Dual Rate Adaptive Control for an Industrial Heat Supply Process Using Signal Compensation Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Tianyou; Jia, Yao; Wang, Hong
The industrial heat supply process (HSP) is a highly nonlinear cascaded process which uses a steam valve opening as its control input, the steam flow-rate as its inner loop output and the supply water temperature as its outer loop output. The relationship between the heat exchange rate and the model parameters, such as steam density, entropy, and fouling correction factor and heat exchange efficiency are unknown and nonlinear. Moreover, these model parameters vary in line with steam pressure, ambient temperature and the residuals caused by the quality variations of the circulation water. When the steam pressure and the ambient temperaturemore » are of high values and are subjected to frequent external random disturbances, the supply water temperature and the steam flow-rate would interact with each other and fluctuate a lot. This is also true when the process exhibits unknown characteristic variations of the process dynamics caused by the unexpected changes of the heat exchange residuals. As a result, it is difficult to control the supply water temperature and the rates of changes of steam flow-rate well inside their targeted ranges. In this paper, a novel compensation signal based dual rate adaptive controller is developed by representing the unknown variations of dynamics as unmodeled dynamics. In the proposed controller design, such a compensation signal is constructed and added onto the control signal obtained from the linear deterministic model based feedback control design. Such a compensation signal aims at eliminating the unmodeled dynamics and the rate of changes of the currently sample unmodeled dynamics. A successful industrial application is carried out, where it has been shown that both the supply water temperature and the rate of the changes of the steam flow-rate can be controlled well inside their targeted ranges when the process is subjected to unknown variations of its dynamics.« less
Downhole steam generator using low-pressure fuel and air supply
Fox, R.L.
1981-01-07
For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)
Experiences with industrial solar process steam generation in Jordan
NASA Astrophysics Data System (ADS)
Krüger, Dirk; Berger, Michael; Mokhtar, Marwan; Willwerth, Lisa; Zahler, Christian; Al-Najami, Mahmoud; Hennecke, Klaus
2017-06-01
At the Jordanian pharmaceuticals manufacturing company RAM Pharma a solar process heat supply has been constructed by Industrial Solar GmbH in March 2015 and operated since then (Figure 1). The collector field consists of 394 m² of linear Fresnel collectors supplying saturated steam to the steam network at RAM Pharma at about 6 bar gauge. In the frame of the SolSteam project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) the installation has been modified introducing an alternative way to separate water and steam by a cyclone. This paper describes the results of experiments with the cyclone and compares the operation with a steam drum. The steam production of the solar plant as well as the fuel demand of the steam boiler are continuously monitored and results are presented in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglund, T.; Ranney, J.T.; Babb, C.L.
2000-10-01
The initial design criteria of the MSW to ethanol facility have been completed along with preliminary site identification and layouts for the processing facility. These items are the first step in evaluating the feasibility of this co-located facility. Pilot facility design and modification are underway for the production and dewatering of the lignin fuel. Major process equipment identification has been completed and several key unit operations will be accomplished on rental equipment. Equipment not available for rental or at TVA has been ordered and facility modification and shakedown will begin in October. The study of the interface and resulting impactsmore » on the TVA Colbert facility are underway. The TVA Colbert fossil plant is fully capable of providing a reliable steam supply for the proposed Masada waste processing facility. The preferred supply location in the Colbert steam cycle has been identified as have possible steam pipeline routes to the Colbert boundary. Additional analysis is underway to fully predict the impact of the steam supply on Colbert plant performance and to select a final steam pipeline route.« less
Steam cooling system for a gas turbine
Wilson, Ian David; Barb, Kevin Joseph; Li, Ming Cheng; Hyde, Susan Marie; Mashey, Thomas Charles; Wesorick, Ronald Richard; Glynn, Christopher Charles; Hemsworth, Martin C.
2002-01-01
The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows.
Wilson, Ian D.; Wesorick, Ronald R.
2002-01-01
The steam cooling circuit for a gas turbine includes a bore tube assembly supplying steam to circumferentially spaced radial tubes coupled to supply elbows for transitioning the radial steam flow in an axial direction along steam supply tubes adjacent the rim of the rotor. The supply tubes supply steam to circumferentially spaced manifold segments located on the aft side of the 1-2 spacer for supplying steam to the buckets of the first and second stages. Spent return steam from these buckets flows to a plurality of circumferentially spaced return manifold segments disposed on the forward face of the 1-2 spacer. Crossover tubes couple the steam supply from the steam supply manifold segments through the 1-2 spacer to the buckets of the first stage. Crossover tubes through the 1-2 spacer also return steam from the buckets of the second stage to the return manifold segments. Axially extending return tubes convey spent cooling steam from the return manifold segments to radial tubes via return elbows. The bore tube assembly, radial tubes, elbows, manifold segments and crossover tubes are removable from the turbine rotor and replaceable.
Apparatus and methods for supplying auxiliary steam in a combined cycle system
Gorman, William G.; Carberg, William George; Jones, Charles Michael
2002-01-01
To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.
Downhole steam generator using low pressure fuel and air supply
Fox, Ronald L.
1983-01-01
An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.
Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine
Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel
2002-01-01
The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.
NASA Technical Reports Server (NTRS)
Carr, J. H.; Hurley, P. J.; Martin, P. J.
1978-01-01
Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Boiler That is Capable of Supplying Either Steam or Hot Water—(A) Testing. For purposes of EPCA, before... supplying either steam or hot water either by testing the boiler in the steam mode or by testing it in both... supplying either steam or hot water either by testing the boiler for both efficiencies in steam mode, or by...
Code of Federal Regulations, 2010 CFR
2010-10-01
... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained steam...
Utilisation of energy from digester gas and sludge incineration at Hamburg's Köhlbrandhöft WWTP.
Thierbach, R D; Hanssen, H
2002-01-01
At Hamburg's Köhlbrandhöft WWTP the demand for external energy supply is minimised by state of the art sludge treatment. The sludge is subjected to thickening, anaerobic digestion, dewatering, drying and incineration. The digester gas is used in a combined gas and steam turbine process. The sludge incineration also produces steam, which is also used in the steam turbine that follows the gas turbine. The turbines produce electricity, partially expanded steam is used for the sludge drying process. Heat from the condensation of vapours from sludge drying is used to heat the anaerobic digesters. The overall process requires no external heat or fuel and produces 60% of the WWTP's electricity demand.
Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle
NASA Astrophysics Data System (ADS)
Fic, Adam; Składzień, Jan; Gabriel, Michał
2015-03-01
Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.
Debris trap in a turbine cooling system
Wilson, Ian David
2002-01-01
In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completedmore » and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed.« less
21 CFR 113.40 - Equipment and procedures.
Code of Federal Regulations, 2014 CFR
2014-04-01
... have adequate filter systems to ensure a supply of clean, dry air. A steam controller activated by the... ensure a supply of clean, dry air. (5) Steam introduction. Steam shall be distributed in the bottom of... temperature controllers should have adequate filter systems to ensure a supply of clean, dry air. (5) Bleeders...
21 CFR 113.40 - Equipment and procedures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... have adequate filter systems to ensure a supply of clean, dry air. A steam controller activated by the... ensure a supply of clean, dry air. (5) Steam introduction. Steam shall be distributed in the bottom of... temperature controllers should have adequate filter systems to ensure a supply of clean, dry air. (5) Bleeders...
21 CFR 113.40 - Equipment and procedures.
Code of Federal Regulations, 2012 CFR
2012-04-01
... have adequate filter systems to ensure a supply of clean, dry air. A steam controller activated by the... ensure a supply of clean, dry air. (5) Steam introduction. Steam shall be distributed in the bottom of... temperature controllers should have adequate filter systems to ensure a supply of clean, dry air. (5) Bleeders...
NASA Astrophysics Data System (ADS)
Xu, Ningning; Liu, Jianxin; Yu, Peiqiang
2018-02-01
Large scale of steam flaked corn has been used in dairy ration to maintain high milk production level. This study aimed to determine effects of steam flaking on processing-induced intrinsic molecular structure changes that were associated with rumen degradation kinetics and nutrients supply. The advanced vibrational molecular spectroscopy was applied to reveal the processing-induced intrinsic structure changes on a molecular basis. The rumen degradation kinetics and nutrient supply were determined using in situ approach in ruminant livestock system. Raw corn grain (RC) and steam flaked corn grain (SFC) were obtained from two different processing plants. The results showed that (1) Compared to RC, SFC had greater truly digestible non-fiber carbohydrate [tdNFC: 86.8 versus 78.0% dry matter (DM)], but lower truly digestible crude protein [tdCP: 7.7 versus 9.0% DM]. (2) The steam flaking increased (P < 0.01) rumen degradable DM (RDDM) and starch (RDSt), but decreased (P < 0.01) rumen degradable protein (RDP). (3) Molecular absorbance intensities of most carbohydrate biopolymers were greater in SFC (P < 0.01), but protein amides associated molecular spectral intensities were lower (P < 0.01) in SFC. (4). The molecular structure and nutrient interactive study showed that carbohydrate spectral intensities were positively (P < 0.10) associated with RDDM and RDSt and protein amide spectral intensities were positively (P < 0.10) associated with RDP. This results indicated that the steam flaking induced molecular structure changes had an interactive relationship with rumen degradation kinetics.
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-10-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed tomore » produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio-based fuels is scheduled to begin in October of 2001. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam.« less
Steam drum design for direct steam generation
NASA Astrophysics Data System (ADS)
Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus
2017-06-01
For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.
Breckinridge Project, initial effort
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-01-01
The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basismore » established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.« less
Industry starts to tap the sun's energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-15
The dedication in 1978 of the Riegel Textile Corp's solar-collecting field in La France, South Carolina, marked the first solar process hot water application within the textile industry. Results from this DOE-funded project could provide a breakthrough in the application of solar energy to industrial process hot water, which accounts for about 4% of the nation's energy needs. A General Electric Co. industrial solar process-hot-water system is used to heat water to 190 F in an open fabric-dyeing vat designed to provide from 50 to 70% of the process heat required for a single-dye unit. The largest, citrus-juice processing plantmore » in the world at Bradenton, Florida, is being equipped wth a General Electric solar system that will supply high temperature steam (350 F, 134 psig) to one of the plant's pasteurizers during weekdays. On weekends, the solar unit will supply a major part of the steam used by two of the plant's four glycol-refrigerant dryers. A solar total energy system that will be used to provide electricity, steam, heat, and hot water for a knitware plant in Shenandoah, Georgia, is described. The project, managed by Sandia Laboratory, will utilize two axis parabolic dish solar collectors, which will produce steam at temperatures in the range of 750 F. The system is being designed to provide 60% of the annual energy requirements of the knitware facility. It will provide 35% of the electricity, 60% of the process steam, 98% of the domestic water and space heating needs, and 85% of the air conditioning requirements of the 42,000 sq ft factory being built for the West Germany-based Wilhelm Bleyle Co. (MCW)« less
THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-07-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysismore » production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam. The preliminary steam price will be determined in the next quarter.« less
Tomlinson, Leroy Omar; Smith, Raub Warfield
2002-01-01
In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.
Combined installation of electric and heat supply for climatic conditions of Iraq
NASA Astrophysics Data System (ADS)
Kaisi, Osama Al; Sidenkov, D. V.
2017-11-01
Electricity, heating and cooling are the three main components that make up the energy consumption base in residential, commercial and public buildings around the world. Demand for energy and fuel costs are constantly growing. Combined cooling, heating and power generation or trigeneration can be a promising solution to such a problem, providing an efficient, reliable, flexible, competitive and less harmful alternative to existing heat and cold supply systems. In this paper, scheme of the tri-generation plant on non-aqueous working substances is considered as an installation of a locally centralized electro-heat and cold supply of a typical residential house in a hot climate. The scheme of the combined installation of electro-heat (cold) supply consisted of the vapor power plant and heat pump system on low-boiling working substance for local consumers under the climatic conditions of Iraq is presented. The possibility of using different working substances in the thermodynamic cycles of these units, which will provide better efficiency of such tri-generation systems is shown. The calculations of steam turbine cycles and heat pump part on the selected working substances are conducted. It is proposed to use heat exchangers of plate type as the main exchangers in the combined processing. The developed method of thermal-hydraulic calculation of heat exchangers implemented in MathCad, which allows to evaluate the efficiency of plants of this type using the ε - NTU method. For the selected working substances of the steam part the optimal temperature of heat supply to the steam generator is determined. The results of thermodynamic and technical-economic analysis of the application of various working substances in the “organic” Rankine cycle of the steam turbine unit and the heat pump system of the heat and cold supply system are presented.
Downhole steam generator having a downhole oxidant compressor
Fox, R.L.
1981-01-07
Am improved apparatus is described for the downhole injection of steam into boreholes, for tertiary oil recovery. It includes an oxidant supply, a fuel supply, an igniter, a water supply, an oxidant compressor, and a combustor assembly. The apparatus is designed for efficiency, preheating of the water, and cooling of the combustion chamber walls. The steam outlet to the borehole is provided with pressure-responsive doors for closing the outlet in response to flameout. (DLC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-08-01
This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979,more » while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)« less
CONCEPTUAL DESIGN ASSESSMENT FOR THE COFIRING OF BIOREFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
David J. Webster; Jeffrey T. Ranney; Jacqueline G. Broder
2002-07-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed. Processing of biosolids and pilot facility hydrolysis production have been completed to produce lignin for cofire testing. EERC had received all the biomass and baseline coal fuels for use in testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary cofire test results indicate that the blending of lignin and biosolids with the Colbert coal blendmore » generally reduces NOx emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. A draft of the final cofire technical report entitled ''Effects of Cofiring Lignin and Biosolids with Coal on Fireside Performance and Combustion Products'' has been prepared and is currently being reviewed by project team members. A final report is expected by mid-third quarter 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The environmental review, preferred steam supply connection points and steam pipeline routing, and assessment of steam export impacts have been completed without major issue. A cost estimate for the steam supply system was also completed. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility. TVA has provided a draft final report that is under review by team members.« less
Steam Plant at the Aircraft Engine Research Laboratory
1945-09-21
The Steam Plant at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory supplies steam to the major test facilities and office buildings. Steam is used for the Icing Research Tunnel's spray system and the Engine Research Building’s desiccant air dryers. In addition, its five boilers supply heat to various buildings and the cafeteria. Schirmer-Schneider Company built the $141,000 facility in the fall of 1942, and it has been in operation ever since.
Solar heated fluidized bed gasification system
NASA Technical Reports Server (NTRS)
Qader, S. A. (Inventor)
1981-01-01
A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.
Kisilidjan hf - A unique diatomite plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigurdsson, F.
This paper gives a short description of Kisilidjan hf. (The Icelandic Diatomite Plant, Ltd.), a description of the production, the use of geothermal steam in the plant, steam supply, steam use, steam price, experience associated with the use of steam, and some conclusions.
Bore tube assembly for steam cooling a turbine rotor
DeStefano, Thomas Daniel; Wilson, Ian David
2002-01-01
An axial bore tube assembly for a turbine is provided to supply cooling steam to hot gas components of the turbine wheels and return the spent cooling steam. A pair of inner and outer tubes define a steam supply passage concentric about an inner return passage. The forward ends of the tubes communicate with an end cap assembly having sets of peripheral holes communicating with first and second sets of radial tubes whereby cooling steam from the concentric passage is supplied through the end cap holes to radial tubes for cooling the buckets and return steam from the buckets is provided through the second set of radial tubes through a second set of openings of the end cap into the coaxial return passage. A radial-to-axial flow transitioning device, including anti-swirling vanes is provided in the end cap. A strut ring adjacent the aft end of the bore tube assembly permits axial and radial thermal expansion of the inner tube relative to the outer tube.
10 CFR 431.82 - Definitions concerning commercial packaged boilers.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) For service water heating in buildings but does not meet the definition of “hot water supply boiler... capable of supplying either steam or hot water, and designed to operate under the conditions in paragraphs... that is designed to be capable of supplying either steam or hot water, and designed to operate under...
Urban Wood-Based Bio-Energy Systems in Seattle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan Gent, Seattle Steam Company
2010-10-25
Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated withmore » the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... (such as reboiler, condenser, vacuum pump, steam jet, etc.), plus any associated recovery system. Flame.... Process heater means a device that transfers heat liberated by burning fuel to fluids contained in tubes... chemicals in § 60.667. A process unit can operate independently if supplied with sufficient fuel or raw...
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2002-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility hydrolysis production has been completed to produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material was used atmore » EERC as baseline material and for mixing with the bio-fuel for combustion testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary co-fire test results indicate that the blending of lignin and bio-solids with the Colbert coal blend generally reduces NO{sub x} emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. The final co-fire testing report is being prepared at EERC and will be completed by the end of the second quarter of 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for the steam supply system was completed. The cost estimate and output and heat rate impacts have been used to determine a preliminary price for the exported steam. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility.« less
Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit
Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig
2002-01-01
In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.
Coupling of a 2.5 kW steam reformer with a 1 kW el PEM fuel cell
NASA Astrophysics Data System (ADS)
Mathiak, J.; Heinzel, A.; Roes, J.; Kalk, Th.; Kraus, H.; Brandt, H.
The University of Duisburg-Essen has developed a compact multi-fuel steam reformer suitable for natural gas, propane and butane. This steam reformer was combined with a polymer electrolyte membrane fuel cell (PEM FC) and a system test of the process chain was performed. The fuel processor comprises a prereformer step, a primary reformer, water gas shift reactors, a steam generator, internal heat exchangers in order to achieve an optimised heat integration and an external burner for heat supply as well as a preferential oxidation step (PROX) as CO purification. The fuel processor is designed to deliver a thermal hydrogen power output from 500 W to 2.5 kW. The PEM fuel cell stack provides about 1 kW electrical power. In the following paper experimental results of measurements of the single components PEM fuel cell and fuel processor as well as results of the coupling of both to form a process chain are presented.
NASA Astrophysics Data System (ADS)
Kim, Si-Won; Bae, Yonggyun; Yoon, Kyung Joong; Lee, Jong-Ho; Lee, Jong-Heun; Hong, Jongsup
2018-02-01
To mitigate CO2 emissions, its reduction by high-temperature electrolysis using solid oxide cells is extensively investigated, for which excessive steam supply is assumed. However, such condition may degrade its feasibility due to massive energy required for generating hot steam, implying the needs for lowering steam demand. In this study, high-temperature electrolysis of CO2-enriched mixtures by using fuel-electrode supported La0.6Sr0.4CoO3/YSZ/Ni-YSZ solid oxide cells is considered to satisfy such needs. The effect of internal and external steam supply on its electrochemical performance and gas productivity is elucidated. It is shown that the steam produced in-situ inside the fuel-electrode by a reverse water gas shift reaction may decrease significantly the electrochemical resistance of dry CO2-fed operations, attributed to self-sustaining positive thermo-electrochemical reaction loop. This mechanism is conspicuous at low current density, whereas it is no longer effective at high current density in which total reactant concentrations for electrolysis is critical. To overcome such limitations, a small amount of external steam supply to the CO2-enriched feed stream may be needed, but this lowers the CO2 conversion and CO/H2 selectivity. Based on these results, it is discussed that there can be minimum steam supply sufficient for guaranteeing both low electrochemical resistance and high gas productivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitzel, Paul
2016-05-13
The Babcock & Wilcox Company (B&W) performed a Pre-Front End Engineering Design (Pre-FEED) of an A-USC steam superheater for a proposed component test program achieving 760°C (1400°F) steam temperature. This would lead to follow-on work in a Phase 2 and Phase 3 that would involve detail design, manufacturing, construction and operation of the ComTest. Phase 1 results have provided the engineering data necessary for proceeding to the next phase of ComTest. The steam generator superheater would subsequently supply the steam to an A-USC prototype intermediate pressure steam turbine. The ComTest program is important in that it will place functioning A-USCmore » components in operation and in coordinated boiler and turbine service. It is also important to introduce the power plant operation and maintenance personnel to the level of skills required and provide the first background experience with hands-on training. The project will provide a means to exercise the complete supply chain events required in order to practice and perfect the process for A-USC power plant design, supply, manufacture, construction, commissioning, operation and maintenance. Representative participants will then be able to transfer knowledge and recommendations to the industry. ComTest is conceived in the manner of using a separate standalone plant facility that will not jeopardize the host facility or suffer from conflicting requirements in the host plant’s mission that could sacrifice the nickel alloy components and not achieve the testing goals. ComTest will utilize smaller quantities of the expensive materials and reduce the risk in the first operational practice for A-USC technology in the United States. Components at suitable scale in ComTest provide more assurance before putting them into practice in the full size A-USC demonstration plant.« less
Cooling system for a gas turbine
Wilson, Ian David; Salamah, Samir Armando; Bylina, Noel Jacob
2003-01-01
A plurality of arcuate circumferentially spaced supply and return manifold segments are arranged on the rim of a rotor for respectively receiving and distributing cooling steam through exit ports for distribution to first and second-stage buckets and receiving spent cooling steam from the first and second-stage buckets through inlet ports for transmission to axially extending return passages. Each of the supply and return manifold segments has a retention system for precluding substantial axial, radial and circumferential displacement relative to the rotor. The segments also include guide vanes for minimizing pressure losses in the supply and return of the cooling steam. The segments lie substantially equal distances from the centerline of the rotor and crossover tubes extend through each of the segments for communicating steam between the axially adjacent buckets of the first and second stages, respectively.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of equipment. Culinary steam used in direct contact with milk or dairy products shall be free from... used wherever applicable to insure a satisfactory and safe steam supply. Culinary steam shall comply with the 3-A Accepted Practices for a Method of Producing Steam of Culinary Quality, number 609. This...
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-01-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversionsmore » of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system continues.« less
7 CFR 1717.852 - Financing purposes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... facilities, including real property, used to supply electric and/or steam power to: (i) RE Act beneficiaries... are determined by RUS to be an integral component of the borrower's system of supplying electric and... electric and/or steam power to end-user customers of the borrower; (3) Investments in a lender required of...
Basu, Debabrata
Wet pack after steam sterilization process that means there are surely obtain millions of microorganisms that can breed and multiply rapidly and objects are unsterile and can never be used for further procedure. There are many reasons behind the wet pack occurrences after autoclaving like poor quality of wrapping materials, faulty valves of rigid container, faulty loading and packaging technique, poor steam quality, sterilizer malfunction and may be design related problems in CSSD sterile storage area. Cause of wet pack after steam sterilization processes may occur severe problems because of wasted time and effort, increased work load, increased cost, potentially contaminated instruments, infection risk to the patient, poor patient outcomes and delayed or cancellation of procedures. But such wet pack scenario can be avoided by various methods by using good steam (water) quality, performing periodic maintenance of the Autoclaves, avoidance of sterilizer overloading, allowing adequate post sterilization time to cool down the materials to room temperature, using good quality wrapping materials, properly maintain temperature and humidity of sterile storage area etc. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Methods of increasing thermal efficiency of steam and gas turbine plants
NASA Astrophysics Data System (ADS)
Vasserman, A. A.; Shutenko, M. A.
2017-11-01
Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.
Retention sleeve for a thermal medium carrying tube in a gas turbine
Lathrop, Norman Douglas; Czachor, Robert Paul
2003-01-01
Multiple tubes are connected to steam supply and spent cooling steam return manifolds for supplying cooling steam to buckets and returning spent cooling steam from the buckets to the manifolds, respectively. The tubes are prevented from axial movement in one direction by flanges engaging end faces of the spacer between the first and second-stage wheels. Retention sleeves are disposed about cantilevered ends of the tubes. One end of the retention sleeve engages an enlarged flange on the tube, while an opposite end is spaced axially from an end face of the adjoining wheel, forming a gap, enabling thermal expansion of the tubes and limiting axial displacement of the tube in the opposite direction.
Application of CaO-Based Bed Material for Dual Fluidized Bed Steam Biomass Gasification
NASA Astrophysics Data System (ADS)
Koppatz, S.; Pfeifer, C.; Kreuzeder, A.; Soukup, G.; Hofbauer, H.
Gasification of biomass is a suitable option for decentralized energy supply based on renewable sources in the range of up to 50 MW fuel input. The paper presents the dual fluidized bed (DFB) steam gasification process, which is applied to generate high quality and nitrogen-free product gas. Essential part of the DFB process is the bed material used in the fluidized reactors, which has significant impact on the product gas quality. By the use of catalytically active bed materials the performance of the overall process is increased, since the bed material favors reactions of the steam gasification. In particular, tar reforming reactions are favored. Within the paper, the pilot plant based on the DFB process with 100kW fuel input at Vienna University of Technology, Austria is presented. Actual investigations with focus on CaO-based bed materials (limestone) as well as with natural olivine as bed material were carried out at the pilot plant. The application of CaO-based bed material shows mainly decreased tar content in the product gas in contrast to experiments with olivine as bed material. The paper presents the results of steam gasification experiments with limestone and olivine, whereby the product gas composition as well as the tar content and the tar composition are outlined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrones, J.
1951-05-29
A process which produces H/sub 2/ water enriched in D is described. Natural gas is oxidized to CO and H/sub 2/. These gases at 600 C reduce FeO in a fluidized bed regenerator, and the mixture of gases leaving the regenerator is burned in the boiler which supplies steam at 600 C. This steam reacts with iron dust from the regenerator to produce FeO and H/sub 2/ The deuterium is stripped from the H/sub 2/ with water in a catalytic exchange tower. The water thus enriched passes to an electrolytic step which concentrates D/sub 2/O to 99.8%. (T.R.H.)
Analysis of experimental characteristics of multistage steam-jet electors of steam turbines
NASA Astrophysics Data System (ADS)
Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.
2017-02-01
A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.
NASA Astrophysics Data System (ADS)
Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid
2018-02-01
Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbiener, W.A.; Cudnik, R.A.; Dykhuizen, R.C.
Experimental studies were conducted in a /sup 2///sub 15/-scale model of a four-loop pressurized water reactor at pressures to 75 psia to extend the understanding of steam-water interaction phenomena and processes associated with a loss-of-coolant accident. Plenum filling studies were conducted with hydraulic communication between the cold leg and core steam supplies and hot walls, with both fixed and ramped steam flows. Comparisons of correlational fits have been made for penetration data obtained with hydraulic communication, fixed cold leg steam, and no cold leg steam. Statistical tests applied to these correlational fits have indicated that the hydraulic communication and fixedmore » cold leg steam data can be considered to be a common data set. Comparing either of these data sets to the no cold leg steam data using the statistical test indicated that it was unlikely that these sets could be considered to be a common data set. The introduction of cold leg steam results in a slight decrease in penetration relative to that obtained without cold leg steam at the same value of subcooling of water entering the downcomer. A dimensionless parameter which is a weighted mean of a modified Froude number and the Weber number has been proposed as a scaling parameter for penetration data. This parameter contains an additional degree of freedom which allows data from different scales to collapse more closely to a single curve than current scaling parameters permit.« less
Production of food grade (culinary) steam with geothermal (geo-heat) for industrial use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehlage, E.F.
1980-09-01
It may be assumed that geothermal steam (dry or flashed) will be sterile but not necessarily clean enough for direct incorporation into foods, beverages, and pharmaceuticals. The use of a purification by unfired geo-heat steam generators can produce a food grade or culinary steam supply for critical use even when combined with fossil fuel used as a booster. Low conductivity, i.e., pure food grade steam requires careful water conditioning outside the generator.
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...
Energy alternative for industry: the high-temperature gas-cooled reactor steamer
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMain, A.T. Jr.; Blok, F.J.
1978-04-01
Large industrial complexes are faced with new requirements that will lead to a transition from such fluid fuels as natural gas and oil to such solid fuels as coal and uranium for supply of industrial energy. Power plants using these latter fuels will be of moderate size (800 to 1200 MW(thermal)) and will generally have the capability of co-generating electric power and process steam. A study has been made regarding use of the 840-MW(thermal) Fort St. Vrain high-temperature gas-cooled reactor (HTGR) design for industrial applications. The initial conceptual design (referred to as the HTGR Steamer) is substantially simplified relative tomore » Fort St. Vrain in that outlet helium and steam temperatures are lower and the reheat section is deleted from the steam generators. The Steamer has four independent steam generating loops producing a total of 277 kg/s (2.2 x 10/sup 6/ lb/h) of prime steam at 4.5 MPa/672 K (650 psia/750/sup 0/F). The unit co-generates 46 MW(electric) and provides process steam at 8.31 MPa/762 K(1200 psia/912/sup 0/F). The basic configuration and much of the equipment are retained from the Fort St. Vrain design. The system has inherent safety features important for industrial applications. These and other features indicate that the HTGR Steamer is an industrial energy option deserving additional evaluation. Subsequent work will focus on parallel design optimization and application studies.« less
46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... holds, paint lockers, and similar spaces. However, although existing steam smothering systems may be... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...
46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... holds, paint lockers, and similar spaces. However, although existing steam smothering systems may be... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...
46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... holds, paint lockers, and similar spaces. However, although existing steam smothering systems may be... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...
Steam Reformer With Fibrous Catalytic Combustor
NASA Technical Reports Server (NTRS)
Voecks, Gerald E.
1987-01-01
Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.
Ullman, Alan Z.; Silverman, Jacob; Friedman, Joseph
1986-01-01
An improved process for producing a methane-enriched gas wherein a hydrogen-deficient carbonaceous material is treated with a hydrogen-containing pyrolysis gas at an elevated temperature and pressure to produce a product gas mixture including methane, carbon monoxide and hydrogen. The improvement comprises passing the product gas mixture sequentially through a water-gas shift reaction zone and a gas separation zone to provide separate gas streams of methane and of a recycle gas comprising hydrogen, carbon monoxide and methane for recycle to the process. A controlled amount of steam also is provided which when combined with the recycle gas provides a pyrolysis gas for treatment of additional hydrogen-deficient carbonaceous material. The amount of steam used and the conditions within the water-gas shift reaction zone and gas separation zone are controlled to obtain a steady-state composition of pyrolysis gas which will comprise hydrogen as the principal constituent and a minor amount of carbon monoxide, steam and methane so that no external source of hydrogen is needed to supply the hydrogen requirements of the process. In accordance with a particularly preferred embodiment, conditions are controlled such that there also is produced a significant quantity of benzene as a valuable coproduct.
NASA Astrophysics Data System (ADS)
Wang, Lanjing; Shao, Wenjing; Wang, Zhiyue; Fu, Wenfeng; Zhao, Wensheng
2018-02-01
Taking the MEA chemical absorption carbon capture system with 85% of the carbon capture rate of a 660MW ultra-super critical unit as an example,this paper puts forward a new type of turbine which dedicated to supply steam to carbon capture system. The comparison of the thermal systems of the power plant under different steam supply schemes by using the EBSILON indicated optimal extraction scheme for Steam Extraction System in Carbon Capture System. The results show that the cycle heat efficiency of the unit introduced carbon capture turbine system is higher than that of the usual scheme without it. With the introduction of the carbon capture turbine, the scheme which extracted steam from high pressure cylinder’ s steam input point shows the highest cycle thermal efficiency. Its indexes are superior to other scheme, and more suitable for existing coal-fired power plant integrated post combustion carbon dioxide capture system.
4. INTERIOR VIEW STEAM EQUIPMENT AND OFFICE OF BUILDING 842, ...
4. INTERIOR VIEW STEAM EQUIPMENT AND OFFICE OF BUILDING 842, LOOKING EAST-NORTHEAST. - Oakland Naval Supply Center, Academic Instruction Building, Off East K Street near Twelfth Street, Oakland, Alameda County, CA
Derate Mitigation Options for Pulverized Coal Power Plant Carbon Capture Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, Jeffrey W.; Hackett, Gregory A.; Lewis, Eric G.
Carbon capture and storage (CCS) technologies available in the near-term for pulverized coal-fueled power plants (i.e., post combustion solvent technologies) require substantial capital investment and result in marked decrease in electricity available for sale to the grid. The impact to overall plant economics can be mitigated for new plant designs (where the entire plant can be optimized around the CCS system). However, existing coal-fueled power plants were designed without the knowledge or intent to retrofit a CCS process, and it is simply not possible to re-engineer an existing plant in a manner that it could achieve the same performance asmore » if it was originally designed and optimized for CCS technology. Pairing an auxiliary steam supply to the capture system is a technically feasible option to mitigate the derate resulting from diverting steam away from an existing steam turbine and continuing to run that turbine at steam flow rates and properties outside of the original design specifications. The results of this analysis strongly support the merits of meeting the steam and power requirements for a retrofitted post-combustion solvent based carbon dioxide (CO2) capture system with an auxiliary combined heat and power (CHP) plant rather than robbing the base plant (i.e., diverting steam from the existing steam cycle and electricity from sale to the grid).« less
Solar augmentation for process heat with central receiver technology
NASA Astrophysics Data System (ADS)
Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul
2016-05-01
Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.
Downhole steam generator with improved preheating, combustion and protection features
Fox, Ronald L.
1983-01-01
An apparatus for generation of steam in a borehole for penetration into an earth formation wherein feedback preheater means are provided for the fuel and water before entering the combustor assembly. First, combustion gases are conducted from the combustion chamber to locations in proximity to the water and fuel supplies. Secondly, both hot combustion gases and steam are conducted from the borehole back to the water and fuel supply. The water used for conversion to steam is passed in a countercurrent manner through a plurality of annular water flow channels surrounding the combustion chamber. In this manner, the water is preheated, and the combustion chamber is cooled simultaneously, thereby minimizing thermal stresses and deterioration of the walls of the combustion chamber. The water is injected through slotted inlets along the combustion chamber wall to provide an unstable boundary layer and stripping of the water from the wall for efficient steam generation. Pressure responsive doors are provided at the steam outlet of the combustor assembly. The outlet doors and fluid flow functions may be controlled by a diagnostic/control module. The module is positioned in the water flow channel to maintain a relatively constant, controlled temperature.
Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1983-01-01
An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.
Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1983-01-01
An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.
Supplementary steam - A viable hydrogen power generation concept
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lee, J. C.
1979-01-01
Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.
PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumentedmore » and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.« less
Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications.
Tippawan, Phanicha; Arpornwichanop, Amornchai
2014-04-01
The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Integrated hydrocarbon reforming system and controls
Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Thijssen, Johannes; Davis, Robert; Papile, Christopher; Rumsey, Jennifer W.; Longo, Nathan; Cross, III, James C.; Rizzo, Vincent; Kleeburg, Gunther; Rindone, Michael; Block, Stephen G.; Sun, Maria; Morriseau, Brian D.; Hagan, Mark R.; Bowers, Brian
2003-11-04
A hydrocarbon reformer system including a first reactor configured to generate hydrogen-rich reformate by carrying out at least one of a non-catalytic thermal partial oxidation, a catalytic partial oxidation, a steam reforming, and any combinations thereof, a second reactor in fluid communication with the first reactor to receive the hydrogen-rich reformate, and having a catalyst for promoting a water gas shift reaction in the hydrogen-rich reformate, and a heat exchanger having a first mass of two-phase water therein and configured to exchange heat between the two-phase water and the hydrogen-rich reformate in the second reactor, the heat exchanger being in fluid communication with the first reactor so as to supply steam to the first reactor as a reactant is disclosed. The disclosed reformer includes an auxiliary reactor configured to generate heated water/steam and being in fluid communication with the heat exchanger of the second reactor to supply the heated water/steam to the heat exchanger.
Mathematical modeling of control system for the experimental steam generator
NASA Astrophysics Data System (ADS)
Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita
2016-03-01
A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.
Mushrooms as Efficient Solar Steam-Generation Devices.
Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia
2017-07-01
Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
W-007H B Plant Process Condensate Treatment Facility. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rippy, G.L.
1995-01-20
B Plant Process Condensate (BCP) liquid effluent stream is the condensed vapors originating from the operation of the B Plant low-level liquid waste concentration system. In the past, the BCP stream was discharged into the soil column under a compliance plan which expired January 1, 1987. Currently, the BCP stream is inactive, awaiting restart of the E-23-3 Concentrator. B Plant Steam Condensate (BCS) liquid effluent stream is the spent steam condensate used to supply heat to the E-23-3 Concentrator. The tube bundles in the E-23-3 Concentrator discharge to the BCS. In the past, the BCS stream was discharged into themore » soil column. Currently, the BCS stream is inactive. This project shall provide liquid effluent systems (BCP/BCS/BCE) capable of operating for a minimum of 20 years, which does not include the anticipated decontamination and decommissioning (D and D) period.« less
5. VIEW OF POWER SUPPLY EQUIPMENT SHOWING ELECTRIC MOTER AND ...
5. VIEW OF POWER SUPPLY EQUIPMENT SHOWING ELECTRIC MOTER AND DRIVE & FLYWHEELS WITH BELT TRANSMISSION. ORIGINALLY STEAM DRIVEN - Anchor (Stangl) Pottery Company, 940 New York Avenue, Trenton, Mercer County, NJ
Solid oxide fuel cell power plant having a bootstrap start-up system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Michael T
The bootstrap start-up system (42) achieves an efficient start-up of the power plant (10) that minimizes formation of soot within a reformed hydrogen rich fuel. A burner (48) receives un-reformed fuel directly from the fuel supply (30) and combusts the fuel to heat cathode air which then heats an electrolyte (24) within the fuel cell (12). A dilute hydrogen forming gas (68) cycles through a sealed heat-cycling loop (66) to transfer heat and generated steam from an anode side (32) of the electrolyte (24) through fuel processing system (36) components (38, 40) and back to an anode flow field (26)more » until fuel processing system components (38, 40) achieve predetermined optimal temperatures and steam content. Then, the heat-cycling loop (66) is unsealed and the un-reformed fuel is admitted into the fuel processing system (36) and anode flow (26) field to commence ordinary operation of the power plant (10).« less
Credit BG. View looking southwest at Test Stand "D" complex. ...
Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Schastlivtsev, A. I.; Borzenko, V. I.
2017-11-01
The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.
Credit WCT. Photographic copy of photograph, view east southeast across ...
Credit WCT. Photographic copy of photograph, view east southeast across Dd station ejectors showing detail of "Hyprox" steam generator. Note that steam generator is placed above Z-stage ejector; an insulated pipe running between the Dd train rails supplies steam to the Y-Stage ejector. Note emergency eyewash stand at extreme right of view. (JPL negative no. 384-3376, 3 December 1962) - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Sun, Junming; Karim, Ayman M; Li, Xiaohong Shari; Rainbolt, James; Kovarik, Libor; Shin, Yongsoon; Wang, Yong
2015-12-04
We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.
Teaching through Trade Books: The Science of Art
ERIC Educational Resources Information Center
Morgan, Emily; Ansberry, Karen
2016-01-01
It's easy to see the connections between science, technology, engineering, art, and mathematics (STEAM) in daily life, but they may not be so obvious in the classroom. This month's lessons allow students to explore the components of STEAM through a favorite art supply, the crayon, and a beloved American tradition, the Macy's Thanksgiving Day…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Junming; Karim, Ayman M.; Li, Xiaohong S.
2015-09-29
We report a hierarchically structured catalyst with steam reforming and hydrodeoxygenation functionalities being deposited in the micropores and macropores, respectively. The catalyst is highly efficient to upgrade the pyrolysis vapors of pine forest product residual, resulting in a dramatically decreased acid content and increased hydrocarbon yield without external H2 supply.
Major design issues of molten carbonate fuel cell power generation unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.P.
1996-04-01
In addition to the stack, a fuel cell power generation unit requires fuel desulfurization and reforming, fuel and oxidant preheating, process heat removal, waste heat recovery, steam generation, oxidant supply, power conditioning, water supply and treatment, purge gas supply, instrument air supply, and system control. These support facilities add considerable cost and system complexity. Bechtel, as a system integrator of M-C Power`s molten carbonate fuel cell development team, has spent substantial effort to simplify and minimize these supporting facilities to meet cost and reliability goals for commercialization. Similiar to other fuels cells, MCFC faces design challenge of how to complymore » with codes and standards, achieve high efficiency and part load performance, and meanwhile minimize utility requirements, weight, plot area, and cost. However, MCFC has several unique design issues due to its high operating temperature, use of molten electrolyte, and the requirement of CO2 recycle.« less
77 FR 42441 - Small Business Size Standards: Utilities
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-19
... Sector 22 that have receipt based size standards, namely--NAICS 221310, Water Supply and Irrigation...) ($ million) ($ million) 221310, Water supply and irrigation $2.2 $110.7 $7.5 46.5 $886.6 0.854 -15.0% systems... $19 million; and NAICS 221330, Steam and Air-conditioning Supply, from $12.5 million to $14 million...
Design Issues Affecting Pipings Associated with a New Moisture Separator Reheater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyung-Keun, Kim; Jae-Kyoung, Cho
2006-07-01
This paper summarizes the piping design effects on a New Moisture Separator Reheater (MSR) in Shin-Kori Nuclear Power Plant Units 1 and 2 (SKN 1 and 2) being under the construction in Korea. This SKN 1 and 2 has the same arrangement of a Turbine-Generator set as one of Korea Standard Nuclear Plant Units ( OPR 1000 ) in commercial operation. The Turbine-Generator Supplier has developed a new Moisture Separator Reheater which has first and second stage heating steam supply connections respectively, at both ends of the shell side of the vessel in comparison to MSR of OPR 1000 whichmore » has first and second stage heating steam supply connections at only one end. The different locations of reheaters in MSR cause changes in the associated pipings such as 2. stage reheater heating steam, 2. stage reheater drain, shell drain, drain tank location and tank condensate drainage pipings. (authors)« less
ERIC Educational Resources Information Center
Schlenker, Richard M.; And Others
Information is presented about the problems involved in using sea water in the steam propulsion systems of large, modern ships. Discussions supply background chemical information concerning the problems of corrosion, scale buildup, and sludge production. Suggestions are given for ways to maintain a good water treatment program to effectively deal…
46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... accepted in lieu of the inert gas system for the protection of cargo holds, paint lockers, and similar... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...
46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accepted in lieu of the inert gas system for the protection of cargo holds, paint lockers, and similar... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...
Fuel cell integrated with steam reformer
Beshty, Bahjat S.; Whelan, James A.
1987-01-01
A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D.
The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention wasmore » focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)« less
The T-100-12.8 family of cogeneration steam turbines: Yesterday, today, and tomorrow
NASA Astrophysics Data System (ADS)
Valamin, A. E.; Kultyshev, A. Yu.; Shibaev, T. L.; Sakhnin, Yu. A.; Stepanov, M. Yu.
2013-08-01
The T-100-12.8 turbine and its versions, a type of cogeneration steam turbines that is among best known, unique, and most widely used ones in Russia and abroad, are considered. A list of turbine design versions and quantities in which they were produced, their technical and economic indicators, design features, schematic solutions used in different design versions, and a list of solutions available in a comprehensive portfolio offered for modernizing type T-100-12.8 turbines are presented. Information about amounts in which turbines of the last version are supplied currently and supposed to be supplied soon is given.
DETAIL VIEW OF STEAM TRACTOR "OLD DINAH," LOOKING NORTHWEST. THIS ...
DETAIL VIEW OF STEAM TRACTOR "OLD DINAH," LOOKING NORTHWEST. THIS STEAM TRACTOR WAS USED TO REPLACE THE HORSE WAGON TRAINS THAT CARRIED SUPPLIES AND CRUDE OIL THE 26 MILES FROM BEATTY, NEVADA TO KEANE WONDER. THE TRACTOR ONLY MADE ONE RUN IN 1909 BEFORE THE BOILER EXPLODED ENROUTE, AND IT WAS ABANDONED THERE ON THE TRAIL TODAY IT STANDS ON DISPLAY AT THE FURNACE CREEK RANCH IN DEATH VALLEY NATIONAL PARK, AS SEEN IN THE PHOTOGRAPH. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Coal gasification systems engineering and analysis. Appendix B: Medium B+U gas design
NASA Technical Reports Server (NTRS)
1980-01-01
A four module, 20,000 TPD, based on KT coal gasification technology was designed. The plant processes Kentucky No. 9 coal with provisions for up to five percent North Alabama coal. Medium BTU gas with heat content of 305 BTU/SCF and not more than 200 ppm sulfur is the primary plant product. Sulfur is recovered for scale as prilled sulfur. Ash disposal is on site. The plant is designed for zero water discharge. Trade studies provided the basis for not using boiler produced steam to drive prime movers. Thus process derived steam in excess of process requirements in superheated for power use in prime movers. Electricity from the TVA grid is used to supply the balance of the plant prime mover power requirements. A study of the effect of mine mouth coal cleaning showed that coal cleaning is not an economically preferred route. The design procedure involved defining available processes to meet the requirements of each system, technical/economic trade studies to select the preferred processes, and engineering design and flow sheet development for each module. Cost studies assumed a staggered construction schedule for the four modules beginning spring 1981 and a 90% on stream factor.
7 CFR 1717.852 - Financing purposes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AGRICULTURE POST-LOAN POLICIES AND PROCEDURES COMMON TO INSURED AND GUARANTEED ELECTRIC LOANS Lien... facilities, including real property, used to supply electric and/or steam power to: (i) RE Act beneficiaries... are determined by RUS to be an integral component of the borrower's system of supplying electric and...
7 CFR 1717.852 - Financing purposes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AGRICULTURE POST-LOAN POLICIES AND PROCEDURES COMMON TO INSURED AND GUARANTEED ELECTRIC LOANS Lien... facilities, including real property, used to supply electric and/or steam power to: (i) RE Act beneficiaries... are determined by RUS to be an integral component of the borrower's system of supplying electric and...
Recent Developments in Superheated Steam Processing of Foods-A Review.
Alfy, Anto; Kiran, B V; Jeevitha, G C; Hebbar, H Umesh
2016-10-02
Although the use of superheated steam has been known for quite a long time, only in the recent past has it emerged as a viable technology for food processing. Superheated steam, having higher enthalpy, can quickly transfer heat to the material being processed, resulting in its rapid heating. The major advantages of using superheated steam for food processing are better product quality (color, shrinkage, and rehydration characteristics), reduced oxidation losses, and higher energy efficiency. This review provides a comprehensive overview of recent studies on the application of superheated steam for food-processing operations such as drying, decontamination and microbial load reduction, parboiling, and enzyme inactivation. The review encompasses aspects such as the effect of superheated steam processing on product quality, mathematical models reported for superheated steam drying, and the future scope of application in food processing. Recent studies on process improvisation, wherein superheated steam is used at low pressure, in fluidized bed mode, sequential processing with hot air/infrared, and in combination with micro droplets of water have also been discussed.
Cooling system for a bearing of a turbine rotor
Schmidt, Mark Christopher
2002-01-01
In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.
40 CFR 408.270 - Applicability; description of the steamed and canned oyster processing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... steamed and canned oyster processing subcategory. 408.270 Section 408.270 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Steamed and Canned Oyster Processing Subcategory § 408.270 Applicability; description of the steamed and canned oyster processing subcategory. The provisions of this subpart are...
Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.
Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi
2018-03-21
Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.
Optimization of steam generators of NPP with WWER in operation with variable load
NASA Astrophysics Data System (ADS)
Parchevskii, V. M.; Shchederkina, T. E.; Gur'yanova, V. V.
2017-11-01
The report addresses the issue of the optimal water level in the horizontal steam generators of NPP with WWER. On the one hand, the level needs to be kept at the lower limit of the allowable range, as gravity separation, steam will have the least humidity and the turbine will operate with higher efficiency. On the other hand, the higher the level, the greater the supply of water in the steam generator, and therefore the higher the security level of the unit, because when accidents involving loss of cooling of the reactor core, the water in the steam generators, can be used for cooling. To quantitatively compare the damage from higher level to the benefit of improving the safety was assessed of the cost of one cubic meter of water in the steam generators, the formulated objective function of optimal levels control. This was used two-dimensional separation characteristics of steam generators. It is demonstrated that the security significantly shifts the optimal values of the levels toward the higher values, and this bias is greater the lower the load unit.
Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.
ABSTRACT Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electricity, heat, and cooling power to buildings and industrial processes directly onsite, while significantly increasing energy efficiency, security of energy supply, and grid independence. Fruit, vegetable, dairy and meat processing industries with simultaneous requirements for heat, steam, chilling and electricity, are well suited for the use of such systems to supply base-load electrical demand or as peak reducing generators with heat recovery in the forms of hot water, steam and/or chilled water. This paper documents results and analysis from a pilot project to evaluate opportunities formore » energy, emission, and cost for CCHP-DG and energy storage systems installed onsite at food processing facilities. It was found that a dairy processing plant purchasing 15,000 MWh of electricity will need to purchase 450 MWh with the integration of a 1.1 MW CCHP system. Here, the natural gas to be purchased increased from 190,000 MMBtu to 255,000 MMBtu given the fuel requirements of the CCHP system. CCHP systems lower emissions, however, in the Pacific Northwest the high percentage of hydro-power results in CO2 emissions from CCHP were higher than that attributed to the electric utility/regional energy mix. The value of this paper is in promoting and educating financial decision makers to seriously consider CCHP systems when building or upgrading facilities. The distributed generation aspect can reduce utility costs for industrial facilities and show non-wires solution benefits to delay or eliminate the need for upgrades to local electric transmission and distribution systems.« less
Warren, David W.
1997-01-01
A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.
Steam dispatching control system demonstration at Fort Benjamin Harrison. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diks, C.L.; Moshage, R.E.; Lin, M.C.
1993-07-01
Currently most Army Central steam heating systems operate by maintaining a constant steam pressure regardless of actual steam demand. This method offers some operational convenience, but is often the cause of significant energy losses. Researchers at the U.S. Army Construction Engineering Research Laboratories (USACERL) have investigated the Steam Dispatching Control System (SDCS), a control system that lowers supply steam pressure-and therefore steam temperature-to slightly above the amount needed to meet the steam demand. The lower Steam temperature and reduction in steam loss (from leaks and faulty traps) result in lower heat losses and higher energy savings. Limiting steam pressure canmore » diminish the amount of excess heat loss in the distribution system while still meeting the demand. The Army's Facilities Engineering Applications Program (FEAP) chose Fort Benjamin Harrison, IN, as the Army demonstration site for SDCS. Researchers found that use of SDCS is technically and economically viable improvement over current operating procedures. Analysis based on demonstration results show that the simple payback for SDCS is less than 1 year. The results of this demonstration are generally applicable to installations with a large central heating plant and a substantial steam distribution system. Findings, indicate that energy savings form SDCS are significant regardless of what type of fuel powers the boiler. The authors note that, during the initial evaluation of a potential SDCS application, attention must be paid to the condensate return to ensure that it will operate properly. Fort Benjamin Harrison, IN, Steam Dispatching Control System(SDCS), Central heating plants, energy conservation.« less
21. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...
21. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model no. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. Steam-feed pipe at top left of engine. Steam exhaust pipe leaves base of engine on right end and projects upwards. The boiler feed and supply pipe running water through the engine's pre-heat system are seen running to the lower left end of the engine. Pulley in the foreground was not used. The centrifugals were powered by a belt running from the flywheel in the background. Ball-type governor and pulley are on left end of the engine. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Analytical description of the modern steam automobile
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1974-01-01
The sensitivity of operating conditions upon performance of the modern steam automobile is discussed. The word modern has been used in the title to indicate that emphasis is upon miles per gallon rather than theoretical thermal efficiency. This has been accomplished by combining classical power analysis with the ideal Pressure-Volume diagram. Several parameters are derived which characterize performance capability of the modern steam car. The report illustrates that performance is dictated by the characteristics of the working medium, and the supply temperature. Performance is nearly independent of pressures above 800 psia. Analysis techniques were developed specifically for reciprocating steam engines suitable for automotive application. Specific performance charts have been constructed on the basis of water as a working medium. The conclusions and data interpretation are therefore limited within this scope.
PRELIMINARY HAZARDS SUMMARY REPORT FOR THE VALLECITOS SUPERHEAT REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, J.L.
1961-02-01
BS>The Vallecitos Superheat Reactor (VSR) is a light-watermoderated, thermal-spectrum reactor, cooled by a combination of moderator boiling and forced convection cooling with saturated steam. The reactor core consists of 32 fuel hurdles containing 5300 lb of UO/sub 2/ enriched in U/sub 235/ to 3.6%. The fuel elements are arranged in individual process tubes that direct the cooling steam flow and separate the steam from the water moderator. The reactor vessel is designed for 1250 psig and operates at 960 to 1000 psig. With the reactor operating at 12.5 Mw(t), the maximum fuel cladding temperature is 1250 deg F and themore » cooling steam is superheated to an average temperature of about 810 deg F at 905 psig. Nu clear operation of the reactor is controlled by 12 control rods, actuated by drives mounted on the bottom of the reactor vessel. The water moderator recirculates inside the reactor vessel and through the core region by natural convection. Inherent safety features of the reactor include the negative core reactivity effects upon heating the UO/sub 2/ fuel (Doppler effect), upon increasing the temperature or void content of the moderator in the operating condition, and upon unflooding the fuel process tubes in the hot condition. Snfety features designed into the reactor and plant systems include a system of sensors and devices to detect petentially unsafe operating conditions and to initiate automatically the appropriate countermeasures, a set of fast and reliable control rods for scramming the reactor if a potentially unsafe condition occurs, a manually-actuated liquid neutron poison system, and an emergency cooling system to provide continued steam flow through the reactor core in the event the reactor becomes isolated from either its normal source of steam supply or discharge. The release of radioactivity to unrestricted areas is maintained within permissible limits by monitoring the radioactivity of wastes and controlling their release. The reactor and many of its auxiliaries are housed within a high-integrity essentially leak-tight containment vessel. (auth)« less
Solar coal gasification reactor with pyrolysis gas recycle
Aiman, William R.; Gregg, David W.
1983-01-01
Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.
The dynamic simulation of the Progetto Energia combined cycle power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giglio, R.; Cerabolini, M.; Pisacane, F.
1996-12-31
Over the next four years, the Progetto Energia project is building several cogeneration plants to satisfy the increasing demands of Italy`s industrial complex and the country`s demand for electrical power. Located at six different sites within Italy`s borders these Combined Cycle Cogeneration Plants will supply a total of 500 MW of electricity and 100 tons/hr of process steam to Italian industries and residences. To ensure project success, a dynamic model of the 50 MW base unit was developed. The goal established for the model was to predict the dynamic behavior of the complex thermodynamic system in order to assess equipmentmore » performance and control system effectiveness for normal operation and, more importantly, abrupt load changes. In addition to fulfilling its goals, the dynamic study guided modifications to controller logic that significantly improved steam drum pressure control and bypassed steam de-superheating performance. Simulations of normal and abrupt transient events allowed engineers to define optimum controller gain coefficients. The paper discusses the Combined Cycle plant configuration, its operating modes and control system, the dynamic model representation, the simulation results and project benefits.« less
Lohr, E.W.; Love, S.K.
1954-01-01
Public water supplies are utilized extensively by industries for processing, cooling, and steam generation. The requirements as to quality of water for each industry are specific, therefore information on the quality or chemical character of the water supply is essential not only in the location of industrial plants but also is an aid in the manufacture and distribution of products.Data are given in this report on the water supplies for 1,315 of the larger cities (or places) throughout the United States. The population of these cities represents 58.3 percent of the total population (1950 census), and more than 90 percent of the total urban population, of the United States. Part 1 of the report contains data for 819 cities east of the Mississippi River, and part 2 includes data for 416 cities west of the river. All cities of 15,000 or more population and many cities of smaller population are included.The information given for each place includes, in most instances, population of the place; ownership, source, and treatment of supply; storage facilities for both raw and finished water; and chemical analyses of the supplies.
Layouts of trigeneration plants for centralized power supply
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Agababov, V. S.; Il'ina, I. P.; Rozhnatovskii, V. D.; Burmakina, A. V.
2016-06-01
One of the possible and, under certain conditions, sufficiently effective methods for reducing consumption of fuel and energy resources is the development of plants for combined generation of different kinds of energy. In the power industry of Russia, the facilities have become widespread in which the cogeneration technology, i.e., simultaneous generation of electric energy and heat, is implemented. Such facilities can use different plants, viz., gas- and steam-turbine plants and gas-reciprocating units. Cogeneration power supply can be further developed by simultaneously supplying the users not only with electricity and heat but also with cold. Such a technology is referred to as trigeneration. To produce electricity and heat, trigeneration plants can use the same facilities that are used in cogeneration, namely, gas-turbine plants, steam-turbine plants, and gas-reciprocating units. Cold can be produced in trigeneration plants using thermotransformers of various kinds, such as vaporcompression thermotransformers, air thermotransformers, and absorption thermotransformers, that operate as chilling machines. The thermotransformers can also be used in the trigeneration plants to generate heat. The main advantage of trigeneration plants based on gas-turbine plants or gas-reciprocating units over cogeneration plants is the increased thermodynamic power supply efficiency owing to utilization of the waste-gas heat not only in winter but also in summer. In the steam-turbine-based trigeneration plants equipped with absorption thermotransformers, the enhancement of the thermodynamic power supply efficiency is determined by the increase in the heat extraction load during the nonheating season. The article presents calculated results that demonstrate higher thermodynamic efficiency of a gas-turbine-based plant with an absorption thermotransformer that operates in the trigeneration mode compared with a cogeneration gas-turbine plant. The structural arrangements of trigeneration plants designed to supply electricity, heat, and cold to the users are shown and the principles of their operation are described. The article presents results of qualitative analysis of different engineering solutions applied to select one combination of power- and heat-generating equipment and thermotransformers or another.
NASA Astrophysics Data System (ADS)
Tupitsyn, S. P.; Sokolov, V. V.; Chebakova, G. F.; Kharchenko, A. V.; Chetverikov, A. N.
2014-03-01
The expert test results of the TPP-312 boiler no. 4 at the Zuev District Power Station (DPS) without supply and with the supply of the RA-GEN-F anaklarid to the boiler by means of its introduction in the approved dosing with the secondary air are presented. It is shown that the introduction of anaklarid positively affects the furnace process parameters during the combustion of grade GSSh coal. The possibility of the boiler operation at its minimal (490 t/h) and extremely minimal (440 t/h) steam output without supporting the flame by natural gas and the provision of the mode of liquid slag removal in the night drop of electrical loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gent, Stan
The Post Street project had four (4), 7.960 MW, Solar Taurus-70-10801S natural gas combustion turbines. Each turbine equipped with a 40,000 lb/hr heat recovery steam generator (HRSG). The dual-fuel HRSGs was capable of generating steam using gas turbine exhaust heat or surplus electric power. The generation capacity was nominally rated at 29.2 MW. The project as proposed had a fuel rate chargeable to power of 4,900 - 5,880 Btu/kWh dependent on time of year. The CHP plant, when operating at 29.2 MW, can recycle turbine exhaust into supply 145 kpph of steam to SSC per hour. The actual SSC steammore » loads will vary based on weather, building occupation, plus additions / reductions of customer load served. SSC produces up to 80 kpph of steam from a biomass boiler, which is currently base loaded all year.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
.... The provisions of this section shall apply to ship repairing, shipbuilding, and shipbreaking except that paragraph (c) of this section applies to ship repairing and shipbuilding only. (a) Steam supply...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2001-08-08
The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which aremore » common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, L.C.
The ORCENT-II digital computer program will perform calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam characteristic of contemporary light-water reactors. Turbine performance calculations are based on a method published by the General Electric Company. Output includes all information normally shown on a turbine-cycle heat balance diagram. The program is written in FORTRAN IV for the IBM System 360 digital computers at the Oak Ridge National Laboratory.
Compressor discharge bleed air circuit in gas turbine plants and related method
Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael
2002-01-01
A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.
Compressor discharge bleed air circuit in gas turbine plants and related method
Anand, Ashok Kumar [Niskayuna, NY; Berrahou, Philip Fadhel [Latham, NY; Jandrisevits, Michael [Clifton Park, NY
2003-04-08
A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreitman, Paul J.; Sirianni, Steve R.; Pillard, Mark M.
Entergy recently performed an Extended Power Up-rate (EPU) on their Grand Gulf Nuclear Station, near Port Gibson, Mississippi. To support the EPU, a new Steam Dryer Assembly was installed during the last refueling outage. Due to limited access into the containment, the large Replacement Steam Dryer (RSD) had to be brought into the containment in pieces and then final assembly was completed on the refueling floor before installation into the reactor. Likewise, the highly contaminated Original Steam Dryer (OSD) had to be segmented into manageable sections, loaded into specially designed shielded containers, and rigged out of containment where they willmore » be safely stored until final disposal is accomplished at an acceptable waste repository. Westinghouse Nuclear Services was contracted by Entergy to segment, package and remove the OSD from containment. This work was performed on critical path during the most recent refueling outage. The segmentation was performed underwater to minimize radiation exposure to the workers. Special hydraulic saws were developed for the cutting operations based on Westinghouse designs previously used in Sweden to segment ABB Reactor Internals. The mechanical cutting method was selected because of its proven reliability and the minimal cutting debris that is generated by the process. Maintaining stability of the large OSD sections during cutting was accomplished using a custom built support stand that was installed into the Moisture Separator Pool after the Moisture Separator was installed back in the reactor vessel. The OSD was then moved from the Steam Dryer Pool to the Moisture Separator Pool for segmentation. This scenario resolved the logistical challenge of having two steam dryers and a moisture separator in containment simultaneously. A water filtration/vacuum unit was supplied to maintain water clarity during the cutting and handling operations and to collect the cutting chips. (authors)« less
Credit BG. View west of Test Stand "D" complex, with ...
Credit BG. View west of Test Stand "D" complex, with ends of Dd (left) and Dy (right) station ejectors in view. Steam piping from accumulator (sphere) to ejectors is apparent; long horizontal loops in the pipes permit expansion and contraction without special joints. The small platform straddling the Dd ejector (near the accumulator) was originally constructed for a "Hyprox" steam generator which supplied steam to the Dd ejector before the accumulator and Dy stand were built. Note ejectors on top of interstage condenser in Test Stand "D" tower. Metal shed in far right background is for storage - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Warren, D.W.
1997-04-15
A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.
NASA Astrophysics Data System (ADS)
Melikhov, V. I.; Melikhov, O. I.; Nerovnov, A. A.; Nikonov, S. M.
2018-01-01
Processing of experimental data on the pressure difference across a submerged perforated sheet (SPS) revealed that, at sufficiently high void fractions under SPS, the pressure difference across it became less than the pressure difference for the pure steam stream with the same flowrate. To find the cause of this, the effect of a liquid film, which can be formed on the SPS upstream surface as a result of water droplets' impact and can smooth over sharp edges of holes in SDS, was examined. This can decrease the pressure drop across the sharp edges of holes. This assumption was checked through numerical solution to several model problems in the axisymmetric formulation for a steam flow in a round pipe with an orifice. The flow of steam and water was modeled using the viscous incompressible liquid approximation, while the turbulence was described by the k-ɛ model. The evolution of the interfacial area was modeled using the VOF model. The following model problems of steam flow through an orifice were studied: a single-phase flow, a flow through the orifice with a liquid film on its upstream surface, a flow through a chamfered hole, and a flow through the orifice with a liquid film on its upstream surface without liquid supply to the film. The predictions demonstrate that even the approximate account of the liquid film effect on the steam flow yields a considerable decrease in the pressure drop across the hole (from 8 to 24%) due to smoothing its sharp outlet edges over. This makes it possible to make a conclusion that the cause of a decrease in the pressure drop across SPS observed in the experiments at high void fractions is the formation of a liquid film, which smooths the sharp edges of the hole.
PARTIAL ECONOMIC STUDY OF STEAM COOLED HEAVY WATER MODERATED REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-04-01
Steam-cooled reactors are compared with CAHDU for costs of Calandria tubes, pressure tubes. heavy water moderator, heavy water reflector, fuel supply, heat exchanger, and turbine generator. A direct-cycle lightsteam-cooled heavy- water-moderated pressure-tube reactor formed the basic reactor design for the study. Two methods of steam circulation through the reactor were examined. In both cases the steam was generated outside the reactor and superheated in the reactor core. One method consisted of a series of reactor and steam generator passes. The second method consisted of the Loeffler cycle and its modifications. The fuel was assumed to be natural cylindrical UO/sub 2/more » pellets sheathed in a hypothetical material with the nuclear properties of Zircaloy, but able to function at temperatures to 900 deg F. For the conditions assumed, the longer the rod, the higher the outlet temperature and therefore the higher the efficiency. The turbine cycle efficiency was calculated on the assumption that suitable steam generators are available. As the neutron losses to the pressure tubes were significant, an economic analysis of insulated pressure tubes is included. A description of the physics program for steam-cooled reactors is included. Results indicated that power from the steam-cooled reactor would cost 1.4 mills/ kwh compared with 1.25 mills/kwh for CANDU. (M.C.G.)« less
Holtman, Kevin M; Bozzi, David V; Franqui-Villanueva, Diana; Offeman, Richard D; Orts, William J
2016-05-01
A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg(-1) material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg(-1). © The Author(s) 2016.
[Effects of steaming and baking on content of alkaloids in Aconite Lateralis Radix (Fuzi)].
Yang, Chang-lin; Huang, Zhi-fang; Zhang, Yi-han; Liu, Yu-hong; Liu, Yun-huan; Chen, Yan; Yi, Jin-hai
2014-12-01
To study the effect of steaming and baking process on contents of alkaloids in Aconite Lateralis Radix (Fuzi), 13 alkaloids were analyzed by UPLC-MS/MS equipped with ESI ion source in MRM mode. In steaming process, the contents of diester-diterpenoid alkaloids decreased rapidly, the contents of monoester-diterpenoid alkaloids firstly increased, reached the peak at 40 min, and then deceased gradually. The contents of aconine alkaloids (mesaconine, aconine and hypaconine) increased all the time during processing, while the contents of fuziline, songorine, karacoline, salsolionl were stable or slightly decreased. In baking process, dynamic variations of alkaloids were different from that in the steaming process. Diester-diterpenoid alkaloids were degraded slightly slower than in steaming process. Monoester-diterpenoid alkaloids, aconine alkaloids and the total alkaloids had been destroyed at different degrees, their contents were significantly lower than the ones in steaming Fuzi at the same processing time. This experiment revealed the dynamic variations of alkaloids in the course of steaming and baking. Two processing methods which can both effectively remove the toxic ingredients and retain the active ingredients are simple and controllable, and are valuable for popularization and application.
Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser
NASA Astrophysics Data System (ADS)
Havlík, Jan; Dlouhý, Tomáš
2018-06-01
This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.
Method for producing synthetic fuels from solid waste
Antal, Jr., Michael J.
1976-11-23
Organic solid wastes represented by the general chemical formula C.sub.X H.sub.Y O.sub.Z are reacted with steam at elevated temperatures to produce H.sub.2 and CO.sub.2. The overall process is represented by the reaction C.sub.X H.sub.Y O.sub.Z + 2(X-Z/2)H.sub.2 O.fwdarw..sup..delta.XCO.sub.2 + [(Y/2) + 2(X-Z/2)] H.sub.2 . (1) reaction (1) is endothermic and requires heat. This heat is supplied by a tower top solar furnace; alternatively, some of the solid wastes can be burned to supply heat for the reaction. The hydrogen produced by reaction (1) can be used as a fuel or a chemical feedstock. Alternatively, methanol can be produced by the commercial process CO.sub.2 + 3H.sub.2 .fwdarw. CH.sub.3 OH + H.sub.2 O . (2) since reaction (1) is endothermic, the system represents a method for storing heat energy from an external source in a chemical fuel produced from solid wastes.
A conceptual approach of a novel application of in-situ thermal processes that would either use a steam injection process or a steam/surfactant injection process was considered to remediate petroleum contaminated sediment residing in an abandoned canal. Laboratory tests were c...
NASA Astrophysics Data System (ADS)
Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi
2017-01-01
In Indonesia ginger was usually used as a seasoning for dishes, an ingredient for beverage and a source of herbal medicines. Beside raw usage, ginger can be processed to obtain the essential oil which has many advantages such as proven to be an active antimicrobial and having an antioxidant ability. There are a lot of methods to extract essential oil from ginger, one of which is steam distillation. The aim of the current study was to investigate the effect of variation of time process and steam flow rate in the yield on ginger essential oil steam distillation extraction process. It was found that the best operation condition was 0.35 ml/s as the steam flow rate which yields 2.43% oil. The optimum time process was predicted at 7.5 hours. The composition of the oil was varied depend on the flow rate and every flow rate has its own major component contained in the oil. Curcumene composition in the oil was increased as increased steam flow rate applied, but the composition of camphene was decreased along with the increasing steam flow rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This final report of Phase I of the study presents Task 4, Technical Review and Assessment. The most-promising district-heating concept identified in the Phase I study for the Public Service Electric and Gas Company, Newark, New Jersey, is a hot-water system in which steam is extracted from an existing turbine and used to drive a new, small backpressure turbine-generator. The backpressure turbine provides heat for district heating and simultaneously provides additional electric-generating capacity to partially offset the capacity lost due to the steam extraction. This approach is the most-economical way to retrofit the stations studied for district heating while minimizingmore » electric-capacity loss. Nine fossil-fuel-fired stations within the PSE and G system were evaluated for possibly supplying heat for district heating and cooling in cogeneration operations, but only three were selected to supply the district-heating steam. They are Essex, Hudson, and Bergen. Plant retrofit, thermal distribution schemes, consumer-conversion scheme, and consumer-metering system are discussed. Extensive technical information is provided in 16 appendices, additional tables, figures, and drawings. (MCW)« less
Review of surface steam sterilization for validation purposes.
van Doornmalen, Joost; Kopinga, Klaas
2008-03-01
Sterilization is an essential step in the process of producing sterile medical devices. To guarantee sterility, the process of sterilization must be validated. Because there is no direct way to measure sterility, the techniques applied to validate the sterilization process are based on statistical principles. Steam sterilization is the most frequently applied sterilization method worldwide and can be validated either by indicators (chemical or biological) or physical measurements. The steam sterilization conditions are described in the literature. Starting from these conditions, criteria for the validation of steam sterilization are derived and can be described in terms of physical parameters. Physical validation of steam sterilization appears to be an adequate and efficient validation method that could be considered as an alternative for indicator validation. Moreover, physical validation can be used for effective troubleshooting in steam sterilizing processes.
Natural gas-assisted steam electrolyzer
Pham, Ai-Quoc; Wallman, P. Henrik; Glass, Robert S.
2000-01-01
An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, R.D.
An apparatus is described for reducing hydrocarbon fuel requirements for haber ammonia synthesis by the supply of selected gases to the second reformer of such system, comprising a first cylindrical conduit, a second smaller coaxial cylinder inside of the first conduit, forming a first annular space therebetween, the downstream end of said second conduit closed, and a plurality of circumferentially-spaced orifices in the wall of said conduit upstream of the closed end. Means are provided to supply air at selected pressure p1, temperature and flow rate to the first annular space, means to supply at least methane at a pressuremore » p2 greater than p1, to said second conduit, so that the concentration of methane in the air will be less than the lower explosive limit, and means to shield the jets of gas from the orifices in the second conduit , as they flow radially outwardly across the annular space. Means are also provided for adding steam in selected ratio with the methane prior to flow into the second conduit, whereby air, methane and steam are mixed together prior to flow into the second haber reformer.« less
Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosengaus, J.
1987-01-01
In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less
In, Gyo; Ahn, Nam-Geun; Bae, Bong-Seok; Lee, Myoung-Woo; Park, Hee-Won; Jang, Kyoung Hwa; Cho, Byung-Goo; Han, Chang Kyun; Park, Chae Kyu; Kwak, Yi-Seong
2017-07-01
The chemical constituents of Panax ginseng are changed by processing methods such as steaming or sun drying. In the present study, the chemical change of Panax ginseng induced by steaming was monitored in situ . Samples were separated from the same ginseng root by incision during the steaming process, for in situ monitoring. Sampling was sequentially performed in three stages; FG (fresh ginseng) → SG (steamed ginseng) → RG (red ginseng) and 60 samples were prepared and freeze dried. The samples were then analyzed to determine 43 constituents among three stages of P. ginseng . The results showed that six malonyl-ginsenoside (Rg1, Rb1, Rb3, Rc, Rd, Rb2) and 15 amino acids were decreased in concentration during the steaming process. In contrast, ginsenoside-Rh1, 20( S )-Rg2, 20( S, R )-Rg3 and Maillard reaction product such as AF (arginine-fructose), AFG (arginine-fructose-glucose), and maltol were newly generated or their concentrations were increased. This study elucidates the dynamic changes in the chemical components of P. ginseng when the steaming process was induced. These results are thought to be helpful for quality control and standardization of herbal drugs using P. ginseng and they also provide a scientific basis for pharmacological research of processed ginseng (Red ginseng).
Xu, Baojun; Chang, Sam K C
2008-09-01
The effects of soaking, boiling and steaming processes on the total phenolic components and antioxidant activity in commonly consumed cool season food legumes (CSFL's), including green pea, yellow pea, chickpea and lentil were investigated. As compared to original unprocessed legumes, all processing steps caused significant (p<0.05) decreases in total phenolic content (TPC), DPPH free radical scavenging activity (DPPH) in all tested CSFL's. All soaking and atmospheric boiling treatments caused significant (p<0.05) decreases in oxygen radical absorbing capacity (ORAC). However, pressure boiling and pressure steaming caused significant (p<0.05) increases in ORAC values. Steaming treatments resulted in a greater retention of TPC, DPPH, and ORAC values in all tested CSFL's as compared to boiling treatments. To obtain cooked legumes with similar palatability and firmness, pressure boiling shortened processing time as compared to atmospheric boiling, resulted in insignificant differences in TPC, DPPH for green and yellow pea. However, TPC and DPPH in cooked lentils differed significantly between atmospheric and pressure boiling. As compared to atmospheric processes, pressure processes significantly increased ORAC values in both boiled and steamed CSFL's. Greater TPC, DPPH and ORAC values were detected in boiling water than that in soaking and steaming water. Boiling also caused more solid loss than steaming. Steam processing exhibited several advantages in retaining the integrity of the legume appearance and texture of the cooked product, shortening process time, and greater retention of antioxidant components and activities. Copyright © 2008 Elsevier Ltd. All rights reserved.
Distillate fuel-oil processing for phosphoric acid fuel cell power plants
NASA Astrophysics Data System (ADS)
1980-02-01
Efforts to develop distillate oil steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high temperature steam reforming; autothermal reforming; autothermal gasification; and ultra desulfurization followed by steam reforming. Sulfur in the feed is a problem in the process development.
14. Elevation of boiler backhead showing (left to right at ...
14. Elevation of boiler backhead showing (left to right at top) steam pressure gauge, sight glass (indicates water level in boiler), manhole (for maintenance access to steam space), and try-cocks (used to determine water level if sight glass is inoperative). Below the firedoors lie air plenums which supply air from blower to firegrates; plenum door at lower left has been removed for photography. Each boiler was built by W. & A. Fletcher Co. to operate at 50 p.s.i. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT
31. View of mezzanine floor level in transmitter building no. ...
31. View of mezzanine floor level in transmitter building no. 102 showing various electronic central indicator panel to control building air conditioning, steam pressure, supply temperature, discharge temperature, supply pressure, transformer vault status, and radome conditioning system. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
About opportunities of the sharing of city infrastructure centralized warmly - and water supply
NASA Astrophysics Data System (ADS)
Zamaleev, M. M.; Gubin, I. V.; Sharapov, V. I.
2017-11-01
It is shown that joint use of engineering infrastructure of centralized heat and water supply of consumers will be the cost-efficient decision for municipal services of the city. The new technology for regulated heating of drinking water in the condenser of steam turbines of combined heat and power plant is offered. Calculation of energy efficiency from application of new technology is executed.
75 FR 68294 - Revisions to the California State Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... matter emissions from boilers, steam generators and process heaters greater than 5.0 MMbtu/hour. We are... Advance Emission 10/16/08 03/17/09 Reduction Options for Boilers, Steam Generators and Process Heaters..., steam generators and process heaters with a total rated heat input greater than 5 MMBtu/ hour. EPA's...
Invited review: summary of steam-flaking corn or sorghum grain for lactating dairy cows.
Theurer, C B; Huber, J T; Delgado-Elorduy, A; Wanderley, R
1999-09-01
Nineteen lactation trials (43 grain processing comparisons) are summarized, in addition to digestibility and postabsorptive metabolism studies. The net energy for lactation (NEL) of steam-flaked corn or sorghum grain is about 20% greater than the NEL for dry-rolled corn or sorghum. Based on lactational performance, steam-flaked sorghum grain is of equal value to steam-flaked corn, and steam-flaked corn is superior to steam-rolled corn. Steam-flaking of corn or sorghum compared to steam-rolling of corn or dry-rolling of corn or sorghum consistently improves milk production and milk protein yield. This result is because of a much greater proportion of dietary starch fermented in the rumen, enhanced digestibility of the smaller fraction of dietary starch reaching the small intestine, and increased total starch digestion. Steam-flaking increases cycling of urea to the gut, microbial protein flow to the small intestine, and estimated mammary uptake of amino acids. Steam-rolling compared to dry-rolling of barley or wheat did not alter total starch digestibilities in two trials, one with each grain source. Lactation studies with these processing comparisons have not been reported. Most cited studies have been with total mixed rations (TMR) and alfalfa hay as the principal forage. Additional studies are needed with lactating cows fed steam-flaked corn or sorghum in TMR containing alfalfa or corn silage. Optimal flake density of steam-processed corn or sorghum grain appears to be about 360 g/L (approximately 28 lb/bu).
Production of synthetic fuels using syngas from a steam hydrogasification and reforming process
NASA Astrophysics Data System (ADS)
Raju, Arun Satheesh Kumar
This thesis is aimed at the research, optimization and development of a thermo-chemical process aimed at the production of synthesis gas (mixture of H2 and CO) with a flexible H2 to CO ratio using coupled steam hydrogasification and steam reforming processes. The steam hydrogasification step generates a product gas containing significant amounts of methane by gasifying a carbonaceous feed material with steam and internally generated H2. This product gas is converted to synthesis gas with an excess H2 to CO using the steam reformer. Research involving experimental and simulation work has been conducted on steam hydrogasification, steam reforming and the Fischer-Tropsch reaction. The Aspen Plus simulation tool has been used to develop a process model that can perform heat and mass balance calculations of the whole process using built-in reactor modules and an empirical FT model available in the literature. This model has been used to estimate optimum feed ratios and process conditions for specific feedstocks and products. Steam hydrogasification of coal and wood mixtures of varying coal to wood ratios has been performed in a stirred batch reactor. The carbon conversion of the feedstocks to gaseous products is around 60% at 700°C and 80% at 800°C. The coal to wood ratio of the feedstock does not exert a significant influence on the carbon conversion. The rates of formation of CO, CO 2 and CH4 during gasification have been calculated based on the experimental results using a simple kinetic model. Experimental research on steam reforming has been performed. It has been shown that temperature and the feed CO2/CH4 ratio play a dominant role in determining the product gas H2/CO ratio. Reforming of typical steam hydrogasification product-gas stream has been investigated over a commercial steam reforming catalyst. The results demonstrate that the combined use of steam hydrogasification process with a reformer can generate a synthesis gas with a predetermined H2/CO ratio from carbonaceous feedstocks. Experimental work on the Fischer-Tropsch synthesis has also been performed. A life cycle analysis has been performed with the objective of comparing the life cycle energy consumption and emissions of synthetic diesel fuel produced through the CE-CERT process with other fuel/vehicle combinations. The experimental and simulation results presented here demonstrate that the CE-CERT process is versatile and can potentially handle a number of different feedstocks. CE-CERT process appears to be suitable for commercialization in very large scales with a coal feedstock and also in a distributed network of smaller scale reactors utilizing localized renewable feedstocks.
NASA Technical Reports Server (NTRS)
Qader, S. A.
1984-01-01
Steam injection improves yield and quality of product. Single step process for liquefying coal increases liquid yield and reduces hydrogen consumption. Principal difference between this and earlier processes includes injection of steam into reactor. Steam lowers viscosity of liquid product, so further upgrading unnecessary.
Oxygen-enriched air for MHD power plants
NASA Technical Reports Server (NTRS)
Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.
1979-01-01
Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.
Fan, Donglei; Li, Minggang; Qiu, Jian; Xing, Haiping; Jiang, Zhiwei; Tang, Tao
2018-05-31
Auxetic materials are a class of materials possessing negative Poisson's ratio. Here we establish a novel method for preparing auxetic foam from closed-cell polymer foam based on steam penetration and condensation (SPC) process. Using polyethylene (PE) closed-cell foam as an example, the resultant foams treated by SPC process present negative Poisson's ratio during stretching and compression testing. The effect of steam-treated temperature and time on the conversion efficiency of negative Poisson's ratio foam is investigated, and the mechanism of SPC method for forming re-entrant structure is discussed. The results indicate that the presence of enough steam within the cells is a critical factor for the negative Poisson's ratio conversion in the SPC process. The pressure difference caused by steam condensation is the driving force for the conversion from conventional closed-cell foam to the negative Poisson's ratio foam. Furthermore, the applicability of SPC process for fabricating auxetic foam is studied by replacing PE foam by polyvinyl chloride (PVC) foam with closed-cell structure or replacing water steam by ethanol steam. The results verify the universality of SPC process for fabricating auxetic foams from conventional foams with closed-cell structure. In addition, we explored potential application of the obtained auxetic foams by SPC process in the fabrication of shape memory polymer materials.
Fuels processing for transportation fuel cell systems
NASA Astrophysics Data System (ADS)
Kumar, R.; Ahmed, S.
Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.
K-65-12.8 condensing steam turbine
NASA Astrophysics Data System (ADS)
Valamin, A. E.; Kultyshev, A. Yu.; Gol'dberg, A. A.; Sakhnin, Yu. A.; Bilan, V. N.; Stepanov, M. Yu.; Polyaeva, E. N.; Shekhter, M. V.; Shibaev, T. L.
2016-11-01
A new condensing steam turbine K-65-12.8 is considered, which is the continuation of the development of the steam turbine family of 50-70 MW and the fresh steam pressure of 12.8 MPa, such as twocylinder T-50-12.8 and T-60/65-12.8 turbines. The turbine was developed using the modular design. The design and the main distinctive features of the turbine are described, such as a single two-housing cylinder with the steam flow loop; the extraction from the blading section for the regeneration, the inner needs, and heating; and the unification of some assemblies of serial turbines with shorter time of manufacture. The turbine uses the throttling steam distribution; steam from a boiler is supplied to a turbine through a separate valve block consisting of a central shut-off valve and two side control valves. The blading section of a turbine consists of 23 stages: the left flow contains ten stages installed in the inner housing and the right flow contains 13 stages with diaphragm placed in holders installed in the outer housing. The disks of the first 16 stages are forged together with a rotor, and the disks of the rest stages are mounted. Before the two last stages, the uncontrolled steam extraction is performed for the heating of a plant with the heat output of 38-75 GJ/h. Also, a turbine has five regenerative extraction points for feed water heating and the additional steam extraction to a collector for the inner needs with the consumption of up to 10 t/h. The feasibility parameters of a turbine plant are given. The main solutions for the heat flow diagram and the layout of a turbine plant are presented. The main principles and features of the microprocessor electro hydraulic control and protection system are formulated.
Actual operation and regulatory activities on steam generator replacement in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeki, Hitoshi
1997-02-01
This paper summarizes the operating reactors in Japan, and the status of the steam generators in these plants. It reviews plans for replacement of existing steam generators, and then goes into more detail on the planning and regulatory steps which must be addressed in the process of accomplishing this maintenance. The paper also reviews the typical steps involved in the process of removal and replacement of steam generators.
Countercurrent flow absorber and desorber
Wilkinson, William H.
1984-01-01
Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system.
Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air
NASA Astrophysics Data System (ADS)
Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.
2016-05-01
The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.
NASA Astrophysics Data System (ADS)
Bairamov, A. N.
2017-11-01
The operation of a nuclear power plant with a hydrogen energy complex and a constantly operating low capacity additional steam turbine makes it possible to improve the reliability of the power supply to the needs of a nuclear power plant in the face of major systemic accidents. In this case, the additional steam turbine is always in operation. This determines the alternation of the operating conditions of the additional steam turbine, and, at the same time, the alternation of the loads attributable to the rotor, which affects its working life. The aim of the article is to investigate the effect of cyclic loads on the number of cycles before the destruction of the most important elements of the rotor of an additional steam turbine due to the alternation of operating conditions when entering the peak load and during unloading at night. The article demonstrates that the values of the stress range intensity index for the most important elements of the rotor of an additional steam turbine lie in the area of the threshold values of the fatigue failure diagram. For this region, an increase in the frequency of loading is associated with the phenomenon of closure of the fatigue crack and, as a consequence, a possible slowing of its growth. An approximate number of cycles before failure for the most loaded element of the rotor is obtained.
Ono, Daiki; Bamba, Takeshi; Oku, Yuichi; Yonetani, Tsutomu; Fukusaki, Eiichiro
2011-09-01
In this study, we constructed prediction models by metabolic fingerprinting of fresh green tea leaves using Fourier transform near-infrared (FT-NIR) spectroscopy and partial least squares (PLS) regression analysis to objectively optimize of the steaming process conditions in green tea manufacture. The steaming process is the most important step for manufacturing high quality green tea products. However, the parameter setting of the steamer is currently determined subjectively by the manufacturer. Therefore, a simple and robust system that can be used to objectively set the steaming process parameters is necessary. We focused on FT-NIR spectroscopy because of its simple operation, quick measurement, and low running costs. After removal of noise in the spectral data by principal component analysis (PCA), PLS regression analysis was performed using spectral information as independent variables, and the steaming parameters set by experienced manufacturers as dependent variables. The prediction models were successfully constructed with satisfactory accuracy. Moreover, the results of the demonstrated experiment suggested that the green tea steaming process parameters could be predicted on a larger manufacturing scale. This technique will contribute to improvement of the quality and productivity of green tea because it can objectively optimize the complicated green tea steaming process and will be suitable for practical use in green tea manufacture. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the wood... Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam... process wastewater pollutants into publicly owned treatment works from wood preserving processes that use...
40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the wood... Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam... process wastewater pollutants into publicly owned treatment works from wood preserving processes that use...
40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the wood... Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam... process wastewater pollutants into publicly owned treatment works from wood preserving processes that use...
USDA-ARS?s Scientific Manuscript database
Pretreatment of orange processing waste (CPW) by steam explosion under various conditions (pretreatment time, pH and temperatures) was investigated. Pretreatments longer than 4 min with steam purging resulted in CPW containing less than 0.1% limonene, an inhibitor for fermentation. Steam pretreatmen...
Process assessment of small scale low temperature methanol synthesis
NASA Astrophysics Data System (ADS)
Hendriyana, Susanto, Herri; Subagjo
2015-12-01
Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developed various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H2 to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H2 for increasing H2/CO ratio. CO2 removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic analysis. The presented study is an attempt to compile most of these efforts in order to guide future work to get cheaper low cost investment. From our study the interesting configuration to the next development is D configuration with methanol yield 112 ton/day and capital cost with 526.4 106 IDR. The configuration of D with non-discounted and discounted rate had the break-even point approximately six and eight years.
Formability of paperboard during deep-drawing with local steam application
NASA Astrophysics Data System (ADS)
Franke, Wilken; Stein, Philipp; Dörsam, Sven; Groche, Peter
2018-05-01
The use of paperboard can significantly improve the environmental compatibility of everyday products such as packages. Nevertheless, most packages are currently made of plastics, since the three-dimensional shaping of paperboard is possible only to a limited extent. In order to increase the forming possibilities, deep drawing of cardboard has been intensively investigated for more than a decade. An improvement with regard to increased forming limits has been achieved by heating of the tool parts, which leads to a softening of paperboard constituents such as lignin. A further approach is the moistening of the samples, whereby the hydrogen bonds between the fibers are weakened and as a result an increase of the formability. It is expected that a combination of both parameter approaches will result in a significant increase in the forming capacity and in the shape accuracy. For this reason, a new tool concept is introduced within the scope of this work which makes it possible to moisten samples during the deep drawing process by means of steam supply. The conducted investigations show that spring-back in the preferred fiber direction can be reduced by 38 %. Orthogonal to the preferred fiber direction a reduction of spring back of up to 79 % is determined, which corresponds to a perfect shape. Moreover, it was determined that the steam duration and the initial moisture content have an influence on the final shape. In addition to the increased dimensional accuracy, an optimized wrinkle compression compared to conventional deep drawing is found. According to the results, it can be summarized that a steam application in the deep drawing of paperboard significantly improves the part quality.
Study of optimum propellant production facilities for launch of space shuttle vehicles
NASA Technical Reports Server (NTRS)
Laclair, L. M.
1970-01-01
An integrated propellant manufacturing plant and distribution system located at Kennedy Space Center is studied. The initial planned propellant and pressurant production amounted to 160 tons/day (TPD) LH2, 10 TPD GH2, 800 TPD LO2, 400 TPD LN2, and 120 TPD GN2. This was based on a shuttle launch frequency of 104 per year. During the study, developments occurred which may lower cryogen requirements. A variety of plant and processing equipment sizes and costs are considered for redundancy and supply level considerations. Steam reforming is compared to partial oxidation as a means of generating hydrogen. Electric motors, steam turbines, and gas turbines are evaluated for driving compression equipment. Various sites on and off Government property are considered to determine tradeoffs between costs and problems directly associated with the site, product delivery and storage costs, raw material costs, and energy costs. Coproduction of other products such as deuterium, methanol, and ammonia are considered. Legal questions are discussed concerning a private company's liabilities and its rights to market commercial products under Government tax and cost shelters.
Sun, Dan; Alam, Aftab; Tu, Yuanyuan; Zhou, Shiguang; Wang, Yanting; Xia, Tao; Huang, Jiangfeng; Li, Ying; Zahoor; Wei, Xiaoyang; Hao, Bo; Peng, Liangcai
2017-09-01
In this study, total ten Miscanthus accessions exhibited diverse cell wall compositions, leading to largely varied hexoses yields at 17%-40% (% cellulose) released from direct enzymatic hydrolysis of steam-exploded (SE) residues. Further supplied with 2% Tween-80 into the enzymatic digestion, the Mis7 accession showed the higher hexose yield by 14.8-fold than that of raw material, whereas the Mis10 had the highest hexoses yield at 77% among ten Miscanthus accessions. Significantly, this study identified four wall polymer features that negatively affect biomass saccharification as p<0.05 or 0.01 in the SE residues, including cellulose DP, Xyl and Ara of hemicellulose, and S-monomer of lignin. Based on Simons' stain, the SE porosity (defined by DY/DB) was examined to be the unique positive factor on biomass enzymatic digestion. Hence, this study provides the potential strategy to enhance biomass saccharification using optimal biomass process technology and related genetic breeding in Miscanthus and beyond. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lubricating system for thermal medium delivery parts in a gas turbine
Mashey, Thomas Charles
2002-01-01
Cooling steam delivery tubes extend axially along the outer rim of a gas turbine rotor for supplying cooling steam to and returning spent cooling steam from the turbine buckets. Because of the high friction forces at the interface of the tubes and supporting elements due to rotor rotation, a low coefficient of friction coating is provided at the interface of the tubes and support elements. On each surface, a first coating of a cobalt-based alloy is sprayed onto the surface at high temperature. A portion of the first coating is machined off to provide a smooth, hard surface. A second ceramic-based solid film lubricant is sprayed onto the first coating. By reducing the resistance to axial displacement of the tubes relative to the supporting elements due to thermal expansion, the service life of the tubes is substantially extended.
Process for purifying geothermal steam
Li, Charles T.
1980-01-01
Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.
Process for purifying geothermal steam
Li, C.T.
Steam containing hydrogen sulfide is purified and sulfur recovered by passing the steam through a reactor packed with activated carbon in the presence of a stoichiometric amount of oxygen which oxidizes the hydrogen sulfide to elemental sulfur which is adsorbed on the bed. The carbon can be recycled after the sulfur has been recovered by vacuum distillation, inert gas entrainment or solvent extraction. The process is suitable for the purification of steam from geothermal sources which may also contain other noncondensable gases.
Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, Sertac; Augustine, Chad; Kurup, Parthiv
In this study, we have undertaken a robust analysis of the global supply chain and manufacturing costs for components of Organic Rankine Cycle (ORC) Turboexpander and steam turbines used in geothermal power plants. We collected a range of market data influencing manufacturing from various data sources and determined the main international manufacturers in the industry. The data includes the manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases; 1) 1 MW geothermal ORC Turboexpander 2) 5 MW ORC Turboexpander 3) 20 MW geothermal Steam Turbine
DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.
Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...
Countercurrent flow absorber and desorber
Wilkinson, W.H.
1984-10-16
Countercurrent flow absorber and desorber devices are provided for use in absorption cycle refrigeration systems and thermal boosting systems. The devices have increased residence time and surface area resulting in improved heat and mass transfer characteristics. The apparatuses may be incorporated into open cycle thermal boosting systems in which steam serves both as the refrigerant vapor which is supplied to the absorber section and as the supply of heat to drive the desorber section of the system. 9 figs.
Integrated gasifier combined cycle polygeneration system to produce liquid hydrogen
NASA Technical Reports Server (NTRS)
Burns, R. K.; Staiger, P. J.; Donovan, R. M.
1982-01-01
An integrated gasifier combined cycle (IGCC) system which simultaneously produces electricity, process steam, and liquid hydrogen was evaluated and compared to IGCC systems which cogenerate electricity and process steam. A number of IGCC plants, all employing a 15 MWe has turbine and producing from 0 to 20 tons per day of liquid hydrogen and from 0 to 20 MWt of process steam were considered. The annual revenue required to own and operate such plants was estimated to be significantly lower than the potential market value of the products. The results indicate a significant potential economic benefit to configuring IGCC systems to produce a clean fuel in addition to electricity and process steam in relatively small industrial applications.
Commercial Nuclear Steam-Electric Power Plants, Part II
ERIC Educational Resources Information Center
Shore, Ferdinand J.
1974-01-01
Presents the pros and cons of nuclear power systems. Includes a discussion of the institutional status of the AEC, AEC regulatory record, routine low-level radiation hazards, transport of radioactive materials, storage of wastes, and uranium resources and economics of supply. (GS)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... of the bases for the contention and a concise statement of the alleged facts or expert opinion which..., ``Allowable Value for Primary Containment and Drywell Isolation Instrumentation,'' Function 3.c, ``Reactor Core Isolation Cooling (RCIC) Steam Supply Line Pressure--Low.'' This TS allowable value will be...
DETERMINATION OF MAXIMUM PERMISSIBLE LEAKAGE FROM THE HRT PROCESS STEAM SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gift, E.H.
1959-01-30
Calculations were made to determine the radiation hazard to HRT personnel as a result of leakage to the atmosphere from the process steam system in the event of a heat exchanger tube rupture. These calculations show that with the present four-minute delay before dumping approximately 1020 lb of fuel solution may be transferred to the steam system. The radiation hazard from fission products in the atomosphere will be negligble if the steam killer blower is operating. If this blower is not operatin. a natural convection loop will be set up in the steam killer which will have a condensing capacitymore » of 4 lb/min of steam at atmospheric pressure. In this latter case. the inhalation hazard will be negligible when the leak rate through the steam stop valves is less than 4lb/ min. (auth)« less
Reforming of natural gas—hydrogen generation for small scale stationary fuel cell systems
NASA Astrophysics Data System (ADS)
Heinzel, A.; Vogel, B.; Hübner, P.
The reforming of natural gas to produce hydrogen for fuel cells is described, including the basic concepts (steam reforming or autothermal reforming) and the mechanisms of the chemical reactions. Experimental work has been done with a compact steam reformer, and a prototype of an experimental reactor for autothermal reforming was tested, both containing a Pt-catalyst on metallic substrate. Experimental results on the steam reforming system and a comparison of the steam reforming process with the autothermal process are given.
Solar process steam for a pharmaceutical company in Jordan
NASA Astrophysics Data System (ADS)
Berger, M.; Mokhtar, M.; Zahler, C.; Al-Najami, M. M. R.; Krüger, D.; Hennecke, K.
2016-05-01
This paper presents details of the recent installation of a linear Fresnel collector to provide saturated steam for process heat usage through Direct Steam Generation (DSG) for industrial use in the Jordanian pharmaceuticals manufacturing company RAM Pharma, where first solar steam has been provided in March 2015. This commercial DSG project also represents the first solar DSG plant in MENA. During sunshine, the system achieves a solar fraction of 100 %, and the conventional steam boiler is not needed. In the evening the fossil fired backup takes over automatically and replaces the solar collector in operation. Operational experience, details of the control strategy, and measurement data are presented in the paper.
Wu, Li; Wang, Bujun
2016-07-01
We hereby report the transformation of deoxynivalenol (DON) and its acetylated derivatives (3-ADON and 15-ADON) by spiking targeted mycotoxins to Fusarium mycotoxin-free flour in the process of making Chinese steamed bread (CSB). The impacts of pH, yeast level, and steaming time on the transformation of 3-ADON to DON were investigated. DON, 3-ADON, and 15-ADON were analyzed by UPLC-MS/MS. Spiked DON was stable throughout the CSB making process. Spiked 3-ADON and 15-ADON were partially deacetylated and transformed to DON during kneading (54.1-60.0% and 59.3-77.5%, respectively), fermentation (64.0-76.9% and 78.2-91.6%, respectively), and steaming (47.2-52.7% and 52.4-61.9%, respectively). The ADONs level increased after steaming compared with their level in the previous step. The pH level and steaming duration significantly (P<0.05) affected the conversion of 3-ADON during the CSB making process. Briefly, alkaline conditions and short steaming times favored the deacetylation of 3-ADON. The level of yeast did not remarkably (P<0.05) alter the transformation between ADONs and DON. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sudurnes Regional Heating Corp.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienau, P.J.
1996-11-01
The Svartsengi geothermal area is close to the town of Grindavik on the Rekjanes peninsula and is part of an active fissure swarm, lined with crater-rows and open fissures and faults. The high-temperature area has an area of 2 sq. km and shows only limited signs of geothermal activity at the surface. The reservoir, however, contains lots of energy and at least 8 wells supply the Svartsengi Power Plant with steam. The steam is not useable for domestic heating purposes so that heat exchangers are used to heat cold groundwater with the steam. Some steam is also used for producingmore » 16.4 MW{sub e} of electrical power. The article shows the distribution system piping hot water to nine towns and the Keflavik International Airport. The effluent brine from the Svartsengi Plant is disposed of into a surface pond, called the Blue Lagoon, popular to tourists and people suffering from psoriasis and other forms of eczema seeking therapeutic effects from the silica rich brine. This combined power plant and regional district heating system (cogeneration) is an interesting and unique design for the application of geothermal energy.« less
Formulation of steam-methane reforming rate in Ni-YSZ porous anode of solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Sugihara, Shinichi; Kawamura, Yusuke; Iwai, Hiroshi
2018-02-01
The steam-methane reforming reaction on a Ni-YSZ (yttria-stabilized zirconia) cermet was experimentally investigated under atmospheric pressure and in the temperature range from 650 to 750 °C. We examined the effects of the partial pressures of methane and steam in the supply gas on the reaction rate. The experiments were conducted with a low Ni contained Ni-YSZ cermet sheet of thickness 0.1 mm. Its porous microstructure and accompanied parameters were quantified using the FIB-SEM (focused ion beam scanning electron microscopy) technique. A power-law-type rate equation incorporating the reaction-rate-limiting conditions was obtained on the basis of the unit surface area of the Ni-pore contact surface in the cermet. The kinetics indicated a strong positive dependence on the methane partial pressure and a negative dependence on the steam partial pressure. The obtained rate equation successfully reproduced the experimental results for Ni-YSZ samples having different microstructures in the case of low methane consumption. The equation also reproduced the limiting-reaction behaviours at different temperatures.
Burdgick, Steven Sebastian; Burns, James Lee
2002-01-01
A nozzle segment for a gas turbine includes inner and outer band portions and a vane extending between the band portions. The inner and outer band portions are each divided into first and second plenums separated by an impingement plate. Cooling steam is supplied to the first cavity for flow through the apertures to cool the outer nozzle wall. The steam flows through a leading edge cavity in the vane into the first cavity of the inner band portion for flow through apertures of the impingement plate to cool the inner nozzle wall. Spent cooling steam flows through a plurality of cavities in the vane, exiting through an exit chimney in the outer band. The exit chimney is secured at its inner end directly to the nozzle vane wall surrounding the exit cavities, to the margin of the impingement plate at a location intermediate the ends of the exit chimney and to margins of an opening through the cover whereby each joint is externally accessible for joint formation and for subsequent inspection.
Method for generating hydrogen for fuel cells
Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael
2004-03-30
A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.
Fuel processor and method for generating hydrogen for fuel cells
Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL; Carter, John David [Bolingbrook, IL; Krumpelt, Michael [Naperville, IL; Myers, Deborah J [Lisle, IL
2009-07-21
A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.
Cooling circuit for steam and air-cooled turbine nozzle stage
Itzel, Gary Michael; Yu, Yufeng
2002-01-01
The turbine vane segment includes inner and outer walls with a vane extending therebetween. The vane includes leading and trailing edge cavities and intermediate cavities. An impingement plate is spaced from the outer wall to impingement-cool the outer wall. Post-impingement cooling air flows through holes in the outer wall to form a thin air-cooling film along the outer wall. Cooling air is supplied an insert sleeve with openings in the leading edge cavity for impingement-cooling the leading edge. Holes through the leading edge afford thin-film cooling about the leading edge. Cooling air is provided the trailing edge cavity and passes through holes in the side walls of the vane for thin-film cooling of the trailing edge. Steam flows through a pair of intermediate cavities for impingement-cooling of the side walls. Post-impingement steam flows to the inner wall for impingement-cooling of the inner wall and returns the post-impingement cooling steam through inserts in other intermediate cavities for impingement-cooling the side walls of the vane.
Evaluation of Microwave Steam Bags for the Decontamination of Filtering Facepiece Respirators
Fisher, Edward M.; Williams, Jessica L.; Shaffer, Ronald E.
2011-01-01
Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers' instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9% effective for inactivating MS2 on FFRs; however, more research is required to determine the effectiveness against respiratory pathogens. PMID:21525995
Combined-cycle plant built in record time
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
This article reports that this low-cost cogeneration plant meets residential community`s environmental concerns with noise minimization, emissions control, and zero wastewater discharge. Supplying electricity to the local utility and steam to two hosts, the Auburndale cogeneration facility embodies the ``reference plant`` design approach developed by Westinghouse Power Generation (WPG), Orlando, Fla. With this approach customers meet their particular needs by choosing from a standard package of plant equipment and design options. Main goals of the concept are reduced construction time efficient and reliable power generation, minimal operating staff, and low cost. WPG built the plant on a turnkey basis formore » Auburndale Power Partners Limited Partnership (APP). APP is a partially owned subsidiary of Mission Energy, a California-based international developer and operator of independent-power facilities. The cogeneration facility supplies 150 MW of electric power to Florida Power Corp and exports 120,000 lb/hr of steam to Florida Distillers Co and Coca-Cola Foods.« less
Thermally-enhanced oil recovery method and apparatus
Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.
1987-01-01
A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.
Aircraft vortex marking program
NASA Technical Reports Server (NTRS)
Pompa, M. F.
1979-01-01
A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.
Bulalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strobel, Calvin J.
1993-01-28
The Bulalo geothermal field, located in Laguna province, Philippines, supplies 12% of the electricity on the island of Luzon. The first 110 MWe power plant was on line May 1979; current 330 MWe (gross) installed capacity was reached in 1984. Since then, the field has operated at an average plant factor of 76%. The National Power Corporation plans to add 40 MWe base load and 40 MWe standby in 1995. A numerical simulation model for the Bulalo field has been created that matches historic pressure changes, enthalpy and steam flash trends and cumulative steam production. Gravity modeling provided independent verificationmore » of mass balances and time rate of change of liquid desaturation in the rock matrix. Gravity modeling, in conjunction with reservoir simulation provides a means of predicting matrix dry out and the time to limiting conditions for sustainable levelized steam deliverability and power generation.« less
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Palaszewski, B. A.; Kulis, M. J.; Gokoglu, S. A.
2015-01-01
Human space missions generate waste materials. A 70-kg crewmember creates a waste stream of 1 kg per day, and a four-person crew on a deep space habitat for a 400+ day mission would create over 1600 kg of waste. Converted into methane, the carbon could be used as a fuel for propulsion or power. The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project is investing in space resource utilization with an emphasis on repurposing logistics materials for useful purposes and has selected steam reforming among many different competitive processes as the preferred method for repurposing organic waste into methane. Already demonstrated at the relevant processing rate of 5.4 kg of waste per day, high temperature oxygenated steam consumes waste and produces carbon dioxide, carbon monoxide, and hydrogen which can then be converted into methane catalytically. However, the steam reforming process has not been studied in microgravity. Data are critically needed to understand the mechanisms that allow use of steam reforming in a reduced gravity environment. This paper reviews the relevant literature, identifies gravity-dependent mechanisms within the steam gasification process, and describes an innovative experiment to acquire the crucial kinetic information in a small-scale reactor specifically designed to operate within the requirements of a reduced gravity aircraft flight. The experiment will determine if the steam reformer process is mass-transport limited, and if so, what level of forced convection will be needed to obtain performance comparable to that in 1-g.
Disinfection of Cystoscopes by Subatmospheric Steam and Steam and Formaldehyde at 80°C
Alder, V. G.; Gingell, J. C.; Mitchell, J. P.
1971-01-01
A new method of disinfection adapted for endoscopic instruments uses low temperature steam at 80°C or steam and formaldehyde at 80°C. The process has considerable advantages over existing methods and more closely approaches the ideal requirements. ImagesFIG. 3FIG. 4FIG. 5 PMID:5569551
Net energy ratio for the production of steam pretreated biomass-based pellets
Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...
2015-06-21
In this study, a process model was developed to determine the net energy ratio (NER) for both regular and steam-pretreated pellet production from ligno-cellulosic biomass. NER is a ratio of the net energy output to the total net energy input from non-renewable energy source into the system. Scenarios were developed to measure the effect of temperature and level of steam pretreatment on the NER of both production processes. The NER for the base case at 6 kg h –1 is 1.29 and 5.0 for steam-pretreated and regular pellet production respectively. However, at the large scale NER would improve. The majormore » factor for NER is energy for steam and drying unit. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 200 °C with 50% pretreatment (Steam pretreating 50% feed stock, while the rest is undergoing regular pelletization). Uncertainty result for steam pretreated and regular pellet is 1.35 ± 0.09 and 4.52 ± 0.34 respectively.« less
NASA Astrophysics Data System (ADS)
Tippawan, Phanicha; Arpornwichanop, Amornchai
2016-02-01
The hydrogen production process is known to be important to a fuel cell system. In this study, a carbon-free hydrogen production process is proposed by using a two-step ethanol-steam-reforming procedure, which consists of ethanol dehydrogenation and steam reforming, as a fuel processor in the solid oxide fuel cell (SOFC) system. An addition of CaO in the reformer for CO2 capture is also considered to enhance the hydrogen production. The performance of the SOFC system is analyzed under thermally self-sufficient conditions in terms of the technical and economic aspects. The simulation results show that the two-step reforming process can be run in the operating window without carbon formation. The addition of CaO in the steam reformer, which runs at a steam-to-ethanol ratio of 5, temperature of 900 K and atmospheric pressure, minimizes the presence of CO2; 93% CO2 is removed from the steam-reforming environment. This factor causes an increase in the SOFC power density of 6.62%. Although the economic analysis shows that the proposed fuel processor provides a higher capital cost, it offers a reducing active area of the SOFC stack and the most favorable process economics in term of net cost saving.
Integration of solar process heat into an existing thermal desalination plant in Qatar
NASA Astrophysics Data System (ADS)
Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.
2016-05-01
The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.
Adepoju, Mary A; Omitoyin, Bamidele O; Mohan, Chitradurga O; Zynudheen, Aliyam A
2017-05-01
The difference in the heating penetration characteristics of product processed in retort by steam-air application and water immersion was studied. Fresh milkfish ( Chanos chanos ) packed in dry pack and in oil medium, both in flexible pouches, was thermal processed to minimum F 0 value of 7.77 at 121.1°C. Heat penetration values were recorded for each minute of processing with the aid Ellab (TM 9608, Denmark) temperature recorder. Retort come up time to achieve 121.1°C was observed to be less in steam-air which invariably led to a lower Ball's process time (B) and the total process time (T) observed in steam-air as compared to water immersion. Obtained data were plotted on a semi-logarithmic paper with temperature deficit on x -axis against time on the y -axis.
Comparative study of thermochemical processes for hydrogen production from biomass fuels.
Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo
2010-08-01
Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain. Copyright 2010 Elsevier Ltd. All rights reserved.
Burdgick, Steven Sebastian; Itzel, Gary Michael
2001-01-01
A gas turbine nozzle segment has outer and inner bands. Each band includes a side wall, a cover and an impingement plate between the cover and nozzle wall defining two cavities on opposite sides of the impingement plate. Cooling steam is supplied to one cavity for flow through apertures of the impingement plate to cool the nozzle wall. The side wall of the band and inturned flange define with the nozzle wall an undercut region. The inturned flange has a plurality of apertures for directing cooling steam to cool the side wall between adjacent nozzle segments.
Thermal gain of CHP steam generator plants and heat supply systems
NASA Astrophysics Data System (ADS)
Ziganshina, S. K.; Kudinov, A. A.
2016-08-01
Heating calculation of the surface condensate heat recovery unit (HRU) installed behind the BKZ-420-140 NGM boiler resulting in determination of HRU heat output according to fire gas value parameters at the heat recovery unit inlet and its outlet, heated water quantity, combustion efficiency per boiler as a result of installation of HRU, and steam condensate discharge from combustion products at its cooling below condensing point and HRU heat exchange area has been performed. Inspection results of Samara CHP BKZ-420-140 NGM power boilers and field tests of the surface condensate heat recovery unit (HRU) made on the bimetal calorifier base KCk-4-11 (KSk-4-11) installed behind station no. 2 Ulyanovsk CHP-3 DE-10-14 GM boiler were the basis of calculation. Integration of the surface condensation heat recovery unit behind a steam boiler rendered it possible to increase combustion efficiency and simultaneously decrease nitrogen oxide content in exit gases. Influence of the blowing air moisture content, the excess-air coefficient in exit gases, and exit gases temperature at the HRU outlet on steam condensate amount discharge from combustion products at its cooling below condensing point has been analyzed. The steam condensate from HRU gases is offered as heat system make-up water after degasification. The cost-effectiveness analysis of HRU installation behind the Samara CHP BKZ-420-140 NGM steam boiler with consideration of heat energy and chemically purified water economy has been performed. Calculation data for boilers with different heat output has been generalized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit
In this study, a process model was developed to determine the net energy ratio (NER) for both regular and steam-pretreated pellet production from ligno-cellulosic biomass. NER is a ratio of the net energy output to the total net energy input from non-renewable energy source into the system. Scenarios were developed to measure the effect of temperature and level of steam pretreatment on the NER of both production processes. The NER for the base case at 6 kg h –1 is 1.29 and 5.0 for steam-pretreated and regular pellet production respectively. However, at the large scale NER would improve. The majormore » factor for NER is energy for steam and drying unit. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 200 °C with 50% pretreatment (Steam pretreating 50% feed stock, while the rest is undergoing regular pelletization). Uncertainty result for steam pretreated and regular pellet is 1.35 ± 0.09 and 4.52 ± 0.34 respectively.« less
Peng, Fang; Chen, Jun; Wang, Xia; Xu, Changqing; Liu, Tongning; Xu, Rong
2016-07-01
We investigated the effect of steaming time on Cistanche deserticola Y. C. MA slices by analyzing levels of bioactive compounds, antioxidant activity, and weight loss compared with fresh, directly oven-dried, and blanched samples. Fresh samples had extremely low levels of phenylethanoid glycosides and antioxidant activity. Lower levels of weight loss and higher amounts of soluble sugars, polysaccharides, and dilute ethanol-soluble extracts were found when the slices were steamed rather than blanched. Slices steamed for 5 and 7 min contained significantly (p<0.05) higher amounts of acteoside, isoacteoside, and 2'-acetylacteoside than directly oven-dried samples. However, soluble sugars and dilute ethanol-soluble extracts decreased gradually throughout the steaming process. The concentration of polysaccharides fluctuated during the steaming process. The steaming time had a consistent effect on antioxidant properties evaluated by oxygen radical absorbance capacity (ORAC), 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity (DPPH) and ferric reducing antioxidant property (FRAP), showing a significant increase and reaching 108.62, 23.08, and 11.68 micromoles Trolox per mass of fresh slice (μmol TE/g FW), respectively. The present results suggest that fresh-cut C. deserticola can be subjected to approximately 5-7 min of steaming to improve phenylethanoid glycoside levels and antioxidant activity, while still preserving the amounts of soluble sugars, polysaccharides, and dilute ethanol-soluble extracts. These results would help to improve the production process for fresh-cut Chinese medicines, and increase the understanding of their associated health benefits.
STEAM Enacted: A Case Study of a Middle School Teacher Implementing STEAM Instructional Practices
ERIC Educational Resources Information Center
Herro, Danielle; Quigley, Cassie
2016-01-01
This paper examines the implementation practices of a 6th grade middle school teacher enacting STEAM (science, technology, engineering, art and math) teaching in his classroom after participating in a 45-hour STEAM professional development. Case study is used to detail the process, successes, and challenges. Project-based learning, technology…
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Borup, Rodney L.
The production of a hydrogen-rich fuel-cell feed by dimethyl ether (DME) steam reforming was investigated using calculations of thermodynamic equilibrium as a function of steam-to-carbon ratio (0.00-4.00), temperature (100-600 °C), pressure (1-5 atm), and product species. Species considered were acetone, acetylene, carbon dioxide, carbon monoxide, dimethyl ether, ethane, ethanol, ethylene, formaldehyde, formic acid, hydrogen, isopropanol, methane, methanol, methyl-ethyl ether, n-propanol and water. Thermodynamic equilibrium calculations of DME steam reforming indicate complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide at temperatures greater than 200 °C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure ( P = 1 atm). Increasing the operating pressure shifts the equilibrium toward the reactants; increasing the pressure from 1 to 5 atm decreases the conversion of dimethyl ether from 99.5 to 76.2%. The trend of thermodynamically stable products in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol-formaldehyde, formic acid, and acetylene were not observed. Based on the equilibrium calculations, the optimal processing conditions for dimethyl ether steam reforming occur at a steam-to-carbon ratio of 1.50, a pressure of 1 atm, and a temperature of 200 °C. These thermodynamic equilibrium calculations show dimethyl ether processed with steam will produce hydrogen-rich fuel-cell feeds—with hydrogen concentrations exceeding 70%. The conversion of dimethyl ether via hydrolysis (considering methanol as the only product) is limited by thermodynamic equilibrium. Equilibrium conversion increases with temperature and steam-to-carbon ratio. A maximum dimethyl ether conversion of 62% is achieved at a steam-to-carbon ratio of 5.00 and a processing temperature of 600 °C.
46 CFR 63.25-7 - Exhaust gas boilers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... exceeds the maximum operating temperature or when the fluid/steam flowing through the heat exchanger is... water level, the control system must supply the feed water at a rate sufficient to ensure proper heat... results in inadequate heat transfer, a high temperature alarm or low flow alarm must be activated. An...
46 CFR 63.25-7 - Exhaust gas boilers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... exceeds the maximum operating temperature or when the fluid/steam flowing through the heat exchanger is... water level, the control system must supply the feed water at a rate sufficient to ensure proper heat... results in inadequate heat transfer, a high temperature alarm or low flow alarm must be activated. An...
46 CFR 63.25-7 - Exhaust gas boilers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... exceeds the maximum operating temperature or when the fluid/steam flowing through the heat exchanger is... water level, the control system must supply the feed water at a rate sufficient to ensure proper heat... results in inadequate heat transfer, a high temperature alarm or low flow alarm must be activated. An...
Stationary Engineering Laboratory Manual--2.
ERIC Educational Resources Information Center
Steingress, Frederick M.; Frost, Harold J.
The Stationary Engineering Laboratory Manual 2 was designed for vocational/technical high school students who have received instruction in the basics of stationary engineering. It was developed for students who will be operating a live plant and who will be responsible for supplying steam for heating, cooking, and baking. Each lesson in the manual…
DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING DL
2010-08-03
This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.« less
Study on loading coefficient in steam explosion process of corn stalk.
Sui, Wenjie; Chen, Hongzhang
2015-03-01
The object of this work was to evaluate the effect of loading coefficient on steam explosion process and efficacy of corn stalk. Loading coefficient's relation with loading pattern and material property was first revealed, then its effect on transfer process and pretreatment efficacy of steam explosion was assessed by established models and enzymatic hydrolysis tests, respectively, in order to propose its optimization strategy for improving the process economy. Results showed that loading coefficient was mainly determined by loading pattern, moisture content and chip size. Both compact loading pattern and low moisture content improved the energy efficiency of steam explosion pretreatment and overall sugar yield of pretreated materials, indicating that they are desirable to improve the process economy. Pretreatment of small chip size showed opposite effects in pretreatment energy efficiency and enzymatic hydrolysis performance, thus its optimization should be balanced in investigated aspects according to further techno-economical evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chen, Wen-Hua; Pen, Ben-Li; Yu, Ching-Tsung; Hwang, Wen-Song
2011-02-01
The combined pretreatment of rice straw using dilute-acid and steam explosion followed by enzymatic hydrolysis was investigated and compared with acid-catalyzed steam explosion pretreatment. In addition to measuring the chemical composition, including glucan, xylan and lignin content, changes in rice straw features after pretreatment were investigated in terms of the straw's physical properties. These properties included crystallinity, surface area, mean particle size and scanning electron microscopy imagery. The effect of acid concentration on the acid-catalyzed steam explosion was studied in a range between 1% and 15% acid at 180°C for 2 min. We also investigated the influence of the residence time of the steam explosion in the combined pretreatment and the optimum conditions for the dilute-acid hydrolysis step in order to develop an integrated process for the dilute-acid and steam explosion. The optimum operational conditions for the first dilute-acid hydrolysis step were determined to be 165°C for 2 min with 2% H(2)SO(4) and for the second steam explosion step was to be carried out at 180°C for 20 min; this gave the most favorable combination in terms of an integrated process. We found that rice straw pretreated by the dilute-acid/steam explosions had a higher xylose yield, a lower level of inhibitor in the hydrolysate and a greater degree of enzymatic hydrolysis; this resulted in a 1.5-fold increase in the overall sugar yield when compared to the acid-catalyzed steam explosion. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humme, J.T.; Tanaka, M.T.; Yokota, M.H.
1979-07-01
The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from themore » binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.« less
Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia
2016-01-01
Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber−bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution. PMID:27872280
Li, Xiuqiang; Xu, Weichao; Tang, Mingyao; Zhou, Lin; Zhu, Bin; Zhu, Shining; Zhu, Jia
2016-12-06
Because it is able to produce desalinated water directly using solar energy with minimum carbon footprint, solar steam generation and desalination is considered one of the most important technologies to address the increasingly pressing global water scarcity. Despite tremendous progress in the past few years, efficient solar steam generation and desalination can only be achieved for rather limited water quantity with the assistance of concentrators and thermal insulation, not feasible for large-scale applications. The fundamental paradox is that the conventional design of direct absorber-bulk water contact ensures efficient energy transfer and water supply but also has intrinsic thermal loss through bulk water. Here, enabled by a confined 2D water path, we report an efficient (80% under one-sun illumination) and effective (four orders salinity decrement) solar desalination device. More strikingly, because of minimized heat loss, high efficiency of solar desalination is independent of the water quantity and can be maintained without thermal insulation of the container. A foldable graphene oxide film, fabricated by a scalable process, serves as efficient solar absorbers (>94%), vapor channels, and thermal insulators. With unique structure designs fabricated by scalable processes and high and stable efficiency achieved under normal solar illumination independent of water quantity without any supporting systems, our device represents a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution.
Process assessment of small scale low temperature methanol synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendriyana; Chemical Engineering Department, Faculty of Industrial Technology, InstitutTeknologi Bandung; Susanto, Herri, E-mail: herri@che.itb.ac.id
2015-12-29
Biomass is a renewable energy resource and has the potential to make a significant impact on domestic fuel supplies. Biomass can be converted to fuel like methanol via several step process. The process can be split into following main steps: biomass preparation, gasification, gas cooling and cleaning, gas shift and methanol synthesis. Untill now these configuration still has a problem like high production cost, catalyst deactivation, economy of scale and a huge energy requirements. These problems become the leading inhibition for biomass conversion to methanol, which should be resolved to move towards the economical. To address these issues, we developedmore » various process and new configurations for methanol synthesis via methyl formate. This configuration combining two reactors: the one reactor for the carbonylation of methanol and CO to form methyl formate, and the second for the hydrogenolysis of methyl formate and H{sub 2} to form two molecule of methanol. Four plant process configurations were compared with the biomass basis is 300 ton/day. The first configuration (A) is equipped with a steam reforming process for converting methane to CO and H{sub 2} for increasing H{sub 2}/CO ratio. CO{sub 2} removal is necessary to avoid poisoning the catalyst. COSORB process used for the purpose of increasing the partial pressure of CO in the feed gas. The steam reforming process in B configuration is not used with the aim of reducing the number of process equipment, so expect lower investment costs. For C configuration, the steam reforming process and COSORB are not used with the aim of reducing the number of process equipment, so expect lower investment costs. D configuration is almost similar to the configuration A. This configuration difference is in the synthesis of methanol which was held in a single reactor. Carbonylation and hydrogenolysis reactions carried out in the same reactor one. These processes were analyzed in term of technical process, material and energy balance and economic analysis. The presented study is an attempt to compile most of these efforts in order to guide future work to get cheaper low cost investment. From our study the interesting configuration to the next development is D configuration with methanol yield 112 ton/day and capital cost with 526.4 10{sup 6} IDR. The configuration of D with non-discounted and discounted rate had the break-even point approximately six and eight years.« less
Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming
NASA Astrophysics Data System (ADS)
Kramer, Michelle; McKelvie, Millie; Watson, Matthew
2018-01-01
Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).
Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota
2014-12-01
The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carney, M.V.
The Logan Generating Plant is a $500 million, 202-megawatt (MW), pulverized-coal cogeneration facility. Its electricity output - enough for 270,000 homes - is sold to Atlantic Electric. It also supplies all of the steam (up to 50,000 pounds per hour) to a nearby Monsanto facility. The plant went into commercial service in September 1994. Currently, the facility employs 62 people. In addition to becoming an active, long-term employer in Logan Township, the plant will help stimulate the local economy for years to come as a consumer of goods and services. In addition, local and state revenues from the Logan plantmore » provide a much needed economic boost. Cogeneration, which is the production of electric power and thermal energy (heat) from a single energy source, provides efficiency benefits in fuel consumption, capital investment and operating costs. Electricity and process steam from the Logan plant helps Monsanto control its energy costs, thus helping it remain competitive. The Logan Generating Plant plays an important role in the economic development of southern New Jersey by providing clean, dependable and competitively priced electricity to Atlantic Electric for resale to its utility customers. The environmental and economic benefits of the facility are discussed.« less
Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells.
Chen, Xinbing; Guan, Chengzhi; Xiao, Guoping; Du, Xianlong; Wang, Jian-Qiang
2015-01-01
High temperature (HT) steam/CO2 coelectrolysis with solid oxide electrolysis cells (SOECs) using the electricity and heat generated from clean energies is an important alternative for syngas production without fossil fuel consumption and greenhouse gas emissions. Herein, reaction characteristics and the outlet syngas composition of HT steam/CO2 coelectrolysis under different operating conditions, including distinct inlet gas compositions and electrolysis current densities, are systematically studied at 800 °C using commercially available SOECs. The HT coelectrolysis process, which has comparable performance to HT steam electrolysis, is more active than the HT CO2 electrolysis process, indicating the important contribution of the reverse water-gas shift reaction in the formation of CO. The outlet syngas composition from HT steam/CO2 coelectrolysis is very sensitive to the operating conditions, indicating the feasibility of controlling the syngas composition by varying these conditions. Maximum steam and CO2 utilizations of 77% and 76% are achieved at 1.0 A cm(-2) with an inlet gas composition of 20% H2/40% steam/40% CO2.
Fuel supply system and method for coal-fired prime mover
Smith, William C.; Paulson, Leland E.
1995-01-01
A coal-fired gas turbine engine is provided with an on-site coal preparation and engine feeding arrangement. With this arrangement, relatively large dry particles of coal from an on-site coal supply are micro-pulverized and the resulting dry, micron-sized, coal particulates are conveyed by steam or air into the combustion chamber of the engine. Thermal energy introduced into the coal particulates during the micro-pulverizing step is substantially recovered since the so-heated coal particulates are fed directly from the micro-pulverizer into the combustion chamber.
Equations for calculating the properties of dissociated steam
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Gudym, A. A.
2017-08-01
The equations of state for dissociated steam have been developed in the temperature and pressure ranges of 1250-2300 K and 0.01-10.00 MPa for calculating thermodynamic processes in thermal power units operating on high-temperature steam. These equations are based on the property tables for dissociated steam derived at a reference temperature of 0 K. It is assumed that the initial substance is steam, the dissociation of which—in accordance with the most likely chemical reactions—results in formation of molecules of hydrogen, oxygen, steam, hydroxyl, and atoms of oxygen and hydrogen. Differential thermodynamic correlations, considering a change in the chemical potential and the composition of the mixture, during the steam dissociation are used. A reference temperature of 0.01°C used in the calculation of parameters of nondissociated steam has been adopted to predict processes in thermal power units without matching the reference temperatures and to account for transformation of dissociated steam into its usual form for which there is the international system of equations with the water triple point of 0.01°C taken as the reference. In the investigated region, the deviation of dissociated steam properties from those of nondissociated steam, which increases with decreasing the pressure or increasing the temperature, was determined. For a pressure of 0.02 MPa and a temperature of 2200 K, these deviations are 512 kJ/kg for the enthalpy, 0.2574 kJ/(kg K) for the entropy, and 3.431 kJ/(kg K) for the heat capacity at constant pressure. The maximum deviation of the dissociated steam properties calculated by the developed equations from the handbook values that these equations are based on does not exceed 0.03-0.05%.
Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.
1995-09-12
A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.
Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.
1995-01-01
A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.
NASA Astrophysics Data System (ADS)
Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.
2018-05-01
Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.
Process for CO.sub.2 capture using a regenerable magnesium hydroxide sorbent
Siriwardane, Ranjani V; Stevens, Jr., Robert W
2013-06-25
A process for CO.sub.2 separation using a regenerable Mg(OH).sub.2 sorbent. The process absorbs CO.sub.2 through the formation of MgCO.sub.3 and releases water product H.sub.2O. The MgCO.sub.3 is partially regenerated through direct contact with steam, which acts to heat the magnesium carbonate to a higher temperature, provide heat duty required to decompose the magnesium carbonate to yield MgO and CO.sub.2, provide an H.sub.2O environment over the magnesium carbonate thereby shifting the equilibrium and increasing the potential for CO.sub.2 desorption, and supply H.sub.2O for rehydroxylation of a portion of the MgO. The mixture is polished in the absence of CO.sub.2 using water product H.sub.2O produced during the CO.sub.2 absorption to maintain sorbent capture capacity. The sorbent now comprised substantially of Mg(OH).sub.2 is then available for further CO.sub.2 absorption duty in a cyclic process.
NASA Astrophysics Data System (ADS)
Marakkos, Costas; Stiliaris, Efstathios; Guillen, Elena; Montenon, Alaric; Papanicolas, Costas
2017-06-01
The steam power output of a helical-col generator is both experimentally and numerically examined using Nusselt number correlations from literature. Validation studies of the correlation models examined herein are performed for a mass flux G of 84 kg.s-1.m-2, power output Q of 15.5 kW, supply pressure P of 0.81 MPa and internal tube-diameter to coil-diameter ratio Di/Dc of 0.027. Existing two-phase models applied with Newton's Law of cooling, lead to an under-prediction of the coil size, namely, the tube length requirement for a specified power output by about 20%.
Milios, K; Mataragas, M; Pantouvakis, A; Drosinos, E H; Zoiopoulos, P E
2011-03-30
The aim of this study was to quantify the hygienic status of a lamb slaughterhouse by means of multivariate statistical analysis, to demonstrate how the microbiological data could be exploited to improve the lamb slaughter process by constructing control charts and to evaluate the potential effect of an intervention step such as steam application on the microbiological quality of lamb carcasses. Results showed that pelt removal and evisceration were hygienically uncontrolled. TVC and Enterobacteriaceae progressively increased from the stage 'after pelt removal of hind and forelegs/before final pulling' to the stage 'after evisceration/before pluck removal' thus indicating possible deposition of microorganisms during these operations. It seems that the processing stages of freshly produced carcasses were better distinguished by Enterobacteriaceae, with evisceration contributing mostly to the final Enterobacteriaceae counts. Application of steam during the lamb slaughter process reduced microbial counts without adverse effects on the organoleptic characteristics of the carcasses. Moreover, the construction of control charts showed that decontamination with steam contributed to the maintenance of an in control process compared to that before the application of steam, suggesting the potential use of steam as an intervention step during the lamb slaughter process. Copyright © 2011 Elsevier B.V. All rights reserved.
Steam thermolysis of tire shreds: modernization in afterburning of accompanying gas with waste steam
NASA Astrophysics Data System (ADS)
Kalitko, V. A.
2010-03-01
On the basis of experience in the commercial operation of tire-shred steam thermolysis in EnresTec Inc. (Taiwan) producing high-grade commercial carbon, liquid pyrolysis fuel, and accompanying fuel gas by this method, we have proposed a number of engineering solutions and calculated-analytical substantiations for modernization and intensification of the process by afterburning the accompanying gas with waste steam condensable in the scrubber of water gas cleaning of afterburning products. The condensate is completely freed of the organic pyrolysis impurities and the necessity of separating it from the liquid fuel, as is the case with the active process, is excluded.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, Horst; Purgert, Robert Michael
Following the successful completion of a 15-year effort to develop and test materials that would allow coal-fired power plants to be operated at advanced ultra-supercritical (A-USC) steam conditions, a United States-based consortium is presently engaged in a project to build an A-USC component test facility (ComTest). A-USC steam cycles have the potential to improve cycle efficiency, reduce fuel costs, and reduce greenhouse gas emissions. Current development and demonstration efforts are focused on enabling the construction of A-USC plants, operating with steam temperatures as high as 1400°F (760°C) and steam pressures up to 5000 psi (35 MPa), which can potentially increasemore » cycle efficiencies to 47% HHV (higher heating value), or approximately 50% LHV (lower heating value), and reduce CO 2 emissions by roughly 25%, compared to today’s U.S. fleet. A-USC technology provides a lower-cost method to reduce CO 2 emissions, compared to CO 2 capture technologies, while retaining a viable coal option for owners of coal generation assets. Among the goals of the ComTest facility are to validate that components made from advanced nickel-based alloys can operate and perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty of cost estimates for future A-USC power plants. The configuration of the ComTest facility would include the key A-USC technology components that were identified for expanded operational testing, including a gas-fired superheater, high-temperature steam piping, steam turbine valve, and cycling header component. Membrane walls in the superheater have been designed to operate at the full temperatures expected in a commercial A-USC boiler, but at a lower (intermediate) operating pressure. This superheater has been designed to increase the temperature of the steam supplied by the host utility boiler up to 1400°F (760°C). The steam turbine stop and control valve component has been designed to operate at full A-USC temperatures, and would be tested both in throttling operation and to accumulate accelerated, repetitive stroke cycles. A cycling header component has been designed to confirm the suitability of new high-temperature nickel alloys to cycling operation, expected of future coal-fired power plants. Current test plans would subject these components to A-USC operating conditions for at least 8,000 hours by September 2020. The ComTest project is managed by Energy Industries of Ohio, and technically directed by the Electric Power Research Institute, Inc., with General Electric designing the A-USC components. This consortium is completing the Detailed Engineering phase of the project, with procurement scheduled to begin in late 2017. The effort is primarily funded by the U.S. Department of Energy, through the National Energy Technology Laboratory, along with the Ohio Development Services Agency. This presentation outlines the motivation for the project, explains the project’s structure and schedule, and provides technical details on the design of the ComTest facility.« less
NASA Astrophysics Data System (ADS)
Simson, Amanda
Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the accessibility of the precious metal particles is reduced which causes the catalyst to deactivate more rapidly during subsequent steam reforming cycles. Changes to the carrier morphology also occur at these conditions. Regenerating the catalyst before significant deactivation is measured can improve the stability of the catalyst. Thus a process with preemptive controlled air regenerations is proposed in order to run a steam reforming process with sulfur containing fuels.
METHANE STEAM REACTION OVER NICKEL CATALYSTS IN THE HYNOL PROCESS
The report discusses the reaction of methane-steam over nickel catalysts in the Hynol process, a process that uses biomass and natural gas as feedstocks to maximize methanol yields and minimize greenhouse gas emissions. EPA's APPCD has established a laboratory in which to conduct...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Oil tanks. 230.116 Section 230.116 Transportation... Locomotive Tanks § 230.116 Oil tanks. The oil tanks on oil burning steam locomotives shall be maintained free from leaks. The oil supply pipe shall be equipped with a safety cut-off device that: (a) Is located...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
46 CFR 111.10-5 - Multiple energy sources.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating sets...
Sustainable Water and Energy in Gaza Strip
NASA Astrophysics Data System (ADS)
Hamdan, L.; Zarei, M.; Chianelli, R.; Gardner, E.
2007-12-01
Shortage of fresh water is a common problem in different areas of the world including the Middle East. Desalination of seawater and brackish water is the cheapest way to obtain fresh water in many regions. This research focuses on the situation in Gaza Strip where there is a severe shortage in the energy and water supply. The depletion of fresh water supplies and lack of wastewater treatments result in environmental problems. A solar powered cogeneration plant producing water and energy is proposed to be a suitable solution for Gaza Strip. Solar energy, using Concentrating Solar thermal Power (CSP) technologies, is used to produce electricity by a steam cycle power plant. Then the steam is directed to a desalination plant where it is used to heat the seawater to obtain freshwater. The main objective of this research is to outline a solution for the water problems in Gaza Strip, which includes a cogeneration (power and water) solar powered plant. The research includes four specific objectives: 1- an environmental and economic comparison between solar and fossil fuel energies; 2- technical details for the cogeneration plant; 3- cost and funding, 4- the benefits.
Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czernik, S.; Wang, D.; Chornet, E.
1998-08-01
Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells and for transportation. The thermochemical conversion of biomass to hydrogen can be carried out through two distinct strategies: (a) gasification followed by water-gas shift conversion, and (b) catalytic steam reforming of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper presents the latter route that begins with fast pyrolysis of biomass to produce bio-oil. This oil (as a whole or its selected fractions) can be converted to hydrogen via catalytic steam reforming followed by a water-gas shift conversion step.more » Such a process has been demonstrated at the bench scale using model compounds, poplar oil aqueous fraction, and the whole pyrolysis oil with commercial Ni-based steam reforming catalysts. Hydrogen yields as high as 85% have been obtained. Catalyst initial activity can be recovered through regeneration cycles by steam or CO{sub 2} gasification of carbonaceous deposits.« less
Experimental research of heterogeneous nuclei in superheated steam
NASA Astrophysics Data System (ADS)
Bartoš, Ondřej; Kolovratník, Michal; Šmíd, Bohuslav; Hrubý, Jan
2016-03-01
A mobile steam expansion chamber has been developed to investigate experimentally homogeneous and heterogeneous nucleation processes in steam, both in the laboratory and at power plants using the steam withdrawn from the steam turbine. The purpose of the device is to provide new insight into the physics of nonequilibrium wet steam formation, which is one of the factors limiting the efficiency and reliability of steam turbines. The expanded steam or a mixture of steam with a non-condensable gas rapidly expands in the expansion chamber. Due to adiabatic cooling, the temperature drops below the dew point of the steam at a given pressure. When reaching a sufficiently high supersaturation, droplets are nucleated. By tuning the supersaturation in the so-called nucleation pulse, particles of various size ranges can be activated. This fact is used in the present study to measure the aerosol particles present in the air. Homogeneous nucleation was negligible in this case. The experiment demonstrates the functionality of the device, data acquisition system and data evaluation methods.
Ryan, M.J.
1987-05-04
A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.
NASA Astrophysics Data System (ADS)
Seitz, M.; Hübner, S.; Johnson, M.
2016-05-01
Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
Can bread processing conditions alter glycaemic response?
Lau, Evelyn; Soong, Yean Yean; Zhou, Weibiao; Henry, Jeyakumar
2015-04-15
Bread is a staple food that is traditionally made from wheat flour. This study aimed to compare the starch digestibility of western baked bread and oriental steamed bread. Four types of bread were prepared: western baked bread (WBB) and oriental steamed bread (OSB), modified baked bread (MBB) made with the OSB recipe and WBB processing, and modified steamed bread (MSB) made with the WBB recipe and OSB processing. MBB showed the highest starch digestibility in vitro, followed by WBB, OSB and MSB. A similar trend was observed for glycaemic response in vivo. MBB, WBB, OSB and MSB had a glycaemic index of 75±4, 71±5, 68±5 and 65±4, respectively. Processing differences had a more pronounced effect on starch digestibility in bread, and steamed bread was healthier in terms of glycaemic response. The manipulation of processing conditions could be an innovative route to alter the glycaemic response of carbohydrate-rich foods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng
2014-12-19
Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potential applications for amylose inclusion complexes produced by steam jet cooking
USDA-ARS?s Scientific Manuscript database
Steam jet cooking is a commercially scalable method of thermomechanically processing starch for many applications. Previous studies at NCAUR have revealed the specific effects of heat and shear on various starch types cooked under different steam flow, pressure, and slurry flow conditions. Starch-...
40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the wood... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam subcategory...
40 CFR 429.80 - Applicability; description of the wood preserving-steam subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the wood... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Preserving Steam Subcategory § 429.80 Applicability; description of the wood preserving—steam subcategory...
Developing a Conceptual Model of STEAM Teaching Practices
ERIC Educational Resources Information Center
Quigley, Cassie F.; Herro, Dani; Jamil, Faiza M.
2017-01-01
STEAM, where the "A" represents arts and humanities, is considered a transdisciplinary learning process that has the potential to increase diverse participation in science, technology, engineering, and math (STEM) fields. However, a well-defined conceptual model that clearly articulates essential components of the STEAM approach is…
Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B
2017-12-01
Dental handpieces are required to be sterilized between patient use. Vacuum steam sterilization processes with fractionated pre/post-vacuum phases or unique cycles for specified medical devices are required for hollow instruments with internal lumens to assure successful air removal. Entrapped air will compromise achievement of required sterilization conditions. Many countries and professional organizations still advocate non-vacuum sterilization processes for these devices. To investigate non-vacuum downward/gravity displacement, type-N steam sterilization of dental handpieces, using thermometric methods to measure time to achieve sterilization temperature at different handpiece locations. Measurements at different positions within air turbines were undertaken with thermocouples and data loggers. Two examples of widely used UK benchtop steam sterilizers were tested: a non-vacuum benchtop sterilizer (Little Sister 3; Eschmann, Lancing, UK) and a vacuum benchtop sterilizer (Lisa; W&H, Bürmoos, Austria). Each sterilizer cycle was completed with three handpieces and each cycle in triplicate. A total of 140 measurements inside dental handpiece lumens were recorded. The non-vacuum process failed (time range: 0-150 s) to reliably achieve sterilization temperatures within the time limit specified by the international standard (15 s equilibration time). The measurement point at the base of the handpiece failed in all test runs (N = 9) to meet the standard. No failures were detected with the vacuum steam sterilization type B process with fractionated pre-vacuum and post-vacuum phases. Non-vacuum downward/gravity displacement, type-N steam sterilization processes are unreliable in achieving sterilization conditions inside dental handpieces, and the base of the handpiece is the site most likely to fail. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, C.W.; Reed, A.A.
1991-03-01
At Buena Vista field, California, 120 ft of post-steamflood core, spanning the middle Pliocene Wilhelm Member of the Etchegoin Formation, was taken to assess the influence of stratigraphy on light-oil steamflood (LOSF) processes and to determine what steam-rock reactions occurred and how these affected reservoir properties. High-quality steam (600F (300C)) had been injected ({approximately}1,700 psi) into mixed tidal flat and estuarine facies in an injector well located 55 ft from the cored well. Over a period of 20 months, steam rapidly channeled through a thin ({approximately}7 ft), relatively permeable (1-1,000 md), flaser-bedded sandstone unit. Conductive heating above this permeable unitmore » produced, in the vicinity of the cored well, a 35-ft steam-swept zone (oil saturation = 0), overlain by a 29-ft steam-affected zone in which oil saturation had been reduced to 13%, far below the presteam saturation of 30%. Steam-induced alteration ('artificial diagenesis') of the clay-rich reservoir rock was recognized using SEM, petrography, and X-ray diffraction. Salient dissolution effects were the complete to partial removal of siliceous microfossils, Fe-dolomite, volcanic rock fragments, and labile heavy minerals. The artificial diagenetic effects are first encountered in the basal 6 ft of the 29-ft steam-affected zone. Based on the distribution of the authigenic phases, the authors conclude that the reactions took place, or were at least initiated, in the steam condensate bank ahead of the advancing steam front. Although these changes presumably reduced permeability, the steamflood process was effective in reducing oil saturation to zero in the steam-contacted portion of the reservoir.« less
The use of advanced steam reforming technology for hydrogen production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbishaw, J.B.; Cromarty, B.J.
1996-12-01
The demand for supplementary hydrogen production in refineries is growing significantly world-wide as environmental legislation concerning cleaner gasoline and diesel fuels is introduced. The main manufacturing method is by steam reforming. The process has been developed both to reduce the capital cost and increase efficiency, reliability and ease of operation. ICI Katalco`s Leading Concept Hydrogen or LCH process continues this process of improvement by replacing the conventional fired steam reformer with a type of heat exchange reformer known as the Gas Heated Reformer or GHR. The GHR was first used in the Leading Concept Ammonia process, LCA at ICI`s manufacturingmore » site at Severnside, England and commissioned in 1988 and later in the Leading Concept Methanol (LCM) process for methanol at Melbourne, Australia and commissioned in 1994. The development of the LCH process follows on from both LCA and LCM processes. This paper describes the development and use of the GHR in steam reforming, and shows how the GHR can be used in LCH. A comparison between the LCH process and a conventional hydrogen plant is given, showing the benefits of the LCH process in certain circumstances.« less
26. Photocopy of diagram (from Bernhardt Skrotzki's Electric GenerationSteam Stations, ...
26. Photocopy of diagram (from Bernhardt Skrotzki's Electric Generation--Steam Stations, New York, New York, 1956, figure I-1) THE GENERAL WAY IN WHICH ELECTRICITY IS CREATED THROUGH THE STEAM GENERATION PROCESS - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR
ERIC Educational Resources Information Center
Hoverson, Rick
2006-01-01
Schools can provide a cleaner, more healthful school environment by simply combining heat and water. Steam vapor systems use only tap water with no chemicals added. Low-pressure (12 psi to 65 psi) steam vapor sanitizes and deodorizes. This process can then be used safely in many situations, but is especially suited for restrooms and food-service…
PHYSICAL AND OPTICAL PROPERTIES OF STEAM-EXPLODED LASER-PRINTED PAPER
Laser-printed paper was pulped by the steam-explosion process. A full-factorial experimental design was applied to determine the effects of key operating variables on the properties of steam-exploded pulp. The variables were addition level for pulping chemicals (NaOH and/or Na2SO...
75 FR 45080 - Revisions to the California State Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... revisions concern oxides of nitrogen (NO X ) emissions from boilers, steam generators and process heaters... 1--Submitted Rule Local agency Rule No. Rule title Adopted Submitted SJVUAPCD 4308 Boilers, Steam... regulations that control NO X emissions. Rule 4308 limits NO X and CO emissions from boilers, steam generators...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Guo, Wei; Wenning, Thomas J.
Smart manufacturing and advanced data analytics can help the manufacturing sector unlock energy efficiency from the equipment level to the entire manufacturing facility and the whole supply chain. These technologies can make manufacturing industries more competitive, with intelligent communication systems, real-time energy savings, and increased energy productivity. Smart manufacturing can give all employees in an organization the actionable information they need, when they need it, so that each person can contribute to the optimal operation of the corporation through informed, data-driven decision making. This paper examines smart technologies and data analytics approaches for improving energy efficiency and reducing energy costsmore » in process-supporting energy systems. It dives into energy-saving improvement opportunities through smart manufacturing technologies and sophisticated data collection and analysis. The energy systems covered in this paper include those with motors and drives, fans, pumps, air compressors, steam, and process heating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, P.L.
As the Oct. 31 deadline for an initial design review approaches, the four participants in the Energy Research and Development Administration's (ERDA) industrial process hot water program are putting the final touches to plans for solar systems that will supplement conventional energy sources in the textile, food processing, concrete block and cleaning industries. Participating in the project are AAI Corp., Baltimore, which designed a solar hot water system for the concrete block curing operation of York Building Products Co., Harrisburg, Pa.; Acurex Corp., Mountain View, Calif., which designed a solar hot water system for a can washing line at themore » Campbell Soup Co. plant in Sacramento, Calif.; General Electric Co., Philadelphia, which designed a solar hot water system for Riegel Textile Corp., La France, S.C.; and Jacobs Engineering Co., Pasadena, Calif., which designed a solar hot water and steam system for commercial laundry use at American Linen Supply in El Centro., Calif. (MCW)« less
Method for increasing steam decomposition in a coal gasification process
Wilson, Marvin W.
1988-01-01
The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.
Method to prevent/mitigate steam explosions in casting pits
Taleyarkhan, Rusi P.
1996-01-01
Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.
Method for increasing steam decomposition in a coal gasification process
Wilson, M.W.
1987-03-23
The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.
Alkali-enhanced steam foam oil recovery process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, H.C.
1986-09-02
This patent describes a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location. An improvement is described which consisits of: injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in themore » reservoir oil, and (b) at least one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant.« less
Gasification of carbonaceous solids
Coates, Ralph L.
1976-10-26
A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
Over the next four years, the Progetto Energia project will be building several cogeneration plants to help satisfy the increasing demands of Italy`s industrial users and the country`s demand for electrical power. Located at six different sites within Italy, these combined-cycle cogeneration plants will supply a total of 500 MW of electricity and 100 tons/hr of process steam to Italian industries and residences. To ensure project success, a dynamic model of the 50-MW base unit was developed. The goal established for the model was to predict the dynamic behavior of the complex thermodynamic system in order to assess equipment performancemore » and control system effectiveness for normal operation and, more importantly, abrupt load changes. In addition to fulfilling its goals, the dynamic study guided modifications to controller logic that significantly improved steam drum pressure control and bypassed steam desuperheating performance simulations of normal and abrupt transient events allowed engineers to define optimum controller gain coefficients. The dynamic study will undoubtedly reduce the associated plant start-up costs and contribute to a smooth commercial plant acceptance. As a result of the work, the control system has already been through its check-out and performance evaluation, usually performed during the plant start-up phase. Field engineers will directly benefit from this effort to identify and resolve control system {open_quotes}bugs{close_quotes} before the equipment reaches the field. High thermal efficiency, rapid dispatch and high plant availability were key reasons why the natural gas combined-cycle plant was chosen. Other favorable attributes of the combined-cycle plant contributing to the decision were: Minimal environmental impact; a simple and effective process and control philosophy to result in safe and easy plant operation; a choice of technologies and equipment proven in a large number of applications.« less
Shull, James J.; Ernst, Robert R.
1962-01-01
The thermal death curve of dried spores of Bacillus stearothermophilus in saturated steam was characterized by three phases: (i) a sharp initial rise in viable count; (ii) a low rate of death which gradually increased; and (iii) logarithmic death at maximal rate. The first phase was a reflection of inadequate heat activation of the spore population. The second and third phases represented the characteristic thermal death curve of the spores in saturated steam. A jacketed steam sterilizer, equipped with a system for initial evacuation of the chamber, was examined for superheat during normal operation. Measurements of spore inactivation and temperature revealed superheat in surface layers of fabrics being processed in steam at 121 C. The high temperature of the fabric surfaces was attributed to absorption of excess heat energy from superheated steam. The superheated steam was produced at the beginning of the normal sterilizing cycle by transfer of heat from the steam-heated jacket to saturated steam entering the vessel. PMID:13988774
Steam generation by combustion of processed waste fats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pudel, F.; Lengenfeld, P.
1993-12-31
The use of specially processed waste fats as a fuel oil substitute offers, at attractive costs, an environmentally friendly alternative to conventional disposal like refuse incineration or deposition. For that purpose the processed fat is mixed with EL fuel oil and burned in a standard steam generation plant equipped with special accessories. The measured emission values of the combustion processes are very low.
SURVEY ON PREVACUUM HIGH-PRESSURE STEAM STERILIZERS.
DARMADY, E M; DREWETT, S E; HUGHES, K E
1964-03-01
None of the 10 prevacuum high-pressure sterilizers of different makes tested was able to produce and maintain the conditions advocated by the Medical Research Council working party on high-pressure steam sterilizers (1959) or by Knox and Penikett (1958) with the result that steam did not penetrate adequately the single challenge load and it was not sterilized. The sterilization of ;group drums' of various sizes and contents was erratic and tended to give operators a false sense of security. An alarming number of minor engineering faults were present in seven out of 10 machines tested and they require very much more skilled maintenance than is being given at the moment. The possibility of centralizing sterilizers to central sterile supply departments and placing them under the care of a regional engineer cannot be too highly recommended. The presence of undetected ;leaks' and a failure to draw a prevacuum of 20 mm. even with a steam burst interferes with sterilization of a challenge load. A leak test should be performed twice daily and should not exceed more than 1 mm. in one minute at 20 mm. absolute. The centre of the load should be monitored by crossed tapes or Brownes tubes in each sterilizing cycle. Although the challenge load was sterilized when the chamber was filled to capacity, a more reliable cycle consisting of a double prevacuum of 20 mm. or more with intermediate steam burst to 10 lb. ensured the sterilizing of a single challenge load, which could be adequately controlled by the chamber drain temperature.
Trona-enhanced steam foam oil recovery process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, H.C.
1988-03-01
In a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location, which process includes injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in the reservoir oil, and (b) at leastmore » one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant, an improvement is described comprising: using as the water soluble alkaline material, a material consisting essentially of a substantially equal molar mixture of alkali metal carbonates and bicarbonates which is, or is substantially equivalent to, trona.« less
Steam reforming of fuel to hydrogen in fuel cells
Fraioli, Anthony V.; Young, John E.
1984-01-01
A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.
10. Photocopy of photograph (original in SRP Archives) Probably photographed ...
10. Photocopy of photograph (original in SRP Archives) Probably photographed by SRP, March 15, 1941 INDIAN BEND WELL STRUCTURE FOR SUPPLYING WATER TO CROSSCUT DIESEL PLANT, NEAR PROPOSED LOCATION OF (INDIAN BEND) SETTLING POND. - Crosscut Steam Plant, Indian Bend Pond & Pump Ditch, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ
UV-Vis as quantification tool for solubilized lignin following a single-shot steam process.
Lee, Roland A; Bédard, Charles; Berberi, Véronique; Beauchet, Romain; Lavoie, Jean-Michel
2013-09-01
In this short communication, UV/Vis was used as an analytical tool for the quantification of lignin concentrations in aqueous mediums. A significant correlation was determined between absorbance and concentration of lignin in solution. For this study, lignin was produced from different types of biomasses (willow, aspen, softwood, canary grass and hemp) using steam processes. Quantification was performed at 212, 225, 237, 270, 280 and 287 nm. UV-Vis quantification of lignin was found suitable for different types of biomass making this a timesaving analytical system that could lead to uses as Process Analytical Tool (PAT) in biorefineries utilizing steam processes or comparable approaches. Copyright © 2013 Elsevier Ltd. All rights reserved.
Metcalf, H.E.
1957-10-01
A reactor of the type which preferably uses plutonium as the fuel and a liquid moderator, preferably ordinary water, and which produces steam within the reactor core due to the heat of the chain reaction is described. In the reactor shown the fuel elements are essentially in the form of trays and are ventically stacked in spaced relationship. The water moderator is continuously supplied to the trays to maintain a constant level on the upper surfaces of the fuel element as it is continually evaporated by the heat. The steam passes out through the spaces between the fuel elements and is drawn off at the top of the core. The fuel elements are clad in aluminum to prevent deterioration thereof with consequent contamimation of the water.
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Borup, Rodney L.
Thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the combined processes of dimethyl ether (DME) partial oxidation and steam reforming were investigated as a function of oxygen-to-carbon ratio (0.00-2.80), steam-to-carbon ratio (0.00-4.00), temperature (100 °C-600 °C), pressure (1-5 atm) and product species. Thermodynamically, dimethyl ether processed with air and steam generates hydrogen-rich fuel-cell feeds; however, the hydrogen concentration is less than that for pure DME steam reforming. Results of the thermodynamic processing of dimethyl ether indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 °C, oxygen-to-carbon ratios greater than 0.00 and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure has negligible effects on the hydrogen content. Thermodynamically, dimethyl ether can produce concentrations of hydrogen and carbon monoxide of 52% and 2.2%, respectively, at a temperature of 300 °C, and oxygen-to-carbon ratio of 0.40, a pressure of 1 atm and a steam-to-carbon ratio of 1.50. The order of thermodynamically stable products (excluding H 2, CO, CO 2, DME, NH 3 and H 2O) in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol and methyl-ethyl ether; trace amounts of formaldehyde, formic acid and methanol are observed. Ammonia and hydrogen cyanide are also thermodynamically favored products. Ammonia is favored at low temperatures in the range of oxygen-to-carbon ratios of 0.40-2.50 regardless of the steam-to-carbon ratio employed. The maximum ammonia content (i.e., 40%) occurs at an oxygen-to-carbon ratio of 0.40, a steam-to-carbon ratio of 1.00 and a temperature of 100 °C. Hydrogen cyanide is favored at high temperatures and low oxygen-to-carbon ratios with a maximum of 3.18% occurring at an oxygen-to-carbon ratio of 0.40 and a steam-to-carbon ratio of 0.00 in the temperature range of 400 °C-500 °C. Increasing the system pressure shifts the equilibrium toward ammonia and hydrogen cyanide.
Bennett, Charles L.
2010-06-15
A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.
This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...
DEMONSTRATION BULLETIN: IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC.
The Steam Enhanced Recovery Process (SERP) is designed to remove volatile compounds such as halogenated solvents and petroleum hydrocarbons, and semi-volatile compounds from contaminated soils in situ. The vapor pressures of most contaminants will increase by the addition of ste...
Experimental study of condensate subcooling with the use of a model of an air-cooled condenser
NASA Astrophysics Data System (ADS)
Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.
2016-01-01
Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.
USDA-ARS?s Scientific Manuscript database
Fresh-cut cantaloupes have been associated with outbreaks of Salmonellosis. Minimally processed fresh-cut fruits have a limited shelf life because of deterioration caused by spoilage microflora and physiological processes. The objectives of this study were to use a wet steam process to 1) reduce ind...
Steam generator on-line efficiency monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.K.; Kaya, A.; Keyes, M.A. IV
1987-08-04
This patent describes a system for automatically and continuously determining the efficiency of a combustion process in a fossil-fuel fired vapor generator for utilization by an automatic load control system that controls the distribution of a system load among a plurality of vapor generators, comprising: a first function generator, connected to an oxygen transducer for sensing the level of excess air in the flue gas, for generating a first signal indicative of the total air supplied for combustion in percent by weight; a second function generator, connected to a combustibles transducer for sensing the level of combustibles in the fluemore » gas, for generating a second signal indicative of the percent combustibles present in the flue gas; means for correcting the first signal, connected to the first and second function generators, when the oxygen transducer is of a type that operates at a temperature level sufficient to cause the unburned combustibles to react with the oxygen present in the flue gas; an ambient air temperature transducer for generating a third signal indicative of the temperature of the ambient air supplied to the vapor generator for combustion.« less
NASA Astrophysics Data System (ADS)
Dzurenda, Ladislav
2017-09-01
This paper presents the heat consumption on the process of colour modification of acacia timber with measures 30 x 55 x 500 mm in pressure autoclaves AZ 240 using saturated water steam with temperatures from t = 110 to 140 °C following the regimes of colour homogenisation of I., II. and III. degree. The dependance of the heat consumption normative QTFS on the temparature of saturated water steam in the process of colour homogenisation of acacia timber following these regimes describes the equation: QTFS = 1.1122.t -13.903 kWh.m-3.
Code of Federal Regulations, 2011 CFR
2011-07-01
... flash steam from the digester or live steam. Closed-vent system means a system that is not open to the... this subpart, including emissions from individual process vents, stacks, open pieces of process... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...
Code of Federal Regulations, 2010 CFR
2010-07-01
... flash steam from the digester or live steam. Closed-vent system means a system that is not open to the... this subpart, including emissions from individual process vents, stacks, open pieces of process... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...
Code of Federal Regulations, 2012 CFR
2012-07-01
... flash steam from the digester or live steam. Closed-vent system means a system that is not open to the... this subpart, including emissions from individual process vents, stacks, open pieces of process... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...
Off-design analysis of a gas turbine powerplant augmented by steam injection using various fuels
NASA Technical Reports Server (NTRS)
Stochl, R. J.
1980-01-01
Results are compared using coal derived low and intermediate heating valve fuel gases and a conventional distillate. The results indicate that steam injection provides substantial increases in both power and efficiency within the available compressor surge margin. The results also indicate that these performance gains are relatively insensitive as to the type of fuel. Also, in a cogeneration application, steam injection could provide some degree of flexibility by varying the split between power and process steam.
Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems
NASA Technical Reports Server (NTRS)
Mwara, Kamwana N.
2015-01-01
Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.
Heat exchanger for fuel cell power plant reformer
Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.
1988-01-01
A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.
Effect of the presence of oil on foam performance; A field simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, D.H.S.; Yang, Z.M.; Stone, T.W.
1992-05-01
This paper describes a field-scale sensitivity study of the effect of the presence of oil on foam performance in a steam-foam-drive process. The 2D field-scale simulation was based on a field pilot in the Karamay formation in Zin-Jiang, China. Numerical results showed that the detrimental effect of oil on the foam performance in field operations is significant. The success of a steam-foam process depended mainly on the ability of the foam to divert steam from the depleted zone.
Method to prevent/mitigate steam explosions in casting pits
Taleyarkhan, R.P.
1996-12-24
Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.
The Development and Application of a STEAM Program Based on Traditional Korean Culture
ERIC Educational Resources Information Center
Kim, Hyoungbum; Chae, Dong-Hyun
2016-01-01
The purpose of this research was to develop a STEAM program in the context of teaching and learning a traditional Korean instrument and implement it in a high school class to determine the program's effectiveness. The STEAM program was developed through a continuous consultation process between a development team and external experts, including an…
Effects of press sizes on internal steam pressure during particleboard hot-pressing process
Zhiyong Cai; Michael Birkeland; James M. Wescott; Jane O' Dell; Jerrold E. Winandy
2009-01-01
Internal steam pressure produced during the hot-pressing cycle in particleboard production is critical to the newly developed bond strength that will determine the overall performance of particleboard. The difference between the accumulation of internal steam pressure for small panels made in the laboratory and that of large commercial-sized panels makes it difficult...
Ryan, Michael J.
1988-01-01
A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.
Cyclic steaming in heavy oil diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; Beatty, F.D.
1995-12-31
Chevron currently uses cyclic steaming as a recovery method to produce economically its heavy oil diatomite resource in the Cymric field, San Joaquin Valley, California. A highly instrumented, cyclically steaming well from this field was simulated in this study to delineate important production mechanisms, to optimize operations, and to improve reservoir management. The model was constrained, as much as possible, by the available measured data. Results show that fluid flow from the well to the reservoir is primarily through the hydraulic fracture induced by the injected steam. Parameters with unique importance to modeling cyclic steaming in diatomites are: (1) inducedmore » fracture dimension (length and height), (2) matrix permeability, (3) oil/water capillary pressure, (4) grid size perpendicular to fracture face, and (5) producing bottomhole pressures. Additionally, parameters important for conventional steam injection processes, such as relative permeabilities and injected steam volume, quality, and rate, are important for diatomites also. Oil production rates and steam/oil ratios calculated by this model compare reasonably with field data.« less
Truesdell, A.H.; Nathenson, M.; Frye, G.A.
1981-01-01
Wellbore and reservoir processes in a steam well in the Castle Rock field of The Geysers have been studied by means of down-hole pressure and temperature measurements and analyses of ejected water and steam produced under bleed and full flow. Down-hole measurements show that below a vapor zone there is liquid water in the well in pressure equilibrium with reservoir steam at a depth of 2290 m. The progressive decreases, from 1973 to 1977, of pressure and temperature in the vapor zone indicate that wellbore heat loss is high enough to condense a large fraction of the steam inflow. The chemical composition of water ejected from the well is consistent with an origin from wellbore condensation of steam. Calculations using the differences in gas and isotopic compositions between bleed and full-flow steam show that about half of the full-flow steam originated as liquid water in the reservoir and that about 30% of the steam entering the well under bleed was condensed in the wellbore and drained downward. Heat loss calculations are also consistent with this amount of condensation. ?? 1981.
Evaluation of rock/fracture interactions during steam injection through vertical hydrofractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovscek, A.R.; Johnston, R.M.; Patzek, T.W.
1995-12-31
This paper illustrates the design and results of Shell`s Phase 2 steam drive pilot in the South Belridge Diatomite, Kern County, California. Steam drive on 5/8 acre spacing appears to be an economically viable alternative to waterflooding in the Diatomite; hence, it is being explored as a secondary recovery process. The purpose of the Phase 2 pilot was to demonstrate that steam could be injected across the full Diatomite interval and to quantify reservoir heating and volumetric sweep by steam. In this pilot, two separate, noncommunicating hydrofractures that span the entire Diatomite column (1,110--1,910 ft) are used for injection. Tomore » interpret quantitatively steam drive results the authors propose a computationally simple, high resolution model that captures formation heating due to both steam/hot condensate convection and heat conduction, evolution of formation permeability, and changes in the size and shape of the injection hydrofractures. From this model they obtain formation pressure, temperature, the cumulative steam injection, the dynamics of hydrofractures while they undergo steam injection, and, thus, a history match for the pilot.« less
Overcoming substrate limitations for improved production of ethylene in E. coli.
Lynch, Sean; Eckert, Carrie; Yu, Jianping; Gill, Ryan; Maness, Pin-Ching
2016-01-01
Ethylene is an important industrial compound for the production of a wide variety of plastics and chemicals. At present, ethylene production involves steam cracking of a fossil-based feedstock, representing the highest CO2-emitting process in the chemical industry. Biological ethylene production can be achieved via expression of a single protein, the ethylene-forming enzyme (EFE), found in some bacteria and fungi; it has the potential to provide a sustainable alternative to steam cracking, provided that significant increases in productivity can be achieved. A key barrier is determining factors that influence the availability of substrates for the EFE reaction in potential microbial hosts. In the presence of O2, EFE catalyzes ethylene formation from the substrates α-ketoglutarate (AKG) and arginine. The concentrations of AKG, a key TCA cycle intermediate, and arginine are tightly controlled by an intricate regulatory system that coordinates carbon and nitrogen metabolism. Therefore, reliably predicting which genetic changes will ultimately lead to increased AKG and arginine availability is challenging. We systematically explored the effects of media composition (rich versus defined), gene copy number, and the addition of exogenous substrates and other metabolites on the formation of ethylene in Escherichia coli expressing EFE. Guided by these results, we tested a number of genetic modifications predicted to improve substrate supply and ethylene production, including knockout of competing pathways and overexpression of key enzymes. Several such modifications led to higher AKG levels and higher ethylene productivity, with the best performing strain more than doubling ethylene productivity (from 81 ± 3 to 188 ± 13 nmol/OD600/mL). Both EFE activity and substrate supply can be limiting factors in ethylene production. Targeted modifications in central carbon metabolism, such as overexpression of isocitrate dehydrogenase, and deletion of glutamate synthase or the transcription regulator ArgR, can effectively enhance substrate supply and ethylene productivity. These results not only provide insight into the intricate regulatory network of the TCA cycle, but also guide future pathway and genome-scale engineering efforts to further boost ethylene productivity.
Economic Assessment of Rural District Heating by Bio-Steam Supplied by a Paper Mill in Canada
ERIC Educational Resources Information Center
Marinova, Mariya; Beaudry, Catherine; Taoussi, Abdelaziz; Trepanier, Martin; Paris, Jean
2008-01-01
The article investigates the feasibility of district heating in a small town adjacent to a Kraft pulp mill in eastern Canada. A detailed heat demand analysis is performed for all buildings using a geographical information system and archived data provided by the municipality. The study shows that the entire space heating requirement of the town…
4. VIEW LOOKING WEST DOWN CENTRAL AVENUE AT THE INTERSECTION ...
4. VIEW LOOKING WEST DOWN CENTRAL AVENUE AT THE INTERSECTION WITH SEVENTH STREET. THE PLANT HAS MOST OF THE AMENITIES OF A SMALL TOWN - WATER SUPPLY, WASTE WATER TREATMENT, POLICE FORCE, FIRE DEPARTMENT, FOOD SERVICES, HOSPITAL, COMMUNICATIONS NETWORK, STEAM GENERATION, VEHICLE MAINTENANCE, TRANSPORTATION, AND A GOVERNMENT. - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
Steam reforming of fuel to hydrogen in fuel cell
Young, J.E.; Fraioli, A.V.
1983-07-13
A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.
A fast response miniature probe for wet steam flow field measurements
NASA Astrophysics Data System (ADS)
Bosdas, Ilias; Mansour, Michel; Kalfas, Anestis I.; Abhari, Reza S.
2016-12-01
Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%.
Effects of water states on steam explosion of lignocellulosic biomass.
Sui, Wenjie; Chen, Hongzhang
2016-01-01
The work aimed to identify the complexity and roles of water states in steam explosion process of corn stalk to enhance the treatment efficiency. Results showed that two main water states with different mobility existed in corn stalk and influenced steam explosion treatment. By correlating dynamic water states data to feedstock mechanical properties and treatment process characteristics, the bound water being the excellent plasticizer that reduced the mechanical strength of fibers by over 30%, was conducive to treatment; while, the free water presenting buffering effects in treatment by hindering heat transfer which was reflected by the increase of temperature rising time by 1.29 folds and steam consumption by 2.18 folds, was not conducive. The distinguished point of these two waters was fiber saturated point. By considering treatment efficacy and energy consumption, the significance of fiber saturated point was highlighted as the optimal water states for steam explosion of corn stalk. Copyright © 2015 Elsevier Ltd. All rights reserved.
Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)
NASA Astrophysics Data System (ADS)
Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.
2018-04-01
The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.
NASA Astrophysics Data System (ADS)
Gea, S.; Zulfahmi, Z.; Yunus, D.; Andriayani, A.; Hutapea, Y. A.
2018-03-01
Cellulose nanofibrils were obtained from oil palm empty fruit bunch using steam explosion and hydrolized with 10% solution of HCl. Steam explosion coupled with acid hydrolysis pretreatment on the oil palm empty fruit bunch was very effective in the depolymerization and defibrillation process of the fibre to produce fibers in nanodimension. Structural analysis of steam exploded fibers was determined by Fourier Transform Infrared (FT-IR) spectroscopy. Thermal stability of cellulose measured using image analysis software image J. Characterization of the fibers by TEM and SEM displayed that fiber diameter decreases with mechanical-chemical treatment and final nanofibril size was 20-30 nm. FT-IR and TGA data confirmed the removal of hemicellulose and lignin during the chemical treatment process.
Characteristics of the Self-evaporation Behavior of Sprinkled Water near the Triple Point
NASA Astrophysics Data System (ADS)
Aizawa, Kazuo; Hayashi, Kanetoshi; Ogoshi, Hidemasa; Maeyama, Katsuya; Yonezawa, Noriyuki
For the sake of capturing the basic data in concern with the designing of vacuum evaporation apparatus, characteristics of the self-evaporation behavior of sprinkled water near the triple point has been investigated experimentally. The relationship between the amount of the vaporized water and the pressure in the vessel was elucidated quantitatively on the condition that over-heated water was sprinkled from water supplying nozzles of diameter of 4 mm into the center of the steam area in the heat insulation glass evaporation vessel having diameter of 200 mm and height of 1100 mm. Even under the mild water sprinkling conditions such as no small particle formation, small Reynolds number, and small Weber number, the temperature effectiveness of the self-evaporation in the center of the steam was as high as 80%, which clearly shows the effectiveness of this water-sprinkling method. In addition, the basic data for system designing such as water evaporation coefficient from water layer surface and temperature effectiveness of self-evaporation during the f1ight in the steam space were obtained.
Yan, Linbo; He, Boshu
2017-07-01
A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aghayan, M; Potemkin, D I; Rubio-Marcos, F; Uskov, S I; Snytnikov, P V; Hussainova, I
2017-12-20
Efficient capture and recycling of CO 2 enable not only prevention of global warming but also the supply of useful low-carbon fuels. The catalytic conversion of CO 2 into an organic compound is a promising recycling approach which opens new concepts and opportunities for catalytic and industrial development. Here we report about template-assisted wet-combustion synthesis of a one-dimensional nickel-based catalyst for carbon dioxide methanation and methane steam reforming. Because of a high temperature achieved in a short time during reaction and a large amount of evolved gases, the wet-combustion synthesis yields homogeneously precipitated nanoparticles of NiO with average particle size of 4 nm on alumina nanofibers covered with a NiAl 2 O 4 nanolayer. The as-synthesized core-shell structured fibers exhibit outstanding activity in steam reforming of methane and sufficient activity in carbon dioxide methanation with 100% selectivity toward methane formation. The as-synthesized catalyst shows stable operation under the reaction conditions for at least 50 h.
A computational approach to real-time image processing for serial time-encoded amplified microscopy
NASA Astrophysics Data System (ADS)
Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi
2016-03-01
High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.
Analysis of the costs of fuel supply for wood-fired electric power plants in rural Liberia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlack, R.D.; Barron, W.F.; Samuels, G.
1985-06-01
In recent years the quality of rural electric services in Liberia has been declining and the future economic viability of these power stations is a growing concern. Each of the ten operating and each of the planned rural public power stations is designed to operate exclusively on gas oil (diesel fuel). Fuel expenditures by the Liberian Electricity Corporation (LEC) for the rural public stations represent a major and growing burden on the financially hardpressed utility. Liberia has two potentially significant alternatives to oil-fired electric power for its up-country towns: small (1 to 5 MW) hydroelectric facilities, and wood-fired steam ormore » gasifier plants (0.2 to 2 MW). Although small hydroelectric facilities appear viable for several locations, they cannot serve all locations and will require thermal back-up. The economics of supplying wood to a rural electric power plant or rural grid were evaluated under several scenarios involving: (1) different sources of the feedstock, and (2) differences in wood supply requirements for plants based on the use of steam or gasifier technology, and variation in the utilization level for such plants. With a few minor exceptions, wood energy supplies are plentiful throughout Liberia. Liberia has four different potential sources of wood fuel supply: the commercial cutting of retired rubber trees; the harvesting of secondary growth forest just prior to the land returning to temporary cultivation as part of a system of shifting agriculture; adding to the system of shifting agriculture the planting of fast-growing wood species and harvesting these trees when the land again is brought back under cultivation (generally after about five to seven years); and the establishment of commercial short-rotation wood energy plantations. Results indicate that the use of wood to fuel rural power stations is a viable economic option.« less
[Steam cautery of the cornea in microbial keratitis].
Maier, P; Birnbaum, F; Reinhard, T
2008-01-01
In some cases topical antimicrobial treatment of microbial keratitis or corneal ulcers remains unsuccessful, with increasing infiltration of the corneal stroma. In this situation the steam cautery procedure developed by Karl Wessely in 1911 can lead to rapid healing of the inflammatory process, avoiding further corneal surgery. In this article we describe the steam cautery technique and discuss its indications for microbial keratitis.
A Fresnel collector process heat experiment at Capitol Concrete Products
NASA Technical Reports Server (NTRS)
Hauger, J. S.
1981-01-01
An experiment is planned, conducted and evaluated to determine the feasibility of using a Power Kinetics' Fresnel concentrator to provide process heat in an industrial environment. The plant provides process steam at 50 to 60 psig to two autoclaves for curing masonry blocks. When steam is not required, the plant preheats hot water for later use. A second system is installed at the Jet Propulsion Laboratory parabolic dish test site for hardware validation and experiment control. Experiment design allows for the extrapolation of results to varying demands for steam and hot water, and includes a consideration of some socio-technical factors such as the impact on production scheduling of diurnal variations in energy availability.
[Steam and air co-injection in removing TCE in 2D-sand box].
Wang, Ning; Peng, Sheng; Chen, Jia-Jun
2014-07-01
Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.
Anderson, N M; Walker, P N
2011-08-01
This study was carried out to investigate segmented-flow aseptic processing of particle foods. A pilot-scale continuous steam sterilization unit capable of producing shelf stable aseptically processed whole and sliced mushrooms was developed. The system utilized pressurized steam as the heating medium to achieve high temperature-short time processing conditions with high and uniform heat transfer that will enable static temperature penetration studies for process development. Segmented-flow technology produced a narrower residence time distribution than pipe-flow aseptic processing; thus, whole and sliced mushrooms were processed only as long as needed to achieve the target F₀ = 7.0 min and were not overcooked. Continuous steam sterilization segmented-flow aseptic processing produced shelf stable aseptically processed mushrooms of superior quality to conventionally canned mushrooms. When compared to conventionally canned mushrooms, aseptically processed yield (weight basis) increased 6.1% (SD = 2.9%) and 6.6% (SD = 2.2%), whiteness (L) improved 3.1% (SD = 1.9%) and 4.7% (SD = 0.7%), color difference (ΔE) improved 6.0% (SD = 1.3%) and 8.5% (SD = 1.5%), and texture improved 3.9% (SD = 1.7%) and 4.6% (SD = 4.2%), for whole and sliced mushrooms, respectively. Segmented-flow aseptic processing eliminated a separate blanching step, eliminated the unnecessary packaging of water and promoted the use of bag-in-box and other versatile aseptic packaging methods. Segmented-flow aseptic processing is capable of producing shelf stable aseptically processed particle foods of superior quality to a conventionally canned product. This unique continuous steam sterilization process eliminates the need for a separate blanching step, reduces or eliminates the need for a liquid carrier, and promotes the use of bag-in-box and other versatile aseptic packaging methods. © 2011 Institute of Food Technologists®
Survey on prevacuum high-pressure steam sterilizers
Darmady, E. M.; Drewett, S. E.; Hughes, K. E. A.
1964-01-01
None of the 10 prevacuum high-pressure sterilizers of different makes tested was able to produce and maintain the conditions advocated by the Medical Research Council working party on high-pressure steam sterilizers (1959) or by Knox and Penikett (1958) with the result that steam did not penetrate adequately the single challenge load and it was not sterilized. The sterilization of `group drums' of various sizes and contents was erratic and tended to give operators a false sense of security. An alarming number of minor engineering faults were present in seven out of 10 machines tested and they require very much more skilled maintenance than is being given at the moment. The possibility of centralizing sterilizers to central sterile supply departments and placing them under the care of a regional engineer cannot be too highly recommended. The presence of undetected `leaks' and a failure to draw a prevacuum of 20 mm. even with a steam burst interferes with sterilization of a challenge load. A leak test should be performed twice daily and should not exceed more than 1 mm. in one minute at 20 mm. absolute. The centre of the load should be monitored by crossed tapes or Brownes tubes in each sterilizing cycle. Although the challenge load was sterilized when the chamber was filled to capacity, a more reliable cycle consisting of a double prevacuum of 20 mm. or more with intermediate steam burst to 10 lb. ensured the sterilizing of a single challenge load, which could be adequately controlled by the chamber drain temperature. PMID:14149935
Time-dependent Calculations of an Impact-triggered Runaway Greenhouse Atmosphere on Mars
NASA Technical Reports Server (NTRS)
Segura, T. L.; Toon, O. B.; Colaprete, A.
2003-01-01
Large asteroid and comet impacts result in the production of thick (greater than tens of meters) global debris layers of 1500+ K and the release through precipitation of impact-injected steam and melting ground ice) of large amounts (greater than tens of meters global equivalent thickness) of water on the surface of Mars. Modeling shows that the surface of Mars is still above the freezing point of water after the rainout of the impact-injected steam and melting of subsurface ice. The energy remaining in the hot debris layer will allow evaporation of this water back into the atmosphere where it may rain out at a later time. Given a sufficiently rapid supply of this water to the atmosphere it will initiate a temporary "runaway" greenhouse state.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... HCl 2.2E-02 lb per MMBtu of heat input 2.5E-02 lb per MMBtu of steam output or 0.28 lb per MWh For... basis corrected to 3 percent oxygen, 30-day rolling average) 1.2E-01 lb per MMBtu of steam output or 1.5... per MMBtu of steam output or 4.2E-01 lb per MWh; or (2.7E-05 lb per MMBtu of steam output or 3.7E-04...
40 CFR 61.305 - Reporting and recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...
40 CFR 61.305 - Reporting and recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...
40 CFR 61.305 - Reporting and recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...
40 CFR 61.305 - Reporting and recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...
40 CFR 61.305 - Reporting and recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...
USDA-ARS?s Scientific Manuscript database
Fresh-cut cantaloupes have been associated with outbreaks of Salmonelosis disease and the minimally processed fresh-cut fruits have a limited shelf life because of deterioration caused by spoilage microflora and physiological processes. In this study, we evaluated the effect of minimal wet steam t...
Progress in ethanol production from corn kernel by applying cooking pre-treatment.
Voca, Neven; Varga, Boris; Kricka, Tajana; Curic, Duska; Jurisic, Vanja; Matin, Ana
2009-05-01
In order to improve technological properties of corn kernel for ethanol production, samples were treated with a hydrothermal pre-treatment of cooking (steaming), prior to drying. Two types of cooking process parameters were applied; steam pressure of 0.5 bars during a 10 min period, and steam pressure of 1.5 bars during a 30 min period. Afterwards, samples were dried at four different temperatures, 70, 90, 110 and 130 degrees C. Control sample was also submitted to the aforementioned drying parameters. Since the results showed that starch utilization, due to the gelatinization process, was considerably higher in the samples pre-treated before the ethanol production process, it was found that the cooking treatment had a positive effect on ethanol yield from corn kernel. Therefore, the highest ethanol yield was found in the corn kernel samples cooked for 30 min at steam pressure 1.5 bars and dried at 130 degrees C. Due to the similarity of processes used for starch fermentation, introduction of cooking pre-treatment will not significantly increase the overall ethanol production costs, whereas it will result in significantly higher ethanol yield.
DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING DL
2011-02-11
This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.« less
Gusev, Andrey A; Psarras, Antonios C; Triantafyllidis, Konstantinos S; Lappas, Angelos A; Diddams, Paul A
2017-10-21
ZSM-5-containing catalytic additives are widely used in oil refineries to boost light olefin production and improve gasoline octanes in the Fluid Catalytic Cracking (FCC) process. Under the hydrothermal conditions present in the FCC regenerator (typically >700 °C and >8% steam), FCC catalysts and additives are subject to deactivation. Zeolites (e.g., Rare Earth USY in the base catalyst and ZSM-5 in Olefins boosting additives) are prone to dealumination and partial structural collapse, thereby losing activity, micropore surface area, and undergoing changes in selectivity. Fresh catalyst and additives are added at appropriate respective levels to the FCC unit on a daily basis to maintain overall targeted steady-state (equilibrated) activity and selectivity. To mimic this process under accelerated laboratory conditions, a commercial P/ZSM-5 additive was hydrothermally equilibrated via a steaming process at two temperatures: 788 °C and 815 °C to simulate moderate and more severe equilibration industrial conditions, respectively. n -Dodecane was used as probe molecule and feed for micro-activity cracking testing at 560 °C to determine the activity and product selectivity of fresh and equilibrated P-doped ZSM-5 additives. The fresh/calcined P/ZSM-5 additive was very active in C 12 cracking while steaming limited its activity, i.e., at catalyst-to-feed (C/F) ratio of 1, about 70% and 30% conversion was obtained with the fresh and steamed additives, respectively. A greater activity drop was observed upon increasing the hydrothermal deactivation severity due to gradual decrease of total acidity and microporosity of the additives. However, this change in severity did not result in any selectivity changes for the LPG (liquefied petroleum gas) olefins as the nature (Brønsted-to-Lewis ratio) of the acid/active sites was not significantly altered upon steaming. Steam deactivation of ZSM-5 had also no significant effect on aromatics formation which was enhanced at higher conversion levels. Coke remained low with both fresh and steam-deactivated P/ZSM-5 additives.
Zhang, Hong-Jia; Fan, Xiao-Guang; Qiu, Xue-Liang; Zhang, Qiu-Xiang; Wang, Wen-Ya; Li, Shuang-Xi; Deng, Li-Hong; Koffas, Mattheos A G; Wei, Dong-Sheng; Yuan, Qi-Peng
2014-12-01
Steam explosion is the most promising technology to replace conventional acid hydrolysis of lignocellulose for biomass pretreatment. In this paper, a new screw-steam-explosive extruder was designed and explored for xylose production and lignocellulose biorefinery at the pilot scale. We investigated the effect of different chemicals on xylose yield in the screw-steam-explosive extrusion process, and the xylose production process was optimized as followings: After pre-impregnation with sulfuric acid at 80 °C for 3 h, corncob was treated at 1.55 MPa with 9 mg sulfuric acid/g dry corncob (DC) for 5.5 min, followed by countercurrent extraction (3 recycles), decoloration (activated carbon dosage 0.07 g/g sugar, 75 °C for 40 min), and ion exchange (2 batches). Using this process, 3.575 kg of crystal xylose was produced from 22 kg corncob, almost 90 % of hemicellulose was released as monomeric sugar, and only a small amount of by-products was released (formic acid, acetic acid, fural, 5-hydroxymethylfurfural, and phenolic compounds were 0.17, 1.14, 0.53, 0.19, and 1.75 g/100 g DC, respectively). All results indicated that the screw-steam-explosive extrusion provides a more effective way to convert hemicellulose into xylose and could be an alternative method to traditional sulfuric acid hydrolysis process for lignocellulose biorefinery.
Pilot-scale steam aging of steel slags.
Kumar, Praveen; Satish Kumar, D; Marutiram, K; Prasad, Smr
2017-06-01
Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to <1.5% (standard requirement) in 7 days. The aged steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael G. McKellar; Manohar S. Sohal; Lila Mulloth
2010-03-01
NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developedmore » and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.« less
Case study on the orientation of phaco hand pieces during steam sterilization processes.
van Doornmalen Gomez Hoyos, J P C M; van Wezel, R A C; van Doornmalen, H W J M
2015-05-01
Steam sterilization is an essential part of infection prevention. The literature shows that sterilization of medical instruments containing channels is not trivial. Phaco hand pieces have a simple configuration: a device contains a channel with a constant radius. No literature was found indicating whether the sterilization conditions on the inner surface of a phaco hand piece are influenced by the orientation of the hand piece. To determine whether the orientation of a phaco hand piece influences the results of a sterilization process of this device. A qualitative case study, including experiments, is performed with a protocolled combination of steam sterilizer, process, phaco hand piece, orientation of the phaco hand piece, and wrapping. In this specific case, the orientation of the hand piece influenced the result of the steam sterilization process; in vertically (upright) oriented phaco hand pieces with free water drainage, sterilization conditions are reproducibly established. In the same process, in horizontally oriented or vertically oriented hand pieces without free drainage, these conditions are not established in a reproducible way. In the investigated combination of sterilizer, process, load, loading pattern and wrapping, phaco hand pieces have to be oriented vertically (upright) with free water drainage to obtain steam sterilization conditions on the inner surface. It is likely that instruments with comparable configuration and dimensions will yield comparable results. It is therefore recommended that this issue is considered during the development of medical instruments and during performance qualifications of such instruments. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lower, Mark D; Christopher, Timothy W; Oland, C Barry
The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPImore » program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.« less
NASA Astrophysics Data System (ADS)
Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.
2014-12-01
King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic eruption that ejected blocks up to 2 m strewn over 200 m onto the lava lake surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraas, A.P.
1971-08-01
The facts of fuel supply limitations, environmental quality demands, and spiraling electric generating costs strongly favor development of electric power plants that simultaneously run at higher efficiency, i.e., higher temperature, use to advantage clean fuels, and have as low a capital cost as possible. Both fuel supply and thermal pollution considerations that are becoming progressively more important strongly favor the development of a higher temperature, and more efficient, thermodynamic cycle for electric power plants. About 200,000 hr of operation of boiling potassium systems, including over 15,000 hr of potassium vapor turbine operation under the space power plant program, suggest thatmore » a potassium vapor topping cycle with a turbine inlet temperature of approximately 1500/sup 0/F merits consideration. A design study has been carried out to indicate the size, cost, and development problems of the new types of equipment required. The results indicate that a potassium vapor cycle superimposed on a conventional 1050/sup 0/F steam cycle would give an overall thermal efficiency of about 54% as compared to only 40% from a conventional steam cycle. Thus the proposed system would have a fuel consumption only 75% and a heat rejection rate only 50% that of a conventional plant. The system requires clean fuel, and takes advantage of the present trend toward eliminating SO/sub 2/, NO/sub x/ and ash emissions. Surprisingly, at first sight, the assessment at this stage shows that the capital cost may be less than that of a conventional plant. The main reason for this is use of pressurized combustion, which leads to a much smaller combustor, and thin tube walls to contain potassium at about the same pressure.« less
Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis
Lawrence D. Garrett
1977-01-01
A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...
USDA-ARS?s Scientific Manuscript database
Steam treatment of citrus processing waste (CPW) at 160°C followed by a rapid decompression (steam explosion) at either pH 2.8 or 4.5 provides an efficient and rapid fragmentation of protopectin in CPW and renders a large fraction of fragmented pectins, arabinans, galactans and arabinogalactans solu...
A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol.
Wu, Chunfei; Williams, Paul T
2010-08-01
Catalytic steam reforming of ethanol has been regarded as a promising way to produce hydrogen. However, catalytic deactivation is a key problem in the process. In this paper, a novel nano-Ni/SiO2 catalyst was prepared by a simple sol-gel method and compared to catalysts prepared by an impregnation method in relation to the steam reforming ethanol process. Good Ni dispersion and high BET surface areas (>700 m2 g(-1)) were obtained for sol-gel catalysts, whereas only 1 m2 g(-1) surface area was obtained for the Ni/SiO2 impregnation catalyst. The results of catalytic steam reforming of ethanol showed that about twice of the hydrogen production was produced with the Ni/SiO2 catalyst prepared by sol-gel (around 0.2 g h(-1)) compared with that prepared by impregnation (around 0.1 g h(-1)). The analysis of the used catalysts showed that 10Ni/SiO2-B and 20Ni/SiO2-B presented the highest stability, while other catalysts were fragmented into small pieces after the reforming process, especially the catalysts prepared by impregnation. A novel catalyst has been produced that has been shown to be effective in the production of hydrogen from the steam reforming of ethanol.
Linam Ranch cryogenic gas plant: A design and operating retrospective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harwell, L.J.; Kuscinski, J.
1999-07-01
GPM Gas Corporation's Linam Ranch Gas Plant is the processing hub of their southeastern New Mexico gathering system, producing a y-grade NGL product which is pipelined primarily to the Phillips petrochemical complex at Sweeney, Texas, GPM acquired the facility near Hobbs, N.M. late in 1994 when it was still operating as a refrigerated lean oil plant, renamed it, and commenced an upgrade project culminating in its conversion to a high recovery cryogenic facility in early 1996 with a processing capacity of 150 MMscfd. Facilities that were upgraded included inlet liquids receiving and handling, the amine system, mol sieve dehydration, themore » sulfur recovery unit, inlet compression, and the propane refrigeration system. A Foxboro I/A DCS was also placed into operation. The lean oil system was replaced with a high recovery turboexpander unit supplied by KTI Fish based on their Flash Vapor Reflux (FVR) process. Resulting ethane recovery was greater than 95% for the new facilities. New residue compression units were installed including steam generators on the turbine exhausts, which complemented the existing plant steam system. During the three years since conversion to cryogenic operation, GPM has steadily improved plant operations. Expansion of the mol sieve dehydration system and retrofit of evaporation combustion air cooling on gas turbines have expanded nameplate capacity to 170 MMscfd while maintaining ethane recovery at 95%. Future expansion to 200 MMscfd with high recovery is achievable. In addition, creative use of the Foxboro DCS has been employed to implement advanced control schemes for handling inlet liquid slugs, gas and amine balancing for parallel amine contactors, improved sulfur recovery unit (SRU) trim air control, and constraint-based process optimization to maximize horsepower utilization and ethane recovery. Some challenges remain, leaving room for additional improvements. However, GPM's progress so far has resulted in a current ethane recovery level in excess of 97% when processing gas at the original design throughput of 150 MMscfd.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yarrington, R M; Feins, I R; Hwang, H S
1979-01-01
The work done under this contract in the last quarter of 1978 was concerned with Phase I, which involved preliminary catalyst and process evaluation. The processes under study are hydrogen assisted steam reforming (HASR), catalytic partial oxidation (CPO), and autothermal steam reforming (ATR). Existing Engelhard test units were modified to carry out preliminary runs using the first two processes. Technical analysis to support work in this area consisted of heat and material balances constrained by equilibrium considerations. In a third task, the steam reforming of methanol to produce hydrogen was studied over two commercial low-temperature shift catalysts. Aging runs indicatedmore » good initial performance on both catalysts, but methanol conversion started to decline after a few hundred hours on stream.« less
Spiral inlets for steam turbines
NASA Astrophysics Data System (ADS)
Škach, Radek; Uher, Jan
2017-09-01
This paper deals with the design process of special nozzle blades for spiral inlets. Spiral inlets are used for the first stages of high pressure and intermediate pressure steam turbines with both reaction and impulse blades when throttling or sliding pressure control is applied. They improve the steam flow uniformity from the inlet pipe and thus decrease the aerodynamic losses. The proposed evaluation of the inlet angle is based on the free vortex law.
NASA Astrophysics Data System (ADS)
Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.
2017-11-01
The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.
Hockey-stick steam generator for LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallinan, G.J.; Svedlund, P.E.
1981-01-01
This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test resultsmore » to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Thomas K.S.; Ko, F.-K
Although only a few percent of residual power remains during plant outages, the associated risk of core uncovery and corresponding fuel overheating has been identified to be relatively high, particularly under midloop operation (MLO) in pressurized water reactors. However, to analyze the system behavior during outages, the tools currently available, such as RELAP5, RETRAN, etc., cannot easily perform the task. Therefore, a medium-sized program aiming at reactor outage simulation and evaluation, such as MLO with the loss of residual heat removal (RHR), was developed. All important thermal-hydraulic processes involved during MLO with the loss of RHR will be properly simulatedmore » by the newly developed reactor outage simulation and evaluation (ROSE) code. Important processes during MLO with loss of RHR involve a pressurizer insurge caused by the hot-leg flooding, reflux condensation, liquid holdup inside the steam generator, loop-seal clearance, core-level depression, etc. Since the accuracy of the pressure distribution from the classical nodal momentum approach will be degraded when the system is stratified and under atmospheric pressure, the two-region approach with a modified two-fluid model will be the theoretical basis of the new program to analyze the nuclear steam supply system during plant outages. To verify the analytical model in the first step, posttest calculations against the closed integral midloop experiments with loss of RHR were performed. The excellent simulation capacity of the ROSE code against the Institute of Nuclear Energy Research Integral System Test Facility (IIST) test data is demonstrated.« less
NASA Astrophysics Data System (ADS)
Prokhorov, V. B.; Chernov, S. L.; Kirichkov, V. S.
2017-09-01
The desire to increase the efficiency of using the heat of burned solid fuel leads to the significant growth of the initial steam parameter at steam-turbine plants. At the maximum temperatures of fresh and secondary steam of 700-720°C, the price of connecting of steam pipelines between the boiler and turbine is up to 20% of the price of a power plant unit, which dictates the necessity to decrease their length. One of the methods to achieve this is the application of an inverter firebox. An M-shaped profile of boiler, allowing one to decrease the length of heat-resistant steam pipelines, was developed at NRU MPEI. A distinctive feature of the profile is two inclined connecting gas flues between the firebox and convective shaft, starting from the gas windows located in the lower third of the firebox height. The boiler was designed for the steam production of 2493 t/h with the parameters of fresh steam of 35 MPa and 710°C. Thermal and aerodynamic calculations made it possible to get the sizes of boiler and dimensions of heating surfaces, and they also allow one to get the values of temperatures in the characteristic points along the gas path. On the basis of the results of calculations, the coefficient of efficiency of the boiler was 93.07% and the fuel consumption was 91.13 kg/s. For this boiler, the technology of effective stepwise burning of coal in a direct-flow-vortex torch (DFVT) in a system of vertical and horizontal tangential torches in the mode of solid slag removal, previously successively used in boilers with a traditional profile and upgraded to an inverter firebox, is proposed. The layouts of the direct-flow burners and nozzles for even and odd vertical sections of the firebox and also in a horizontal section were proposed. Organization of staged air supply in the vertical direction with a high fraction of in-firebox recycle of hot gases leads to low concentration of nitrogen oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCammon, T.L.; Dilks, C.L.; Savoie, M.J.
1995-09-01
Relatively poor performance at the aging central heating plants (OH Ps) and planned changes in steam demand at Aberdeen Proving Ground (APG) Edgewood Area, Aberdeen, MD warranted an investigation of alternatives for providing thermal energy to the installation. This study: (1) evaluated the condition of the APG CHPs and heat distribution system, (2) identified thermal energy supply problems and cost-effective technologies to maintain APG`s capability to produce and distribute the needed thermal energy, and (3) recommended renovation and modernization projects for the system. Heating loads were analyzed using computer simulations, and life cycle costs were developed for each alternative. Recommendedmore » alternatives included upgrading the existing system, installing new boilers, consolidating the central heating plants, and introducing the use of absorption chilling.« less
Estimating the effectiveness of using atmospheric deaerators for decarbonizing makeup water
NASA Astrophysics Data System (ADS)
Larin, B. M.; Larin, A. B.
2015-02-01
According to the water coolant quality standards, the makeup water supplied to a thermal power plant's (TPP) steam-generating systems must not have any content of free carbonic acid. As a rule, free and partially bound carbonic acid is removed from makeup water supplied to the power-generating boilers at TPPs in atmospheric deaerators. Their performance as decarbonizers can be evaluated by measuring the pH values of water supplied to the deaerator and of the deaerated water. A procedure for calculating the residual concentration of carbonic acid in deaerated water and the decarbonization effect from the change in the pH value (ΔpH) is presented together with an example of calculation carried out by specialists of the Ivanovo State Power Engineering University based on a long-term industrial experiment performed on DSA-300 atmospheric deaerators.
Chemicals and ruminant feed from lignocelluloses by the steaming-extraction process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puls, J.; Ayla, C.; Dietrichs, H.H.
1983-01-01
Steaming is applicable to lignocelluloses with lower lignin content such as hardwoods and most agricultural residues. The cellulose of steamed fiber materials becomes accessible for enzymatic degradation in spite of the presence of lignin. The hemicelluloses become water soluble. The lignin can be extracted with alkaline or organic solvents. Without further treatment, the steamed material can be used as highly digestible ruminant feed. Steam treatment, however, is most effective after separation of the hemicelluloses. Depending on the starting material, 10-25% hemicelluloses with xylose contents up to 80% can be recovered by aqueous extraction of the fiber material. The xylans andmore » xylan fragments can be used as substrates for chemical, biochemical, or microbial processes. The residual fiber material consists only of cellulose and lignin in highly accessible form for rumen bacteria and fungal cellulases. They are digested by ruminants up to 70-80% and degraded by cellulases without further treatment to 50-60%. In a second extraction step, the lignin can be removed from the fiber material. After controlled steaming at 190/sup 0/C with an optimum yield of hemicellulose, two-thirds of the original lignin present in the starting material can be extracted with dilute alkali. A relatively mild steaming with additional alkaline extraction of lignin is recommended when total utilization of the components including the hemicelluloses is desired. The extracted lignin can be used as a chemical feedstock. 16 references, 6 figures, 3 tables.« less
Multifactorial modelling of high-temperature treatment of timber in the saturated water steam medium
NASA Astrophysics Data System (ADS)
Prosvirnikov, D. B.; Safin, R. G.; Ziatdinova, D. F.; Timerbaev, N. F.; Lashkov, V. A.
2016-04-01
The paper analyses experimental data obtained in studies of high-temperature treatment of softwood and hardwood in an environment of saturated water steam. Data were processed in the Curve Expert software for the purpose of statistical modelling of processes and phenomena occurring during this process. The multifactorial modelling resulted in the empirical dependences, allowing determining the main parameters of this type of hydrothermal treatment with high accuracy.
NASA Astrophysics Data System (ADS)
Surov, A. V.; Subbotin, D. I.; Obraztsov, N. V.; Popov, S. D.; Popov, V. E.; Litvyakova, A. I.; Pavlov, A. V.; Serba, E. O.; Spodobin, V. A.; Nakonechny, Gh V.
2018-01-01
This paper presents the three-phase ac plasma torch with a vortex stabilization of the arc, and two inputs of plasma environments: the electrode zone and the arc zone. Shielding gas (carbon dioxide) is supplied in the electrode zone and steam, methane and vapor of chlorobenzene are fed in the arc zone. By means of it the life time of electrodes is increased significantly. Chlorobenzene is selected, as it is the simplest aromatic chlorine-containing substance. The chemical process flows in two pathways: the formation of synthesis gas and the formation of soot. The gaseous chlorine-containing compound was only hydrogen chloride, yield of soot was 0.98% by weight of the raw materials, and the chlorine content was 2.08 wt% by the soot.
