-01-01
Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG) fabricated in hydrogen (H2)-loaded boron–germanium (B–Ge) co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H2-loaded B–Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H2-loaded B–Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging. PMID:28241465
Tu, Yun; Ye, Lin; Zhou, Shao-Ping; Tu, Shan-Tung
2017-02-23
Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG) fabricated in hydrogen (H₂)-loaded boron-germanium (B-Ge) co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H₂-loaded B-Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H₂-loaded B-Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging.