Valve For Extracting Samples From A Process Stream
NASA Technical Reports Server (NTRS)
Callahan, Dave
1995-01-01
Valve for extracting samples from process stream includes cylindrical body bolted to pipe that contains stream. Opening in valve body matched and sealed against opening in pipe. Used to sample process streams in variety of facilities, including cement plants, plants that manufacture and reprocess plastics, oil refineries, and pipelines.
Hageman, Philip L.; Todd, Andrew S.; Smith, Kathleen S.; DeWitt, Ed; Zeigler, Mathew P.
2013-01-01
Scientists from the U.S. Geological Survey are studying the relationship between watershed lithology and stream-water chemistry. As part of this effort, 60 stream-water samples and 43 corresponding stream-sediment samples were collected in 2010 and 2011 from locations in Colorado and New Mexico. Sample sites were selected from small to midsize watersheds composed of a high percentage of one rock type or geologic unit. Stream-water and stream-sediment samples were collected, processed, preserved, and analyzed in a consistent manner. This report releases geochemical data for this phase of the study.
Disc valve for sampling erosive process streams
Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.
1984-08-16
This is a patent for a disc-type, four-port sampling valve for service with erosive high temperature process streams. Inserts and liners of ..cap alpha..-silicon carbide respectively, in the faceplates and in the sampling cavities, limit erosion while providing lubricity for a smooth and precise operation. 1 fig.
Continuous-flow free acid monitoring method and system
Strain, J.E.; Ross, H.H.
1980-01-11
A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.
Continuous-flow free acid monitoring method and system
Strain, James E.; Ross, Harley H.
1981-01-01
A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, J.; Talbott, J.
1984-01-01
Task 1. Methods development for the speciation of the polysulfides. Work on this task has been completed in December 1983 and reported accordingly in DOE/PC/40783-T13. Task 2. Methods development for the speciation of dithionite and polythionates. Work on Task 2 has been completed in June 1984 and has been reported accordingly in DOE/PC/40783-T15. Task 3. Total accounting of the sulfur balance in representative samples of synfuel process streams. A systematic and critical comparison of results, obtained in the analysis of sulfur moieties in representative samples of coal conversion process streams, revealed the following general trends. (a) In specimens of highmore » pH (9-10) and low redox potential (-0.3 to -0.4 volt versus NHE) sulfidic and polysulfidic sulfur moieties predominate. (b) In process streams of lower pH and more positive redox potential, higher oxidation states of sulfur (notably sulfate) account for most of the total sulfur present. (c) Oxidative wastewater treatment procedures by the PETC stripping process convert lower oxidation states of sulfur into thiosulfate and sulfate. In this context, remarkable similarities were observed between liquefaction and gasification process streams. However, the thiocyanate present in samples from the Grand Forks gasifier were impervious to the PETC stripping process. (d) Total sulfur contaminant levels in coal conversion process stream wastewater samples are primarily determined by the abundance of sulfur in the coal used as starting material than by the nature of the conversion process (liquefaction or gasification). 13 references.« less
Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas
Lee, C.J.; Rasmussen, T.J.
2006-01-01
Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.
Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Dodd, H.R.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.
2003-01-01
Four sampling designs for quantifying the effect of low-head sea lamprey (Petromyzon marinus) barriers on fish communities were evaluated, and the contribution of process-oriented research to the overall confidence of results obtained was discussed. The designs include: (1) sample barrier streams post-construction; (2) sample barrier and reference streams post-construction; (3) sample barrier streams pre- and post-construction; and (4) sample barrier and reference streams pre- and post-construction. In the statistical literature, the principal basis for comparison of sampling designs is generally the precision achieved by each design. In addition to precision, designs should be compared based on the interpretability of results and on the scale to which the results apply. Using data collected in a broad survey of streams with and without sea lamprey barriers, some of the tradeoffs that occur among precision, scale, and interpretability are illustrated. Although circumstances such as funding and availability of pre-construction data may limit which design can be implemented, a pre/post-construction design including barrier and reference streams provides the most meaningful information for use in barrier management decisions. Where it is not feasible to obtain pre-construction data, a design including reference streams is important to maintain the interpretability of results. Regardless of the design used, process-oriented research provides a framework for interpreting results obtained in broad surveys. As such, information from both extensive surveys and intensive process-oriented research provides the best basis for fishery management actions, and gives researchers and managers the most confidence in the conclusions reached regarding the effects of sea lamprey barriers.
Disc valve for sampling erosive process streams
Mrochek, J.E.; Dinsmore, S.R.; Chandler, E.W.
1986-01-07
A four-port disc valve is described for sampling erosive, high temperature process streams. A rotatable disc defining opposed first and second sampling cavities rotates between fired faceplates defining flow passageways positioned to be alternatively in axial alignment with the first and second cavities. Silicon carbide inserts and liners composed of [alpha] silicon carbide are provided in the faceplates and in the sampling cavities to limit erosion while providing lubricity for a smooth and precise operation when used under harsh process conditions. 1 fig.
Shelton, Larry R.
1994-01-01
The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.
Shelton, Larry R.; Capel, Paul D.
1994-01-01
A major component of the U.S. Geological Survey's National Water-Quality Assessment program is to assess the occurrence and distribution of trace elements and organic contaminants in streams. The first phase of the strategy for the assessment is to analyze samples of bed sediments from depositional zones. Fine-grained particles deposited in these zones are natural accumulators of trace elements and hydrophobic organic compounds. For the information to be comparable among studies in many different parts of the Nation, strategies for selecting stream sites and depositional zones are critical. Fine-grained surficial sediments are obtained from several depositional zones within a stream reach and composited to yield a sample representing average conditions. Sample collection and processing must be done consistently and by procedures specifically designed to separate the fine material into fractions that yield uncontaminated samples for trace-level analytes in the laboratory. Special coring samplers and other instruments made of Teflon are used for collection. Samples are processed through a 2.0-millimeter stainless-steel mesh sieve for organic contaminate analysis and a 63-micrometer nylon-cloth sieve for trace-element analysis. Quality assurance is maintained by strict collection and processing procedures, duplicate samplings, and a rigid cleaning procedure.
Ghani, Wan Mohd Hafezul Wan Abdul; Rawi, Che Salmah Md; Hamid, Suhaila Abd; Al-Shami, Salman Abdo
2016-01-01
This study analyses the sampling performance of three benthic sampling tools commonly used to collect freshwater macroinvertebrates. Efficiency of qualitative D-frame and square aquatic nets were compared to a quantitative Surber sampler in tropical Malaysian streams. The abundance and diversity of macroinvertebrates collected using each tool evaluated along with their relative variations (RVs). Each tool was used to sample macroinvertebrates from three streams draining different areas: a vegetable farm, a tea plantation and a forest reserve. High macroinvertebrate diversities were recorded using the square net and Surber sampler at the forested stream site; however, very low species abundance was recorded by the Surber sampler. Relatively large variations in the Surber sampler collections (RVs of 36% and 28%) were observed for the vegetable farm and tea plantation streams, respectively. Of the three sampling methods, the square net was the most efficient, collecting a greater diversity of macroinvertebrate taxa and a greater number of specimens (i.e., abundance) overall, particularly from the vegetable farm and the tea plantation streams (RV<25%). Fewer square net sample passes (<8 samples) were sufficient to perform a biological assessment of water quality, but each sample required a slightly longer processing time (±20 min) compared with those gathered via the other samplers. In conclusion, all three apparatuses were suitable for macroinvertebrate collection in Malaysian streams and gathered assemblages that resulted in the determination of similar biological water quality classes using the Family Biotic Index (FBI) and the Biological Monitoring Working Party (BMWP). However, despite a slightly longer processing time, the square net was more efficient (lowest RV) at collecting samples and more suitable for the collection of macroinvertebrates from deep, fast flowing, wadeable streams with coarse substrates. PMID:27019685
Wayland, Karen G.; Long, David T.; Hyndman, David W.; Pijanowski, Bryan C.; Woodhams, Sarah M.; Haak, Sheridan K.
2003-01-01
The relationship between land use and stream chemistry is often explored through synoptic sampling rivers at baseflow condition. However, base flow chemistry is likely to vary temporally and spatially with land use. The purpose of our study is to examine the usefulness of the synoptic sampling approach for identifying the relationship between complex land use configurations and stream water quality. This study compares biogeochemical data from three synoptic sampling events representing the temporal variability of baseflow chemistry and land use using R-mode factor analysis. Separate R-mode factor analyses of the data from individual sampling events yielded only two consistent factors. Agricultural activity was associated with elevated levels of Ca2+, Mg2+, alkalinity, and frequently K+, SO42-, and NO3-. Urban areas were associated with higher concentrations of Na+, K+, and Cl-. Other retained factors were not consistent among sampling events, and some factors were difficult to interpret in the context of biogeochemical sources and processes. When all data were combined, further associations were revealed such as an inverse relationship between the proportion of wetlands and stream nitrate concentrations. We also found that barren lands were associated with elevated sulfate levels. This research suggests that an individual sampling event is unlikely to characterize adequately the complex processes controlling interactions between land uses and stream chemistry. Combining data collected over two years during three synoptic sampling events appears to enhance our ability to understand processes linking stream chemistry and land use.
Smith, Joseph M.; Wells, Sarah P.; Mather, Martha E.; Muth, Robert M.
2014-01-01
When researchers and managers initiate sampling on a new stream or river system, they do not know how effective each gear type is and whether their sampling effort is adequate. Although the types and amount of gear may be different for other studies, systems, and research questions, the five-step process described here for making sampling decisions and evaluating sampling efficiency can be applied widely to any system to restore, manage, and conserve aquatic ecosystems. It is believed that incorporating this gear-evaluation process into a wide variety of studies and ecosystems will increase rigour within and across aquatic biodiversity studies.
Kingsley, I.S.
1987-01-06
A process and apparatus are disclosed for the separation of complex mixtures of carbonaceous material by sequential elution with successively stronger solvents. In the process, a column containing glass beads is maintained in a fluidized state by a rapidly flowing stream of a weak solvent, and the sample is injected into this flowing stream such that a portion of the sample is dissolved therein and the remainder of the sample is precipitated therein and collected as a uniform deposit on the glass beads. Successively stronger solvents are then passed through the column to sequentially elute less soluble materials. 1 fig.
NASA Astrophysics Data System (ADS)
Lischeid, G.; Kolb, A.; Alewell, C.; Paul, S.
2007-01-01
Biologically mediated redox processes in the riparian zone, like denitrification, can have substantially beneficial impacts on stream water quality. The extent of these effects, however, depends greatly on the hydrological boundary conditions. The impact of hydrological processes on a wetland's nitrogen sink capacity was investigated in a forested riparian fen which is drained by a first-order perennial stream. Here, we analysed the frequency distributions and time-series of pH and nitrogen, silica, organic carbon and oxygen concentrations in throughfall, soil solution, groundwater and stream water, and the groundwater levels and stream discharges from a 3-year period. During baseflow conditions, the stream was fed by discharging shallow, anoxic groundwater and by deep, oxic groundwater. Whereas the latter delivered considerable amounts of nitrogen (0.37 mg l-1) to the stream, the former was almost entirely depleted of nitrogen. During stormflow, near-surface runoff in the upper 30 cm soil layer bypassed the denitrifying zone and added significant amounts to the nitrogen load of the stream. Nitrate-nitrogen was close to 100% of deep groundwater and stream-water nitrogen concentration. Stream-water baseflow concentrations of nitrate, dissolved carbon and silica were about 1.6 mg l-1, 4 mg l-1 and 7.5 mg l-1 respectively, and >3 mg l-1, >10 mg l-1 and <4 mg l-1 respectively during discharge peaks. In addition to that macroscale bypassing effect, there was evidence for a corresponding microscale effect: Shallow groundwater sampled by soil suction cups indicated complete denitrification and lacked any seasonal signal of solute concentration, which was in contrast to piezometer samples from the same depth. Moreover, mean solute concentration in the piezometer samples resembled more that of suction-cup samples from shallower depth than that of the same depth. We conclude that the soil solution cups sampled to a large extent the immobile soil-water fraction. In contrast, the mobile fraction that was sampled by the piezometers exhibited substantially shorter residence time, thus being less exposed to denitrification, but predominating discharge of that layer to the stream. Consequently, assessing the nitrogen budget based on suction-cup data tended to overestimate the nitrogen consumption in the riparian wetland. These effects are likely to become more important with the increased frequency and intensity of rainstorms that are expected due to climate change. Copyright
Stephenson, Serena; Pollard, Maria; Boit, Kipchirchir
2013-09-01
The prevalence of optical spectroscopy techniques being applied to the online analysis of continuous processes has increased in the past couple of decades. The ability to continuously "watch" changing stream compositions as operating conditions change has proven invaluable to pilot and world-scale manufacturing in the chemical and petrochemical industries. Presented here is an application requiring continuous monitoring of parts per million (ppm) by weight levels of hydrogen chloride (HCl), water (H2O), and carbon dioxide (CO2) in two gas-phase streams, one nitrogen-rich and one ethylene-rich. Because ethylene has strong mid-infrared (IR) absorption, building an IR method capable of quantifying HCl, H2O, and CO2 posed some challenges. A long-path (5.11m) Fourier transform infrared (FT-IR) spectrometer was used in the mid-infrared region between 1800 and 5000 cm(-1), with a 1 cm(-1) resolution and a 10 s spectral update time. Sample cell temperature and pressure were controlled and measured to minimize measurement variability. Models using a modified classical least squares method were developed and validated first in the laboratory and then using the process stream. Analytical models and process sampling conditions were adjusted to minimize interference of ethylene in the ethylene-rich stream. The predictive capabilities of the measurements were ±0.5 ppm for CO2 in either stream; ±1.1 and ±1.3 ppm for H2O in the nitrogen-rich and ethylene-rich streams, respectively; and ±1.0 and ±2.4 ppm for HCl in the nitrogen-rich and ethylene-rich streams, respectively. Continuous operation of the instrument in the process stream was demonstrated using an automated stream switching sample system set to 10 min intervals. Response time for all components of interest was sufficient to acquire representative stream composition data. This setup provides useful insight into the process for troubleshooting and optimizing plant operating conditions.
Statistical Methods in Ai: Rare Event Learning Using Associative Rules and Higher-Order Statistics
NASA Astrophysics Data System (ADS)
Iyer, V.; Shetty, S.; Iyengar, S. S.
2015-07-01
Rare event learning has not been actively researched since lately due to the unavailability of algorithms which deal with big samples. The research addresses spatio-temporal streams from multi-resolution sensors to find actionable items from a perspective of real-time algorithms. This computing framework is independent of the number of input samples, application domain, labelled or label-less streams. A sampling overlap algorithm such as Brooks-Iyengar is used for dealing with noisy sensor streams. We extend the existing noise pre-processing algorithms using Data-Cleaning trees. Pre-processing using ensemble of trees using bagging and multi-target regression showed robustness to random noise and missing data. As spatio-temporal streams are highly statistically correlated, we prove that a temporal window based sampling from sensor data streams converges after n samples using Hoeffding bounds. Which can be used for fast prediction of new samples in real-time. The Data-cleaning tree model uses a nonparametric node splitting technique, which can be learned in an iterative way which scales linearly in memory consumption for any size input stream. The improved task based ensemble extraction is compared with non-linear computation models using various SVM kernels for speed and accuracy. We show using empirical datasets the explicit rule learning computation is linear in time and is only dependent on the number of leafs present in the tree ensemble. The use of unpruned trees (t) in our proposed ensemble always yields minimum number (m) of leafs keeping pre-processing computation to n × t log m compared to N2 for Gram Matrix. We also show that the task based feature induction yields higher Qualify of Data (QoD) in the feature space compared to kernel methods using Gram Matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J.; Peeler, D.; Edwards, T.
2012-05-11
A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupledmore » operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the variability study has significantly added value to the DWPF's qualification strategy. The variability study has evolved to become the primary aspect of the DWPF's compliance strategy as it has been shown to be versatile and capable of adapting to the DWPF's various and diverse waste streams and blending strategies. The variability study, which aims to ensure durability requirements and the PCT and chemical composition correlations are valid for the compositional region to be processed at the DWPF, must continue to be performed. Due to the importance of the variability study and its place in the DWPF's qualification strategy, it will also be discussed in this report. An analysis of historical data and Production Records indicated that the recommendation of the Six Sigma team to eliminate all characterization of pour stream glass samples and the glass fabrication and PCT performed with the qualification glass does not compromise the DWPF's current compliance plan. Furthermore, the DWPF should continue to produce an acceptable waste form following the remaining elements of the Glass Product Control Program; regardless of a sludge-only or coupled operations strategy. If the DWPF does decide to eliminate the characterization of pour stream samples, pour stream samples should continue to be collected for archival reasons, which would allow testing to be performed should any issues arise or new repository test methods be developed.« less
Shelton, Larry R.
1997-01-01
For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.
Stephen D. Sebestyen; Elizabeth W. Boyer; James B. Shanley; Carol Kendall; Daniel H. Doctor; George R. Aiken; Nobuhito Ohte
2008-01-01
We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high...
Sheth, Bhavin R; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams-ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/ focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal.
Sheth, Bhavin R.; Young, Ryan
2016-01-01
Evidence is strong that the visual pathway is segregated into two distinct streams—ventral and dorsal. Two proposals theorize that the pathways are segregated in function: The ventral stream processes information about object identity, whereas the dorsal stream, according to one model, processes information about either object location, and according to another, is responsible in executing movements under visual control. The models are influential; however recent experimental evidence challenges them, e.g., the ventral stream is not solely responsible for object recognition; conversely, its function is not strictly limited to object vision; the dorsal stream is not responsible by itself for spatial vision or visuomotor control; conversely, its function extends beyond vision or visuomotor control. In their place, we suggest a robust dichotomy consisting of a ventral stream selectively sampling high-resolution/focal spaces, and a dorsal stream sampling nearly all of space with reduced foveal bias. The proposal hews closely to the theme of embodied cognition: Function arises as a consequence of an extant sensory underpinning. A continuous, not sharp, segregation based on function emerges, and carries with it an undercurrent of an exploitation-exploration dichotomy. Under this interpretation, cells of the ventral stream, which individually have more punctate receptive fields that generally include the fovea or parafovea, provide detailed information about object shapes and features and lead to the systematic exploitation of said information; cells of the dorsal stream, which individually have large receptive fields, contribute to visuospatial perception, provide information about the presence/absence of salient objects and their locations for novel exploration and subsequent exploitation by the ventral stream or, under certain conditions, the dorsal stream. We leverage the dichotomy to unify neuropsychological cases under a common umbrella, account for the increased prevalence of multisensory integration in the dorsal stream under a Bayesian framework, predict conditions under which object recognition utilizes the ventral or dorsal stream, and explain why cells of the dorsal stream drive sensorimotor control and motion processing and have poorer feature selectivity. Finally, the model speculates on a dynamic interaction between the two streams that underscores a unified, seamless perception. Existing theories are subsumed under our proposal. PMID:27920670
The groundwater–surface water interface (GSWI), consisting of shallow groundwater adjacent to stream channels, is a hot spot for nitrogen removal processes, a storage zone for other solutes, and a target for restoration activities. Characterizing groundwater-surface water intera...
Sedimentation in mountain streams: A review of methods of measurement
Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart A.; Lin, Lian-Shin
2013-01-01
The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.
Data Streaming for Metabolomics: Accelerating Data Processing and Analysis from Days to Minutes
2016-01-01
The speed and throughput of analytical platforms has been a driving force in recent years in the “omics” technologies and while great strides have been accomplished in both chromatography and mass spectrometry, data analysis times have not benefited at the same pace. Even though personal computers have become more powerful, data transfer times still represent a bottleneck in data processing because of the increasingly complex data files and studies with a greater number of samples. To meet the demand of analyzing hundreds to thousands of samples within a given experiment, we have developed a data streaming platform, XCMS Stream, which capitalizes on the acquisition time to compress and stream recently acquired data files to data processing servers, mimicking just-in-time production strategies from the manufacturing industry. The utility of this XCMS Online-based technology is demonstrated here in the analysis of T cell metabolism and other large-scale metabolomic studies. A large scale example on a 1000 sample data set demonstrated a 10 000-fold time savings, reducing data analysis time from days to minutes. Further, XCMS Stream has the capability to increase the efficiency of downstream biochemical dependent data acquisition (BDDA) analysis by initiating data conversion and data processing on subsets of data acquired, expanding its application beyond data transfer to smart preliminary data decision-making prior to full acquisition. PMID:27983788
Data streaming for metabolomics: Accelerating data processing and analysis from days to minutes
Montenegro-Burke, J. Rafael; Aisporna, Aries E.; Benton, H. Paul; ...
2016-12-16
The speed and throughput of analytical platforms has been a driving force in recent years in the “omics” technologies and while great strides have been accomplished in both chromatography and mass spectrometry, data analysis times have not benefited at the same pace. Even though personal computers have become more powerful, data transfer times still represent a bottleneck in data processing because of the increasingly complex data files and studies with a greater number of samples. To meet the demand of analyzing hundreds to thousands of samples within a given experiment, we have developed a data streaming platform, XCMS Stream, whichmore » capitalizes on the acquisition time to compress and stream recently acquired data files to data processing servers, mimicking just-in-time production strategies from the manufacturing industry. The utility of this XCMS Online-based technology is demonstrated here in the analysis of T cell metabolism and other large-scale metabolomic studies. A large scale example on a 1000 sample data set demonstrated a 10 000-fold time savings, reducing data analysis time from days to minutes. Here, XCMS Stream has the capability to increase the efficiency of downstream biochemical dependent data acquisition (BDDA) analysis by initiating data conversion and data processing on subsets of data acquired, expanding its application beyond data transfer to smart preliminary data decision-making prior to full acquisition.« less
Data Streaming for Metabolomics: Accelerating Data Processing and Analysis from Days to Minutes.
Montenegro-Burke, J Rafael; Aisporna, Aries E; Benton, H Paul; Rinehart, Duane; Fang, Mingliang; Huan, Tao; Warth, Benedikt; Forsberg, Erica; Abe, Brian T; Ivanisevic, Julijana; Wolan, Dennis W; Teyton, Luc; Lairson, Luke; Siuzdak, Gary
2017-01-17
The speed and throughput of analytical platforms has been a driving force in recent years in the "omics" technologies and while great strides have been accomplished in both chromatography and mass spectrometry, data analysis times have not benefited at the same pace. Even though personal computers have become more powerful, data transfer times still represent a bottleneck in data processing because of the increasingly complex data files and studies with a greater number of samples. To meet the demand of analyzing hundreds to thousands of samples within a given experiment, we have developed a data streaming platform, XCMS Stream, which capitalizes on the acquisition time to compress and stream recently acquired data files to data processing servers, mimicking just-in-time production strategies from the manufacturing industry. The utility of this XCMS Online-based technology is demonstrated here in the analysis of T cell metabolism and other large-scale metabolomic studies. A large scale example on a 1000 sample data set demonstrated a 10 000-fold time savings, reducing data analysis time from days to minutes. Further, XCMS Stream has the capability to increase the efficiency of downstream biochemical dependent data acquisition (BDDA) analysis by initiating data conversion and data processing on subsets of data acquired, expanding its application beyond data transfer to smart preliminary data decision-making prior to full acquisition.
The manual lists and describes the instruments and techniques that are available for measuring the concentration or size distribution of particles suspended in process streams. The standard, official, well established methods are described as well as some experimental methods and...
Woolcock, Patrick J; Koziel, Jacek A; Cai, Lingshuang; Johnston, Patrick A; Brown, Robert C
2013-03-15
Time-weighted average (TWA) passive sampling using solid-phase microextraction (SPME) and gas chromatography was investigated as a new method of collecting, identifying and quantifying contaminants in process gas streams. Unlike previous TWA-SPME techniques using the retracted fiber configuration (fiber within needle) to monitor ambient conditions or relatively stagnant gases, this method was developed for fast-moving process gas streams at temperatures approaching 300 °C. The goal was to develop a consistent and reliable method of analyzing low concentrations of contaminants in hot gas streams without performing time-consuming exhaustive extraction with a slipstream. This work in particular aims to quantify trace tar compounds found in a syngas stream generated from biomass gasification. This paper evaluates the concept of retracted SPME at high temperatures by testing the three essential requirements for TWA passive sampling: (1) zero-sink assumption, (2) consistent and reliable response by the sampling device to changing concentrations, and (3) equal concentrations in the bulk gas stream relative to the face of the fiber syringe opening. Results indicated the method can accurately predict gas stream concentrations at elevated temperatures. Evidence was also discovered to validate the existence of a second boundary layer within the fiber during the adsorption/absorption process. This limits the technique to operating within reasonable mass loadings and loading rates, established by appropriate sampling depths and times for concentrations of interest. A limit of quantification for the benzene model tar system was estimated at 0.02 g m(-3) (8 ppm) with a limit of detection of 0.5 mg m(-3) (200 ppb). Using the appropriate conditions, the technique was applied to a pilot-scale fluidized-bed gasifier to verify its feasibility. Results from this test were in good agreement with literature and prior pilot plant operation, indicating the new method can measure low concentrations of tar in gasification streams. Copyright © 2013 Elsevier B.V. All rights reserved.
Johnson, Steven M.; Swanson, Robert B.
1994-01-01
Prototype stream-monitoring sites were operated during part of 1992 in the Central Nebraska Basins (CNBR) and three other study areas of the National Water-Quality Assessment (NAWQ) Program of the U.S. Geological Survey. Results from the prototype project provide information needed to operate a net- work of intensive fixed station stream-monitoring sites. This report evaluates operating procedures for two NAWQA prototype sites at Maple Creek near Nickerson and the Platte River at Louisville, eastern Nebraska. Each site was sampled intensively in the spring and late summer 1992, with less intensive sampling in midsummer. In addition, multiple samples were collected during two high- flow periods at the Maple Creek site--one early and the other late in the growing season. Water-samples analyses included determination of pesticides, nutrients, major ions, suspended sediment, and measurements of physical properties. Equipment and protocols for the water-quality sampling procedures were evaluated. Operation of the prototype stream- monitoring sites included development and comparison of onsite and laboratory sample-processing proce- dures. Onsite processing was labor intensive but allowed for immediate preservation of all sampled constituents. Laboratory processing required less field labor and decreased the risk of contamination, but allowed for no immediate preservation of the samples.
Interpolation of Water Quality Along Stream Networks from Synoptic Data
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Seibert, J.; Lembo, A. J.; Walter, M. T.; Gburek, W. J.; Thongs, D.; Schneiderman, E.; Steenhuis, T. S.
2005-12-01
Effective catchment management requires water quality monitoring that identifies major pollutant sources and transport and transformation processes. While traditional monitoring schemes involve regular sampling at fixed locations in the stream, there is an interest synoptic or `snapshot' sampling to quantify water quality throughout a catchment. This type of sampling enables insights to biogeochemical behavior throughout a stream network at low flow conditions. Since baseflow concentrations are temporally persistence, they are indicative of the health of the ecosystems. A major problem with snapshot sampling is the lack of analytical techniques to represent the spatially distributed data in a manner that is 1) easily understood, 2) representative of the stream network, and 3) capable of being used to develop land management scenarios. This study presents a kriging application using the landscape composition of the contributing area along a stream network to define a new distance metric. This allows for locations that are more `similar' to stay spatially close together while less similar locations `move' further apart. We analyze a snapshot sampling campaign consisting of 125 manually collected grab samples during a summer recession flow period in the Townbrook Research Watershed. The watershed is located in the Catskill region of New York State and represents the mixed forest-agriculture land uses of the region. Our initial analysis indicated that stream nutrients (nitrogen and phosphorus) and chemical (major cations and anions) concentrations are controlled by the composition of landscape characteristics (landuse classes and soil types) surrounding the stream. Based on these relationships, an intuitively defined distance metric is developed by combining the traditional distance between observations and the relative difference in composition of contributing area. This metric is used to interpolate between the sampling locations with traditional geostatistic techniques (semivariograms and ordinary kriging). The resulting interpolations provide continuous stream nutrient and chemical concentrations with reduced kriging RMSE (i.e., the interpolation fits the actual data better) performed without path restriction to the stream channel (i.e., the current default for most geostatistical packages) or performed with an in-channel, Euclidean distance metric (i.e., `as the fish swims' distance). In addition to being quantifiably better, the new metric also produces maps of stream concentrations that match expected continuous stream concentrations based on expert knowledge of the watershed. This analysis and its resulting stream concentration maps provide a representation of spatially distributed synoptic data that can be used to quantify water quality for more effective catchment management that focuses on pollutant sources and transport and transformation processes.
Using isotopes to investigate hydrological flow pathways and sources in a remote Arctic catchment
NASA Astrophysics Data System (ADS)
Lessels, Jason; Tetzlaff, Doerthe; Dinsmore, Kerry; Street, Lorna; Billet, Mike; Baxter, Robert; Subke, Jens-Arne; Wookey, Phillip
2014-05-01
Stable water isotopes allow for the identification of flow paths and stream water sources. This ability is beneficial in improving the understanding in catchments with dynamic spatial and temporal sources. Arctic catchments are characterised with strong seasonality where the dominant flow paths change throughout the short summer season. Therefore, the identification of stream water sources through time and space is necessary in order to accurately quantify these dynamics. Stable isotope tracers are incredibly useful tools which integrate processes of time and space and therefore, particularly useful in identifying flow pathways and runoff sources at remote sites. This work presents stable isotope data collected from a small (1km2) catchment in Northwest Canada. The aims of this study are to 1) identify sources of stream water through time and space, 2) provide information which will be incorporated into hydrological and transit time models Sampling of snowmelt, surface runoff, ice-wedge polygons, stream and soil water was undertaken throughout the 2013 summer. The results of this sampling reveal the dominant flow paths in the catchment and the strong influence of aspect in controlling these processes. After the spring freshet, late lying snow packs on north facing slopes and thawing permafrost on south facing slopes are the dominant sources of stream water. Progressively through the season the thawing permafrost and precipitation become the largest contributing sources. The depth of the thawing aspect layer and consequently the contribution to the stream is heavily dependent on aspect. The collection of precipitation, soil and stream isotope samples throughout the summer period provide valuable information for transit time estimates. The combination of spatial and temporal sampling of stable isotopes has revealed clear differences between the main stream sources in the studied catchment and reinforced the importance of slope aspect in these catchments.
Discharge process of cesium during rainstorms in headwater catchments, Fukushima, Japan
NASA Astrophysics Data System (ADS)
Tsujimura, Maki; Onda, Yuichi; Iwagami, Sho; Nishino, Masataka; Konuma, Ryohei
2014-05-01
We monitored Cs-137 concentrations in stream water, groundwater, soil water and rainwater in the Yamakiya district located approximately 35 km north west of Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from June 2011 through July 2013, focusing on rainfall-runoff processes during the rainstorm events. Two catchments with different land cover (Iboishiyama and Koutaishiyama) were instrumentd, and stream water, groundwater, soil water and rainwater were sampled for approximately one month at each site, and intensive sampling was conducted during rainstorm events. The 137Cs concentration in stream water showed a relatively quick decreasing trend during 2011. Also, during rainfall events, the Cs-137 concentration in stream water showed a temporary increase. End Member Mixing Analysis was applied to evaluate contribution of groundwater, soil water and rainwater in discharge water during rainstorm events. The groundwater component was dominant in the runoff, whereas rainwater was main source for the Cs-137 concentration of the stream increasing during the storm events. In addition, a leaching of Cs-137 from the suspended sediments and the organic materials seemed to be also important sources to the stream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pochan, M.J.; Massey, M.J.
1979-02-01
This report discusses the results of actual raw product gas sampling efforts and includes: Rationale for raw product gas sampling efforts; design and operation of the CMU gas sampling train; development and analysis of a sampling train data base; and conclusions and future application of results. The results of sampling activities at the CO/sub 2/-Acceptor and Hygas pilot plants proved that: The CMU gas sampling train is a valid instrument for characterization of environmental parameters in coal gasification gas-phase process streams; depending on the particular process configuration, the CMU gas sampling train can reduce gasifier effluent characterization activity to amore » single location in the raw product gas line; and in contrast to the slower operation of the EPA SASS Train, CMU's gas sampling train can collect representative effluent data at a rapid rate (approx. 2 points per hour) consistent with the rate of change of process variables, and thus function as a tool for process engineering-oriented analysis of environmental characteristics.« less
NASA Astrophysics Data System (ADS)
Shoupeng, Song; Zhou, Jiang
2017-03-01
Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.
MERCURY IN CRUDE OIL PROCESSED IN THE UNITED STATES (2004)
The mean and range of concentrations of mercury in crude oil processed in the U.S. were investigated using two analytical methods. The sample ensemble consisted of 329 samples from 170 separate crude oil streams that are processed by U.S. refineries. Samples were retrieved imme...
Marvin-DiPasquale, Mark C.; Lutz, Michelle A.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.; DeWild, John F.; Brigham, Mark E.
2008-01-01
Mercury contamination of aquatic ecosystems is an issue of national concern, affecting both wildlife and human health. Detailed information on mercury cycling and food-web bioaccumulation in stream settings and the factors that control these processes is currently limited. In response, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) conducted detailed studies from 2002 to 2006 on various media to enhance process-level understanding of mercury contamination, biogeochemical cycling, and trophic transfer. Eight streams were sampled for this study: two streams in Oregon, and three streams each in Wisconsin and Florida. Streambed-sediment and pore-water samples were collected between February 2003 and September 2004. This report summarizes the suite of geochemical and microbial constituents measured, the analytical methods used, and provides the raw data in electronic form for both bed-sediment and pore-water media associated with this study.
Revealing the dual streams of speech processing.
Fridriksson, Julius; Yourganov, Grigori; Bonilha, Leonardo; Basilakos, Alexandra; Den Ouden, Dirk-Bart; Rorden, Christopher
2016-12-27
Several dual route models of human speech processing have been proposed suggesting a large-scale anatomical division between cortical regions that support motor-phonological aspects vs. lexical-semantic aspects of speech processing. However, to date, there is no complete agreement on what areas subserve each route or the nature of interactions across these routes that enables human speech processing. Relying on an extensive behavioral and neuroimaging assessment of a large sample of stroke survivors, we used a data-driven approach using principal components analysis of lesion-symptom mapping to identify brain regions crucial for performance on clusters of behavioral tasks without a priori separation into task types. Distinct anatomical boundaries were revealed between a dorsal frontoparietal stream and a ventral temporal-frontal stream associated with separate components. Collapsing over the tasks primarily supported by these streams, we characterize the dorsal stream as a form-to-articulation pathway and the ventral stream as a form-to-meaning pathway. This characterization of the division in the data reflects both the overlap between tasks supported by the two streams as well as the observation that there is a bias for phonological production tasks supported by the dorsal stream and lexical-semantic comprehension tasks supported by the ventral stream. As such, our findings show a division between two processing routes that underlie human speech processing and provide an empirical foundation for studying potential computational differences that distinguish between the two routes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilzbach, K. E.; Stetter, J. R.; Reilly, Jr., C. A.
1982-02-01
A collaborative environmental research program to provide information needed to assess the health and environmental effects associated with large-scale coal gasification technology is being conducted by Argonne National Laboratory (ANL) and the Grand Forks Energy Technology Center (GFETC). The objectives are to: investigate the toxicology and chemical composition of coal gasification by-products as a function of process variables and coal feed; compare the characteristics of isokinetic side-stream samples with those of process stream samples; identify the types of compounds responsible for toxicity; evaluate the chemical and toxicological effectiveness of various wastewater treatment operations; refine methodology for the collection and measurementmore » of organic vapors and particulates in workplace air; and obtain preliminary data on workplace air quality. So far the toxicities of a set of process stream samples (tar, oil, and gas liquor) and side-stream condensates from the GFETC gasifier have been measured in a battery of cellular screening tests for mutagenicity and cytotoxicity. Preliminary data on the effects of acute and chronic exposures of laboratory animals to process tar have been obtained. The process tar has been chemically fractionated and the distribution of mutagenicity and compound types among the fractions has been determined. Organic vapors and particulates collected at various times and locations in the gasifier building have been characterized.« less
Process for Nitrogen Oxide Waste Conversion to Fertilizer
NASA Technical Reports Server (NTRS)
Lueck, Dale E. (Inventor); Parrish, Clyde F. (Inventor)
2003-01-01
The present invention describes a process for converting vapor streams from sources containing at least one nitrogen-containing oxidizing agent therein to a liquid fertilizer composition comprising the steps of: a) directing a vapor stream containing at least one nitrogen-containing oxidizing agent to a first contact zone; b) contacting said vapor stream with water to form nitrogen oxide(s) from said at least one nitrogen-containing oxidizing agent; c) directing said acid(s) as a second stream to a second contact zone; d) exposing said second stream to hydrogen peroxide which is present within said second contact zone in a relative amount of at least 0.1% by weight of said second stream within said second contact zone to convert at least some of any nitrogen oxide species or ions other than in the nitrate form present within said second stream to nitrate ion; e) sampling said stream within said second contact zone to determine the relative amount of hydrogen peroxide within said second contact zone; f) adding hydrogen peroxide to said second contact zone when a level of hydrogen peroxide less than 0.1 % by weight in said second stream is determined by said sampling; g) adding a solution comprising potassium hydroxide to said second stream to maintain a pH between 6.0 and 11.0 within said second stream within said second contact zone to form a solution of potassium nitrate; and h) removing said solution of potassium nitrate from said second contact zone.
Process and Equipment for Nitrogen Oxide Waste Conversion to Fertilizer
NASA Technical Reports Server (NTRS)
Lueck, Dale E. (Inventor); Parrish, Clyde F. (Inventor)
2000-01-01
The present invention describes a process for converting vapor streams from sources containing at least one nitrogen-containing oxidizing agent therein to a liquid fertilizer composition comprising the steps of: (1) directing a vapor stream containing at least nitrogen-containing oxidizing agent to a first contact zone; (2) contacting said vapor stream with water to form nitrogen oxide(s) from said at least one nitrogen- containing oxidizing agent; (3) directing said acid(s) as a second stream to a second contact zone; (4) exposing said second stream to hydrogen peroxide which is present within said second contact zone in a relative amount of at least 0.1% by weight of said second stream within said second contact zone to convert at least some of any nitrogen oxide species or ions other than in the nitrite form present within said second stream to nitrate ion; (5) sampling said stream within said second contact zone to determine the relative amount of hydrogen peroxide within said second contact zone; (6) adding hydrogen peroxide to said second contact zone when a level on hydrogen peroxide less than 0.1% by weight in said second stream is determined by said sampling; (7) adding a solution comprising potassium hydroxide to said second stream to maintain a pH between 6.0 and 11.0 within said second stream within said second contact zone to form a solution of potassium nitrate; and (8) removing sais solution of potassium nitrate from said second contact zone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Stripped Resin and Process Wastewater 9 Table 9 to Subpart HHHHHHH of Part 63 Protection of Environment... Wastewater For demonstrating . . . For the following emission points and types of processes . . . Collect.... Each process wastewater stream 3. Initial compliance N/A 1 grab sample 1 grab sample. 4. Continuous...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Stripped Resin and Process Wastewater 9 Table 9 to Subpart HHHHHHH of Part 63 Protection of Environment... Wastewater For demonstrating . . . For the following emission points and types of processes . . . Collect.... Each process wastewater stream 3. Initial compliance N/A 1 grab sample 1 grab sample. 4. Continuous...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pugmire, R.J.; Solum, M.S.
This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR datamore » were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).« less
Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs
NASA Astrophysics Data System (ADS)
Lamba, J.; Karthikeyan, K.; Thompson, A.
2017-12-01
A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.
NASA Astrophysics Data System (ADS)
Cohen, M. J.; Hensley, R. T.; Spangler, M.; Gooseff, M. N.
2017-12-01
A key organizing idea in stream ecology is the river continuum concept (RCC) which makes testable predictions about network-scale variation in metabolic and community attributes. Using high resolution (ca. 0.1 Hz) Lagrangian sampling of a wide suite of solutes - including nitrate, fDOM, dissolved oyxgen and specific conductance, we sampled the river continuum from headwaters to the sea in the Suwannee River (Florida, USA). We specifically sought to test two predictions that follow from the RCC: first, that changes in metabolism and hydraulics lead to progressive reduction in total N retention but greater diel variation with increasing stream order; and second, that variation in metabolic and nutrient processing rates is larger across stream orders than between low order streams. In addition to providing a novel test of theory, these measurements enabled new insights into the evolution of water quality through a complex landscape, in part because main-stem profiles were obtained for both high and historically low flow conditions. We observed strong evidence of metabolism and nutrient retention at low flow. Both the rate of uptake velocity and the mass retention per unit area declined with increasing stream order, and declined dramatically at high flow. Clear evidence for time varying retention (i.e., diel variation) was observed at low flow, but was masked or absent at high flow. In this geologically complex river - with alluvial, spring-fed, and blackwater headwater streams - variation across low-order streams was large, suggesting the presence of many river continuua across the network. This application of longitudinal sampling and inference underscores the utility of changing reference frames to draw new insights, but also highlights some of the challenges that need to be considered and, where possible, controlled.
Distribution of model uncertainty across multiple data streams
NASA Astrophysics Data System (ADS)
Wutzler, Thomas
2014-05-01
When confronting biogeochemical models with a diversity of observational data streams, we are faced with the problem of weighing the data streams. Without weighing or multiple blocked cost functions, model uncertainty is allocated to the sparse data streams and possible bias in processes that are strongly constraint is exported to processes that are constrained by sparse data streams only. In this study we propose an approach that aims at making model uncertainty a factor of observations uncertainty, that is constant over all data streams. Further we propose an implementation based on Monte-Carlo Markov chain sampling combined with simulated annealing that is able to determine this variance factor. The method is exemplified both with very simple models, artificial data and with an inversion of the DALEC ecosystem carbon model against multiple observations of Howland forest. We argue that the presented approach is able to help and maybe resolve the problem of bias export to sparse data streams.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Ohte, N.; Doctor, D. H.; Kendall, C.
2003-12-01
Quantifying sources and transformations of nitrate in headwater catchments is fundamental to understanding the movement of nitrogen to streams. At the Sleepers River Research Watershed in northeastern Vermont (USA), we are using multiple chemical tracer and mixing model approaches to quantify sources and transport of nitrate to streams under varying flow regimes. We sampled streams, lysimeters, and wells at nested locations from the headwaters to the outlet of the 41 ha W-9 watershed under the entire range of flow regimes observed throughout 2002-2003, including baseflow and multiple events (stormflow and snowmelt). Our results suggest that nitrogen sources, and consequently stream nitrate concentrations, are rapidly regenerated during several weeks of baseflow and nitrogen is flushed from the watershed by stormflow events that follow baseflow periods. Both basic chemistry data (anions, cations, & dissolved organic carbon) and isotopic data (nitrate, dissolved organic carbon, and dissolved inorganic carbon) indicate that nitrogen source contributions vary depending upon the extent of saturation in the watershed, the initiation of shallow subsurface water inputs, and other hydrological processes. Stream nitrate concentrations typically peak with discharge and are higher on the falling than the rising limb of the hydrograph. Our data also indicate the importance of terrestrial and aquatic biogeochemical processes, in addition to hydrological connectivity in controlling how nitrate moves from the terrestrial landscape to streams. Our detailed sampling data from multiple flow regimes are helping to identify and quantify the "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nitrogen fluxes in streams.
As a means to protect the Nation's rivers and streams, states have adopted biocriteria, a narrative or numeric standard for the biological condition of streams. When stream segments or whole watersheds do not meet a state's biocriteria, then that water body is considered impaired...
Combined analysis of job and task benzene air exposures among workers at four US refinery operations
Shin, Jennifer (Mi); Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M
2016-01-01
Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers’ exposures to benzene over the past 30 years. PMID:26862134
Burns, Amanda; Shin, Jennifer Mi; Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M
2017-03-01
Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.
Characterization, adaptive traffic shaping, and multiplexing of real-time MPEG II video
NASA Astrophysics Data System (ADS)
Agrawal, Sanjay; Barry, Charles F.; Binnai, Vinay; Kazovsky, Leonid G.
1997-01-01
We obtain network traffic model for real-time MPEG-II encoded digital video by analyzing video stream samples from real-time encoders from NUKO Information Systems. MPEG-II sample streams include a resolution intensive movie, City of Joy, an action intensive movie, Aliens, a luminance intensive (black and white) movie, Road To Utopia, and a chrominance intensive (color) movie, Dick Tracy. From our analysis we obtain a heuristic model for the encoded video traffic which uses a 15-stage Markov process to model the I,B,P frame sequences within a group of pictures (GOP). A jointly-correlated Gaussian process is used to model the individual frame sizes. Scene change arrivals are modeled according to a gamma process. Simulations show that our MPEG-II traffic model generates, I,B,P frame sequences and frame sizes that closely match the sample MPEG-II stream traffic characteristics as they relate to latency and buffer occupancy in network queues. To achieve high multiplexing efficiency we propose a traffic shaping scheme which sets preferred 1-frame generation times among a group of encoders so as to minimize the overall variation in total offered traffic while still allowing the individual encoders to react to scene changes. Simulations show that our scheme results in multiplexing gains of up to 10% enabling us to multiplex twenty 6 Mbps MPEG-II video streams instead of 18 streams over an ATM/SONET OC3 link without latency or cell loss penalty. This scheme is due for a patent.
Austin, Bradley J; Hardgrave, Natalia; Inlander, Ethan; Gallipeau, Cory; Entrekin, Sally; Evans-White, Michelle A
2015-10-01
Construction of unconventional natural gas (UNG) infrastructure (e.g., well pads, pipelines) is an increasingly common anthropogenic stressor that increases potential sediment erosion. Increased sediment inputs into nearby streams may decrease autotrophic processes through burial and scour, or sediment bound nutrients could have a positive effect through alleviating potential nutrient limitations. Ten streams with varying catchment UNG well densities (0-3.6 wells/km(2)) were sampled during winter and spring of 2010 and 2011 to examine relationships between landscape scale disturbances associated with UNG activity and stream periphyton [chlorophyll a (Chl a)] and gross primary production (GPP). Local scale variables including light availability and water column physicochemical variables were measured for each study site. Correlation analyses examined the relationships of autotrophic processes and local scale variables with the landscape scale variables percent pasture land use and UNG metrics (well density and well pad inverse flow path length). Both GPP and Chl a were primarily positively associated with the UNG activity metrics during most sample periods; however, neither landscape variables nor response variables correlated well with local scale factors. These positive correlations do not confirm causation, but they do suggest that it is possible that UNG development can alleviate one or more limiting factors on autotrophic production within these streams. A secondary manipulative study was used to examine the link between nutrient limitation and algal growth across a gradient of streams impacted by natural gas activity. Nitrogen limitation was common among minimally impacted stream reaches and was alleviated in streams with high UNG activity. These data provide evidence that UNG may stimulate the primary production of Fayetteville shale streams via alleviation of N-limitation. Restricting UNG activities from the riparian zone along with better enforcement of best management practices should help reduce these possible impacts of UNG activities on stream autotrophic processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
Network analysis reveals multiscale controls on streamwater chemistry
McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks. PMID:24753575
Network analysis reveals multiscale controls on streamwater chemistry.
McGuire, Kevin J; Torgersen, Christian E; Likens, Gene E; Buso, Donald C; Lowe, Winsor H; Bailey, Scott W
2014-05-13
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.
2009-05-01
There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.
NASA Astrophysics Data System (ADS)
Pickard, Amy E.; Heal, Kate V.; McLeod, Andrew R.; Dinsmore, Kerry J.
2017-04-01
Aquatic systems draining peatland catchments receive a high loading of dissolved organic carbon (DOC) from the surrounding terrestrial environment. Whilst photo-processing is known to be an important process in the transformation of aquatic DOC, the drivers of temporal variability in this pathway are less well understood. In this study, 8 h laboratory irradiation experiments were conducted on water samples collected from two contrasting peatland aquatic systems in Scotland: a peatland stream and a reservoir in a catchment with high percentage peat cover. Samples were collected monthly at both sites from May 2014 to May 2015 and from the stream system during two rainfall events. DOC concentrations, absorbance properties and fluorescence characteristics were measured to investigate characteristics of the photochemically labile fraction of DOC. CO2 and CO produced by irradiation were also measured to determine gaseous photoproduction and intrinsic sample photoreactivity. Significant variation was seen in the photoreactivity of DOC between the two systems, with total irradiation-induced changes typically 2 orders of magnitude greater at the high-DOC stream site. This is attributed to longer water residence times in the reservoir rendering a higher proportion of the DOC recalcitrant to photo-processing. During the experimental irradiation, 7 % of DOC in the stream water samples was photochemically reactive and direct conversion to CO2 accounted for 46 % of the measured DOC loss. Rainfall events were identified as important in replenishing photoreactive material in the stream, with lignin phenol data indicating mobilisation of fresh DOC derived from woody vegetation in the upper catchment. This study shows that peatland catchments produce significant volumes of aromatic DOC and that photoreactivity of this DOC is greatest in headwater streams; however, an improved understanding of water residence times and DOC input-output along the source to sea aquatic pathway is required to determine the fate of peatland carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaham, M.A.
1991-04-01
Thirteen water quality tests measuring five categories of pollution were conducted twice monthly from May, 1987 to April, 1990 at eight locations on Lake Sidney Lanier to establish baseline data and detect trends. Additionally, sediment and water samples were analyzed for ten toxic metals. Sampling stations were located at or near the point of entry of streams into the Lake. Oxygen demanding pollutants were highest in urban streams and phosphorus and nitrogen concentrations were highest in streams having poultry processing operations within their watersheds. Indicators of siltation increased coincidentally with highway construction in one watershed. Fecal coliform bacteria counts decreasedmore » at Flat Creek and increased in the Chattahoochee River. Zinc and copper occurred in water samples at levels of detectability. Sediment samples from several locations contained metal concentrations which warrant further study.« less
Apparatus to collect, classify, concentrate, and characterize gas-borne particles
Rader, Daniel J.; Torczynski, John R.; Wally, Karl; Brockmann, John E.
2003-12-16
An aerosol lab-on-a-chip (ALOC) integrates one or more of a variety of particle collection, classification, concentration (enrichment), an characterization processes onto a single substrate or layered stack of such substrates. By mounting a UV laser diode laser light source on the substrate, or substrates tack, so that it is located down-stream of the sample inlet port and at right angle the sample particle stream, the UV light source can illuminate individual particles in the stream to induce a fluorescence response in those particles having a fluorescent signature such as biological particles, some of said particles. An illuminated particle having a fluorescent signal above a threshold signal would trigger a sorter module that would separate that particle from the particle stream.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karl Anderson, Steve Plimpton
2015-01-27
The FireHose Streaming Benchmarks are a suite of stream-processing benchmarks defined to enable comparison of streaming software and hardware, both quantitatively vis-a-vis the rate at which they can process data, and qualitatively by judging the effort involved to implement and run the benchmarks. Each benchmark has two parts. The first is a generator which produces and outputs datums at a high rate in a specific format. The second is an analytic which reads the stream of datums and is required to perform a well-defined calculation on the collection of datums, typically to find anomalous datums that have been created inmore » the stream by the generator. The FireHose suite provides code for the generators, sample code for the analytics (which users are free to re-implement in their own custom frameworks), and a precise definition of each benchmark calculation.« less
Data on Mercury in Water, Bed Sediment, and Fish from Streams Across the United States, 1998-2005
Bauch, Nancy J.; Chasar, Lia C.; Scudder, Barbara C.; Moran, Patrick W.; Hitt, Kerie J.; Brigham, Mark E.; Lutz, Michelle A.; Wentz, Dennis A.
2009-01-01
The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Toxic Substances Hydrology Programs conducted the National Mercury Pilot Study in 1998 to examine relations of mercury (Hg) in water, bed sediment and fish in streams across the United States, including Alaska and Hawaii. Water and bed-sediment samples were analyzed for total Hg (THg), methylmercury (MeHg), and other constituents; fish were analyzed for THg. Similar sampling was conducted at additional streams across the country in 2002 and 2004-05. This report summarizes sample collection and processing protocols, analytical methods, environmental data, and quality-assurance data for stream water, bed sediment, and fish for these national studies. To extend the geographic coverage of the data, this report also includes four regional USGS Hg studies conducted during 1998-2001 and 2004. The environmental data for these national and regional Hg studies are provided in an electronic format.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, F. C.
2013-11-18
In order to comply with the Defense Waste Processing Facility (DWPF) Waste Form Compliance Plan for Sluldge Batch 7b, Savannah River National Laboratory (SRNL) personnel characterized the Defense Waste Processing Facility (DWPF) pour stream (PS) glass sample collected while filling canister S04023. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.
2004-12-01
Our ability to assess how stream nutrient concentrations respond to biogeochemical transformations and stream flow dynamics is often limited by datasets that do not include all flow conditions that occur over event, monthly, seasonal, and yearly time scales. At the Sleepers River Research Watershed in northeastern Vermont, USA, nitrate, DOC (dissolved organic carbon), and major ion concentrations were measured on samples collected over a wide range of flow conditions from summer 2002 through summer 2004. Nutrient flushing occurred at the W-9 catchment and high-frequency sampling revealed critical insights into seasonal and event-scale controls on nutrient concentrations. In this seasonally snow-covered catchment, the earliest stage of snowmelt introduced nitrogen directly to the stream from the snowpack. As snowmelt progressed, the source of stream nitrate shifted to flushing of soil nitrate along shallow subsurface flow paths. In the growing season, nitrogen flushing to streams varied with antecedent moisture conditions. More nitrogen was available to flush to streams when antecedent moisture was lowest, and mobile nitrogen stores in the landscape regenerated under baseflow conditions on times scales as short as 7 days. Leaf fall was another critical time when coupled hydrological and biogeochemical processes controlled nutrient fluxes. With the input of labile organic carbon from freshly decomposing leaves, nitrate concentrations declined sharply in response to in-stream immobilization or denitrification. These high-resolution hydrochemical data from multiple flow regimes are identifying "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nutrient fluxes in streams.
Neotropical Amphibian Declines Affect Stream Ecosystem Properties
NASA Astrophysics Data System (ADS)
Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.
2005-05-01
Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.
Identifying Source Water and Flow Paths in a Semi-Arid Watershed
NASA Astrophysics Data System (ADS)
Gulvin, C. J.; Miller, S. N.
2016-12-01
Processes controlling water delivery to perennial streams in the semi-arid mountain west are poorly understood, yet necessary to characterize water distribution across the landscape and better protect and manage diminishing water resources. Stream water chemistry profiling and hydrograph separation using stable isotopes can help identify source waters. Weekly stream water samples tested for stable water isotope fractionations, and major cations and anions at seven sites collocated with continuously recording stream depth gauges within a small watershed in southeastern Wyoming is a necessary first-step to identifying seasonally changing source water and flow paths. Sample results will help establish appropriate end members for a mixing analysis, as well as, characterize flow path heterogeneity, transit time distributions, and landscape selectively features. Hourly stream sampling during late-summer thunderstorms and rapid spring melt will help demonstrate if and how stream discharge change is affected by the two different events. Soil water and water extracted from tree xylem will help resolve how water is partitioned in the first 10m of the subsurface. In the face of land use change and a growing demand for water in the area, understanding how the water in small mountain streams is sustained is crucial for the future of agriculture, municipal water supplies, and countless ecosystem services.
Seasonal and event-scale controls on dissolved organic carbon and nitrate flushing from catchments
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.
2005-05-01
To explore terrestrial and aquatic linkages controlling nutrient dynamics in forested catchments, we collected high-frequency samples from 2002 to 2004 at the Sleepers River Research Watershed in northeastern Vermont USA. We measured DOC (dissolved organic carbon), SUVA (specific UV absorbance), nitrate, and major ion concentrations over a wide range of flow conditions. In addition, weekly samples since 1991 provide a longer term record of stream nutrient fluxes. During events, DOC concentrations increased with flow consistent with the flushing of a large reservoir of mobile organic carbon from forest soils. Higher concentrations of DOC and SUVA in the growing versus dormant season illustrated seasonal variation in sources, characteristics (i.e. reactivity), availability, and controls on the flushing response of organic matter from the landscape to streams. In contrast, stream nitrate concentrations increased with flow but only when catchments "wetted-up" after baseflow periods. Growing season stream nitrate responses were dependent on short-term antecedent moisture conditions indicating rapid depletion of the soil nitrate reservoir when source areas became hydrologically connected to streams. While the different response patterns emphasized variable source and biogeochemical controls in relation to flow patterns, coupled carbon and nitrogen biogeochemical processes were also important controls on stream nutrient fluxes. In particular, leaf fall was a critical time when reactive DOC from freshly decomposing litter fueled in-stream consumption of nitrate leading to sharp declines of stream nitrate concentrations. Our measurements highlight the importance of "hot spots" and "hot moments" of biogeochemical and hydrological processes that control stream responses. Furthermore, our work illustrates how carbon, nitrogen, and water cycles are coupled in catchments, and provides a conceptual model for future work aimed at modeling forest stream hydrochemistry at the catchment scale.
Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Henderson, Alden K; Reissman, Dori B
2004-08-15
In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal drinking-water standards or lifetime health advisories, although such standards or advisories have not been established for most of these compounds. Also, at least 11 and as many as 17 OWCs were detected in samples of finished water. Drinking-water criteria currently are based on the toxicity of individual compounds and not combinations of compounds. Little is known about potential human-health effects associated with chronic exposure to trace levels of multiple OWCs through routes such as drinking water. The occurrence in drinking-water supplies of many of the OWCs analyzed for during this study is unregulated and most of these compounds have not been routinely monitored for in the Nation's source- or potable-water supplies. This study provides the first documentation that many of these compounds can survive conventional water-treatment processes and occur in potable-water supplies. It thereby provides information that can be used in setting research and regulatory priorities and in designing future monitoring programs. The results of this study also indicate that improvements in water-treatment processes may benefit from consideration of the response of OWCs and other trace organic contaminants to specific physical and chemical treatments.
Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B.
2004-01-01
In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal drinking-water standards or lifetime health advisories, although such standards or advisories have not been established for most of these compounds. Also, at least 11 and as many as 17 OWCs were detected in samples of finished water. Drinking-water criteria currently are based on the toxicity of individual compounds and not combinations of compounds. Little is known about potential human-health effects associated with chronic exposure to trace levels of multiple OWCs through routes such as drinking water. The occurrence in drinking-water supplies of many of the OWCs analyzed for during this study is unregulated and most of these compounds have not been routinely monitored for in the Nation's source- or potable-water supplies. This study provides the first documentation that many of these compounds can survive conventional water-treatment processes and occur in potable-water supplies. It thereby provides information that can be used in setting research and regulatory priorities and in designing future monitoring programs. The results of this study also indicate that improvements in water-treatment processes may benefit from consideration of the response of OWCs and other trace organic contaminants to specific physical and chemical treatments. ?? 2004 Elsevier B.V. All rights reserved.
Seifert, Anne-Gret; Roth, Vanessa-Nina; Dittmar, Thorsten; Gleixner, Gerd; Breuer, Lutz; Houska, Tobias; Marxsen, Jürgen
2016-11-15
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) was used to examine the molecular composition of dissolved organic matter (DOM) from soils under different land use regimes and how the DOM composition in the catchment is reflected in adjacent streams. The study was carried out in a small area of the Schwingbach catchment, an anthropogenic-influenced landscape in central Germany. We investigated 30 different soil water samples from 4 sites and different depths (managed meadow (0-5cm, 40-50cm), deciduous forest (0-5cm), mixed-coniferous forest (0-5cm) and agricultural land (0-5cm, 40-50cm)) and 8 stream samples. 6194 molecular formulae and their magnitude-weighted parameters ((O/C)w, (H/C)w, (N/C)w, (AI-mod)w, (DBE/C)w, (DBE/O)w, (DBE-O)w, (C#)w, (MW)w) were used to describe the molecular composition of the samples. The samples can be roughly divided in three groups. Group 1 contains samples from managed meadow 40-50cm and stream water, which are characterized by high saturation compared to samples from group 2 including agricultural samples and samples from the surface meadow (0-5cm), which held more nitrogen containing and aromatic compounds. Samples from both forested sites (group 3) are characterized by higher molecular weight and O/C ratio. Environmental parameters vary between sites and among these parameters pH and nitrate significantly affect chemical composition of DOM. Results indicate that most DOM in streams is of terrestrial origin. However, 120 molecular formulae were detected only in streams and not in any of the soil samples. These compounds share molecular formulae with peptides, unsaturated aliphatics and saturated FA-CHO/FA-CHOX. Compounds only found in soil samples are much more aromatic, have more double bonds and a much lower H/C ratio but higher oxygen content, which indicates the availability of fresh plant material and less microbial processed material compared to stream samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Stable isotopes can be very useful in large-scale monitoring programs because samples for isotopic analysis are easy to collect, and isotopes integrate information about complex processes such as evaporation from water isotopes and denitrification from nitrogen isotopes. Traditi...
Graves, Steven W; Habbersett, Robert C
2013-10-22
A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.
Graves, Steven W.; Habbersett, Robert C.
2014-07-01
A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.
System and method for measuring particles in a sample stream of a flow cytometer or the like
Graves, Steven W.; Habberset, Robert C.
2010-11-16
A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.
Graves, Steven W.; Habbersett, Robert C.
2016-11-15
A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.
Sampling procedure for lake or stream surface water chemistry
Robert Musselman
2012-01-01
Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.
Measuring suspended sediment in small mountain streams
Robert B. Thomas
1985-01-01
Measuring suspended sediment concentration in streams provides a way of monitoring the effects of forest management activities on water quality. Collecting data on suspended sediment is an act of sampling. The nature of the delivery process and the circumstances under which data are collected combine to produce highly variable results that are difficult to analyze and...
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-08-01
This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.
Implementation of Dynamic Extensible Adaptive Locally Exchangeable Measures (IDEALEM) v 0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sim, Alex; Lee, Dongeun; Wu, K. John
2016-03-04
Handling large streaming data is essential for various applications such as network traffic analysis, social networks, energy cost trends, and environment modeling. However, it is in general intractable to store, compute, search, and retrieve large streaming data. This software addresses a fundamental issue, which is to reduce the size of large streaming data and still obtain accurate statistical analysis. As an example, when a high-speed network such as 100 Gbps network is monitored, the collected measurement data rapidly grows so that polynomial time algorithms (e.g., Gaussian processes) become intractable. One possible solution to reduce the storage of vast amounts ofmore » measured data is to store a random sample, such as one out of 1000 network packets. However, such static sampling methods (linear sampling) have drawbacks: (1) it is not scalable for high-rate streaming data, and (2) there is no guarantee of reflecting the underlying distribution. In this software, we implemented a dynamic sampling algorithm, based on the recent technology from the relational dynamic bayesian online locally exchangeable measures, that reduces the storage of data records in a large scale, and still provides accurate analysis of large streaming data. The software can be used for both online and offline data records.« less
A Control Chart Approach for Representing and Mining Data Streams with Shape Based Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omitaomu, Olufemi A
The mining of data streams for online condition monitoring is a challenging task in several domains including (electric) power grid system, intelligent manufacturing, and consumer science. Considering a power grid application in which thousands of sensors, called the phasor measurement units, are deployed on the power grid network to continuously collect streams of digital data for real-time situational awareness and system management. Depending on design, each sensor could stream between ten and sixty data samples per second. The myriad of sensory data captured could convey deeper insights about sequence of events in real-time and before major damages are done. However,more » the timely processing and analysis of these high-velocity and high-volume data streams is a challenge. Hence, a new data processing and transformation approach, based on the concept of control charts, for representing sequence of data streams from sensors is proposed. In addition, an application of the proposed approach for enhancing data mining tasks such as clustering using real-world power grid data streams is presented. The results indicate that the proposed approach is very efficient for data streams storage and manipulation.« less
Tracer-based characterization of hyporheic exchange and benthic biolayers in streams
NASA Astrophysics Data System (ADS)
Knapp, Julia L. A.; González-Pinzón, Ricardo; Drummond, Jennifer D.; Larsen, Laurel G.; Cirpka, Olaf A.; Harvey, Judson W.
2017-02-01
Shallow benthic biolayers at the top of the streambed are believed to be places of enhanced biogeochemical turnover within the hyporheic zone. They can be investigated by reactive stream tracer tests with tracer recordings in the streambed and in the stream channel. Common in-stream measurements of such reactive tracers cannot localize where the processing primarily takes place, whereas isolated vertical depth profiles of solutes within the hyporheic zone are usually not representative of the entire stream. We present results of a tracer test where we injected the conservative tracer bromide together with the reactive tracer resazurin into a third-order stream and combined the recording of in-stream breakthrough curves with multidepth sampling of the hyporheic zone at several locations. The transformation of resazurin was used as an indicator of metabolism, and high-reactivity zones were identified from depth profiles. The results from our subsurface analysis indicate that the potential for tracer transformation (i.e., the reaction rate constant) varied with depth in the hyporheic zone. This highlights the importance of the benthic biolayer, which we found to be on average 2 cm thick in this study, ranging from one third to one half of the full depth of the hyporheic zone. The reach-scale approach integrated the effects of processes along the reach length, isolating hyporheic processes relevant for whole-stream chemistry and estimating effective reaction rates.
Tracer-based characterization of hyporheic exchange and benthic biolayers in streams
Knapp, Julia L.A.; González-Pinzón, Ricardo; Drummond, Jennifer D.; Larsen, Laurel G.; Cirpka, Olaf A.; Harvey, Judson W.
2017-01-01
Shallow benthic biolayers at the top of the streambed are believed to be places of enhanced biogeochemical turnover within the hyporheic zone. They can be investigated by reactive stream tracer tests with tracer recordings in the streambed and in the stream channel. Common in-stream measurements of such reactive tracers cannot localize where the processing primarily takes place, whereas isolated vertical depth profiles of solutes within the hyporheic zone are usually not representative of the entire stream. We present results of a tracer test where we injected the conservative tracer bromide together with the reactive tracer resazurin into a third-order stream and combined the recording of in-stream breakthrough curves with multidepth sampling of the hyporheic zone at several locations. The transformation of resazurin was used as an indicator of metabolism, and high-reactivity zones were identified from depth profiles. The results from our subsurface analysis indicate that the potential for tracer transformation (i.e., the reaction rate constant) varied with depth in the hyporheic zone. This highlights the importance of the benthic biolayer, which we found to be on average 2 cm thick in this study, ranging from one third to one half of the full depth of the hyporheic zone. The reach-scale approach integrated the effects of processes along the reach length, isolating hyporheic processes relevant for whole-stream chemistry and estimating effective reaction rates.
Slade, R.M.; Buszka, P.M.
1994-01-01
The chemical characteristics of the saline water in streams and shallow aquifers in the study area were compared to characteristics of water that would result from the probable processes affecting the salinity of water, such as evapotranspiration, mineral dissolution, and mixing of water from streams and shallow-aquifer water with brines from deep aquifers. Dissolution of halite or mixing with deep-aquifer water was the most common cause of increased salinity in 48.0 percent of 77 water samples from shallow aquifers, as classified using salt-norm analysis; the second most common cause was the weathering and dissolution of sulfur-bearing minerals. Mixing with water from soil-mineral dissolution was classified as the principal source of chloride in 28.4 percent of 67 water samples from shallow aquifers with nitrate determinations. Trace-species/chloride ratios indicated that mixing with water from deep aquifers in rocks of the Pennsylvanian System was the principal source of chloride in 24.4 percent of 45 shallow-aquifer samples lacking nitrate determinations.
Brightbill, Robin A.; Munn, Mark D.
2008-01-01
In 2000, the U.S. Environmental Protection Agency began the process of developing regional nutrient criteria for streams and rivers. In response to concerns about nutrients by the U.S. Environmental Protection Agency and others, the U.S. Geological Survey National Water Quality Assessment Program began studying the effects of nutrient enrichment on agricultural stream ecosystems to aid in the understanding of how nutrients affect the biota in agricultural streams. Streams within five study areas were sampled either in 2003 or 2004. These five study areas were located within six NAWQA study units: the combined Apalachicola-Chattahoochee-Flint River Basin (ACFB) and Georgia-Florida Coastal Plain Drainages (GAFL), Central Columbia Plateau?Yakima River Basin (CCYK), Central Nebraska Basins (CNBR), Potomac River?Delmarva Peninsula (PODL), and the White-Miami River Basin (WHMI). Data collected included nutrients (nitrogen and phosphorous) and other chemical parameters, biological samples (chlorophyll, algal assemblages, invertebrate assemblages, and some fish assemblages), stream habitat, and riparian and basin information. This report describes and presents the data collected from these study areas.
Concurrent assessment of fish and habitat in warmwater streams in Wyoming
Quist, M.C.; Hubert, W.A.; Rahel, F.J.
2006-01-01
Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Rønde, V.; McKnight, U. S.; Annable, M. D.; Devlin, J. F.; Cremeans, M.; Sonne, A. T.; Bjerg, P. L.
2017-12-01
Chlorinated ethenes (CE) are abundant groundwater contaminants and pose risk to both groundwater and surface water bodies, as plumes can migrate through aquifers to streams. After release to the environment, CE may undergo attenuation. The hyporheic zone is believed to enhance CE attenuation, however studies contradicting this have also been reported. Since dilution commonly reduces contaminant concentrations in streams to below quantification limits, use of mass balances along the pathway from groundwater to stream is unusual. Our study is conducted at the low-land Grindsted stream, Denmark, which is impacted by a contaminant plume. CE have been observed in the stream water; hence our study site provides an unusual opportunity to study attenuation processes in a CE plume as it migrates through the groundwater at the stream bank, through the stream bed and further to the point of fully mixed conditions in the stream. The study undertook the determination of redox conditions and CE distribution from bank to stream; streambed contaminant flux estimation using streambed Passive Flux Meters (sPFM); and quantification of streambed water fluxes using temperature profiling and streambed Point Velocity Probes (SBPVP). The advantage of the sPFM is that it directly measures the contaminant flux without the need for water samples, while the advantage of the SBPVP is its ability to measure the vertical seepage velocity without the need for additional geological parameters. Finally, a mass balance assessment along the plume pathway was conducted to account for any losses or accumulations. The results show consistencies in spatial patterns between redox conditions and extent of dechlorination; between contaminant fluxes from sPFM and concentrations from water samples; and between seepage velocities from SBPVP and temperature-based water fluxes. Mass balances and parent-metabolite compound ratios indicate limited degradation between the bank and the point of fully mixed stream water. Since the plume at the bank mainly consists of cis-DCE and vinyl chloride, this implies high and persistent stream water concentrations of these compounds. Finally, this study demonstrates the usefulness and complementary nature of sPFM and SBPVP measurements for assessing the attenuation processes through mass balance calculations.
Young, J.A.; Smith, D.R.; Snyder, C.D.; Lemarie, D.P.
2002-01-01
Biodiversity surveys are often hampered by the inability to control extraneous sources of variability introduced into comparisons of populations across a heterogenous landscape. If not specifically accounted for a priori, this noise can weaken comparisons between sites, and can make it difficult to draw inferences about specific ecological processes. We developed a terrain-based, paired-site sampling design to analyze differences in aquatic biodiversity between streams draining eastern hemlock (Tsuga canadensis) forests, and those draining mixed hardwood forests in Delaware Water Gap National Recreation Area (USA). The goal of this design was to minimize variance due to terrain influences on stream communities, while representing the range of hemlock dominated stream environments present in the park. We used geographic information systems (GIS) and cluster analysis to define and partition hemlock dominated streams into terrain types based on topographic variables and stream order. We computed similarity of forest stands within terrain types and used this information to pair hemlock-dominated streams with hardwood counterparts prior to sampling. We evaluated the effectiveness of the design through power analysis and found that power to detect differences in aquatic invertebrate taxa richness was highest when sites were paired and terrain type was included as a factor in the analysis. Precision of the estimated difference in mean richness was nearly doubled using the terrain-based, paired site design in comparison to other evaluated designs. Use of this method allowed us to sample stream communities representative of park-wide forest conditions while effectively controlling for landscape variability.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2014-11-01
In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.
Somerson, Jacob; Plaxco, Kevin W
2018-04-15
The ability to measure the concentration of specific small molecules continuously and in real-time in complex sample streams would impact many areas of agriculture, food safety, and food production. Monitoring for mycotoxin taint in real time during food processing, for example, could improve public health. Towards this end, we describe here an inexpensive electrochemical DNA-based sensor that supports real-time monitor of the mycotoxin ochratoxin A in a flowing stream of foodstuffs.
Daniel H. Doctor; Carol Kendall; Stephen D. Sebestyen; James B. Shanley; Nobuhito Ohte; Elizabeth W. Boyer
2008-01-01
The stable isotopic composition of dissolved inorganic carbon (δ13C-DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed δ13C-DIC increased between 3-5% from the stream source to the outlet weir...
Constituent loads in small streams: the process and problems of estimating sediment flux
R. B. Thomas
1989-01-01
Constituent loads in small streams are often estimated poorly. This is especially true for discharge-related constituents like sediment, since their flux is highly variable and mainly occurs during infrequent high-flow events. One reason for low-quality estimates is that most prevailing data collection methods ignore sampling probabilities and only partly account for...
Digital carrier demodulator employing components working beyond normal limits
NASA Technical Reports Server (NTRS)
Hurd, William J. (Inventor); Sadr, Ramin (Inventor)
1990-01-01
In a digital device, having an input comprised of a digital sample stream at a frequency F, a method is disclosed for employing a component designed to work at a frequency less than F. The method, in general, is comprised of the following steps: dividing the digital sample stream into odd and even digital samples streams each at a frequency of F/2; passing one of the digital sample streams through the component designed to work at a frequency less than F where the component responds only to the odd or even digital samples in one of the digital sample streams; delaying the other digital sample streams for the time it takes the digital sample stream to pass through the component; and adding the one digital sample stream after passing through the component with the other delayed digital sample streams. In the specific example, the component is a finite impulse response filter of the order ((N + 1)/2) and the delaying step comprised passing the other digital sample streams through a shift register for a time (in sampling periods) of ((N + 1)/2) + r, where r is a pipline delay through the finite impulse response filter.
Droplet-Based Segregation and Extraction of Concentrated Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buie, C R; Buckley, P; Hamilton, J
2007-02-23
Microfluidic analysis often requires sample concentration and separation techniques to isolate and detect analytes of interest. Complex or scarce samples may also require an orthogonal separation and detection method or off-chip analysis to confirm results. To perform these additional steps, the concentrated sample plug must be extracted from the primary microfluidic channel with minimal sample loss and dilution. We investigated two extraction techniques; injection of immiscible fluid droplets into the sample stream (''capping'''') and injection of the sample into an immiscible fluid stream (''extraction''). From our results we conclude that capping is the more effective partitioning technique. Furthermore, this functionalitymore » enables additional off-chip post-processing procedures such as DNA/RNA microarray analysis, realtime polymerase chain reaction (RT-PCR), and culture growth to validate chip performance.« less
Michael, Claire W; Naik, Kalyani; McVicker, Michael
2013-05-01
We developed a value stream map (VSM) of the Papanicolaou test procedure to identify opportunities to reduce waste and errors, created a new VSM, and implemented a new process emphasizing Lean tools. Preimplementation data revealed the following: (1) processing time (PT) for 1,140 samples averaged 54 hours; (2) 27 accessioning errors were detected on review of 357 random requisitions (7.6%); (3) 5 of the 20,060 tests had labeling errors that had gone undetected in the processing stage. Four were detected later during specimen processing but 1 reached the reporting stage. Postimplementation data were as follows: (1) PT for 1,355 samples averaged 31 hours; (2) 17 accessioning errors were detected on review of 385 random requisitions (4.4%); and (3) no labeling errors were undetected. Our results demonstrate that implementation of Lean methods, such as first-in first-out processes and minimizing batch size by staff actively participating in the improvement process, allows for higher quality, greater patient safety, and improved efficiency.
NASA Astrophysics Data System (ADS)
Woodward, Simon James Roy; Wöhling, Thomas; Rode, Michael; Stenger, Roland
2017-09-01
The common practice of infrequent (e.g., monthly) stream water quality sampling for state of the environment monitoring may, when combined with high resolution stream flow data, provide sufficient information to accurately characterise the dominant nutrient transfer pathways and predict annual catchment yields. In the proposed approach, we use the spatially lumped catchment model StreamGEM to predict daily stream flow and nitrate concentration (mg L-1 NO3-N) in four contrasting mesoscale headwater catchments based on four years of daily rainfall, potential evapotranspiration, and stream flow measurements, and monthly or daily nitrate concentrations. Posterior model parameter distributions were estimated using the Markov Chain Monte Carlo sampling code DREAMZS and a log-likelihood function assuming heteroscedastic, t-distributed residuals. Despite high uncertainty in some model parameters, the flow and nitrate calibration data was well reproduced across all catchments (Nash-Sutcliffe efficiency against Log transformed data, NSL, in the range 0.62-0.83 for daily flow and 0.17-0.88 for nitrate concentration). The slight increase in the size of the residuals for a separate validation period was considered acceptable (NSL in the range 0.60-0.89 for daily flow and 0.10-0.74 for nitrate concentration, excluding one data set with limited validation data). Proportions of flow and nitrate discharge attributed to near-surface, fast seasonal groundwater and slow deeper groundwater were consistent with expectations based on catchment geology. The results for the Weida Stream in Thuringia, Germany, using monthly as opposed to daily nitrate data were, for all intents and purposes, identical, suggesting that four years of monthly nitrate sampling provides sufficient information for calibration of the StreamGEM model and prediction of catchment dynamics. This study highlights the remarkable effectiveness of process based, spatially lumped modelling with commonly available monthly stream sample data, to elucidate high resolution catchment function, when appropriate calibration methods are used that correctly handle the inherent uncertainties.
In-stream attenuation of neuro-active pharmaceuticals and their metabolites
Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael
2013-01-01
In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.
NASA Astrophysics Data System (ADS)
Snoalv, J.; Groeneveld, M.; Quine, T. A.; Tranvik, L.
2017-12-01
Flocculation of dissolved organic carbon (DOC) in streams and rivers is a process that contributes to the pool of particulate organic carbon (POC) in the aquatic system. In low-energy waters the increased sedimentation rates of this higher-density fraction of organic carbon (OC) makes POC important in allocating organic carbon into limnic storage, which subsequently influences emissions of greenhouse gases from the continental environment to the atmosphere. Allochthonous OC, derived from the terrestrial environment by soil erosion and litterfall, import both mineral aggregate-bound and free OC into freshwaters, which comprise carbon species of different quality and recalcitrance than autochthonous in-stream produced OC, such as from biofilms, aquatic plants and algae. Increased soil erosion due to land use change (e.g. agriculture, deforestation etc.) influences the input of allochthonous OC, which can lead to increased POC formation and sedimentation of terrestrial OC at flocculation boundaries in the landscape, i.e. where coagulation and flocculation processes are prone to occur in the water column. This study investigates the seasonal variation in POC content and flocculation capacity with respect to water quality (elemental composition) in eight river systems (four agricultural and four wooded streams) with headwaters in Exmoor, UK, that drain managed and non-managed land into Bristol Channel. Through flocculation experiments the samples were allowed to flocculate by treatments with added clay and salt standards that simulate the flocculation processes by 1) increased input of sediment into streams, and 2) saline mixing at the estuarine boundary, in order to quantify floc production and investigate POC quality by each process respectively. The results show how floc production, carbon quality and incorporation (e.g. complexation) of metals and rare earth elements (REE) in produced POC and remaining DOC in solution vary in water samples over the season and how these are related to different flocculation processes and affected by land use. This study improves our understanding on OC flocculation dynamics on a local catchment scale and how POC fate is affected by changed water quality in streams perturbed by land use change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji-Hyung
A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperaturesmore » derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji Hyung
A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperaturesmore » derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.« less
Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael
2011-01-01
This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the remaining samples were archived. Biological characteristics were determined by using an in-vitro bioassay to determine total estrogenicity in water samples and a caged fish study to determine characteristics of fish from experiments that exposed fish to wastewater effluent in 2009. St. Cloud State University deployed and processed caged fathead minnows at 13 stream sites during September 2009 for the caged fish study. Measured fish data included length, weight, body condition factor, and vitellogenin concentrations.
Determination of stream reaeration coefficients by use of tracers
Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, N.; Parker, G.W.; DeLong, L.L.
1987-01-01
Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes.Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas.This manual describes the slug-injection and constant-rate injection methods of performing gas-tracer desorption measurements. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients.
Isolating and identifying atmospheric ice-nucleating aerosols: a new technique
NASA Astrophysics Data System (ADS)
Kreidenweis, S. M.; Chen, Y.; Rogers, D. C.; DeMott, P. J.
Laboratory studies examined two key aspects of the performance of a continuous-flow diffusion chamber (CFD) instrument that detects ice nuclei (IN) concentrations in air samples: separating IN from non-IN, and collecting IN aerosols to determine chemical composition. In the first study, submicron AgI IN particles were mixed in a sample stream with submicron non-IN salt particles, and the sample stream was processed in the CFD at -19°C and 23% supersaturation with respect to ice. Examination of the residual particles from crystals nucleated in the CFD confirmed that only AgI particles served as IN in the mixed stream. The second study applied this technique to separate and analyze IN and non-IN particles in a natural air sample. Energy-dispersive X-ray analyses (EDS) of the elemental composition of selected particles from the IN and non-IN fractions in ambient air showed chemical differences: Si and Ca were present in both, but S, Fe and K were also detected in the non-IN fraction.
Flotemersch, Joseph E; North, Sheila; Blocksom, Karen A
2014-02-01
Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the US Environmental Protection Agency's National Rivers and Streams Assessment. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for different types of streams (e.g., low gradient vs. high gradient). Consequently, a research element was added to the 2008-2009 National Rivers and Streams Assessment to conduct a side-by-side comparison of the standard macroinvertebrate sampling method with an alternate method specifically designed for low-gradient wadeable streams and rivers that focused more on stream edge habitat. Samples were collected using each method at 525 sites in five of nine aggregate ecoregions located in the conterminous USA. Methods were compared using the benthic macroinvertebrate multimetric index developed for the 2006 Wadeable Streams Assessment. Statistical analysis did not reveal any trends that would suggest the overall assessment of low-gradient streams on a regional or national scale would change if the alternate method was used rather than the standard sampling method, regardless of the gradient cutoff used to define low-gradient streams. Based on these results, the National Rivers and Streams Survey should continue to use the standard field method for sampling all streams.
Quantifying nutrient sources in an upland catchment using multiple chemical and isotopic tracers
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.; Kendall, C.; Aiken, G. R.
2006-12-01
To explore processes that control the temporal variation of nutrients in surface waters, we measured multiple environmental tracers at the Sleepers River Research Watershed, an upland catchment in northeastern Vermont, USA. Using a set of high-frequency stream water samples, we quantified the variation of nutrients over a range of stream flow conditions with chemical and isotopic tracers of water, nitrate, and dissolved organic carbon (DOC). Stream water concentrations of nitrogen (predominantly in the forms of nitrate and dissolved organic nitrogen) and DOC reflected mixing of water contributed from distinct sources in the forested landscape. Water isotopic signatures and end-member mixing analysis revealed when solutes entered the stream from these sources and that the sources were linked to the stream by preferential shallow subsurface and overland flow paths. Results from the tracers indicated that freshly-leached, terrestrial organic matter was the overwhelming source of high DOC concentrations in stream water. In contrast, in this region where atmospheric nitrogen deposition is chronically elevated, the highest concentrations of stream nitrate were attributable to atmospheric sources that were transported via melting snow and rain fall. These findings are consistent with a conceptual model of the landscape in which coupled hydrological and biogeochemical processes interact to control stream solute variability over time.
Eckels, David E.; Hass, William J.
1989-05-30
A sample transport, sample introduction, and flame excitation system for spectrometric analysis of high temperature gas streams which eliminates degradation of the sample stream by condensation losses.
NASA Astrophysics Data System (ADS)
Barnes, R. T.; Gilbertson, A.; Maxwell, K.
2017-12-01
Disturbance strongly regulates material and energy flows, changing ecosystem pattern and process. An increase in the size and severity of fire, particularly in the Intermountain West, over the last several decades is expected to continue due to a warming climate. Predicting how fire will alter the net ecosystem carbon balance requires us to understand how carbon is stored, processed, and transferred. Here we present results from paired watersheds focused on five 2002 severe fires in Colorado to examine how organic matter is processed along the hillslope and within the stream. Comparing soil samples and water extractable organic matter (WEOM) between burned and unburned sites illustrates the impact of fire: burned soils have 50% organic matter (OM) content as unburned soils, regardless of geomorphic position. While a smaller pool, soil OM (SOM) in burned sites is more susceptible to microbial degradation (p<0.001 for 4 of 6 sites), especially in systems with slower vegetative recovery. This is explained, in part, to the water extractable organic matter (WEOM) from unburned soils having a higher C:N than burned sites (p<0.02). This shift in SOM quality is likely due to differing OM inputs (e.g. grasses and forbes vs. trees in burned vs. unburned sites). Comparing results from intact soil column experiments to soil extractions and stream samples, suggests that the majority of this soil derived WEOM does not make it to the stream, potentially getting sorbed deeper in the mineral rich, organic poor, portion of the soil. Interestingly, the systematic shifts in OM amounts and quality (as measured by SUVA, E2:E3, and fluorescence) within the terrestrial system in response to fire, are not seen in stream exports. As such, while there are significant relationships (p<0.05) between stream DOM quality, DOM bioavailability, and stream metabolism, burned watersheds are not exporting DOM that is more bioavailable. In addition, despite different terrestrial OM pools, burned and unburned watersheds export statistically similar amounts of DOM per unit area, suggesting that a larger fraction of OM is transferred from the terrestrial to aquatic ecosystem within fire affected landscapes.
Burns, Douglas A.; Boyer, E.W.; Elliott, E.M.; Kendall, C.
2009-01-01
Knowledge of key sources and biogeochemical processes that affect the transport of nitrate (NO3-) in streams can inform watershed management strategies for controlling downstream eutrophication. We applied dual isotope analysis of NO3- to determine the dominant sources and processes that affect NO3- concentrations in six stream/river watersheds of different land uses. Samples were collected monthly at a range of flow conditions for 15 mo during 2004-05 and analyzed for NO3- concentrations, ?? 15NNO3, and ??18ONO3. Samples from two forested watersheds indicated that NO3- derived from nitrification was dominant at baseflow. A watershed dominated by suburban land use had three ??18ONO3 values greater than +25???, indicating a large direct contribution of atmospheric NO 3- transported to the stream during some high flows. Two watersheds with large proportions of agricultural land use had many ??15NNO3 values greater than +9???, suggesting an animal waste source consistent with regional dairy farming practices. These data showed a linear seasonal pattern with a ??18O NO3:??15NNO3 of 1:2, consistent with seasonally varying denitrification that peaked in late summer to early fall with the warmest temperatures and lowest annual streamflow. The large range of ?? 15NNO3 values (10???) indicates that NO 3- supply was likely not limiting the rate of denitrification, consistent with ground water and/or in-stream denitrification. Mixing of two or more distinct sources may have affected the seasonal isotope patterns observed in these two agricultural streams. In a mixed land use watershed of large drainage area, none of the source and process patterns observed in the small streams were evident. These results emphasize that observations at watersheds of a few to a few hundred km2 may be necessary to adequately quantify the relative roles of various NO 3- transport and process patterns that contribute to streamflow in large basins. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Cj=Average inlet or outlet concentration of TOC or sample organic HAP component j of the gas stream...), where standard temperature is 20 °C. Cj=Inlet or outlet concentration of TOC or sample organic HAP...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Cj=Average inlet or outlet concentration of TOC or sample organic HAP component j of the gas stream...), where standard temperature is 20 °C. Cj=Inlet or outlet concentration of TOC or sample organic HAP...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Cj=Average inlet or outlet concentration of TOC or sample organic HAP component j of the gas stream...), where standard temperature is 20 °C. Cj=Inlet or outlet concentration of TOC or sample organic HAP...
CONCEPTS AND APPROACHES FOR THE BIOASSESSMENT OF NON-WADEABLE STREAMS AND RIVERS
This document is intended to assist users in establishing or refining protocols, including the specific methods related to field sampling, laboratory sample processing, taxonomy, data entry, management and analysis, and final assessment and reporting. It also reviews and provide...
Adjusting stream-sediment geochemical maps in the Austrian Bohemian Massif by analysis of variance
Davis, J.C.; Hausberger, G.; Schermann, O.; Bohling, G.
1995-01-01
The Austrian portion of the Bohemian Massif is a Precambrian terrane composed mostly of highly metamorphosed rocks intruded by a series of granitoids that are petrographically similar. Rocks are exposed poorly and the subtle variations in rock type are difficult to map in the field. A detailed geochemical survey of stream sediments in this region has been conducted and included as part of the Geochemischer Atlas der Republik O??sterreich, and the variations in stream sediment composition may help refine the geological interpretation. In an earlier study, multivariate analysis of variance (MANOVA) was applied to the stream-sediment data in order to minimize unwanted sampling variation and emphasize relationships between stream sediments and rock types in sample catchment areas. The estimated coefficients were used successfully to correct for the sampling effects throughout most of the region, but also introduced an overcorrection in some areas that seems to result from consistent but subtle differences in composition of specific rock types. By expanding the model to include an additional factor reflecting the presence of a major tectonic unit, the Rohrbach block, the overcorrection is removed. This iterative process simultaneously refines both the geochemical map by removing extraneous variation and the geological map by suggesting a more detailed classification of rock types. ?? 1995 International Association for Mathematical Geology.
DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M
2005-04-30
The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.« less
Guyette, Margaret Q.; Loftin, Cynthia S.; Zydlewski, Joseph D.; Cunjak, Richard
2014-01-01
Assimilation of nutrients from carcass analogues was both direct and indirect, and a nutrient legacy was evident in the second year of sampling. Incorporation of nutrients from the pellets at a range of heights in the food web demonstrated the potential for marine-derived subsidies to contribute to freshwater ecosystem processes in Atlantic salmon nursery streams.
The effect of in-stream activities on the Njoro River, Kenya. Part II: Microbial water quality
NASA Astrophysics Data System (ADS)
Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.
The influence of periodic in-stream activities of people and livestock on the microbial water quality of the Njoro River in Kenya was monitored at two disturbed pools (Turkana Flats and Njoro Bridge) at the middle reaches. A total of 96 sets of samples were obtained from the two pools in six weeks during dry weather (January-April) in 2006. On each sampling day, two trips were made before and during in-stream activities and on each trip, two sets of samples were collected upstream and downstream of activities. This schedule was repeated four times each for Wednesday, Saturday and Sunday. Samples were processed for heterotrophic plate count bacteria (HPC), total coliform (TC), presumptive Escherichia coli and presumptive Enterococci. Additional samples were analysed for total suspended solids (TSS), turbidity, BOD 5 and ammonium-N. The microbial water quality deteriorated significant ( p < 0.05) downstream during activities at both pools. A similar trend was observed with the chemical indicators (TSS, turbidity, BOD 5 and ammonium-N). The two groups of indicators demonstrated high capacity for site segregation based on pollution levels. Pollution levels for specific days were not significantly different ( p > 0.05). This was incompatible with the variability of in-stream activities with specific days. The pooled data was explained largely by three significant principal components - recent pollution (PC1), metabolic activity (PC2) and residual pollution (PC3). It was concluded that the empirical site parity/disparity in the levels of microbial and non-microbial indicators reflected the diurnal periodicity of in-stream activities and the concomitant pollution they caused. However, microbial source tracking studies are required to distinguish faecal sources. In the meantime, measures should be undertaken to regulate in-stream activities along the stream and minimize the movement of livestock in the catchment.
NASA Astrophysics Data System (ADS)
Bernal, Susana; Lupon, Anna; Catalán, Núria; Castelar, Sara; Martí, Eugènia
2018-03-01
Streams are important sources of carbon to the atmosphere, though knowing whether they merely outgas terrestrially derived carbon dioxide or mineralize terrestrial inputs of dissolved organic matter (DOM) is still a big challenge in ecology. The objective of this study was to investigate the influence of riparian groundwater (GW) and in-stream processes on the temporal pattern of stream DOM concentrations and quality in a forested headwater stream, and whether this influence differed between the leaf litter fall (LLF) period and the remaining part of the year (non-LLF). The spectroscopic indexes (fluorescence index, biological index, humification index, and parallel factor analysis components) indicated that DOM had an eminently protein-like character and was most likely originated from microbial sources and recent biological activity in both stream water and riparian GW. However, paired samples of stream water and riparian GW showed that dissolved organic carbon (DOC) and nitrogen (DON) concentrations as well as the spectroscopic character of DOM differed between the two compartments throughout the year. A simple mass balance approach indicated that in-stream processes along the reach contributed to reducing DOC and DON fluxes by 50 and 30 %, respectively. Further, in-stream DOC and DON uptakes were unrelated to each other, suggesting that these two compounds underwent different biogeochemical pathways. During the LLF period, stream DOC and DOC : DON ratios were higher than during the non-LLF period, and spectroscopic indexes suggested a major influence of terrestrial vegetation on stream DOM. Our study highlights that stream DOM is not merely a reflection of riparian GW entering the stream and that headwater streams have the capacity to internally produce, transform, and consume DOM.
Variations in turbidity in streams of the Bull Run Watershed, Oregon 1989-90
LaHusen, Richard G.
1994-01-01
In this study, turbidity is used to help explain spatial and temporal patterns of erosion and sediment transport.Automated turbidity sampling in streams in the Bull Run watershed during water years 1989 and 1990, showed turbidity levels, in general, are remarkably low, with levels below 1 NTU (nephelometric turbidity unit) about 90 percent of the time. However, ephemeral increases in turbidity in streams of the Bull Run watershed occur in direct response to storms. Turbidity is caused by abundant organic particles as well as by materials eroded from unconsolidated geologic materials located along roads, stream channels, or stream banks. Seasonal and within-storm decreases in turbidity are attributed to depletion of accumulated particle supplies. During winter storms, erosion caused by rainfall intensities greater than 0.25 inches in 3 hours is sufficient to increase stream turbidities from less than 1 NTU to as much as 100 NTUs. Large-scale storms or floods cause persistent effects because mass erosion or scour of channel armor increases available sediment supply.Spatial variability in turbidity is evident only during storms when erosion and sediment-transport processes are active. Parts of the Rhododendron Formation are particularly prone to channel and mass erosion during large storms. Eroding glacial deposits in sections of Log Creek affected by a 1964 dam-break flood also cause high stream turbidity relative to other streams in the watershed.Analysis of characteristics of magnetic minerals in sediment sources and deposits was unproductive as a means to identify source areas of suspended sediment because high concentrations of magnetite in all samples of the volcanic rocks masked differences of less magnetic minerals in the samples.
Wanty, Richard B.; Podda, F.; De Giudici, Giovanni; Cidu, R.; Lattanzi, Pierfranco
2013-01-01
The Rio Naracauli in SW Sardinia drains part of the Ingurtosu Zn–Pb mining district, and contains extreme concentrations of dissolved Zn at near-neutral pH. In the upper reaches of the stream, pH, alkalinity and Zn concentrations are such that hydrozincite [Zn5(CO3)2(OH)6] precipitates in a biologically mediated process facilitated by a microalga (Chlorella sp.) and a cyanobacterium (Scytonema sp.). Values of δ66Zn in water and solid samples ranged from − 0.35‰ to + 0.5‰ relative to the JMC 3-0749-Lyon standard, and closely follow a mass-dependent fractionation line. Two composite samples of sphalerite, the primary ore mineral in the Ingurtosu deposits, had an average δ66Zn of + 0.15‰, similar to sphalerite measured elsewhere in hydrothermal mineral deposits. Zinc isotope measurements of the stream water and the hydrozincite forming in the stream show a consistent preference for the heavy isotope, 66Zn, in the hydrozincite relative to 64Zn. Synthetic hydrozincites produced without added bacteria have δ66Zn identical to the dissolved Zn, thus suggesting a biologically mediated mineralization process in Rio Naracauli. The average fractionation, Δhdz-water, is 0.35‰, the magnitude of which is consistent with other studies, and suggests an extracellular mechanism of the biomineralization process. Zinc concentration and dissolved δ66Zn steadily decrease in the reach of the stream where the biomineralization occurs. The biomineralization process also leads to the sequestration of Pb, Cu and Ni in the hydrozincite lattice, and the coeval precipitation of an amorphous CdCO3 solid, prompting the suggestion that if optimized, the biomineralization process might represent a feasible passive remediation strategy for streams with high Zn and other metals, and with near-neutral pH.
Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne
2015-02-01
This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.
Sebestyen, Stephen D.; Boyer, Elizabeth W.; Shanley, James B.; Kendall, Carol; Doctor, Daniel H.; Aiken, George R.; Ohte, Nobuhito
2008-01-01
We explored catchment processes that control stream nutrient concentrations at an upland forest in northeastern Vermont, USA, where inputs of nitrogen via atmospheric deposition are among the highest in the nation and affect ecosystem functioning. We traced sources of water, nitrate, and dissolved organic matter (DOM) using stream water samples collected at high frequency during spring snowmelt. Hydrochemistry, isotopic tracers, and end‐member mixing analyses suggested the timing, sources, and source areas from which water and nutrients entered the stream. Although stream‐dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) both originated from leaching of soluble organic matter, flushing responses between these two DOM components varied because of dynamic shifts of hydrological flow paths and sources that supply the highest concentrations of DOC and DON. High concentrations of stream water nitrate originated from atmospheric sources as well as nitrified sources from catchment soils. We detected nitrification in surficial soils during late snowmelt which affected the nitrate supply that was available to be transported to streams. However, isotopic tracers showed that the majority of nitrate in upslope surficial soil waters after the onset of snowmelt originated from atmospheric sources. A fraction of the atmospheric nitrogen was directly delivered to the stream, and this finding highlights the importance of quick flow pathways during snowmelt events. These findings indicate that interactions among sources, transformations, and hydrologic transport processes must be deciphered to understand why concentrations vary over time and over space as well as to elucidate the direct effects of human activities on nutrient dynamics in upland forest streams.
Filla, Laura A.; Kirkpatrick, Douglas C.; Martin, R. Scott
2011-01-01
Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to “desegment” the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies where off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection. PMID:21718004
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.
Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less
Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.; ...
2016-09-27
Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less
SAMPLING DEVICE FOR pH MEASUREMENT IN PROCESS STREAMS
Michelson, C.E.; Carson, W.N. Jr.
1958-11-01
A pH cell is presented for monitoring the hydrogen ion concentration of a fluid in a process stream. The cell is made of glass with a side entry arm just above a reservoir in which the ends of a glass electrode and a reference electrode are situated. The glass electrode contains the usual internal solution which is connected to a lead. The reference electrode is formed of saturated calomel having a salt bridge in its bottom portion fabricated of a porous glass to insure low electrolyte flow. A flush tube leads into the cell through which buffer and flush solutions are introduced. A ground wire twists about both electrode ends to insure constant electrical grounding of the sample. The electrode leads are electrically connected to a pH meter of aay standard type.
Rice, Karen C.; Bricker, Owen P.
1991-01-01
The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streams in these counties are sensitive to acidification by acidic deposition.
NASA Astrophysics Data System (ADS)
Rook, S. P.; Vidon, P.; Walter, M. T.
2011-12-01
The management of riparian buffer strips is often regarded as one of the most economical and sustainable methods of managing non-point source pollution and water quality. However, current riparian management often follows a 'one size fits all' design, which fails to recognize the complexity of the many biogeochemical processes that regulate pollutant transformation and retention in these systems. This study addresses two critical gaps in knowledge: (1) How carbon, nitrogen, phosphorous, and iron cycles interact with one another (rather than individually). (2) How stream channel geometry and evolution regulate these nutrient cycles and greenhouse gas (GHG) dynamics in the near stream zone. This project specifically explores the hydrological and biogeochemical functioning of riparian zones across a gradient of stream meander evolution stages, with the primary goal of understanding and predicting potential interactions between nutrient dynamics in these systems. Key research questions include: (1) How does stream meander curvature affect riparian zone hydrology? (2) How does stream meander curvature influence riparian zone biogeochemistry? (3) What relationships exist among N, P, Fe, and GHG dynamics? We instrumented three riparian sites near Ithaca, NY, with a dense network of wells, piezometers, and static chambers. These sites represent three riparian zones along three evolution stages of stream meanders: an inner meander, a straight stream section, and an outer bend of the stream with an oxbow lake formation. In spring through fall 2011, water samples and gas samples were collected at a tri-weekly bases at each of the three sites. Water samples were analyzed for oxidation-reduction potential, dissolved oxygen, temperature, FeII/FeIII, nutrients (NO3-, NH4+, PO43-) and dissolved organic carbon (DOC). GHG fluxes at the soil-atmosphere interface were measured for N2O, CO2, and CH4 gases. We predict that stream curvature will significantly affect groundwater flow direction in the riparian zones. Owing to more prolonged saturation, we expect that the oxbow setting will exhibit anoxic conditions, and associated biogeochemistry. Finally, we hypothesize clear relationships among N, P, Fe, and GHG dynamics. In areas of significant denitrification, we expect to see an increase in Fe reduction, PO43- release, N2O emission, and CH4 emission, and a decrease in CO2 emission. Quantifying these interactions will enhance our ability to model riparian biogeochemical processes, promote water quality, and comprehend to what extent the promotion of riparian zones for nitrate removal is done at the expense of air quality (with respect to GHG emissions) and/or water quality (with respect to P).
Determination of stream reaeration coefficients by use of tracers
Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.
1989-01-01
Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.
Cardenas, M.B.; Harvey, J.W.; Packman, A.I.; Scott, D.T.
2008-01-01
Temperature is a primary physical and biogeochemical variable in aquatic systems. Field-based measurement of temperature at discrete sampling points has revealed temperature variability in fluvial systems, but traditional techniques do not readily allow for synoptic sampling schemes that can address temperature-related questions with broad, yet detailed, coverage. We present results of thermal infrared imaging at different stream discharge (base flow and peak flood) conditions using a handheld IR camera. Remotely sensed temperatures compare well with those measured with a digital thermometer. The thermal images show that periphyton, wood, and sandbars induce significant thermal heterogeneity during low stages. Moreover, the images indicate temperature variability within the periphyton community and within the partially submerged bars. The thermal heterogeneity was diminished during flood inundation, when the areas of more slowly moving water to the side of the stream differed in their temperature. The results have consequences for thermally sensitive hydroelogical processes and implications for models of those processes, especially those that assume an effective stream temperature. Copyright ?? 2008 John Wiley & Sons, Ltd.
40 CFR 63.166 - Standards: Sampling connection systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fluid to a process; or (3) Be designed and operated to capture and transport the purged process fluid to a control device that complies with the requirements of § 63.172 of this subpart; or (4) Collect... of subpart G of this part applicable to group 1 wastewater streams. If the purged process fluid does...
40 CFR 63.166 - Standards: Sampling connection systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fluid to a process; or (3) Be designed and operated to capture and transport the purged process fluid to a control device that complies with the requirements of § 63.172 of this subpart; or (4) Collect... of subpart G of this part applicable to group 1 wastewater streams. If the purged process fluid does...
Method and apparatus for continuously referenced analysis of reactive components in solution
Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.
1979-07-31
A continuously referenced apparatus for measuring the concentration of a reactive chemical species in solution comprises in combination conduit means for introducing a sample solution, means for introducing one or more reactants into a sample solution, and a stream separator disposed within the conduit means for separating the sample solution into a first sample stream and a second sample stream. A reactor is disposed in fluid communication with the first sample stream. A reaction takes place between the reactants introduced and the reactive chemical species of interest, causing the consumption or production of an indicator species in the first sample stream. Measurement means such as a photometric system are disposed in communication with the first and second sample streams, and the outputs of the measurement means are compared to provide a blanked measurement of the concentration of indicator species. The apparatus is particularly suitable for measurement of isoenzymes in body tissues or fluids.
NASA Astrophysics Data System (ADS)
Duan, Yixiang; Su, Yongxuan; Jin, Zhe; Abeln, Stephen P.
2000-03-01
The development of a highly sensitive, field portable, low-powered instrument for on-site, real-time liquid waste stream monitoring is described in this article. A series of factors such as system sensitivity and portability, plasma source, sample introduction, desolvation system, power supply, and the instrument configuration, were carefully considered in the design of the portable instrument. A newly designed, miniature, modified microwave plasma source was selected as the emission source for spectroscopy measurement, and an integrated small spectrometer with a charge-coupled device detector was installed for signal processing and detection. An innovative beam collection system with optical fibers was designed and used for emission signal collection. Microwave plasma can be sustained with various gases at relatively low power, and it possesses high detection capabilities for both metal and nonmetal pollutants, making it desirable to use for on-site, real-time, liquid waste stream monitoring. An effective in situ sampling system was coupled with a high efficiency desolvation device for direct-sampling liquid samples into the plasma. A portable computer control system is used for data processing. The new, integrated instrument can be easily used for on-site, real-time monitoring in the field. The system possesses a series of advantages, including high sensitivity for metal and nonmetal elements; in situ sampling; compact structure; low cost; and ease of operation and handling. These advantages will significantly overcome the limitations of previous monitoring techniques and make great contributions to environmental restoration and monitoring.
Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.
2014-12-02
The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system mustmore » also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11 micrometer aerodynamic diameter were injected into the environmental chamber and drawn through the conditioning system, which included a filter to capture droplets that passed through the conditioner. The droplets were tagged with a fluorescent dye which allowed quantification of droplet deposition on each component of the system. The tests demonstrated the required reductions in temperature and moisture, with no condensation forming when heat tracing was added on the upstream end of the sample conditioner. Additionally, tests indicated that the system, operating at several flow rates and in both vertical and horizontal orientations, delivers nearly all of the sampled particles for analysis. Typical aerosol penetration values were between 98 and 99%. PNNL, Bechtel National Inc., and the instrument vendor are working to implement the sample conditioner into the air monitoring systems used for the melter off-gas exhaust streams. Similar technology may be useful for processes in other facilities with air exhaust streams with elevated temperature and/or humidity.« less
Senkomago, V; Des Marais, A C; Rahangdale, L; Vibat, C R T; Erlander, M G; Smith, J S
2016-01-01
Urine testing for high-risk human papillomavirus (HR-HPV) detection could provide a non-invasive, simple method for cervical cancer screening. We examined whether HR-HPV detection is affected by urine collection time, portion of urine stream, or urine fraction tested, and assessed the performance of HR-HPV testing in urine for detection of cervical intraepithelial neoplasia grade II or worse (CIN2+). A total of 37 female colposcopy clinic attendees, ≥ 30 years, provided three urine samples: "first void" urine collected at home, and "initial stream" and "mid-stream" urine samples collected at the clinic later in the day. Self- and physician-collected brush specimens were obtained at the same clinic visit. Colposcopy was performed and directed biopsies obtained if clinically indicated. For each urine sample, HR-HPV DNA testing was conducted for unfractionated, pellet, and supernatant fractions using the Trovagene test. HR-HPV mRNA testing was performed on brush specimens using the Aptima HPV assay. HR-HPV prevalence was similar in unfractionated and pellet fractions of all urine samples. For supernatant urine fractions, HR-HPV prevalence appeared lower in mid-stream urine (56.8%[40.8-72.7%]) than in initial stream urine (75.7%[61.9-89.5%]). Sensitivity of CIN2+ detection was identical for initial stream urine and physician-collected cervical specimen (89.9%[95%CI=62.7-99.6%]), and similar to self-collected vaginal specimen (79.1%[48.1-96.6%]). This is among the first studies to compare methodologies for collection and processing of urine for HR-HPV detection. HR-HPV prevalence was similar in first void and initial stream urine, and was highly sensitive for CIN2+ detection. Additional research in a larger and general screening population is needed. Copyright © 2015 Elsevier B.V. All rights reserved.
Pellerin, Brian A.; Saraceno, John Franco; Shanley, James B.; Sebestyen, Stephen D.; Aiken, George R.; Wollheim, Wilfred M.; Bergamaschi, Brian A.
2011-01-01
Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3-) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water concentrations at 30 min intervals over the snowmelt period (March 21–May 13, 2009) at a 40.5 hectare forested watershed at Sleepers River, Vermont. We also collected discrete samples for laboratory absorbance and fluorescence as well as δ18O–NO3- isotopes to help interpret the drivers of variable NO3- and FDOM concentrations measured in situ. In situ data revealed seasonal, event and diurnal patterns associated with hydrological and biogeochemical processes regulating stream NO3- and FDOM concentrations. An observed decrease in NO3- concentrations after peak snowmelt runoff and muted response to spring rainfall was consistent with the flushing of a limited supply of NO3- (mainly from nitrification) from source areas in surficial soils. Stream FDOM concentrations were coupled with flow throughout the study period, suggesting a strong hydrologic control on DOM concentrations in the stream. However, higher FDOM concentrations per unit streamflow after snowmelt likely reflected a greater hydraulic connectivity of the stream to leachable DOM sources in upland soils. We also observed diurnal NO3- variability of 1–2 μmol l-1 after snowpack ablation, presumably due to in-stream uptake prior to leafout. A comparison of NO3- and dissolved organic carbon yields (DOC, measured by FDOM proxy) calculated from weekly discrete samples and in situ data sub-sampled daily resulted in small to moderate differences over the entire study period (-4 to 1% for NO3- and -3 to -14% for DOC), but resulted in much larger differences for daily yields (-66 to +27% for NO3- and -88 to +47% for DOC, respectively). Despite challenges inherent in in situ sensor deployments in harsh seasonal conditions, these data provide important insights into processes controlling NO3- and FDOM in streams, and will be critical for evaluating the effects of climate change on snowmelt delivery to downstream ecosystems.
Development of a fast framing detector for electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Ian J.; Bustillo, Karen C.; Ciston, Jim
2016-10-01
A high frame rate detector system is described that enables fast real-time data analysis of scanning diffraction experiments in scanning transmission electron microscopy (STEM). This is an end-to-end development that encompasses the data producing detector, data transportation, and real-time processing of data. The detector will consist of a central pixel sensor that is surrounded by annular silicon diodes. Both components of the detector system will synchronously capture data at almost 100 kHz frame rate, which produces an approximately 400 Gb/s data stream. Low-level preprocessing will be implemented in firmware before the data is streamed from the National Center for Electronmore » Microscopy (NCEM) to the National Energy Research Scientific Computing Center (NERSC). Live data processing, before it lands on disk, will happen on the Cori supercomputer and aims to present scientists with prompt experimental feedback. This online analysis will provide rough information of the sample that can be utilized for sample alignment, sample monitoring and verification that the experiment is set up correctly. Only a compressed version of the relevant data is then selected for more in-depth processing.« less
Chaffee, Maurice A.
1986-01-01
Map A shows the locations of all sites where rock samples were collected for this report and the distributions of anomalous concentrations for 12 elements in the 127 rock samples collected. In a similar manner, map B shows the collection sites for 59 samples of minus-60-mesh stream sediment, and 59 samples of nonmagnetic heavy-mineral concentrate derived from stream sediment and also shows the distributions of anomalous concentrations for 13 elements in the stream-sediment samples and 17 elements in the concentrate samples. Map C shows outlines of those drainage basins containing samples of stream sediment and concentrate with anomalous element concentrations and also shows weighted values for each outlined basin based on the number of elements with anomalous concentrations in each stream-sediment and concentrate sample and on the degree to which these concentrations are anomalous in each sample.
A field comparison of multiple techniques to quantify groundwater - surface-water interactions
González-Pinzón, Ricardo; Ward, Adam S; Hatch, Christine E; Wlostowski, Adam N; Singha, Kamini; Gooseff, Michael N.; Haggerty, Roy; Harvey, Judson; Cirpka, Olaf A; Brock, James T
2015-01-01
Groundwater–surface-water (GW-SW) interactions in streams are difficult to quantify because of heterogeneity in hydraulic and reactive processes across a range of spatial and temporal scales. The challenge of quantifying these interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied conservative and smart reactive solute-tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the stream bed, and electrical resistivity imaging in a 450-m reach of a 3rd-order stream. GW-SW interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the reach. NaCl and resazurin tracers suggested different surface–subsurface exchange patterns in the upper ⅔ and lower ⅓ of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10- to 20-cm deep hyporheic zone with chemical reactivity of the resazurin tracer indicated at 3-, 6-, and 9-cm sampling depths. Monitoring of hydraulic gradients along transects with MINIPOINT streambed samplers starting ∼40 m from the stream indicated that groundwater discharge prevented development of a larger hyporheic zone, which progressively decreased from the stream thalweg toward the banks. Distributed temperature sensing did not detect extensive inflow of ground water to the stream, and electrical resistivity imaging showed limited large-scale hyporheic exchange. We recommend choosing technique(s) based on: 1) clear definition of the questions to be addressed (physical, biological, or chemical processes), 2) explicit identification of the spatial and temporal scales to be covered and those required to provide an appropriate context for interpretation, and 3) maximizing generation of mechanistic understanding and reducing costs of implementing multiple techniques through collaborative research.
Burns, Douglas A.
1996-01-01
Calcite treatment of chronically acidic lakes has improved fish habitat, but the effects on downstream water quality have not previously been examined. In this study, the spatial and temporal effects of watershed CaCO3 treatment on the chemistry of a lake outlet stream in the Adirondack Mountains of New York were examined. Before CaCO3 treatment, the stream was chronically acidic. During spring snowmelt before treatment, pH and acid-neutralizing capacity (ANC) in the outlet stream declined, and NO3- and inorganic monomeric aluminum (AlIM) concentrations increased sharply. During that summer, SO42- and NO3- concentrations decreased downstream, and dissolved organic carbon (DOC) concentrations and ANC increased, in association with the seasonal increase in decomposition of organic matter and the attendant SO42--reduction process. A charge-balance ANC calculation closely matched measured downstream changes in ANC in the summer and indicated that SO42- reduction was the major process contributing to summer increases in ANC. Increases in Ca2+ concentration and ANC began immediately after CaCO3 application, and within 3 months, exceeded their pretreatment values by more than 130 ??eq/L. Within 2 months after treatment, downstream decreases in Ca2+ concentration, ANC, and pH, were noted. Stream mass balances between the lake and the sampling site 1.5 km downstream revealed that the transport of all chemical constituents was dominated by conservative mixing with tributaries and ground water; however, non-conservative processes resulted in significant Ca2+ losses during the 13-month period after CaCO3 treatment. Comparison of substrate samples from the buffered outlet stream with those from its untreated tributaries showed that the percentage of cation-exchange sites occupied by Ca2+, as well as non-exchangeable Ca, were higher in the outlet-stream substrate than in tributary-stream substrate. Mass-balance data for Ca2+, H+, AlIM, and DOC revealed net downstream losses of these constituents and indicated that a reasonable set of hypothesized reactions involving AlIM, HCO3-, Ca2+, SO42-, NO3-7, and DOC could have caused the measured changes in stream acid/base chemistry. In the summer, the sharp decrease in ANC continued despite significant downstream decreases in SO42- concentrations. After CaCO3 treatment, reduction of SO42- was only a minor contributor to ANC changes relative to those caused by Ca2+ dilution from acidic tributaries and acidic ground water, and Ca2+ interactions with stream substrate. ?? 1996 Kluwer Academic Publishers.
Miller, Michael A; Colby, Alison C C; Kanehl, Paul D; Blocksom, Karen
2009-03-01
The Wisconsin Department of Natural Resources (WDNR), with support from the U.S. EPA, conducted an assessment of wadeable streams in the Driftless Area ecoregion in western Wisconsin using a probabilistic sampling design. This ecoregion encompasses 20% of Wisconsin's land area and contains 8,800 miles of perennial streams. Randomly-selected stream sites (n = 60) equally distributed among stream orders 1-4 were sampled. Watershed land use, riparian and in-stream habitat, water chemistry, macroinvertebrate, and fish assemblage data were collected at each true random site and an associated "modified-random" site on each stream that was accessed via a road crossing nearest to the true random site. Targeted least-disturbed reference sites (n = 22) were also sampled to develop reference conditions for various physical, chemical, and biological measures. Cumulative distribution function plots of various measures collected at the true random sites evaluated with reference condition thresholds, indicate that high proportions of the random sites (and by inference the entire Driftless Area wadeable stream population) show some level of degradation. Study results show no statistically significant differences between the true random and modified-random sample sites for any of the nine physical habitat, 11 water chemistry, seven macroinvertebrate, or eight fish metrics analyzed. In Wisconsin's Driftless Area, 79% of wadeable stream lengths were accessible via road crossings. While further evaluation of the statistical rigor of using a modified-random sampling design is warranted, sampling randomly-selected stream sites accessed via the nearest road crossing may provide a more economical way to apply probabilistic sampling in stream monitoring programs.
NASA Astrophysics Data System (ADS)
Riml, Joakim; Wörman, Anders; Kunkel, Uwe; Radke, Michael
2013-04-01
Detection of pharmaceutical residues in streaming waters is common in urbanized areas. Although the occurrence and source of these micropollutants is known, their behavior in these aquatic ecosystems is still only partly understood. Specifically, quantitative information of biogeochemical processes in stream-specific environments where predominant reactions occur is often missing. In an attempt to address this knowledge gap, we performed simultaneous tracer tests in Säva Brook, Sweden, with bezafibrate, clofibric acid, diclofenac, ibuprofen, metoprolol and naproxen, as well as with the more inert solutes uranine and Rhodamine WT. The breakthrough curves at five successive sampling stations along a 16 km long stream reach were evaluated using a coupled physical-biogeochemical model framework containing surface water transport together with a representation of transient storage in slow/immobile zones of the stream. The multi-tracer experiment opens for decoupling of hydrological and biogeochemical contribution to the fate, and by linking impact and sensitivity analyses to relative significance of model parameters the most important processes for each contaminant were elucidated. Specifically for Säva Brook, the proposed methodology revealed that the pharmaceutical-contaminated stream water remained in the storage zones for times corresponding to 5-25% of the flow time of the stream. Furthermore, the results indicate a great variability in terms of predominant biogeochemical processes between the different contaminants. Rapid reactions occurring in the transient storage zone attenuated both ibuprofen and clofibric acid, and we conclude that a major degradation pathway for these contaminants was biodegradation in the hyporheic zone. In contrast, bezafibrate, metoprolol, and naproxen were mainly affected by sorption both in the storage zone and the main channel, while diclofenac displayed negligible effects of biogeochemical reactions.
NASA Astrophysics Data System (ADS)
Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.
2009-05-01
Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase downstream of the stream. In order to confirm the obtained Mcp's concentrations of additional measurements in the investigated stream were compared with the concentrations in the groundwater up- and downstream of the stream section. The results revealed increased Mcp's downstream of the stream section for chloride, potassium and nitrate, whereas Mcp of sulfate was decreased. Micropollutants caffeine and technical-nonylphenol showed decreased Mcp's downstream of the stream section in 75 % of the cases. Values of Mex could only be given for chloride, potassium, nitrate and caffeine. The comparison of concentrations in the stream with those in the groundwater points to the streambed as a zone where mass accumulation and degradation processes occur. The obtained results imply that the applied method can provide reliable data about the influence of losing streams on groundwater quality.
Niesen, Shelley L.; Christensen, Eric D.
2015-01-01
Water-quality, hydrological, and ecological data collected from June 2005 through September 2013 from the Little Blue River and smaller streams within the City of Independence, Missouri, are presented in this report. These data were collected as a part of an ongoing cooperative study between the U.S. Geological Survey and the City of Independence Water Pollution Control Department to characterize the water quality and ecological condition of Independence streams. The quantities, sources of selected constituents, and processes affecting water quality and aquatic life were evaluated to determine the resulting ecological condition of streams within Independence. Data collected for this study fulfill the municipal separate sewer system permit requirements for the City of Independence and can be used to provide a baseline with which city managers can determine the effectiveness of current (2014) and future best management practices within Independence. Continuous streamflow and water-quality data, collected during base flow and stormflow, included physical and chemical properties, inorganic constituents, common organic micro-constituents, pesticides in streambed sediment and surface water, fecal indicator bacteria and microbial source tracking data, and suspended sediment. Dissolved oxygen, pH, specific conductance, water temperature, and turbidity data were measured continuously at seven sites within Independence. Base-flow and stormflow samples were collected at eight gaged and two ungaged sites. Fecal sources samples were collected for reference for microbial source tracking, and sewage influent samples were collected as additional source samples. Dry-weather screening was done on 11 basins within Independence to identify potential contaminant sources to the streams. Benthic macroinvertebrate community surveys and habitat assessments were done on 10 stream sites and 2 comparison sites outside the city. Sampling and laboratory procedures and quality-assurance and quality-control methods used in data collection for this study are described in this report.
Use telecommunications for real-time process control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zilberman, I.; Bigman, J.; Sela, I.
1996-05-01
Process operators design real-time accurate information to monitor and control product streams and to optimize unit operations. The challenge is how to cost-effectively install sophisticated analytical equipment in harsh environments such as process areas and maintain system reliability. Incorporating telecommunications technology with near infrared (NIR) spectroscopy may be the bridge to help operations achieve their online control goals. Coupling communications fiber optics with NIR analyzers enables the probe and sampling system to remain in the field and crucial analytical equipment to be remotely located in a general purpose area without specialized protection provisions. The case histories show how two refineriesmore » used NIR spectroscopy online to track octane levels for reformate streams.« less
Evaluating adequacy of the representative stream reach used in invertebrate monitoring programs
Rabeni, C.F.; Wang, N.; Sarver, R.J.
1999-01-01
Selection of a representative stream reach is implicitly or explicitly recommended in many biomonitoring protocols using benthic invertebrates. We evaluated the adequacy of sampling a single stream reach selected on the basis of its appearance. We 1st demonstrated the precision of our within-reach sampling. Then we sampled 3 or 4 reaches (each ~20x mean width) within an 8-16 km segment on each of 8 streams in 3 ecoregions and calculated 4 common metrics: 1) total taxa; 2) Ephemeroptera, Plecoptera, and Trichoptera taxa; 3) biotic index; and 4) Sharmon's diversity index. In only 6% of possible cases was the coefficient of variation for any of the metrics reduced >10% by sampling additional reaches. Sampling a 2nd reach on a stream improved the ability to detect impairment by an average of only 9.3%. Sampling a 3rd reach on a stream additionally improved ability to detect impairment by only 4.5%. We concluded that a single well-chosen reach, if adequately sampled, can be representative of an entire stream segment, and sampling additional reaches within a segment may not be cost effective.
Automated apparatus for solvent separation of a coal liquefaction product stream
Schweighardt, Frank K.
1985-01-01
An automated apparatus for the solvent separation of a coal liquefaction product stream that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In use of the apparatus, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control means. The mixture in the filter is agitated by means of ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TERRI, FELLINGER
2004-12-21
The Defense Waste Processing Facility, DWPF, currently generates approximately 1.4 million gallons of recycle water per year during Sludge-Only operations. DWPF has minimized condensate generation to 1.4 million gallons by not operating the Steam Atomized Scrubbers, SASs, for the melter off gas system. By not operating the SASs, DWPF has reduced the total volume by approximately 800,000 gallons of condensate per year. Currently, the recycle stream is sent to back to the Tank Farm and processed through the 2H Evaporator system. To alleviate the load on the 2H Evaporator system, an acid evaporator design is being considered as an alternatemore » processing and/or concentration method for the DWPF recycle stream. In order to support this alternate processing option, the DWPF has requested that the chemical and radionuclide compositions of the Off Gas Condensate Tank, OGCT, Slurry Mix Evaporator Condensate Tank, SMECT, Recycle Collection Tank, RCT, and the Decontamination Waste Treatment Tank, DWTT, be determined as a part of the process development work for the acid evaporator design. Samples have been retrieved from the OGCT, RCT, and SMECT and have been sent to the Savannah River National Laboratory, SRNL for this characterization. The DWTT samples have been recently shipped to SRNL. The results for the DWTT samples will be issued at later date.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, K.; Bricker, O.
The report describes the results of a study to assess the sensitivity of streams to acidic deposition in Charles and Anne Arundel Counties, Maryland using a geology-based method. Water samples were collected from streams in July and August 1988 when streams were at base-flow conditions. Eighteen water samples collected from streams in Charles County, and 17 water samples from streams in Anne Arundel County were analyzed in the field for pH, specific conductance, and acid-neutralizing capacity (ANC); 8 water samples from streams in Charles County were analyzed in the laboratory for chloride and sulfate concentrations. The assessment revealed that streamsmore » in these counties are sensitive to acidification by acidic deposition.« less
Using high resolution measurements of gas tracers to determine metabolic rates in streams
NASA Astrophysics Data System (ADS)
Knapp, J. L.; Osenbrück, K.; Brennwald, M. S.; Cirpka, O. A.
2017-12-01
Hyporheic exchange and other hyporheic processes are strongly linked to stream respiration, as the majority of a streams' microorganisms are located within the streambed. Directly estimating these respiration rates on the reach scale is usually not possible, but they can indirectly be inferred from measurements of dissolved oxygen. This, however, requires determining stream reaeration rates with high precision. Conducting gas-tracer tests has been found to be the most reliable method to estimate stream reaeration, but the majority of field-based sampling techniques for tracer gases are either costly in time and materials, or imprecise. By contrast, on-site gas analysis using gas-equilibrium membrane-inlet mass spectrometers (miniRUEDI, Gasometrix GmbH [1]) avoid the errors caused by sampling, storage, and analysis in the standard sampling techniques. Furthermore, the high analytical frequency of the on-site mass-spectrometer provides concentration data exhibiting a low uncertainty. We present results from gas-tracer tests with a continuous injection of propane and noble gases as tracers in a number of small streams. The concentrations of the tracer gases are recorded continuously over time at the first measurement station to account for fluctuations of the input signal, whereas shorter sample sets are collected at all further measurement stations. Reaeration rate constants are calculated from gas measurements for individual stream sections. These rates are then used to estimate metabolic rates of respiration and primary production based on time series of oxygen measurements. To demonstrate the advancement of the method provided by the on-site analysis, results from measurements performed by on-site mass spectroscopy are compared to those from traditional headspace sampling with gas chromatography analysis. Additionally, differences in magnitude and uncertainty of the obtained reaeration rates of oxygen and calculated metabolic rates from both methods highlight the usefulness of the high-frequency on-site analysis. [1] Brennwald, M. S., Schmidt, M., Oser, J., and Kipfer, R. (2016). A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environ. Sci. Technol., 50(24):13455-13463. Doi: 10.1021/acs.est.6b03669
NASA Astrophysics Data System (ADS)
Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.
2017-12-01
New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.
Episodic acidification and changes in fish diversity in Pennsylvania headwater streams
Heard, R.M.; Sharpe, W.E.; Carline, R.F.; Kimmel, William G.
1997-01-01
Current water chemistry and fish communities in 70 Pennsylvania streams were compared with historical records to determine whether fish species richness had declined and, if so, the possible role of acidification. First-, second-, and third-order streams were selected, and stream sites sampled during the 1961-1971 survey were resampled during May and June 1994 in the Appalachian Plateaus province and during June 1995 in the Valley and Ridge province. Stream-flow was measured and a habitat assessment was completed at each site. Dominant bedrock types influencing the stream sampling site were determined for the Appalachian Plateaus streams. Episodic water chemistry was collected for 39 of the 50 Appalachian Plateaus streams and 14 of the 20 Valley and Ridge streams during the winter and spring of 1996. Thirty-eight (76%) streams of the Appalachian Plateaus province and 13 (65%) streams in the Valley and Ridge province had a loss of fish species since the 1961-1971 sampling period. Habitat scores were not related to losses of fish species. Of the 53 streams sampled during runoff episodes 22 (42%) increased in total dissolved aluminum by more than 50 ??g/L, and 31 (58%) streams decreased in pH by 0.5 units or more. Minnows (Cyprinidae) and darters (Percidae) are sensitive to acidity and were the species most often lost. Streams draining watersheds of the Appalachian Plateaus province dominated by Pottsville bedrock had more acidic water quality during base flow and storm flow sampling periods than streams dominated by Pocono bedrock. The results of this study indicate that many Pennsylvania streams have undergone an alarming reduction in fish diversity during the past 25-34 years. In many of these streams the loss in fish diversity may be attributed to episodic acidification.
Reactive solute transport in acidic streams
Broshears, R.E.
1996-01-01
Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.
Liu, W C; Wang, C K J; Parkins, E J
2005-12-01
Although several studies support the existence of a negative stream effect on lower-ability stream students' academic self-concept, there is not enough longitudinal research evidence to preclude the possibility that the stream effect may only be temporary. In addition, not much is known about the effect of streaming on changes in students' academic self-concept over time. The main aims of the study were to examine the effect of streaming on (a) the students' academic self-concept immediately after the streaming process, and at yearly intervals for 3 consecutive years, and (b) the changes in students' academic self-concept over a 3 year period. The sample comprised 495 Secondary 1 students (approximate age 13) from three government coeducational schools in Singapore. A longitudinal survey using a self-reported questionnaire. Results showed that the lower-ability stream students had a more negative academic self-concept than the higher-ability stream students immediately after streaming, but they had a more positive academic self-concept 3 years after being streamed. In addition, it was established that the students' academic self-concept declined from Secondary 1 to Secondary 3. Nonetheless, the decline was more pronounced for the higher-ability stream students than the lower-ability stream students. Streaming may have a short-term negative impact on lower-ability stream students' academic self-concept. However, in the long run, being in the lower-ability stream may not be detrimental to their academic self-concept.
Preparative electrophoresis for space
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.
1987-01-01
A premise of continuous flow electrophoresis is that removal of buoyancy-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chambers are used, distortion of the injected sample stream due to electrohydrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field have not been considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.
Preparative electrophoresis for space
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.
1988-01-01
A premise of continuous flow electrophoresis is that removal of buoyance-induced thermal convection caused by axial and lateral temperature gradients results in ideal performance of these instruments in space. Although these gravity dependent phenomena disturb the rectilinear flow in the separation chamber when high voltage gradients or thick chamber are used, distortion of the injected sample stream due to electrodynamic effects cause major broadening of the separated bands. The electrophoresis separation process is simple, however flow local to the sample filament produced by the applied electric field were not considered. These electrohydrodynamic flows distort the sample stream and limit the separation. Also, electroosmosis and viscous flow combine to further distort the process. A moving wall concept is being proposed for space which will eliminate and control the disturbances. The moving wall entrains the fluid to move as a rigid body and produces a constant residence time for all samples distributed across the chamber thickness. The moving wall electrophoresis chamber can only be operated in space because there is no viscous flow in the chamber to stabilize against thermal convection.
Optimizing larval assessment to support sea lamprey control in the Great Lakes
Hansen, Michael J.; Adams, Jean V.; Cuddy, Douglas W.; Richards, Jessica M.; Fodale, Michael F.; Larson, Geraldine L.; Ollila, Dale J.; Slade, Jeffrey W.; Steeves, Todd B.; Young, Robert J.; Zerrenner, Adam
2003-01-01
Elements of the larval sea lamprey (Petromyzon marinus) assessment program that most strongly influence the chemical treatment program were analyzed, including selection of streams for larval surveys, allocation of sampling effort among stream reaches, allocation of sampling effort among habitat types, estimation of daily growth rates, and estimation of metamorphosis rates, to determine how uncertainty in each element influenced the stream selection program. First, the stream selection model based on current larval assessment sampling protocol significantly underestimated transforming sea lam-prey abundance, transforming sea lampreys killed, and marginal costs per sea lamprey killed, compared to a protocol that included more years of data (especially for large streams). Second, larval density in streams varied significantly with Type-I habitat area, but not with total area or reach length. Third, the ratio of larval density between Type-I and Type-II habitat varied significantly among streams, and that the optimal allocation of sampling effort varied with the proportion of habitat types and variability of larval density within each habitat. Fourth, mean length varied significantly among streams and years. Last, size at metamorphosis varied more among years than within or among regions and that metamorphosis varied significantly among streams within regions. Study results indicate that: (1) the stream selection model should be used to identify streams with potentially high residual populations of larval sea lampreys; (2) larval sampling in Type-II habitat should be initiated in all streams by increasing sampling in Type-II habitat to 50% of the sampling effort in Type-I habitat; and (3) methods should be investigated to reduce uncertainty in estimates of sea lamprey production, with emphasis on those that reduce the uncertainty associated with larval length at the end of the growing season and those used to predict metamorphosis.
Alvarez, D.A.; Stackelberg, P.E.; Petty, J.D.; Huckins, J.N.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.
2005-01-01
Four water samples collected using standard depth and width water-column sampling methodology were compared to an innovative passive, in situ, sampler (the polar organic chemical integrative sampler or POCIS) for the detection of 96 organic wastewater-related contaminants (OWCs) in a stream that receives agricultural, municipal, and industrial wastewaters. Thirty-two OWCs were identified in POCIS extracts whereas 9-24 were identified in individual water-column samples demonstrating the utility of POCIS for identifying contaminants whose occurrence are transient or whose concentrations are below routine analytical detection limits. Overall, 10 OWCs were identified exclusively in the POCIS extracts and only six solely identified in the water-column samples, however, repetitive water samples taken using the standard method during the POCIS deployment period required multiple trips to the sampling site and an increased number of samples to store, process, and analyze. Due to the greater number of OWCs detected in the POCIS extracts as compared to individual water-column samples, the ease of performing a single deployment as compared to collecting and processing multiple water samples, the greater mass of chemical residues sequestered, and the ability to detect chemicals which dissipate quickly, the passive sampling technique offers an efficient and effective alternative for detecting OWCs in our waterways for wastewater contaminants.
Rare Earth Elements in Alberta Oil Sand Process Streams
Roth, Elliot; Bank, Tracy; Howard, Bret; ...
2017-04-05
The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less
Rare Earth Elements in Alberta Oil Sand Process Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Elliot; Bank, Tracy; Howard, Bret
The concentrations of rare earth elements in Alberta, Canada oil sands and six oil sand waste streams were determined using inductively coupled plasma mass spectrometry (ICP–MS). The results indicate that the rare earth elements (REEs) are largely concentrated in the tailings solvent recovery unit (TSRU) sample compared to the oil sand itself. The concentration of lanthanide elements is ~1100 mg/kg (1100 ppm or 0.11 weight %), which represents a >20× increase in the concentration compared to the oil sand itself and a >7× increase compared to the North American Shale Composite (NASC). The process water, which is used to extractmore » the oil from oil sands, and the water fraction associated with the different waste streams had very low concentrations of REEs that were near or below the detection limits of the instrument, with the highest total concentration of REEs in the water fraction being less than 10 μg/L (ppb). Size and density separations were completed, and the REEs and other potentially interesting and valuable metals, such as Ti and Zr, were concentrated in different fractions. These results give insights into the possibility of recovering REEs from waste streams generated from oil sand processing.« less
NASA Astrophysics Data System (ADS)
Goble, D.; Gardner, W. P.; Naftz, D. L.; Solder, J. E.
2017-12-01
We use environmental tracers: CFC's, SF6, and 222Rn measured in stream water to determine volume and mean age of groundwater discharging to the Little Wind River, near Riverton, Wyoming. Samples of 222Rn were collected every 200 m along a 2 km reach, surrounding a known groundwater discharge zone. Nearby groundwater wells, in-stream piezometers and seepage meters were sampled for 222Rn, CFC's and SF6. Tracer concentrations measured in groundwater and in-stream piezometers were used to estimate the mean age of the subsurface system. High resolution 222Rn samples were used to determine the location and volume of groundwater inflow using a model of instream transport that includes radioactive decay and gas exchange with the atmosphere. The age of groundwater entering the stream was then estimated from in-stream measured CFC and SF6 concentrations using a new coupled stream transport and lumped-parameter groundwater age model. Ages derived from in-stream measurements were then compared to the age of subsurface water measured in piezometers, seepage meters, and groundwater wells. We then asses the ability of groundwater age inferred from in-stream samples to provide constraint on the age of the subsurface discharge to the stream. The ability to asses groundwater age from in-stream samples can provide a convenient method to constrain the regional distribution of groundwater circulation rates when groundwater sampling is challenging or wells are not in place.
Environmental Impacts Of Zirab Coal Washing Plant, Mazandaran, Iran
NASA Astrophysics Data System (ADS)
Moore, F.; Esmaeili, A.
2009-04-01
Extraction and beneficiation operations associated with coal mining increase the rate of chemical reaction of waste material to air and water media. Zirab coal washing plant is located on the bank of the Cherat stream in Mazandaran province, Iran. coal Mined from central Alborz coalfield mines is not suitable for use in Iranian Steel Corporation. Hence, coal ash content is reduced by physical and chemical processes in this plant. These processes leave a large quantity of liquid and solid wastes that accumulate in waste dump and tailing dam. sediment and water samples taken from Sheshrudbar and Cherat streams and also from Talar river show high concentration of Cd, Mo and As in water samples of coal washing plant and the associated drainage. Eh-pH diagrams revealed the chemical species of elements in water. The enrichment factor and geoaccumulation index show that Cd, Hg, Mo and V are enriched in bottom sediments of the coal washing plant and decrease with increasing distance from the plant. Sequential extraction analysis Results of three sediment samples of Cherat stream show that silicate bound is the major phase in samples taken before and after the plant, but adjacent to the plant, organic bound is dominant. The high concentration of Cd and Mo in the water soluble phase, is noticeable and may result in high mobility and bioavailability of these elements. Mann-Whitney and Wilcoxon tests on six samples, before and after the coal washing plant support the obtained results. Keywords: Zirab; coal washing plant; Sequential extraction analysis; Mann-whitney; Wilcoxon; Enrichment factor; Geoaccumulation index.
The US EPA’s National River and Stream Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the conterminous US (CONUS) that deviate from least-disturbed biological condition (BC). These assessments do not infer BC at un-sampled streams,...
Feil, A; Thoden van Velzen, E U; Jansen, M; Vitz, P; Go, N; Pretz, T
2016-02-01
The recovery of beverage cartons (BC) in three lightweight packaging waste processing plants (LP) was analyzed with different input materials and input masses in the area of 21-50Mg. The data was generated by gravimetric determination of the sorting products, sampling and sorting analysis. Since the particle size of beverage cartons is larger than 120mm, a modified sampling plan was implemented and targeted multiple sampling (3-11 individual samplings) and a total sample size of respectively 1200l (ca. 60kg) for the BC-products and of about 2400l (ca. 120kg) for material-heterogeneous mixed plastics (MP) and sorting residue products. The results infer that the quantification of the beverage carton yield in the process, i.e., by including all product-containing material streams, can be specified only with considerable fluctuation ranges. Consequently, the total assessment, regarding all product streams, is rather qualitative than quantitative. Irregular operation conditions as well as unfavorable sampling conditions and capacity overloads are likely causes for high confidence intervals. From the results of the current study, recommendations can basically be derived for a better sampling in LP-processing plants. Despite of the suboptimal statistical results, the results indicate very clear that the plants show definite optimisation potentials with regard to the yield of beverage cartons as well as the required product purity. Due to the test character of the sorting trials the plant parameterization was not ideal for this sorting task and consequently the results should be interpreted with care. Copyright © 2015 Elsevier Ltd. All rights reserved.
DWPF Recycle Evaporator Simulant Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M
2005-04-05
Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming,more » scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to aluminum oxide during the evaporation process. The following recommendations were made: Recycle from the DWTT should be metered in slowly to the ''typical'' recycle streams to avoid spikes in solids content to allow consistent processing and avoid process upsets. Additional studies should be conducted to determine acceptable volume ratios for the HEME dissolution and decontamination solutions in the evaporator feed. Dow Corning 2210 antifoam should be evaluated for use to control foaming. Additional tests are required to determine the concentration of antifoam required to prevent foaming during startup, the frequency of antifoam additions required to control foaming during steady state processing, and the ability of the antifoam to control foam over a range of potential feed compositions. This evaluation should also include evaluation of the degradation of the antifoam and impact on the silicon and TOC content of the condensate. The caustic HEME dissolution recycle stream should be neutralized to at least pH of 7 prior to blending with the acidic recycle streams. Dow Corning 2210 should be used during the evaporation testing using the radioactive recycle samples received from DWPF. Evaluation of additional antifoam candidates should be conducted as a backup for Dow Corning 2210. A camera and/or foam detection instrument should be included in the evaporator design to allow monitoring of the foaming behavior during operation. The potential for foam formation and high solids content should be considered during the design of the evaporator vessel.« less
Gray, John R.; Fisk, Gregory G.
1992-01-01
From July 1988 through September 1991, radionuclide and suspended-sediment transport were monitored in ephemeral streams in the semiarid Little Colorado River basin of Arizona and New Mexico, USA, where in-stream gross-alpha plus gross-beta activities have exceeded Arizona's Maximum Allowable Limit through releases from natural weathering processes and from uranium-mining operations in the Church Rock Mining District, Grants Mineral Belt, New Mexico. Water samples were collected at a network of nine continuous-record streamgauges equipped with microprocessor-based satellite telemetry and automatic water-sampling systems, and six partial-record streamgauges equipped with passive water samplers. Analytical results from these samples were used to calculate transport of selected suspended and dissolved radionuclides in the uranium-238 and thorium-232 decay series.
Rounds, Stewart A.; Doyle, Micelis C.; Edwards, Patrick M.; Furlong, Edward T.
2009-01-01
A reconnaissance of pharmaceutical chemicals in urban streams of the Tualatin River basin was conducted in July 2002 in an effort to better understand the occurrence and distribution of such compounds, and to determine whether they might be useful indicators of human-related stream contamination. Of the 21 pharmaceutical chemicals and metabolites tested, only 6 (acetaminophen, caffeine, carbamazepine, codeine, cotinine, and sulfamethoxazole) were detected in filtered stream samples from 10 sites. The concentrations of most of the detected compounds were relatively low (less than 0.05 microgram per liter). The most frequently detected compounds were cotinine (a nicotine metabolite, 8 of 10 samples) and caffeine (a stimulant, 7 of 10 samples). More compounds were detected in urban stream samples than in samples from forested or agricultural drainages. Filtered water samples also were collected from four locations within an advanced wastewater treatment facility to quantify the relative amounts of these chemicals in a municipal waste stream and to determine the degree to which those chemicals are removed by treatment processes. Fifteen pharmaceutical chemicals or metabolites were detected in wastewater treatment facility influent, with concentrations far exceeding those measured in streams. Only five of those compounds, however, were detected in the treated effluent (carbamazepine, cotinine, ibuprofen, metformin, and sulfamethoxazole) and most of those were at concentrations less than 0.2 microgram per liter. The target pharmaceutical chemicals and metabolites showed limited potential for use as tracers of specific types of human-related contamination in Tualatin River basin streams because of widespread sources (caffeine, for example) or extremely low concentrations. Caffeine and cotinine are likely to be good indicators of sources that can occur in urban areas, such as sewage spills or leaks or the widespread use and careless disposal of tobacco products and caffeine-containing beverages. Neither compound, however, is likely to be a good tracer for a specific source unless that source is large. The presence of 1,7-dimethylxanthine (a caffeine metabolite) concurrently with caffeine might indicate the presence of untreated wastewater; in contrast, the absence of the metabolite might help rule out that source. Acetaminophen might make a good tracer for untreated wastewater because of its common usage, high concentration in raw wastewater, and effective removal via treatment. Carbamazepine and sulfamethoxazole have the potential to be good indicators of treated wastewater because of their incomplete removal in treatment facilities. Some of these pharmaceutical chemicals, either singly or in combination, might prove useful as tracers of contamination after further study.
Isotopic signals from precipitation and denitrification in nitrate in a northern hardwood forest
NASA Astrophysics Data System (ADS)
Goodale, C. L.; Wexller, S.
2012-12-01
Denitrification can represent an important term in the nitrogen budget of small catchments; however, this process varies greatly over space and time and is notoriously difficult to quantify. Measurements of the natural abundance of stable isotopes of nitrogen and oxygen in dissolved nitrate in stream- and river water can sometimes provide evidence of denitrification, particularly in large river basins or agriculturally impacted catchments. To date, however, this approach has provided little to no evidence of denitrification in catchments in temperate forests. Here, we examined d15N and d18O of nitrate in water samples collected during summer 2011 not only from streams and precipitation, but also from groundwater from the hydrologic reference watershed (W3) drained by Paradise Brook, at the Hubbard Brook Experimental Forest, in the White Mountains, New Hampshire. Despite low nitrate concentrations (< 0.5 to 8.8 uM nitrate) dual-isotopic signals of nitrate sources and nitrogen cycle processes were clearly distinguishable, including sources from atmospheric deposition, and from nitrification of atmospheric ammonium and from or soil organic nitrogen, as well as nitrate affected by soil denitrification. An atmospheric signal from nitrate in precipitation (enriched with 18O) was observed immediately following a precipitation event in mid-July contributing roughly 22% of stream nitrate export on this date. Stream samples the day following this and other storms showed this export of event nitrate to be short-lived. Hillslope piezometers showed low nitrate concentrations and high d15N- and d18O-nitrate values (averaging 12 and 18 per mil, repectively) indicating denitrification, which preferentially removes isotopically light N and O in N gases and leaves isotopically heavy nitrate behind. These samples showed a positive relationship between nitrogen and oxygen isotopic composition with a regression line slope of 0.76 (R2 = 0.68), and an isotope enrichment factor -12.7 per mil for denitrification removal of nitrate in these hillslope soils. The isotopic composition of a time series of samples from three riparian piezometers crossing Paradise Brook shows strong connections between the riparian soil water and the stream, as well as a different dominant source of nitrate in each piezometer. Repeated surveys of stream nitrate show modest positive enrichment in N and O isotopes with a slope between 18O and 15N of 0.96, indicating either in- or near-stream denitrification or mixing between stream and hillslope water bearing a stronger denitrification signal. The dual isotope approach provides detailed information on nitrogen cycling dynamics during the summer in a northern hardwood forested catchment. Together, these observations provide strong isotopic evidence for rapid rates of denitrification during summer in the soils of this small forested catchment.
Photographic techniques for characterizing streambed particle sizes
Whitman, Matthew S.; Moran, Edward H.; Ourso, Robert T.
2003-01-01
We developed photographic techniques to characterize coarse (>2-mm) and fine (≤2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wadeable and contained gravel—cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded a greater number of measured particles (mean = 989) than did the Wolman counts (mean = 328). Stream embeddedness ratings assigned from field and photographic observations were significantly different at 5 of the 12 sites, although both types of ratings showed a positive relationship with digitized surface fines. Visual estimates of embeddedness and digitized surface fines may both be useful indicators of benthic conditions, but digitizing surface fines produces quantitative rather than qualitative data. Benefits of the photographic techniques include reduced field time, minimal streambed disturbance, convenience of postfield processing, easy sample archiving, and improved accuracy and replication potential.
Fate of perfluoroalkyl substances within a small stream food web affected by sewage effluent.
Cerveny, Daniel; Grabic, Roman; Fedorova, Ganna; Grabicova, Katerina; Turek, Jan; Zlabek, Vladimir; Randak, Tomas
2018-05-01
The fate of fourteen target perfluoroalkyl substances (PFASs) are described within a small stream affected by a sewage treatment plant (STP) effluent. Concentrations of target PFASs in samples of water, benthic macroinvertebrates and brown trout (Salmo trutta) are presented. Two hundred brown trout individuals originating from clean sites within the same stream were tagged and stocked into an experimental site affected by the STP's effluent. As a passive sampling approach, polar organic chemical integrative samplers (POCIS) were deployed in the water to reveal the water-macroinvertebrates-fish biotransformation processes of PFASs. Bioconcentration/bioaccumulation of target compounds was monitored one, three, and six months after stocking. Twelve of the fourteen target PFASs were found in concentration above the LOQ in at least one of the studied matrices. The compound pattern varied significantly between both the studied species and water samples. Concerning the accumulation of PFASs in fish, the highest concentrations were found in the liver of individuals sampled after three months of exposure. These concentrations rapidly decreased after six months although the water concentrations were slightly increasing during experiment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee-Cullin, J. A.; Zarnetske, J. P.; Wiewiora, E.; Ruhala, S.; Hampton, T. B.
2016-12-01
Dissolved organic carbon (DOC) is a critical component to biogeochemical cycling and water quality in surface waters. As DOC moves through stream networks, from headwaters to higher order streams, the sediment-water interface (SWI), where streams and groundwater readily interact, exerts a strong influence on DOC concentrations and compositional characteristics (i.e., molecular properties). Few studies examine SWI patterns at larger spatial scales, instead focusing primarily on site-level studies because sampling in the SWI is methodologically time and labor intensive. It is presently unknown how land use and landcover influence the fate of DOC in the SWI and therefore the function of the SWI on catchment-scale DOC conditions. Here, we performed a catchment-scale, high spatial-resolution SWI sampling campaign to test how landscape pattern DOC signatures are propagated into the stream and groundwater, and to assess the fate of these signatures when DOC travels through the SWI. We sampled across 39 sites composed of first-, second-, and third-order locations in a lowland, third-order catchment composed of diverse landscape units and properties, including wetland, upland forest, and agriculture. At each of these locations, surface water, groundwater, and SWI water were collected, including six discrete depths across the SWI. The major land use and landcover properties were also determined for each of these locations. We developed two simple generalized linear models to identify the landscape properties with greatest explanatory power for DOC conditions - one for stream water and one for groundwater. The correlation between landscape properties and surface water DOC characteristics was stronger than between landscape properties and groundwater DOC characteristics. To test if the DOC properties from surface and groundwater were preserved or removed by the SWI, the resulting best-fit models for each water source were used to predict the DOC conditions across the SWI. The models were unable to predict SWI DOC conditions, indicating that the landscape signature present in both the surface water and groundwater is removed by processes occurring in the SWI. Overall, this suggests that the SWI functions as and effective zone for processing the landscape-derived DOC signatures.
NASA Astrophysics Data System (ADS)
Lee-Cullin, J. A.; Zarnetske, J. P.; Wiewiora, E.; Ruhala, S.; Hampton, T. B.
2017-12-01
Dissolved organic carbon (DOC) is a critical component to biogeochemical cycling and water quality in surface waters. As DOC moves through stream networks, from headwaters to higher order streams, the sediment-water interface (SWI), where streams and groundwater readily interact, exerts a strong influence on DOC concentrations and compositional characteristics (i.e., molecular properties). Few studies examine SWI patterns at larger spatial scales, instead focusing primarily on site-level studies because sampling in the SWI is methodologically time and labor intensive. It is presently unknown how land use and landcover influence the fate of DOC in the SWI and therefore the function of the SWI on catchment-scale DOC conditions. Here, we performed a catchment-scale, high spatial-resolution SWI sampling campaign to test how landscape pattern DOC signatures are propagated into the stream and groundwater, and to assess the fate of these signatures when DOC travels through the SWI. We sampled across 39 sites composed of first-, second-, and third-order locations in a lowland, third-order catchment composed of diverse landscape units and properties, including wetland, upland forest, and agriculture. At each of these locations, surface water, groundwater, and SWI water were collected, including six discrete depths across the SWI. The major land use and landcover properties were also determined for each of these locations. We developed two simple generalized linear models to identify the landscape properties with greatest explanatory power for DOC conditions - one for stream water and one for groundwater. The correlation between landscape properties and surface water DOC characteristics was stronger than between landscape properties and groundwater DOC characteristics. To test if the DOC properties from surface and groundwater were preserved or removed by the SWI, the resulting best-fit models for each water source were used to predict the DOC conditions across the SWI. The models were unable to predict SWI DOC conditions, indicating that the landscape signature present in both the surface water and groundwater is removed by processes occurring in the SWI. Overall, this suggests that the SWI functions as and effective zone for processing the landscape-derived DOC signatures.
Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat
2011-01-01
This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.
Shahpoury, Pourya; Hageman, Kimberly J; Matthaei, Christoph D; Alumbaugh, Robert E; Cook, Michelle E
2014-10-07
Silicone passive samplers and macroinvertebrates were used to measure time-integrated concentrations of polycyclic aromatic hydrocarbons (PAHs) in alpine streams during annual snowmelt. The three sampling sites were located near a main highway in Arthur's Pass National Park in the Southern Alps of New Zealand. A similar set of PAH congeners, composed of 2-4 rings, were found in silicone passive samplers and macroinvertebrates. The background PAH concentrations were similar at all sites, implying that proximity to the highway did not affect concentrations. In passive samplers, an increase of PAH concentrations by up to seven times was observed during snowmelt. In macroinvertebrates, the concentration changes were moderate; however, macroinvertebrate sampling did not occur during the main pulse observed in the passive samplers. The extent of vegetation in the catchment appeared to affect the concentration patterns seen at the different stream sites. A strong correlation was found between PAH concentrations in passive samplers and the amount of rainfall in the study area, indicating that the washout of contaminants from snowpack by rainfall was an important process.
Watterson, J.R.
1985-01-01
The presence of bacterial spores of the Bacillus cereus group in soils and stream sediments appears to be a sensitive indicator of several types of concealed mineral deposits, including vein-type gold deposits. The B. cereus assay is rapid, inexpensive, and inherently reproducible. The test, currently under investigation for its potential in mineral exploration, is recommended for use on a research basis. Among the aerobic spore-forming bacilli, only B. cereus and closely related strains produce an opaque zone in egg-yolk emulsion agar. This characteristic, also known as the Nagler of lecitho-vitellin reaction, has long been used to rapidly indentify and estimate presumptive B. cereus. The test is here adapted to permit rapid estimation of B. cereus spores in soil and stream-sediment samples. Relative standard deviation was 10.3% on counts obtained from two 40-replicate pour-plate determinations. As many as 40 samples per day can be processed. Enough procedural detail is included to permit investigation of the test in conventional geochemical laboratories using standard microbiological safety precautions. ?? 1985.
A Mineral Processing Field Course
ERIC Educational Resources Information Center
Carmody, Maurice
2014-01-01
This article describes a field course in Cornwall looking at mineral processing with the focus on the chemistry involved. The course was split into two parts. The first looked at tin mining based around Penzance. This involved visiting mines, hunting for mineral samples, carrying out a stream survey and visiting the Camborne School of Mines…
Denver, Judith M.; Cravotta,, Charles A.; Ator, Scott W.; Lindsey, Bruce D.
2011-01-01
Phosphorus from natural and human sources is likely to be discharged from groundwater to streams in certain geochemical environments. Water-quality data collected from 1991 through 2007 in paired networks of groundwater and streams in different hydrogeologic and land-use settings of the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces in the eastern United States were compiled and analyzed to evaluate the sources, fate, and transport of phosphorus. The median concentrations of phosphate in groundwater from the crystalline and siliciclastic bedrock settings (0.017 and 0.020 milligrams per liter, respectively) generally were greater than the median for the carbonate setting (less than 0.01 milligrams per liter). In contrast, the median concentrations of dissolved phosphate in stream base flow from the crystalline and siliciclastic bedrock settings (0.010 and 0.014 milligrams per liter, respectively) were less than the median concentration for base-flow samples from the carbonate setting (0.020 milligrams per liter). Concentrations of phosphorus in many of the stream base-flow and groundwater samples exceeded ecological criteria for streams in the region. Mineral dissolution was identified as the dominant source of phosphorus in the groundwater and stream base flow draining crystalline or siliciclastic bedrock in the study area. Low concentrations of dissolved phosphorus in groundwater from carbonate bedrock result from the precipitation of minerals and (or) from sorption to mineral surfaces along groundwater flow paths. Phosphorus concentrations are commonly elevated in stream base flow in areas underlain by carbonate bedrock, however, presumably derived from in-stream sources or from upland anthropogenic sources and transported along short, shallow groundwater flow paths. Dissolved phosphate concentrations in groundwater were correlated positively with concentrations of silica and sodium, and negatively with alkalinity and concentrations of calcium, magnesium, chloride, nitrate, sulfate, iron, and aluminum. These associations can result from the dissolution of alkali feldspars containing phosphorus; the precipitation of apatite; the precipitation of calcite, iron hydroxide, and aluminum hydroxide with associated sorption of phosphate ions; and the potential for release of phosphate from iron-hydroxide and other iron minerals under reducing conditions. Anthropogenic sources of phosphate such as fertilizer and manure and processes such as biological uptake, evapotranspiration, and dilution also affect phosphorus concentrations. The phosphate concentrations in surface water were not correlated with the silica concentration, but were positively correlated with concentrations of major cations and anions, including chloride and nitrate, which could indicate anthropogenic sources and effects of evapotranspiration on surface-water quality. Mixing of older, mineralized groundwater with younger, less mineralized, but contaminated groundwater was identified as a critical factor affecting the quality of stream base flow. In-stream processing of nutrients by biological processes also likely increases the phosphorus concentration in surface waters. Potential geologic contributions of phosphorus to groundwater and streams may be an important watershed-management consideration in certain hydrogeologic and geochemical environments. Geochemical controls effectively limit phosphorus transport through groundwater to streams in areas underlain by carbonate rocks; however, in crystalline and siliciclastic settings, phosphorus from mineral or human sources may be effectively transported by groundwater and contribute a substantial fraction to base-flow stream loads.
COMPARISON OF MACROINVERTEBRATE SAMPLING METHODS FOR NONWADEABLE STREAMS
The bioassessment of nonwadeable streams in the United States is increasing, but methods for these systems are not as well developed as for wadeable streams. In this study, we compared six benthic macroinvertebrate field sampling methods for nonwadeable streams based on those us...
A simple technique for continuous measurement of time-variable gas transfer in surface waters
Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades
2009-01-01
Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.
Sorenson, S.K.; Porter, S.D.; Akers, K.B.; Harris, M.A.; Kalkhoff, S.J.; Lee, K.E.; Roberts, L.; Terrio, P.J.
1999-01-01
Water-chemistry, biological, and habitat data were collected from 70 sites on Midwestern streams during August 1997 as part of an integrated, regional water-quality assessment by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. The study area includes the Corn Belt region of southern Minnesota, eastern Iowa, and west-central Illinois, one of the most intensive and productive agricultural regions of the world. The focus of the study was to evaluate the condition of woodedriparian zones and the influence of basin soildrainage characteristics on water quality and biological-community responses. This report includes a description of the study design and site-characterization process, sample-collection and processing methods, laboratory methods, quality-assurance procedures, and summaries of data on nutrients, herbicides and metabolites, stream productivity and respiration, biological communities, habitat conditions, and agriculturalchemical and land-use information.
Kristin Bunte; Kurt W. Swingle; Steven R. Abt
2007-01-01
A bedload trap is a portable sampler designed specifically for collecting gravel and cobble bedload (4 to 180 mm in diameter) in wadeable streams. Bedload traps consist of an aluminum frame with a 12 by 8 inch (0.3 by 0.2 m) opening to which a 3- to 5.5-ft (0.9 to 1.65 m) long trailing net is attached. Bedload traps are installed on ground plates that are anchored to...
Geologic and tributary influences on the chemistry of a headwater stream
Alexander C. Wooten; James Preer; Pamela J. Edwards
1999-01-01
Water samples were collected weekly from June 12 to August 14, 1995, from Big Spring Run (BSR) in West Virginia. BSR originates in Big Spring Cave, where three stream samples were collected. In addition, 18 BSR sites were sampled downstream from the cave, three from its tributaries, and one above and below the stream?s confluence with Elklick Run. Along its length (653...
Contamination of water and soil by the Erdenet copper-molybdenum mine in Mongolia
NASA Astrophysics Data System (ADS)
Battogtokh, B.; Lee, J.; Woo, N. C.; Nyamjav, A.
2013-12-01
As one of the largest copper-molybdenum (Cu-Mo) mines in the world, the Erdenet Mine in Mongolia has been active since 1978, and is expected to continue operations for at least another 30 years. In this study, the potential impacts of mining activities on the soil and water environments have been evaluated. Water samples showed high concentrations of sulfate, calcium, magnesium, Mo, and arsenic, and high pH values in the order of high to low as follows: tailing water > Khangal River > groundwater. Statistical analysis and the δ2H and δ18O values of water samples indicate that the tailing water directly affects the stream water and indirectly affects groundwater through recharge processes. Soil and stream sediments are highly contaminated with Cu and Mo, which are major elements of ore minerals. Based on the contamination factor (CF), the pollution load index (PLI), and the degree of contamination (Cd), soil appears to be less contaminated than stream sediments. The soil particle size is similar to that of tailing materials, but stream sediments have much coarser particles, implying that the materials have different origins. Contamination levels in stream sediments display a tendency to decrease with distance from the mine, but no such changes are found in soil. Consequently, soil contamination by metals is attributable to wind-blown dusts from the tailing materials, and stream sediment contamination is caused by discharges from uncontained subgrade ore stock materials. Considering the evident impact on the soil and water environment, and the human health risk from the Erdenet Mine, measures to mitigate its environmental impact should be taken immediately including source control, the establishment of a systematic and continuous monitoring system, and a comprehensive risk assessment. Sampling locations around the Erdenet Mine
Environmental sampling and analysis in support of NTI-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, R.R.; Harrar, J.E.; Haas, J.S.
1991-04-06
The third National Trail Inspection took place at the Monsanto Chemical Plant in Luling, Louisiana. In order to test the effectiveness of environmental sampling (soil, water and air) in determining the nature of the chemical process in a given production plant and to examine the distance from a process building that samples can effectively be taken, we needed to select some materials that constituted components of process streams. Three materials were selected: 1. isopropyl amine for air monitoring, 2. 4-nitrophenol, one of the precursors in the acetaminophen process, and 3. an intermediate in the production of glyphosate for ROUNDUP thatmore » is known simply as glyphosate intermediated. LLNL did not participate in the air sampling nor the analysis for isopropyl amine. This paper discussed the steps in this experiment including sample collection, sample workshop, sample analysis the results and discussion and the conclusion. 3 figs., 6 tabs.« less
Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing
2012-12-14
Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing Matei Zaharia Tathagata Das Haoyuan Li Timothy Hunter Scott Shenker Ion...SUBTITLE Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...time. However, current programming models for distributed stream processing are relatively low-level often leaving the user to worry about consistency of
Doulati Ardejani, Faramarz; Jodieri Shokri, Behshad; Moradzadeh, Ali; Shafaei, Seyed Ziadin; Kakaei, Reza
2011-12-01
Pyrite oxidation and release of the oxidation products from a low-grade coal waste dump to stream, groundwater and soil was investigated by geochemical and hydrogeochemical techniques at Alborz Sharghi coal washing plant, Shahrood, northeast Iran. Hydrogeochemical analysis of water samples indicates that the metal concentrations in the stream waters were low. Moreover, the pH of the water showed no considerable change. The analysis of the stream water samples shows that except the physical changes, pyrite oxidation process within the coal washing waste dump has not affected the quality of the stream water. Water type was determined to be calcium sulphate. The results of the analysis of groundwater samples indicate that the pH varies from 7.41 to 7.51. The concentrations of the toxic metals were low. The concentration of SO4 is slightly above than its standard concentration in potable water. It seems that the groundwater less affected by the coal washing operation in the study area. Geochemical analysis of the sediment samples shows that Fe concentration decreases gradually downstream the waste dump with pH rising. SO(4) decreases rapidly downstream direction. Copper, Zn and Co concentrations decrease with distance from the waste dump due to a dilution effect by the mixing of uncontaminated sediments. These elements, in particular, Zn are considerably elevated in sediment sample collected at the nearest distance to the waste dump. There is no doubt that such investigations can help to develop an appropriate water remediation plan.
J. Hwang; S.W. Oak; S.N. Jeffers
2011-01-01
To evaluate the number of stream sample sites needed to effectively survey a given stream network for species of Phytophthora, two stream networks, Davidson River and Cathey's Creek, in western North Carolina (USA) were studied. One-litre water samples were collected from the terminal drainage points and most of the tributaries in each stream...
Triska, F.J.; Kennedy, V.C.; Avanzino, R.J.; Zellweger, G.W.; Bencala, K.E.
1989-01-01
Chloride and nitrate were coinjected into the surface waters of a third-order stream for 20 d to exmaine solute retention, and the fate of nitrate during subsurface transport. A series of wells (shallow pits) 0.5-10 m from the adjacent channel were sampled to estimate the lateral interflow of water. Two subsurface return flows beneath the wetted channel were also examined. Results indicated that the capacity of the hyporheic zone for transient solute storage and as potential biological habitat varies with channel morphology, bed roughness, and permeability. A conceptual model that considers the groundwater-stream water interface as the fluvial boundary is proposed. -from Authors
Merkes, Christopher; Turnquist, Keith N.; Rees, Christopher B.; Amberg, Jon J.
2015-01-01
The duplex assay was chosen as the most efficient assay and was used at the Upper Midwest Environmental Sciences Center to analyze triplicate samples from 29 streams in Wisconsin, 8 streams in Illinois, and 8 streams in Iowa. In order to verify results, additional triplicate samples were collected from two of the streams in Iowa and two of the streams in Wisconsin for analysis at the Molecular Conservation Genetics Laboratory. All samples at all sites were negative for NZMS DNA.
Sampling methods for amphibians in streams in the Pacific Northwest.
R. Bruce Bury; Paul Stephen Corn
1991-01-01
Methods describing how to sample aquatic and semiaquatic amphibians in small streams and headwater habitats in the Pacific Northwest are presented. We developed a technique that samples 10-meter stretches of selected streams, which was adequate to detect presence or absence of amphibian species and provided sample sizes statistically sufficient to compare abundance of...
Analyzing Conductivity Profiles in Stream Waters Influenced by Mine Water Discharges
NASA Astrophysics Data System (ADS)
Räsänen, Teemu; Hämäläinen, Emmy; Hämäläinen, Matias; Turunen, Kaisa; Pajula, Pasi; Backnäs, Soile
2015-04-01
Conductivity is useful as a general measure of stream water quality. Each stream inclines to have a quite constant range of conductivity that can be used as a baseline for comparing and detecting influence of contaminant sources. Conductivity in natural streams and rivers is affected primarily by the geology of the watershed. Thus discharges from ditches and streams affect not only the flow rate in the river but also the water quality and conductivity. In natural stream waters, the depth and the shape of the river channel change constantly, which changes also the water flow. Thus, an accurate measuring of conductivity or other water quality indicators is difficult. Reliable measurements are needed in order to have holistic view about amount of contaminants, sources of discharges and seasonal variation in mixing and dilution processes controlling the conductivity changes in river system. We tested the utility of CastAway-CTD measuring device (SonTek Inc) to indicate the influence of mine waters as well as mixing and dilution occurring in the recipient river affected by treated dewatering and process effluent water discharges from a Finnish gold mine. The CastAway-CTD measuring device is a small, rugged and designed for profiling of depths of up to 100m. Device measures temperature, salinity, conductivity and sound of speed using 5 Hz response time. It has also built-in GPS which produces location information. CTD casts are normally used to produce vertical conductivity profile for rather deep waters like seas or lakes. We did seasonal multiple Castaway-CTD measurements during 2013 and 2014 and produced scaled vertical and horizontal profiles of conductivity and water temperature at the river. CastAway-CTD measurement pinpoints how possible contaminants behave and locate in stream waters. The conductivity profiles measured by CastAway-CTD device show the variation in maximum conductivity values vertically in measuring locations and horizontally in measured cross-sections. The data from field measurements was combined with detailed water quality analysis and processed by data analysis with Matlab to produce more holistic information about the behavior, mixing and dilution of possible contaminants at the river. Moreover, the results can be used to improve water sampling procedures for more representative sampling and to plan continuous monitoring site locations and measuring device mounting places.
A role for high frequency hydrochemical sampling in long term ecosystem studies
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.
2007-12-01
Monitoring of surface waters for major chemical constituents is needed to assess long-term trends and responses to ecological disturbance. However, the typical fixed-interval (weekly, monthly, or quarterly) sampling schemes of most long-term ecosystem studies may not capture the full range of stream chemical variation and do not always provide enough information to discern the landscape processes that control surface water chemistry and solute loadings. To expand upon traditional hydrochemical monitoring, we collected high frequency event-based surface water samples at an upland, forested basin of the Sleepers River Research Watershed (Vermont, USA), one of five intensively studied sites in the Water, Energy, and Biogeochemical Budgets (WEBB) program of the US Geological Survey. We present several examples that highlight the importance of linking long-term weekly data with intensive, high frequency sampling. We used end-member mixing analysis and isotopic approaches to trace sources of stream nutrients (e.g. nitrate, dissolved organic carbon) and quantified how atmospheric pollutants (e.g. nitrogen, sulfate, and mercury) affect stream chemistry. High frequency sampling generates large numbers of samples and is both labor and resource intensive but yields insights into ecosystem functions that are not readily discerned from less-frequent sampling. As the ecological community contemplates the scope and foci of environmental observatories as benchmarks for deciphering the effects of natural and anthropogenic change, incorporating high frequency hydrochemical sampling will further our understanding of ecosystem functions across a range of ecosystem types and disturbance effects.
Apparatus for continuously referenced analysis of reactive components in solution
Bostick, William D.; Denton, Mark S.; Dinsmore, Stanley R.
1981-01-01
A continuously referenced apparatus for measuring the concentration of a reactive chemical species in solution comprises in combination conduit means for introducing a sample solution, means for introducing one or more reactants into a sample solution, a reaction zone in fluid communication with said conduit means wherein a first chemical reaction occurs between said species and reactants, and a stream separator disposed within the conduit means for separating the sample solution into a sample stream and a reference stream. An enzymatic reactor is disposed in fluid communication with only the sample stream wherein a second reaction takes place between the said reactants, species, and reactor enzymes causing the consumption or production of an indicator species in just the sample stream. Measurement means such as a photometric system are disposed in communication with the sample and reference streams, and the outputs of the measurement means are compared to provide a blanked measurement of the concentration of indicator species. A peristaltic pump is provided to equalize flow through the apparatus by evacuation. The apparatus is particularly suitable for measurement of isoenzymes in body tissues or fluids.
Benthic macroinvertebrates are one of the primary biological indicators of condition used in the U.S. Environmental Protection Agency’s National Rivers and Streams Assessment. Following EPA’s Wadeable Streams Assessment, States recommended that a different yet compara...
NASA Astrophysics Data System (ADS)
Pries, V. V.; Proskuriakov, N. E.
2018-04-01
To control the assembly quality of multi-element mass-produced products on automatic rotor lines, control methods with operational feedback are required. However, due to possible failures in the operation of the devices and systems of automatic rotor line, there is always a real probability of getting defective (incomplete) products into the output process stream. Therefore, a continuous sampling control of the products completeness, based on the use of statistical methods, remains an important element in managing the quality of assembly of multi-element mass products on automatic rotor lines. The feature of continuous sampling control of the multi-element products completeness in the assembly process is its breaking sort, which excludes the possibility of returning component parts after sampling control to the process stream and leads to a decrease in the actual productivity of the assembly equipment. Therefore, the use of statistical procedures for continuous sampling control of the multi-element products completeness when assembled on automatic rotor lines requires the use of such sampling plans that ensure a minimum size of control samples. Comparison of the values of the limit of the average output defect level for the continuous sampling plan (CSP) and for the automated continuous sampling plan (ACSP) shows the possibility of providing lower limit values for the average output defects level using the ACSP-1. Also, the average sample size when using the ACSP-1 plan is less than when using the CSP-1 plan. Thus, the application of statistical methods in the assembly quality management of multi-element products on automatic rotor lines, involving the use of proposed plans and methods for continuous selective control, will allow to automating sampling control procedures and the required level of quality of assembled products while minimizing sample size.
Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.
2007-01-01
Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the same stream that contained negligible AVS. ?? 2007 SETAC.
NASA Astrophysics Data System (ADS)
Spänhoff, Bernd; Riss, Wolfgang; Jäkel, Paul; Dakkak, Nadja; Meyer, Elisabeth I.
2006-02-01
A straightened stream stretch with poor habitat heterogeneity was divided into a “control” section with a low amount of submerged woody debris and an experimentally “wood-enriched” downstream section to study the effect of enhanced habitat diversity on the benthic invertebrate community. The downstream section was enriched by fixing 25 wood packages constructed from 9-10 branches on the stream bottom. Succession processes occurring in the two stream sections were compared by chironomid exuviae drift from July to November 2000 and from April to August 2001. During the first sampling period, more drifting chironomid exuviae (medians of control vs. wood-enriched: 446 vs. 331, no significant difference) and total number of taxa (44 vs. 36, Wilcoxon signed-rank test P = 0.019) were recorded for the control section. Although species compositions of both stream sections were highly similar (Sørensen index: 0.83) the diversity in the wood-enriched section was distinctly lower compared to the control section (Shannon-Weaver index: 1.19 vs. 1.50). During the second sampling period, exuviae numbers remained higher in the control section (median: 326 vs. 166), but total numbers of taxa were nearly equal (51 vs. 49), as well as species diversity (Shannon-Weaver index: 1.67 vs. 1.64). The lower chironomid diversity observed during the first sampling period coincided with a gradual but significant change of the streambed morphology in the wood-enriched section. There, the initially more U-shaped profile (V/U = 0.81 ± 0.37) had turned into a pronounced V shape (V/U = 1.14 ± 0.21), whereas the control section retained its unaltered U shape (V/U = 0.62-0.75). This small-scale study on experimental of woody debris in sandy lowland streams showed that the negative impact of increased hydraulic disturbance of the existing streambed more than outweighed any positive impact resulting from the increase in woody debris.
Results of Macroinvertebrate Sampling Conducted at 33 SRS Stream Locations, July--August 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
1994-12-01
In order to assess the health of the macroinvertebrate communities of SRS streams, the macroinvertebrate communities at 30 stream locations on SRS were sampled during the summer of 1993, using Hester-Dendy multiplate samplers. In addition, three off-site locations in the Upper Three Runs drainage were sampled in order to assess the potential for impact from off-site activities. In interpreting the data, it is important to recognize that these data were from a single set of collections. Macroinvertebrate communities often undergo considerable temporal variation, and are also greatly influenced by such factors as water depth, water velocity, and available habitat. Thesemore » stations were selected with the intent of developing an on-going sampling program at a smaller number of stations, with the selection of the stations to be based largely upon the results of this preliminary sampling program. When stations within a given stream showed similar results, fewer stations would be sampled in the future. Similarly, if a stream appeared to be perturbed, additional stations or chemical analyses might be added so that the source of the perturbation could be identified. In general, unperturbed streams will contain more taxa than perturbed streams, and the distribution of taxa among orders or families will differ. Some groups of macroinvertebrates, such as Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies), which are collectively called EPT taxa, are considered to be relatively sensitive to most kinds of stream perturbation; therefore a reduced number of EPT taxa generally indicates that the stream has been subject to chemical or physical stressors. In coastal plain streams, EPT taxa are generally less dominant than in streams with rocky substrates, while Chironomidae (midges) are more abundant. (Abstract Truncated)« less
Stream water quality in the coal region of West Virginia and Maryland
Kenneth L. Dyer
1982-01-01
This report is a compilation of water quality data for 118 small streams sampled in 27 counties of West Virginia and nine streams in two counties of western Maryland. Forty-eight of these streams drain unmined watersheds; 79 drain areas where coal has been surface mined. Most of these streams were sampled at approximate monthly intervals. The water quality data from...
Benson, J M; Hanson, R L; Royer, R E; Clark, C R; Henderson, R F
1984-04-01
The process gas stream of an experimental pressurized McDowell-Wellman stirred-bed low-Btu coal gasifier, and combustion products of the clean gas were characterized as to their mutagenic properties and chemical composition. Samples of aerosol droplets condensed from the gas were obtained at selected positions along the process stream using a condenser train. Mutagenicity was assessed using the Ames Salmonella mammalian microsome mutagenicity assay (TA98, with and without rat liver S9). All materials required metabolic activation to be mutagenic. Droplets condensed from gas had a specific mutagenicity of 6.7 revertants/microgram (50,000 revertants/liter of raw gas). Methylnaphthalene, phenanthrene, chrysene, and nitrogen-containing compounds were positively identified in a highly mutagenic fraction of raw gas condensate. While gas cleanup by the humidifier-tar trap system and Venturi scrubber led to only a small reduction in specific mutagenicity of the cooled process stream material (4.1 revertants/microgram), a significant overall reduction in mutagenicity was achieved (to 2200 revertants/liter) due to a substantial reduction in the concentration of material in the gas. By the end of gas cleanup, gas condensates had no detectable mutagenic activity. Condensates of combustion product gas, which contained several polycyclic aromatic compounds, had a specific mutagenicity of 1.1 revertants/microgram (4.0 revertants/liter). Results indicate that the process stream material is potentially toxic and that care should be taken to limit exposure of workers to the condensed tars during gasifier maintenance and repair and to the aerosolized tars emitted in fugitive emissions. Health risks to the general population resulting from exposure to gas combustion products are expected to be minimal.
NASA Astrophysics Data System (ADS)
Woznicki, S. A.; Nejadhashemi, A. P.; Tang, Y.; Wang, L.
2016-12-01
Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a baseline of 1980-2000 to 2020-2040. Flow regime variables representing variability, duration of extreme events, and timing of low and high flow events were sensitive to changes in climate. The stream health indicators were relatively insensitive to changing climate at the watershed scale. However, there were many instances of individual reaches that were projected to experience declines in stream health. Using the probability of stream health decline coupled with the magnitude of the decline, maps of vulnerable stream ecosystems were developed, which can be used in the watershed management decision-making process.
Method for enhanced atomization of liquids
Thompson, Richard E.; White, Jerome R.
1993-01-01
In a process for atomizing a slurry or liquid process stream in which a slurry or liquid is passed through a nozzle to provide a primary atomized process stream, an improvement which comprises subjecting the liquid or slurry process stream to microwave energy as the liquid or slurry process stream exits the nozzle, wherein sufficient microwave heating is provided to flash vaporize the primary atomized process stream.
NASA Astrophysics Data System (ADS)
Hotchkiss, E. R.
2017-12-01
Freshwater biological processes can alter the quantity and quality of organic carbon (OC) inputs from land before they are transported downstream, but the relative role of hydrologic transport and in-stream processing is still not well quantified at the scale of fluvial networks. Despite much research on the role of biology and hydrology in governing the form and fate of C in inland waters, conclusions about the function of freshwater ecosystems in modifying OC still largely depend on where we draw our ecosystem boundaries, i.e., the spatial scale of measurements used to assess OC transformations. Here I review freshwater OC uptake rates derived from bioassay incubations, synoptic modeling, reach-scale experiments, and ecosystem OC spiraling estimates. Median OC uptake velocities from standard bioassay incubations (0.02 m/d) and synoptic modeling (0.04 m/d) are 1-2 orders of magnitude lower than reach-scale experimental DOC additions and ecosystem OC spiraling estimates (2.2 and 0.27 m/d, respectively) in streams and rivers. Together, ecosystem metabolism and OC fluxes can be used to estimate the distance OC travels before being consumed and respired as CO2 through biological processes (i.e., OC spiraling), allowing for a more mechanistic understanding of the role of ecosystem processes and hydrologic fluxes in modifying downstream OC transport. Beyond the reach scale, data from stream network and stream-lake-river modeling simulations show how we may use linked sampling sites within networks to better understand the integrated sources and fate of OC in freshwaters. We currently underestimate the role of upstream processes in contributing to downstream fluxes: moving from single-ecosystem comparisons to linked-ecosystem simulations increases the contribution of in situ OC processing to CO2 emissions from 30% to >40%. Insights from literature reviews, ecosystem process measurements, and model simulations provide a framework for future considerations of integrated C transport, transformations, and fate when scaling patterns and processes in inland waters.
Mullen, Lindy B; Arthur Woods, H; Schwartz, Michael K; Sepulveda, Adam J; Lowe, Winsor H
2010-03-01
The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and Montana, USA. We used microsatellite data to test population structure models by (i) examining hierarchical partitioning of genetic variation in stream networks; and (ii) testing for genetic isolation by distance along stream corridors vs. overland pathways. Replicated sampling of streams within catchments within three river basins revealed that hierarchical scale had strong effects on genetic structure and gene flow. amova identified significant structure at all hierarchical scales (among streams, among catchments, among basins), but divergence among catchments had the greatest structural influence. Isolation by distance was detected within catchments, and in-stream distance was a strong predictor of genetic divergence. Patterns of genetic divergence suggest that differentiation among streams within catchments was driven by limited migration, consistent with a stream hierarchy model of population structure. However, there was no evidence of migration among catchments within basins, or among basins, indicating that gene flow only counters the effects of genetic drift at smaller scales (within rather than among catchments). These results show the strong influence of stream networks on population structure and genetic divergence of a salamander, with contrasting effects at different hierarchical scales.
Lam, C K; Zhang, Y; Busch, M A; Busch, K W
1993-06-01
A new sample introduction system for the analysis of continuously flowing liquid streams by flame infrared-emission (FIRE) spectrometry has been developed. The system uses a specially designed purge cell to strip dissolved CO(2) from solution into a hydrogen gas stream that serves as the fuel for a hydrogen/air flame. Vibrationally excited CO(2) molecules present in the flame are monitored with a simple infrared filter (4.4 mum) photometer. The new system can be used to introduce analytes as a continuous liquid stream (process analysis mode) or on a discrete basis by sample injection (flow injection analysis mode). The key to the success of the method is the new purge-cell design. The small internal volume of the cell minimizes problems associated with purge-cell clean-out and produces sharp, reproducible signals. Spent analytical solution is continuously drained from the cell, making cell disconnection and cleaning between samples unnecessary. Under the conditions employed in this study, samples could be analyzed at a maximum rate of approximately 60/h. The new sample introduction system was successfully tested in both a process analysis- and a flow injection analysis mode for the determination of total inorganic carbon in Waco tap water. For the first time, flame infrared-emission spectrometry was successfully extended to non-volatile organic compounds by using chemical pretreatment with peroxydisulfate in the presence of silver ion to convert the analytes into dissolved carbon dioxide, prior to purging and detection by the FIRE radiometer. A test of the peroxydisulfate/Ag(+) reaction using six organic acids and five sugars indicated that all 11 compounds were oxidized to nearly the same extent. Finally, the new sample introduction system was used in conjunction with a simple filter FIRE radiometer as a detection system in ion-exchange high-performance liquid chromatography. Ion-exchange chromatograms are shown for two aqueous mixtures, one containing six organic acids and the second containing six mono-, di-, and trisaccharides.
Nicholls, Colin I.
1992-07-14
An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.
Can we estimate biogeochemical uptake rates in sediments from reach-scale data or vice versa?
NASA Astrophysics Data System (ADS)
Gonzalez-Pinzon, R.; Garayburu-Caruso, V. A.
2017-12-01
Hydrologists and stream ecologists want to understand how reactive transport processes from sub-meter to reach scales aggregate to determine nutrient and carbon export across watersheds. Mesocosm (sub-meter) scale experiments offer the advantage of being tractable and affordable but may be spatially and temporally irrelevant for describing watershed-scale processes. While reach scale experiments sample larger heterogeneities, they provide aggregated information that does not allow for easy detection of hot-spots and hot-moments, and might still be irrelevant for describing watershed processes if they are not conducted under varying flow conditions. We conducted mesocosm (column) and reach-scale experiments along a first-to-eight stream order continuum using nutrient and resazurin tracers to investigate how information collected at the sub-meter scale (mesocosom experiments) compares to that collected at the reach scale, and vice versa. Our work highlights the difficulty of finding useful patterns not only across stream orders (i.e., for the same type of experiment) but also across experiments. Our results offer quantitative perspective on why hydrologists and stream ecologists must depart from the status quo of conducting solute-specific (e.g., only N), site-specific (primarily headwaters) and single-season (mainly summer) experiments to understand controls on nutrient retention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T.; Jones, H.; Wong, K.
The Marshall Islands Environmental Characterization and Dose Assessment Program has recently implemented waste minimization measures to reduce low level radioactive (LLW) and low level mixed (LLWMIXED) waste streams at the Lawrence Livermore National Laboratory (LLNL). Several thousand environmental samples are collected annually from former US nuclear test sites in the Marshall Islands, and returned to LLNL for processing and radiometric analysis. In the past, we analyzed coconut milk directly by gamma-spectrometry after adding formaldehyde (as preservative) and sealing the fluid in metal cans. This procedure was not only tedious and time consuming but generated storage and waste disposal problems. Wemore » have now reduced the number of coconut milk samples required for analysis from 1500 per year to approximately 250, and developed a new analytical procedure which essentially eliminates the associated mixed radioactive waste stream. Coconut milk samples are mixed with a few grams of ammonium-molydophosphate (AMP) which quantitatively scavenges the target radionuclide cesium 137 in an ion-exchange process. The AMP is then separated from the mixture and sealed in a plastic container. The bulk sample material can be disposed of as a non- radioactive non-hazardous waste, and the relatively small amount of AMP conveniently counted by gamma-spectrometry, packaged and stored for future use.« less
Kolpin, Dana W.; Schenzel, Judith; Meyer, Michael T.; Phillips, Patrick J.; Hubbard, Laura E.; Scott, Tia-Marie; Bucheli, Thomas D.
2014-01-01
To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown
Neville, H.M.; Dunham, J.B.; Peacock, M.M.
2006-01-01
Spatial and temporal landscape patterns have long been recognized to influence biological processes, but these processes often operate at scales that are difficult to study by conventional means. Inferences from genetic markers can overcome some of these limitations. We used a landscape genetics approach to test hypotheses concerning landscape processes influencing the demography of Lahontan cutthroat trout in a complex stream network in the Great Basin desert of the western US. Predictions were tested with population- and individual-based analyses of microsatellite DNA variation, reflecting patterns of dispersal, population stability, and local effective population sizes. Complementary genetic inferences suggested samples from migratory corridors housed a mixture of fish from tributaries, as predicted based on assumed migratory life histories in those habitats. Also as predicted, populations presumed to have greater proportions of migratory fish or from physically connected, large, or high quality habitats had higher genetic variability and reduced genetic differentiation from other populations. Populations thought to contain largely non-migratory individuals generally showed the opposite pattern, suggesting behavioral isolation. Estimated effective sizes were small, and we identified significant and severe genetic bottlenecks in several populations that were isolated, recently founded, or that inhabit streams that desiccate frequently. Overall, this work suggested that Lahontan cutthroat trout populations in stream networks are affected by a combination of landscape and metapopulation processes. Results also demonstrated that genetic patterns can reveal unexpected processes, even within a system that is well studied from a conventional ecological perspective. ?? Springer 2006.
Recovery and Determination of Adsorbed Technetium on Savannah River Site Charcoal Stack Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahoda, Kristy G.; Engelmann, Mark D.; Farmer, Orville T.
2008-03-01
Experimental results are provided for the sample analyses for technetium (Tc) in charcoal samples placed in-line with a Savannah River Site (SRS) processing stack effluent stream as a part of an environmental surveillance program. The method for Tc removal from charcoal was based on that originally developed with high purity charcoal. Presented is the process that allowed for the quantitative analysis of 99Tc in SRS charcoal stack samples with and without 97Tc as a tracer. The results obtained with the method using the 97Tc tracer quantitatively confirm the results obtained with no tracer added. All samples contain 99Tc at themore » pg g-1 level.« less
Li, Jian [Marietta, GA; Chai, Xin Sheng [Atlanta, GA; Zhu, Junyoung [Marietta, GA
2008-06-24
The present invention is a rapid method of determining the concentration of the major components in a chemical stream. The present invention is also a simple, low cost, device of determining the in-situ concentration of the major components in a chemical stream. In particular, the present invention provides a useful method for simultaneously determining the concentrations of sodium hydroxide, sodium sulfide and sodium carbonate in aqueous kraft pulping liquors through use of an attenuated total reflectance (ATR) tunnel flow cell or optical probe capable of producing a ultraviolet absorbency spectrum over a wavelength of 190 to 300 nm. In addition, the present invention eliminates the need for manual sampling and dilution previously required to generate analyzable samples. The inventive method can be used in Kraft pulping operations to control white liquor causticizing efficiency, sulfate reduction efficiency in green liquor, oxidation efficiency for oxidized white liquor and the active and effective alkali charge to kraft pulping operations.
DNA Extraction by Isotachophoresis in a Microfluidic Channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, S J
Biological assays have many applications. For example, forensics personnel and medical professionals use these tests to diagnose diseases and track their progression or identify pathogens and the host response to them. One limitation of these tests, however, is that most of them target only one piece of the sample - such as bacterial DNA - and other components (e.g. host genomic DNA) get in the way, even though they may be useful for different tests. To address this problem, it would be useful to extract several different substances from a complex biological sample - such as blood - in anmore » inexpensive and efficient manner. This summer, I worked with Maxim Shusteff at Lawrence Livermore National Lab on the Rapid Automated Sample Prep project. The goal of the project is to solve the aforementioned problem by creating a system that uses a series of different extraction methods to extract cells, bacteria, and DNA from a complex biological sample. Biological assays can then be run on purified output samples. In this device, an operator could input a complex sample such as blood or saliva, and would receive separate outputs of cells, bacteria, viruses, and DNA. I had the opportunity to work this summer with isotachophoresis (ITP), a technique that can be used to extract nucleic acids from a sample. This technique is intended to be the last stage of the purification device. Isotachophoresis separates particles based on different electrophoretic mobilities. This technique is convenient for out application because free solution DNA mobility is approximately equal for DNA longer than 300 base pairs in length. The sample of interest - in our case DNA - is fed into the chip with streams of leading electrolyte (LE) and trailing electrolyte (TE). When an electric field is applied, the species migrate based on their electrophoretic mobilities. Because the ions in the leading electrolyte have a high electrophoretic mobility, they race ahead of the slower sample and trailing electrolyte ions. Conversely, the trailing electrolyte ions have a slow electrophoretic mobility, so they lag behind the sample, thus trapping the species of interest between the LE and TE streams. In a typical isotachophoresis configuration, the electric field is applied in a direction parallel to the direction of flow. The species then form bands that stretch across the width of the channel. A major limitation of that approach is that only a finite amount of sample can be processed at once, and the sample must be processed in batches. For our purposes, a form of free-flow isotachophoresis is more convenient, where the DNA forms a band parallel to the edges of the channel. To achieve this, in our chip, the electric field is applied transversely. This creates a force perpendicular to the direction of flow, which causes the different ions to migrate across the flow direction. Because the mobility of the DNA is between the mobility of the leading and the trailing electrolyte, the DNA is focused in a tight band near the center of the channel. The stream of DNA can then be directed to a different output to produce a highly concentrated outlet stream without batch processing. One hurdle that must be overcome for successful ITP is isolating the electrochemical reactions that result from the application of high voltage for the actual process of isotachophoresis. The electrochemical reactions that occur around metal electrodes produce bubbles and pH changes that are detrimental to successful ITP. The design of the chips we use incorporates polyacrylamide gels to serve as electrodes along the central channel. For our design, the metal electrodes are located away from the chip, and high conductivity buffer streams carry the potential to the chip, functioning as a 'liquid electrode.' The stream then runs alongside a gel barrier. The gel electrode permits ion transfer while simultaneously isolating the separation chamber from any contaminants in the outer, 'liquid electrode' streams. The difference in potential from one side of the chip to the other creates an electric field. This field traverses the inner, separation channel, containing the leading electrolyte, the trailing electrolyte, and the sample of interest (DNA). To increase the ease of use of the chips, a newer chip design has been fabricated. This design has wire electrodes integrated on the chip, rather than elsewhere. To keep the pH changes and bubbling isolated from the separation channel, the chip contains deeper wells near the electrodes so that the flowing buffer can wash away any gases that form around the electrode. This design is significantly more compact because it eliminates the cumbersome electrode boxes. Eliminating the electrode boxes also decreases the required voltage, making the experiments safer. This happens because when the 'liquid electrode' streams travel through small diameter tubing, they lose much of their voltage due to the electrical resistance of the fluid in the tubing.« less
Sampling of tar from sewage sludge gasification using solid phase adsorption.
Ortiz González, Isabel; Pérez Pastor, Rosa Ma; Sánchez Hervás, José Ma
2012-06-01
Sewage sludge is a residue from wastewater treatment plants which is considered to be harmful to the environment and all living organisms. Gasification technology is a potential source of renewable energy that converts the sewage sludge into gases that can be used to generate energy or as raw material in chemical synthesis processes. But tar produced during gasification is one of the problems for the implementation of the gasification technology. Tar can condense on pipes and filters and may cause blockage and corrosion in the engines and turbines. Consequently, to minimize tar content in syngas, the ability to quantify tar levels in process streams is essential. The aim of this work was to develop an accurate tar sampling and analysis methodology using solid phase adsorption (SPA) in order to apply it to tar sampling from sewage sludge gasification gases. Four types of commercial SPA cartridges have been tested to determine the most suitable one for the sampling of individual tar compounds in such streams. Afterwards, the capacity, breakthrough volume and sample stability of the Supelclean™ ENVI-Carb/NH(2), which is identified as the most suitable, have been determined. Basically, no significant influences from water, H(2)S or NH(3) were detected. The cartridge was used in sampling real samples, and comparable results were obtained with the present and traditional methods.
Temporal Variability of Microplastic Concentrations in Freshwater Streams
NASA Astrophysics Data System (ADS)
Watkins, L.; Walter, M. T.
2016-12-01
Plastic pollution, specifically the size fraction less than 5mm known as microplastics, is an emerging contaminant in waterways worldwide. The ability of microplastics to adsorb and transport contaminants and microbes, as well as be ingested by organisms, makes them a concern in both freshwater and marine ecosystems. Recent efforts to determine the extent of microplastic pollution are increasingly focused on freshwater systems, but most studies have reported concentrations at a single time-point; few have begun to uncover how plastic concentrations in riverine systems may change through time. We hypothesize the time of day and season of sampling influences the concentrations of microplastics in water samples and more specifically, that daytime stormflow samples contain the highest microplastic concentrations due to maximized runoff and wastewater discharge. In order to test this hypothesis, we sampled in two similar streams in Ithaca, New York using a 333µm mesh net deployed within the thalweg. Repeat samples were collected to identify diurnal patterns as well as monthly variation. Samples were processed in the laboratory following the NOAA wet peroxide oxidation protocol. This work improves our ability to interpret existing single-time-point survey results by providing information on how microplastic concentrations change over time and whether concentrations in existing stream studies are likely representative of their location. Additionally, these results will inform future studies by providing insight into representative sample timing and capturing temporal trends for the purposes of modeling and of developing regulations for microplastic pollution.
NASA Astrophysics Data System (ADS)
Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye
2018-04-01
Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models. However, the NSE values were lower than those of the hydroclimatological model, indicating that more model verification needs to be done. The equilibrium temperature model uses existing SWAT meteorological data as input, can be calibrated using fewer parameters and less effort and has an overall better performance in stream temperature simulation. Thus, it can be used as an effective tool for predicting the changes in stream temperature regimes under varying hydrological and meteorological conditions. In addition, the impact of the stream temperature simulations on chemical reaction rates and concentrations was tested. The results indicate that the improved performance of the stream temperature simulation could significantly affect chemical reaction rates and the simulated concentrations, and the equilibrium temperature model could be a potential tool to model stream temperature in water quality simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigel, M.; Johnson, F.; Crawford, C.
2011-09-20
The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge canmore » be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the quenched glasses. However, the waste form failed to meet the vapor hydration test criteria listed in the WTP contract. In addition, the waste loading in the phosphate glasses were not as high as other candidate waste forms. Vitrification of HLW waste as borosilicate glass is a proven process; however the HLW and LAW streams at Hanford can vary significantly from waste currently being immobilized. The ccc glasses show lower release rates for B and Na than the quenched glasses and all glasses meet the acceptance criterion of < 4 g/L. Glass samples spiked with Re{sub 2}O{sub 7} also passed the PCT test. However, further vapor hydration testing must be performed since all the samples cracked and the test could not be performed. The waste loading of the iron phosphate and borosilicate glasses are approximately 20 and 25% respectively. The steam reforming process produced the predicted waste form for both the high and low aluminate waste streams. The predicted waste loadings for the monolithic samples is approximately 39%, which is higher than the glass waste forms; however, at the time of this report, no monolithic samples were made and therefore compliance with the PA cannot be determined. The waste loading in the geopolymer is approximately 40% but can vary with the sodium hydroxide content in the waste stream. Initial geopolymer mixes revealed compressive strengths that are greater than 500 psi for the low aluminate mixes and less than 500 psi for the high aluminate mixes. Further work testing needs to be performed to formulate a geopolymer waste form made using a high aluminate salt solution. A cementitious waste form has the advantage that the process is performed at ambient conditions and is a proven process currently in use for LAW disposal. The Saltstone/Cast Stone formulated using low and high aluminate salt solutions retained at least 97% of the Re that was added to the mix as a dopant. While this data is promising, additional leaching testing must be performed to show compliance with the PA. Compressive strength tests must also be performed on the Cast Stone monoliths to verify PA compliance. Based on testing performed for this report, the borosilicate glass and Cast Stone are the recommended waste forms for further testing. Both are proven technologies for radioactive waste disposal and the initial testing using simulated Hanford LAW waste shows compliance with the PA. Both are resistant to leaching and have greater than 25% waste loading.« less
Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.
2016-11-28
In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from groundwater. However, during periods of high streamflow, the hydraulic gradient between groundwater and the stream temporarily reversed, causing the stream to lose flow to groundwater.Concentrations of dissolved solids, selenium, and uranium in groundwater generally had greater spatial variability than surface water or hyporheic-zone samples, and constituent concentrations in groundwater generally were greater than in surface water. Constituent concentrations in the hyporheic zone typically were similar to or intermediate between concentrations in groundwater and surface water. Concentrations of dissolved solids, selenium, uranium, and other constituents in groundwater samples collected from wells located on the east side of the north monitoring well transect were substantially greater than for other groundwater, surface-water, and hyporheic-zone samples. With one exception, groundwater samples collected from wells on the east side of the north transect exhibited oxic to mixed (oxic-anoxic) conditions, whereas most other groundwater samples exhibited anoxic to suboxic conditions. Concentrations of dissolved solids, selenium, and uranium in surface water generally increased in a downstream direction along Fountain Creek from the north transect to the south transect and exhibited an inverse relation to streamflow with highest concentration occurring during periods of low streamflow and lowest concentrations occurring during periods of high streamflow.Groundwater loads of dissolved solids, selenium, and uranium to Fountain Creek were small because of the small amount of groundwater flowing to the stream under typical low-streamflow conditions. In-stream loads of dissolved solids, selenium, and uranium in Fountain Creek varied by date, primarily in relation to streamflow at each transect and were much larger than computed constituent loads from groundwater. In-stream loads generally decreased with decreases in streamflow and increased as streamflow increased. In-stream loads of dissolved solids and selenium increased between the north and middle transects but generally decreased between the middle and south transects. By contrast, uranium loads generally decreased between the north and middle transects but increased between the middle and south transects. In-stream load differences between transects appear primarily to be related to differences in streamflow. However, because groundwater typically flows to Fountain Creek under low-flow conditions, and groundwater has greater concentrations of dissolved solids, selenium, and uranium than surface water in Fountain Creek, increases in loads between transects likely are affected by inflow of groundwater to the stream, which can account for a substantial proportion of the in-stream load difference between transects. When loads decreased between transects, the primary cause likely was decreased streamflow as a result of losses to groundwater and flow through the hyporheic zone. However, localized groundwater inflow likely attenuated the magnitude by which the in-stream loads decreased.The combination of localized soluble geologic sources and oxic conditions likely is the primary reason for the occurrence of high concentrations of dissolved solids, selenium, and uranium in groundwater on the east side of the north monitoring well transect. To evaluate conditions potentially responsible for differences in water quality and redox conditions, physical characteristics such as depth to water, saturated thickness, screen depth below the water table, screen height above bedrock, and aquifer hydraulic conductivity were compared by using Wilcoxon rank-sum tests. Results indicated no significant difference between depth to water, screen height above bedrock, and hydraulic conductivity for groundwater samples collected from wells on the east side of the north transect and groundwater samples from all other wells. However, saturated thickness and screen depth below the water table both were significantly smaller for groundwater samples collected from wells on the east side of the north transect than for groundwater samples from other wells, indicating that these characteristics might be related to the elevated constituent concentrations found at that location. Similarly, saturated thickness and screen depth below the water table were significantly smaller for groundwater samples under oxic or mixed (oxic-anoxic) conditions than for those under anoxic to suboxic conditions.The greater constituent concentrations at wells on the east side of the north transect also could, in part, be related to groundwater discharge from an unnamed alluvial drainage located directly upgradient from that location. Although the quantity and quality of water discharging from the drainage is not known, the drainage appears to collect water from a residential area located upgradient to the east of the wells, and groundwater could become concentrated in nitrate and other dissolved constituents before flowing through the drainage. High levels of nitrate, whether from anthropogenic or natural geologic sources, could promote more soluble forms of selenium and other constituents by affecting the redox condition of groundwater. Whether oxic conditions at wells on the east side of the north transect are the result of physical characteristics or of groundwater inflow from the alluvial drainage, the oxic conditions appear to cause increased dissolution of minerals from the shallow shale bedrock at that location. Because ratios of hydrogen and oxygen isotopes indicate evaporation likely has not had a substantial effect on groundwater, constituent concentrations at that location likely are not the result of evapoconcentration.
A multigear protocol for sampling crayfish assemblages in Gulf of Mexico coastal streams
William R. Budnick; William E. Kelso; Susan B. Adams; Michael D. Kaller
2018-01-01
Identifying an effective protocol for sampling crayfish in streams that vary in habitat and physical/chemical characteristics has proven problematic. We evaluated an active, combined-gear (backpack electrofishing and dipnetting) sampling protocol in 20 Coastal Plain streams in Louisiana. Using generalized linear models and rarefaction curves, we evaluated environmental...
State-wide monitoring based on probability survey designs requires a spatially explicit representation of all streams and rivers of interest within a state, i.e., a sample frame. The sample frame should be the best available map representation of the resource. Many stream progr...
Lerch, R.N.; Blanchard, P.E.; Thurman, E.M.
1998-01-01
The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites)in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.The contribution of hydroxylated atrazine degradation products (HADPs) to the total atrazine load (i.e., atrazine plus stable metabolites) in streams needs to be determined in order to fully assess the impact of atrazine contamination on stream ecosystems and human health. The objectives of this study were (1) to determine the contribution of HADPs to the total atrazine load in streams of nine midwestern states and (2) to discuss the mechanisms controlling the concentrations of HADPs in streams. Stream samples were collected from 95 streams in northern Missouri at preplant and postplant of 1994 and 1995, and an additional 46 streams were sampled in eight midwestern states at postplant of 1995. Samples were analyzed for atrazine, deethylatrazine (DEA), deisopropylatrazine (DIA), and three HADPs. Overall, HADP prevalence (i.e., frequency of detection) ranged from 87 to 100% for hydroxyatrazine (HA), 0 to 58% for deethylhydroxyatrazine (DEHA), and 0% for deisopropylhydroxyatrazine (DIHA) with method detection limits of 0.04-0.10 ??g L-1. Atrazine metabolites accounted for nearly 60% of the atrazine load in northern Missouri streams at preplant, with HA the predominant metabolite present. Data presented in this study and a continuous monitoring study are used to support the hypothesis that a combination of desorption from stream sediments and dissolved-phase transport control HADP concentrations in streams.
Evaluation of USEPA method 1622 for detection of Cryptosporidium oocysts in stream waters
Simmons, O. D.; Sobsey, M.D.; Schaefer, F. W.; Francy, D.S.; Nally, R.A.; Heaney, C.D.
2001-01-01
To improve surveillance for Cryptosporidium oocysts in water, the US Environmental Protection Agency developed method 1622, which consists of filtration, concentration, immunomagnetic separation, fluorescent antibody and 4, 6-diamidino-2-phenylindole (DAPI) counter-staining, and microscopic evaluation. Two filters were compared for analysis of 11 stream water samples collected throughout the United States. Replicate 10-L stream water samples (unspiked and spiked with 100-250 oocysts) were tested to evaluate matrix effects. Oocyst recoveries from the stream water samples averaged 22% (standard deviation [SD] = ??17%) with a membrane disk and 12% (SD = ??6%) with a capsule filter. Oocyst recoveries from reagent water precision and recovery samples averaged 39% (SD = ??13%) with a membrane disk and 47% (SD = ??19%) with a capsule filter. These results demonstrate that Cryptosporidium oocysts can be recovered from stream waters using method 1622, but recoveries are lower than those from reagent-grade water. This research also evaluated concentrations of indicator bacteria in the stream water samples. Because few samples were oocyst-positive, relationships between detections of oocysts and concentrations of indicator organisms could not be determined.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Carney, Francis H [Idaho Falls, ID
2009-09-29
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.
Tarte, Stephen R.; Schmidt, A.R.; Sullivan, Daniel J.
1992-01-01
A floating sample-collection platform is described for stream sites where the vertical or horizontal distance between the stream-sampling point and a safe location for the sampler exceed the suction head of the sampler. The platform allows continuous water sampling over the entire storm-runoff hydrogrpah. The platform was developed for a site in southern Illinois.
Regional-scale, fully coupled modelling of stream aquifer interaction in a tropical catchment
NASA Astrophysics Data System (ADS)
Werner, Adrian D.; Gallagher, Mark R.; Weeks, Scott W.
2006-09-01
SummaryThe planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance.
Wilding, Bruce M; Turner, Terry D
2014-12-02
A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.
Low-latency high-rate GPS data streams from the EarthScope Plate Boundary Observatory
NASA Astrophysics Data System (ADS)
Anderson, G.; Borsa, A.; Jackson, M.; Stark, K.
2008-05-01
Real-time processing of high rate GPS data can give precise (e.g., 5-10 mm for data recorded once per second) recordings of rapid volcanic and seismic deformation. These time series now provide an emerging tool for seismic, volcanic, and tsunami geodesy and early warning applications. UNAVCO, as part of the EarthScope Plate Boundary Observatory project, has developed the UStream system to provide streaming GPS data from some PBO and other UNAVCO-operated GPS stations. UStream is based on the Ntrip standard, a widely used protocol for streaming GNSS data over the Internet. Remote GPS stations provide a stream of BINEX data at 1 sample/sec to an Ntrip server at UNAVCO's Boulder offices, while simultaneously recording data locally in the event of communications failure. Once in Boulder, the data fork into three output streams: BINEX files stored at UNAVCO and streams of data in BINEX and RTCM 2.3 format. These streams flow to an Ntrip broadcaster that distributes data to Ntrip clients, which can be anything from low-latency processing systems to external data archiving systems. Current development efforts are geared toward providing data in RTCM 3.x format. This system is now operating in a public beta test mode, with data available from over 55 PBO and Nucleus GPS stations across the western United States. Data latencies from stations operating on mobile telephone communications are under 1.1 seconds at 95% confidence, and data completeness is typically more than 95% barring transient communications disruptions. Data from the system are available under the terms of the draft UNAVCO streaming data usage policy. For further information, please visit http://rtgps.unavco.org or send e-mail to rtgps@unavco.org.
Ohlsson, Pelle; Petersson, Klara; Augustsson, Per; Laurell, Thomas
2018-06-14
Sepsis is a common and often deadly systemic response to an infection, usually caused by bacteria. The gold standard for finding the causing pathogen in a blood sample is blood culture, which may take hours to days. Shortening the time to diagnosis would significantly reduce mortality. To replace the time-consuming blood culture we are developing a method to directly separate bacteria from red and white blood cells to enable faster bacteria identification. The blood cells are moved from the sample flow into a parallel stream using acoustophoresis. Due to their smaller size, the bacteria are not affected by the acoustic field and therefore remain in the blood plasma flow and can be directed to a separate outlet. When optimizing for sample throughput, 1 ml of undiluted whole blood equivalent can be processed within 12.5 min, while maintaining the bacteria recovery at 90% and the blood cell removal above 99%. That makes this the fastest label-free microfluidic continuous flow method per channel to separate bacteria from blood with high bacteria recovery (>80%). The high throughput was achieved by matching the acoustic impedance of the parallel stream to that of the blood sample, to avoid that acoustic forces relocate the fluid streams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, S.; Bartoshesky, J.; Heimbuch, D.
1987-06-01
Contents include: data quality assurance and stream, precipitation, and meteorological data; Granny Finley Branch stream chemistry (routine sampling, storm-event chemistry, longitudinal sampling, groundwater chemistry).
Tripp, Richard B.; Curtin, Gary C.; Nokleberg, Warren J.; Huston, David L.; Hampton, James R.
1993-01-01
Exploratory geochemical sampling was done in 1979, 1980, and 1981. The collection of composite samples of stream sediment or glacial debris was emphasized the first 2 years; the last year was spent collecting mineralized stream pebbles, float, and outcrop samples. The stream-sediment and heavy- mineral-concentrate samples were collected at 795 sites on tributary streams having drainage basins ranging from 1 to 5 mi 2 in area. The glacial debris samples were collected at 116 sites on tributary glaciers also having drainage basins ranging from 1 to 5 mi2 in area. All of these samples were analyzed for 31 elements by six-step semiquantitative emission spectrography (Grimes and Marranzino, 1968). In addition, all samples were analyzed for zinc by an atomic absorption method (Ward and others, 1969). The spectrographic and chemical results are available in O'Leary and others (1982).
Anomalies in Trace Metal and Rare-Earth Loads below a Waste-Water Treatment Plant
NASA Astrophysics Data System (ADS)
Antweiler, R.; Writer, J. H.; Murphy, S.
2013-12-01
The changes in chemical loads were examined for 54 inorganic elements and compounds in a 5.4-km reach of Boulder Creek, Colorado downstream of a waste water treatment plant (WWTP) outfall. Elements were partitioned into three categories: those showing a decrease in loading downstream, those showing an increase, and those which were conservative, at least over the length of the study reach. Dissolved loads which declined - generally indicative of in-stream loss via precipitation or sorption - were typically rapid (occurring largely before the first sampling site, 2.3 km downstream); elements showing this behavior were Bi, Cr, Cs, Ga, Ge, Hg, Se and Sn. These results were as expected before the experiment was performed. However, a large group (28 elements, including all the rare-earth elements, REE, except Gd) exhibited dissolved load increases indicating in-stream gains. These gains may be due to particulate matter dissolving or disaggregating, or that desorption is occurring below the WWTP. As with the in-stream loss group, the processes tended to be rapid, typically occurring before the first sampling site. Whole-water samples collected concurrently also had a large group of elements which showed an increase in load downstream of the WWTP. Among these were most of the group which had increases in the dissolved load, including all the REE (except Gd). Because whole-water samples include both dissolved and suspended particulates within them, increases in loads cannot be accounted for by invoking desorption or disaggregation mechanisms; thus, the only source for these increases is from the bed load of the stream. Further, the difference between the whole-water and dissolved loads is a measure of the particulate load, and calculations show that not only did the dissolved and whole-water loads increase, but so did the particulate loads. This implies that at the time of sampling the bed sediment was supplying a significant contribution to the suspended load. In general, it seems untenable as a hypothesis to suppose that the stream bed material can permanently supply the source of the in-stream load increases of a large group of inorganic elements. We propose that the anomalous increase in loads was more a function of the time of sampling (both diurnally and seasonally) and that sampling at different times of day or different seasons during the year would give contradictory results to those seen here. If this is so, inorganic loading studies must include multiple sampling both over the course of a day and during different seasons and flow regimes.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA
2007-05-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.
2005-11-08
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2005-05-03
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2003-06-24
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Connected word recognition using a cascaded neuro-computational model
NASA Astrophysics Data System (ADS)
Hoya, Tetsuya; van Leeuwen, Cees
2016-10-01
We propose a novel framework for processing a continuous speech stream that contains a varying number of words, as well as non-speech periods. Speech samples are segmented into word-tokens and non-speech periods. An augmented version of an earlier-proposed, cascaded neuro-computational model is used for recognising individual words within the stream. Simulation studies using both a multi-speaker-dependent and speaker-independent digit string database show that the proposed method yields a recognition performance comparable to that obtained by a benchmark approach using hidden Markov models with embedded training.
Thermochemical Wastewater Valorization via Enhanced Microbial Toxicity Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckham, Gregg T; Thelhawadigedara, Lahiru Niroshan Jayakody; Johnson, Christopher W
Thermochemical (TC) biomass conversion processes such as pyrolysis and liquefaction generate considerable amounts of wastewater, which often contains highly toxic compounds that are incredibly challenging to convert via standard wastewater treatment approaches such as anaerobic digestion. These streams represent a cost for TC biorefineries, and a potential valorization opportunity, if effective conversion methods are developed. The primary challenge hindering microbial conversion of TC wastewater is toxicity. In this study, we employ a robust bacterium, Pseudomonas putida, with TC wastewater streams to demonstrate that aldehydes are the most inhibitory compounds in these streams. Proteomics, transcriptomics, and fluorescence-based immunoassays of P. putidamore » grown in a representative wastewater stream indicate that stress results from protein damage, which we hypothesize is a primary toxicity mechanism. Constitutive overexpression of the chaperone genes, groEL, groES, and clpB, in a genome-reduced P. putida strain improves the tolerance towards multiple TC wastewater samples up to 200-fold. Moreover, the concentration ranges of TC wastewater are industrially relevant for further bioprocess development for all wastewater streams examined here, representing different TC process configurations. Furthermore, we demonstrate proof-of-concept polyhydroxyalkanoate production from the usable carbon in an exemplary TC wastewater stream. Overall, this study demonstrates that protein quality control machinery and repair mechanisms can enable substantial gains in microbial tolerance to highly toxic substrates, including heterogeneous waste streams. When coupled to other metabolic engineering advances such as expanded substrate utilization and enhanced product accumulation, this study generally enables new strategies for biological conversion of highly-toxic, organic-rich wastewater via engineered aerobic monocultures or designer consortia.« less
Vermilyea, Andrew W; Nagorski, Sonia A; Lamborg, Carl H; Hood, Eran W; Scott, Durelle; Swarr, Gretchen J
2017-12-01
In this study, a stream from a glacially dominated watershed and one from a wetland, temperate forest dominated watershed in southeast Alaska were continuously monitored for turbidity and fluorescence from dissolved organic matter (FDOM) while grab samples for unfiltered (UTHg), particulate (PTHg), and filtered mercury (FTHg) where taken over three 4-day periods (May snowmelt, July glacial melt, and September rainy season) during 2010. Strong correlations were found between FDOM and UTHg concentrations in the wetland, temperate forest watershed (r 2 =0.81), while turbidity and UTHg were highly correlated in the glacially dominated watershed (r 2 =0.82). Both of these parameters (FDOM and turbidity) showed stronger correlations than concentration-discharge relationships for UTHg (r 2 =0.55 for glacial stream, r 2 =0.38 for wetland/forest stream), thus allowing for a more precise determination of temporal variability in UTHg concentrations and fluxes. The association of mercury with particles and dissolved organic matter (DOM) appears to depend on the watershed characteristics, such as physical weathering and biogeochemical processes regulating mercury transport. Thus employing watershed-specific proxies for UTHg (such as FDOM and turbidity) can be effective for quantifying mercury export from watersheds with variable landcover. The UTHg concentration in the forest/wetland stream was consistently higher than in the glacial stream, in which most of the mercury was associated with particles; however, due to the high specific discharge from the glacial stream during the melt season, the watershed area normalized flux of mercury from the glacial stream was 3-6 times greater than the wetland/forest stream for the three sampling campaigns. The annual specific flux for the glacial watershed was 19.9gUTHgkm -2 y -1 , which is higher than any non-mining impacted stream measured to date. This finding indicates that glacial watersheds of southeast Alaska may be important conduits of total mercury to the Gulf of Alaska. Copyright © 2017 Elsevier B.V. All rights reserved.
Kolpin, Dana W.; Hoerger, Corinne C.; Meyer, Michael T.; Wettstein, Felix E.; Hubbard, Laura E.; Bucheli, Thomas D.
2010-01-01
This study provides the first broad-scale investigation on the spatial and temporal occurrence of phytoestrogens and mycotoxins in streams in the United States. Fifteen stream sites across Iowa were sampled five times throughout the 2008 growing season to capture a range of climatic and crop-growth conditions. Basin size upstream from sampling sites ranged from 7 km2 to >836,000 km2 Atrazine (herbicide) also was measured in all samples as a frame-of-reference agriculturally derived contaminant. Target compounds were frequently detected in stream samples: atrazine (100%), formononetin (80%), equol (45%), deoxynivalenol (43%), daidzein (32%), biochanin A (23%), zearalenone (13%), and genistein (11%). The nearly ubiquitous detection of formononetin (isoflavone) suggests a widespread agricultural source, as one would expect with the intense row crop and livestock production present across Iowa. Conversely, the less spatially widespread detections of deoxynivalenol (mycotoxin) suggest a more variable source due to the required combination of proper host and proper temperature and moisture conditions necessary to promote Fusarium spp. infections. Although atrazine concentrations commonly exceeded 100 ng L-1 (42/75 measurements), only deoxynivalenol (6/56 measurements) had concentrations that occasionally exceeded this level. Temporal patterns in concentrations varied substantially between atrazine, formononetin, and deoxynivalenol, as one would expect for contaminants with different source inputs and processes of formation and degradation. The greatest phytoestrogen and mycotoxin concentrations were observed during spring snowmelt conditions. Phytoestrogens and mycotoxins were detected at all sampling sites regardless of basin size. The ecotoxicological effects from long-term, low-level exposures to phytoestrogens and mycotoxins or complex chemicals mixtures including these compounds that commonly take place in surface water are poorly understood and have yet to be systematically investigated in environmental studies.
Kolpin, D.W.; Hoerger, C.C.; Meyer, M.T.; Wettstein, F.E.; Hubbard, L.E.; Bucheli, T.D.
2010-01-01
This study provides the first broad-scale investigation on the spatial and temporal occurrence of phytoestrogens and mycotoxins in streams in the United States. Fifteen stream sites across Iowa were sampled five times throughout the 2008 growing season to capture a range of climatic and crop-growth conditions. Basin size upstream from sampling sites ranged from 7 km2 to >836,000 km2. Atrazine (herbicide) also was measured in all samples as a frame-ofreference agriculturally derived contaminant. Target compounds were frequently detected in stream samples: atrazine (100%), formononetin (80%), equol (45%), deoxynivalenol (43%), daidzein (32%), biochanin A (23%), zearalenone (13%), and genistein (11%). Th e nearly ubiquitous detection of formononetin (isoflavone) suggests a widespread agricultural source, as one would expect with the intense row crop and livestock production present across Iowa. Conversely, the less spatially widespread detections of deoxynivalenol (mycotoxin) suggest a more variable source due to the required combination of proper host and proper temperature and moisture conditions necessary to promote Fusarium spp. infections. Although atrazine concentrations commonly exceeded 100 ng L-1 (42/75 measurements), only deoxynivalenol (6/56 measurements) had concentrations that occasionally exceeded this level. Temporal patterns in concentrations varied substantially between atrazine, formononetin, and deoxynivalenol, as one would expect for contaminants with different source inputs and processes of formation and degradation. The greatest phytoestrogen and mycotoxin concentrations were observed during spring snowmelt conditions. Phytoestrogens and mycotoxins were detected at all sampling sites regardless of basin size. The ecotoxicological effects from long-term, low-level exposures to phytoestrogens and mycotoxins or complex chemicals mixtures including these compounds that commonly take place in surface water are poorly understood and have yet to be systematically investigated in environmental studies. Copyright ?? 2010 by the American Society of Agronomy.
Kimball, B.A.; Runkel, R.L.; Walton-Day, K.
2010-01-01
Historical mining has left complex problems in catchments throughout the world. Land managers are faced with making cost-effective plans to remediate mine influences. Remediation plans are facilitated by spatial mass-loading profiles that indicate the locations of metal mass-loading, seasonal changes, and the extent of biogeochemical processes. Field-scale experiments during both low- and high-flow conditions and time-series data over diel cycles illustrate how this can be accomplished. A low-flow experiment provided spatially detailed loading profiles to indicate where loading occurred. For example, SO42 - was principally derived from sources upstream from the study reach, but three principal locations also were important for SO42 - loading within the reach. During high-flow conditions, Lagrangian sampling provided data to interpret seasonal changes and indicated locations where snowmelt runoff flushed metals to the stream. Comparison of metal concentrations between the low- and high-flow experiments indicated substantial increases in metal loading at high flow, but little change in metal concentrations, showing that toxicity at the most downstream sampling site was not substantially greater during snowmelt runoff. During high-flow conditions, a detailed temporal sampling at fixed sites indicated that Zn concentration more than doubled during the diel cycle. Monitoring programs must account for diel variation to provide meaningful results. Mass-loading studies during different flow conditions and detailed time-series over diel cycles provide useful scientific support for stream management decisions.
Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marker, Terry L.; Felix, Larry G.; Linck, Martin B.
A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.
Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors
Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J
2014-10-14
A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.
Prioritized Contact Transport Stream
NASA Technical Reports Server (NTRS)
Hunt, Walter Lee, Jr. (Inventor)
2015-01-01
A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.
Wang, Huiyong; Johnson, Nicholas; Bernardy, Jeffrey; Hubert, Terry; Li, Weiming
2013-01-01
Pheromones guide adult sea lamprey (Petromyzon marinus) to suitable spawning streams and mates, and therefore, when quantified, can be used to assess population size and guide management. Here, we present an efficient sample preparation method where 100 mL of river water was spiked with deuterated pheromone as an internal standard and underwent rapid field-based SPE and elution in the field. The combination of field extraction with laboratory UPLC-MS/MS reduced the sample consumption from 1 to 0.1 L, decreased the sample process time from more than 1 h to 10 min, and increased the precision and accuracy. The sensitivity was improved more than one order of magnitude compared with the previous method. The influences of experimental conditions were assessed to optimize the separation and peak shapes. The analytical method has been validated by studies of stability, selectivity, precision, and linearity and by the determination of the limits of detection and quantification. The method was used to quantify pheromone concentration from five streams tributary to Lake Ontario and to estimate that the environmental half-life of 3kPZS is about 26 h.
Ulibarri, Roy M.; Bonar, Scott A.; Rees, Christopher B.; Amberg, Jon J.; Ladell, Bridget; Jackson, Craig
2017-01-01
Analysis of environmental DNA (eDNA) is an emerging technique used to detect aquatic species through water sampling and the extraction of biological material for amplification. Our study compared the efficacy of eDNA methodology to American Fisheries Society (AFS) standard snorkeling surveys with regard to detecting the presence of rare fish species. Knowing which method is more efficient at detecting target species will help managers to determine the best way to sample when both traditional sampling methods and eDNA sampling are available. Our study site included three Navajo Nation streams that contained Navajo Nation Genetic Subunit Bluehead Suckers Catostomus discobolus and Zuni Bluehead Suckers C. discobolus yarrowi. We first divided the entire wetted area of streams into consecutive 100-m reaches and then systematically selected 10 reaches/stream for snorkel and eDNA surveys. Surface water samples were taken in 10-m sections within each 100-m reach, while fish presence was noted via snorkeling in each 10-m section. Quantitative PCR was run on each individual water sample in quadruplicate to test for the presence or absence of the target species. With eDNA sampling techniques, we were able to positively detect both species in two out of the three streams. Snorkeling resulted in positive detection of both species in all three streams. In streams where the target species were detected with eDNA sampling, snorkeling detected fish at 11–29 sites/stream, whereas eDNA detected fish at 3–12 sites/stream. Our results suggest that AFS standard snorkeling is more effective than eDNA for detecting target fish species. To improve our eDNA procedures, the amount of water collected and tested should be increased. Additionally, filtering water on-site may improve eDNA techniques for detecting fish. Future research should focus on standardization of eDNA sampling to provide a widely operational sampling tool.
Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai
2014-01-01
We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems.
Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai
2014-01-01
We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems. PMID:25264627
Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry
Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer
2009-01-01
We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...
Benthic macroinvertebrates are sampled in streams and rivers as one of the assessment elements of the U.S. Environmental Protection Agency’s National Aquatic Resource Surveys. In a 2006 report, the recommendation was made that different yet comparable methods be evaluated for di...
NASA Astrophysics Data System (ADS)
Harvey, J. W.; Packman, A. I.
2010-12-01
Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation where hyporheic fluxes cannot be accurately estimated without considering multi-scale effects. Our modeling captures the dominance of small-scale features such as bedforms that drive the majority of hyporheic flow, but it also captures how hyporheic flow is substantially modified by relatively small changes in streamflow or groundwater flow. The additional field measurements add sensitivity and power to whole stream tracer additions by improving resolution of the relative importance of storage at different scales (e.g. bar-scale versus bedform-scale). This information is critical in identifying hot spots where important biogeochemical reactions occur. In summary, interpreting multi-scale interactions in streams requires models that are physically based and that incorporate non-linear process dynamics. Such models can take advantage of increasingly comprehensive field data to integrate transport processes across spatially variable flow and geomorphic conditions. The most useful field and modeling approaches will be those that are simple enough to be easily implemented by users from various disciplines but comprehensive enough to produce meaningful predictions for a wide range of flow and geomorphic scenarios. This capability is needed to support improved strategies for protecting stream ecological health in the face of accelerating land use and climate change.
Comparison of water-quality samples collected by siphon samplers and automatic samplers in Wisconsin
Graczyk, David J.; Robertson, Dale M.; Rose, William J.; Steur, Jeffrey J.
2000-01-01
In small streams, flow and water-quality concentrations often change quickly in response to meteorological events. Hydrologists, field technicians, or locally hired stream ob- servers involved in water-data collection are often unable to reach streams quickly enough to observe or measure these rapid changes. Therefore, in hydrologic studies designed to describe changes in water quality, a combination of manual and automated sampling methods have commonly been used manual methods when flow is relatively stable and automated methods when flow is rapidly changing. Auto- mated sampling, which makes use of equipment programmed to collect samples in response to changes in stage and flow of a stream, has been shown to be an effective method of sampling to describe the rapid changes in water quality (Graczyk and others, 1993). Because of the high cost of automated sampling, however, especially for studies examining a large number of sites, alternative methods have been considered for collecting samples during rapidly changing stream conditions. One such method employs the siphon sampler (fig. 1). also referred to as the "single-stage sampler." Siphon samplers are inexpensive to build (about $25- $50 per sampler), operate, and maintain, so they are cost effective to use at a large number of sites. Their ability to collect samples representing the average quality of water passing though the entire cross section of a stream, however, has not been fully demonstrated for many types of stream sites.
Marra, Kristen R.; Elwood Madden, Megan E; Soreghan, Gerilyn S.; Hall, Brenda L
2014-01-01
BET surface area values are critical for quantifying the amount of potentially reactive sediments available for chemical weathering and ultimately, prediction of silicate weathering fluxes. BET surface area values of fine-grained (<62.5 μm) sediment from the hyporheic zone of polar glacial streams in the McMurdo Dry Valleys, Antarctica (Wright and Taylor Valleys) exhibit a wide range (2.5–70.6 m2/g) of surface area values. Samples from one (Delta Stream, Taylor Valley) of the four sampled stream transects exhibit high values (up to 70.6 m2/g), which greatly exceed surface area values from three temperate proglacial streams (0.3–12.1 m2/g). Only Clark stream in Wright Valley exhibits a robust trend with distance, wherein surface area systematically decreases (and particle size increases) in the mud fraction downstream, interpreted to reflect rapid dissolution processes in the weathering environment. The remaining transects exhibit a range in variability in surface area distributions along the length of the channel, likely related to variations in eolian input to exposed channel beds, adjacent snow drifts, and to glacier surfaces, where dust is trapped and subsequently liberated during summer melting. Additionally, variations in stream discharge rate, which mobilizes sediment in pulses and influences water:rock ratios, the origin and nature of the underlying drift material, and the contribution of organic acids may play significant roles in the production and mobilization of high-surface area sediment. This study highlights the presence of sediments with high surface area in cold-based glacier systems, which influences models of chemical denudation rates and the impact of glacial systems on the global carbon cycle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent reduction may be measured as total epoxide, total organic HAP, or as TOC minus methane and ethane... TOC (minus methane and ethane) concentrations in all process vent streams and primary and secondary... million by volume total epoxide or TOC limit in § 63.1425(b)(1)(ii) or (b)(2)(iii), the sampling site...
Ford, Morgan A.; Zuellig, Robert E.; Walters, David M.; Bruce, James F.
2016-08-11
This report provides a table of site descriptions, sample information, and semiquantitative aquatic macroinvertebrate data from 105 samples collected between 2005 and 2007 from 7 stream sites within the Sand Creek and Medano Creek watersheds in Great Sand Dunes National Park and Preserve, Saguache County, Colorado. Additionally, a short description of sample collection methods and laboratory sample processing procedures is presented. These data were collected in anticipation of assessing the potential effects of fish toxicants on macroinvertebrates.
Loper, Connie A.; Crawford, J. Kent; Otto, Kim L.; Manning, Rhonda L.; Meyer, Michael T.; Furlong, Edward T.
2007-01-01
This report presents environmental and quality-control data from analyses of 15 pharmaceutical and 31 antibiotic compounds in water samples from streams and wells in south-central Pennsylvania. The analyses are part of a study by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Environmental Protection (PADEP) to define concentrations of selected emerging contaminants in streams and well water in Pennsylvania. Sampling was conducted at 11 stream sites and at 6 wells in 9 counties of south-central Pennsylvania. Five of the streams received municipal wastewater and 6 of the streams received runoff from agricultural areas dominated by animal-feeding operations. For all 11 streams, samples were collected at locations upstream and downstream of the municipal effluents or animal-feeding operations. All six wells were in agricultural settings. A total of 120 environmental samples and 21 quality-control samples were analyzed for the study. Samples were collected at each site in March/April, May, July, and September 2006 to obtain information on changes in concentration that could be related to seasonal use of compounds.For streams, 13 pharmaceuticals and 11 antibiotics were detected at least 1 time. Detections included analytical results that were estimated or above the minimum reporting limits. Seventy-eight percent of all detections were analyzed in samples collected downstream from municipal-wastewater effluents. For streams receiving wastewater effluents, the pharmaceuticals caffeine and para-xanthine (a degradation product of caffeine) had the greatest concentrations, 4.75 μg/L (micrograms per liter) and 0.853 μg/L, respectively. Other pharmaceuticals and their respective maximum concentrations were carbamazepine (0.516 μg/L) and ibuprofen (0.277 μg/L). For streams receiving wastewater effluents, the antibiotic azithromycin had the greatest concentration (1.65 μg/L), followed by sulfamethoxazole (1.34 μg/L), ofloxacin (0.329 μg/L), and trimethoprim (0.256 μg/L).For streams receiving runoff from animal-feeding operations, the only pharmaceuticals detected were acetaminophen, caffeine, cotinine, diphenhydramine, and carbamazepine. The maximum concentration for pharmaceuticals was 0.053 μg/L. Three streams receiving runoff from animal-feeding operations had detections of one or more antibiotic compound--oxytetracycline, sulfadimethoxine, sulfamethoxazole, and tylosin. The maximum concentration for antibiotics was 0.157 μg/L. The average number of compounds (pharmaceuticals and antibiotics) detected in sites downstream from animal-feeding operations was three. The average number of compounds detected downstream from municipal-wastewater effluents was 13.For wells used to supply livestock, four compounds were detected--two pharmaceuticals (cotinine and diphenhydramine) and two antibiotics (tylosin and sulfamethoxazole). There were five detections in all the well samples. The maximum concentration detected in well water was for cotinine, estimated to be 0.024 μg/L.Seasonal occurrence of pharmaceutical and antibiotic compounds in stream water varied by compound and site type. At four stream sites, the same compounds were detected in all four seasonal samples. At other sites, pharmaceutical or antibiotic compounds were detected only one time in seasonal samples. Winter samples collected in streams receiving municipalwastewater effluent had the greatest number of compounds detected (21). Research analytical methods were used to determine concentrations for pharmaceuticals and antibiotics. To assist in evaluating the quality of the analyses, detailed information is presented on laboratory methodology and results from qualitycontrol samples. Quality-control data include results for nine blanks, nine duplicate environmental sample pairs, and three laboratory-spiked environmental samples as well as the recoveries of compounds in laboratory surrogates and laboratory reagent spikes.
NASA Astrophysics Data System (ADS)
Saeed, O.; Duru, L.; Yulin, D.
2018-05-01
A proposed microfluidic design has been fabricated and simulated using COMSOL Multiphysics software, based on two physical models included in this design. The device’s ability to create a narrow stream of the core sample by controlling the sheath flow rates Qs1 and Qs2 in both peripheral channels was investigated. The main target of this paper is to study the possibility of combing the hydrodynamic and magnetic techniques, in order to achieve a high rate of cancer cells separation from a cell mixture and/or buffer sample. The study has been conducted in two stages, firstly, the effects of the sheath flow rates (Qs1 and Qs2) on the sample stream focusing were studied, to find the proposed device effectiveness optimal conditions and its capability in cell focusing, and then the magnetic mechanism has been utilized to finalize the pre-labelled cells separation process.
NASA Astrophysics Data System (ADS)
Antonelli, Marta; Narayanan Balasubramanian, Mukundh; Ogorzaly, Leslie; Pfister, Laurent
2016-04-01
Albeit recent technological developments (e.g. field deployable instruments operating at high temporal frequencies), experimental hydrology is a discipline that remains measurement limited. From this perspective, trans-disciplinary approaches may create valuable opportunities to enlarge the amount of tools available for investigating hydrological processes. Bacteriophages have been widely used in hydrology as biological tracer for investigating colloid transport and contamination of ground water systems. However, there are only a few studies focusing on the employability of bacteriophages as surface water tracers (i.e. phage transport, system functioning). Here, we present a proof-of-concept study carried out in the Huewelerbach catchment in Luxembourg in December 2015. The aim of this study was to investigate how viral particles can be used to detect hydrological connectivity between the riparian zone/river bank and the stream during rainfall events. Moreover, this study is one of the first attempts for applying the qPCR (quantitative polymerase chain reaction) technique for the quantification of bacteriophages in stream water samples to investigate hydrological processes. This technique is very sensitive and has a large dynamic range - enhancing ease and speed of phage detection. We used two different male-specific coliphages (GA phage, genogroup II and SP phage, genogroup IV). Two litres of GA phage were injected directly in the stream as a slug injection and two litres of SP phage were poured next to the river bank (alluvial deposition) close to the injection point. We also added NaCl (200 g) to both phage suspensions. We collected stream water samples 100 m and 500 m downstream (i.e. catchment outlet) of the injection point for one week. Phages were concentrated through ultracentrifugation of 100 ml of water sample followed by quantification via qPCR. Conductivity in stream water was monitored for the entire duration of the experiment. Discharge was monitored both immediately upstream of the injection point and at the catchment outlet. Preliminary results show that at the catchment outlet, the GA-phage injected in stream displayed almost complete mass recovery (~93 %), in contrast to the partial recovery (~12%) of the SP phage that was introduced on the river bank. Additionally, the amount of GA phages detected 100 m downstream of the injection point evolved back to its background level after six days. We could not observe a similar evolution for the SP phage. At the outlet, the amount of both phages did not return to background levels after six days. This can be due to a combined action of the occurrence of preferential flowpaths and the behaviour of colloids. During the monitored rain event we observed a dilution effect on both phages and a slight increase of the quantity of SP phage right after the peak of discharge. This finding suggests a release of viral particles from the river bank. Overall, we have demonstrated with this proof-of-concept study the value of phages as eco-hydrological tracer.
Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006
Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.
2008-01-01
Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily-mean loads were computed at the two Waiakea Stream sampling sites for the analyzed constituents, during the period October 1, 2003 to September 30, 2005. No record of daily-mean load was computed for the Alenaio Stream sampling site due to the problems with computing a discharge record. The maximum daily-mean loads for the upper site on Waiakea Stream for suspended sediment was 79 tons per day, and the maximum daily-mean loads for total nitrogen, dissolved nitrite plus nitrate, and total phosphorus were 1,350, 13, and 300 pounds per day, respectively. The maximum daily-mean loads for the lower site on Waiakea Stream for suspended sediment was 468 tons per day, and the maximum daily-mean loads for total nitrogen, nitrite plus nitrate, and total phosphorus were 913, 8.5, and 176 pounds per day, respectively. From the estimated continuous daily-mean load record, all of the maximum daily-mean loads occurred during October 2003 and September 2004, except for suspended sediment load for the lower site, which occurred on September 15, 2005. Maximum values were not all caused by a single storm event. Overall, the record of daily-mean loads showed lower loads during storm events for suspended sediments and nutrients at the downstream site of Waiakea Stream during 2004 than at the upstream site. During 2005, however, the suspended sediment loads were higher at the downstream site than the upstream site. Construction of a flood control channel between the two sites in 2005 may have contributed to the change in relative suspended-sediment loads.
NASA Astrophysics Data System (ADS)
Ohte, N.; Sebestyen, S. D.; Doctor, D. H.; Wankel, S. D.; Shanley, J. B.; Kendall, C.; Boyer, E. W.
2003-12-01
To quantify the contributions of atmospheric nitrogen deposition and mechanisms of nitrate discharge to stream, nitrogen chemistry and isotopes (δ 15N and δ 18O of NO3-) of streamwater were studied as part of an ongoing study of nutrient dynamics at the Sleepers River Research Watershed in Vermont, USA. We employed novel analytical procedures for high throughput of NO3- isotopic measurements. The denitrifier method for measurement of δ 15N and δ 18O of NO3- requires a smaller volume of water samples than previously applied methods, thus it enables fine resolution analysis of isotopes for stream, well, and soil water samples. Samples were collected throughout the spring 2003 snowmelt. Snowmelt runoff was initiated in the middle of March and peaked at the end of the month. Then, the runoff rate decreased gradually through April and May, and responded to several storm events. The highest concentration of NO3- in the stream was observed at the beginning of snowmelt (the end of March), and thereafter it declined continuously. The temporal course of NO3- discharge process during snowmelt period was divided into four phases based on changes in the relationship between runoff rate and NO3- concentration. During the earliest phase (very low runoff rate and highest NO3- concentration) isotope signatures, especially δ 18O of NO3-, indicated higher contribution of the atmospherically derived NO3-, meaning that the direct discharge from snow pack was the dominant source of NO3- to the stream. This also suggested that streamwater consisted only of a small volume of groundwater discharge and melt water of the in-stream snow pack and/or stream-covering snow pack. The δ 15N and δ 18O isotope compositions of NO3- during the middle phase of snowmelt indicated that the contribution of the NO3- generated by nitrifiers in soil increased gradually accompanied with increase of groundwater level. These detailed descriptions in the changes of NO3- discharge during snowmelt events were enabled by the dual-isotope analysis of NO3-. The fine resolution isotope analysis of NO3- in our experiment can provide advantages for elucidating the discharge mechanisms of nitrogen in forested watersheds with high atmospheric nitrogen depositions.
Carlisle, D.M.; Clements, W.H.
2003-01-01
Secondary production estimates from several Rocky Mountain streams were used to test hypotheses about the effects of chronic metal contamination on insect populations and ecosystem processes. Quantitative samples of chemistry, habitat, and benthic insects were collected monthly during the ice-free period (May-November) from five 2nd- to 3rd-order streams that varied primarily in Zn contamination. Secondary production was estimated for the 19 dominant taxa using increment-summation, size-frequency, and P/B methods. Uncertainty was estimated by bootstrapping estimates of mean abundance, biomass, and cohort production intervals. Secondary production of metal-sensitive Heptageniidae (Rhithrogena robusta, Cinygmula spp., and Epeorus longimanus) was lower in lightly to moderately contaminated streams than in reference streams. Experiments were done to determine whether herbivore growth was influenced by food quality in contaminated streams. Growth estimates from field and microcosm experiments revealed that low mayfly production in contaminated streams was caused mostly by reduced population abundances. Production of predatory stoneflies was also lower in contaminated streams than reference streams. Estimates of the trophic basis of production revealed that, although the relative contribution to community production from various food sources was similar among streams, total production attributable to algae and animal prey declined in contaminated streams. Much of the reduction in herbivory in contaminated streams was the result of lower production of heptageniids, especially R. robusta. Assemblage and taxon-specific estimates of secondary production were sensitive to variation in metal contamination and indicated that relatively low metal concentrations may have ecosystem-wide consequences for energy flow.
Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.
2018-01-01
Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most complex pesticide mixtures yet reported in discrete water samples in the U.S. and, using multiple lines of evidence, predicts that pesticides were potentially toxic to nontarget aquatic life in about half of the sampled streams.
Feature integration and object representations along the dorsal stream visual hierarchy
Perry, Carolyn Jeane; Fallah, Mazyar
2014-01-01
The visual system is split into two processing streams: a ventral stream that receives color and form information and a dorsal stream that receives motion information. Each stream processes that information hierarchically, with each stage building upon the previous. In the ventral stream this leads to the formation of object representations that ultimately allow for object recognition regardless of changes in the surrounding environment. In the dorsal stream, this hierarchical processing has classically been thought to lead to the computation of complex motion in three dimensions. However, there is evidence to suggest that there is integration of both dorsal and ventral stream information into motion computation processes, giving rise to intermediate object representations, which facilitate object selection and decision making mechanisms in the dorsal stream. First we review the hierarchical processing of motion along the dorsal stream and the building up of object representations along the ventral stream. Then we discuss recent work on the integration of ventral and dorsal stream features that lead to intermediate object representations in the dorsal stream. Finally we propose a framework describing how and at what stage different features are integrated into dorsal visual stream object representations. Determining the integration of features along the dorsal stream is necessary to understand not only how the dorsal stream builds up an object representation but also which computations are performed on object representations instead of local features. PMID:25140147
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1997-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.
Pérez-Páez, Rocío; Catalá-Civera, José Manuel; García-Baños, Beatriz; Castillo, Edgar F; Bastos, Johanna M; Zambrano, Luz S
2008-01-01
The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.
Hyer, Kenneth
2007-01-01
Although fecal contamination of streams is a problem of national scope, few investigations have been directed at relatively pristine streams in forested basins in national parks. With approximately 1.8 million visitors annually, Shenandoah National Park in Virginia is subject to extensive recreational use. The effects of these visitors and their recreational activities on fecal indicator bacteria levels in the streams are poorly understood and of concern for Shenandoah National Park managers. During 2005 and 2006, streams and springs in Shenandoah National Park were sampled for Escherichia coli (E. coli) concentrations. The first study objective was to evaluate the effects of recreational activities on E. coli concentrations in selected streams. Of the 20 streams that were selected, 14 were in basins with extensive recreational activity, and 6 were in control basins where minimal recreational activities occurred. Water-quality sampling was conducted during low-flow conditions during the relatively warm months, as this is when outdoor recreation and bacterial survivorship are greatest. Although most sampling was conducted during low-flow conditions, approximately three stormflow samples were collected from each stream. The second study objective was to evaluate E. coli levels in backcountry drinking-water supplies throughout Shenandoah National Park. Nineteen drinking-water supplies (springs and streams) were sampled two to six times each by Shenandoah National Park staff and analyzed by the U.S. Geological Survey for this purpose. The water-quality sampling results indicated relatively low E. coli concentrations during low-flow conditions, and no statistically significant increase in E. coli concentrations was observed in the recreational streams relative to the control streams. These results indicate that during low-flow conditions, recreational activities had no significant effect on E. coli concentrations. During stormflow conditions, E. coli concentrations increased by nearly a factor of 10 in both basin types, and the Virginia instantaneous water-quality standard for E. coli (235 colonies per 100 milliliters) frequently was exceeded. The sampling results from drinking-water supplies throughout Shenandoah National Park indicated relatively low E. coli concentrations in all springs that were sampled. Several of the streams that were sampled had slightly higher E. coli concentrations relative to the springs, but no E. coli concentrations exceeded the instantaneous water-quality standard. Although E. coli concentrations in all the drinking-water supplies were relatively low, Shenandoah National Park management continues to stress that all hikers must treat drinking water from all streams and springs prior to consumption. After determining that recreational activities in Shenandoah National Park did not have a statistically significant effect on low-flow E. coli concentrations, an additional concern was addressed regarding the quality of the water releases from the wastewater-treatment plants in the park. Sampling of three wastewater-treatment plant outfalls was conducted in 2006 to evaluate their effects on water quality. Samples were analyzed for E. coli and a collection of wastewater organic compounds that may be endocrine disruptors. Relatively elevated E. coli concentrations were observed in 2 of the 3 samples, and between 9 and 13 wastewater organic compounds were detected in the samples, including 3 known and 5 suspected endocrine-disrupting compounds.
Successional colonization of temporary streams: An experimental approach using aquatic insects
NASA Astrophysics Data System (ADS)
Godoy, Bruno Spacek; Queiroz, Luciano Lopes; Lodi, Sara; Nascimento de Jesus, Jhonathan Diego; Oliveira, Leandro Gonçalves
2016-11-01
The metacommunity concept studies the processes that structure communities on local and regional scales. This concept is useful to assess spatial variability. However, temporal patterns (e.g., ecological succession and colonization) are neglected in metacommunity studies, since such patterns require temporally extensive, and hard to execute studies. We used experimental habitats in temporary streams located within the Brazilian Cerrado to evaluate the importance of succession for the aquatic insect metacommunity. Five artificial habitats consisting of wrapped crushed rock were set transversally to the water flow in five streams. The habitats were sampled weekly to assess community composition, and replaced after sampling to identify new potential colonizers. We analyzed the accumulation of new colonizers after each week using a logistic model. We selected pairs of experimental habitats and estimated the Bray-Curtis dissimilarity index to assess the community composition trajectory during the experiment. We used the dissimilarity values in ANOVA tests, identifying the importance of time and space for the community. The number of new taxa stabilized in the third week, and we estimated a weekly increase of 1.61 new taxa in the community after stabilization. The overall pattern was a small change on community composition, but one stream had a higher weekly turnover. Our results showed a relevant influence of time in the initial communities of aquatic insects of temporary streams. However, we must observe the temporal pattern in a spatial context, once different streams have different successional history regarding number of taxa and community turnover. We highlight the importance of aerial dispersal and movement to seek oviposition sites as an important factor in determining colonization patterns.
NASA Astrophysics Data System (ADS)
Ng, G. H. C.; Yourd, A. R.; Myrbo, A.; Johnson, N.
2015-12-01
Significant uncertainty and variability in physical and biogeochemical processes at the groundwater-surface water interface complicate how surface water chemistry affects aquatic ecosystems. Questions surrounding a unique 10 mg/L sulfate standard for wild rice (Zizania sp.) waters in Minnesota are driving research to clarify conditions controlling the geochemistry of shallow sediment porewater in stream- and lake-beds. This issue raises the need and opportunity to carry out in-depth, process-based analysis into how water fluxes and coupled C, S, and Fe redox cycles interact to impact aquatic plants. Our study builds on a recent state-wide field campaign that showed that accumulation of porewater sulfide from sulfate reduction impairs wild rice, an annual grass that grows in shallow lakes and streams in the Great Lakes region of North America. Negative porewater sulfide correlations with organic C and Fe quantities also indicated that lower redox rates and greater mineral precipitation attenuate sulfide. Here, we focus on a stream in northern Minnesota that receives high sulfate loading from iron mining activity yet maintains wild rice stands. In addition to organic C and Fe effects, we evaluate the degree to which streambed hydrology, and in particular groundwater contributions, accounts for the active biogeochemistry. We collect field measurements, spanning the surrounding groundwater system to the stream, to constrain a reactive-transport model. Observations from seepage meters, temperature probes, and monitoring wells delineate upward flow that may lessen surface water impacts below the stream. Geochemical analyses of groundwater, porewater, and surface water samples and of sediment extractions reveal distinctions among the different domains and stream banks, which appear to jointly control conditions in the streambed. A model based on field conditions can be used to evaluate the relative the importance and the spatiotemporal scales of diverse flux and geochemical factors affecting aquatic root zones.
NASA Astrophysics Data System (ADS)
Shephard, Adam M.; Thomas, Benjamin R.; Coble, Jamie B.; Wood, Houston G.
2018-05-01
This paper presents a development related to the use of minor isotope safeguards techniques (MIST) and the MSTAR cascade model as it relates to the application of international nuclear safeguards at gas centrifuge enrichment plants (GCEPs). The product of this paper is a derivation of the universal and dimensionless MSTAR cascade model. The new model can be used to calculate the minor uranium isotope concentrations in GCEP product and tails streams or to analyze, visualize, and interpret GCEP process data as part of MIST. Applications of the new model include the detection of undeclared feed and withdrawal streams at GCEPs when used in conjunction with UF6 sampling and/or other isotopic measurement techniques.
Lance R. Williams; Melvin L. Warren; Susan B. Adams; Joseph L. Arvai; Christopher M. Taylor
2004-01-01
Basin Visual Estimation Techniques (BVET) are used to estimate abundance for fish populations in small streams. With BVET, independent samples are drawn from natural habitat units in the stream rather than sampling "representative reaches." This sampling protocol provides an alternative to traditional reach-level surveys, which are criticized for their lack...
Ward, Adam S.; Kelleher, Christa A.; Mason, Seth J. K.; Wagener, Thorsten; McIntyre, Neil; McGlynn, Brian L.; Runkel, Robert L.; Payn, Robert A.
2017-01-01
Researchers and practitioners alike often need to understand and characterize how water and solutes move through a stream in terms of the relative importance of in-stream and near-stream storage and transport processes. In-channel and subsurface storage processes are highly variable in space and time and difficult to measure. Storage estimates are commonly obtained using transient-storage models (TSMs) of the experimentally obtained solute-tracer test data. The TSM equations represent key transport and storage processes with a suite of numerical parameters. Parameter values are estimated via inverse modeling, in which parameter values are iteratively changed until model simulations closely match observed solute-tracer data. Several investigators have shown that TSM parameter estimates can be highly uncertain. When this is the case, parameter values cannot be used reliably to interpret stream-reach functioning. However, authors of most TSM studies do not evaluate or report parameter certainty. Here, we present a software tool linked to the One-dimensional Transport with Inflow and Storage (OTIS) model that enables researchers to conduct uncertainty analyses via Monte-Carlo parameter sampling and to visualize uncertainty and sensitivity results. We demonstrate application of our tool to 2 case studies and compare our results to output obtained from more traditional implementation of the OTIS model. We conclude by suggesting best practices for transient-storage modeling and recommend that future applications of TSMs include assessments of parameter certainty to support comparisons and more reliable interpretations of transport processes.
Urban contributions of glyphosate and its degradate AMPA to streams in the United States
Kolpin, D.W.; Thurman, E.M.; Lee, E.A.; Meyer, M.T.; Furlong, E.T.; Glassmeyer, S.T.
2006-01-01
Glyphosate is the most widely used herbicide in the world, being routinely applied to control weeds in both agricultural and urban settings. Microbial degradation of glyphosate produces aminomethyl phosphonic acid (AMPA). The high polarity and water-solubility of glyphosate and AMPA has, until recently, made their analysis in water samples problematic. Thus, compared to other herbicides (e.g. atrazine) there are relatively few studies on the environmental occurrence of glyphosate and AMPA. In 2002, treated effluent samples were collected from 10 wastewater treatment plants (WWTPs) to study the occurrence of glyphosate and AMPA. Stream samples were collected upstream and downstream of the 10 WWTPs. Two reference streams were also sampled. The results document the apparent contribution of WWTP effluent to stream concentrations of glyphosate and AMPA, with roughly a two-fold increase in their frequencies of detection between stream samples collected upstream and those collected downstream of the WWTPs. Thus, urban use of glyphosate contributes to glyphosate and AMPA concentrations in streams in the United States. Overall, AMPA was detected much more frequently (67.5%) compared to glyphosate (17.5%).
Booth, Robert W
2017-03-01
Attentional bias to threat is a much-studied feature of anxiety; it is typically assessed using response time (RT) tasks such as the dot probe. Findings regarding the time course of attentional bias have been inconsistent, possibly because RT tasks are sensitive to processes downstream of attention. Attentional bias was assessed using an accuracy-based task in which participants detected a single digit in two simultaneous rapid serial visual presentation (RSVP) streams of letters. Before the target, two coloured shapes were presented simultaneously, one in each RSVP stream; one shape had previously been associated with threat through Pavlovian fear conditioning. Attentional bias was indicated wherever participants identified targets in the threat's RSVP stream more accurately than targets in the other RSVP stream. In 87 unselected undergraduates, trait anxiety only predicted attentional bias when the target was presented immediately following the shapes, i.e. 160 ms later; by 320 ms the bias had disappeared. This suggests attentional bias in anxiety can be extremely brief and transitory. This initial study utilised an analogue sample, and was unable to physiologically verify the efficacy of the conditioning. The next steps will be to verify these results in a sample of diagnosed anxious patients, and to use alternative threat stimuli. The results of studies using response time to assess the time course of attentional bias may partially reflect later processes such as decision making and response preparation. This may limit the efficacy of therapies aiming to retrain attentional biases using response time tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bradshaw, J. K.; Molina, M.; Sidle, R. C.; Sullivan, K.; Oakley, B.; Berrang, M.; Meinersmann, R.
2013-12-01
Fecal indicator bacteria (FIB) and pathogens stored in the bed sediments of streams and rivers may be mobilized into the water column affecting overall water quality. Furthermore, land management may play an important role in the concentrations of FIB and the occurrence of pathogens in stream water and sediments. The purpose of this study was to determine the relationship between FIB and pathogens in stream water and sediment based on three land management-affected categories: agricultural, forest, and waters receiving treated municipal wastewater. Two synoptic sampling events were conducted under baseflow conditions (<0.64 cm of rain within 24h) between October-November, 2012 and May-June, 2013. Counts of the E. coli and E. faecalis and occurrences of the enteric pathogens Campylobacter and Listeria spp. were measured in stream water and sediment samples collected at 15 locations (six agricultural (AG); six forested (FORS); and three receiving discharge from water pollution control plants (WPCP)) in the S. Fork Broad River watershed located in northeast Georgia, USA. Mean E. coli and E. faecalis concentrations were highest in the AG stream water samples (3.08 log MPN 100 mL -1 for E. coli and 3.07 log CFU 100 mL -1 for E. faecalis ) and lowest in the FORS water samples for E. coli (2.37 log MPN 100 mL -1 ) and WPCP water samples for E. faecalis (2.53 log CFU 100 mL -1 ). E. coli concentrations (2.74 log MPN 100 mL -1 ) in the WPCP streams were intermediate. Similar to water samples, E. coli concentrations were highest in the AG sediments (4.31 log MPN g -1 ), intermediate in the WPCP sediments (4.06 log MPN g -1 ), and lowest in the FORS sediments (3.46 log MPN g -1 ). In contrast to E. coli, E. faecalis concentrations were lower (1.10 to 1.31 log CFU g -1 ) and relatively more constant than E. coli in sediments over the three land management categories. Campylobacter was detected in 27% of the water samples and 8% of the sediment samples. The highest occurrence of Campylobacter detection was in the AG streams (15% of the water samples; 5% of the sediment samples). Listeria was detected in 76% of the water samples and 65% of the sediment samples. The FORS and AG streams had the highest occurrence of Listeria in water and sediment (32% and 29% of the water samples, respectively; 24% and 29% of sediment samples, respectively) suggesting Listeria is fairly ubiquitous in these streams. Based on the high concentrations of E. faecalis in water and E. coli in water and sediment, and higher frequency of Campylobacter detection in the AG streams, this study indicates that E. coli and Campylobacter may occur in high concentrations in stream sediments in land management areas where fecal material is deposited directly by livestock into the stream or adjacent land in large doses.
Dating base flow in streams using dissolved gases and diurnal temperature changes
Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.
2015-01-01
A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.
Apparatus for focusing flowing gas streams
Nogar, N.S.; Keller, R.A.
1985-05-20
Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.
Williams, I.; Reeves, G.H.; Graziano, S.L.; Nielsen, J.L.
2007-01-01
Molecular genetic methods were used to quantify natural hybridization between rainbow trout Oncorhynchus mykiss or steelhead (anadromous rainbow trout) and coastal cutthroat trout O. clarkii clarkii collected in the Copper River delta, Southeast Alaska. Eleven locations were sampled to determine the extent of hybridization and the distribution of hybrids. Four diagnostic nuclear microsatellite loci and four species-specific simple sequence repeat markers were used in combination with restriction fragment length polymorphism analyses of NADH dehydrogenase 5/6 (ND5/6) mitochondrial DNA (mtDNA) to investigate the genetic structure of trout from both species and identify putative interspecific hybrids. Hybrids were found in 7 of the 11 streams sampled in the Copper River delta, the extent of hybridization across all streams varying from 0% to 58%. Hybrid trout distribution appeared to be nonrandom, most individuals of mixed taxonomic ancestry being detected in streams containing rainbow trout rather than in streams containing coastal cutthroat trout. Genotypic disequilibrium was observed among microsatellite loci in populations with high levels of hybridization. We found no significant correlation between unique stream channel process groups and the number of hybrid fish sampled. Eighty-eight percent of fish identified as first-generation hybrids (F1) in two populations contained coastal cutthroat trout mtDNA, suggesting directionality in hybridization. However, dominance of coastal cutthroat trout mtDNA was not observed at a third location containing F1 hybrids, indicating that interspecific mating behavior varied among locations. Backcrossed individuals were found in drainages lacking F1 hybrids and in populations previously thought to contain a single species. The extent and distribution of backcrossed individuals suggested that at least some hybrids are reproductively viable and backcrossed hybrid offspring move throughout the system.
Rmax: A systematic approach to evaluate instrument sort performance using center stream catch☆
Riddell, Andrew; Gardner, Rui; Perez-Gonzalez, Alexis; Lopes, Telma; Martinez, Lola
2015-01-01
Sorting performance can be evaluated with regard to Purity, Yield and/or Recovery of the sorted fraction. Purity is a check on the quality of the sample and the sort decisions made by the instrument. Recovery and Yield definitions vary with some authors regarding both as how efficient the instrument is at sorting the target particles from the original sample, others distinguishing Recovery from Yield, where the former is used to describe the accuracy of the instrument’s sort count. Yield and Recovery are often neglected, mostly due to difficulties in their measurement. Purity of the sort product is often cited alone but is not sufficient to evaluate sorting performance. All of these three performance metrics require re-sampling of the sorted fraction. But, unlike Purity, calculating Yield and/or Recovery calls for the absolute counting of particles in the sorted fraction, which may not be feasible, particularly when dealing with rare populations and precious samples. In addition, the counting process itself involves large errors. Here we describe a new metric for evaluating instrument sort Recovery, defined as the number of particles sorted relative to the number of original particles to be sorted. This calculation requires only measuring the ratios of target and non-target populations in the original pre-sort sample and in the waste stream or center stream catch (CSC), avoiding re-sampling the sorted fraction and absolute counting. We called this new metric Rmax, since it corresponds to the maximum expected Recovery for a particular set of instrument parameters. Rmax is ideal to evaluate and troubleshoot the optimum drop-charge delay of the sorter, or any instrument related failures that will affect sort performance. It can be used as a daily quality control check but can be particularly useful to assess instrument performance before single-cell sorting experiments. Because we do not perturb the sort fraction we can calculate Rmax during the sort process, being especially valuable to check instrument performance during rare population sorts. PMID:25747337
Land, Larry F.; Shipp, Allison A.
1996-01-01
Water samples collected from streams draining an agricultural area in the west-central part of the Trinity River Basin upstream from the Richland-Chambers Reservoir and from streams draining an urban area in the Dallas-Fort Worth metropolitan area during March 1993 - September 1995 were analyzed for nutrients (nitrogen and phosphorus compounds). A comparison of the data for agricultural and urban streams shows the maximum concentration of total nitrogen is from an urban stream and the maximum concentration of total phosphorus is from an agricultural stream. One-half of the samples have total nitrogen concentrations equal to or less than 1.1 and 1.0 milligrams per liter in the agricultural and urban streams, respectively; and one-half of the samples have total phosphorous concentrations equal to or less than 0.04 and 0.05 milligram per liter in the agricultural and urban streams, respectively. The highest concentrations of total nitrogen in both types of streams are in the spring. The minimum concentrations of total nitrogen are during the summer in the agricultural streams and during the winter in the urban streams. Concentrations of total phosphorus in agricultural streams show negligible seasonal variability. The highest concentrations of total phosphorus are in spring and possibly late summer in the urban streams. In the midrange of streamflow in the urban streams and throughout the range of streamflow in the agricultural streams, concentrations of total nitrogen increase. Concentrations of total phosphorus increase with streamflow in the middle and upper ranges of streamflow in both agricultural and urban streams.
Device for staged carbon monoxide oxidation
Vanderborgh, Nicholas E.; Nguyen, Trung V.; Guante, Jr., Joseph
1993-01-01
A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.
Reilly, Timothy J.; Smalling, Kelly L.; Wilson, Emma R.; Battaglin, William A.
2012-01-01
Water-quality samples were collected from April through December 2010 from four streams in Idaho and analyzed for a suite of pesticides, including fungicides, by the U.S. Geological Survey. Water samples were collected from two agricultural and two nonagricultural (control) streams approximately biweekly from the beginning of the growing season (April) through the end of the calendar year (December). Samples were analyzed for 90 pesticides using gas chromatography/mass spectrometry. Twenty-three pesticides, including 8 fungicides, 10 herbicides, 3 insecticides, and 2 pesticide degradates, were detected in 45 water samples. The most frequently detected compounds in the two agricultural streams and their detection frequencies were metolachlor, 96 percent; azoxystrobin, 79 percent; boscalid, 79 percent; atrazine, 46 percent; pendimethalin, 33 percent; and trifluralin, 33 percent. Dissolved-pesticide concentrations ranged from below instrumental limits of detection (0.5-1.0 nanograms per liter) to 771 nanograms per liter (hexazinone). The total number of pesticides detected in any given water sample ranged from 0 to 11. Only three pesticides (atrazine, fipronil, and simazine) were detected in samples from the control streams during the sampling period.
Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan
NASA Astrophysics Data System (ADS)
Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori
2015-04-01
Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.
NASA Astrophysics Data System (ADS)
Inamdar, S. P.; Singh, S.
2013-12-01
Understanding how dissolved organic matter (DOM) varies spatially in catchments and the processes and mechanisms that regulate this variation is critical for developing accurate and reliable models of DOM. We determined the concentrations and composition of DOM at multiple locations along a stream drainage network in a 79 ha forested, Piedmont, watershed in Maryland, USA. DOM concentrations and composition was compared for five stream locations during baseflow (drainage areas - 0.62, 3.5, 4.5, 12 and 79 ha) and three locations (3.5, 12, 79 ha) for storm flow. Sampling was conducted by manual grab samples and automated ISCO samplers. DOM composition was characterized using a suite of spectrofluorometric indices which included - HIX, a254, and FI. A site-specific PARAFAC model was also developed for DOM fluorescence to determine the humic-, fulvic-, and protein-like DOM constituents. Hydrologic flow paths during baseflow and stormflow were characterized for all stream locations using an end-member mixing model (EMMA). DOM varied notably across the sampled positions for baseflow and stormflow. During baseflow, mean DOC concentrations for the sampled locations ranged between 0.99-3.1 mg/L whereas for stormflow the range was 5.22-8.11 mg/L. Not surprisingly, DOM was more humic and aromatic during stormflow versus baseflow. The 3.5 ha stream drainage location that contained a large wetland yielded the highest DOC concentration as well as the most humic and aromatic DOM, during both, baseflow and stormflow. In contrast, a headwater stream location (0.62 ha) that received runoff from a groundwater seep registered the highest mean value for % protein-like DOM (30%) and the lowest index for aromaticity (mean a254 = 6.52) during baseflow. During stormflow, the mean % protein-like DOM was highest at the largest 79 ha drainage location (mean = 11.8%) and this site also registered the lowest mean value for a254 (46.3). Stream drainage locations that received a larger proportion of runoff along surficial flow paths produced a more aromatic and humic DOM with high DOC concentrations; whereas those with a greater proportion of groundwater contributions produced DOM with greater % of protein-like content. Overall, our observations suggest that occurrence of wetlands and the nature of hydrologic flow paths were the key determinants for the spatial pattern of DOM.
Antunes, I M H R; Gomes, M E P; Neiva, A M R; Carvalho, P C S; Santos, A C T
2016-11-01
The mining complex of Murçós belongs to the Terras de Cavaleiros Geopark, located in Trás-os-Montes region, northeast Portugal. A stockwork of NW-SE-trending W>Sn quartz veins intruded Silurian metamorphic rocks and a Variscan biotite granite. The mineralized veins contain mainly quartz, cassiterite, wolframite, scheelite, arsenopyrite, pyrite, sphalerite, chalcopyrite, galena, rare pyrrhotite, stannite, native bismuth and also later bismuthinite, matildite, joseite, roosveltite, anglesite, scorodite, zavaritskite and covellite. The exploitation produced 335t of a concentrate with 70% of W and 150t of another concentrate with 70% of Sn between 1948 and 1976. The exploitation took place mainly in four open pit mines as well as underground. Three lakes were left in the area. Remediation processes of confination and control of tailings and rejected materials and phytoremediation with macrophytes from three lakes were carried out between 2005 and 2007. Stream sediments, soils and water samples were collected in 2008 and 2009, after the remediation process. Most stream sediments showed deficiency or minimum enrichment for metals. The sequential enrichment factor in stream sediments W>Bi>As>U>Cd>Sn=Ag>Cu>Sb>Pb>Be>Zn is mainly associated with the W>Sn mineralizations. Stream sediments receiving drainage of a mine dump were found to be significantly to extremely enriched with W, while stream sediments and soils were found to be contaminated with As. Two soil samples collected around mine dumps and an open pit lake were also found to be contaminated with U. The waters from the Murçós W>Sn mine area were acidic to neutral. After the remediation, the surface waters were contaminated with F(-), Al, As, Mn and Ni and must not be used for human consumption, while open pit lake waters must also not be used for agriculture because of contamination with F(-), Al, Mn and Ni. In most waters, the As occurred as As (III), which is toxic and is easily mobilized in the drainage system. The remediation promoted a decrease in metals and As concentrations of soils and waters, however the applied processes were not enough to rehabilitate the area. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Szymczak, Ewa
2017-12-01
In this study, the characterization of particle size distribution of suspended sediment that is transported by streams (Ornithologist Creek, Ecology Glacier Creeks, Petrified Forest Creek, Czech Creek, Vanishing Creek, Italian Creek) in the area of the Arctowski Polish Antarctic Station is presented. During the first period of the summer season, the aforementioned streams are supplied by the melting snow fields, while later on, by thawing permafrost. The water samples were collected from the streams at monthly intervals during the Antarctic summer season (January - March) of 2016. The particle size distribution was measured in the laboratory with a LISST-25X laser diffraction particle size analyser. According to Sequoia Scientific Inc., LISST-25X can measure particle sizes (Sauter Mean Diameter) between 2.50 and 500 μm. The results of particle size measurements were analysed in relation to flow velocity (0.18-0.89 m/s), the cross-sectional parameters of the streams, suspended sediment concentration (0.06-167.22 mg/dm3) and the content of particulate organic matter (9.8-84.85%). Overall, the mean particle size ranged from 28.8 to 136 μm. The grain size of well-sorted sediments ranged from 0.076 to 0.57, with the skewness and kurtosis values varying from -0.1 to 0.4, and from 0.67 to 1.3, respectively. Based on the particle size characteristics of suspended sediment, the streams were divided into two groups. For most of the streams, the sediment was very well sorted, while fine sand and very fine sand were dominant fractions displaying symmetric and platykurtic distributions, respectively. Only in two streams, the suspended sediment consisted of silt-size grains, well or moderately well sorted, with coarse-skewness and mostly mesokurtic distribution. The C-M chart suggested that the transportation processes of suspended sediment included the suspended mode only. The grain-size distribution of suspended sediment was mainly influenced by the stream runoff, surface sediment type and biological processes.
Matisse: A Visual Analytics System for Exploring Emotion Trends in Social Media Text Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steed, Chad A; Drouhard, Margaret MEG G; Beaver, Justin M
Dynamically mining textual information streams to gain real-time situational awareness is especially challenging with social media systems where throughput and velocity properties push the limits of a static analytical approach. In this paper, we describe an interactive visual analytics system, called Matisse, that aids with the discovery and investigation of trends in streaming text. Matisse addresses the challenges inherent to text stream mining through the following technical contributions: (1) robust stream data management, (2) automated sentiment/emotion analytics, (3) interactive coordinated visualizations, and (4) a flexible drill-down interaction scheme that accesses multiple levels of detail. In addition to positive/negative sentiment prediction,more » Matisse provides fine-grained emotion classification based on Valence, Arousal, and Dominance dimensions and a novel machine learning process. Information from the sentiment/emotion analytics are fused with raw data and summary information to feed temporal, geospatial, term frequency, and scatterplot visualizations using a multi-scale, coordinated interaction model. After describing these techniques, we conclude with a practical case study focused on analyzing the Twitter sample stream during the week of the 2013 Boston Marathon bombings. The case study demonstrates the effectiveness of Matisse at providing guided situational awareness of significant trends in social media streams by orchestrating computational power and human cognition.« less
Photogrammetric Method and Software for Stream Planform Identification
NASA Astrophysics Data System (ADS)
Stonedahl, S. H.; Stonedahl, F.; Lohberg, M. M.; Lusk, K.; Miller, D.
2013-12-01
Accurately characterizing the planform of a stream is important for many purposes, including recording measurement and sampling locations, monitoring change due to erosion or volumetric discharge, and spatial modeling of stream processes. While expensive surveying equipment or high resolution aerial photography can be used to obtain planform data, our research focused on developing a close-range photogrammetric method (and accompanying free/open-source software) to serve as a cost-effective alternative. This method involves securing and floating a wooden square frame on the stream surface at several locations, taking photographs from numerous angles at each location, and then post-processing and merging data from these photos using the corners of the square for reference points, unit scale, and perspective correction. For our test field site we chose a ~35m reach along Black Hawk Creek in Sunderbruch Park (Davenport, IA), a small, slow-moving stream with overhanging trees. To quantify error we measured 88 distances between 30 marked control points along the reach. We calculated error by comparing these 'ground truth' distances to the corresponding distances extracted from our photogrammetric method. We placed the square at three locations along our reach and photographed it from multiple angles. The square corners, visible control points, and visible stream outline were hand-marked in these photos using the GIMP (open-source image editor). We wrote an open-source GUI in Java (hosted on GitHub), which allows the user to load marked-up photos, designate square corners and label control points. The GUI also extracts the marked pixel coordinates from the images. We also wrote several scripts (currently in MATLAB) that correct the pixel coordinates for radial distortion using Brown's lens distortion model, correct for perspective by forcing the four square corner pixels to form a parallelogram in 3-space, and rotate the points in order to correctly orient all photos of the same square location. Planform data from multiple photos (and multiple square locations) are combined using weighting functions that mitigate the error stemming from the markup-process, imperfect camera calibration, etc. We have used our (beta) software to mark and process over 100 photos, yielding an average error of only 1.5% relative to our 88 measured lengths. Next we plan to translate the MATLAB scripts into Python and release their source code, at which point only free software, consumer-grade digital cameras, and inexpensive building materials will be needed for others to replicate this method at new field sites. Three sample photographs of the square with the created planform and control points
Stream Phosphorus Dynamics Along a Suburbanizing Gradient in Southern Ontario, Canada
NASA Astrophysics Data System (ADS)
Duval, T. P.
2017-12-01
While it is well known that urban streams are subject to impaired water quality relative to natural analogues, far less research has been directed at stream water quality during the process of (sub-) urbanization. This study determines the role of housing construction activities in Brampton, Canada on the concentration and flux of phosphorus (P) of a headwater stream. Prior to development the stream was engineered with a riffle-pool sequence, riparian plantings, and a floodplain corridor that was lined with sediment fencing. Stream sites were sampled daily over a period of six months at locations representing varying stages of subdivision completion (upper site -active construction; middle site -finished construction and natural vegetation; lower site -finished construction and active construction). A nearby urban stream site developed ten years prior to this study was selected as a reference site. There were no differences in total phosphorus (TP) levels or flux between the suburbanizing and urban streams; however, the forms of P differed between sites. The urban stream TP load was dominated by particulate phosphorus (PP) while suburbanizing stream P was mainly in the dissolved organic phosphorus (DOP) form. The importance of DOP to TP flux increased with the onset of the growing season. TP levels in all stream segments frequently exceeded provincial water quality guidelines during storm events but were generally low during baseflow conditions. During storm events PP and total suspended solid levels in the suburbanizing stream reached levels of the urban stream due to sediment fence failure at several locations along the construction-hillslope interface. Along the suburbanizing gradient, the hydrological connection to a mid-reach zone of no-construction activity / fallow field and native forest resulted in significantly lower P levels than the upper suburbanizing stream site. This suggests that stream channel design features as well as timing of construction activities and the hydrological connection between the stream and construction projects all contribute to downstream export of nutrients and ultimately stream water quality.
Bioassessment in nonperennial streams: Hydrologic stability influences assessment validity
NASA Astrophysics Data System (ADS)
Mazor, R. D.; Stein, E. D.; Schiff, K.; Ode, P.; Rehn, A.
2011-12-01
Nonperennial streams pose a challenge for bioassessment, as assessment tools developed in perennial streams may not work in these systems. For example, indices of biotic integrity (IBIs) developed in perennial streams may give improper indications of impairment in nonperennial streams, or may be unstable. We sampled benthic macroinvertebrates from 12 nonperennial streams in southern California. In addition, we deployed loggers to obtain continuous measures of flow. 3 sites were revisited over 2 years. For each site, we calculated several metrics, IBIs, and O/E scores to determine if assessments were consistent and valid throughout the summer. Hydrology varied widely among the streams, with several streams drying between sampling events. IBIs suggested good ecological health at the beginning of the study, but declined sharply at some sites. Multivariate ordination suggested that, despite differences among sites, changes in community structure were similar, with shifts from Ephemeroptera, Plecoptera, and Trichoptera to Coleoptera and more tolerant organisms. Site revisits revealed a surprising level of variability, as 2 of the 3 revisited sites had perennial or near-perennial flow in the second year of sampling. IBI scores were more consistent in streams with stable hydrographs than in those with strongly intermittent hydrographs. These results suggest that nonperennial streams can be monitored successfully, but they may require short index periods and distinct metrics from those used in perennial streams. In addition, better approaches to mapping nonperennial streams are required.
TERMINAL ELECTRON ACCEPTING PROCESSES IN THE ALLUVIAL SEDIMENTS OF A HEADWATER STREAM
Chemical fluxes between catchments and streams are influenced by biochemical processes in the groundwater-stream water (GW-SW) ecotone, the interface between stream surface water and groundwater. Terminal electron accepting processes (TEAPs) that are utilized in respiration of ...
Kuivila, Kathryn; Hladik, Michelle; Ingersoll, Christopher G.; Kemble, Nile E.; Moran, Patrick W.; Calhoun, Daniel L.; Nowell, Lisa H.; Gilliom, Robert J.
2012-01-01
A nationally consistent approach was used to assess the occurrence and potential sources of pyrethroid insecticides in stream bed sediments from seven metropolitan areas across the United States. One or more pyrethroids were detected in almost half of the samples, with bifenthrin detected the most frequently (41%) and in each metropolitan area. Cyhalothrin, cypermethrin, permethrin, and resmethrin were detected much less frequently. Pyrethroid concentrations and Hyalella azteca mortality in 28-d tests were lower than in most urban stream studies. Log-transformed total pyrethroid toxic units (TUs) were significantly correlated with survival and bifenthrin was likely responsible for the majority of the observed toxicity. Sampling sites spanned a wide range of urbanization and log-transformed total pyrethroid concentrations were significantly correlated with urban land use. Dallas/Fort Worth had the highest pyrethroid detection frequency (89%), the greatest number of pyrethroids (4), and some of the highest concentrations. Salt Lake City had a similar percentage of detections but only bifenthrin was detected and at lower concentrations. The variation in pyrethroid concentrations among metropolitan areas suggests regional differences in pyrethroid use and transport processes. This study shows that pyrethroids commonly occur in urban stream sediments and may be contributing to sediment toxicity across the country.
Christensen, D.; Harris, Thomas E.; Niesen, Shelley L.
2010-01-01
To identify the sources of selected constituents in urban streams and better understand processes affecting water quality and their effects on the ecological condition of urban streams and the Little Blue River in Independence, Missouri the U.S. Geological Survey in cooperation with the City of Independence Water Pollution Control Department initiated a study in June 2005 to characterize water quality and evaluate the ecological condition of streams within Independence. Base-flow and stormflow samples collected from five sites within Independence, from June 2005 to December 2008, were used to characterize the physical, chemical, and biologic effects of storm runoff on the water quality in Independence streams and the Little Blue River. The streams draining Independence-Rock Creek, Sugar Creek, Mill Creek, Fire Prairie Creek, and the Little Blue River-drain to the north and the Missouri River. Two small predominantly urban streams, Crackerneck Creek [12.9-square kilometer (km2) basin] and Spring Branch Creek (25.4-km2 basin), were monitored that enter into the Little Blue River between upstream and downstream monitoring sites. The Little Blue River above the upstream site is regulated by several reservoirs, but streamflow is largely uncontrolled. The Little Blue River Basin encompasses 585 km2 with about 168 km2 or 29 percent of the basin lying within the city limits of Independence. Water-quality samples also were collected for Rock Creek (24.1-km2 basin) that drains the western part of Independence. Data collection included streamflow, physical properties, dissolved oxygen, chloride, metals, nutrients, common organic micro-constituents, and fecal indicator bacteria. Benthic macroinvertebrate community surveys and habitat assessments were conducted to establish a baseline for evaluating the ecological condition and health of streams within Independence. Additional dry-weather screenings during base flow of all streams draining Independence were conducted to identify point-source discharges and other sources of potential contamination. Regression models were used to estimate continuous and annual flow-weighted concentrations, loadings, and yields for chloride, total nitrogen, total phosphorus, suspended sediment, and Escherichia coli bacteria densities. Base-flow and stormflow water-quality samples were collected at five sites within Independence. Base-flow samples for Rock Creek and two tributary streams to the Little Blue River exceeded recommended U.S. Environmental Protection Agency standards for the protection of aquatic life for total nitrogen and total phosphorus in about 90 percent of samples, whereas samples collected at two Little Blue River sites exceeded both the total nitrogen and total phosphorus standards less often, about 30 percent of the time. Dry-weather screening identified a relatively small number (14.0 percent of all analyses) of potential point-source discharges for total chlorine, phenols, and anionic surfactants. Stormflow had larger median measured concentrations of total common organic micro-constituents than base flow. The four categories of common organic micro-constituents with the most total detections in stormflow were pesticides (100 percent), polyaromatic hydrocarbons and combustion by-products (99 percent), plastics (93 percent), and stimulants (91 percent). Most detections of common organic micro-constituents were less than 2 micrograms per liter. Median instantaneous Escherichia coli densities for stormflow samples showed a 21 percent increase measured at the downstream site on the Little Blue River from the sampled upstream site. Using microbial source-tracking methods, less than 30 percent of Escherichia coli bacteria in samples were identified as having human sources. Base-flow and stormflow data were used to develop regression equations with streamflow and continuous water-quality data to estimate daily concentrations, loads, and yields of various water-quality contaminants.