Implementing AORN recommended practices for sterilization.
Graybill-D'Ercole, Patricia
2013-05-01
Any hospital or facility in which surgery and other invasive procedures are performed should have accommodations for cleaning, decontaminating, disinfecting, and sterilizing instruments, equipment, and other essential supplies that are used for patient procedures. Sterilization is essential to reducing or preventing the risk of surgical site infections. This is a collaborative process and should include all health care providers who handle these instruments, including perioperative nurses. The revised AORN "Recommended practices for sterilization," which became effective June 15, 2012, includes updates on sterilizing single-use items, inspecting critical items before sterilization, using low-temperature hydrogen peroxide vapor sterilization methods, and immediate use steam sterilization. This RP document is the first AORN document to be evidence rated and accepted for inclusion in the Agency for Healthcare Research and Quality National Guideline Clearinghouse. Copyright © 2013 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Failure of non-vacuum steam sterilization processes for dental handpieces.
Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B
2017-12-01
Dental handpieces are used in critical and semi-critical operative interventions. Although some dental professional bodies recommend that dental handpieces are sterilized between patient use there is a lack of clarity and understanding of the effectiveness of different steam sterilization processes. The internal mechanisms of dental handpieces contain narrow lumens (0.8-2.3 mm) which can impede the removal of air and ingress of saturated steam required to achieve sterilization conditions. To identify the extent of sterilization failure in dental handpieces using a non-vacuum process. In-vitro and in-vivo investigations were conducted on widely used UK bench-top steam sterilizers and three different types of dental handpieces. The sterilization process was monitored inside the lumens of dental handpieces using thermometric (TM; dataloggers), chemical indicator (CI), and biological indicator (BI) methods. All three methods of assessing achievement of sterility within dental handpieces that had been exposed to non-vacuum sterilization conditions demonstrated a significant number of failures [CI: 8/3024 (fails/no. of tests); BI: 15/3024; TM: 56/56] compared to vacuum sterilization conditions (CI: 2/1944; BI: 0/1944; TM: 0/36). The dental handpiece most likely to fail sterilization in the non-vacuum process was the surgical handpiece. Non-vacuum sterilizers located in general dental practice had a higher rate of sterilization failure (CI: 25/1620; BI: 32/1620; TM: 56/56) with no failures in vacuum process. Non-vacuum downward/gravity displacement, type N steam sterilizers are an unreliable method for sterilization of dental handpieces in general dental practice. The handpiece most likely to fail sterilization is the type most frequently used for surgical interventions. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
In-Service Monitoring of Steam Pipe Systems at High Temperatures
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Scott, James S.; Blosiu, Julian O.; Widholm, Scott E.
2011-01-01
An effective, in-service health monitoring system is needed to track water condensation in real time through the walls of steam pipes. The system is required to measure the height of the condensed water from outside the pipe, while operating at temperatures that are as high as 250 C. The system needs to account for the effects of water flow and cavitation. In addition, it is desired that the system does not require perforating the pipes and thereby reducing the structural integrity. Generally, steam pipes are used as part of the district heating system carrying steam from central power stations under the streets to heat, cool, or supply power to high-rise buildings and businesses. This system uses ultrasonic waves in pulse-echo and acquires reflected signal data. Via autocorrelation, it determines the water height while eliminating the effect of noise and multiple reflections from the wall of the pipe. The system performs nondestructive monitoring through the walls of steam pipes, and automatically measures the height of condensed water while operating at the high-temperature conditions of 250 C. For this purpose, the ultrasonic pulse-echo method is used where the time-of-flight of the wave reflections inside the water are measured, and it is multiplied by the wave velocity to determine the height. The pulse-echo test consists of emitting ultrasonic wave pulses from a piezoelectric transducer and receiving the reflections from the top and bottom of the condensed water. A single transducer is used as a transmitter as well as the receiver of the ultrasonic waves. To obtain high resolution, a broadband transducer is used and the frequency can be in the range of 2.25 to 10 MHz, providing sharp pulses in the time domain allowing for higher resolution in identifying the individual reflections.
Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid
NASA Astrophysics Data System (ADS)
Arda, Samet Egemen
A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.
Steam reforming of commercial ultra-low sulphur diesel
NASA Astrophysics Data System (ADS)
Boon, Jurriaan; van Dijk, Eric; de Munck, Sander; van den Brink, Ruud
Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475 °C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800 °C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.
Postfact phenomena of the wet-steam flow electrization in turbines
NASA Astrophysics Data System (ADS)
Tarelin, A. A.
2017-11-01
Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.
NASA Astrophysics Data System (ADS)
Diawati, Chansyanah; Liliasari, Setiabudi, Agus; Buchari
2017-05-01
This project-based learning combined the chemistry of separation process using steam distillation with engineering design process in an undergraduate chemistry course. Students built upon their knowledge of phase changes, immiscible mixture, and the relationship between vapor pressure and boiling point to complete a project of modifications steam distillation apparatus. The research method is a qualitative case study, which aims to describe how (1) the creative thinking skills of students emerged during six weeks of theproject, (2) students built steam distillation apparatus characteristics as the project product and (3) students response to the project-based learning model. The results showed that the students had successfully constructed a steam distillation apparatus using plastic kettle as steam generator and distillation flask. A Plastic tubewas used to drain water vapor from steam generator to distillation flask and to drain steam containing essential oil to the condenser. A biscuit tin filled with ice was used as a condenser. The time required until resulting distillate was fifteen minutes. The production of essential was conductive qualitatively by a very strong smell typical of essential oil and two phases of distillate. Throughout the project, students formulated the relevant and varied problem, formulated the goals, proposed the ideas of the apparatus and materials, draw apparatus design, constructed apparatus, tested apparatus, evaluated, and reported the project. Student response was generally positive. They were pleased, interested, more understanding the concepts and work apparatus principles, also implemented new ideas. These results indicate that project-based learning can develop students' creative thinking skills. Based on these results, it is necessary to conduct research and implemented project-based learning to other concepts.
Demand-driven water withdrawals by Chinese industry: a multi-regional input-output analysis
NASA Astrophysics Data System (ADS)
Zhang, Bo; Chen, Z. M.; Zeng, L.; Qiao, H.; Chen, B.
2016-03-01
With ever increasing water demands and the continuous intensification of water scarcity arising from China's industrialization, the country is struggling to harmonize its industrial development and water supply. This paper presents a systems analysis of water withdrawals by Chinese industry and investigates demand-driven industrial water uses embodied in final demand and interregional trade based on a multi-regional input-output model. In 2007, the Electric Power, Steam, and Hot Water Production and Supply sector ranks first in direct industrial water withdrawal (DWW), and Construction has the largest embodied industrial water use (EWU). Investment, consumption, and exports contribute to 34.6%, 33.3%, and 30.6% of the national total EWU, respectively. Specifically, 58.0%, 51.1%, 48.6%, 43.3%, and 37.5% of the regional EWUs respectively in Guangdong, Shanghai, Zhejiang, Jiangsu, and Fujian are attributed to international exports. The total interregional import/export of embodied water is equivalent to about 40% of the national total DWW, of which 55.5% is associated with the DWWs of Electric Power, Steam, and Hot Water Production and Supply. Jiangsu is the biggest interregional exporter and deficit receiver of embodied water, in contrast to Guangdong as the biggest interregional importer and surplus receiver. Without implementing effective water-saving measures and adjusting industrial structures, the regional imbalance between water availability and water demand tends to intensify considering the water impact of domestic trade of industrial products. Steps taken to improve water use efficiency in production, and to enhance embodied water saving in consumption are both of great significance for supporting China's water policies.
Environmental Assessment: Building 3001 Tinker Air Force Base, Oklahoma
2008-09-01
developing a Memorandum of Agreement (MOA) with the SHPO and the Oklahoma Archaeological Survey regarding the potential effects the Proposed Action...3.3.5.4 Electrical System Tinker AFB receives its electrical power from Oklahoma Gas and Electric, which delivers power through a looped 138... gas , with diesel fuel used as the backup supply. The steam line system is primarily underground, with a limited number of lines extending
Immediate use steam sterilization: moving beyond current policy.
Seavey, Rose
2013-05-01
Immediate-use steam sterilization (IUSS) is steam sterilization intended for immediate use. IUSS may cause an increased risk of infection to patients because of stress and time constraints placed on staff. When IUSS is used, it is vital to properly carry out the complete multistep process according to the manufacturer's written validated instructions for use. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
The Effects of Alarm Display, Processing, and Availability on Crew Performance
2000-11-01
snow Instrumentation line leakage Small LOCA Steam generator tube rupture Small feedwater leakage inside containment Cycling of main steam...implemented. • Due to primary pressure controller failure, pressure heater banks cycle between on and off. 8.00 CF1 CF2 CF3 CF4 CF5...temperatures after the high-pressure pre- heaters flows into the steam generators number of active emergency feedwater pumps openings of the condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, A.; Takaoka, K.
The availability of rice, gamma -irradiated up to 4.6 x 10/sup 4/ and 3.5 x 10/sup 5/r for koji was studied. The enzyme activities of koji of the steamed samples were stronger than the unirradiated rice in amylase and protease. The sensory test on the once-steamed irradiated rice was almost the same as the twice-steamed unirradiated rice. (OID)
NASA Astrophysics Data System (ADS)
Hao, Lifen; Qiu, Lixia; Li, Jinping; Li, Dongxiong
2018-01-01
A new heat supplying system is proposed that utilizes the exhausted gas of the boiler to substitute the extraction steam from the turbine as the driving force for the adsorption heat pump regarding the recovery of the condensation heat of power plant. However, our system is not subject to the low efficiency of wasted heat utilization due to the low temperature of flue gas, which hence possesses higher performance in COP factors in the utilization of heat than that of the conventional techniques of using flues gas, so the amount of extracted gas from turbine can be reduced and the power generate rate be enhanced. Subsequently, detailed evaluation of the performance of this system in the point of views of thermodynamics and economics are presented in this work. For the instance of a 330 MW heat supply unit, 5 sample cities are chosen to demonstrate and confirm our economic analysis. It is revealed that when the heating coefficient of the heat pump is 1.8, the investment payback periods for these 5 cities are within the range of 2.4 to 4.8 years, which are far below the service year of the heat pump, demonstrating remarkable economic benefits for our system.
Toughness of 2,25Cr-1Mo steel and weld metal
NASA Astrophysics Data System (ADS)
Acarer, Mustafa; Arici, Gökhan; Acar, Filiz Kumdali; Keskinkilic, Selcuk; Kabakci, Fikret
2017-09-01
2,25Cr-1Mo steel is extensively used at elevated temperature structural applications in fossil fire power plants for steam pipes, nozzle chambers and petrochemical industry for hydrocracking unit due to its excellent creep resistance and good redundant to oxidation. Also they should have acceptable weldability and toughness. The steels are supplied in quenched and tempered condition and their welded components are subjected to post-weld heat treatment (PWHT). Tempering process is carried out at 690-710°C to improve toughness properties. However they are sensitive to reheat cracking and temper embrittlement. To measure temper embrittlement of the steels and their weld metal, temper embrittlement factor and formula (J factor - Watanabe and X formula- Bruscato) are used. Step cooling heat treatment is also applied to determine temper embrittlement. In this study, toughness properties of Cr Mo (W) steels were reviewed. Also transition temperature curves of 2,25Cr-1Mo steel and its weld metal were constructed before and after step cool heat treatment as experimental study. While 2,25Cr-1Mo steel as base metal was supplied, all weld metal samples were produced in Gedik Welding Company. Hardness measurements and microstructure evaluation were also carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrams, W.T.; Cope, A.W.; Orsulak, R.M.
The overall objective of Task 1 was to demonstrate an effective method for removing tenacious corrosion products in a pressurized water reactor steam generator and thus significantly reduce radiation exposure during subsequent maintenance activities. Various decontamination methods were evaluated and a multistep, low concentration chemical process originated by Kraftwerk Union A.G. (KWU) of the Federal Republic of Germany was selected. The process was further developed and tested by C-E and KWU in West Germany and at C-E's facilities in Windsor, Connecticut. C-E designed, fabricated and tested a portable system to apply the process at Millstone Point II. The decontamination ofmore » the primary channel heads of the two Millstone steam generators was performed by C-E and NUSCO during the 1983 refueling shutdown of Millstone Point II plant. Results of the decontamination were very satisfactory. NUSCO determined that a net savings of 3660 man-rem of personnel exposure was realized during the decontamination demonstration and the subsequent maintenance work on the steam generators.« less
Baral, Nawa Raj; Shah, Ajay
2017-05-01
Pretreatment is required to destroy recalcitrant structure of lignocelluloses and then transform into fermentable sugars. This study assessed techno-economics of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments, and identified bottlenecks and operational targets for process improvement. Techno-economic models of these pretreatment processes for a cellulosic biorefinery of 113.5 million liters butanol per year excluding fermentation and wastewater treatment sections were developed using a modelling software-SuperPro Designer. Experimental data of the selected pretreatment processes based on corn stover were gathered from recent publications, and used for this analysis. Estimated sugar production costs ($/kg) via steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological methods were 0.43, 0.42, 0.65 and 1.41, respectively. The results suggest steam explosion and sulfuric acid pretreatment methods might be good alternatives at present state of technology and other pretreatment methods require research and development efforts to be competitive with these pretreatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.
2017-04-01
In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.
NASA Technical Reports Server (NTRS)
Nainiger, J. J.; Burns, R. K.; Easley, A. J.
1982-01-01
A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.
Limited energy study, Buildings 750 and 798, Fort Richardson, Alaska. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
The purpose of this study is to identify and evaluate Energy Conservation Opportunities (ECOs) for two motor pool facilities, Buildings 750 and 798, to determine their energy savings potential, economic feasibility, and to document results for possible future funding. Buildings 750 and 798 are heated by steam supplied from a central plant. The central plant uses natural gas as a primary fuel source to produce steam for both heating and electrical energy generation. Since power is produced on the base there is not a demand charge for electrical energy. Two ECOs examined the use of natural gas in conjunction withmore » steam as a method of heating the buildings. Annual baseline energy consumption and cost data for each building is presented. The heating system in Building 750 was found to be severely under capacity. This is the result of the disabling of the under-floor heating system and the roof top MAUs. Building 798 also has had the under-floor heating system disabled. However, baseline simulations show that the remaining system is capable of maintaining thermostat setpoints during all but the coldest days of a typical year.« less
Zahoor; Tu, Yuanyuan; Wang, Lingqiang; Xia, Tao; Sun, Dan; Zhou, Shiguang; Wang, Yanting; Li, Ying; Zhang, Heping; Zhang, Tong; Madadi, Meysam; Peng, Liangcai
2017-11-01
In this study, a combined pretreatment was performed in four wheat accessions using steam explosion followed with different concentrations of H 2 SO 4 or NaOH, leading to increased hexoses yields by 3-6 folds from enzymatic hydrolysis. Further co-supplied with 1% Tween-80, Talq90 and Talq16 accessions exhibited an almost complete enzymatic saccharification of steam-exploded (SE) residues after 0.5% H 2 SO 4 or 1% NaOH pretreatment, with the highest bioethanol yields at 18.5%-19.4%, compared with previous reports about wheat bioethanol yields at 11%-17% obtained under relatively strong pretreatment conditions. Furthermore, chemical analysis indicated that much enhanced saccharification in Talq90 and Talq16 may be partially due to their relatively low cellulose CrI and DP values and high hemicellulose Ara and H-monomer levels in raw materials and SE residues. Hence, this study has not only demonstrated a mild pretreatment technology for a complete saccharification, but it has also obtained the high ethanol production in desirable wheat accessions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant L. Hawkes; Michael G. McKellar
2009-11-01
A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the powermore » cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.« less
Kumar, Deepak; Murthy, Ganti S
2011-09-05
While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.
2011-01-01
Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies. PMID:21892958
Industrial steam systems and the energy-water nexus.
Walker, Michael E; Lv, Zhen; Masanet, Eric
2013-11-19
This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.
Method and apparatus for destroying organic contaminants in aqueous liquids
Donaldson, T.L.; Wilson, J.H.
1993-09-21
A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.
Method and apparatus for destroying organic contaminants in aqueous liquids
Donaldson, Terrence L.; Wilson, James H.
1993-01-01
A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.
A review of water recovery by vapour permeation through membranes.
Bolto, Brian; Hoang, Manh; Xie, Zongli
2012-02-01
In vapour permeation the feed is a vapour, not a liquid as in pervaporation. The process employs a polymeric membrane as a semi-permeable barrier between the feed side under high pressure and the permeate side under low pressure. Separation is achieved by the different degrees to which components are dissolved in and diffuse through the membrane, the system working according to a solution-diffusion mechanism. The materials used in the membrane depend upon the types of compounds being separated, so water transport is favoured by hydrophilic material, whether organic or inorganic. The process is used for the dehydration of natural gas and various organic solvents, notably alcohol as biofuel, as well as the removal of water from air and its recovery from waste steam. Waste steam can be found in almost every plant/factory where steam is used. It is frequently contaminated and cannot be reused. Discharging the spent steam to the atmosphere is a serious energy loss and environmental issue. Recycling the steam can significantly improve the overall energy efficiency of an industry, which is responsible for massive CO(2) emissions. Steam separation at high fluxes and temperatures has been accomplished with a composite poly(vinyl alcohol) membrane containing silica nanoparticles, and also, less efficiently, with an inorganic zeolite membrane. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Bioactive compounds and antioxidant activity of fresh and processed white cauliflower.
Ahmed, Fouad A; Ali, Rehab F M
2013-01-01
Brassica species are very rich in health-promoting phytochemicals, including phenolic compounds, vitamin C, and minerals. The objective of this study was to investigate the effect of different blanching (i.e., water and steam) and cooking (i.e., water boiling, steam boiling, microwaving, and stir-frying) methods on the nutrient components, phytochemical contents (i.e., polyphenols, carotenoids, flavonoid, and ascorbic acid), antioxidant activity measured by DPPH assay, and phenolic profiles of white cauliflower. Results showed that water boiling and water blanching processes had a great effect on the nutrient components and caused significant losses of dry matter, protein, and mineral and phytochemical contents. However, steam treatments (blanching and cooking), stir-frying, and microwaving presented the lowest reductions. Methanolic extract of fresh cauliflower had significantly the highest antioxidant activity (68.91%) followed by the extracts of steam-blanched, steam-boiled, stir-fried, and microwaved cauliflower 61.83%, 59.15%, 58.93%, and 58.24%, respectively. HPLC analysis revealed that the predominant phenolics of raw cauliflower were protocatechuic acid (192.45), quercetin (202.4), pyrogallol (18.9), vanillic acid (11.90), coumaric acid (6.94), and kaempferol (25.91) mg/100 g DW, respectively.
Bioactive Compounds and Antioxidant Activity of Fresh and Processed White Cauliflower
Ahmed, Fouad A.; Ali, Rehab F. M.
2013-01-01
Brassica species are very rich in health-promoting phytochemicals, including phenolic compounds, vitamin C, and minerals. The objective of this study was to investigate the effect of different blanching (i.e., water and steam) and cooking (i.e., water boiling, steam boiling, microwaving, and stir-frying) methods on the nutrient components, phytochemical contents (i.e., polyphenols, carotenoids, flavonoid, and ascorbic acid), antioxidant activity measured by DPPH assay, and phenolic profiles of white cauliflower. Results showed that water boiling and water blanching processes had a great effect on the nutrient components and caused significant losses of dry matter, protein, and mineral and phytochemical contents. However, steam treatments (blanching and cooking), stir-frying, and microwaving presented the lowest reductions. Methanolic extract of fresh cauliflower had significantly the highest antioxidant activity (68.91%) followed by the extracts of steam-blanched, steam-boiled, stir-fried, and microwaved cauliflower 61.83%, 59.15%, 58.93%, and 58.24%, respectively. HPLC analysis revealed that the predominant phenolics of raw cauliflower were protocatechuic acid (192.45), quercetin (202.4), pyrogallol (18.9), vanillic acid (11.90), coumaric acid (6.94), and kaempferol (25.91) mg/100 g DW, respectively. PMID:24171164
Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz
2014-01-01
Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.
Ahadi, Arash; Kharrat, Riyaz
2014-01-01
Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, K.; MacNeil, C.; Odar, S.
1997-02-01
This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pittingmore » and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators.« less
Incineration and pyrolysis vs. steam gasification of electronic waste.
Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika
2018-05-15
Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Paul A.; Liao, Chang-hsien
2007-11-15
A passive flow disturbance has been proven to enhance the conversion of fuel in a methanol-steam reformer. This study presents a statistical validation of the experiment based on a standard 2{sup k} factorial experiment design and the resulting empirical model of the enhanced hydrogen producing process. A factorial experiment design was used to statistically analyze the effects and interactions of various input factors in the experiment. Three input factors, including the number of flow disturbers, catalyst size, and reactant flow rate were investigated for their effects on the fuel conversion in the steam-reformation process. Based on the experimental results, anmore » empirical model was developed and further evaluated with an uncertainty analysis and interior point data. (author)« less
Alternative method for steam generation for thermal oxidation of silicon
NASA Astrophysics Data System (ADS)
Spiegelman, Jeffrey J.
2010-02-01
Thermal oxidation of silicon is an important process step in MEMS device fabrication. Thicker oxide layers are often used as structural components and can take days or weeks to grow, causing high gas costs, maintenance issues, and a process bottleneck. Pyrolytic steam, which is generated from hydrogen and oxygen combustion, was the default process, but has serious drawbacks: cost, safety, particles, permitting, reduced growth rate, rapid hydrogen consumption, component breakdown and limited steam flow rates. Results from data collected over a 24 month period by a MEMS manufacturer supports replacement of pyrolytic torches with RASIRC Steamer technology to reduce process cycle time and enable expansion previously limited by local hydrogen permitting. Data was gathered to determine whether Steamers can meet or exceed pyrolytic torch performance. The RASIRC Steamer uses de-ionized water as its steam source, eliminating dependence on hydrogen and oxygen. A non-porous hydrophilic membrane selectively allows water vapor to pass. All other molecules are greatly restricted, so contaminants in water such as dissolved gases, ions, total organic compounds (TOC), particles, and metals can be removed in the steam phase. The MEMS manufacturer improved growth rate by 7% over the growth range from 1μm to 3.5μm. Over a four month period, wafer uniformity, refractive index, wafer stress, and etch rate were tracked with no significant difference found. The elimination of hydrogen generated a four-month return on investment (ROI). Mean time between failure (MTBF) was increased from 3 weeks to 32 weeks based on three Steamers operating over eight months.
NASA Astrophysics Data System (ADS)
Dubrovskii, V. G.; Zubov, A. P.; Koshelev, S. A.
2018-06-01
Presently, when the structure of energy consumption by industrial enterprises is being changed, many type PT turbine units operate with limitations imposed on their operating conditions, while type R backpressure turbines are often shut down for a long time or even removed from operation. Thus, the problem of using steam previously intended for process needs combined with the loading of the main equipment and additional generation of power and heat becomes urgent for many power stations. Three main ways for solving this problem are examined in this paper. Potential alternatives for retrofitting of cogeneration power stations (TETS) with types PT and R turbines are discussed. Each alternative solves a specific problem brought about by the actual operating conditions of a turbine at a specific TETs. The results of retrofitting of PT-80-130 turbines with an increase in the throughput capacity of the intermediate pressure cylinder (IPC) and R-50-130 turbines with installation of an additional low-pressure cylinder (LPC) are presented. The experience in operation of the retrofitted R-50-130 turbine with an unconventional arrangement where an additional LPC is installed upstream the high-pressure cylinder (HPC) rather than between the generator and HPC is also described. The experience in the upgrading of TETs with installation of bottom steam turbines driven by steam from a process steam extraction that is not demanded for is presented. Depending on the conditions at a specific TETs, a bottom steam turbine can be installed on a new foundation or in the compartment of a dismounted turbine with the use of serviceable auxiliary and heat-exchange equipment.
NASA Astrophysics Data System (ADS)
Rahmawati, Y.; Mahmudatussa'adah, A.; Yogha, S.
2016-04-01
Sweet potato processing is limited, such as flour, snacks, cystic, or chips. Flakes as pre-cooked meals are made through the stages of making pasta and drying. The purpose of this study was to optimize the production of sweet potato flakes at the stage of making pasta and drying. Making the pasta is done through techniques steamed or baked. Pasta drying using tools a drum dryer or cabinet dryer. As an indicator of optimization is the total of monomeric anthocyanins, β-carotene and color the resulting flakes. The results showed that the amount of anthocyanin monomeric flakes by using steam, and drum dryer (3.83 ± 0.03 mg CYE/g db), flakes by the technique of steam, and cabinet dryer (3.03 ± 0.02 mg CYE/g db), flakes with techniques bake, drum dryer (2.49 ± 0.05 CYE mg/g db), flakes with bake technique, cabinet dryer (1.98 ± 0.03 mg CYE/g db). The Color of purple sweet potato flakes produced through steamed techniques bright purple, while the color purple sweet potato flakes produced through techniques roast give a brownish purple color. The amount of β-carotene yellow flakes sweet potato with stages of cooking steamed, drum dryer (152±0.5 mg/Kg db), grilled drum dryer (136±0.4 mg/Kg db), flakes of yellow sweet potato with stages of roasted and cabinet dryer (140±0.8 mg/Kg db), and grilled stage with cabinet dryer (122±0.3 mg/Kg db). In conclusion sweet potato flakes production techniques through the stages of steam process, and used drum dryers have a number of anthocyanins or β-carotene bigger and brighter colors than the baked flakes techniques and used cabinet dryer.
1992-01-01
152.322 G009 Non-Government Insurance Programs 314 0 0 314 0 0 0 G099 Other Social Services 10 , 197 2,466 7,33 -. 150 0 0 251 HHO Quality Control...Filters 14.574 4,499 7.314 886 1,735 140 0 4410 Industrial Boilers 6,569 178 5.876 434 80 0 4420 Heat Exchangers and Steam Condensers 2.848 144
Integrated centralized utility services to a chemical complex on Jurong Island, Singapore.
Yan, Y G; Wong, P C Y; Tan, C G; Tang, K F
2003-01-01
SUT pioneered centralized utility services for the chemical industry on Jurong Island, which are cost-effective due to economies of scale, reliable due to inter-connection of satellite operations, and customer tailored for special requirements. The utility services range from the supply of steam and water, wastewater treatment, incineration, terminalling, service corridor to fire fighting. Among the services, water management achieves the complete cycle from wastewater treatment to effluent recycling.
Reconstruction of cogeneration plants equipped with LMZ R-50-130 steam turbines
NASA Astrophysics Data System (ADS)
Ermolaev, V. V.; Gudkov, N. N.; Shklyar, A. I.; Dudin, N. N.; Adamson, D. A.; Babiev, A. N.; Koshelev, S. A.; Solov'ev, A. K.; Miroshnichenko, S. A.
2009-04-01
The problems of how to use backpressure turbines underloaded for objective reasons at industrial cogeneration plants (CPs) are analyzed. The means of modernization of R-50-130 turbines implemented by the Teploenergoservis group of companies, which make it possible to meet the changed requirements for power and heat supply from a CP equipped with R-50-130 turbines and to increase productivity of CP fixed assets, are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Anthony L; Martin, Michaela A; Gemmer, Bob
In the wake of Hurricane Katrina and other severe storms in 2005, natural gas supplies were restricted, prices rose, and industry sought ways to reduce its natural gas use and costs. In October 2005, U.S. Department of Energy (DOE) Energy Secretary Bodman launched his Easy Ways to Save Energy campaign with a promise to provide energy assessments to 200 of the largest U.S. manufacturing plants. A major thrust of the campaign was to ensure that the nation's natural gas supplies would be adequate for all Americans, especially during home heating seasons. In a presentation to the National Press Club onmore » October 3, 2005, Secretary Bodman said: 'America's businesses, factories, and manufacturing facilities use massive amounts of energy. To help them during this period of tightening supply and rising costs, our Department is sending teams of qualified efficiency experts to 200 of the nation's most energy-intensive factories. Our Energy Saving Teams will work with on-site managers on ways to conserve energy and use it more efficiently.' DOE's Industrial Technologies Program (ITP) responded to the Secretary's campaign with its Save Energy Now initiative, featuring a new and highly cost-effective form of energy assessments. The approach for these assessments drew heavily on the existing resources of ITP's Technology Delivery component. Over the years, ITP-Technology Delivery had worked with industry partners to assemble a suite of respected software decision tools, proven assessment protocols, training curricula, certified experts, and strong partnerships for deployment. Because of the program's earlier activities and the resources that had been developed, ITP was prepared to respond swiftly and effectively to the sudden need to promote improved industrial energy efficiency. Because of anticipated supply issues in the natural gas sector, the Save Energy Now initiative strategically focused on natural gas savings and targeted the nation's largest manufacturing plants--those that consume a total of 1 trillion British thermal units (Btu) or more annually. The approximately 6800 U.S. facilities that fall into this category collectively account for about 53% of all energy consumed by industry in the United States. The 2006 Save Energy Now energy assessments departed from earlier DOE plant assessments by concentrating solely on steam and process heating systems, which are estimated to account for approximately 74% of all natural gas use for manufacturing. The assessments also integrated a strong training component designed to teach industrial plant personnel how to use DOE's steam or process heating opportunity assessment software tools. This approach had the advantages of promoting strong buy-in of plant personnel for the assessment and its outcomes and preparing them better to independently replicate the assessment process at the company's other facilities. The Save Energy Now initiative also included provisions to help plants that applied for but did not qualify for assessments (based on the 1 trillion Btu criterion). Services offered to these plants included (1) an assessment by one of DOE's 26 university-based Industrial Assessment Centers (IACs), (2) a telephone consultation with a systems expert at the DOE's Energy Efficiency and Renewable Energy Information Center, or (3) other technical materials and services available through ITP (e.g., the Save Energy Now CD). By the end of 2006, DOE had completed all 200 of the promised assessments, identifying potential natural gas savings of more than 50 trillion Btu and energy cost savings of about $500 million. These savings, if fully implemented, could reduce CO2 emissions by 4.04 million metric tons annually. These results, along with the fact that a large percentage of U.S. energy is used by a relatively small number of very large plants, clearly suggest that assessments are an expedient and cost-effective way to significantly affect large amounts of energy use. Building on the success of the 2006 initiative, ITP has expanded the effort in 2007 with the goal of conducting 250 more assessments in large U.S. industrial plants. The 2007 assessments are addressing not only steam and process heating, but also pumping, compressed air, and fan systems. The full report reviews the tools and resources developed by the DOE ITP program before 2006, which are the foundation and catalyst for the Save Energy Now assessment efforts. The report describes the process by which industrial plants applied to obtain assessments in 2006 and the overall process and philosophy of conducting assessments. A comprehensive review of the results from the 2006 assessments is presented, along with a summary of key accomplishments and findings.« less
Source model of volcanic tremor: two-phase flow instability in a pipe-valve system
NASA Astrophysics Data System (ADS)
Fujita, E.
2003-12-01
Volcanic tremor at a shallow depth beneath the volcano is inferred to link to hydrothermal activities powered by heat supply from magma. In this study, we developed numerical simulations of the instabilities of the water-steam two-phase flow in a pipe-valve system and considered the source mechanism of volcanic tremor. The experiments of two-phase flow by Veziroglu and Lee [1968] revealed the two kinds of oscillating modes, density wave oscillation with the period of a few seconds and pressure drop oscillation with the period of dozens of seconds. These modes were mainly controlled by the pressure difference between inlet and outlet, flux rate of fluid and heat supply rate. Especially, the former mode appears when the flux rate is small and the latter does when the pressure difference and heat supply rate are larger. We performed some preliminary numerical simulation of these oscillations in water-steam flow in a cylindrical conduit. As an example, we assume the flow in conduit of 4 m length with the valves at inlet and outlet with the conditions of non-slip at the wall. As initial conditions, the inlet and outlet pressures are fixed to be 1.2E5 Pa and 1.0E5 Pa, respectively, water temperature of 370 K, heat supply of 1.0E6 - 2.0E7W/m3. The friction except the valve area is assumed to be 1000kg/m3. After the heating condition becomes stable, we shut the valve at the outlet and detect the significant oscillation. In case of the heat supply of 1.1E7W/m3, density drop oscillation with the period of 0.16s has appeared. In this model, the oscillation originates from the density change due to vaporization, and its information arrives at the outlet with the velocity of two-phase flow. The cycle of heating and boiling controls the interval of the tremor occurrence and the period is determined by the length of the pipe and the flow velocity. The shut of valve physically corresponds to geometrical narrowing, choking, and non-linear effect of flow and/or surrounding medium.
Ceramic oxygen transport membrane array reactor and reforming method
Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.
2017-10-03
The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.M. Gandrik
2012-04-01
This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.
Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.
2001-01-01
A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.
TRAC-PF1 code verification with data from the OTIS test facility. [Once-Through Intergral System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childerson, M.T.; Fujita, R.K.
1985-01-01
A computer code (TRAC-PF1/MOD1) developed for predicting transient thermal and hydraulic integral nuclear steam supply system (NSSS) response was benchmarked. Post-small break loss-of-coolant accident (LOCA) data from a scaled, experimental facility, designated the One-Through Integral System (OTIS), were obtained for the Babcock and Wilcox NSSS and compared to TRAC predictions. The OTIS tests provided a challenging small break LOCA data set for TRAC verification. The major phases of a small break LOCA observed in the OTIS tests included pressurizer draining and loop saturation, intermittent reactor coolant system circulation, boiler-condenser mode, and the initial stages of refill. The TRAC code wasmore » successful in predicting OTIS loop conditions (system pressures and temperatures) after modification of the steam generator model. In particular, the code predicted both pool and auxiliary-feedwater initiated boiler-condenser mode heat transfer.« less
Ocean thermal gradient as a generator of electricity. OTEC power plant
NASA Astrophysics Data System (ADS)
Enrique, Luna-Gomez Victor; Angel, Alatorre-Mendieta Miguel
2016-04-01
The OTEC (Ocean Thermal Energy Conversion) is a power plant that uses the thermal gradient of the sea water between the surface and a depth of about 700 meters. It works by supplying the heat to a steam machine, for evaporation, with sea water from the surface and cold, to condense the steam, with deep sea water. The energy generated by the power plant OTEC can be transferred to the electric power grid, another use is to desalinate seawater. During the twentieth century in some countries experimental power plants to produce electricity or obtaining drinking water they were installed. On the Mexico's coast itself this thermal gradient, as it is located in tropical seas it occurs, so it has possibilities of installing OTEC power plant type. In this paper one type OTEC power plant operation is represented in most of its components.
Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man
2011-01-01
Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well. PMID:22319407
Maxey, L.C.; Simpson, M.L.
1995-01-17
A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.
NASA Technical Reports Server (NTRS)
Choo, Y. K.; Staiger, P. J.
1982-01-01
The code was designed to analyze performance at valves-wide-open design flow. The code can model conventional steam cycles as well as cycles that include such special features as process steam extraction and induction and feedwater heating by external heat sources. Convenience features and extensions to the special features were incorporated into the PRESTO code. The features are described, and detailed examples illustrating the use of both the original and the special features are given.
Maxey, Lonnie C.; Simpson, Marc L.
1995-01-01
A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.
Steam Hydrocarbon Cracking and Reforming
ERIC Educational Resources Information Center
Golombok, Michael
2004-01-01
The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…
LABORATORY MICROCOSM EXPERIMENTS OF OXIDATION PROCESSES AFTER STEAM INJECTION
Aggressive thermal methods such as steam injection or resistive heating are known to be effective for the recovery of many types of volatile and semivolatile compounds. It has been suggested that oxidation or other chemical reactions that occur at remediation temperatures can ai...
Double-wall tubing for oil recovery
NASA Technical Reports Server (NTRS)
Back, L. H.; Carroll, W. F.; Jaffee, L. D.; Stimpson, L. D.
1980-01-01
Insulated double-wall tubing designed for steam injection oil recovery makes process more economical and allows deeper extension of wells. Higher quality wet steam is delivered through tubing to oil deposits with significant reductions in heat loss to surrounding rock allowing greater exploitation of previously unworkable reservoirs.
Guo, Sheng; Duan, Jin-Ao; Zhang, Ying; Qian, Dawei; Tang, Yuping; Zhu, Zhenhua; Wang, Hanqing
2015-12-12
Chinese jujube (Ziziphus jujuba), a medicinal and edible plant, is widely consumed in Asian countries owing to the remarkable health activities of its fruits. To facilitate selection of the suitable processing method for jujube fruits, in this study their contents of triterpenic acids, nucleosides, nucleobases and saccharides after drying and steaming treatment were determined using ultra-high performance liquid chromatography and high performance liquid chromatography coupled with evaporative light scattering detector methods. The results showed that except for sucrose, the content levels of most analytes were increasing in the jujube fruits during drying treatment at 45 °C. The levels of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, were significantly decreased after the fruits were steamed. Therefore, owing to the bioactivities of these components for human health, the dried fruits would be the better choice as medicinal material or functional food, and dried jujube fruit should not be further steamed.
Périno-Issartier, Sandrine; Ginies, Christian; Cravotto, Giancarlo; Chemat, Farid
2013-08-30
A total of eight extraction techniques ranging from conventional methods (hydrodistillation (HD), steam distillation (SD), turbohydrodistillation (THD)), through innovative techniques (ultrasound assisted extraction (US-SD) and finishing with microwave assisted extraction techniques such as In situ microwave-generated hydrodistillation (ISMH), microwave steam distillation (MSD), microwave hydrodiffusion and gravity (MHG), and microwave steam diffusion (MSDf)) were used to extract essential oil from lavandin flowers and their results were compared. Extraction time, yield, essential oil composition and sensorial analysis were considered as the principal terms of comparison. The essential oils extracted using the more innovative processes were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained from the conventional techniques. The method which gave the best results was the microwave hydrodiffusion and gravity (MHG) method which gave reduced extraction time (30min against 220min for SD) and gave no differences in essential oil yield and sensorial perception. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor
Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of the combined system comprising a SCW nuclear power generation plant and a chemical heat pump, which provides high-temperature heat to a thermochemical water splitting cycle for hydrogen production. It is concluded that the proposed chemical heat pump permits the utilization efficiency of nuclear energy to be improved by at least 2% without jeopardizing nuclear reactor safety. Based on this analysis, further research appears to be merited on the proposed advanced design of a nuclear power generation plant combined with a chemical heat pump, and implementation in appropriate applications seems worthwhile.
Patrick, T E; Goodwin, T L; Collins, J A; Wyche, R C; Love, B E
1972-04-01
A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Suk; Bragg-Sitton, Shannon M.; Boardman, Richard D.
This report has been prepared as part of an effort to design and build a modeling and simulation (M&S) framework to assess the economic viability of a nuclear-renewable hybrid energy system (N-R HES). In order to facilitate dynamic M&S of such an integrated system, research groups in multiple national laboratories have been developing various subsystems as dynamic physics-based components using the Modelica programming language. In fiscal year 2015 (FY15), Idaho National Laboratory (INL) performed a dynamic analysis of two region-specific N-R HES configurations, including the gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) and brackish water reverse osmosis desalination plants asmore » industrial processes. In FY16, INL developed two additional subsystems in the Modelica framework: (1) a high-temperature steam electrolysis (HTSE) plant as a high priority industrial plant to be integrated with a light water reactor (LWR) within an N-R HES and (2) a gas turbine power plant as a secondary energy supply. In FY17, five new components (i.e., a feedwater pump, a multi-stage compression system, a sweep-gas turbine, flow control valves, and pressure control valves) have been incorporated into the HTSE system proposed in FY16, aiming to better realistically characterize all key components of concern. Special attention has been given to the controller settings based on process models (i.e., direct synthesis method), aiming to improve process dynamics and controllability. A dynamic performance analysis of the improved LWR/HTSE integration case was carried out to evaluate the technical feasibility (load-following capability) and safety of such a system operating under highly variable conditions requiring flexible output. The analysis (evaluated in terms of the step response) clearly shows that the FY17 model resulted in superior output responses with much smaller settling times and less oscillatory behavior in response to disturbances in the electric load than those observed with the FY16 model. Simulation results involving several case studies show that the suggested control scheme could maintain the controlled variables (including the steam utilization factor, cathode stream inlet composition, and temperatures and pressures of the process streams at various locations) within desired limits under various plant operating conditions. The results also indicate that the proposed HTSE plant could provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess plant capacity within an N-R HES.« less
NASA Astrophysics Data System (ADS)
Arkadyev, B. A.
2015-10-01
Basic principles of cooling of high-temperature steam turbines and constructive solutions used for development of the world's first cooled steam turbine SKR-100 (R-100-300) are described. Principal differences between the thermodynamic properties of cooling medium in the steam and gas turbines and the preference of making flow passes of cooled cylinders of steam turbines as reactive are shown. Some of its operation results and their conclusions are given. This turbine with a power of 100 MW, initial steam parameters approximately 30 MPa and 650°C, and back pressure 3 MPa was made by a Kharkov turbine plant in 1961 and ran successfully at a Kashira GRES (state district power plant) up to 1979, when it was taken out of use in a still fully operating condition. For comparison, some data on construction features and operation results of the super-high pressure cylinder of steam turbines of American Philo 6 (made by General Electric Co.) and Eddystone 1 (made by Westinghouse Co.) power generating units, which are close to the SKR-100 turbine by design initial steam parameters and the implementation time, are given. The high operational reliability and effectiveness of the cooling system that was used in the super-high pressure cylinder of the SKR-100 turbine of the power-generating unit, which were demonstrated in operation, confirms rightfulness and expediency of principles and constructive solutions laid at its development. As process steam temperatures are increased, the realization of the proposed approach to cooling of multistage turbines makes it possible to limit for large turbine parts the application of new, more expensive high-temperature materials, which are required for making steam boilers, and, in some cases, to do completely away with their utilization.
An Advanced NSSS Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4
NASA Astrophysics Data System (ADS)
Oh, Yang Gyun; Galin, Scott R.; Lee, Sang Jeong
2010-12-01
The advanced design features of NSSS (Nuclear Steam Supply System) Integrity Monitoring System for Shin-Kori Nuclear Units 3 and 4 are summarized herein. During the overall system design and detailed component design processes, many design improvements have been made for the system. The major design changes are: 1) the application of a common software platform for all subsystems, 2) the implementation of remote access, control and monitoring capabilities, and 3) the equipment redesign and rearrangement that has simplified the system architecture. Changes give an effect on cabinet size, number of cables, cyber-security, graphic user interfaces, and interfaces with other monitoring systems. The system installation and operation for Shin-Kori Nuclear Units 3 and 4 will be more convenient than those for previous Korean nuclear units in view of its remote control capability, automated test functions, improved user interface functions, and much less cabling.
Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up.
Kitching, Michael; Butler, Robin; Marsili, Enrico
2017-01-01
Sustainable energy supplies are needed to supplement and eventually replace fossil fuels. Molecular hydrogen H 2 is a clean burning, high-energy fuel that is also used as reducing gas in industrial processes. H 2 is mainly synthesized by steam reforming of natural gas, a non-renewable fuel. There are biosynthetic strategies for H 2 production; however, they are associated with poor yield and have high cost. The application of an electrochemical driving force in a microbial electrolysis cell (MEC) improves the yield of biological reactions. The performance of the MEC is influenced by experimental parameters such as the electrode material, reactor design, microbial consortia and the substrate. In this review, factors that affect the performance of MECs are discussed and critically analysed. The potential for scale-up of H 2 bioelectrosynthesis is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, F. C.; Golshani, A.
1982-02-01
Experiments on deaeration in packed columns and barometric intake systems, and with hydraulic air compression for open-cycle OTEC systems are reported. A gas desorption test loop consisting of water storage tanks, a vacuum system, a liquid recirculating system, an air supply, a column test section, and two barometric leg test sections was used to perform the tests. The aerated water was directed through columns filled with either ceramic Raschig rings or plastic pall rings, and the system vacuum pressure, which drives the deaeration process, was found to be dependent on water velocity and intake pipe height. The addition of a barometric intake pipe increased the deaeration effect 10%, and further tests were run with lengths of PVC pipe as potential means for noncondensibles disposal through hydraulic air compression. Using the kinetic energy from the effluent flow to condense steam in the noncondensible stream improved the system efficiency.
Food-cooking processes modulate allergenic properties of hen's egg white proteins.
Liu, Xiaoyu; Feng, Bai-Sui; Kong, Xiaoli; Xu, Hong; Li, Xiumin; Yang, Ping-Chang; Liu, Zhigang
2013-01-01
Reducing the allergenicity of food allergens can suppress the clinical symptoms of food allergy. The objective of the present study was to investigate the effects of processing on the allergenic properties of hen's egg white proteins. Eggs were processed by traditional Chinese cooking, including steaming, water boiling, frying, spicing and tea boiling. The contents of processed egg protein were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis; the allergenicity was evaluated by Western blotting, enzyme-linked immunosorbent assay and enzyme allergosorbent test inhibition. Circular dichroism spectrum analysis of four major egg allergens from various egg products was performed as well. A mouse model of food allergy was developed to test the allergenicity of processed egg protein in vivo. Protein degradation was significant following tea boiling and spiced-tea boiling. The total allergenic potential of water-boiled egg and fried egg was relatively higher than that of steamed egg, spiced egg and tea-boiled egg. Challenge with proteins from raw egg, water-boiled egg and fried egg induced skewed T-helper 2 pattern responses (Th2 responses) in the intestine of mice sensitized to egg proteins; however, when the mice sensitized to egg proteins were challenged with proteins from steamed egg, spiced egg and tea-boiled egg, respectively, only weak Th2 responses were induced in their intestine. Processing by steaming, spicing, or tea boiling can weaken the allergenicity of egg proteins. Copyright © 2012 S. Karger AG, Basel.
Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...
2016-04-05
Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h -1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets,more » respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.« less
A New Microstructure Device for Efficient Evaporation of Liquids
NASA Astrophysics Data System (ADS)
Brandner, Juergen J.; Maikowske, Stefan; Vittoriosi, Alice
Evaporation of liquids is of major interest for many topics in process engineering. One of these is chemical process engineering, where evaporation of liquids and generation of superheated steam is mandatory for numerous processes. Generally, this is performed by use of classical pool boiling and evaporation process equipment. Another possibility is creating mixtures of gases and liquids, combined with a heating of this haze. Both methods provide relatively limited performance. Due to the advantages of microstructure devices especially in chemical process engineering [1] the interest in microstructure evaporators and steam generators have been increased through the last decade. In this publication several microstructure devices used for evaporation and generation of steam as well as superheating will be described. Here, normally electrically powered devices containing micro channels as well as non-channel microstructures are used due to better controllability of the temperature level. Micro channel heat exchangers have been designed, manufactured and tested at the Institute for Micro Process Engineering of the Karlsruhe Institute of Technology for more than 15 years. Starting with the famous Karlsruhe Cube, a cross-flow micro channel heat exchanger of various dimensions, not only conventional heat transfer between liquids or gases have been theoretically and experimentally examined but also phase transition from liquids to gases (evaporation) and condensation of liquids. However, the results obtained with sealed microstructure devices have often been unsatisfying. Thus, to learn more onto the evaporation process itself, an electrically powered device for optical inspection of the microstructures and the processes inside has been designed and manufactured [2]. This was further optimized and improved for better controllability and reliable experiments [3]. Exchangeable metallic micro channel array foils as well as an optical inspection of the evaporation process by high-speed videography have been integrated into the experimental setup. Fundamental research onto the influences of the geometry and dimensions of the integrated micro channels, the inlet flow distribution system geometry as well as the surface quality and surface coatings of the micro channels have been performed. While evaporation of liquids in crossflow and counterflow or co-current flow micro channel devices is possible, it is, in many cases, not possible to obtain superheated steam due to certain boundary conditions [4]. In most cases, the residence time is not sufficiently long, or the evaporation process itself cannot be stabilized and controlled precisely enough. Thus, a new design was proposed to obtain complete evaporation and steam superheating. This microstructure evaporator consists of a concentric arrangement of semi-circular walls or semi-elliptic walls providing at least two nozzles to release the generated steam. The complete arrangement forms a row of circular blanks. An example of such geometry is shown in Figure 7. A maximum power density of 1400 kW·m-2 has been transferred using similar systems, while liquid could be completely evaporated and the generated steam superheated. This is, compared to liquid heat exchanges, a small value, but it has to be taken in account that the specific heat capacity of vapour is considerably smaller than that of liquids. It could also be shown that the arrangement in circular blanks with semi-elliptic side walls acts as a kind of micro mixer for the remaining liquid and generated steam and, therefore, enhances the evaporation.
Paciulli, Maria; Dall'Asta, Chiara; Rinaldi, Massimiliano; Pellegrini, Nicoletta; Pugliese, Alessandro; Chiavaro, Emma
2018-04-01
Several studies investigated the impact of different cooking techniques on the quality of vegetables. However, the use of the combined air-steam cooking is still scarcely debated, despite the advantages informally referred by professional catering workers. In this study, its optimisation was studied on Brussels sprouts and pumpkin cubes to obtain the best physical (texture, colour) and antioxidant (FRAP, total phenols) response, in comparison to a conventional steaming treatment. Increasing the strength of the air-steam treatment, Brussels sprouts resulted to be softer, less green (higher a* value), richer in phenols and exhibited lower FRAP values than the steamed ones. The air-steamed pumpkin cubes exhibited an equivalent softening degree to that of steamed ones and, under the strongest cooking conditions, a higher antioxidant quality and a yellow darkening (lower b* value). Varying the cooking time and/or temperature, a linear change of force/compression hardness and a* (negative a*: greenness) for Brussels sprouts, b* (yellowness) and total phenol content for pumpkin cubes was observed. A predictive model for these variables was obtained by response surface methodology. The best process conditions to achieve the optimal desirability were also identified. The application of air-steam cooking under suitable time/temperature conditions could be proposed as an alternative method to a traditional steam cooking on Brussels sprouts and pumpkin cubes, being able to preserve or improve their quality. The best air-steam cooking conditions were 25 min at 90 °C for Brussels sprouts and 10 min at 110 °C for pumpkin. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon
Sircar, Shivaji; Hufton, Jeffrey Raymond; Nataraj, Shankar
2000-01-01
In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Lu, Hongyou; Price, Lynn K.
In the U.S., energy consumption by steam and process heat combined accounts for over 50% of the total energy use from industrial systems (see Figure 1). The use of boilers, process heaters, and furnaces for generating steam and heat in industrial facilities, commercial settings, and institutions consumes significant amounts of energy and is one of major sources of hazardous air pollutants, which contribute significantly to local pollution and global climate change. To address the energy and environmental challenges caused by boiler systems in the U.S., the country has taken a series of actions to reduce emissions from industrial, commercial andmore » institutional boilers, improve the efficiency of steam systems, replace coal with cleaner energy resources, and promote the wider use of combined heat and power (CHP).« less
Processing urinary endoscopes in a low-temperature steam and formaldehyde autoclave.
Gibson, G L
1977-01-01
Methods of disinfection and sterilisation of urinary endoscopes are considered. A small mobile low-temperature steam and formaldehyde autoclave (Miniclave 80) is evaluated and shown to be satisfactory for this purpose as judged by a variety of relevant microbiological test pieces. Images PMID:557503
An experimental study was conducted to determine the reliability of the Method 5 procedure for providing particulate emission data from an oil-fired steam generator. The study was concerned with determining whether any 'false' particulate resulted from the collection process of f...
SITE TECHNOLOGY CAPSULE: IN SITU STEAM ENHANCED RECOVERY PROCESS
The SERP technology is designed to treat soils contaminated with VOCs and SVOCs in situ. Steam injection and vacuum extraction are used to remove the organic compounds from the soil and concentrate them for disposal or recycling. A full-scale demonstration of SERP was conducted a...
Cogeneration systems and processes for treating hydrocarbon containing formations
Vinegar, Harold J [Bellaire, TX; Fowler, Thomas David [Houston, TX; Karanikas, John Michael [Houston, TX
2009-12-29
A system for treating a hydrocarbon containing formation includes a steam and electricity cogeneration facility. At least one injection well is located in a first portion of the formation. The injection well provides steam from the steam and electricity cogeneration facility to the first portion of the formation. At least one production well is located in the first portion of the formation. The production well in the first portion produces first hydrocarbons. At least one electrical heater is located in a second portion of the formation. At least one of the electrical heaters is powered by electricity from the steam and electricity cogeneration facility. At least one production well is located in the second portion of the formation. The production well in the second portion produces second hydrocarbons. The steam and electricity cogeneration facility uses the first hydrocarbons and/or the second hydrocarbons to generate electricity.
Serrano, Antonio; Fermoso, Fernando G; Alonso-Fariñas, Bernabé; Rodríguez-Gutierrez, Guillermo; Fernandez-Bolaños, Juan; Borja, Rafael
2017-11-01
A promising source of high added value compounds is the Olive Mill Solid Waste (OMSW). The aim of this research was to evaluate the viability of a biorefinery approach to valorize OMSW through the combination of steam explosion, phenols extraction, and anaerobic digestion. Steam explosion treatment increased the total phenol content in the steam exploited OMSW, which was twice than that the total phenol content in raw OMSW, although some undesirable compounds were also formed. Phenol extraction allowed the recovery of 2098mg hydroxytyrosol per kg of OMSW. Anaerobic digestion allowed the partial stabilization of the different substrates, although it was not improved by the steam explosion treatment. The economic suitability of the proposed biorefinery approach is favorable up to a phenol extract price 90.7% lower than the referenced actual price of 520€/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.
Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.
Andrew, Renny; Gokak, D T; Sharma, Pankaj; Gupta, Shalini
2016-12-01
Today, the impending stringent environmental norms and concerns about the depletion of fossil fuel reserves have added impetus on development of cutting edge technologies for production of alternative fuels from renewable sources, like biomass. The concept of biomass pyro-gasification offers a platform for production of (a) hydrogen, (b) hydrocarbons and (c) value added chemicals, etc. In this context, there exists potential for hydrogen production from biomass by superheated steam gasification. Apart from H 2 , gaseous products of biomass steam gasification contain CO, CH 4 and other hydrocarbons that can be converted to hydrogen through cracking, steam reforming and water gas shift reactions. In the present work, the characteristics of biomass steam gasification in an indigenously designed rotary tubular coiled-downdraft reactor for high value gaseous fuel production from rice husk was studied through a series of experiments. The robust reactor system enhances biomass conversion to gaseous products by improved mass and heat transfer within the system induced by a coiled flow pattern with increased heat transfer area. Also, the system has improved upon the reliability of operation and offered greater continuity of the process and easier control in comparison with a conventional process by making use of an innovative gas cooler assembly and efficient venturi-mixing system for biomass and steam. Subsequently, the effects of reactor temperature, steam-to-biomass ratio and residence time on overall product gas yield and hydrogen yield were investigated. From the experimental results, it can be deduced that an optimum reactor temperature of 750 °C, steam-to-biomass ratio of 2.0 and a residence time of 3.0 min contributed highest gas yield (1.252 Nm 3 kg -1 moisture-free biomass). Based on the obtained experimental results, a projected potential hydrogen yield of 8.6 wt% of the moisture-free biomass could be achieved, and is also practical for production of pure hydrogen. © The Author(s) 2016.
Evidence of technetium and iodine release from a sodalite-bearing ceramic waste form
Neeway, James J.; Qafoku, Nikolla P.; Williams, Benjamin D.; ...
2015-12-31
We proposed sodalites as a possible host of certain radioactive species, specifically 99Tc and 129I, which may be encapsulated into the cage structure of the mineral. To demonstrate the ability of this framework silicate mineral to encapsulate and immobilize 99Tc and 129I, single-pass flow-through (SPFT) tests were conducted on a sodalite-bearing multi-phase ceramic waste form produced through a steam reforming process. We produced two samples made using a steam reformer samples using nonradioactive I and Re (as a surrogate for Tc), while a third sample was produced using actual radioactive tank waste containing Tc and added Re. One of themore » non-radioactive samples was produced with an engineering-scale steam reformer while the other non-radioactive sample and the radioactive sample were produced using a bench-scale steam reformer. For all three steam reformer products, the similar steady-state dilute-solution release rates for Re, I, and Tc at pH (25 C) 9 and 40 C were measured. However, it was found that the Re, I, and Tc releases were equal or up to 4.5x higher compared to the release rates of the network-forming elements, Na, Al, and Si. Moreover, the similar releases of Re and Tc in the SPFT test, and the similar time-dependent shapes of the release curves for samples containing I, suggest that Re, Tc, and I partition to the sodalite minerals during the steam reforming process.« less
Ukuku, Dike O; Geveke, David J; Chau, Lee; Niemira, Brendan A
2016-08-16
Fresh-cut cantaloupes have been associated with outbreaks of Salmonellosis. Minimally processed fresh-cut fruits have a limited shelf life because of deterioration caused by spoilage microflora and physiological processes. The objectives of this study were to use a wet steam process to 1) reduce indigenous spoilage microflora and inoculated populations of Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes on the surface of cantaloupes, and 2) reduce the populations counts in cantaloupe fresh-cut pieces after rind removal and cutting. The average inocula of Salmonella, E. coli O157:H7 and Listeria monocytogenes was 10(7)CFU/ml and the populations recovered on the cantaloupe rind surfaces after inoculation averaged 4.5, 4.8 and 4.1logCFU/cm(2), respectively. Whole cantaloupes were treated with a wet steam processing unit for 180s, and the treated melons were stored at 5°C for 29days. Bacterial populations in fresh-cut pieces prepared from treated and control samples stored at 5 and 10°C for up to 12days were determined and changes in color (CIE L*, a*, and b*) due to treatments were measured during storage. Presence and growth of aerobic mesophilic bacteria and Salmonella, E. coli O157:H7 and L. monocytogenes were determined in fresh-cut cantaloupe samples. There were no visual signs of physical damage on all treated cantaloupe surfaces immediately after treatments and during storage. All fresh-cut pieces from treated cantaloupes rind surfaces were negative for bacterial pathogens even after an enrichment process. Steam treatment significantly (p<0.05) changed the color of the fresh-cut pieces. Minimal wet steam treatment of cantaloupes rind surfaces designated for fresh-cut preparation will enhance the microbial safety of fresh-cut pieces, by reducing total bacterial populations. This process holds the potential to significantly reduce the incidence of foodborne illness associated with fresh-cut fruits. Published by Elsevier B.V.
Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju; Hwang, Dae Youn
2011-06-01
In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may contribute to the relief of diabetes symptoms and should be regarded as an excellent candidate for a diabetes treatment.
Choi, Sun Il; Lee, Hye Ryun; Goo, Jun Seo; Kim, Ji Eun; Nam, So Hee; Hwang, In Sik; Lee, Young Ju; Prak, So Hae; Lee, Hee Seob; Lee, Jong Sup; Jang, In Surk; Son, Hong Ju
2011-01-01
In oriental medicine, Liriope platyphylla (LP) has long been regarded as a curative herb useful for the treatment of diabetes, asthma, and neurodegenerative disorders. The principal objective of this study was to assess the effects of steaming time and frequency for manufactured Red LP (RLP) on insulin secretion ability and insulin receptor signaling pathway. To achieve our goal, several types of LPs manufactured under different conditions were applied to INS cells and streptozotocin (STZ)-induced diabetic ICR mice, after which alterations in insulin concentrations were detected in the culture supernatants and sera. The optimal concentration for the investigation of insulin secretion ability was found to be 50 ug/mL of LP. At this concentration, maximum insulin secretion was observed in the INS cells treated with LP extract steamed for 3 h (3-SLP) with two repeated steps (3 h steaming and 24 h air-dried) carried out 9 times (9-SALP); no significant changes in viability were detected in any of the treated cells. Additionally, the expression and phosphorylation levels of most components in the insulin receptor signaling pathway were increased significantly in the majority of cells treated with steaming-processed LP as compared to the cells treated with LP prepared without steaming. With regard to glucose transporter (GLUT) expression, alterations of steaming time induced similar responses on the expression levels of GLUT-2 and GLUT-3. However, differences in steaming frequency were also shown to induce dose-dependent responses in the expression level of GLUT-2 only; no significant differences in GLUT-3 expression were detected under these conditions. Furthermore, these responses observed in vitro were similarly detected in STZ-induced diabetic mice. 24-SLP and 9-SALP treatment applied for 14 days induced the down-regulation of glucose concentration and upregulation of insulin concentration. Therefore, these results indicated that the steaming processed LP may contribute to the relief of diabetes symptoms and should be regarded as an excellent candidate for a diabetes treatment. PMID:21826171
Influence of processing on the allergenic properties of pistachio nut assessed in vitro.
Noorbakhsh, Reihaneh; Mortazavi, Seyed Ali; Sankian, Mojtaba; Shahidi, Fakhri; Maleki, Soheila J; Nasiraii, Leila Roozbeh; Falak, Reza; Sima, Hamid Reza; Varasteh, AbdolReza
2010-09-22
Pistachio (Pistacia vera) is a tree nut that has been reported to cause IgE-mediated allergic reactions. This study was undertaken to investigate the distinctions between different cultivars of pistachio nut and the influence of different processing on the IgE-binding capacity of whole pistachio protein extracts. The influence of different processes on allergenicity was investigated using competitive inhibition ELISA and Western blotting assays. The Western blotting results of extracts from pistachio cultivars showed no marked difference among them. The IgE-binding capacity was significantly lower for the protein extract prepared from steam-roasted than from raw and dry-roasted pistachio nuts. The results of sensory evaluation analysis and hedonic rating proved no significant differences in color, taste, flavor, and overall quality of raw, roasted, and steam-roasted pistachio nut treatments. The most significant finding of the present study was the successful reduction of IgE-binding by pistachio extracts using steam-roast processing without any significant changes in sensory quality of product.
Nanoparticulate-catalyzed oxygen transfer processes
Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA
2009-12-01
Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.
NASA Astrophysics Data System (ADS)
Fukushima, Kimichika; Ogawa, Takashi
Hydrogen, a potential alternative energy source, is produced commercially by methane (or LPG) steam reforming, a process that requires high temperatures, which are produced by burning fossil fuels. However, as this process generates large amounts of CO2, replacement of the combustion heat source with a nuclear heat source for 773-1173K processes has been proposed in order to eliminate these CO2 emissions. In this paper, a novel method of nuclear hydrogen production by reforming dimethyl ether (DME) with steam at about 573K is proposed. From a thermodynamic equilibrium analysis of DME steam reforming, the authors identified conditions that provide high hydrogen production fraction at low pressure and temperatures of about 523-573K. By setting this low-temperature hydrogen production process upstream from a turbine and nuclear reactor at about 573K, the total energy utilization efficiency according to equilibrium mass and heat balance analysis is about 50%, and it is 75%for a fast breeder reactor (FBR), where turbine is upstream of the reformer.
Steam atmosphere dryer project: System development and field test. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-02-01
The objective of this project was to develop and demonstrate the use of a superheated steam atmosphere dryer as a highly improved alternative to conventional hot air-drying systems, the present industrial standard method for drying various wet feedstocks. The development program plan consisted of three major activities. The first was engineering analysis and testing of a small-scale laboratory superheated steam dryer. This dryer provided the basic engineering heat transfer data necessary to design a large-scale system. The second major activity consisted of the design, fabrication, and laboratory checkout testing of the field-site prototype superheated steam dryer system. The third majormore » activity consisted of the installation and testing of the complete 250-lb/hr evaporation rate dryer and a 30-kW cogeneration system in conjunction with an anaerobic digester facility at the Village of Bergen, NY. Feedstock for the digester facility at the Village of Bergen, NY. Feedstock for the digester was waste residue from a nearby commercial food processing plant. The superheated steam dryer system was placed into operation in August 1996 and operated successfully through March 1997. During this period, the dryer processed all the material from the digester to a powdered consistency usable as a high-nitrogen-based fertilizer.« less
Effects of gamma and electron beam irradiation on the microbial quality of steamed tofu rolls
NASA Astrophysics Data System (ADS)
Jia, Qian; Gao, Meixu; Li, Shurong; Wang, Zhidong
2013-01-01
The effectiveness of two kinds of radiation processing, gamma and electron beam (ebeam) irradiation, for the inactivation of Staphylococcus aureus, Salmonella enteritidis and Listeria innocua which were inoculated in pre-sterilised steamed tofu rolls was studied. The corresponding effects of both irradiation types on total bacterial counts (TBCs) in commercial steamed tofu rolls available in the market were also examined. The microbiological results demonstrated that gamma irradiation yielded D10 values of 0.20, 0.24 and 0.22 kGy for S. aureus, S. enteritidis and L. innocua, respectively. The respective D10 values for ebeam irradiation were 0.31, 0.35 and 0.27 kGy. Gamma and ebeam irradiation yielded D10 values of 0.48 and 0.43 kGy for total bacterial counts in commercial steamed tofu rolls, respectively. The results suggest that ebeam irradiation has similar effect on decreasing TBCs in steamed tofu rolls, and gamma irradiation is slightly more effective than ebeam irradiation in reducing the populations of pathogenic bacteria. The observed differences in D10-values between them might be due to the significant differences in dose rate applied, and radiation processing of soybean products to improve their microbial quality could be available for other sources of protein.
Central waste processing system
NASA Technical Reports Server (NTRS)
Kester, F. L.
1973-01-01
A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.
Process for making unsaturated hydrocarbons using microchannel process technology
Tonkovich, Anna Lee [Dublin, OH; Yuschak, Thomas [Lewis Center, OH; LaPlante, Timothy J [Columbus, OH; Rankin, Scott [Columbus, OH; Perry, Steven T [Galloway, OH; Fitzgerald, Sean Patrick [Columbus, OH; Simmons, Wayne W [Dublin, OH; Mazanec, Terry Daymo, Eric
2011-04-12
The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.
Production Methodology for the Validation of Electronic Fuzes
1980-11-01
are employed age cantridge o; magazine This mud’e is shown in figure Vtll-t (f) Fxtensis’e debuggngij and troubleshooting to perfect the automatic...All the plastic manterials platens The heat is supplied bs steam, heated can be fabricated b% more than one methoid , al- liquids, electrical res.stance...on-I-ne data bases, or the real-time data acquisition Resources %%ill be performizble- Thus. tbe adsantages that cook ;i be realized by full use of
Li, Xiang; Yao, Fan; Fan, Hang; Li, Ke; Sun, Liwei; Liu, Yujun
2018-03-26
Heating is a traditional method used in ginseng root processing, however, there aren't reports on differences resulting from baking and steaming. Moreover, ginseng flowers, with 5.06 times more total saponins than ginseng root, are not fully taken advantage of for their ginsenosides. Transformation mechanisms of ginsenosides in ginseng flowers upon baking and steaming were thus explored. HPLC using authentic standards of 20 ginsenosides and UPLC-QTOF-MS/MS were used to quantify and identify ginsenosides, respectively, in ginseng flowers baked or steamed at different temperatures and durations. Results show that baking and steaming caused a 3.2-fold increase in ginsenoside species existed in unheated ginseng flowers (20/64 ginsenosides) and transformation of a certain amount of polar ginsenosides into numerous less polar ginsenosides. Among the 20 ginsenosides with standards, polar ginsenosides were abundant in ginseng flowers baked or steamed at lower temperatures, whereas less polar ginsenosides occurred and were enriched at higher temperatures. Furthermore, the two types of heating treatments could generate mostly similar ginsenosides, but steaming was much efficient than baking in transforming polar- into less polar ginsenosides, with steaming at 120 °C being comparably equivalent to baking at 150 °C. Moreover, both the two heating methods triggered ginsenoside acetylation and thus caused formation of 16 acetylginsenosides. Finally, a new transformation mechanism concerning acetyl-ginsenosides formation was proposed.
Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun
2018-04-04
Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit
Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h -1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets,more » respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.« less
System and method for coproduction of activated carbon and steam/electricity
Srinivasachar, Srivats [Sturbridge, MA; Benson, Steven [Grand Forks, ND; Crocker, Charlene [Newfolden, MN; Mackenzie, Jill [Carmel, IN
2011-07-19
A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.
Carbonaceous material for production of hydrogen from low heating value fuel gases
Koutsoukos, Elias P.
1989-01-01
A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.
Patrick, Thomas E.; Goodwin, T. L.; Collins, J. A.; Wyche, R. C.; Love, B. E.
1972-01-01
A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling. PMID:4553146
An analytical model of SAGD process considering the effect of threshold pressure gradient
NASA Astrophysics Data System (ADS)
Morozov, P.; Abdullin, A.; Khairullin, M.
2018-05-01
An analytical model is proposed for the development of super-viscous oil deposits by the method of steam-assisted gravity drainage, taking into account the nonlinear filtration law with the limiting gradient. The influence of non-Newtonian properties of oil on the productivity of a horizontal well and the cumulative steam-oil ratio are studied. Verification of the proposed model based on the results of physical modeling of the SAGD process was carried out.
An experimental study of the role of subsurface plumbing on geothermal discharge
Namiki, Atsuko; Ueno, Yoshinori; Hurwitz, Shaul; Manga, Michael; Munoz-Saez, Carolina; Murphy, Fred
2016-01-01
In order to better understand the diverse discharge styles and eruption intervals observed at geothermal features, we performed three series of laboratory experiments with differing plumbing geometries. A single, straight conduit that connects a hot water bath (flask) to a vent (funnel) can originate geyser-like periodic eruptions, continuous discharge like a boiling spring, and fumarole-like steam discharge, depending on the conduit length and radius. The balance between the heat loss from the conduit walls and the heat supplied from the bottom determines whether and where water can condense which in turn controls discharge style. Next, we connected the conduit to a cold water reservoir through a branch, simulating the inflow from an external water source. Colder water located at a higher elevation than a branching point can flow into the conduit to stop the boiling in the flask, controlling the periodicity of the eruption. When an additional branch is connected to a second cold water reservoir, the two cold reservoirs can interact. Our experiments show that branching allows new processes to occur, such as recharge of colder water and escape of steam from side channels, leading to greater variation in discharge styles and eruption intervals. This model is consistent with the fact that eruption duration is not controlled by emptying reservoirs. We show how differences in plumbing geometries can explain various discharge styles and eruption intervals observed in El Tatio, Chile, and Yellowstone, USA.
An exergy approach to efficiency evaluation of desalination
NASA Astrophysics Data System (ADS)
Ng, Kim Choon; Shahzad, Muhammad Wakil; Son, Hyuk Soo; Hamed, Osman A.
2017-05-01
This paper presents an evaluation process efficiency based on the consumption of primary energy for all types of practical desalination methods available hitherto. The conventional performance ratio has, thus far, been defined with respect to the consumption of derived energy, such as the electricity or steam, which are susceptible to the conversion losses of power plants and boilers that burned the input primary fuels. As derived energies are usually expressed by the units, either kWh or Joules, these units cannot differentiate the grade of energy supplied to the processes accurately. In this paper, the specific energy consumption is revisited for the efficacy of all large-scale desalination plants. In today's combined production of electricity and desalinated water, accomplished with advanced cogeneration concept, the input exergy of fuels is utilized optimally and efficiently in a temperature cascaded manner. By discerning the exergy destruction successively in the turbines and desalination processes, the relative contribution of primary energy to the processes can be accurately apportioned to the input primary energy. Although efficiency is not a law of thermodynamics, however, a common platform for expressing the figures of merit explicit to the efficacy of desalination processes can be developed meaningfully that has the thermodynamic rigor up to the ideal or thermodynamic limit of seawater desalination for all scientists and engineers to aspire to.
Energy recovery from solid waste. [production engineering model
NASA Technical Reports Server (NTRS)
Dalton, C.; Huang, C. J.
1974-01-01
A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.
NASA Technical Reports Server (NTRS)
Jaffe, Leonard D.
1988-01-01
This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.; Weaver, Harold F; Kastner, Carl E., Jr.
2009-01-01
The center-body diffuser (CBD) steam blocker (SB) system is a concept that incorporates a set of secondary drive nozzles into the envelope of a CBD, such that both nozzle systems (i.e., the rocket engine and the steam blocking nozzles) utilize the same supersonic diffuser, and will operate either singularly or concurrently. In this manner, the SB performs as an exhaust system stage when the rocket engine is not operating, and virtually eliminates discharge flow on rocket engine shutdown. A 2.25-percent scale model of a proposed SB integrated into a diffuser for the Plum Brook B-2 facility was constructed and cold-flow tested for the purpose of evaluating performance characteristics of various design options. These specific design options addressed secondary drive nozzle design (method of steam injection), secondary drive nozzle location relative to CBD throat, and center-body throat length to diameter (L/D) ratios. The objective of the test program is to identify the desired configuration to carry forward should the next phase of design proceed. The tested scale model can provide data for various pressure ratios; however, its design is based on a proposed B-2 spray chamber (SC) operating pressure of 4.0 psia and a steam supply pressure of 165 psia. Evaluation of the test data acquired during these tests indicate that either the discrete axial or annular nozzle configuration integrated into a CBD, with an annular throat length of 1.5 L/D at the nominal injection position, would be suitable to carry forward from the SB's perspective. Selection between these two then becomes more a function of constructability and implementation than performance. L/D also has some flexibility, and final L/D selection can be a function of constructability issues within a limited range.
NASA Astrophysics Data System (ADS)
Trifonov, N. N.; Svyatkin, F. A.; Sintsova, T. G.; Ukhanova, M. G.; Yesin, S. B.; Nikolayenkova, E. K.; Yurchenko, A. Yu.; Grigorieva, E. B.
2016-03-01
The regeneration system heaters are one of the sources of possible ingress of the water into the turbine. The water penetrates into the turbine either at the heaters overflow or with the return flow of steam generated when the water being in the heater boils up in the dynamic operation modes or at deenergization of the power-generating unit. The return flow of steam and water is dangerous to the turbine blades and can result in the rotor acceleration. The known protective devices used to prevent the overflow of the low-pressure and high-pressure heaters (LPH and HPH), of the horizontal and vertical heaters of heating-system water (HWH and VWH), as well as of the deaerators and low-pressure mixing heaters (LPMH) were considered. The main protective methods of the steam and water return flows supplied by the heaters in dynamic operation modes or at deenergization of the power-generating unit are described. Previous operating experience shows that the available protections do not fully prevent water ingress into the turbine and the rotor acceleration and, therefore, the development of measures to decrease the possibility of ingress of the water into the turbine is an actual problem. The measures allowing eliminating or reducing the water mass in the heaters are expounded; some of them were designed by the specialists of OAO Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO CKTI) and are efficiently introduced at heat power plants and nuclear power plants. The suggested technical solutions allow reducing the possibility of the water ingress into the turbine and rotor acceleration by return steam flow in the dynamic operation modes or in the case of power generating unit deenergization. Some of these solutions have been tested in experimental-industrial exploitation and can be used in industry.
Ramalingam, Shivaji G; Pré, Pascaline; Giraudet, Sylvain; Le Coq, Laurence; Le Cloirec, Pierre; Baudouin, Olivier; Déchelotte, Stéphane
2012-02-29
The regeneration experiments of dichloromethane from activated carbon bed had been carried out by both hot nitrogen and steam to evaluate the regeneration performance and the operating cost of the regeneration step. Factorial Experimental Design (FED) tool had been implemented to optimize the temperature of nitrogen and the superficial velocity of the nitrogen to achieve maximum regeneration at an optimized operating cost. All the experimental results of adsorption step, hot nitrogen and steam regeneration step had been validated by the simulation model PROSIM. The average error percentage between the simulation and experiment based on the mass of adsorption of dichloromethane was 2.6%. The average error percentages between the simulations and experiments based on the mass of dichloromethane regenerated by nitrogen regeneration and steam regeneration were 3 and 12%, respectively. From the experiments, it had been shown that both the hot nitrogen and steam regeneration had regenerated 84% of dichloromethane. But the choice of hot nitrogen or steam regeneration depends on the regeneration time, operating costs, and purity of dichloromethane regenerated. A thorough investigation had been made about the advantages and limitations of both the hot nitrogen and steam regeneration of dichloromethane. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-03
Holston Army Ammunition Plant (HSAAP) in Holston, Tennessee, manufactures explosives from raw materials. The facility comprises two separate areas designated Area `A11 and Area 11B`. Each area is served by a steam plant which produces steam for production processes, equipment operation, space heating, domestic water heating, steam tracing, and product storage heating requirements. The purpose of this study is to identify and evaluate the technical and economic feasibility of alternative methods of meeting the steam requirements of the Area 11A11 industrial complex. The following items were specifically requested to be evaluated. Evaluate the use of two new gas-fired packaged boilersmore » sized to meet the requirements of the industrial complex. The new boilers would be installed adjacent to the existing steam plant and would utilize the existing smokestacks and steam distribution system. Evaluate using the existing steam distribution system rather than locating multiple boilers at various sites. Existing steam driven chillers will be replaced with electric driven equipment. Evaluate this impact on the steam system requirements. Field survey and test two existing gas-fired packaged boilers located at the Volunteer Army Ammunition Plant in Chattanooga, Tennessee. The two boilers were last used about 1980 and are presently laid away. The boilers are approximately the same capacity and operating characteristics as the ones at HSAAP. Relocation of the existing boilers and ancillary equipment (feedwater pumps, generators, fans, etc.) would be required as well as repairs or modifications necessary to meet current operating conditions and standards.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leskovar, Matjaz; Koncar, Bostjan
An ex-vessel steam explosion may occur when during a severe reactor accident the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles at later times, during the expansion of the highly pressurized water vapor, that may endanger surrounding structures. In contrast to specialized steammore » explosion CFD codes, where the steam explosion is modeled on micro-scale using fundamental averaged multiphase flow conservation equations, in the presented approach the steam explosion is modeled in a simplified manner as an expanding high-pressure pre-mixture of dispersed molten fuel, liquid water and vapor. Applying the developed steam explosion model, a comprehensive analysis of the ex-vessel steam explosion in a typical PWR reactor cavity was done using the CFD code CFX-10. At four selected locations, which are of importance for the assessment of the vulnerability of cavity structures, the pressure histories were recorded and the corresponding pressure impulses calculated. The pressure impulses determine the destructive potential of the steam explosion and represent the input for the structural mechanical analysis of the cavity structures. The simulation results show that the pressure impulses depend mainly on the steam explosion energy conversion ratio, whereas the influence of the pre-mixture vapor volume fraction, which is a parameter in our model and determines the maximum steam explosion pressure, is not significant. (authors)« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... supervisor shall determine whether the inspector's decision was correct. Review of such appeal determination... the official establishments.) (1) Steam treatment (which shall be accomplished by processing the condemned product in a pressure tank under at least 40 pounds of steam pressure) or thorough cooking in a...