Organic Seston Dynamics in Upland Neotropical Streams: Implications for Amphibian Declines
NASA Astrophysics Data System (ADS)
Peterson, S. D.; Colon-Gaud, C.; Whiles, M. R.; Hunte-Brown, M.; Connelly, S.; Kilham, S.; Pringle, C. M.; Lips, K. R.; Brenes, R.
2005-05-01
Organic seston represents food for filter feeders and a mechanism for downstream transport of energy and nutrients. As part of a study assessing the ecological impacts of stream-breeding anuran extirpations, we examined seston dynamics in 2 stream reaches with tadpoles (El Cope) and 2 without (Fortuna) in the Panamanian uplands. All reaches are high gradient with annual average discharge ranging from 46-102 L/s. Samples were collected multiple times per month at various discharges, sieved into fine (<754μm, >98μm) and very fine (<98μm, >1.6μm) fractions, and processed to estimate ash-free dry mass (AFDM), total C, and total N. Average annual concentrations ranged from 0.52- 2.51 mg/L (fine) and 2.04-3.14 mg/L (very fine), and total export ranged from 0.27-7,981 mg/s across all streams. On average, very fine particles comprised 78% of export from El Cope sites and 61% from Fortuna streams. Average total N export ranged from 5.32-30.53 mg/s in El Cope sites and 1.71-6.04 mg/s at Fortuna. Average particle quality (C/N) in El Cope streams was higher (7.6) than Fortuna streams (11.5). Lower export of very fine particles and lower seston quality in Fortuna streams suggests the loss of tadpoles may influence seston dynamics and quality in these systems.
Thermophoretic separation of aerosol particles from a sampled gas stream
Postma, A.K.
1984-09-07
This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.
Karmakar, Somenath; Rathore, Abhilakh Singh; Kadri, Syed Manzoor; Dutt, Som; Khare, Shashi; Lal, Shiv
2008-10-01
An earthquake struck Kashmir on 8 October 2005. A central team of public health specialists was sent to Kashmir to assess the public health measures required following the earthquake, and to assist in institution of public health measures. Epidemiological and environmental investigation in Tangdar block (Kupwara district) and Uri Tehsil (Baramula district). Visits to villages affected by the earthquake, rehabilitation camps and health care, examination of cases with acute diarrhoeal disease (ADD), environmental observations, collection of clinical samples from ADD cases and environmental samples from drinking water sources, and laboratory methods. In total, 1783 cases of ADD were reported between 14 October and 17 December 2005 in Tangdar (population 65000). The overall attack rate was 20% in children under 4 years of age. Twelve cases of ADD with loose motions without blood were studied, and 11 rectal swabs and one stool sample were processed. No bacterial enteropathogens could be isolated, but three of the 12 samples yielded rotavirus antigen on enzyme-linked immunosorbent assay. Twelve of 13 (92.3%) water samples, collected from various stream or tap water (source: spring/stream) sources, were unsatisfactory (P=0.001) using the H(2)S strip method compared with other sources (well/mineral water). All eight water sources in Tangdar block were unsatisfactory, indicated by blackening of H(2)S filter paper strips. Following the earthquake, drinking stream water or tap water without boiling or chlorination may have led to a common source water-borne outbreak of rotavirus gastroenteritis. Other contributing factors were: overcrowding; poor sanitation; open-air defaecation; poor hygiene; and living in makeshift camps near streams. Person-to-person transmission may also have contributed to perpetuation of the outbreak. Following the establishment of medical camps and information, education and communication regarding the need to drink boiled water and follow safer hygienic practices, the outbreak was brought under control. The earthquake in Kashmir in 2005 led to widespread contamination of drinking water sources such as stream and tap water (source: stream or spring). This appears to have led to a common source outbreak of rotavirus between October and December 2005, leading to ADD, amongst infants and small children, transmitted by the faecal-oral route and perpetuated by person-to-person transmission.
A new hyperspectral imaging based device for quality control in plastic recycling
NASA Astrophysics Data System (ADS)
Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.
2013-05-01
The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.
Lico, Michael S.; Pennington, Nyle
1999-01-01
The U.S. Geological Survey, in cooperation with the Tahoe Regional Planning Agency and the Lahontan Regional Water-Quality Control Board, sampled Lake Tahoe, major tributary streams to Lake Tahoe, and several other lakes in the Lake Tahoe Basin for manmade organic compounds during 1997-99. Gasoline components were found in all samples collected from Lake Tahoe during the summer boating season. Methyl tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (BTEX) were the commonly detected compounds in these samples. Most samples from tributary streams and lakes with no motorized boating had no detectable concentrations of gasoline components. Motorized boating activity appears to be directly linked in space and time to the occurrence of these gasoline components. Other sources of gasoline components to Lake Tahoe, such as the atmosphere, surface runoff, and subsurface flow, are minor compared to the input by motorized boating. Water sampled from Lake Tahoe during mid-winter, when motorized boating activity is low, had no MTBE and only one sample had any detectable BTEX compounds. Soluble pesticides rarely were detected in water samples from the Lake Tahoe Basin. The only detectable concentrations of these compounds were in samples from Blackwood and Taylor Creeks collected during spring runoff. Concentrations found in these samples were low, in the 1 to 4 nanograms per liter range. Organochlorine compounds were detected in samples collected from semipermeable membrane devices (SPMD's) collected from Lake Tahoe, tributary streams, and Upper Angora Lake. In Lake Tahoe, SPMD samples collected offshore from urbanized areas contained the largest number and highest concentrations of organochlorine compounds. The most commonly detected organochlorine compounds were cis- and trans-chlordane, p, p'-DDE, and hexachlorobenzene. In tributary streams, SPMD samples collected during spring runoff generally had higher combined concentrations of organochlorine compounds than those collected during baseflow conditions. Upper Angora Lake had the fewest number of organochlorine compounds detected of all lake samples. Dioxins and furans were not detected in SPMD samples from two sites in Lake Tahoe or from two tributary streams. The number of polycyclic aromatic hydrocarbon (PAH) compounds and their combined concentrations generally were higher in samples from Lake Tahoe than those from tributary streams. Areas of high-motorized boating activity at Lake Tahoe had the largest number and highest concentrations of PAH's. PAH compounds were detected in samples from SPMD's in four of six tributary streams during spring runoff, all tributary streams during baseflow conditions, and at all lake sites. The most commonly detected PAH's in tributary streams during spring runoff were phenanthrene, fluoranthene, pyrene, and chrysene, and during baseflow conditions were phenanthrene, 1-methylphenanthrene, diethylnaphthalene, and pyrene. Upper Truckee River, which has an urban area in its drainage basin, had the largest number and highest combined concentration of PAH's of all stream samples. Bottom-sediment from Lake Tahoe had detectable concentrations of p-cresol, a phenol, in all but one sample. A sample collected near Chambers Lodge contained phenol at an estimated concentration of 4 micrograms per kilogram (?g/kg). Bottom-sediment samples from tributary streams had no detectable concentrations of organochlorine or PAH compounds. Several compounds were detected in bottom sediment from Upper Angora Lake at high concentrations. These compounds and their concentrations were p, p'-DDD (10 ?g/kg), p, p'-DDE (7.4 ?g/kg), 2,6-dimethylnaphthalene (estimated at 190 ?g/kg), pentachlorophenol (3,000 ?g/kg), and p-cresol (4,400 ?g/kg).
Daniel J. Isaak; Jay M. Ver Hoef; Erin E. Peterson; Dona L. Horan; David E. Nagel
2017-01-01
Population size estimates for stream fishes are important for conservation and management, but sampling costs limit the extent of most estimates to small portions of river networks that encompass 100sâ10 000s of linear kilometres. However, the advent of large fish density data sets, spatial-stream-network (SSN) models that benefit from nonindependence among samples,...
Jeffrey R. Waters; Cynthia J. Zabel; Kevin S. McKelvey; Hartwell H. Welsh
2001-01-01
Our goal was to describe and evaluate patterns of association between stream size and abundances of amphibians and small mammals in a northwestern California watershed. We sampled populations at 42 stream sites and eight upland sites within a 100- watershed in 1995 and 1996. Stream reaches sampled ranged from poorly defined channels that rarely flowed to 10-m-wide...
NASA Astrophysics Data System (ADS)
Shahrestani, Shahed; Mokhtari, Ahmad Reza
2017-04-01
Stream sediment sampling is a well-known technique used to discover the geochemical anomalies in regional exploration activities. In an upstream catchment basin of stream sediment sample, the geochemical signals originating from probable mineralization could be diluted due to mixing with the weathering material coming from the non-anomalous sources. Hawkes's equation (1976) was an attempt to overcome the problem in which the area size of catchment basin was used to remove dilution from geochemical anomalies. However, the metal content of a stream sediment sample could be linked to several geomorphological, sedimentological, climatic and geological factors. The area size is not itself a comprehensive representative of dilution taking place in a catchment basin. The aim of the present study was to consider a number of geomorphological factors affecting the sediment supply, transportation processes, storage and in general, the geochemistry of stream sediments and their incorporation in the dilution correction procedure. This was organized through employing the concept of sediment yield and sediment delivery ratio and linking such characteristics to the dilution phenomenon in a catchment basin. Main stream slope (MSS), relief ratio (RR) and area size (Aa) of catchment basin were selected as the important proxies (PSDRa) for sediment delivery ratio and then entered to the Hawkes's equation. Then, Hawkes's and new equations were applied on the stream sediment dataset collected from Takhte-Soleyman district, west of Iran for Au, As and Sb values. A number of large and small gold, antimony and arsenic mineral occurrences were used to evaluate the results. Anomaly maps based on the new equations displayed improvement in anomaly delineation taking the spatial distribution of mineral deposits into account and could present new catchment basins containing known mineralization as the anomaly class, especially in the case of Au and As. Four catchment basins having Au and As mineralization were added to anomaly class and also one catchment basin with known As occurrence was highlighted as anomalous using new approach. The results demonstrated the usefulness of considering geomorphological parameters in dealing with dilution phenomenon in a catchment basin.
Vining, Kevin C.; Lundgren, Robert F.
2008-01-01
Sixty-five sampling sites, selected by a statistical design to represent lengths of perennial streams in North Dakota, were chosen to be sampled for fish and aquatic insects (macroinvertebrates) to establish unbiased baseline data. Channel catfish and common carp were the most abundant game and large fish species in the Cultivated Plains and Rangeland Plains, respectively. Blackflies were present in more than 50 percent of stream lengths sampled in the State; mayflies and caddisflies were present in more than 80 percent. Dragonflies were present in a greater percentage of stream lengths in the Rangeland Plains than in the Cultivated Plains.
Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98
Battaglin, William A.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Campbell, D.H.
2001-01-01
Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (δ15N and δ18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the δ15N and δ18O of NO3 provide information about NO3 sources and transformation processes in a large river system (drainage area 2 900 000 km2) that would otherwise be unavailable using concentration and discharge data alone. Results from 42 samples indicate that the δ15N and δ18O ratios between sites on the Mississippi River and its tributaries are somewhat distinctive, and vary with season and discharge rate. Of particular interest are two nearly Lagrangian sample sets, in which samples from the Mississippi River at St Francisville, LA, are compared with samples collected from the Ohio River at Grand Chain, II, and the Mississippi River at Thebes, IL. In both Lagrangian sets, mass-balance calculations indicate only a small amount of in-stream N loss. The stable isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer months.
Political and Economic Geomorphology: The Effect of Market Forces on Stream Restoration Designs
NASA Astrophysics Data System (ADS)
Singh, J.; Doyle, M. W.; Lave, R.; Robertson, M.
2013-12-01
Stream restoration in the U.S. is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy application creates conditions in which restored stream ';credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of this relatively new mechanism to finance stream restoration on design and construction is unknown. This research explores whether the introduction of a credit-based mitigation apparatus results in streams designed to maximize credit yields (i.e., ';credit-chasing') rather than focusing on restoring natural systems or functions. In other words, are market-based restored streams different from those designed for non-market purposes? We quantified geomorphic characteristics (e.g. hydraulic geometry, sinuosity, profile, bed sediment, LWD) of three types of streams: (1) a random sample of non-restored reaches, (2) streams restored for compensatory mitigation, and (3) streams restored under alternative funding sources (e.g., government grant programs, non-profit activities). We also compared the location of the types of stream reaches to determine whether there is a spatiality of restored streams. Physical data were complemented with a series of semi-structured interviews with key personnel in the stream restoration industry to solicit information on the influence of policy interpretation and market-driven factors on the design process. Preliminary analysis suggests that restoration is driving a directional shift in stream morphology in North Carolina. As a simple example, in the Piedmont, non-restored and restored channels had mean sinuosity of 1.17 and 1.23, respectively (p < 0.10). In the mountain region, non-restored and restored channels had mean sinuosity of 1.07 and 1.21, respectively (p < 0.01). In addition, restored streams were disproportionately located in very small catchments, and designs seemed to be only marginally related to the location of the stream. Provisional findings also indicate that the differences between mitigation and non-mitigation designs were less than expected. Interview data support this observation; design engineers and entrepreneurial credit providers (i.e., mitigation bankers) apparently viewed the design process as a somewhat standard, non-malleable practice. Sustaining long-term relationships with regulators, who must approve the sale of restored stream credits, was seen as critically important rather than the marginal gains to be made by manipulating particular stream designs to glean more credits. Overall, preliminary results demonstrate that regulatory frameworks, economic incentives and social relationships played a key role in driving stream restoration design in North Carolina, often homogenizing design practices and limiting ';credit chasing.'
Almeida, Jorge; Amaral, Lénia; Garcea, Frank E; Aguiar de Sousa, Diana; Xu, Shan; Mahon, Bradford Z; Martins, Isabel Pavão
2018-05-24
A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.
Developing recommendations to improve the quality of diabetes care in Ireland: a policy analysis.
Mc Hugh, Sheena M; Perry, Ivan J; Bradley, Colin; Brugha, Ruairí
2014-09-18
In 2006, the Health Service Executive (HSE) in Ireland established an Expert Advisory Group (EAG) for Diabetes, to act as its main source of operational policy and strategic advice for this chronic condition. The process was heralded as the starting point for the development of formal chronic disease management programmes. Although recommendations were published in 2008, implementation did not proceed as expected. Our aim was to examine the development of recommendations by the EAG as an instrumental case study of the policy formulation process, in the context of a health system undergoing organisational and financial upheaval. This study uses Kingdon's Multiple Streams Theory to examine the evolution of the EAG recommendations. Semi-structured interviews were conducted with a purposive sample of 15 stakeholders from the advisory group. Interview data were supplemented with documentary analysis of published and unpublished documents. Thematic analysis was guided by the propositions of the Kingdon model. In the problem stream, the prioritisation of diabetes within the policy arena was a gradual process resulting from an accumulation of evidence, international comparison, and experience. The policy stream was bolstered by group consensus rather than complete agreement on the best way to manage the condition. The EAG assumed the politics stream was also on course to converge with the other streams, as the group was established by the HSE, which had the remit for policy implementation. However, the politics stream did not converge due to waning support from health service management and changes to the organisational structure and financial capacity of the health system. These changes trumped the EAG process and the policy window remained closed, stalling implementation. Our results reflect the dynamic nature of the policy process and the importance of timing. The results highlight the limits of rational policy making in the face of organisational and fiscal upheaval. Diabetes care is coming on to the agenda again in Ireland under the National Clinical Care Programme. This may represent the opening of a new policy window for diabetes services, the challenge will be maintaining momentum and interest in the absence of dedicated resources.
Heimann, David C.
2009-01-01
This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, to analyze and compare hydrologic and water-quality characteristics of tallgrass prairie and agricultural basins located within the historical distribution of tallgrass prairie in Missouri and Kansas. Streamflow and water-quality data from two remnant, tallgrass prairie basins (East Drywood Creek at Prairie State Park, Missouri, and Kings Creek near Manhattan, Kansas) were compared to similar data from agricultural basins in Missouri and Kansas. Prairie streams, especially Kings Creek in eastern Kansas, received a higher percentage of base flow and a lower percentage of direct runoff than similar-sized agricultural streams in the region. A larger contribution of direct runoff from the agricultural streams made them much flashier than prairie streams. During 22 years of record, the Kings Creek base-flow component averaged 66 percent of total flow, but base flow was only 16 to 26 percent of flows at agricultural sites of various record periods. The large base-flow component likely is the result of greater infiltration of precipitation in prairie soils and the resulting greater contribution of groundwater to streamflow. The 1- and 3-day annual maximum flows were significantly greater at three agricultural sites than at Kings Creek. The effects of flashier agricultural streams on native aquatic biota are unknown, but may be an important factor in the sustainability of some native aquatic species. There were no significant differences in the distribution of dissolved-oxygen concentrations at prairie and agricultural sites, and some samples from most sites fell below the 5 milligrams per liter Missouri and Kansas standard for the protection of aquatic life. More than 10 percent of samples from the East Drywood Creek prairie stream were less than this standard. These data indicate low dissolved-oxygen concentrations during summer low-flow periods may be a natural phenomenon for small prairie streams in the Osage Plains. Nutrient concentrations including total nitrogen, ammonia, nitrate, and total phosphorus were significantly less in base-flow and runoff samples from prairie streams than from agricultural streams. The total nitrogen concentration at all sites other than one of two prairie sampling sites were, on occasion, above the U.S. Environmental Protection Agency recommended criterion for total nitrogen for the prevention of nutrient enrichment, and typically were above this recommended criterion in runoff samples at all sites. Nitrate and total phosphorus concentrations in samples from the prairie streams generally were below the U.S. Environmental Protection Agency recommended nutrient criteria in base-flow and runoff samples, whereas samples from agricultural sites generally were below the criteria in base-flow samples and generally above in runoff samples. The lower concentrations of nutrient species in prairie streams is likely because prairies are not fertilized like agricultural basins and prairie basins are able to retain nutrients better than agricultural basins. This retention is enhanced by increased infiltration of precipitation into the prairie soils, decreased surface runoff, and likely less erosion than in agricultural basins. Streamflow in the small native prairie streams had more days of zero flow and lower streamflow yields than similar-sized agricultural streams. The prairie streams were at zero flow about 50 percent of the time, and the agricultural streams were at zero flow 25 to 35 percent of the time. Characteristics of the prairie basins that could account for the greater periods of zero flow and lower yields when compared to agricultural streams include greater infiltration, greater interception and evapotranspiration, shallower soils, and possible greater seepage losses in the prairie basins. Another difference between the prairie and agricultural strea
Kalkhoff, S.J.; Lee, K.E.; Porter, S.D.; Terrio, P.J.; Thurman, E.M.
2003-01-01
Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 μg L−1). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 μg L−1) was significantly greater than the total concentration of parent compounds (median of 0.26 μg L−1). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April–July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.
NASA Technical Reports Server (NTRS)
Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.
2007-01-01
Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.
Morace, Jennifer L.; McKenzie, Stuart W.
2002-11-27
Looking forward relative to future monitoring goals, research needs, and best management practice development, four hypotheses that deal with processes and sources of bacteria were identified: (1) overland runoff transports bacteria from land surfaces to streams, (2) bacteria in the water column tend to associate with suspended matter, (3) with increasing densities of warm-blooded animals, the likelihood of fecal-coliform contamination in streams also increases, and (4) identifi- cation of bacterial sources is difficult, but must be attempted for remediation to be possible.
Johnson, Michaela R.; Clark, Jimmy M.; Dickinson, Ross G.; Sanocki, Chris A.; Tranmer, Andrew W.
2009-01-01
This data set was developed as part of the National Water-Quality Assessment (NAWQA) Program, Nutrient Enrichment Effects Topical (NEET) study. This report is concerned with three of the eight NEET study units distributed across the United States: Ozark Plateaus, Upper Mississippi River Basin, and Upper Snake River Basin, collectively known as Group II of the NEET study. Ninety stream reaches were investigated during 2006-08 in these three study units. Stream segments, with lengths equal to the base-10 logarithm of the basin area, were delineated upstream from the stream reaches through the use of digital orthophoto quarter-quadrangle (DOQQ) imagery. The analysis area for each stream segment was defined by a streamside buffer extending laterally to 250 meters from the stream segment. Delineation of landuse and land-cover (LULC) map units within stream-segment buffers was completed using on-screen digitizing of riparian LULC classes interpreted from the DOQQ. LULC units were classified using a strategy consisting of nine classes. National Wetlands Inventory (NWI) data were used to aid in wetland classification. Longitudinal riparian transects (lines offset from the stream segments) were generated digitally, used to sample the LULC maps, and partitioned in accord with the intersected LULC map-unit types. These longitudinal samples yielded the relative linear extent and sequence of each LULC type within the riparian zone at the segment scale. The resulting areal and linear estimates of LULC extent filled in the spatial-scale gap between the 30-meter resolution of the 1990s National Land Cover Dataset and the reach-level habitat assessment data collected onsite routinely for NAWQA ecological sampling. The resulting data consisted of 12 geospatial data sets: LULC within 25 meters of the stream reach (polygon); LULC within 50 meters of the stream reach (polygon); LULC within 50 meters of the stream segment (polygon); LULC within 100 meters of the stream segment (polygon); LULC within 150 meters of the stream segment (polygon); LULC within 250 meters of the stream segment (polygon); frequency of gaps in woody vegetation at the reach scale (arc); stream reaches (arc); longitudinal LULC transect sample at the reach scale (arc); frequency of gaps in woody vegetation at the segment scale (arc); stream segments (arc); and longitudinal LULC transect sample at the segment scale (arc).
Sánchez-Montoya, María del Mar; Arce, Maria Isabel; Vidal-Abarca, María Rosario; Suárez, María Luisa; Prat, Narcís; Gómez, Rosa
2012-05-01
Type-specific physico-chemical reference conditions are required for the assessment of ecological status in the Water Framework Directive context, similarly to the biological and hydro-morphological elements. This directive emphasises that natural variability of quality elements in high status (reference condition) needs to be quantified. Mediterranean streams often present a marked seasonal pattern in hydrological, biological and geochemical processes which could affect physico-chemical reference conditions. This study establishes general physico-chemical reference conditions (oxygenation, nutrient, salinity and acidification conditions) for different Mediterranean stream types. 116 potential reference sites located in 23 Mediterranean catchments in Spain were sampled in spring, summer and autumn in 2003. All sites were subjected to a screening method for the selection of reference sites in Mediterranean streams (Mediterranean Reference Criteria) and classified using a pre-established stream typology that establishes five different stream types (temporary streams, evaporite-calcareous at medium altitude, siliceous headwaters, calcareous headwaters and large watercourses). Reference conditions (reference value and reference threshold equivalents to high-good class boundary) were calculated using two different methods according to the availability of reference sites: the reference site 75th percentile approach of all reference sites and the 25th percentile of the population approach. The majority of the studied potential reference sites (76 out of 116) were selected as reference sites. Regarding type-specific reference conditions, only siliceous headwaters could be considered different from the rest of stream types because lower conductivity and pH. All reference stream types presented seasonal differences as regards some parameters, except for temporary streams due to the high natural variation of this stream type. For those parameters which presented seasonal differences in a specific stream type, the least restrictive values were proposed as reference conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hainly, Robert A.; Zimmerman, Tammy M.; Loper, Connie A.; Lindsey, Bruce D.
2001-01-01
This report presents the detection frequency of 83 analyzed pesticides, describes the concentrations of those pesticides measured in water from streams and shallow wells, and presents conceptual models of the major factors affecting seasonal and areal patterns of pesticide concentrations in water from streams and shallow wells in the Lower Susquehanna River Basin. Seasonal and areal patterns of pesticide concentrations were observed in 577 samples and nearly 40,000 pesticide analyses collected from 155 stream sites and 169 shallow wells from 1993 to 1995. For this study, shallow wells were defined as those generally less than 200 feet deep.The most commonly detected pesticides were agricultural herbicides?atrazine, metolachlor, simazine, prometon, alachlor, and cyanazine. Atrazine and metolachlor are the two most-used agricultural pesticides in the Lower Susquehanna River Basin. Atrazine was detected in 92 percent of all the samples and in 98 percent of the stream samples. Metolachlor was detected in 83 percent of all the samples and in 95 percent of the stream samples. Nearly half of all the analyzed pesticides were not detected in any sample. Of the 45 pesticides that were detected at least once, the median concentrations of 39 of the pesticides were less than the detection limit for the individual compounds, indicating that for at least 50 percent of the samples collected, those pesticides were not detected. Only 10 (less than 0.025 percent) of the measured concentrations exceeded any established drinking-water standards; 25 concentrations exceeded 2 mg/L (micrograms per liter) and 55 concentrations exceeded 1 mg/L. None of the elevated concentrations were measured in samples collected from streams that are used for public drinking-water supplies, and 8 of the 10 were measured in storm-affected samples.The timing and rate of agricultural pesticide applications affect the seasonal and areal concentration patterns of atrazine, simazine, chlorpyrifos, and diazinon observed in water from wells and streams in the Lower Susquehanna River Basin. Average annual pesticide use for agricultural purposes and nonagricultural pesticide use indicators were used to explain seasonal and areal patterns. Elevated concentrations of some pesticides in streams during base-flow and storm-affected conditions were related to the seasonality of agricultural-use applications and local climate conditions. Agricultural-use patterns affected areal concentration patterns for the high-use pesticides, but indicators of nonagricultural use were needed to explain concentration patterns of pesticides with smaller amounts used for agricultural purposes.Bedrock type influences the movement and discharge of ground water, which in turn affects concentration patterns of pesticides. The ratio of atrazine concentrations in stream base flow to concentrations in shallow wells varied among the different general rock types found in the Lower Susquehanna River Basin. Median concentrations of atrazine in well water and stream base flow tended to be similar in individual areas underlain by carbonate bedrock, indicating the connectivity of water in streams and shallow wells in these areas. In areas underlain by noncarbonate bedrock, median concentrations of atrazine tended to be significantly higher in stream base flow than in well water. This suggests a deep ground-water system that delivers water to shallow wells and a near-surficial system that supplies base-flow water to streams. In addition to the presence or absence of carbonate bedrock, pesticide leaching potential and persistence, soil infiltration capacity, and agricultural land use affected areal patterns in detection frequency and concentration differences between samples collected from streams during base-flow conditions and shallow wells.
A Multiple-Tracer Approach for Identifying Sewage Sources to an Urban Stream System
Hyer, Kenneth Edward
2007-01-01
The presence of human-derived fecal coliform bacteria (sewage) in streams and rivers is recognized as a human health hazard. The source of these human-derived bacteria, however, is often difficult to identify and eliminate, because sewage can be delivered to streams through a variety of mechanisms, such as leaking sanitary sewers or private lateral lines, cross-connected pipes, straight pipes, sewer-line overflows, illicit dumping of septic waste, and vagrancy. A multiple-tracer study was conducted to identify site-specific sources of sewage in Accotink Creek, an urban stream in Fairfax County, Virginia, that is listed on the Commonwealth's priority list of impaired streams for violations of the fecal coliform bacteria standard. Beyond developing this multiple-tracer approach for locating sources of sewage inputs to Accotink Creek, the second objective of the study was to demonstrate how the multiple-tracer approach can be applied to other streams affected by sewage sources. The tracers used in this study were separated into indicator tracers, which are relatively simple and inexpensive to apply, and confirmatory tracers, which are relatively difficult and expensive to analyze. Indicator tracers include fecal coliform bacteria, surfactants, boron, chloride, chloride/bromide ratio, specific conductance, dissolved oxygen, turbidity, and water temperature. Confirmatory tracers include 13 organic compounds that are associated with human waste, including caffeine, cotinine, triclosan, a number of detergent metabolites, several fragrances, and several plasticizers. To identify sources of sewage to Accotink Creek, a detailed investigation of the Accotink Creek main channel, tributaries, and flowing storm drains was undertaken from 2001 to 2004. Sampling was conducted in a series of eight synoptic sampling events, each of which began at the most downstream site and extended upstream through the watershed and into the headwaters of each tributary. Using the synoptic sampling approach, 149 sites were sampled at least one time for indicator tracers; 52 of these sites also were sampled for confirmatory tracers at least one time. Through the analysis of multiple-tracer levels in the synoptic samples, three major sewage sources to the Accotink Creek stream network were identified, and several other minor sewage sources to the Accotink Creek system likely deserve additional investigation. Near the end of the synoptic sampling activities, three additional sampling methods were used to gain better understanding of the potential for sewage sources to the watershed. These additional sampling methods included optical brightener monitoring, intensive stream sampling using automated samplers, and additional sampling of several storm-drain networks. The samples obtained by these methods provided further understanding of possible sewage sources to the streams and a better understanding of the variability in the tracer concentrations at a given sampling site. Collectively, these additional sampling methods were a valuable complement to the synoptic sampling approach that was used for the bulk of this study. The study results provide an approach for local authorities to use in applying a relatively simple and inexpensive collection of tracers to locate sewage sources to streams. Although this multiple-tracer approach is effective in detecting sewage sources to streams, additional research is needed to better detect extremely low-volume sewage sources and better enable local authorities to identify the specific sources of the sewage once it is detected in a stream reach.
Sears, C.M.; Foose, M.P.; Day, G.W.; Ericksen, M.S.
1983-01-01
Semi-quantitative spectrographic analyses for 31 elements on rock, soil, fine-grained stream sediment, bulk stream sediment, and panned stream sediment samples collected in the Rich Mountain Roadless Area, Fannin and Gilmer Counties, Georgia, are reported here. Atomic absorption analyses for gold and fluorometric analyses for uranium are also reported. Brief descriptions of all rock samples analyzed are included.
William R. Meehan
1996-01-01
The community composition of macroinvertebrates and the feeding habits of juvenile salmonids were studied in eight Oregon streams. Benthic, drift, sticky trap, and water trap samples were taken over a 3-year period, along with stomach samples of the fish. Samples were taken in stream reaches with and without riparian canopy. Both main effectsâfish diet versus...
40 CFR Table 1 to Subpart Bbbbb of... - Requirements for Performance Tests
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Semiconductor... necessary. 2. Process vent stream a. Measure organic and inorganic HAP concentration (two method option) i... simultaneous sampling at inlet and outlet of control device and analyze for same organic and inorganic HAP at...
40 CFR Table 1 to Subpart Bbbbb of... - Requirements for Performance Tests
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Semiconductor... necessary. 2. Process vent stream a. Measure organic and inorganic HAP concentration (two method option) i... simultaneous sampling at inlet and outlet of control device and analyze for same organic and inorganic HAP at...
40 CFR 60.456 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 60.456 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 60.453. (2) Method 25 for the measurement of the VOC concentration in the gas stream vent. (3) Method... sampling times or smaller volumes, when necessitated by process variables or other factors, may be approved...
NASA Astrophysics Data System (ADS)
Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Kurucu, Yusuf; Anac, Dilek; Düring, Rolf-Alexander
2017-04-01
This study was carried out to determine the residue level of major concern organic and inorganic pollutants in Güzelhisar Basin of Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel mills, but also areas of agriculture. Soil samples were collected from GPS determined points at 0-30 and 30-60 cm depth of a grid system of 2.5 km to the east and 2.5 km to the west of the Güzelhisar stream. The area was grouped into three main areas as West, Middle, and East region. Water and sediment samples were collected from the Güzelhisar stream and from Güzelhisar dam every 30 kilometers which is already contaminated due to industrial facilities in Aliaga, is used to irrigate the agricultural land. Soil pH of the research area was determined within the range from 5.87 to 6.61. Topsoil contamination was examined for all investigated elements with the exception of Cd. An increase in pseudo total metal contents of Cr, Cu, Mn, Ni, and Zn was observed with increasing distance from the coast with a simultaneous decrease in pH. Due to the analysis of the organic pollutants, a continuous load with the herbicide trifluralin was determined with a few clearly raised points to a possible load of the stream water. Although HCH-Isomers were not found, DDT (DDT and transformation products) residues were ascertained in the soil samples. With regard to the analysis of the water samples of the Güzelhisar stream and dam, a background load with trifluralin was found which is to be explained with transport processes with regard to utilization of trifluralin in the agricultural areas.
Characterizing Hydrological Processes in Vadose Zone by Direct Infiltration Water Sampling.
NASA Astrophysics Data System (ADS)
Mori, Y.; Higashi, N.; Somura, H.; Takeda, I.; Inoue, M.
2007-12-01
These days, planted forest mountainside was roughly maintained due to the population descent and small birth rate. Because thinning operation would delayed, forest was always dark and floor weed was rare. Management induced non point source pollution like surface soil erosion was suspected, however, we could not approach to the source with the stream water analysis. Therefore, direct soil water sampling device using glass fiber capillary force was developed to examine hydrological processes in watershed. In our design, water was collected just by the capillary force and let the excess water down through so that infiltration water was truly sampled and solute concentration kept the same quality as in soil water. The experiment was conducted at two neighboring Japanese cedar planted forest under different management, i.e., south slope was roughly maintained and west slope was well maintained by thinning operation. Load discharges were higher in south slope and lower in west slope. Infiltration water analysis revealed that ion concentration was gradually decreased at west slope, however in south slope, it dropped to lower level in soil water and increased again in stream water. The trend showed that soil buffering function was poor in south slope. Actually, disk permeameter survey revealed that hydraulic conductivity was small in south slope; TOC and biological activity were lower. This entire soil environment explained the water environmental differences in stream water. Because changes in soil environment affects water environment in the future, monitoring or examination of soil environment was considered as preventive measure for environmentally sound water and solute circulation in watershed.
Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.
2014-01-01
Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate show direct and rapid effects on forest streams that may be widespread, although undocumented, throughout nitrogen-polluted temperate forests. In contrast to a week-long nitrate decline during peak autumn litterfall, base flow DON concentrations increased after leaf fall and remained high for 2 months. Dissolved organic nitrogen was hydrologically flushed to the stream from riparian soils during stormflow. In contrast to distinct seasonal changes in base flow nitrate and DON concentrations, ammonium concentrations were typically at or below the detection limit, similar to the rest of the year. Our findings reveal couplings among catchment flow paths, nutrient sources, and transformations that control seasonal extremes of stream nitrogen in forested landscapes.
Analyzing Hydraulic Conductivity Sampling Schemes in an Idealized Meandering Stream Model
NASA Astrophysics Data System (ADS)
Stonedahl, S. H.; Stonedahl, F.
2017-12-01
Hydraulic conductivity (K) is an important parameter affecting the flow of water through sediments under streams, which can vary by orders of magnitude within a stream reach. Measuring heterogeneous K distributions in the field is limited by time and resources. This study investigates hypothetical sampling practices within a modeling framework on a highly idealized meandering stream. We generated three sets of 100 hydraulic conductivity grids containing two sands with connectivity values of 0.02, 0.08, and 0.32. We investigated systems with twice as much fast (K=0.1 cm/s) sand as slow sand (K=0.01 cm/s) and the reverse ratio on the same grids. The K values did not vary with depth. For these 600 cases, we calculated the homogenous K value, Keq, that would yield the same flux into the sediments as the corresponding heterogeneous grid. We then investigated sampling schemes with six weighted probability distributions derived from the homogenous case: uniform, flow-paths, velocity, in-stream, flux-in, and flux-out. For each grid, we selected locations from these distributions and compared the arithmetic, geometric, and harmonic means of these lists to the corresponding Keq using the root-mean-square deviation. We found that arithmetic averaging of samples outperformed geometric or harmonic means for all sampling schemes. Of the sampling schemes, flux-in (sampling inside the stream in an inward flux-weighted manner) yielded the least error and flux-out yielded the most error. All three sampling schemes outside of the stream yielded very similar results. Grids with lower connectivity values (fewer and larger clusters) showed the most sensitivity to the choice of sampling scheme, and thus improved the most with the flux-insampling. We also explored the relationship between the number of samples taken and the resulting error. Increasing the number of sampling points reduced error for the arithmetic mean with diminishing returns, but did not substantially reduce error associated with geometric and harmonic means.
Robust media processing on programmable power-constrained systems
NASA Astrophysics Data System (ADS)
McVeigh, Jeff
2005-03-01
To achieve consumer-level quality, media systems must process continuous streams of audio and video data while maintaining exacting tolerances on sampling rate, jitter, synchronization, and latency. While it is relatively straightforward to design fixed-function hardware implementations to satisfy worst-case conditions, there is a growing trend to utilize programmable multi-tasking solutions for media applications. The flexibility of these systems enables support for multiple current and future media formats, which can reduce design costs and time-to-market. This paper provides practical engineering solutions to achieve robust media processing on such systems, with specific attention given to power-constrained platforms. The techniques covered in this article utilize the fundamental concepts of algorithm and software optimization, software/hardware partitioning, stream buffering, hierarchical prioritization, and system resource and power management. A novel enhancement to dynamically adjust processor voltage and frequency based on buffer fullness to reduce system power consumption is examined in detail. The application of these techniques is provided in a case study of a portable video player implementation based on a general-purpose processor running a non real-time operating system that achieves robust playback of synchronized H.264 video and MP3 audio from local storage and streaming over 802.11.
Drivers and Spatio-Temporal Extent of Hyporheic Patch Variation: Implications for Sampling
Braun, Alexander; Auerswald, Karl; Geist, Juergen
2012-01-01
The hyporheic zone in stream ecosystems is a heterogeneous key habitat for species across many taxa. Consequently, it attracts high attention among freshwater scientists, but generally applicable guidelines on sampling strategies are lacking. Thus, the objective of this study was to develop and validate such sampling guidelines. Applying geostatistical analysis, we quantified the spatio-temporal variability of parameters, which characterize the physico-chemical substratum conditions in the hyporheic zone. We investigated eight stream reaches in six small streams that are typical for the majority of temperate areas. Data was collected on two occasions in six stream reaches (development data), and once in two additional reaches, after one year (validation data). In this study, the term spatial variability refers to patch contrast (patch to patch variance) and patch size (spatial extent of a patch). Patch contrast of hyporheic parameters (specific conductance, pH and dissolved oxygen) increased with macrophyte cover (r2 = 0.95, p<0.001), while patch size of hyporheic parameters decreased from 6 to 2 m with increasing sinuosity of the stream course (r2 = 0.91, p<0.001), irrespective of the time of year. Since the spatial variability of hyporheic parameters varied between stream reaches, our results suggest that sampling design should be adapted to suit specific stream reaches. The distance between sampling sites should be inversely related to the sinuosity, while the number of samples should be related to macrophyte cover. PMID:22860053
Arsenic in stream sediments of northern Alabama
Goldhaber, M.B.; Irwin, Elise; Atkins, Brian; Lee, Lopaka; Black, D.D.; Zappia, Humbert; Hatch, Joe; Pashin, Jack; Barwick, L.H.; Cartwright, W.E.; Sanzolone, Rick; Rupert, Leslie; Kolker, Allan; Finkelman, Robert
2001-01-01
OVERVIEW OF ARSENIC IN STREAM SEDIMENTS The overall range of arsenic in the NURE stream sediments was from 0.3 to 44 mg/kg sediment (ppm) As in the sample data set. The mean value was 4.3 ppm with a standard deviation of 4.1 ppm. For comparison, the crustal abundance of arsenic is 1.8 ppm (Taylor, 1964). Shale is higher, with average values of 15 ppm. Coal samples from the entire USGS National Coal Resource Data System coal database (Finkelman, 1994) average 24 ppm arsenic. A study of stream sediments from throughout the U.S. by the USGS NAWQA program reported that the 75th percentile for arsenic in 541 stream sediments was 9.5 ppm (Rice, 1999). Given the relatively low crustal abundance of arsenic, a number of stream-sediment samples in this study may be considered geochemically anomalous in this element.
SNRB{trademark} air toxics monitoring. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process asmore » well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.« less
NASA Astrophysics Data System (ADS)
Bunte, Kristin; Swingle, Kurt W.; Turowski, Jens M.; Abt, Steven R.; Cenderelli, Daniel A.
2016-08-01
Coarse particulate organic matter (CPOM) provides a food source for benthic organisms, and the fluvial transport of CPOM is one of the forms in which carbon is exported from a forested basin. However, little is known about transport dynamics of CPOM, its relation to discharge, and its annual exports from mountain streams. Much of this knowledge gap is due to sampling difficulties. In this study, CPOM was sampled over one-month snowmelt high flow seasons in two high-elevation, subalpine, streams in the Rocky Mountains. Bedload traps developed for sampling gravel bedload were found to be suitable samplers for CPOM transport. CPOM transport rates were well related to flow in consecutive samples but showed pronounced hysteresis over the diurnal fluctuations of flow, between consecutive days, and over the rising and falling limbs of the high-flow season. In order to compute annual CPOM load, hysteresis effects require intensive sampling and establishing separate rating curves for all rising and falling limbs. Hysteresis patterns of CPOM transport relations identified in the well-sampled study streams may aid with estimates of CPOM transport and export in less well-sampled Rocky Mountain streams. Transport relations for CPOM were similar among three high elevation mountain stream with mainly coniferous watersheds. Differences among streams can be qualitatively attributed to differences in CPOM contributions from litter fall, from the presence of large woody debris, its grinding into CPOM sized particles by gravel-cobble bedload transport, hillslope connectivity, drainage density, and biological consumption. CPOM loads were 3.6 and 3.2 t/yr for the two Rocky Mountain streams. Adjusted to reflect decadal averages, values increased to 11.3 and 10.2 t/yr. CPOM yields related to the entire watershed were 2.7 and 4 kg/ha/yr for the years studied, but both streams exported similar amounts of 6.5 and 6.6 kg/ha/yr when taking the forested portion of the watershed into account. To reflect decadal averages, CPOM yields per basin area were adjusted to 8.6 and 12.6 kg/ha/yr and to 21 kg/ha/yr for the forested watershed parts. CPOM yield may be more meaningfully characterized if annual CPOM loads are normalized by the area of a seam along the stream banks together with the stream surface area rather than by the forested or total watershed area.
Effects of Atmospheric Nitrate on an Upland Stream of the Northeastern USA
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.
2009-05-01
Excess nitrogen cascades through terrestrial biogeochemical cycles and affects stream nitrate concentrations in upland forests where atmospheric deposition is an important source of anthropogenic nitrogen. We will discuss approaches including high-frequency sampling, isotopic tracers, and end-member mixing analysis that can be used to decipher the sources, transformations, and hydrological processes that affect nitrate transport through forested upland catchments to streams. We present results of studies at the Sleepers River Research Watershed in Vermont, USA, a site where we have intensively measured stream nitrate concentrations during baseflow and stormflow. Stream nitrate concentrations are typically low and nearly 75% of annual inorganic N inputs from atmospheric deposition are retained within the catchment. However, high concentrations and stream loadings of nitrate occur during storm events due to source variation and hydrological flushing of nitrate from catchment soils. Using isotopic tracers and end-member mixing analysis, we have quantified source inputs of unprocessed atmospheric nitrate and show that this stream is directly affected by nitrogen pollution. Using a long-term record of stream hydrochemistry and our findings on event- scale nitrate flushing dynamics, we then explore how stream nitrate loading may respond to anthropogenic climate forcing during the next century. Results suggest that stream runoff and nitrate loadings will change during future emission scenarios (i.e. longer growing seasons and higher winter precipitation rates). Understanding the timing and magnitude of hydrological and hydrochemical responses is important because climate change effects on catchment hydrology may alter how nitrate is retained, produced, and hydrologically flushed in headwater ecosystems with implications for aquatic metabolism, nutrient export from catchments, and downstream eutrophication.
NASA Astrophysics Data System (ADS)
Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.
2016-04-01
Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused elevated concentrations of chlorinated ethenes, benzene and site specific pharmaceuticals in both the hyporheic zone and the stream water. Observed stream water vinyl chloride concentrations (up to 6 μg/L) are far above the Danish EQS (0.05 μg/L) for several km downstream of the discharge area. For heavy metals, comparison with EQS in stream water, the hyporheic zone and streambed showed concentrations around or above the threshold values for barium, copper, lead, nickel and zinc. The calculated TU was generally similar along the stream, but for arsenic and nickel higher values were observed where the groundwater plume discharges into the stream. Also, log TU sum values for organic contaminants were elevated in both the hyporheic zone and stream. Thus, the overall chemical stress in the main discharge area is much higher than upstream, while it gradually decreases downstream. In conclusion, this work clearly shows that groundwater contaminant plumes can impact stream water quality significantly in discharge areas, and extend far downstream. A surprisingly high impact of heavy metals with diffuse and/or biogenic origin on stream quality was identified. This work highlights the importance of a holistic assessment of stream water quality to identify and quantify the main contaminant sources and resulting chemical stream stressors leading to potential ecological impacts.
Phillips, P.; Chalmers, A.
2009-01-01
Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.
Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.
2011-01-01
This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005 samplings, Boulder Creek downstream from the wastewater treatment plant was 40 percent effluent, and Fourmile Creek downstream from that wastewater treatment plant was 28 percent effluent. At each site, 300 individual constituents were determined to characterize the water. Most of the inorganic constituents were detected in all of the stream and treatment-plant effluent samples, whereas detection of synthetic organic compounds was more limited and contaminants typically occurred only in wastewater treatment-plant effluents and at downstream sites. Concentrations ranged from nanograms per liter to milligrams per liter.
Research methods of plasma stream interaction with heat-resistant materials
NASA Astrophysics Data System (ADS)
Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Chinnov, V. F.; Demirov, N. A.; Kavyrshin, D. I.; Ageev, A. G.; Khromov, M. A.
2016-11-01
An experimental automated system was designed and constructed for studying the parameters and characteristics of non-stationary interacting system high-enthalpy-plasma stream-investigated sample: enthalpy of plasma in the incident stream; speed and temperature of plasma stream; temperature of electrons and heavy particles, ionic composition and their spatial distribution; heat flux incident on the sample (kW/cm2); surface temperature of the sample; ablation of the sample material, and others. Measurements of achievable plasma heat flux levels are carried out by calorimetry of plasma streams incident on the surface of multisection copper calorimeter. Determination of acceleration characteristics for profiled plasma torch nozzle, as well as the gas flow rate is produced by measuring the total pressure using the Pitot tube. Video visualization of interacting system is carried out using synchronized high-speed cameras. Micropyrometry of the selected zone on the sample surface is carried out by high-speed, three-wavelength pyrometer. To measure the rate of mass loss of the sample, in addition to the weighing method of evaluation the methods of laser knife and two-position stereoscopy are used. Plasma and sample emission characteristics are performed with two separate spectrometers.
Colour discrimination and categorisation in Williams syndrome.
Farran, Emily K; Cranwell, Matthew B; Alvarez, James; Franklin, Anna
2013-10-01
Individuals with Williams syndrome (WS) present with impaired functioning of the dorsal visual stream relative to the ventral visual stream. As such, little attention has been given to ventral stream functions in WS. We investigated colour processing, a predominantly ventral stream function, for the first time in nineteen individuals with Williams syndrome. Colour discrimination was assessed using the Farnsworth-Munsell 100 hue test. Colour categorisation was assessed using a match-to-sample test and a colour naming task. A visual search task was also included as a measure of sensitivity to the size of perceptual colour difference. Results showed that individuals with WS have reduced colour discrimination relative to typically developing participants matched for chronological age; performance was commensurate with a typically developing group matched for non-verbal ability. In contrast, categorisation was typical in WS, although there was some evidence that sensitivity to the size of perceptual colour differences was reduced in this group. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cytotoxic, genotoxic and mutagenic evaluation of surface waters from a coal exploration region.
Porta, Cynthia Silva; Dos Santos, Débora Lemes; Bernardes, Hélio Vieira; Bellagamba, Bruno Corrêa; Duarte, Anaí; Dias, Johnny Ferraz; da Silva, Fernanda Rabaioli; Lehmann, Mauricio; da Silva, Juliana; Dihl, Rafael Rodrigues
2017-04-01
Coal mining generates a considerable amount of waste, which is disposed of in piles or dams near mining sites. As a result, leachates may reach rivers and streams, promoting the wide dispersion of contaminants in solution and as particulate matter. The present study evaluated the cytotoxic, genotoxic, and mutagenic action of surface waters collected around a thermoelectric power plant and the largest mining area in Brazil (Candiota). Four sites in Candiota stream were selected, and samples were collected in winter and summer. Water samples were analyzed using the comet and CBMN assays in V79 and HepG2 cells. Furthermore, genotoxicity of water samples was evaluated in vivo using the SMART in Drosophila melanogaster. In addition, polycyclic aromatic hydrocarbons and inorganic elements were quantified. The results indicate that water samples exhibited no genotoxic and mutagenic activities, whether in vitro or in vivo. On the other hand, surface water samples collected in sites near the power plant in both summer and winter inhibited cell proliferation and induced increased frequencies of V79 cell death, apoptosis, and necrosis. The cytotoxicity observed may be associated with the presence of higher concentration of inorganic elements, especially aluminum, silicon, sulfur, titanium and zinc at sites 1 and 2 in the stream, as well as with the complex mixture present in the coal, in both seasons. Therefore, the results obtained point to the toxicity potential of water samples with the influence of coal mining and combustion processes and the possible adverse effects on the health of exposed organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Miagostovich, Marize P.; Ferreira, Fabiana F. M.; Guimarães, Flávia R.; Fumian, Túlio M.; Diniz-Mendes, Leonardo; Luz, Sérgio Luiz B.; Silva, Luciete A.; Leite, José Paulo G.
2008-01-01
To assess the presence of the four main viruses responsible for human acute gastroenteritis in a hydrographic network impacted by a disordered urbanization process, a 1-year study was performed involving water sample collection from streams in the hydrographic basin surrounding the city of Manaus, Amazonas, Brazil. Thirteen surface water sample collection sites, including different areas of human settlement characterized as urban, rural, and primary forest, located in the Tarumã-Açu, São Raimundo, Educandos, and Puraquequara microbasins, were defined with a global positioning system. At least one virus was detected in 59.6% (31/52) of the water samples analyzed, and rotavirus was the most frequent (44.2%), followed by human adenovirus (30.8%), human astrovirus (15.4%), and norovirus (5.8%). The viral contamination observed mainly in the urban streams reflected the presence of a local high-density population and indicated the gastroenteritis burden from pathogenic viruses in the water, principally due to recreational activities such as bathing. The presence of viral genomes in areas where fecal contamination was not demonstrated by bacterial indicators suggests prolonged virus persistence in aquatic environments and emphasizes the enteric virus group as the most reliable for environmental monitoring. PMID:18065620
Long term trends of fish after liming of Swedish streams and lakes
NASA Astrophysics Data System (ADS)
Holmgren, Kerstin; Degerman, Erik; Petersson, Erik; Bergquist, Björn
2016-12-01
Thousands of Swedish acidified lakes and streams have been regularly limed for about 30 years. Standard sampling of fish assemblages in lakes and streams was an important part of monitoring the trends after liming, i.e. sampling with multi-mesh gillnets in lakes (EN 14757) and electrofishing in streams (EN 14011). Monitoring data are nationally managed, in the National Register of Survey test-fishing and the Swedish Electrofishing Register. We evaluated long-term data from 1029 electrofishing sites in limed streams and gillnet sampling in 750 limed lakes, along with reference data from 195 stream sites and 101 lakes with no upstream liming in their catchments. The median year of first liming was 1986 for both streams and lakes. The proportion of limed stream sites with no fish clearly decreased with time, mean species richness and proportion of sites with brown trout (Salmo trutta) recruits increased. There were no consistent trends in fish occurrence or species richness at non-limed sites, but occurrence of brown trout recruits also increased in acid as well as neutral reference streams. Abundance of brown trout, perch (Perca fluviatilis) and roach (Rutilus rutilus) increased significantly more at limed sites than at non-limed reference sites sampled before and after 1986. The mean species richness did not change consistently in limed lakes, but decreased in low alkalinity reference lakes, and fish abundance decreased significantly in limed as well as in non-limed lakes.
NASA Astrophysics Data System (ADS)
Audette, Yuki; O'Halloran, Ivan; Voroney, Paul
2016-04-01
Transfer of dissolved phosphorus (P) in runoff water via streams is regulated mainly by both stream sediment P adsorption and precipitation processes. The adsorption capacity of stream sediments acting as a P sink was a great benefit to preserving water quality in downstream lakes in the past, as it minimized the effects of surplus P loading from watershed streams. However, with long-term continued P loading the capacity of the sediments to store P has diminished, and eventually converted stream sediments from P sinks to sources of dissolved P. This accumulation of 'legacy P' in stream sediments has become the major source of dissolved P and risk to downstream water quality. Agricultural best management practices (BMP) for P typically attempt to minimize the transfer of P from farmland. However, because of the limitation in sediment P adsorption capacity, adoption of BMPs, such as reduction of external P loading, may not result in an immediate improvement in water quality. The goal of the research is to chemically characterize the P forms contributing to legacy P in stream sediments located in the watershed connecting to Cook's Bay, one of three basins of Lake Simcoe, Ontario, Canada. This watershed receives the largest amount of external P loading and has the highest rate of sediment build-up, both of which are attributed to agriculture. Water samples were collected monthly at six study sites from October 2015 for analysis of pH, temperature, dissolved oxygen, total P, dissolved reactive P, particulate P, total N, NH4-N, NO3-N, TOC and other elements including Al, Fe, Mn, Mg, Ca, S, Na, K and Zn. Sediment core samples were collected in November 2015 and will continue to be collected in March, July and October 2016. Various forms of P in five vertical sections were characterized by sequential fractionation and solution 31P NMR spectroscopy techniques. Pore water, sediment texture and clay identification were performed. The concentration of total P in water samples were ~equal or less than the Ontario Provincial Water Quality Objectives (PWQO) of 0.03 mg P L-1 except at a site located in the stream in the Holland Marsh, which was ~7 times greater. Forms and distribution of P varied with sediment section and sampling site. The range of total sediment-P was from ~0.8 to 2.5 g P kg-1 sediment, and at some sites the mobile P forms accounted for > 75% of the total sediment-P. The study will continue to examine the temporal spatial and vertical distribution of P forms to predict the rates of P release under varying water chemistries. This basic research provides a fundamental approach for characterization of the legacy P in stream sediments, ultimately providing a better understanding of the linkage between changes in agricultural management practices affecting P losses from terrestrial sources and observed changes in surface water quality.
Particle dispersing system and method for testing semiconductor manufacturing equipment
Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.
1998-01-01
The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.
Recommendations for constructing forest stream crossings to control soil losses
Pamela J. Edwards; Jingxin Wang; Joshua T. Stedman
2009-01-01
Stream water samples were collected once daily and throughout storms from a small forested watershed in north central West Virginia for approximately 8 years. The turbidities of the samples were measured to determine how water quality changed in response to the construction of three associated stream crossings. The influence of the...
In order to investigate the relationship between stream chemistry and watershed land cover at the regional scale, we analyzed data from 368 wadeable streams sampled in the mid-Atlantic region of the U.S. during spring 1993-1994. Study sites were selected using a probability sampl...
The US EPA’s National River and Stream Assessment (NRSA) uses spatially balanced sampling to estimate the proportion of streams within the conterminous US (CONUS) that deviate from least-disturbed biological condition (BC). These assessments do not infer BC at un-sampled st...
Filipek, L.H.; Theobald, P.K.