Code of Federal Regulations, 2014 CFR
2014-01-01
... supervisor shall determine whether the inspector's decision was correct. Review of such appeal determination... the official establishments.) (1) Steam treatment (which shall be accomplished by processing the condemned product in a pressure tank under at least 40 pounds of steam pressure) or thorough cooking in a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... supervisor shall determine whether the inspector's decision was correct. Review of such appeal determination... the official establishments.) (1) Steam treatment (which shall be accomplished by processing the condemned product in a pressure tank under at least 40 pounds of steam pressure) or thorough cooking in a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... supervisor shall determine whether the inspector's decision was correct. Review of such appeal determination... the official establishments.) (1) Steam treatment (which shall be accomplished by processing the condemned product in a pressure tank under at least 40 pounds of steam pressure) or thorough cooking in a...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
...) temperature Continuous records as specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle...
40 CFR Table 3 to Subpart Ooo of... - Batch Process Vent Monitoring Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
...) temperature Continuous records as specified in § 63.1416(d). a Carbon adsorber a Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) during carbon bed regeneration cycle(s), and Record the total regeneration steam flow or nitrogen flow, or pressure for each carbon bed regeneration cycle...
USDA-ARS?s Scientific Manuscript database
Coriander (Coriandrum sativum L.) is a summer annual plant commonly used as fresh green herb, spice, or for its essential oil. A newly-developed process combined steam distillation and mechanical pressing to recover the essential oil and edible oil, respectively, from dehulled coriander seeds. The c...
Design and Selection of Soy Breads Used for Evaluating Isoflavone Bioavailability in Clinical Trials
Ahn-Jarvis, Jennifer H.; Riedl, Kenneth M.; Schwartz, Steven J.; Vodovotz, Yael
2013-01-01
To modulate isoflavone aglycone composition within a soy functional food, soy ingredients were processed and evaluated in a soy bread system intended for clinical trials. A soy flour/soy milk mixture (SM) was boiled, fermented, steamed, or roasted prior to dough preparation. The isoflavone compositions of five processed SM and their corresponding breads combined with and without β-glucosidase-rich almonds were examined using HPLC. Isoflavone malonyl-glucosides (>80%) were converted into acetyl and simple glucoside forms (substrates more favorable for β-glucosidase) in steamed and roasted SM. Their corresponding breads had isoflavones predominately as aglycones (∼75%) with soy–almond bread with steamed SM being more consumer acceptable than roasted. Isoflavone composition in soy bread was stable during frozen storage and toasting. A suitable glycoside-rich soy bread (31.6 ± 2.1 mg aglycone equiv/slice) using unprocessed SM and an aglycone-rich soy–almond bread (31.1 ± 1.9 mg aglycone equiv/slice) using steamed SM were developed to evaluate fundamental questions of isoflavone bioavailability in clinical trials. PMID:23451757
NASA Astrophysics Data System (ADS)
Nehter, Pedro; Hansen, John Bøgild; Larsen, Peter Koch
Ultra-low sulphur diesel (ULSD) is the preferred fuel for mobile auxiliary power units (APU). The commercial available technologies in the kW-range are combustion engine based gensets, achieving system efficiencies about 20%. Solid oxide fuel cells (SOFC) promise improvements with respect to efficiency and emission, particularly for the low power range. Fuel processing methods i.e., catalytic partial oxidation, autothermal reforming and steam reforming have been demonstrated to operate on diesel with various sulphur contents. The choice of fuel processing method strongly affects the SOFC's system efficiency and power density. This paper investigates the impact of fuel processing methods on the economical potential in SOFC APUs, taking variable and capital cost into account. Autonomous concepts without any external water supply are compared with anode recycle configurations. The cost of electricity is very sensitive on the choice of the O/C ratio and the temperature conditions of the fuel processor. A sensitivity analysis is applied to identify the most cost effective concept for different economic boundary conditions. The favourite concepts are discussed with respect to technical challenges and requirements operating in the presence of sulphur.
Steam-soak performance in south Oman
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, S.A.
1991-11-01
With about 2 {times} 10{sup 9} stock-tank m{sup 3} (12.6 {times} 10{sup 9} STB) of medium/heavy oil originally in place (OOIP) in south Oman, considerable scope exists for increasing oil recovery by thermal methods. The viability of thermal recovery in south Oman was tested with a steamflood pilot in the Al Khlata sands of the Marmul field and a 2-year steam-soak project to test the applicability of steam soak in five south Oman oil fields producing heavy oil. This paper describes the performance of the latter project. The wells selected for the test program included a wide range of southmore » Oman reservoir and oil characteristics i.e., the main reservoir drive mechanisms of depletion, solution-gas, and edge- and bottomwater drive, the reservoir sandbody types, and oil viscosities from 80 to 4000 mPa {center dot} s (80 to 4,000 cp). Steam-soak operations were successful, and oil production accelerated significantly, with an average stimulate production rate twice that before stimulation. Acceleration was less marked in wells where reservoir energy is limited or where the primary (cold) water cut is more than 30%. At primary (cold) water cuts {gt}50%, no increase in oil production rate was observed. The process was simulated numerically for several wells, with the results in close agreement with performance. Improved understanding of the process resulting from the simulation allowed the most important factors influencing performance to be identified and aided process optimization in the field test. Two small-scale steam-soak projects currently are being assessed for implementatioimplementation in the early 1990's.« less
Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary report
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
Large savings can be made in industry by cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules for determining performance and cost in individual plants and on a national level. It was found that: (1) atmospheric and pressurized fluidized bed steam turbine systems were the most attractive of the direct coal-fired systems; and (2) open-cycle gas turbines with heat recovery steam generators and combined-cycles with NO(x) emission reduction and moderately increased firing temperatures were the most attractive of the coal-derived liquid-fired systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian
General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less
NASA Astrophysics Data System (ADS)
Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro
2017-06-01
In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).
Padrino-Inciarte, Juan Carlos; Ma, Xia; VanderHeyden, W. Brian; ...
2016-01-01
General ensemble phase averaged equations for multiphase flows have been specialized for the simulation of the steam assisted gravity drainage (SAGD) process. In the average momentum equation, fluid-solid and fluid-fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy’s law for multiphase flow but augmented by the fluid-fluid viscous forces. Models for these fluid-fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes are missed.more » We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all of these time scales is time consuming. To address this problem, we introduce a steam surrogate approximation to increase the steam advection time scale, while keeping the mass and energy fluxes well approximated. This approximation leads to about a 40-fold speed-up in execution speed of the numerical calculations at the cost of a few percent error in the relevant quantities.« less
Sun, Shao-Ni; Cao, Xue-Fei; Xu, Feng; Sun, Run-Cang; Jones, Gwynn Lloyd
2014-06-25
An environmentally friendly steam explosion process of bamboo, followed by alkali and alkaline ethanol delignification, was developed to fractionate lignins. Results showed that after steam explosion the lignins isolated showed relatively low carbohydrate contents (0.55-1.76%) and molecular weights (780-1050 g/mol). For each steam-exploded sample, alkali-extracted lignins presented higher phenolic OH values (1.41-1.82 mmol/g), p-coumaric acid to ferulic acid ratios (pCA/FA ratios 4.5-14.1), and syringyl to guaiacyl ratios (S/G ratios 5.0-8.5) than those from alkaline ethanol-extracted lignins (phenolic OH 0.85-1.35 mmol/g, pCA/FA ratios 1.6-5.2, and S/G ratios 3.5-4.8). The lignins obtained consisted mainly of β-O-4' linkages combined with small amounts of β-β', β-5', and α-O-4/β-O-4 linkages. Antioxidant activities of the lignins obtained were tested by the 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azobis(3-ethylbenzothiazoline-6-sulfonic acid), and ferric reducing activity power methods. It was found that alkali-extracted lignins obtained during the initial extraction process had higher antioxidant activities than alkaline ethanol-extracted lignins obtained during the second extraction process.
Wu, Chunfei; Nahil, Mohamad A; Miskolczi, Norbert; Huang, Jun; Williams, Paul T
2014-01-01
Producing both hydrogen and high-value carbon nanotubes (CNTs) derived from waste plastics is reported here using a pyrolysis-reforming technology comprising a two-stage reaction system, in the presence of steam and a Ni-Mn-Al catalyst. The waste plastics consisted of plastics from a motor oil container (MOC), commercial waste high density polyethylene (HDPE) and regranulated HDPE waste containing polyvinyl chloride (PVC). The results show that hydrogen can be produced from the pyrolysis-reforming process, but also carbon nanotubes are formed on the catalyst. However, the content of 0.3 wt.% polyvinyl chloride in the waste HDPE (HDPE/PVC) has been shown to poison the catalyst and significantly reduce the quantity and purity of CNTs. The presence of sulfur has shown less influence on the production of CNTs in terms of quantity and CNT morphologies. Around 94.4 mmol H2 g(-1) plastic was obtained for the pyrolysis-reforming of HDPE waste in the presence of the Ni-Mn-Al catalyst and steam at a reforming temperature of 800 °C. The addition of steam in the process results in an increase of hydrogen production and reduction of carbon yield; in addition, the defects of CNTs, for example, edge dislocations were found to be increased with the introduction of steam (from Raman analysis).
NASA Astrophysics Data System (ADS)
Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.
2016-05-01
A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes, results in lower values of Δ t (the temperature difference between internal and external coolant) for a given heat load.
Luong, J; Shellie, R A; Cortes, H; Gras, R; Hayward, T
2012-03-16
Steam condensate water treatment is a vital and integral part of the overall cooling water treatment process. Steam condensate often contains varying levels of carbon dioxide and oxygen which acts as an oxidizer. Carbon dioxide forms corrosive carbonic acid when dissolved in condensed steam. To neutralize the harmful effect of the carbonic acid, volatile amine compounds such as morpholine, cyclohexylamine, and diethylaminoethanol are often employed as part of a strategy to control corrosion in the water treatment process. Due to the high stability of these compounds in a water matrix, the indirect addition of such chemicals into the process via steam condensate often results in their presence throughout the process and even into the final product. It is therefore important to understand the impact of these chemicals and their fate within a chemical plant. The ability to analyze such compounds by gas chromatography has historically been difficult due to the lack of chromatographic system inertness at the trace level concentrations especially in an aqueous matrix. Here a highly sensitive, practical, and reliable gas chromatographic approach is described for the determination of morpholine, cyclohexylamine, and diethylaminoethanol in steam condensate at the part-per-billion (ppb) levels. The approach does not require any sample enrichment or derivatization. The technique employs a multi-mode inlet operating in pulsed splitless mode with programmed inlet temperature for sample introduction, an inert base-deactivated capillary column for solute separation and flame ionization detection. Chromatographic performance was further enhanced by the incorporation of 2-propanol as a co-solvent. Detection limits for morpholine, cyclohexylamine, diethylaminoethanol were established to be 100 ppb (v/v), with relative standard deviations (RSD) of less than 6% at the 95% confidence level (n=20) and a percent recovery of 96% or higher for the solutes of interest over a range of 0.1-100 ppm (v/v). A complete analysis can be conducted in less than 10 min. Copyright © 2012 Elsevier B.V. All rights reserved.
Experimental and numerical investigation of the Fast-SAGD process
NASA Astrophysics Data System (ADS)
Shin, Hyundon
The SAGD process has been tested in the field, and is now in a commercial stage in Western Canadian oil sands areas. The Fast-SAGD method can partly solve the drilling difficulty and reduce costs in a SAGD operation requiring paired parallel wells one above the other. This method also enhances the thermal efficiency in the reservoir. In this research, the reservoir parameters and operating conditions for the SAGD and Fast-SAGD processes are investigated by numerical simulation in the three Alberta oil sands areas. Scaled physical model experiments, which are operated by an automated process control system, are conducted under high temperature and high pressure conditions. The results of the study indicate that the shallow Athabasca-type reservoir, which is thick with high permeability (high kxh), is a good candidate for SAGD application, whereas Cold Lake- and Peace River-type reservoirs, which are thin with low permeability, are not as good candidates for conventional SAGD implementation. The simulation results indicate improved energy efficiency and productivity in most cases for the Fast-SAGD process; in those cases, the project economics were enhanced compared to the SAGD process. Both Cold Lake- and Peace River-type reservoirs are good candidates for a Fast-SAGD application rather than a conventional SAGD application. This new process demonstrates improved efficiency and lower costs for extracting heavy oil from these important reservoirs. A new economic indicator, called simple thermal efficiency parameter (STEP), was developed and validated to evaluate the performance of a SAGD project. STEP is based on cumulative steam-oil ratio (CSOR), calendar day oil rate (CDOR) and recovery factor (RF) for the time prior to the steam-oil ratio (SOR) attaining 4. STEP can be used as a financial metric quantitatively as well as qualitatively for this type of thermal project. An automated process control system was set-up and validated, and has the capability of controlling and handling steam injection processes like the steam-assisted gravity drainage process. The results of these preliminary experiments showed the overall cumulative oil production to be larger in the Fast-SAGD case, but end-point CSOR to be lower in the SAGD case. History matching results indicated that the steam quality was as low as 0.3 in the SAGD experiments, and even lower in the Fast-SAGD experiments after starting the CSS.
Waste heat utilization in industrial processes
NASA Technical Reports Server (NTRS)
Weichsel, M.; Heitmann, W.
1978-01-01
A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.
Interpretation of steam drive pilots in the Belridge Diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, R.M.; Shahin, G.T.
1995-12-31
The South Belridge Diatomite Field contains more than 2.5 billion barrels of oil-in-place. Current primary and waterflood development are estimated to recover only a small fraction of this oil. Despite its low permeability, the diatomite may be a good candidate for the steam drive process, due to its thick oil column (1,000 ft), high porosity (50% to 65%), and high oil saturation (up to 70%). With these attributes, thermal expansion and decreased viscosity of reservoir fluids accelerate oil production, without significant heat loss to cap and base rock. Steam drive pilot operations have been conducted at South Belridge since 1986.more » This paper discusses the pilot projects and the 15-acre steam drive full-scale project currently being installed.« less
An afterburner-powered methane/steam reformer for a solid oxide fuel cells application
NASA Astrophysics Data System (ADS)
Mozdzierz, Marcin; Chalusiak, Maciej; Kimijima, Shinji; Szmyd, Janusz S.; Brus, Grzegorz
2018-04-01
Solid oxide fuel cell (SOFC) systems can be fueled by natural gas when the reforming reaction is conducted in a stack. Due to its maturity and safety, indirect internal reforming is usually used. A strong endothermic methane/steam reforming process needs a large amount of heat, and it is convenient to provide thermal energy by burning the remainders of fuel from a cell. In this work, the mathematical model of afterburner-powered methane/steam reformer is proposed. To analyze the effect of a fuel composition on SOFC performance, the zero-dimensional model of a fuel cell connected with a reformer is formulated. It is shown that the highest efficiency of a solid oxide fuel cell is achieved when the steam-to-methane ratio at the reforming reactor inlet is high.
1977-08-01
pulsejet. C W W/pW2 X3A, a work coefficient D Pipe diameter = 2R E Young’s modulus, or kinetic energy f D’Arcy friction factor , or stress g Acceleration due...to con- tact the hot region to provide a supply of steam for later condensation. This factor may account for the somewhat more stable operation of a...momentum in the wake. (c) Equation (1) assumes that the [)’Arcy friction factor f is constant, so that skin friction terms cancel out. The magnitu|de of
Photographic copy of plan of new Dy horizontal station and ...
Photographic copy of plan of new Dy horizontal station and accumulator additions to Test Stand "D," also showing existing Dd test station. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: "Jet Propulsion Laboratory-Edwards Test Station, Motive Steam Supply & Ejector Pumping System: Plan - Test Stand "D," sheet M-3 (JPL sheet number E24/33), 21 December 1976 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
22. Engine room, as seen from starboard side, forward corner. ...
22. Engine room, as seen from starboard side, forward corner. In left foreground is centrifugal water pump driven by a two-cylinder steam reciprocating engine to supply water to trim tanks. Center of view shows hot well for main engine, and at right is bottom of cylinder, condenser, and valve chest of main (walking beam) engine. X-braces in left side of image are stiffening trusses for the hull. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT
Fabrication and characterization of solid oxide cells for energy conversion and storage
NASA Astrophysics Data System (ADS)
Yang, Chenghao
2011-12-01
There has been an increasing interest in clean and renewable energy generation for highlighted energy and environmental concerns. Solid oxide cells (SOCs) have been considered as one of the promising technologies, since they can be operated efficiently both in electrolysis mode by generating hydrogen through steam electrolysis and fuel cell mode by electrochemically combining fuel with oxidant. The present work is devoted to performing a fundamental study of SOC in both fuel cell mode for power generation and electrolysis mode for fuel production. The research work on SOCs that can be operated reversibly for power generation and fuel production has been conducted in the following six projects: (1) High performance solid oxide electrolysis cell (SOEC) Fabrication of novel structured SOEC oxygen electrode with the conventional and commercial solid oxide fuel cell materials by screen-printing and infiltration fabrication methods. The microstructure, electrochemical properties and durability of SOECs has been investigated. It was found that the LSM infiltrated cell has an area specific resistance (ASR) of 0.20 Ω cm2 at 900°C at open circuit voltage with 50% absolute humidity (AH), which is relatively lower than that of the cell with LSM-YSZ oxygen electrode made by a conventional mixing method. Electrolysis cell with LSM infiltrated oxygen electrode has demonstrated stable performance under electrolysis operation with 0.33 A/cm2 and 50 vol.% AH at 800°C. (2) Advanced performance high temperature micro-tubular solid oxide fuel cell (MT-SOFC) Phase-inversion, dip-coating, high temperature co-sintering process and impregnation method were used to fabricate micro-tubular solid oxide fuel cell. The micro-structure of the micro-tubular fuel cell will be investigated and the power output and thermal robustness has been evaluated. High performance and rapid start-up behavior have been achieved, indicates that the MT-SOFC developed in this work can be a promising technology for portable applications. (3) Promising intermediate temperature micro-tubular solid oxide fuel cells for portable power supply applications Maximum power densities of 0.5, 0.38 and 0.27 W/cm2 have been obtained using H2-15% H2O as fuel at 550, 600 and 650°C, respectively. Quick thermal cycles performed on the intermediate temperature MT-SOFC stability demonstrate that the cell has robust performance stability for portable applications. (4) Micro-tubular solid oxide cell (MT-SOC) for steam electrolysis The electrochemical properties of MT-SOC will be investigated in detail in electrolysis mode. The mechanism of the novel hydrogen electrode structure benefiting the cell performance will be demonstrated systematically. The high electrochemical performance of the MT-SOC in electrolysis mode indicates that MT-SOC can provide an efficient hydrogen generation process. (5) Micro-tubular solid oxide cell (MT-SOC) for steam and CO2 co-electrolysis The MT-SOC will be operated in co-electrolysis mode for steam and CO 2, which will provide an efficient approach to generate syngas (H2+CO) without consuming fossil fuels. This can potentially provide an alternative superior approach for carbon sequestration which has been a critical issue facing the sustainability of our society. (6) Steam and CO2 co-electrolysis using solid oxide cells fabricated by freeze-drying tape-casting Tri-layer scaffolds have been prepared by freeze-drying tape casting process and the electrode catalysts are obtained by infiltrating the porous electrode substrates. Button cells will be tested for co-electrolysis of steam and CO2. The mechanism and efficiency of steam and CO2 co-electrolysis will be systemically investigated. In conclusion, SOCs have been fabricated with conventional materials and evaluated, but their performance has been found to be limited in either SOFC or SOEC mode. The cell performance has been significantly improved by employing an infiltrated LSM-YSZ electrode, due to dramatically decreased polarization resistance. However, mass transport limitation has been observed, particularly in electrolysis mode. By utilizing micro-tubular SOCs with novel hydrogen electrode produced via a phase inversion method, mass transport limitation has been mitigated. Finally, mass transport has been further improved by using cells with electrodes fabricated through a freeze-drying tape-casting method. (Abstract shortened by UMI.)
Mizushina, Yoshiyuki; Kuriyama, Isoko; Yoshida, Hiromi
2014-04-01
During the screening of selective DNA polymerase (pol) inhibitors from more than 50 plant food materials, we found that the extract from steamed germinated soybeans (Glycine max L.) inhibited human pol λ activity. Among the three processed soybean samples tested (boiled soybeans, steamed soybeans, and steamed germinated soybeans), both the hot water extract and organic solvent extract from the steamed germinated soybeans had the strongest pol λ inhibition. We previously isolated two glucosyl compounds, a cerebroside (glucosyl ceramide, AS-1-4, compound ) and a steroidal glycoside (eleutheroside A, compound ), from dried soybean, and these compounds were prevalent in the extracts of the steamed germinated soybeans as pol inhibitors. The hot water and organic solvent extracts of the steamed germinated soybeans and compounds and selectively inhibited the activity of eukaryotic pol λ in vitro but did not influence the activities of other eukaryotic pols, including those from the A-family (pol γ), B-family (pols α, δ, and ε), and Y-family (pols η, ι, and κ), and also showed no effect on the activity of pol β, which is of the same family (X) as pol λ. The tendency for in vitro pol λ inhibition by these extracts and compounds showed a positive correlation with the in vivo suppression of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation in mouse ear. These results suggest that steamed germinated soybeans, especially the glucosyl compound components, may be useful for their anti-inflammatory properties.
Mechanism of influence water vapor on combustion characteristics of propane-air mixture
NASA Astrophysics Data System (ADS)
Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.
2016-01-01
The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.
Process for gasifying carbonaceous material from a recycled condensate slurry
Forney, Albert J.; Haynes, William P.
1981-01-01
Coal or other carbonaceous material is gasified by reaction with steam and oxygen in a manner to minimize the problems of effluent water stream disposal. The condensate water from the product gas is recycled to slurry the coal feed and the amount of additional water or steam added for cooling or heating is minimized and preferably kept to a level of about that required to react with the carbonaceous material in the gasification reaction. The gasification is performed in a pressurized fluidized bed with the coal fed in a water slurry and preheated or vaporized by indirect heat exchange contact with product gas and recycled steam. The carbonaceous material is conveyed in a gas-solid mixture from bottom to top of the pressurized fluidized bed gasifier with the solids removed from the product gas and recycled steam in a supported moving bed filter of the resulting carbonaceous char. Steam is condensed from the product gas and the condensate recycled to form a slurry with the feed coal carbonaceous particles.
Mathematical Modeling of Ultra-Superheated Steam Gasification
NASA Astrophysics Data System (ADS)
Xin, Fen
Pure steam gasification has been of interest in hydrogen production, but with the challenge of supplying heat for endothermic reactions. Traditional solutions included either combusting feedstocks at the price of decreasing carbon conversion ratio, or using costly heating apparatus. Therefore, a distributed gasifier with an Ultra-Superheated-Steam (USS) generator was invented, satisfying the heat requirement and avoiding carbon combustion in steam gasification. This project developed the first version of the Ultra-Superheated-Steam-Fluidization-Model (USSFM V1.0) for the USS gasifier. A stand-alone equilibrium combustion model was firstly developed to calculate the USS mixture, which was the input to the USSFM V1.0. Model development of the USSFM V1.0 included assumptions, governing equations, boundary conditions, supporting equations and iterative schemes of guessed values. There were three nested loops in the dense bed and one loop in the freeboard. The USSFM V1.0 included one main routine and twenty-four subroutines. The USSFM V1.0 was validated with experimental data from the Enercon USS gasifier. The calculated USS mixture had a trace of oxygen, validating the initial expectation of creating an oxygen-free environment in the gasifier. Simulations showed that the USS mixture could satisfy the gasification heat requirement without partial carbon combustion. The USSFM V1.0 had good predictions on the H2% in all tests, and on other variables at a level of the lower oxygen feed. Provided with higher oxygen feed, the USSFM V1.0 simulated hotter temperatures, higher CO% and lower CO2%. Errors were explained by assumptions of equilibrium combustion, adiabatic reactors, reaction kinetics, etc. By investigating specific modeling data, gas-particle convective heat transfers were found to be critical in energy balance equations of both emulsion gas and particles, while bubble size controlled both the mass and energy balance equations of bubble gas. Parametric study suggested a lower level of oxygen feed for higher content of hydrogen. However, too little oxygen would impede fluidization in the bed. The reasonability of iterative schemes and the stability of USSFM V1.0 were tested by the sensitivity analysis of two guessed values. Analytical Hierarchy Process analysis indicated that large-scale gasification is advantageous for hydrogen production but with impediments of high capital cost and CO2 emissions. This study manifested the USS gasifier offering the possibility of generating H2-rich and CO2-lean syngas in a much cheaper distributed way. Currently, the FORTRAN-based USSFM V1.0 had a good correlation with experimental data with a small oxygen feed. On the demand of wider applications, suggestions were proposed at last for the model improvement in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2007-03-31
The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibilitymore » problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.« less
The influence of surface-active agents in gas mixture on the intensity of jet condensation
NASA Astrophysics Data System (ADS)
Yezhov, YV; Okhotin, VS
2017-11-01
The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and the thermal conductivity of the liquid jet. The first circumstance leads to deterioration of the condensation process, the second to the intensification of this process. There is obviously an optimum value of concentration of the additive surfactants to the vapour when the condensation process is maximum. According to the developed design methodology contact condensation can evaluate these optimum conditions, their practical effect in the field study.
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
Experimental constraints on phreatic eruption processes at Whakaari (White Island volcano)
NASA Astrophysics Data System (ADS)
Mayer, Klaus; Scheu, Bettina; Gilg, H. Albert; Heap, Michael J.; Kennedy, Ben M.; Lavallée, Yan; Letham-Brake, Mark; Dingwell, Donald B.
2015-09-01
Vigorous hydrothermal activity interspersed by sequences of phreatic and phreatomagmatic eruptions occur at Whakaari (White Island volcano), New Zealand. Here, we investigate the influence of sample type (hydrothermally altered cemented ash tuffs and unconsolidated ash/lapilli) and fragmentation mechanism (steam flashing versus gas expansion) on fragmentation and ejection velocities as well as on particle-size and shape. Our rapid decompression experiments show that fragmentation and ejection speeds of two ash tuffs, cemented by alunite and amorphous opal, increase with increasing porosity and that both are significantly enhanced in the presence of steam flashing. Ejection speeds of unconsolidated samples are higher than ejection speeds of cemented tuffs, as less energy is consumed by fragmentation. Fragmentation dominated by steam flashing results in increased fragmentation energy and a higher proportion of fine particles. Particle shape analyses before and after fragmentation reveal that both steam flashing and pure gas expansion produce platy or bladed particles from fracturing parallel to the decompression front. Neither fragmentation mechanisms nor sample type show a significant influence on the shape. Our results emphasize that, under identical pressure and temperature conditions, eruptions accompanied by the process of liquid water flashing to steam are significantly more violent than those driven simply by gas expansion. Therefore, phase changes during decompression and cementation are both important considerations for hazard assessment and modeling of eruptions in hydrothermally active environments.
Jamison, J P; Langlands, J H; Bodel, C C
1985-01-01
A homogeneous batch of dew retted hackled flax was divided into two portions. One was untreated and the other was steamed for 45 minutes at 125 degrees C in three pressure/vacuum cycles in an autoclave. Dust was collected when the two flaxes were separately processed by industrial doubler and stapler machines. From untreated flax 7.2 g of dust was collected per kilogram of flax after two processing operations. From the steamed flax 4.4 g of flax was obtained per kilogram after four operations. A method was devised to disperse the dust in a room to produce dust levels similar to those encountered in a dusty mill (4.5-5.7 mg/m3). Twelve normal volunteers from the managerial staff of the linen industry of Northern Ireland inhaled the dust over six hour periods. With the untreated flax decreases were obtained in mean forced expiratory measurements of 7.6% in FEV1 and 4.5% in FVC (p less than 0.01). A double blind crossover comparison of similar levels of untreated and steamed flax dusts showed 30% less impairment of the forced expirations with steamed than with untreated flax (p less than 0.05). If these responses reflect the long term airway effects of flax dust then the steaming of flax may help in reducing byssinosis. Images PMID:3970886
Jamison, J P; Langlands, J H; Bodel, C C
1985-03-01
A homogeneous batch of dew retted hackled flax was divided into two portions. One was untreated and the other was steamed for 45 minutes at 125 degrees C in three pressure/vacuum cycles in an autoclave. Dust was collected when the two flaxes were separately processed by industrial doubler and stapler machines. From untreated flax 7.2 g of dust was collected per kilogram of flax after two processing operations. From the steamed flax 4.4 g of flax was obtained per kilogram after four operations. A method was devised to disperse the dust in a room to produce dust levels similar to those encountered in a dusty mill (4.5-5.7 mg/m3). Twelve normal volunteers from the managerial staff of the linen industry of Northern Ireland inhaled the dust over six hour periods. With the untreated flax decreases were obtained in mean forced expiratory measurements of 7.6% in FEV1 and 4.5% in FVC (p less than 0.01). A double blind crossover comparison of similar levels of untreated and steamed flax dusts showed 30% less impairment of the forced expirations with steamed than with untreated flax (p less than 0.05). If these responses reflect the long term airway effects of flax dust then the steaming of flax may help in reducing byssinosis.
Chen, Hong-Zhang; Liu, Zhi-Hua
2015-06-01
Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Integrated reformer and shift reactor
Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.
2006-06-27
A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.
NASA Technical Reports Server (NTRS)
Houseman, J.; Rupe, J. H.; Kushida, R. O. (Inventor)
1976-01-01
A process and apparatus is described for producing a hydrogen rich gas by injecting air and hydrocarbon fuel at one end of a cylindrically shaped chamber to form a mixture and igniting the mixture to provide hot combustion gases by partial oxidation of the hydrocarbon fuel. The combustion gases move away from the ignition region to another region where water is injected to be turned into steam by the hot combustion gases. The steam which is formed mixes with the hot gases to yield a uniform hot gas whereby a steam reforming reaction with the hydrocarbon fuel takes place to produce a hydrogen rich gas.
Disinfection of woollen blankets in steam at subatmospheric pressure
Alder, V. G.; Gillespie, W. A.
1961-01-01
Blankets may be disinfected in steam at subatmospheric pressures by temperatures below boiling point inside a suitably adapted autoclave chamber. The chamber and its contents are thoroughly evacuated of air so as to allow rapid heat penetration, and steam is admitted to a pressure of 10 in. Hg below atmospheric pressure, which corresponds to a temperature of 89°C. Woollen blankets treated 50 times by this process were undamaged. Vegetative organisms were destroyed but not spores. The method is suitable for large-scale disinfection of blankets and for disinfecting various other articles which would be damaged at higher temperatures. PMID:13860203
Sourcing of Steam and Electricity for Carbon Capture Retrofits.
Supekar, Sarang D; Skerlos, Steven J
2017-11-07
This paper compares different steam and electricity sources for carbon capture and sequestration (CCS) retrofits of pulverized coal (PC) and natural gas combined cycle (NGCC) power plants. Analytical expressions for the thermal efficiency of these power plants are derived under 16 different CCS retrofit scenarios for the purpose of illustrating their environmental and economic characteristics. The scenarios emerge from combinations of steam and electricity sources, fuel used in each source, steam generation equipment and process details, and the extent of CO 2 capture. Comparing these scenarios reveals distinct trade-offs between thermal efficiency, net power output, levelized cost, profit, and net CO 2 reduction. Despite causing the highest loss in useful power output, bleeding steam and extracting electric power from the main power plant to meet the CCS plant's electricity and steam demand maximizes plant efficiency and profit while minimizing emissions and levelized cost when wholesale electricity prices are below 4.5 and 5.2 US¢/kWh for PC-CCS and NGCC-CCS plants, respectively. At prices higher than these higher profits for operating CCS retrofits can be obtained by meeting 100% of the CCS plant's electric power demand using an auxiliary natural gas turbine-based combined heat and power plant.
Tang, Yong; Dou, Xiaoli; Hu, Jinguang; Jiang, Jianxin; Saddler, Jack N
2018-01-01
The merit of deacetylation of corn stover prior to pretreatment is decreasing the formation of inhibitors and improving enzyme hydrolysis, proved in dilute acid pretreatment. However, few studies are done on how deacetylation would affect bioconversion process containing steam explosion. In this study, the effect of deacetylation on steam explosion was conducted using poplar as substrate. About 57 to 90% of acetyl group in poplar, depending on alkaline types and concentration, was removed by dilute alkaline deacetylation in 6 h. Deacetylation eliminated over 85% of inhibitor formation during downstream steam explosion. However, deacetylation prior to steam explosion decreased the dissolution of hemicellulose, thus reducing the cellulose accessibility of pretreated poplar, finally resulting in 5-20% decrease in glucose yield and 20-35% decrease in xylose yield. The addition of 5% SO 2 during steam explosion significantly improved the hydrolysis of deacetylated and pretreated poplar without significantly increasing the concentration of inhibitors. Incorporating 45 mmol/kg sulfoacid group in lignin fraction of deacetylated and then pretreated poplar dramatically improved the xylose yield to about 100% and increased the glucose yield by 30%.
Donath, Ernest E.
1976-01-01
A method and apparatus for removing oversized, unentrained char particles from a two-stage coal gasification process so as to prevent clogging or plugging of the communicating passage between the two gasification stages. In the first stage of the process, recycled process char passes upwardly while reacting with steam and oxygen to yield a first stage synthesis gas containing hydrogen and oxides of carbon. In the second stage, the synthesis gas passes upwardly with coal and steam which react to yield partially gasified char entrained in a second stage product gas containing methane, hydrogen, and oxides of carbon. Agglomerated char particles, which result from caking coal particles in the second stage and are too heavy to be entrained in the second stage product gas, are removed through an outlet in the bottom of the second stage, the particles being separated from smaller char particles by a counter-current of steam injected into the outlet.
Integral process assessment of sugarcane agricultural crop residues conversion to ethanol.
Manfredi, Adriana Paola; Ballesteros, Ignacio; Sáez, Felicia; Perotti, Nora Inés; Martínez, María Alejandra; Negro, María José
2018-07-01
This work focuses a whole process assessment on post-harvesting sugarcane residues for 2G ethanol production by different saccharification-fermentation conditions at high solids loading, performed after steam explosion, alkaline and acidic pretreatments. Carbohydrate recoveries and enzymatic digestibility results showed that alkali and steam explosion pretreatments were effective for the biomass assayed. Due to a significant improvement (60%) of the glucose released by combining hemicellulases and cellulases only after the NaOH pretreatment, the most favorable process settled comprised an alkali-based pretreatment followed by a pre-saccharification and simultaneous saccharification and fermentation (PSSF). The produced ethanol reached 4.8% (w/w) as a result of an 80% conversion of the glucose from the pretreated biomass. Finally, an ethanol concentration of 3.2% (w/w) was obtained by means of a steam explosion followed by PSSF, representing a suitable start point to further develop a low environmental impact alternative for ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.
Environmental friendly method for the extraction of coir fibre and isolation of nanofibre.
Abraham, Eldho; Deepa, B; Pothen, L A; Cintil, J; Thomas, S; John, M J; Anandjiwala, R; Narine, S S
2013-02-15
The objective of this work was to develop an environmental friendly method for the effective utilization of coir fibre by adopting steam pre-treatment. The retting of the coconut bunch makes strong environmental problems which can be avoided by this method. Chemical characterization of the fibre during each processing stages confirmed the increase of cellulose content from raw (40%) to final steam treated fibres (93%). Morphological and dynamic light scattering analyses of the fibres at different processing stages revealed that the isolation of cellulose nano fibres occur in the final step of the process as an aqueous suspension. FT-IR and XRD analysis demonstrated that the treatments lead to the gradual removal of lignin and hemicelluloses from the fibres. The existence of strong lignin-cellulose complex in the raw coir fibre is proved by its enhanced thermal stability. Steam explosion has been proved to be a green method to expand the application areas of coir fibre. Copyright © 2012 Elsevier Ltd. All rights reserved.
De La Torre, María; Martín-Sampedro, Raquel; Fillat, Úrsula; Eugenio, María E; Blánquez, Alba; Hernández, Manuel; Arias, María E; Ibarra, David
2017-11-01
This study evaluates the potential of a bacterial laccase from Streptomyces ipomoeae (SilA) for delignification and detoxification of steam-exploded wheat straw, in comparison with a commercial fungal laccase from Trametes villosa. When alkali extraction followed by SilA laccase treatment was applied to the water insoluble solids fraction, a slight reduction in lignin content was detected, and after a saccharification step, an increase in both glucose and xylose production (16 and 6%, respectively) was observed. These effects were not produced with T. villosa laccase. Concerning to the fermentation process, the treatment of the steam-exploded whole slurry with both laccases produced a decrease in the phenol content by up to 35 and 71% with bacterial and fungal laccases, respectively. The phenols reduction resulted in an improved performance of Saccharomyces cerevisiae during a simultaneous saccharification and fermentation (SSF) process, improving ethanol production rate. This enhancement was more marked with a presaccharification step prior to the SSF process.
The industrial utility of public water supplies in the east south central states, 1952
Lohr, E.W.; Billingsley, G.A.; Geurin, J.W.; Lamar, W.L.
1952-01-01
The location of industrial plants is dependent on an ample water supply of suitable quality. Information relating to the chemical characteristics of the water supplies is not only essential to the location of many plants but also is an aid in the manufacture and distribution of many commodities. Public water supplies are utilized extensively as a source of supply for many industrial plants, used either as delivered for domestic consumption or with further treatment if necessary to meet specific needs of the plant, such as water for processing, cooling, and steam generation. The industrial use of water in the United States in 1950 was estimated to be more than 75 billion gallons per day from private sources. In addition, about 6 billion gallons per day was estimated to be taken from public water supplies. U. S. Geological Survey Water-Supply Paper 658, "The industrial utility of public water supplies in the United States, 1932" contains information pertaining to the public water supplies of 670 of the larger cities throughout the United States. This report, which is still in print and being distributed, has filled an important need in the field of water-supply engineering. The demand for more up-to-date information and more extended coverage has led to studies by the Geological Survey for revision of the information contained in the 1932 report. The revised report, which will include data pertaining to public water supplies of more than 1,200 cities in the United States, will eventually be published as a Geological Survey Water-Supply Paper. However, in order that the information might be available at the earliest possible time, nine preliminary reports are being issued which give data on the larger cities in each state. These nine reports are being released as Geological Survey Circulars, each covering a group of states as delineated by the Bureau of Census in taking the census of the population of the country. (See fig. 1). The reports give descriptive information and analytical data for approximately three-fourths of the cities that will be included in the final report for each of the states. This circular is the first of the series and includes data for the States of Alabama, Kentucky, Mississippi, and Tennessee. (See fig. 1). The report gives the population (1950) of the city, population supplied, ownership, sources and treatment of supplies, capacity of treatment plants, storage facilities for both raw and finished waters, and chemical analyses of the water, for 19 cities in Alabama, 16 in Kentucky, 17 in Mississippi, and 15 in Tennessee. The data for each city are essentially the same as will appear in the complete report for the whole country.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pounds per million Btu of steam output, in Tables 1 or 2 to this subpart are an alternative applicable only to boilers and process heaters that generate steam. The output-based emission limits, in units of..., monitoring results, review of operation and maintenance procedures, review of operation and maintenance...
21 CFR 129.80 - Processes and controls.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., including those performed by chemical means or by any other means such as circulation of live steam or hot... intensities shall be considered a minimum: (1) Steam in enclosed system: At least 170 °F for at least 15... be available for official review at reasonable times. [42 FR 14355, Mar. 15, 1977, as amended at 44...
Code of Federal Regulations, 2013 CFR
2013-07-01
... pounds per million Btu of steam output, in Tables 1 or 2 to this subpart are an alternative applicable only to boilers and process heaters that generate steam. The output-based emission limits, in units of..., monitoring results, review of operation and maintenance procedures, review of operation and maintenance...
21 CFR 129.80 - Processes and controls.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., including those performed by chemical means or by any other means such as circulation of live steam or hot... intensities shall be considered a minimum: (1) Steam in enclosed system: At least 170 °F for at least 15... be available for official review at reasonable times. [42 FR 14355, Mar. 15, 1977, as amended at 44...