1981-01-01
Samples of minus-80-mesh (<180 ??m) stream sediment, rock containing exposed fracture coatings, and jarosite and chrysocolla were collected from an area surrounding the North Silver Bell porphyry Cu deposit near Tucson, Arizona. The samples were subjected to a series of extractions in a scheme originally designed for use on samples from humid or sub-humid environments, in which the following fractions can effectively be separated: (1) carbonates and exchangeable metals; (2) Mn oxides; (3) organic compounds and sulfides; (4) hydrous Fe oxides; and (5) residual crystalline minerals. Jarosite and chrysocolla, two major minerals of the North Silver Bell area, were found to dissolve over two or more steps of the extraction scheme. The results represent only a limited number of samples from one copper deposit. Nevertheless, they do suggest that in a semiarid to arid environment, where mechanical dispersion of such minerals predominates, uncritical assignment of unique phases, such as Mn oxides or organics to a given extraction would lead to false interpretations of weathering processes. However, the relative proportions of elements dissolved in each step of the jarosite and chrysocolla extractions could be used as a "fingerprint" for recognition of the presence of these two minerals in the stream-sediment and rock samples. The relative abundance of hydrous Fe oxide and jarosite and the alteration zoning could be mapped using data from jarosite and chrysocolla extractions. Manganese oxides were also found to have a greater influence on Zn than on Cu or Pb during supergene alteration. The rapid change in relative importance of the first (1M-acetic acid) extraction for Cu, Zn, and Pb near the mineralized zone suggested the occurrence of minor hydromorphic processes within the stream sediments. Thus, the acetic acid extraction proved the most effective for pinpointing mineralization in sediments. In contrast, the residual fraction had the longest dispersion train, suggesting that total metal concentrations are most effective in arid environments for reconnaissance surveys. ?? 1981.
Catchment-wide impacts on water quality: the use of 'snapshot' sampling during stable flow
NASA Astrophysics Data System (ADS)
Grayson, R. B.; Gippel, C. J.; Finlayson, B. L.; Hart, B. T.
1997-12-01
Water quality is usually monitored on a regular basis at only a small number of locations in a catchment, generally focused at the catchment outlet. This integrates the effect of all the point and non-point source processes occurring throughout the catchment. However, effective catchment management requires data which identify major sources and processes. As part of a wider study aimed at providing technical information for the development of integrated catchment management plans for a 5000 km 2 catchment in south eastern Australia, a 'snapshot' of water quality was undertaken during stable summer flow conditions. These low flow conditions exist for long periods so water quality at these flow levels is an important constraint on the health of in-stream biological communities. Over a 4 day period, a study of the low flow water quality characteristics throughout the Latrobe River catchment was undertaken. Sixty-four sites were chosen to enable a longitudinal profile of water quality to be established. All tributary junctions and sites along major tributaries, as well as all major industrial inputs were included. Samples were analysed for a range of parameters including total suspended solids concentration, pH, dissolved oxygen, electrical conductivity, turbidity, flow rate and water temperature. Filtered and unfiltered samples were taken from 27 sites along the main stream and tributary confluences for analysis of total N, NH 4, oxidised N, total P and dissolved reactive P concentrations. The data are used to illustrate the utility of this sampling methodology for establishing specific sources and estimating non-point source loads of phosphorous, total suspended solids and total dissolved solids. The methodology enabled several new insights into system behaviour including quantification of unknown point discharges, identification of key in-stream sources of suspended material and the extent to which biological activity (phytoplankton growth) affects water quality. The costs and benefits of the sampling exercise are reviewed.
PREDICTION OF FUNDAMENTAL ASSEMBLAGES OF MID-ATLANTIC HIGHLAND STREAM FISHES
A statistical software tool, the Stream Fish Assemblage Predictor (SFAP), based on stream sampling data collected by the EPA in the mid-Atlantic Highlands, was developed to predict potential stream fish communities using characteristics of the stream and its watershed.
Step o...
Iwagami, Sho; Tsujimura, Maki; Onda, Yuichi; Nishino, Masataka; Konuma, Ryohei; Abe, Yutaka; Hada, Manami; Pun, Ishwar; Sakaguchi, Aya; Kondo, Hiroaki; Yamamoto, Masayoshi; Miyata, Yoshiki; Igarashi, Yasuhito
2017-01-01
The concentration of dissolved 137 Cs in groundwater and stream water in the headwater catchments in Yamakiya district, located ∼35 km north west of Fukushima Dai-ichi Nuclear Power Plant (FDNPP), was monitored from June 2011 to July 2013, after the earthquake and tsunami disaster. Groundwater and stream water were sampled at intervals of approximately 2 months at each site. Intensive sampling was also conducted during rainstorm events. Compared with previous data from the Chernobyl NPP accident, the concentration of dissolved 137 Cs in stream water was low. In the Iboishi-yama catchment, a trend was observed for the concentration of dissolved 137 Cs in stream water to decline, which could be divided into two phases by October 2011 (a fast flush of activity as a result of rapid washoff and a slow decline as a result of soil fixation and redistribution processes). The highest 137 Cs concentration recorded at Iboishi-yama was 1.2 Bq/L on August 6, 2011, which then declined to 0.021-0.049 Bq/L during 2013 (in stream water under normal water-flow conditions). During the rainfall events, the concentration of dissolved 137 Cs in stream water increased temporarily. The concentration of dissolved 137 Cs in groundwater at a depth of 30 m at Iboishi-yama displayed a decreasing trend from 2011 to 2013, with a range from 0.039 Bq/L to 0.0025 Bq/L. The effective half-lives of stream water in the initial fast flush and secondary phases were 0.10-0.21 and 0.69-1.5 y, respectively in the three catchments. The effective half-life of groundwater was 0.46-0.58 y at Koutaishi-yama and 0.50-3.3 y at Iboishi-yama. The trend for the concentration of dissolved 137 Cs to decline in groundwater and stream water was similar throughout 2012-2013, and the concentrations recorded in deeper groundwater were closer to those in stream water. The declining trend of dissolved 137 Cs concentrations in stream water was similar to that of the loss of canopy 137 Cs by throughfall, as shown in other reports of forest sites in the Yamakiya district. Copyright © 2016. Published by Elsevier Ltd.
Spectral Quantitation Of Hydroponic Nutrients
NASA Technical Reports Server (NTRS)
Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle
1996-01-01
Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.
CMOS Bit-Stream Band-Pass Beamforming
2016-03-31
unlimited. with direct IF sampling, most of the signal processing, including digital down-conversion ( DDC ), is carried out in the digital domain, and I/Q...level digitized signals are directly processed without decimation filtering for I/Q DDC and phase shifting. This novel BSP approach replaces bulky...positive feedback. The resonator center frequency of fs/4 (260MHz) simplifies the design of DDC . 4b tunable capacitors adjust the center frequency
Evaluating the Effects of Culvert Designs on Ecosystem Processes in Northern Wisconsin Streams
J. C. Olson; A. M. Marcarelli; A.L. Timm; S.L. Eggert; R.K. Kolka
2017-01-01
Culvert replacements are commonly undertaken to restore aquatic organism passage and stream hydrologic and geomorphic conditions, but their effects on ecosystem processes are rarely quantified. The objective of this study was to investigate the effects of two culvert replacement designs on stream ecosystem processes. The stream simulation design, where culverts...
Development of Data Acquisition Set-up for Steady-state Experiments
NASA Astrophysics Data System (ADS)
Srivastava, Amit K.; Gupta, Arnab D.; Sunil, S.; Khan, Ziauddin
2017-04-01
For short duration experiments, generally digitized data is transferred for processing and storage after the experiment whereas in case of steady-state experiment the data is acquired, processed, displayed and stored continuously in pipelined manner. This requires acquiring data through special techniques for storage and on-the-go viewing data to display the current data trends for various physical parameters. A small data acquisition set-up is developed for continuously acquiring signals from various physical parameters at different sampling rate for long duration experiment. This includes the hardware set-up for signal digitization, Field Programmable Gate Arrays (FPGA) based timing system for clock synchronization and event/trigger distribution, time slicing of data streams for storage of data chunks to enable viewing of data during acquisition and channel profile display through down sampling etc. In order to store a long data stream of indefinite/long time duration, the data stream is divided into data slices/chunks of user defined time duration. Data chunks avoid the problem of non-access of server data until the channel data file is closed at the end of the long duration experiment. A graphical user interface has been developed in Lab VIEW application development environment for configuring the data acquisition hardware and storing data chunks on local machine as well as at remote data server through Python for further data access. The data plotting and analysis utilities have been developed with Python software, which provides tools for further data processing. This paper describes the development and implementation of data acquisition for steady-state experiment.
Effects of urbanization on stream water quality in the city of Atlanta, Georgia, USA
Peters, N.E.
2009-01-01
A long-term stream water quality monitoring network was established in the city of Atlanta, Georgia during 2003 to assess baseline water quality conditions and the effects of urbanization on stream water quality. Routine hydrologically based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted ???12 times annually at 21 stations, with drainage areas ranging from 3.7 to 232 km2. Eleven of the stations are real-time (RT) stations having continuous measures of stream stage/ discharge, pH, dissolved oxygen, specific conductance, water temperature and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water quality and sediment-related constituents. Field parameters and concentrations of major ions, metals, nutrient species and coliform bacteria among stations were evaluated and with respect to watershed characteristics and plausible sources from 2003 through September 2007. Most constituent concentrations are much higher than nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. Routine manual sampling, automatic sampling during stormflows and RT water quality monitoring provided sufficient information about urban stream water quality variability to evaluate causes of water quality differences among streams. Fecal coliform bacteria concentrations of most samples exceeded Georgia's water quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s) and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. One stream was affected by dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum-manufacturing plant; streamwater has low pH (<5), low alkalinity and high metals concentrations. Several trace metals exceed acute and chronic water quality standards and high concentrations are attributed to washoff from impervious surfaces.
Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.
2002-01-01
A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is hot liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.
Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.
2000-01-01
A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condense one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is not liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esser, B K; McConachie, W; Fischer, R
2005-09-16
The Department of Toxic Substance Control (DTSC) requested that Lawrence Livermore National Laboratory (LLNL) evaluate the treatment process currently employed at the Department's Stringfellow Superfund Site Pretreatment Plant (PTP) site to determine if wastes originating from the site were properly managed with regards to their radioactivity. In order to evaluate the current management strategy, LLNL suggested that DTSC characterize the effluents from the waste treatment system for radionuclide content. A sampling plan was developed; samples were collected and analyzed for radioactive constituents. Following is brief summary of those results and what implications for waste characterization may be made. (1) Themore » sampling and analysis provides strong evidence that the radionuclides present are Naturally Occurring Radioactive Material (NORM). (2) The greatest source of radioactivity in the samples was naturally occurring uranium. The sample results indicate that the uranium concentration in the filter cake is higher than the Granular Activated Carbon (GAC) samples. (11 -14 and 2-6 ppm respectively). (3) No radiologic background for geologic materials has been established for the Stringfellow site, and comprehensive testing of the process stream has not been conducted. Without site-specific testing of geologic materials and waste process streams, it is not possible to conclude if filter cake and spent GAC samples contain radioactivity concentrated above natural background levels, or if radionuclides are being concentrated by the waste treatment process. Recommendation: The regulation of Technologically Enhanced, Naturally Occurring Radioactive Materials (T-NORM) is complex. Since the results of this study do not conclusively demonstrate that natural radioactive materials have not been concentrated by the treatment process it is recommended that the DTSC consult with the Department of Health Services (DHS) Radiological Health Branch to determine if any further action is warranted. If it were deemed desirable to establish a background for the Stringfellow setting LLNL would recommend that additional samples be taken and analyzed by LLNL using the same methods presented in this report.« less
Davenport, M.S.
1993-01-01
Water and bottom-sediment samples were collected at 26 sites in the 65-square-mile High Point Lake watershed area of Guilford County, North Carolina, from December 1988 through December 1989. Sampling locations included 10 stream sites, 8 lake sites, and 8 ground-water sites. Generally, six steady-flow samples were collected at each stream site and three storm samples were collected at five sites. Four lake samples and eight ground-water samples also were collected. Chemical analyses of stream and lake sediments and particle-size analyses of lake sediments were performed once during the study. Most stream and lake samples were analyzed for field characteristics, nutrients, major ions, trace elements, total organic carbon, and chemical-oxygen demand. Analyses were performed to detect concentrations of 149 selected organic compounds, including acid and base/neutral extractable and volatile constituents and carbamate, chlorophenoxy acid, triazine, organochlorine, and organophosphorus pesticides and herbicides. Selected lake samples were analyzed for all constituents listed in the Safe Drinking Water Act of 1986, including Giardia, Legionella, radiochemicals, asbestos, and viruses. Various chromatograms from organic analyses were submitted to computerized library searches. The results of these and all other analyses presented in this report are in tabular form.
Chambers, Douglas B.; Leiker, Thomas J.
2006-01-01
In 2003 a team of scientists from West Virginia Division of Natural Resources and the U. S. Geological Survey found a high incidence of an intersex condition, oocytes in the testes, among smallmouth bass (Micropterus dolomieu) in the South Branch Potomac River and the Cacapon River of West Virginia, indicating the possible presence of endocrine-disrupting compounds (EDCs). Possible sources of EDCs include municipal and domestic wastewater, and agricultural and industrial activities. Several sampling strategies were used to identify emerging contaminants, including potential EDCs, and their possible sources in these river basins and at an out-of-basin reference site. Passive water-sampling devices, which accumulate in-stream organic chemical compounds, were deployed for 40-41 days at 8 sampling sites. Sampler extracts were analyzed for a broad range of polar and non-polar organic compounds including pesticides, flame retardants, pharmaceuticals, and personal-care products. Analysis of passive-sampler extracts found 4 compounds; hexachloro-benzene; pentachloroanisole; 2,2',4,4',5-penta-bromo-diphenyl ether (BDE 47); and 2,2',4,4',6-penta-bromo-diphenyl ether (BDE 99) to be present at every sampled site, including the reference site, and several sites had detectable quantities of other compounds. No detectable quantity of any antibiotics was found in any passive-sampler extract. Effluent samples were analyzed for 39 antibiotics as tracers of human and agricultural waste. Additionally, poultry-processing plant effluent was sampled for roxarsone, an organoarsenic compound used as a poultry-feed additive, and other arsenic species as tracers of poultry waste. Antibiotics were detected in municipal wastewater, aquaculture, and poultry-processing effluent, with the highest number of antibiotics and the greatest concentrations found in municipal effluent. Arsenate was the only arsenic species detected in the poultry-processing plant effluent, at a concentration of 1.0 ?g/L. Water samples were collected from 7 stream sites and analyzed for arsenic species, including roxarsone. Arsenate was detected in samples from 6 of the 7 stream samples, in concentrations ranging from 0.3 to 0.5 ?g/L. Additionally, the analysis of smallmouth bass blood plasma for potential EDCs indicated the presence of several compounds including some found in the passive sampler extracts, specifically BDE 47 and BDE 99. Data from this reconnaissance will help to focus efforts for further studies of the occurrence of emerging contaminants, EDCs, and intersex in smallmouth bass in these Potomac River tributaries.
Apparatus for the liquefaction of natural gas and methods relating to same
Turner, Terry D [Ammon, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID
2009-09-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.
NASA Astrophysics Data System (ADS)
Olshansky, Y.; White, A. M.; Thompson, M.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.
2017-12-01
Concentration discharge (C-Q) relations contain potentially important information on critical zone (CZ) processes including: weathering reactions, water flow paths and nutrient export. To examine the C-Q relations in a small (3.3 km2) headwater catchment - La Jara Creek located in the Jemez River Basin Critical Zone Observatory, daily, diurnal stream water samples were collected during spring snow melt 2017, from two flumes located in outlets of the La Jara Creek and a high elevation zero order basin within this catchment. Previous studies from this site (McIntosh et al., 2017) suggested that high frequency sampling was needed to improve our interpretation of C-Q relations. The dense sampling covered two ascending and two descending limbs of the snowmelt hydrograph, from March 1 to May 15, 2017. While Na showed inverse correlation (dilution) with discharge, most other solutes (K, Mg, Fe, Al, dissolved organic carbon) exhibited positive (concentration) or chemostatic trends (Ca, Mn, Si, dissolved inorganic carbon and dissolved nitrogen). Hysteresis in the C-Q relation was most pronounced for bio-cycled cations (K, Mg) and for Fe, which exhibited concentration during the first ascending limb followed by a chemostatic trend. A pulsed increase in Si concentration immediately after the first ascending limb in both flumes suggests mixing of deep groundwater with surface water. A continual increase in Ge/Si concentrations followed by a rapid decrease after the second rising limb may suggest a fast transition between soil water to ground water dominating the stream flow. Fourier transform infrared spectroscopy of selected samples across the hydrograph demonstrated pronounced changes in dissolved organic matter molecular composition with the advancement of the spring snow melt. X-ray micro-spectroscopy of colloidal material isolated from the collected water samples indicated a significant role for organic matter in the transport of inorganic colloids. Analyses of high frequency diurnal sampling greatly improve our ability to probe rapid CZ changes occurring during spring snowmelt, and provide useful information for evaluation and modeling of CZ processes in other snow melt dominated regions.
Academic Self-Concepts in Ability Streams: Considering Domain Specificity and Same-Stream Peers
ERIC Educational Resources Information Center
Liem, Gregory Arief D.; McInerney, Dennis M.; Yeung, Alexander S.
2015-01-01
The study examined the relations between academic achievement and self-concepts in a sample of 1,067 seventh-grade students from 3 core ability streams in Singapore secondary education. Although between-stream differences in achievement were large, between-stream differences in academic self-concepts were negligible. Within each stream, levels of…
Occurrence of invertebrates at 38 stream sites in the Mississippi Embayment study unit, 1996-99
Caskey, Brian J.; Justus, B.G.; Zappia, Humbert
2002-01-01
A total of 88 invertebrate species and 178 genera representing 59 families, 8 orders, 6 classes, and 3 phyla was identified at 38 stream sites in the Mississippi Embayment Study Unit from 1996 through 1999 as part of the National Water-Quality Assessment Program. Sites were selected based on land use within the drainage basins and the availability of long-term streamflow data. Invertebrates were sampled as part of an overall sampling design to provide information related to the status and trends in water quality in the Mississippi Embayment Study Unit, which includes parts of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. Invertebrate sampling and processing was conducted using nationally standardized techniques developed for the National Water-Quality Assessment Program. These techniques included both a semi-quantitative method, which targeted habitats where invertebrate diversity is expected to be highest, and a qualitative multihabitat method, which samples all available habitat types possible within a sampling reach. All invertebrate samples were shipped to the USGS National Water-Quality Laboratory (NWQL) where they were processed. Of the 365 taxa identified, 156 were identified with the semi-quantitative method that involved sampling a known quantity of what was expected to be the richest habitat, woody debris. The qualitative method, which involved sampling all available habitats, identified 345 taxa The number of organisms identified in the semi-quantitative samples ranged from 74 to 3,295, whereas the number of taxa identified ranged from 9 to 54. The number of organisms identified in the qualitative samples ranged from 42 to 29,634, whereas the number of taxa ranged from 18 to 81. From all the organisms identified, chironomid taxa were the most frequently identified, and plecopteran taxa were among the least frequently identified.
2007 SB14 Source Reduction Plan/Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L
2007-07-24
Aqueous solutions (mixed waste) generated from various LLNL operations, such as debris washing, sample preparation and analysis, and equipment maintenance and cleanout, were combined for storage in the B695 tank farm. Prior to combination the individual waste streams had different codes depending on the particular generating process and waste characteristics. The largest streams were CWC 132, 791, 134, 792. Several smaller waste streams were also included. This combined waste stream was treated at LLNL's waste treatment facility using a vacuum filtration and cool vapor evaporation process in preparation for discharge to sanitary sewer. Prior to discharge, the treated waste streammore » was sampled and the results were reviewed by LLNL's water monitoring specialists. The treated solution was discharged following confirmation that it met the discharge criteria. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. A major source, accounting for 50% for this waste stream, is metal machining, cutting and grinding operations in the engineering machine shops in B321/B131. An additional 7% was from similar operations in B131 and B132S. This waste stream primarily contains metal cuttings from machined parts, machining coolant and water, with small amounts of tramp oil from the machining and grinding equipment. Several waste reduction measures for the B321 machine shop have been taken, including the use of a small point-of-use filtering/tramp-oil coalescing/UV-sterilization coolant recycling unit, and improved management techniques (testing and replenishing) for coolants. The recycling unit had some operational problems during 2006. The machine shop is planning to have it repaired in the near future. Quarterly waste generation data prepared by the Environmental Protection Department's P2 Team are regularly provided to engineering shops as well as other facilities so that generators can track the effectiveness of their waste minimization efforts.« less
Coiner, R.L.; Pope, L.M.; Mehl, H.E.
2010-01-01
An assessment of energetic compounds (explosive and propellant residues) and associated semi-volatile organic compounds (SVOCs) and trace elements in streambed sediment and stream water from streams draining munitions firing points and impact areas at Fort Riley, northeast Kansas, was performed during 2007-08 by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army. Streambed sediment from 16 sampling sites and stream-water samples from 5 sites were collected at or near Fort Riley and analyzed for as many as 17 energetic compounds, 65 SVOCs, and 27 trace elements. None of the energetic compounds or SVOCs were detected in streambed sediment collected from sites within the Fort Riley Military Reservation. This may indicate that these compounds either are not transported from dispersal areas or that analytical methods are not sensitive enough to detect the small concentrations that may be transported. Concentrations of munitions-associated trace elements did not exceed sediment-quality guidelines recommended by the U.S. Environmental Protection Agency (USEPA) and are not indicative of contamination of streambed sediment at selected streambed sampling sites, at least in regards to movement from dispersal areas. Analytical results of stream-water samples provided little evidence of contamination by energetic compounds, SVOCs, or associated trace elements. Perchlorate was detected in 19 of 20 stream-water samples at concentrations ranging from an estimated 0.057 to an estimated 0.236 ug/L (micrograms per liter) with a median concentration of an estimated 0.114 ug/L, substantially less than the USEPA Interim Health Advisory criterion (15 ug/L), and is in the range of documented background concentrations. Because of these small concentrations and possible natural sources (precipitation and groundwater), it is likely that the occurrence of perchlorate in stream water is naturally occurring, although a definitive identification of the source of perchlorate in stream water at Fort Riley is difficult. The only SVOCs detected in stream-water samples were bis(2-ethylhexyl) phthalate and di-n-butyl phthalate but at concentrations substantially less than the most stringent aquatic-life criteria established by the Kansas Department of Health and Environment. All trace element concentrations in stream-water samples were less than the most stringent aquatic-life criteria. The implication of these stream-water results is that contamination arising from firing-range activities, if it exists, is so small as to be nondetectable with current analytical methods or is not distinguishable from background concentrations for constituents that also are naturally occurring. Overall, the munitions-related constituents analyzed in streambed sediment and stream water, when detected, were at concentrations that were less than regulatory criteria
Soil processes at Emerald Lake Watershed. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, L.J.; Brown, A.D.; Lueking, M.A.
1987-04-20
The objectives of the Soils Processes research at Emerald Lake Watershed (ELW) were to assess physical, chemical and biological processes contributing to the production or consumption of acidity in soils and to assess the net effect of soil processes on surface-water quality in an alpine watershed. Most of the N and S in ELW soils is stored in organic forms. Most of the soil P is present in nearly insoluble mineral forms. The ELW soils can adsorb only small quantities of sulfate, thus their capacity for buffering acid additions by sulfate adsorption is low. Concentrations of Al, Ca, Mg, K,more » and Na in both soil solution and stream samples reflected patterns of mineral weathering in the watershed. Summer CO/sub 2/ concentrations in the soils were high enough to increase soil solution acidity and influence the speciation of dissolved elements. The overall chemistry of stream waters reflects the mineral composition of soils and rocks at ELW.« less
Opsahl, Stephen P.
2012-01-01
During 1997–2012, the U.S. Geological Survey, in cooperation with the San Antonio Water System, collected and analyzed water-quality constituents in surface-water runoff from five ephemeral stream sites near San Antonio in northern Bexar County, Texas. The data were collected to assess the quality of surface water that recharges the Edwards aquifer. Samples were collected from four stream basins that had small amounts of developed land at the onset of the study but were predicted to undergo substantial development over a period of several decades. Water-quality samples also were collected from a fifth stream basin located on land protected from development to provide reference data by representing undeveloped land cover. Water-quality data included pH, specific conductance, chemical oxygen demand, dissolved solids (filtered residue on evaporation in milligrams per liter, dried at 180 degrees Celsius), suspended solids, major ions, nutrients, trace metals, and pesticides. Trace metal concentration data were compared to the Texas Commission on Environmental Quality established surface water quality standards for human health protection (water and fish). Among all constituents in all samples for which criteria were available for comparison, only one sample had one constituent which exceeded the surface water criteria on one occasion. A single lead concentration (2.76 micrograms per liter) measured in a filtered water sample exceeded the surface water criteria of 1.15 micrograms per liter. The average number of pesticide detections per sample in stream basins undergoing development ranged from 1.8 to 6.0. In contrast, the average number of pesticide detections per sample in the reference stream basin was 0.6. Among all constituents examined in this study, pesticides, dissolved orthophosphate phosphorus, and dissolved total phosphorus demonstrated the largest differences between the four stream basins undergoing development and the reference stream basin with undeveloped land cover.
Speechley, William J; Ngan, Elton T C
2008-01-01
Delusions, a cardinal feature of schizophrenia, are characterized by the development and preservation of false beliefs despite reason and evidence to the contrary. A number of cognitive models have made important contributions to our understanding of delusions, though it remains unclear which core cognitive processes are malfunctioning to enable individuals with delusions to form and maintain erroneous beliefs. We propose a modified dual-stream processing model that provides a viable and testable mechanism that can account for this debilitating symptom. Dual-stream models divide decision-making into two streams: a fast, intuitive and automatic form of processing (Stream 1); and a slower, conscious and deliberative process (Stream 2). Our novel model proposes two key influences on the way these streams interact in everyday decision-making: conflict and emotion. Conflict: in most decision-making scenarios one obvious answer presents itself and the two streams converge onto the same conclusion. However, in instances where there are competing alternative possibilities, an individual often experiences dissonance, or a sense of conflict. The detection of this conflict biases processing towards the more deliberative Stream 2. Emotion: highly emotional states can result in behavior that is reflexive and action-oriented. This may be due to the power of emotionally valenced stimuli to bias reasoning towards Stream 1. We propose that in schizophrenia, an abnormal response to these two influences results in a pathological schism between Stream 1 and Stream 2, enabling erroneous intuitive explanations to coexist with contrary logical explanations of the same event. Specifically, we suggest that delusions are the result of a failure to reconcile the two streams due to both a failure of conflict to bias decision-making towards Stream 2 and an accentuated emotional bias towards Stream 1.
NASA Astrophysics Data System (ADS)
Salvato, L.; Crossey, L. J.
2013-12-01
The Rio Chama is the largest stream tributary to the Rio Grande in northern New Mexico. The river's geographic location in a semiarid region results in high rates of evapotranspiration and highly variable streamflow. The Rio Chama is part of the San Juan-Chama Drinking Water Project, in which water from the San Juan River, southern Colorado, is diverted across the continental divide to the Rio Chama. Surface water moves through Abiquiu, El Vado and Heron Reservoirs to the Rio Grande to supply Albuquerque with potable drinking water. The results of these anthropogenic influences are a modified flow regime, less variability, greater base-flows, and smaller peak flows. We examined selected locations throughout the Rio Chama system to provide base-line water quality data for ongoing studies. This information will contribute to the development of the best plan to optimize flow releases and maximize benefits of the stakeholders and especially the riparian and stream ecosystems. We report results of two sampling trips representing extremes of the hydrograph in summer 2012 and fall 2012. We collected field parameters, processed water samples, and analyzed them for major anions and cations. The geochemistry enables us to better understand the impact of monthly releases of San Juan river water. We captured two points of the river's streamflow range, 54 cubic feet per second in October 2012 and 1,000 cubic feet per second in August 2012 and looked for variability within the results. We found that the reservoirs exhibit varying anion concentrations from samples taken at different depths. We compared stream waters and selected well samples at a stream transect. These samples allowed us to compare shallow ground water with the stream, and they indicated that the changes in ground water are attributed to sulfate reduction. The anion and cation inputs were most likely derived from gypsum, calcite, and salts, as there are many creeks discharging into the Rio Chama whose drainage basins contain exposures of strata bearing these minerals. We established base-line information at the extremes of flow, and our future work will integrate repeat sampling with water level data to more robustly correlate water quality characteristics with release flows. Rio Chama River, Northern New Mexico
Experimental study of streaming flows associated with ultrasonic levitators
NASA Astrophysics Data System (ADS)
Trinh, E. H.; Robey, J. L.
1994-11-01
Steady-state acoustic streaming flow patterns have been observed during the operation of a variety of resonant single-axis ultrasonic levitators in a gaseous environment and in the 20-37 kHz frequency range. Light sheet illumination and scattering from smoke particles have revealed primary streaming flows which display different characteristics at low and high sound pressure levels. Secondary macroscopic streaming cells around levitated samples are superimposed on the primary streaming flow pattern generated by the standing wave. These recorded flows are quite reproducible, and are qualitatively the same for a variety of levitator physical geometries. An onset of flow instability can also be recorded in nonisothermal systems, such as levitated spot-heated samples when the resonance conditions are not exactly satisfied. A preliminary qualitative interpretation of these experimental results is presented in terms of the superposition of three discrete sets of circulation cells operating on different spatial scales. These relevant length scales are the acoustic wavelength, the levitated sample size, and finally the acoustic boundary layer thickness. This approach fails, however, to explain the streaming flow-field morphology around liquid drops levitated on Earth. Observation of the interaction between the flows cells and the levitated samples also suggests the existence of a steady-state torque induced by the streaming flows.
Spatial heterogeneity of within-stream methane concentrations
NASA Astrophysics Data System (ADS)
Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.
2017-05-01
Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4 and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.
Determining long time-scale hyporheic zone flow paths in Antarctic streams
Gooseff, M.N.; McKnight, Diane M.; Runkel, R.L.; Vaughn, B.H.
2003-01-01
In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross-section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near-stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time-scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream-water exchange between the streams and extended hyporheic zones over long time-scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11??? D and 2.2??? 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occured owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time-scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (??) generally an order magnitude lower (10-5 s-1) than those determined using stream-tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near-stream zones of rapid stream-water exchange, where 'fast' biogeochemical reactions may influence water chemistry, and extended hyporheic zones, in which slower biogeochemical reaction rates may affect stream-water chemistry at longer time-scales. Copyright ?? 2003 John Wiley & Sons, Ltd.
Rodríguez Castro, M C; Marcó P, L; Ranieri, M C; Vázquez, C; Giorgi, A
2017-10-07
A survey of arsenic and phosphorus in Pampean streams of Buenos Aires province was performed. Nitrates and ammonia were also determined. Stream water was sampled as well as stream sediment and filamentous algae. Results show that 32 streams exceeded the arsenic recommended guidelines for human consumption of 10 μg L -1 and six exceeded recommended values for aquatic organisms' protection of 50 μg L -1 . The average concentration found was 36.54 μg L -1 and areas with more concentration of As are located in the southern region of the province, in streams that are tributaries of the Atlantic Ocean. Other regions with high As concentration are the Matanza River tributaries and the Arrecifes River tributaries. No differences of As concentration was found between stream sediments. Also, no seasonal pattern of As concentration was observed in one stream sampled during a year, but a positive correlation between As and the conductivity (p = 0.0002) and pH (p = 0.01) of the streams was found. Also, As bioaccumulation was detected for all the algae sampled, but no correlation between As accumulated and As in the stream water was found. Ammonia levels exceeded recommended guidelines for human consumption in the Argentinean law in 30 streams. The characterization performed in this study provides relevant information on the distribution of arsenic and its origin and mobility.
Brabets, Timothy P.; Ourso, Robert T.
2013-01-01
The Kantishna Hills are an area of low elevation mountains in the northwest part of Denali National Park and Preserve, Alaska. Streams draining the Kantishna Hills are clearwater streams that support several species of fish and are derived from rain, snowmelt, and subsurface aquifers. However, the water quality of many of these streams has been degraded by mining. Past mining practices generated acid mine drainage and excessive sediment loads that affected water quality and aquatic habitat. Because recovery through natural processes is limited owing to a short growing season, several reclamation projects have been implemented on several streams in the Kantishna Hills region. To assess the current water quality of streams in the Kantishna Hills area and to determine if reclamation efforts have improved water quality, a cooperative study between the U.S. Geological Survey and the National Park Service was undertaken during 2008-11. High levels of turbidity, an indicator of high concentrations of suspended sediment, were documented in water-quality data collected in the mid-1980s when mining was active. Mining ceased in 1985 and water-quality data collected during this study indicate that levels of turbidity have declined significantly. Turbidity levels generally were less than 2 Formazin Nephelometric Units and suspended sediment concentrations generally were less than 1 milligram per liter during the current study. Daily turbidity data at Rock Creek, an unmined stream, and at Caribou Creek, a mined stream, documented nearly identical patterns of turbidity in 2009, indicating that reclamation as well as natural revegetation in mined streams has improved water quality. Specific conductance and concentrations of dissolved solids and major ions were highest from streams that had been mined. Most of these streams flow into Moose Creek, which functions as an integrator stream, and dilutes the specific conductance and ion concentrations. Calcium and magnesium are the dominant cations, and bicarbonate and sulfate are the dominant anions. Water samples indicate that the water from Rock Creek, Moose Creek, Slate Creek, and Eldorado Creek is a calcium bicarbonate-type water. The remaining sites are a calcium sulfate type water. U.S. Environmental Protection Agency guidelines for arsenic and antimony in drinking water were exceeded in water at Slate Creek and Eureka Creek. Concentrations of arsenic, cadmium, chromium, copper, lead, nickel, and zinc in streambed sediments at many sites exceed sediment quality guideline thresholds that could be toxic to aquatic life. However, assessment of these concentrations, along with the level of organic carbon detected in the sediment, indicate that only concentrations of arsenic and chromium may be toxic to aquatic life at many sites. In 2008 and 2009, 104 macroinvertebrate taxa and 164 algae taxa were identified from samples collected from seven sites. Of the macroinvertebrates, 86 percent were insects and most of the algae consisted of diatoms. Based on the National Community Index, Rock Creek, a reference site, and Caribou Creek, and a mined stream that had undergone some reclamation, exhibited the best overall stream conditions; whereas Slate Creek and Friday Creek, two small streams that were mined extensively, exhibited the worst stream conditions. A non-metric multi-dimensional scaling analysis of the macroinvertebrate and algae data showed a distinct grouping between the 2008 and 2009 samples, likely because of differences between a wet, cool summer in 2008 and a dry, warm summer in 2009.
A Framework to Assess the Impacts of Climate Change on ...
Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba
Diminished Stream Nitrate Concentrations Linked to Dissolved Organic Carbon Dynamics After Leaf Fall
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Doctor, D. H.; Kendall, C.
2004-05-01
Thermodynamic coupling of the nitrogen and carbon cycles has broad implications for controls on catchment nutrient fluxes. In the northeast US, leaf fall occurs in early October and the availability of organic carbon increases as the leaves decompose. At the Sleepers River Research Watershed in northeastern Vermont (USA), we sampled stream chemistry from seven nested catchments to determine how stream dissolved organic carbon (DOC) and nitrate vary as a function of flow conditions, land-use, and basin size in response to leaf fall. Following leaf fall, nitrate concentration patterns were quantitatively different from other times of the year. Under baseflow conditions, stream and soil water DOC concentrations were higher than normal, whereas nitrate concentrations declined sharply at the five smallest catchments and more modestly at the two largest catchments. Under high flow conditions, flushing of nitrate was observed, as is typical for stormflow response at Sleepers River. Our field data suggest that in-stream processing of nitrate is likely thermodynamically and kinetically favorable under baseflow but not at higher flow conditions when expanding variable source areas make hydrological connections between nitrate source areas and streams. We are working to evaluate this hypothesis with isotopic and other monitoring data, and to model the coupled interactions of water, DOC, and nitrate fluxes in these nested catchments.
Stottlemyer, R.
1997-01-01
Weekly precipitation and stream water samples were collected from small watersheds in Denali National Park, Alaska, the Fraser Experimental Forest, Colorado, Isle Royale National Park, Michigan, and the Calumet watershed on the south shore of Lake Superior, Michigan. The objective was to determine if stream water chemistry at the mouth and upstream stations reflected precipitation chemistry across a range of atmospheric inputs of H+, NH4+, NO3-, and SO42-. Volume-weighted precipitation H+, NH4+, NO3-, and SO42- concentrations varied 4 to 8 fold with concentrations highest at Calumet and lowest in Denali. Stream water chemistry varied among sites, but did not reflect precipitation chemistry. The Denali watershed, Rock Creek, had the lowest precipitation NO3- and SO42- concentrations, but the highest stream water NO3and SO42- concentrations. Among sites, the ratio of mean monthly upstream NO3- concentration to precipitation NO3- concentration declined (p 90 percent inputs) across inputs ranging from 0.12 to > 6 kg N ha-1 y-1. Factors possibly accounting for the weak or non-existent signal between stream water and precipitation ion concentrations include rapid modification of meltwater and precipitation chemistry by soil processes, and the presence of unfrozen soils which permits winter mineralization and nitrification to occur.
Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage
Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.
1994-01-01
Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.
NASA Astrophysics Data System (ADS)
Blaen, P.; Riml, J.; Khamis, K.; Krause, S.
2017-12-01
Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.
Separation process using pervaporation and dephlegmation
Vane, Leland M.; Mairal, Anurag P.; Ng, Alvin; Alvarez, Franklin R.; Baker, Richard W.
2004-06-29
A process for treating liquids containing organic compounds and water. The process includes a pervaporation step in conjunction with a dephlegmation step to treat at least a portion of the permeate vapor from the pervaporation step. The process yields a membrane residue stream, a stream enriched in the more volatile component (usually the organic) as the overhead stream from the dephlegmator and a condensate stream enriched in the less volatile component (usually the water) as a bottoms stream from the dephlegmator. Any of these may be the principal product of the process. The membrane separation step may also be performed in the vapor phase, or by membrane distillation.
Martin, Jeffrey D.; Eberle, Michael; Nakagaki, Naomi
2011-01-01
This report updates a previously published water-quality dataset of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through September 2010 at stream-water sites of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program and the National Stream Quality Accounting Network (NASQAN) were compiled, reviewed, selected, and prepared for trend analysis. The principal steps in data review for trend analysis were to (1) identify analytical schedule, (2) verify sample-level coding, (3) exclude inappropriate samples or results, (4) review pesticide detections per sample, (5) review high pesticide concentrations, and (6) review the spatial and temporal extent of NAWQA pesticide data and selection of analytical methods for trend analysis. The principal steps in data preparation for trend analysis were to (1) select stream-water sites for trend analysis, (2) round concentrations to a consistent level of precision for the concentration range, (3) identify routine reporting levels used to report nondetections unaffected by matrix interference, (4) reassign the concentration value for routine nondetections to the maximum value of the long-term method detection level (maxLT-MDL), (5) adjust concentrations to compensate for temporal changes in bias of recovery of the gas chromatography/mass spectrometry (GCMS) analytical method, and (6) identify samples considered inappropriate for trend analysis. Samples analyzed at the USGS National Water Quality Laboratory (NWQL) by the GCMS analytical method were the most extensive in time and space and, consequently, were selected for trend analysis. Stream-water sites with 3 or more water years of data with six or more samples per year were selected for pesticide trend analysis. The selection criteria described in the report produced a dataset of 21,988 pesticide samples at 212 stream-water sites. Only 21,144 pesticide samples, however, are considered appropriate for trend analysis.
Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.
1985-01-01
Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle.
Whittington, Charles L.; Leinz, Reinhard W.; Grimes, David J.
1985-01-01
Stream-sediment sampling in the Medford 1o x 2o quadrangle was undertaken to provide to aid in assessment of the mineral resource potential of the quadrangle. This map presents data on the abundance and distribution of copper in the oxide residues (oxalic-acid leachates) of stream sediments and in the minus-0.18-mm sieve fraction of selected stream sediments collected in the quadrangle.
Time-of-travel data for Nebraska streams, 1968 to 1977
Petri, L.R.
1984-01-01
This report documents the results of 10 time-of-travel studies, using ' dye-tracer ' methods, conducted on five streams in Nebraska during the period 1968 to 1977. Streams involved in the studies were the North Platte, North Loup, Elkhorn, and Big Blue Rivers and Salt Creek. Rhodamine WT dye in a 20 percent solution was used as the tracer for all 10 time-of-travel studies. Water samples were collected at several points below each injection site. Concentrations of dye in the samples were measured by determining fluorescence of the sample and comparing that value to fluorescence-concentration curves. Stream discharges were measured before and during each study. Results of each time-by-travel study are shown on two tables and on graph. The first table shows water discharge at injection and sampling sites, distance between sites, and time and rate of travel of the dye between sites. The second table provides descriptions of study sites, amounts of dye injected in the streams, actual sampling times, and actual concentrations of dye detected. The graphs for each time-of-travel study provide indications of changing travel rates between sampling sites, information on length of dye clouds, and times for dye passage past given points. (USGS)
Network analysis reveals multiscale controls on streamwater chemistry
Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...
USDA-ARS?s Scientific Manuscript database
The transport behavior of solutes in streams depends on chemical, physical, biological, and hydrodynamic processes. Although it is a very complex system, it is known that this behavior is greatly influenced by surface and subsurface flows. For this reason, tracer injection in the water flows is one ...
Network Structure as a Modulator of Disturbance Impacts in Streams
NASA Astrophysics Data System (ADS)
Warner, S.; Tullos, D. D.
2017-12-01
This study examines how river network structure affects the propagation of geomorphic and anthropogenic disturbances through streams. Geomorphic processes such as debris flows can alter channel morphology and modify habitat for aquatic biota. Anthropogenic disturbances such as road construction can interact with the geomorphology and hydrology of forested watersheds to change sediment and water inputs to streams. It was hypothesized that the network structure of streams within forested watersheds would influence the location and magnitude of the impacts of debris flows and road construction on sediment size and channel width. Longitudinal surveys were conducted every 50 meters for 11 kilometers of third-to-fifth order streams in the H.J. Andrews Experimental Forest in the Western Cascade Range of Oregon. Particle counts and channel geometry measurements were collected to characterize the geomorphic impacts of road crossings and debris flows as disturbances. Sediment size distributions and width measurements were plotted against the distance of survey locations through the network to identify variations in longitudinal trends of channel characteristics. Thresholds for the background variation in sediment size and channel width, based on the standard deviations of sample points, were developed for sampled stream segments characterized by location as well as geomorphic and land use history. Survey locations were classified as "disturbed" when they deviated beyond the reference thresholds in expected sediment sizes and channel widths, as well as flow-connected proximity to debris flows and road crossings. River network structure was quantified by drainage density and centrality of nodes upstream of survey locations. Drainage density and node centrality were compared between survey locations with similar channel characteristic classifications. Cluster analysis was used to assess the significance of survey location, proximity of survey location to debris flows and road crossings, drainage density and node centrality in predicting sediment size and channel width classifications for locations within the watershed. Results contribute to the understanding of susceptibility and responses of streams supporting critical habitat for aquatic species to debris flows and forest road disturbances.
Streaming Potential In Rocks Saturated With Water And Oil
NASA Astrophysics Data System (ADS)
Tarvin, J. A.; Caston, A.
2011-12-01
Fluids flowing through porous media generate electrical currents. These currents cause electric potentials, called "streaming potentials." Streaming potential amplitude depends on the applied pressure gradient, on rock and fluid properties, and on the interaction between rock and fluid. Streaming potential has been measured for rocks saturated with water (1) and with water-gas mixtures. (2) Few measurements (3) have been reported for rocks saturated with water-oil mixtures. We measured streaming potential for sandstone and limestone saturated with a mixture of brine and laboratory oil. Cylindrical samples were initially saturated with brine and submerged in oil. Saturation was changed by pumping oil from one end of a sample to the other and then through the sample in the opposite direction. Saturation was estimated from sample resistivity. The final saturation of each sample was determined by heating the sample in a closed container and measuring the pressure. Measurements were made by modulating the pressure difference (of oil) between the ends of a sample at multiple frequencies below 20 Hz. The observed streaming potential is a weak function of the saturation. Since sample conductivity decreases with increasing oil saturation, the electro-kinetic coupling coefficient (Pride's L (4)) decreases with increasing oil saturation. (1) David B. Pengra and Po-zen Wong, Colloids and Surfaces, vol., p. 159 283-292 (1999). (2) Eve S. Sprunt, Tony B. Mercer, and Nizar F. Djabbarah, Geophysics, vol. 59, p. 707-711 (1994). (3) Vinogradov, J., Jackson, M.D., Geophysical Res. L., Vol. 38, Article L01301 (2011). (4) Steve Pride, Phys. Rev. B, vol. 50, pp. 15678-15696 (1994).
Wang, L.; Weigel, B.W.; Kanehl, P.; Lohman, K.
2006-01-01
Stream macroinvertebrate communities vary naturally among types of habitats where they are sampled, which affects the results of environmental assessment. We analyzed macroinvertebrates collected from riffle and snag habitats to evaluate influences of habitat-specific sampling on taxon occurrence, assemblage measures, and biotic indices. We found considerably more macroinvertebrate taxa unique to snags (143 taxa) than to riffles (75 taxa), and the numbers of taxa found in both riffles and snags (149 taxa) were similar to that found in snags. About 64% of the 47 macroinvertebrate measures we tested differed significantly between riffles and snags. Eighty percent intercepts of regressions between biotic indices and urban or agricultural land uses differed significantly between riffles and snags. The Hilsenhoff biotic index calculated from snag samples explained 69% of the variance of riffle samples and classified 66% of the sites into the same stream health group as the riffle samples. However, four multimetric indices for snag samples explained less than 50% of the variance of riffle samples and classified less than 50% of the sites into the same health group as the riffle samples. We concluded that macroinvertebrate indices developed for riffle/run habitat should not be used for snag samples to assess stream impairment. We recommend developing an index of biotic integrity specifically for snags and using snags as an alternate sampling substrate for streams that naturally lack riffles. ?? Springer Science+Business Media, Inc. 2006.
Speechley, W J; Murray, C B; McKay, R M; Munz, M T; Ngan, E T C
2010-03-01
Dual-stream information processing proposes that reasoning is composed of two interacting processes: a fast, intuitive system (Stream 1) and a slower, more logical process (Stream 2). In non-patient controls, divergence of these streams may result in the experience of conflict, modulating decision-making towards Stream 2, and initiating a more thorough examination of the available evidence. In delusional schizophrenia patients, a failure of conflict to modulate decision-making towards Stream 2 may reduce the influence of contradictory evidence, resulting in a failure to correct erroneous beliefs. Delusional schizophrenia patients and non-patient controls completed a deductive reasoning task requiring logical validity judgments of two-part conditional statements. Half of the statements were characterized by a conflict between logical validity (Stream 2) and content believability (Stream 1). Patients were significantly worse than controls in determining the logical validity of both conflict and non-conflict conditional statements. This between groups difference was significantly greater for the conflict condition. The results are consistent with the hypothesis that delusional schizophrenia patients fail to use conflict to modulate towards Stream 2 when the two streams of reasoning arrive at incompatible judgments. This finding provides encouraging preliminary support for the Dual-Stream Modulation Failure model of delusion formation and maintenance. 2009 Elsevier Masson SAS. All rights reserved.
Le Pichon, Céline; Tales, Évelyne; Belliard, Jérôme; Torgersen, Christian E.
2017-01-01
Spatially intensive sampling by electrofishing is proposed as a method for quantifying spatial variation in fish assemblages at multiple scales along extensive stream sections in headwater catchments. We used this method to sample fish species at 10-m2 points spaced every 20 m throughout 5 km of a headwater stream in France. The spatially intensive sampling design provided information at a spatial resolution and extent that enabled exploration of spatial heterogeneity in fish assemblage structure and aquatic habitat at multiple scales with empirical variograms and wavelet analysis. These analyses were effective for detecting scales of periodicity, trends, and discontinuities in the distribution of species in relation to tributary junctions and obstacles to fish movement. This approach to sampling riverine fishes may be useful in fisheries research and management for evaluating stream fish responses to natural and altered habitats and for identifying sites for potential restoration.
Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania
Brush, Lucien M.
1961-01-01
The hydraulic, basin, and geologic characteristics of 16 selected streams in central Pennsylvania were measured for the purpose of studying the relations among these general characteristics and their process of development. The basic parameters which were measured include bankfull width and depth, channel slope, bed material size and shape, length of stream from drainage divide, and size of drainage area. The kinds of bedrock over which the streams flow were noted. In these streams the bankfull channel is filled by flows approximating the 2.3-year flood. By measuring the breadth and mean depth of the channel, it was possible to compute the bankfull mean velocity for each of the 119 sampling stations. These data were then used to compute the downstream changes in hydraulic geometry of the streams studied. This method has been called an indirect computation of the hydraulic geometry. The results obtained by the indirect method are similar to those of the direct method of other workers. The basins were studied by examining the relations of drainage area, discharge, and length of stream from drainage divide. For the streams investigated, excellent correlations were found to exist between drainage area and the 2.3-year flood, as well as between length of stream from the basin divide and drainage area. From these correlations it is possible to predict the discharge for the 2.3-year flood at any arbitrary point along the length of the stream. The long, intermediate, and short axes of pebbles sampled from the bed of the stream were recorded to study both size and sphericity changes along individual streams and among the streams studied. No systematic downstream changes in sphericity were found. Particle size changes are erratic and show no consistent relation to channel slope. Particle size decreases downstream in many streams but remains constant or increases in others. Addition of material by tributaries is one factor affecting particle size and another is the parent material. Wear does not appear to account for some of the changes noted in particle size in a downstream direction. Comparison with laboratory studies indicates that at least in some streams the downstream decrease in size is much greater than would be expected from wear alone. The type of bedrock underlying the channels included in this study appears to affect both channel slope and particle size. For a given length of stream, a stream channel underlain by sandstone tends to have a steeper slope and larger bed material than channels underlain by shale or limestone. Hence, a stream which heads in sandstone and ends in limestone tends to have a more rapid decrease in slope and particle size than a stream heading in limestone and ending in sandstone. The association of steep slopes and small particles for limestone channels implies that slope and particle size may show a vague correlation between lithologic groups although no correlation may exist within a given lithologic type. In addition to the effect of bedrock on slope and particle size, there is some evidence that channels in limestone or dolomite have a slightly smaller cross section at bankfull stage than channels in shale or sandstone. Near the headwaters of many of these streams, a deposit of periglacial rubble affects the slope and bed material size. Some of the debris contains residual boulders which are too large to be moved by ordinary floods and, therefore, impose larger particle sizes in the bed of the stream. The addition of this very coarse debris to the bed material is another example of the influence of geologic factors on stream channels even though the channel consists of unconsolidated debris instead of bedrock. The influence of geologic factors noted in selected streams in central Pennsylvania may not be directly applicable to areas other than the Appalachian Mountains, but the general process is no doubt similar in most areas. In large alluvial valleys bedrock cannot be much of an influencing factor; yet large, thick alluvial deposits and terraces are in a sense "bedrock" materials upon which the stream works to form the landscape.
Process for recovering organic components from liquid streams
Blume, Ingo; Baker, Richard W.
1991-01-01
A separation process for recovering organic components from liquid streams. The process is a combination of pervaporation and decantation. In cases where the liquid stream contains the organic to be separated in dissolved form, the pervaporation step is used to concentrate the organic to a point above the solubility limit, so that a two-phase permeate is formed and then decanted. In cases where the liquid stream is a two-phase mixture, the decantation step is performed first, to remove the organic product phase, and the residue from the decanter is then treated by pervaporation. The condensed permeate from the pervaporation unit is sufficiently concentrated in the organic component to be fed back to the decanter. The process can be tailored to produce only two streams: an essentially pure organic product stream suitable for reuse, and a residue stream for discharge or reuse.
A geochemical atlas of North Carolina, USA
Reid, J.C.
1993-01-01
A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only very general indication of geochemical distribution patterns and should not be used for site specific studies. The atlas maps for each element were computer-generated at the state's geographic information system (Center for Geographic Information and Analysis [CGIA]). The Division of Statistics and Information Services provided input files. The maps in the atlas are point maps. Each sample is represented by a symbol generally corresponding to a quartile class. Other reports will transmit sample and analytical data for state regions. Data are tentatively planned to be available on disks in spreadsheet format for personal computers. During the second phase of this project, stream-sediment samples are being assigned to state geologic map unit names using a GIS system to determine background and anomaly values. Subsequent publications will make this geochemical data and accompanying interpretations available to a wide spectrum of interdisciplinary users. ?? 1993.
Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.
2016-01-01
The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.
Woodward, Emily; Hladik, Michelle; Kolpin, Dana W.
2016-01-01
Nitrapyrin is a bactericide that is co-applied with fertilizer to prevent nitrification and enhance corn yields. While there have been studies of the environmental fate of nitrapyrin, there is no documentation of its off-field transport to streams. In 2016, 59 water samples from 11 streams across Iowa were analyzed for nitrapyrin and its degradate, 6-chloropicolinic acid (6-CPA), along with three widely used herbicides, acetochlor, atrazine, and metolachlor. Nitrapyrin was detected in seven streams (39% of water samples) with concentrations ranging from 12 to 240 ng/L; 6-CPA was never detected. The herbicides were ubiquitously detected (100% of samples, 28–16000 ng/L). Higher nitrapyrin concentrations in streams were associated with rainfall events following spring fertilizer applications. Nitrapyrin persisted in streams for up to 5 weeks. These results highlight the need for more research focused on the environmental fate and transport of nitrapyrin and the potential toxicity this compound could have on nontarget organisms.
Clutch sizes and nests of tailed frogs from the Olympic Peninsula, Washington
Bury, R. Bruce; Loafman, P.; Rofkar, D.; Mike, K.
2001-01-01
In the summers 1995-1998, we sampled 168 streams (1,714 in of randomly selected 1-m bands) to determine distribution and abundance of stream amphibians in Olympic National Park, Washington. We found six nests (two in one stream) of the tailed frog, compared to only two nests with clutch sizes reported earlier for coastal regions. This represents only one nest per 286 in searched and one nest per 34 streams sampled. Tailed frogs occurred only in 94 (60%) of the streams and, for these waters, we found one nest per 171 in searched or one nest per 20 streams sampled. The numbers of eggs for four masses ((x) over bar = 48.3, range 40-55) were low but one single strand in a fifth nest had 96 eggs. One nest with 185 eggs likely represented communal egg deposition. Current evidence indicates a geographic trend with yearly clutches of relatively few eggs in coastal tailed frogs compared to biennial nesting with larger clutches for inland populations in the Rocky Mountains.
A parallel Jacobson-Oksman optimization algorithm. [parallel processing (computers)
NASA Technical Reports Server (NTRS)
Straeter, T. A.; Markos, A. T.
1975-01-01
A gradient-dependent optimization technique which exploits the vector-streaming or parallel-computing capabilities of some modern computers is presented. The algorithm, derived by assuming that the function to be minimized is homogeneous, is a modification of the Jacobson-Oksman serial minimization method. In addition to describing the algorithm, conditions insuring the convergence of the iterates of the algorithm and the results of numerical experiments on a group of sample test functions are presented. The results of these experiments indicate that this algorithm will solve optimization problems in less computing time than conventional serial methods on machines having vector-streaming or parallel-computing capabilities.
NbN A/D Conversion of IR Focal Plane Sensor Signal at 10 K
NASA Technical Reports Server (NTRS)
Eaton, L.; Durand, D.; Sandell, R.; Spargo, J.; Krabach, T.
1994-01-01
We are implementing a 12 bit SFQ counting ADC with parallel-to-serial readout using our established 10 K NbN capability. This circuit provides a key element of the analog signal processor (ASP) used in large infrared focal plane arrays. The circuit processes the signal data stream from a Si:As BIB detector array. A 10 mega samples per second (MSPS) pixel data stream flows from the chip at a 120 megabit bit rate in a format that is compatible with other superconductive time dependent processor (TDP) circuits being developed. We will discuss our planned ASP demonstration, the circuit design, and test results.
Characterizing Soil Lead Contamination Near Streams in Oakland, California
NASA Astrophysics Data System (ADS)
Tanouye, D.
2017-12-01
Lead (Pb) contamination of soils, groundwater, and surface waters is a major concern because of the potential health risks related to accumulation of high levels of lead in blood. This is a pervasive issue in many low-income neighborhoods throughout the United States, and is documented to be particularly acute in West Oakland, California. The fate and transport of lead in the environment is largely dependent on how it will bind to various solids and compounds in solution. These adsorption mechanisms are a principal aspect of metal dissolution and chemical speciation. Stream channels are natural drainage areas for urban runoff, and may represent a hot spot for increased levels of lead. This study evaluates the environmental conditions at 15 sites near streams in West Oakland using in-situ soil sampling with the handheld X-Ray Fluorescence (XRF) analyzer to measure concentrations of lead in soil. Results from this study suggest that the levels of lead in soils near stream channels are generally lower than the regional regulatory screening level of 80 milligrams per kilogram (mg/kg), but the highest concentrations are found near stream banks. The spatial distribution can be explained by a contaminant transport process related to the presence of fluvial channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.
2015-06-27
Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less
Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams
Carlisle, D.M.; Clements, W.H.
2005-01-01
1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second-third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf-shredding insects was estimated using the increment summation and size-frequency methods. Leaf litter breakdown rates were estimated by retrieving litter-bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant-induced alterations in community structure. We argue for the necessity of simultaneously measuring community structure and ecosystem function in anthropogenically stressed ecosystems.
Lorah, Michelle M.; Herman, Janet S.
1988-01-01
This field study focuses on quantitatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virginia. The processes of CO2outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. The observed chemical composition of the water was used with the computerized geochemical model WATEQF to calculate aqueous speciation, saturation indices, and CO2 partial pressure values. Mass balance calculations were performed to obtain mass transfers of CO2 and calcite. Reaction times, estimated from stream discharge, were used with the mass transfer results to calculate rates of CO2, outgassing and calcite precipitation between consecutive sampling points. The stream, which is fed by a carbonate spring, is supersaturated with respect to CO2 along the entire 5.2-km flow path. Outgassing of CO2 drives the solution to high degrees of supersaturation with respect to calcite. Metabolic uptake of CO2 by photosynthetic plants is insignificant, because the high supply rate of dissolved carbon dioxide and the extreme agitation of the stream at waterfalls and rapids causes a much greater amount of inorganic CO2 outgassing to occur. Calcite precipitation is kinetically inhibited until near the crest of a 20-m vertical waterfall. Calcite precipitation rates then reach a maximum at the waterfall where greater water turbulence allows the most rapid escape of CO2. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall.
NASA Astrophysics Data System (ADS)
Stivanin de Almeida, Cibele M.; Ribeiro, Anderson S.; Saint'Pierre, Tatiana D.; Miekeley, Norbert
2009-06-01
Inductively coupled plasma optical emission spectrometry and mass spectrometry (ICPMS), the latter hyphenated to flow injection hydride generation, electrothermal vaporization or ion chromatography, have been applied to the chemical characterization of crude oil, aqueous process stream samples and wastewaters from a petroleum refinery, in order to get information on the behavior of selenium and its chemical species along effluent generation and treatment. Multielemental characterization of these effluents by ICPMS revealed a complex composition of most of them, with high salinity and potential spectral and non-spectral interferents present. For this reason, a critical re-assessment of the analytical techniques for the determination of total selenium and its species was performed. Methane was employed as gas in dynamic reaction cell ICPMS and cell parameters were optimized for a simulated brine matrix and for diluted aqueous solutions to match the expected process and treated wastewaters samples. The signal-to-background ratios for 78Se and 80Se were used as criteria in optimization, the first isotope resulting in better detection limits for the simulated brine matrix ( 78Se: 0.07 μg L - 1 , 80Se: 0.31 μg L - 1 ). A large variability in the concentration of selenium (from < 10 μg kg - 1 up to 960 μg kg - 1 ) was observed in 16 of the most frequently processed crude oil samples in the refinery here investigated, which may explain the pronounced concentrations changes of this element measured in aqueous process stream and wastewater samples. Highest concentrations of total selenium were analyzed in samples from the hydrotreater (up to about 1800 μg L - 1 ). The predominance of selenocyanate (SeCN -) was observed in most of the wastewaters so far investigated, but also other species were detected with retention times different from Se(IV), Se(VI) and SeCN -. Colloidal selenium (Se 0) was the only Se-species observed in samples from the atmospheric distillation unit, but was also identified in other samples, most probably formed by the decomposition of SeCN - or other unstable species.
Heakin, Allen J.; Neitzert, Kathleen M.; Shearer, Jeffrey S.
2006-01-01
The U.S. Environmental Protection Agency (USEPA) initiated data-collection activities for the Environmental Monitoring and Assessment Program-West (EMAP-West) in South Dakota during 2000. The objectives of the study were to develop the monitoring tools necessary to produce unbiased estimates of the ecological condition of surface waters across a large geographic area of the western United States, and to demonstrate the effectiveness of those tools in a large-scale assessment. In 2001, the U.S. Geological Survey (USGS) and the South Dakota Department of Game, Fish and Parks (GF&P) established a cooperative agreement and assumed responsibility for completing the remaining assessments for the perennial, wadable streams of the EMAP-West in the State. Stream assessment sites were divided into two broad categories-the first category of sites was randomly selected and assigned by the USEPA for South Dakota. The second category consisted of sites that were specifically selected because they appeared to have reasonable potential for representing the best available physical, chemical, and biological conditions in the State. These sites comprise the second category of assessment sites and were called 'reference' sites and were selected following a detailed evaluation process. Candidate reference site data will serve as a standard or benchmark for assessing the overall ecological condition of the randomly selected sites. During 2000, the USEPA completed 22 statewide stream assessments in South Dakota. During 2001-2003, the USGS and GF&P completed another 42 stream assessments bringing the total of randomly selected stream assessments within South Dakota to 64. In addition, 18 repeat assessments designed to meet established quality-assurance/quality-control requirements were completed at 12 of these 64 sites. During 2002-2004, the USGS in cooperation with GF&P completed stream assessments at 45 candidate reference sites. Thus, 109 sites had stream assessments completed in South Dakota for EMAP-West (2000-2004). Relatively early in the EMAP-West stream-assessment process, it became apparent that for some streams in south-central South Dakota, in-stream conditions varied considerably over relatively short distances of only a few miles. These changes appeared to be a result of geomorphic changes associated with changes in the underlying geology. For these streams, moving stream assessment sites short distances upstream or downstream had the potential to provide substantially different bioassessment data. In order to obtain a better understanding of how geology influences stream conditions, two streams located in south-central South Dakota were chosen for multiple stream sampling at sites located along their longitudinal profile at points where notable changes in geomorphology were observed. Subsequently, three sites on Bear-in-the-Lodge Creek and three sites on Black Pipe Creek were selected for multiple stream sampling using EMAP-West protocols so that more could be learned about geologic influences on stream conditions. Values for dissolved oxygen and specific conductance generally increased from upstream to downstream locations on Bear-in-the-Lodge Creek. Values for pH and water temperature generally decreased from upstream to downstream locations. Decreasing water temperature could be indicative of ground-water inflows. Values for dissolved oxygen, pH, and water temperature generally increased from upstream to downstream locations on Black Pipe Creek. The increase in temperature at the lower sites is a result of less dense riparian cover, and the warmer water also could account for the lower concentrations of dissolved oxygen found in the lower reaches of Black Pipe Creek. Values for specific conductance were more than three times greater at the lower site (1,342 microsiemens per centimeter (?S/cm)) than at the upper site (434 ?S/cm). The increase probably occurs when the stream transitions from contacting the underlying Ar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koller, G.R.
1979-08-01
Stream sediment and stream water samples were collected from small streams at 1328 sites. Ground water samples were collected at 664 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water and surface water.
Miller, L.G.; Aiken, G.R.
1996-01-01
Perennially ice-covered lakes in the McMurdo Dry Valleys have risen several meters over the past two decades due to climatic warming and increased glacial meltwater inflow. To elucidate the hydrologic responses to changing climate and the effects on lake mixing processes we measured the stable isotope (??18O and ??D) and tritium concentrations of water and ice samples collected in the Lake Fryxell watershed from 1987 through 1990. Stable isotope enrichment resulted from evaporation in stream and moat samples and from sublimation in surface lake-ice samples. Tritium enrichment resulted from exchange with the postnuclear atmosphere in stream and moat samples. Rapid injection of tritiated water into the upper water column of the make and incorporation of this water into the ice cover resulted in uniformly elevated tritium contents (> 3.0 TU) in these reservoirs. Tritium was also present in deep water, suggesting that a component of bottom water was recently at the surface. During summer, melted lake ice and stream water forms the moat. Water excluded from ice formation during fall moat freezing (enriched in solutes and tritium, and depleted in 18O and 2H relative to water below 15-m depth) may sink as density currents to the bottom of the lake. Seasonal lake circulation, in response to climate-driven surface inflow, is therefore responsible for the distribution of both water isotopes and dissolved solutes in Lake Fryxell.
Reif, Andrew G.
2004-01-01
Biological, chemical, and habitat data have been collected from a network of sites in Chester County, Pa., from 1970 to 2003 to assess stream quality. Forty sites in 6 major stream basins were sampled between 1998 and 2000. Biological data were used to determine levels of impairment in the benthic-macroinvertebrate community in Chester County streams and relate the impairment, in conjunction with chemical and habitat data, to overall stream quality. Biological data consisted of benthic-macroinvertebrate samples that were collected annually in the fall. Water-chemistry samples were collected and instream habitat was assessed in support of the biological sampling.Most sites in the network were designated as nonimpacted or slightly impacted by human activities or extreme climatic conditions on the basis of biological-metric analysis of benthic-macroinvertebrate data. Impacted sites were affected by factors, such as nutrient enrichment, erosion and sedimentation, point discharges, and droughts and floods. Streams in the Schuylkill River, Delaware River, and East Branch Brandywine Creek Basins in Chester County generally had low nutrient concentrations, except in areas affected by wastewater-treatment discharges, and stream habitat that was affected by erosion. Streams in the West Branch Brandywine, Christina, Big Elk, and Octoraro Creek Basins in Chester County generally had elevated nutrient concentrations and streambottom habitat that was affected by sediment deposition.Macroinvertebrate communities identified in samples from French Creek, Pigeon Creek (Schuylkill River Basin), and East Branch Brandywine Creek at Glenmoore consistently indicate good stream conditions and were the best conditions measured in the network. Macroinvertebrate communities identified in samples from Trout Creek (site 61), West Branch Red Clay Creek (site 55) (Christina River Basin), and Valley Creek near Atglen (site 34) (Octoraro Creek Basin) indicated fair to poor stream conditions and were the worst conditions measured in the network. Trout Creek is heavily impacted due to erosion, and Valley Creek near Atglen and West Branch Red Clay Creek are influenced by wastewater discharges. Hydrologic conditions in 1999, including a prolonged drought and a flood, influenced chemical concentrations and macroinvertebrate community structure throughout the county. Concentrations of nutrients and ions were lower in 1999 when compared to 1998 and 2000 concentrations. Macroinvertebrate communities identified in samples from 1999 contained lower numbers of individuals when compared to 1998 and 2000 but had similar community structure. Results from chemical and biological sampling in 2000 indicated that the benthic-macroinvertebrate community structure and the concentrations of nutrients and ions recovered to pre-1999 levels.
The Midwest Stream Quality Assessment
,
2012-01-01
In 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) and USGS Columbia Environmental Research Center (CERC) will be collaborating with the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA) to assess stream quality across the Midwestern United States. The sites selected for this study are a subset of the larger NRSA, implemented by the EPA, States and Tribes to sample flowing waters across the United States (http://water.epa.gov/type/rsl/monitoring/riverssurvey/index.cfm). The goals are to characterize water-quality stressors—contaminants, nutrients, and sediment—and ecological conditions in streams throughout the Midwest and to determine the relative effects of these stressors on aquatic organisms in the streams. Findings will contribute useful information for communities and policymakers by identifying which human and environmental factors are the most critical in controlling stream quality. This collaborative study enhances information provided to the public and policymakers and minimizes costs by leveraging and sharing data gathered under existing programs. In the spring and early summer, NAWQA will sample streams weekly for contaminants, nutrients, and sediment. During the same time period, CERC will test sediment and water samples for toxicity, deploy time-integrating samplers, and measure reproductive effects and biomarkers of contaminant exposure in fish or amphibians. NRSA will sample sites once during the summer to assess ecological and habitat conditions in the streams by collecting data on algal, macroinvertebrate, and fish communities and collecting detailed physical-habitat measurements. Study-team members from all three programs will work in collaboration with USGS Water Science Centers and State agencies on study design, execution of sampling and analysis, and reporting.
Geostatistical modeling of riparian forest microclimate and its implications for sampling
Eskelson, B.N.I.; Anderson, P.D.; Hagar, J.C.; Temesgen, H.
2011-01-01
Predictive models of microclimate under various site conditions in forested headwater stream - riparian areas are poorly developed, and sampling designs for characterizing underlying riparian microclimate gradients are sparse. We used riparian microclimate data collected at eight headwater streams in the Oregon Coast Range to compare ordinary kriging (OK), universal kriging (UK), and kriging with external drift (KED) for point prediction of mean maximum air temperature (Tair). Several topographic and forest structure characteristics were considered as site-specific parameters. Height above stream and distance to stream were the most important covariates in the KED models, which outperformed OK and UK in terms of root mean square error. Sample patterns were optimized based on the kriging variance and the weighted means of shortest distance criterion using the simulated annealing algorithm. The optimized sample patterns outperformed systematic sample patterns in terms of mean kriging variance mainly for small sample sizes. These findings suggest methods for increasing efficiency of microclimate monitoring in riparian areas.
D'Ovidio, K L; Trucksess, M W; Devries, J W; Bean, G
2007-07-01
Fumonisins are metabolites produced in corn primarily by the fungus Fusarium verticillioides (F. moniliforme) and are toxic to humans and animals. Fumonisin B(1) (FB(1)) is the primary fumonisin produced and is found frequently in corn kernels, some of which may be used as food or food ingredients. A three-part study was conducted to determine the effects of gamma- and electron beam irradiation on the levels of fumonisins in naturally contaminated field corn, and the effects of microwave-popping on fumonisins in selected, naturally contaminated popcorn. To date, no effective means have been found to reduce consistently mycotoxin levels once foods are contaminated. Aqueous solutions of FB(1) at various concentrations, samples of whole corn, and samples of ground corn containing known levels of FB(1) were irradiated with various levels of cobalt and electron beam irradiation. Popcorn samples, taken from the reject streams of popcorn processing, were popped using normal microwave-popping conditions. FB(1) in aqueous solutions was reduced by 99.7% using a minimal level of irradiation (0.5 kGray). Gamma- and electron beam irradiation did not significantly reduce levels of FB(1) in whole and ground corn. Aspergillus sp., Penicillium sp. and Fusarium sp. fungi were totally eliminated at 30 kGray in ground corn and at 100 kGray in whole corn. The normal commercial cleaning processes for microwave popcorn before packaging reduced fumonisins to <0.03 microg g(-1) for the cleaned product stream. Microwave popping of popcorn from reject streams of the cleaning operation that contained fumonisins resulted in significant reduction of the mould toxin.
Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX
2009-09-01
A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.
NASA Astrophysics Data System (ADS)
McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam
2015-08-01
While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.
Ogle, K.M.; Lee, R.W.
1994-01-01
Radon-222 activity was measured for 27 water samples from streams, an alluvial aquifer, bedrock aquifers, and a geothermal system, in and near the 510-square mile area of Owl Creek Basin, north- central Wyoming. Summary statistics of the radon- 222 activities are compiled. For 16 stream-water samples, the arithmetic mean radon-222 activity was 20 pCi/L (picocuries per liter), geometric mean activity was 7 pCi/L, harmonic mean activity was 2 pCi/L and median activity was 8 pCi/L. The standard deviation of the arithmetic mean is 29 pCi/L. The activities in the stream-water samples ranged from 0.4 to 97 pCi/L. The histogram of stream-water samples is left-skewed when compared to a normal distribution. For 11 ground-water samples, the arithmetic mean radon- 222 activity was 486 pCi/L, geometric mean activity was 280 pCi/L, harmonic mean activity was 130 pCi/L and median activity was 373 pCi/L. The standard deviation of the arithmetic mean is 500 pCi/L. The activity in the ground-water samples ranged from 25 to 1,704 pCi/L. The histogram of ground-water samples is left-skewed when compared to a normal distribution. (USGS)
Application of the Hydroecological Integrity Assessment Process for Missouri Streams
Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.
2009-01-01
Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.
NASA Astrophysics Data System (ADS)
Johnson, K. S.
2005-05-01
We report on the performance of a family-level multimetric index, the MAIS (Macroinvertebrate Aggregate Index for Streams) for assessing acid mine impaired (AMD) sites in the Western Allegheny Plateau (Ohio). Two sampling protocols were compared, one utilizing three collection techniques (kick net, dip net and Surber samples), the other using two (kick and dip net). Including Surber samples tended to increase the MAIS score, changing the classification of four out of 52 sampling events (7.7%), but substantially increased processing time. MAIS scores were positively correlated with water pH (R = -0.77) and other indicators of AMD (acidity, sulfates, conductivity, total Al, total Mn). MAIS scores at some sites were consistent over 2-3 years of repeated sampling, others were more variable. Nineteen of the 26 sites that were sampled multiple times were categorized the same each year (73%), whereas 7 were classified differently in at least one year (27%). Since rainfall, flow regime and disturbance events varied over the three years, we cannot identify whether this variation reflects sampling error or actual changes in the assemblages at each site. Nevertheless, a benefit of repeated, annual evaluation is a statistically strong baseline condition against which future changes can be assessed.
Stream dynamics: An overview for land managers
Burchard H. Heede
1980-01-01
Concepts of stream dynamics are demonstrated through discussion of processes and process indicators; theory is included only where helpful to explain concepts. Present knowledge allows only qualitative prediction of stream behavior. However, such predictions show how management actions will affect the stream and its environment.
Jacquelyn M. Rowe; William B. Perry; Sue A. Perry
1996-01-01
Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...
John S. Richardson; Robert J. Naiman; Frederick J. Swanson; David E. Hibbs
2005-01-01
Riparian areas of large streams provide important habitat to many species and control many instream processes - but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from...
Dissolved Organic Carbon in Marginal, Damaged Peatlands: Using 14C to Understand DOC Losses
NASA Astrophysics Data System (ADS)
Luscombe, D.; Grand-Clement, E.; Garnett, M.; Anderson, K.; Gatis, N.; Benaud, P.; Brazier, R.
2013-12-01
Peatlands are widely represented throughout the world and act as an important store of carbon, as well as providing society with a range of other ecosystem services, such as drinking water or the support of rare habitats. However, the combination of historical management practices, and the predicted impact of climate change means that they are now largely under threat. In the shallow peatlands of Exmoor National Park (South West UK), peat cutting and intensive drainage in the 19th and 20th century for agricultural reclamation have changed the hydrological behaviour of the peat. This damage has dried out the upper layers, causing oxidation, erosion and vegetation change. In addition, their location on the southernmost limit of peatlands geographical extent in northern Europe makes them particularly vulnerable to the predicted changes in rainfall and temperature. Recent modelling work has shown that such marginal peatlands may disappear as early as 2050. Restoration programs are currently in place, aiming to restore the hydrological functioning of the peat. However, current dissolved organic carbon (DOC) losses from damaged peatlands are especially of concern, because of the contribution of the aquatic pathways in the C flux, and because of the impact on water quality. DOC has been shown to originate from the drainage of highly-aged organic matter. In stream waters, DOC from low flow tends to contain a larger component of older C compared to that of high flow. Both the impact of extensive drainage on where DOC is originating from and the effect of peatland restoration on this process remain poorly understood. We used 14C dating of DOC from streams and pore water, as well as from damaged peat, in order to gain a better understanding of the process and origin of DOC loss in drained shallow peatlands. This will further help us understand the potential for peatland restoration. Work was carried out in a small intensively monitored catchment in Exmoor. Samples were taken in an area of shallow peat (ca. 20-30 cm depth) drained by a medium size ditch (50 x 50 cm). Samples of DOC from stream water were taken at low and high flow during 3 separate rain events in Winter- Spring 2013 using automatic pump samplers. Samples of DOC in pore water were taken 2 m away from the ditch at 5 and 15 cm depth on two occasions. Finally, matching bulk peat samples were collected at 5 and 15 cm depth. Intensive monitoring data also provides information on water table depth and level in streams. A neighbouring pristine peat area was used as a control, and DOC pore water and bulk peat soil samples were taken at 5, 15 and 45 cm depth on two occasions. Preliminary results show that DOC lost in streams at high flow contains a greater contribution of bomb-14C compared to that at low flow (107 and 101 % modern respectively). Stream water DOC at low flow had a 14C concentration lower than that in pore water at both 5 and 15 cm depth (105 and 102% modern, respectively), suggesting that low flow stream water DOC is predominantly older than that found in pore water at depth.
Godoy, B S; Simião-Ferreira, J; Lodi, S; Oliveira, L G
2016-04-01
Stream ecology studies see to understand ecological dynamics in lotic systems. The characterization of streams into Functional Process Zones (FPZ) has been currently debated in stream ecology because aquatic communities respond to functional processes of river segments. Therefore, we tested if different functional process zones have different number of genera and trophic structure using the aquatic insect community of Neotropical streams. We also assessed whether using physical and chemical variables may complement the approach of using FPZ to model communities of aquatic insects in Cerrado streams. This study was conducted in 101 streams or rivers from the central region of the state of Goiás, Brazil. We grouped the streams into six FPZ associated to size of the river system, presence of riparian forest, and riverbed heterogeneity. We used Bayesian models to compare number of genera and relative frequency of the feeding groups between FPZs. Streams classified in different FPZs had a different number of genera, and the largest and best preserved rivers had an average of four additional genera. Trophic structure exhibited low variability among FPZs, with little difference both in the number of genera and in abundance. Using functional process zones in Cerrado streams yielded good results for Ephemeroptera, Plecoptera, and Trichoptera communities. Thus, species distribution and community structure in the river basin account for functional processes and not necessarily for the position of the community along a longitudinal dimension of the lotic system.
McKnight, Diane M.; Bencala, Kenneth E.
1990-01-01
Several studies were conducted in three acidic, metal-enriched, mountain streams, and the results are discussed together in this paper to provide a synthesis of watershed and in-stream processes controlling Fe, Al, and DOC (dissolved organic carbon) concentrations. One of the streams, the Snake River, is naturally acidic; the other two, Peru Creek and St. Kevin Gulch, receive acid mine drainage. Analysis of stream water chemistry data for the acidic headwaters of the Snake River shows that some trace metal solutes (Al, Mn, Zn) are correlated with major ions, indicating that watershed processes control their concentrations. Once in the stream, biogeochemical processes can control transport if they occur over time scales comparable to those for hydrologic transport. Examples of the following in-stream reactions are presented: (1) photoreduction and dissolution of hydrous iron oxides in response to an experimental decrease in stream pH, (2) precipitation of Al at three stream confluences, and (3) sorption of dissolved organic material by hydrous iron and aluminum oxides in a stream confluence. The extent of these reactions is evaluated using conservative tracers and a transport model that includes storage in the substream zone.
Electrical characterization of non‐Fickian transport in groundwater and hyporheic systems
Singha, Kamini; Pidlisecky, Adam; Day-Lewis, Frederick D.; Gooseff, Michael N.
2008-01-01
Recent work indicates that processes controlling solute mass transfer between mobile and less mobile domains in porous media may be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods are sensitive to changes in bulk electrical conductivity (bulk EC) and therefore sample EC in both the mobile and immobile domains. Consequently, the conductivity difference between direct geochemical samples and remotely sensed electrical geophysical measurements may provide an indication of mass transfer rates and mobile and immobile porosities in situ. Here we present (1) an overview of a theoretical framework for determining parameters controlling mass transfer with electrical resistivity in situ; (2) a review of a case study estimating mass transfer processes in a pilot‐scale aquifer storage recovery test; and (3) an example application of this method for estimating mass transfer in watershed settings between streams and the hyporheic corridor. We demonstrate that numerical simulations of electrical resistivity studies of the stream/hyporheic boundary can help constrain volumes and rates of mobile‐immobile mass transfer. We conclude with directions for future research applying electrical geophysics to understand field‐scale transport in aquifer and fluvial systems subject to rate‐limited mass transfer.
Application of a multipurpose unequal probability stream survey in the Mid-Atlantic Coastal Plain
Ator, S.W.; Olsen, A.R.; Pitchford, A.M.; Denver, J.M.
2003-01-01
A stratified, spatially balanced sample with unequal probability selection was used to design a multipurpose survey of headwater streams in the Mid-Atlantic Coastal Plain. Objectives for the survey include unbiased estimates of regional stream conditions, and adequate coverage of unusual but significant environmental settings to support empirical modeling of the factors affecting those conditions. The design and field application of the survey are discussed in light of these multiple objectives. A probability (random) sample of 175 first-order nontidal streams was selected for synoptic sampling of water chemistry and benthic and riparian ecology during late winter and spring 2000. Twenty-five streams were selected within each of seven hydrogeologic subregions (strata) that were delineated on the basis of physiography and surficial geology. In each subregion, unequal inclusion probabilities were used to provide an approximately even distribution of streams along a gradient of forested to developed (agricultural or urban) land in the contributing watershed. Alternate streams were also selected. Alternates were included in groups of five in each subregion when field reconnaissance demonstrated that primary streams were inaccessible or otherwise unusable. Despite the rejection and replacement of a considerable number of primary streams during reconnaissance (up to 40 percent in one subregion), the desired land use distribution was maintained within each hydrogeologic subregion without sacrificing the probabilistic design.
Gellis, Allen; Fuller, Christopher C.; Van Metre, Peter C.
2017-01-01
Fallout radionuclides, 7Be and 210Pbex, sampled in bed sediment for 99 watersheds in the Midwestern region of the United States and in 15 samples of suspended sediment from 3 of these watersheds were used to partition upland from channel sources and to estimate the age or the time since the surface-derived portion of sediment was on the land surface (0–∼1 year). Channel sources dominate: 78 of the 99 bed material sites (79%) have >50% channel-derived sediment, and 9 of the 15 suspended-sediment samples (60%) have >50% channel-derived sediment. 7Be was detected in 82 bed sediment samples and all 15 suspended-sediment samples. The surface-derived portion of 54 of the 80 (68%) streams with detectable 7Be and 210Pbex were ≤ 100 days old and the surface-derived portion of all suspended-sediment samples were ≤ 100 days old, indicating that surface-derived fine-grained sediment moves rapidly though these systems. The concentrations of two hydrophobic pesticides–DDE and bifenthrin–are correlated with the proportion of surface-derived sediment, indicating a link between geomorphic processes and particle-associated contaminants in streams. Urban areas had the highest pesticide concentrations and the largest percentage of surface-derived sediment. Although the percentage of surface-derived sediment is less than channel sources at most of the study sites, the relatively young age of the surface-derived sediment might indicate that management actions to reduce sediment contamination where the land surface is an important source could have noticeable effects.
Apparatus for the liquefaction of a gas and methods relating to same
Turner, Terry D [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID
2009-12-29
Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may be sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.
NASA Astrophysics Data System (ADS)
Worrall, F.; Howden, N. J. K.; Burt, T. P.
2015-04-01
There is increasing interest in characterising the diurnal fluctuation of stream solute concentrations because observed data series derived from spot samples may be highly subjective if such diurnal fluctuations are large. This can therefore lead to large uncertainties, bias or systematic errors in calculation of fluvial solute fluxes, depending upon the particular sampling regime. A simplistic approach would be to assume diurnal fluctuations are constant throughout the water year, but this study proposes diurnal cycles in stream water quality can only be interpreted in the context of stream residence time and changing day length. Three years of hourly dissolved organic carbon (DOC) concentration and flow data from the River Dee catchment (1674 km2) were analysed, and statistical analysis of the entire record shows there is no consistent diurnal cycle in the record. From the 3-year record (1095 days) there were only 96 diurnal cycles could be analysed. Cycles were quantified in terms of their: relative and absolute amplitude; duration; time to maximum concentration; asymmetry; percentile flow and in-stream residence time. The median diurnal cycle showed an amplitude that was 9.2% of the starting concentration; it was not significantly asymmetric; and occurred at the 19th percentile flow. The median DOC removal rate was 0.07 mg C/l/hr with an inter-quartile range of 0.052-0.100 mg C/l/hr. Results were interpreted as controlled by two, separate, zero-order kinetic rate laws, one for the day and one for the night. There was no single diurnal cycle present across the record, rather a number of different cycles controlled by the combination of in-stream residence time and exposure to contrasting light conditions. Over the 3-year period the average in-stream loss of DOC was 32%. The diurnal cycles evident in high resolution DOC data are interpretable, but require contextual information for their influence on in-stream processes to be understood or for them to be utilised.
LEVEL AND EXTENT OF MERCURY CONTAMINATION IN OREGON, USA, LOTIC FISH
Because of growing concern with widespread mercury contamination of fish tissue, we sampled 154 streams and rivers throughout Oregon using a probability design. To maximize the sample size we took samples of small and large fish, where possible, from wadeable streams and boatable...
Hamming and Accumulator Codes Concatenated with MPSK or QAM
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Dolinar, Samuel
2009-01-01
In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.
Jung, R.E.; Royle, J. Andrew; Sauer, J.R.; Addison, C.; Rau, R.D.; Shirk, J.L.; Whissel, J.C.
2005-01-01
Stream salamanders in the family Plethodontidae constitute a large biomass in and near headwater streams in the eastern United States and are promising indicators of stream ecosystem health. Many studies of stream salamanders have relied on population indices based on counts rather than population estimates based on techniques such as capture-recapture and removal. Application of estimation procedures allows the calculation of detection probabilities (the proportion of total animals present that are detected during a survey) and their associated sampling error, and may be essential for determining salamander population sizes and trends. In 1999, we conducted capture-recapture and removal population estimation methods for Desmognathus salamanders at six streams in Shenandoah National Park, Virginia, USA. Removal sampling appeared more efficient and detection probabilities from removal data were higher than those from capture-recapture. During 2001-2004, we used removal estimation at eight streams in the park to assess the usefulness of this technique for long-term monitoring of stream salamanders. Removal detection probabilities ranged from 0.39 to 0.96 for Desmognathus, 0.27 to 0.89 for Eurycea and 0.27 to 0.75 for northern spring (Gyrinophilus porphyriticus) and northern red (Pseudotriton ruber) salamanders across stream transects. Detection probabilities did not differ across years for Desmognathus and Eurycea, but did differ among streams for Desmognathus. Population estimates of Desmognathus decreased between 2001-2002 and 2003-2004 which may be related to changes in stream flow conditions. Removal-based procedures may be a feasible approach for population estimation of salamanders, but field methods should be designed to meet the assumptions of the sampling procedures. New approaches to estimating stream salamander populations are discussed.
Nyhan, J W; White, G C; Trujillo, G
1982-10-01
Stream channel sediments and adjacent bank soils found in three intermittent streams used for treated liquid effluent disposal at Los Alamos, New Mexico were sampled to determine the distribution of 238Pu, 239,240Pu and 137Cs. Radionuclide concentrations and inventories were determined as functions of distance downstream from the waste outfall and from the center of the stream channel, soil sampling depth, stream channel-bank physiography, and the waste use history of each disposal area. Radionuclide concentrations in channel sediments were inversely related to distances up to 10 km downstream from the outfalls. For sites receiving appreciable waste effluent additions, contaminant concentrations in bank soils decreased with perpendicular distances greater than 0.38 m from the stream channel, and with stream bank sampling depths greater than 20-40 cm. Concentrations and total inventories of radionuclides in stream bank soils generally decreased as stream bank height increased. Inventory estimates of radionuclides in channel sediments exhibited coefficients of variation that ranged 0.41-2.6, reflecting the large variation in radionuclide concentrations at each site. Several interesting temporal relationships of these radionuclides in intermittent streams were gleaned from the varying waste use histories of the three effluent-receiving areas. Eleven yr after liquid wastes were added to one canyon, the major radionuclide inventories were found in the stream bank soils, unlike most of the other currently-used receiving areas. A period of time greater than 6 yr seems to be required before the plutonium in liquid wastes currently added to the canyon is approximately equilibrated with the plutonium in the bank soils. These observations are discussed relative to waste management practices in these southwestern intermittent streams.
Final Report: Sampling-Based Algorithms for Estimating Structure in Big Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matulef, Kevin Michael
The purpose of this project was to develop sampling-based algorithms to discover hidden struc- ture in massive data sets. Inferring structure in large data sets is an increasingly common task in many critical national security applications. These data sets come from myriad sources, such as network traffic, sensor data, and data generated by large-scale simulations. They are often so large that traditional data mining techniques are time consuming or even infeasible. To address this problem, we focus on a class of algorithms that do not compute an exact answer, but instead use sampling to compute an approximate answer using fewermore » resources. The particular class of algorithms that we focus on are streaming algorithms , so called because they are designed to handle high-throughput streams of data. Streaming algorithms have only a small amount of working storage - much less than the size of the full data stream - so they must necessarily use sampling to approximate the correct answer. We present two results: * A streaming algorithm called HyperHeadTail , that estimates the degree distribution of a graph (i.e., the distribution of the number of connections for each node in a network). The degree distribution is a fundamental graph property, but prior work on estimating the degree distribution in a streaming setting was impractical for many real-world application. We improve upon prior work by developing an algorithm that can handle streams with repeated edges, and graph structures that evolve over time. * An algorithm for the task of maintaining a weighted subsample of items in a stream, when the items must be sampled according to their weight, and the weights are dynamically changing. To our knowledge, this is the first such algorithm designed for dynamically evolving weights. We expect it may be useful as a building block for other streaming algorithms on dynamic data sets.« less
Martin, Jeffrey D.
2009-01-01
This report provides a water-quality data set of 44 commonly used pesticides and 8 pesticide degradates suitable for a national assessment of trends in pesticide concentrations in streams of the United States. Water-quality samples collected from January 1992 through August 2006 at stream-water sites of the U.S. Geological Survey National Water-Quality Assessment Program and the National Stream Quality Accounting Network Program were compiled, reviewed, selected, and prepared for trend analysis as described in this report. Samples analyzed at the U.S. Geological Survey National Water Quality Laboratory by a gas chromatography/mass spectrometry analytical method were the most extensive in time and space and were selected for national trend analysis. The selection criteria described in the report produced a trend data set of 16,869 pesticide samples at 201 stream and river sites.
Pathways for nitrate release from an alpine watershed: Determination using δ15N and δ18O
Campbell, Donald H.; Kendall, Carol; Chang, Cecily C.Y.; Silva, Steven R.; Tonnessen, Kathy A.
2002-01-01
Snowpack, snowmelt, precipitation, surface water, and groundwater samples from the Loch Vale watershed in Colorado were analyzed for δ15N and δ18O of nitrate to determine the processes controlling the release of atmospherically deposited nitrogen from alpine and subalpine ecosystems. Although overlap was found between the δ15N(NO3) values for all water types (−4 to +6‰), the δ18O(NO3) values for surface water and groundwater (+10 to +30‰) were usually distinct from snowpack, snowmelt, and rainfall values (+40 to +70‰). During snowmelt, δ18O(NO3) indicated that about half of the nitrate in stream water was the product of microbial nitrification; at other times that amount was greater than half. Springs emerging from talus deposits had high nitrate concentrations and a seasonal pattern in δ18O(NO3) that was similar to the pattern in the streams, indicating that shallow groundwater in talus deposits is a likely source of stream water nitrate. Only a few samples of surface water and groundwater collected during early snowmelt and large summer rain events had isotopic compositions that indicated most of the nitrate came directly from atmospheric deposition with no biological assimilation and release. This study demonstrates the value of the nitrate double‐isotope technique for determining nitrogen‐cycling processes and sources of nitrate in small, undisturbed watersheds that are enriched with inorganic nitrogen.
Optimized heat exchange in a CO2 de-sublimation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Larry; Terrien, Paul; Tessier, Pascal
The present invention is a process for removing carbon dioxide from a compressed gas stream including cooling the compressed gas in a first heat exchanger, introducing the cooled gas into a de-sublimating heat exchanger, thereby producing a first solid carbon dioxide stream and a first carbon dioxide poor gas stream, expanding the carbon dioxide poor gas stream, thereby producing a second solid carbon dioxide stream and a second carbon dioxide poor gas stream, combining the first solid carbon dioxide stream and the second solid carbon dioxide stream, thereby producing a combined solid carbon dioxide stream, and indirectly exchanging heat betweenmore » the combined solid carbon dioxide stream and the compressed gas in the first heat exchanger.« less
Gray, J.E.; Theodorakos, P.M.; Bailey, E.A.; Turner, R.R.
2000-01-01
Concentrations of total Hg, Hg (II), and methylmercury were measured in stream-sediment, stream-water, and fish collected downstream from abandoned mercury mines in south-western Alaska to evaluate environmental effects to surrounding ecosystems. These mines are found in a broad belt covering several tens of thousands of square kilometers, primarily in the Kuskokwim River basin. Mercury ore is dominantly cinnabar (HgS), but elemental mercury (Hg(o)) is present in ore at one mine and near retorts and in streams at several mine sites. Approximately 1400 t of mercury have been produced from the region, which is approximately 99% of all mercury produced from Alaska. These mines are not presently operating because of low prices and low demand for mercury. Stream-sediment samples collected downstream from the mines contain as much as 5500 ??g/g Hg. Such high Hg concentrations are related to the abundance of cinnabar, which is highly resistant to physical and chemical weathering, and is visible in streams below mine sites. Although total Hg concentrations in the stream-sediment samples collected near mines are high, Hg speciation data indicate that concentrations of Hg (II) are generally less than 5%, and methylmercury concentrations are less than 1% of the total Hg. Stream waters below the mines are neutral to slightly alkaline (pH 6.8-8.4), which is a result of the insolubility of cinnabar and the lack of acid- generating minerals such as pyrite in the deposits. Unfiltered stream-water samples collected below the mines generally contain 500-2500 ng/l Hg; whereas, corresponding stream-water samples filtered through a 0.45-??m membrane contain less than 50 ng/l Hg. These stream-water results indicate that most of the Hg transported downstream from the mines is as finely- suspended material rather than dissolved Hg. Mercury speciation data show that concentrations of Hg (II) and methylmercury in stream-water samples are typically less than 22 ng/l, and generally less than 5% of the total Hg. Muscle samples of fish collected downstream from mines contain as much as 620 ng/g Hg (wet wt.), of which 90-100% is methylmercury. Although these Hg concentrations are several times higher than that in fish collected from regional baseline sites, the concentration of Hg in fish is below the 1000 ng/g action level for edible fish established by the US Food and Drug Administration (FDA). Salmon contain less than 100 ng/g Hg, which are among the lowest Hg contents observed for fish in the study, and well below the FDA action level. (C) 2000 Elsevier Science B.V.
Kristin Bunte; Steven R. Abt
2001-01-01
This document provides guidance for sampling surface and subsurface sediment from wadable gravel-and cobble-bed streams. After a short introduction to streams types and classifications in gravel-bed rivers, the document explains the field and laboratory measurement of particle sizes and the statistical analysis of particle-size distributions. Analysis of particle...
The use of coliform plate count data to assess stream sanitary and ecological condition is limited by the need to store samples at 4oC and analyze them within a 24-hour period. We are testing LH-PCR as an alternative tool to assess the bacterial load of streams, offering a cost ...
Butler, Barbara A; Ranville, James F; Ross, Philippe E
2008-06-01
North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with discharge directly related to snowmelt and strong seasonal storms. Additionally, conditions in the stream cause rapid precipitation of large amounts of hydrous iron oxides (HFO) that sequester metals. Because AMD-impacted systems are complex, geochemical modeling may assist with predictions and/or confirmations of processes occurring in these environments. This research used Visual-MINTEQ to determine if field data collected over a two and one-half year study would be well represented by modeling with a currently existing model, while limiting the number of processes modeled and without modifications to the existing model's parameters. Observed distributions between dissolved and particulate phases in the water column varied greatly among the metals, with average dissolved fractions being >90% for Mn, approximately 75% for Zn, approximately 30% for Cu, and <10% for Fe. A strong seasonal trend was observed for the metals predominantly in the dissolved phase (Mn and Zn), with increasing concentrations during base-flow conditions and decreasing concentrations during spring-runoff. This trend was less obvious for Cu and Fe. Within hydrologic seasons, storm events significantly influenced in-stream metals concentrations. The most simplified modeling, using solely sorption to HFO, gave predicted percentage particulate Cu results for most samples to within a factor of two of the measured values, but modeling data were biased toward over-prediction. About one-half of the percentage particulate Zn data comparisons fell within a factor of two, with the remaining data being under-predicted. Slightly more complex modeling, which included dissolved organic carbon (DOC) as a solution phase ligand, significantly reduced the positive bias between observed and predicted percentage particulate Cu, while inclusion of hydrous manganese oxide (HMO) yielded model results more representative of the observed percentage particulate Zn. These results indicate that there is validity in the use of an existing model, without alteration and with typically collected water chemistry data, to describe complex natural systems, but that processes considered optimal for one metal might not be applicable for all metals in a given water sample.
Mason D. Bryant; Takashi Gomi; Jack J. Piccolo
2007-01-01
We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...
Process recognition in multi-element soil and stream-sediment geochemical data
Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.
2009-01-01
Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A "winnowing index" was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment-soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on the spatial separation of the stream-sediment and soil samples, some elements are more highly correlated than others. Crown Copyright ?? 2009.
NASA Astrophysics Data System (ADS)
Armstrong, A.; Epting, S.; Hosen, J. D.; Palmer, M.
2015-12-01
Dissolved organic matter (DOM) plays a central role in freshwater streams but key questions remain unanswered about temporal patterns in its quantity and composition. DOM in perennial streams in the temperate zone is a complex mixture reflecting a variety of sources such as leached plant material, organic matter from surrounding soils, and microbial processes in the streams themselves. Headwater perennial streams in the Tuckahoe Creek watershed of the Atlantic coastal plain (Maryland, USA) drain a mosaic of land cover types including row crops, forests, and both forested and marshy small depressional wetlands. Wetland-stream surface hydrologic connections generally occur between mid-fall and late spring, coinciding with peak wetland hydrologic expression (i.e. highest groundwater levels and surface inundation extent). When inundated, these wetlands contain high DOM concentrations, and surface connections may serve as conduits for downstream export. We hypothesized that changes in wetland-stream surface hydrologic connectivity would affect patterns of DOM concentration and composition in these streams. We deployed 6 sondes equipped with fluorescent DOM sensors in 4 perennial streams, 1 forested wetland, and the larger downstream channel draining all study sites for the 2015 water year. The 4 headwater streams drain areas containing forested wetlands and have documented temporary channel connections. Combined with baseflow and stormflow sampling, the sondes provided 15 minute estimates of dissolved organic carbon (DOC) concentrations. This resolution provided insights into patterns of DOC concentration across temporal scales from daily rhythms to seasonal changes, during both baseflow and storm conditions. Discrete measurements of absorbance and fluorescence provided information about DOM composition throughout the study. Together these measurements give a detailed record of DOM dynamics in multiple perennial headwater streams for an entire year. This information could inform future studies, such as investigations into stream network scale thresholds in DOM cycling, carbon cycling modelling for the study region, or understanding the impact of wetlands sometimes considered geographically isolated on downstream ecosystems.
Groundwater contaminants in the deep benthic zone of urban streams in Canada (Invited)
NASA Astrophysics Data System (ADS)
Roy, J. W.; Bickerton, G.
2010-12-01
There is little information available on the potential threat that groundwater containing land-based contaminants poses to aquatic ecosystems in urban environments. In this study, a rapid screening approach was applied at the stream reach-scale for eight urban streams (reaches from 100 to < 1000 m). The objective was to determine what types of groundwater contaminants could be detected in the deeper benthic zone of these streams, if any, to start to address questions of whether such contaminants are a concern and which types are the most problematic. The benthic community may be especially at risk since it may experience higher contaminant concentrations than the stream itself due to fewer losses from sorption, degradation and volatilization processes. For each stream, groundwater samples from below the stream bed (typically 25-75 cm) were collected using a drive-point mini-profiler at intervals of 10-15 m along the stream and were subsequently analysed for general chemistry and a wide range of common and emerging urban contaminants. For a few test streams with known contamination, the area of contamination was identified with this technique. In addition, previously unknown contaminants or areas of contamination were identified at all nine streams. Identified contaminants included benzene and other petroleum hydrocarbons, fuel oxygenates (e.g. MTBE), perchlorate, pesticides, artificial sweeteners, and various chlorinated solvent compounds. In addition, elevated levels of nitrate, phosphate, some heavy metals, including cadmium and arsenic, and elevated chloride (likely indicating road salt) were detected. Most streams had many different types of contaminants, often overlapping over small stretches, and together often covering substantial portions of the monitored reach. The findings provide support for this screening approach for delineating areas of potential ecological concern and identifying possible sources of groundwater contamination, for urban settings. They also suggest that the presence of multiple groundwater contaminants may be a more common threat to the benthic community of urban streams than currently perceived.
Peters, N.E.; Cerny, J.; Havel, M.; Krejci, R.
1999-01-01
The Krusne hory (Erzgebirge or Ore Mountains) has been heavily affected by high atmospheric pollutant deposition caused by fossil fuel combustion in an adjacent Tertiary coal basin. Long-term routine sampling of bulk precipitation (1977-1996) and stream water (1977-1998) in a forested area on the south-eastern slope of the mountains were used to evaluate trends and patterns in solute concentration and flux with respect to controlling processes. From 1977 to 1996, the annual volume-weighted Ca2+ and SO42- concentrations decreased in bulk precipitation. However, after 1989, when a pronounced and continuous decrease occurred in coal production, annual volume-weighted concentrations decreased for most solutes, except H+. The concentration decreases were marked, with 1996 levels at or below 50% of those in 1989. The lack of a trend in H+ is attributed to similar decreases in both acid anions and neutralizing base cations. Stream water concentrations of most solutes, i.e. H+, Ca2+, Mg2+, SO42- and NO3-, were highest at the onset of sampling in 1977, decreased markedly from 1977 to 1983 and decreased more gradually from 1983 to 1998. The spruce forest die-back and removal reduced dry deposition of these solutes by reducing the filtering action, which was provided by the forest canopy. A notable decrease in stream water Ca2+ concentrations occurred after 1995 and may be due to the depletion of Ca2+, which was provided by catchment liming in 1986, 1988 and 1989. Solute flux trends in bulk atmospheric deposition and stream water generally were not significant and the lack of trend is attributed to the large interannual variability in precipitation quantity and runoff, respectively. All solutes except Na+ varied seasonally. The average seasonal concentrations varied between the solutes, but for most solutes were highest in winter and spring and lowest in summer, correlating with the seasonal trend and runoff. For Ca2+, Mg2+ and SO42-, the concentration minimum occurs in September and the maximum occurs in February or March, correlating with the seasonal baseflow. These solutes are primarily controlled by the contribution of soil water and groundwater to stream flow. During snowmelt, the meltwater generally causes concentrations to decrease as soil water and groundwater are diluted. For NO3, average minimum concentrations occur in August at the end of the growing season concurrent with the lowest stream flow, and the maximum occurs in February and March with high stream flow during snowmelt. Seasonal stream water NO3- concentration variations are large compared with the long-term decrease.The Krusne hory (Erzgebirge or Ore Mountains) has been heavily affected by high atmospheric pollutant deposition caused by fossil fuel combustion in an adjacent Tertiary coal basin. Long-term routine sampling of bulk precipitation (1977-1996) and stream water (1977-1998) in a forested area on the south-eastern slope of the mountains were used to evaluate trends and patterns in solute concentration and flux with respect to controlling processes. From 1977 to 1996, the annual volume-weighted Ca2+ and SO42- concentrations decreased in bulk precipitation. However, after 1989, when a pronounced and continuous decrease occurred in coal production, annual volume-weighted concentrations decreased for most solutes, except H+. The concentration decreases were marked, with 1996 levels at or below 50% of those in 1989. The lack of a trend in H+ is attributed to similar decreases in both acid anions and neutralizing base cations. Stream water concentrations of most solutes, i.e. H+, Ca2+, Mg2+, SO42- and NO3-, were highest at the onset of sampling in 1977, decreased markedly from 1977 to 1983 and decreased more gradually from 1983 to 1998. The spruce forest die-back and removal reduced dry deposition of these solutes by reducing the filtering action, which was provided by the forest canopy. A notable decrease in stream water Ca2+ concentrations occurred after 1995 an
Regional patterns of total nitrogen concentrations in the National Rivers and Streams Assessment
Patterns of nitrogen concentrations in streams sampled by the National Rivers and Streams Assessment (NRSA) were examined semi-quantitatively to identify regional differences in stream nitrogen levels. The data were categorized and analyzed by watershed size classes to reveal pat...
Characteristics of process oils from HTI coal/plastics co-liquefaction runs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, G.A.; Brandes, S.D.; Winschel, R.A.
1995-12-31
The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.
NASA Astrophysics Data System (ADS)
Gonzalez-Pinzon, R.; Riveros-Iregui, D. A.; Covino, T. P.
2015-12-01
The interactions between mobile and less mobile hydrologic compartments affect the quality and quantity of water in streams and aquifers, and the cycling of dissolved carbon and nutrients. As new laboratory and field techniques become available, new questions and challenges emerge, including: What do we measure, where, and for how long to fully characterize a system? and, What is the ideal cost-maintenance-benefit relationship that we should strive for to maximize knowledge gained in different field settings? We recently performed a series of field experiments to measure aquatic metabolism and nutrient dynamics in two highly contrasting hydrologic systems, i.e., 1) a wetland-stream alpine, tropical system in Colombia (South America) and 2) a dryland river continuum (1st - 5th stream orders) in New Mexico. In this presentation we discuss how multiple lines of evidence can support the analysis of key aquatic processes and how co-interpretation provides a more complete picture of stream complexity. For this analysis, we deployed YSI EXO2 and 6920 sondes, Turner Designs C-sense and C6 sensors, and Onset HOBO water quality data loggers. Parameters measured by these instruments include conductivity, temperature, dissolved oxygen, pH, turbidity, pCO2, chlorophyll-a, phycocyanin, fluorescein, CDOM, brighteners and water depth. We also injected conservative tracers (i.e., NaCl and NaBr) and the bioreactive tracer resazurin in both experimental sites, and NO3 in the dryland river continuum. NO3 was measured in-situ with Satlantic Submersible Ultraviolet Nitrate Analyzers (SUNA) sensors and in the laboratory using Ion Chromatograph techniques using stream grab samples. Our results highlight the role of both residence times and chemical fluxes in regulating the effective processing of carbon and nutrients. Our results also demonstrate that stream stimuli from controlled experiments are ideal for maximizing the information content derived from short (hours to days) and mid-term (weeks) sensor deployment campaigns.
Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.
2015-01-01
Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds, with the highest concentrations occurring in streams with the greatest WWTP effluent content. Biomarkers of endocrine disruption in the fish indicated long-term exposure to estrogenic chemicals in the wastewater impacted urban waterways.
Parker, S.R.; Gammons, C.H.; Jones, Clain A.; Nimick, D.A.
2007-01-01
Mining-impacted streams have been shown to undergo diel (24-h) fluctuations in concentrations of major and trace elements. Fisher Creek in south-central Montana, USA receives acid rock drainage (ARD) from natural and mining-related sources. A previous diel field study found substantial changes in dissolved metal concentrations at three sites with differing pH regimes during a 24-h period in August 2002. The current work discusses follow-up field sampling of Fisher Creek as well as field and laboratory experiments that examine in greater detail the underlying processes involved in the observed diel concentration changes. The field experiments employed in-stream chambers that were either transparent or opaque to light, filled with stream water and sediment (cobbles coated with hydrous Fe and Al oxides), and placed in the stream to maintain the same temperature. Three sets of laboratory experiments were performed: (1) equilibration of a Cu(II) and Zn(II) containing solution with Fisher Creek stream sediment at pH 6.9 and different temperatures; (2) titration of Fisher Creek water from pH 3.1 to 7 under four different isothermal conditions; and (3) analysis of the effects of temperature on the interaction of an Fe(II) containing solution with Fisher Creek stream sediment under non-oxidizing conditions. Results of these studies are consistent with a model in which Cu, Fe(II), and to a lesser extent Zn, are adsorbed or co-precipitated with hydrous Fe and Al oxides as the pH of Fisher Creek increases from 5.3 to 7.0. The extent of metal attenuation is strongly temperature-dependent, being more pronounced in warm vs. cold water. Furthermore, the sorption/co-precipitation process is shown to be irreversible; once the Cu, Zn, and Fe(II) are removed from solution in warm water, a decrease in temperature does not release the metals back to the water column. ?? 2006 Springer Science+Business Media B.V.
40 CFR 98.154 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the concentrations of the process samples. (b) The mass flow of the product stream containing the HFC... concentration and volumetric flow rate determined by measurement of volumetric flow rate using EPA Method 2, 2A... volumetric flow rate at the inlet or by a metering device for HFC-23 sent to the device. Determine a new...
Treatment of gas from an in situ conversion process
Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX
2011-12-06
A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.
Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis
Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.; ...
2016-09-05
Here, biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, heremore » we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg -1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg -1 of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes -- analyses that are critical for subsequent development of selective valorization strategies for these waste streams.« less
Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.
Here, biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, heremore » we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg -1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg -1 of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes -- analyses that are critical for subsequent development of selective valorization strategies for these waste streams.« less
Method for monitoring stack gases for uranium activity
Beverly, C.R.; Ernstberger, E.G.
1985-07-03
A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.
Method for monitoring stack gases for uranium activity
Beverly, Claude R.; Ernstberger, Harold G.
1988-01-01
A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.
BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paller, M; Susan Dyer, S
2004-11-08
The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and healthmore » of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing the health and condition of individual fish based on dissection and internal examination. It helped to determine whether contaminant concentrations were high enough to adversely affect the health of individual fish. The benthic macroinvertebrate multimetric index (HDMI), used in 1997 to 2000, is a method for assessing stream health based on macroinvertebrate data collected with Hester-Dendy artificial substrates. In 2003 it was replaced with the Multiple Habitat Sampling protocol, a SCDHEC method for collecting and analyzing benthic macroinvertebrate data from natural substrate. These two macroinvertebrate based methods were used in conjunction with the fish based IBI to provide a more comprehensive assessment of ecological conditions. Lastly, habitat data were collected from each stream to assist in determining whether ecological integrity was compromised by physical factors (e.g., erosion) or chemical factors (e.g., discharge of toxic materials). Fish from many SRS streams exhibited evidence of contamination as a result of current or former SRS operations. The most prevalent radiological contaminants were cesium-137 (highest in fish from Lower Three Runs followed by Steel Creek and Fourmile Branch), tritium (highest in fish from Fourmile Branch followed by Pen Branch, and the Savannah River swamp), and strontium (highest in fish from Fourmile Branch followed by Pen Branch). Radiological contaminants were also found in fish collected from the Savannah River near the mouths of contaminated SRS streams; however, contaminant levels were substantially lower than in fish from the streams themselves. Mercury levels were moderately elevated in fish from some streams, particularly Lower Three Runs, and in fish from the Savannah River. Despite the occurrence of contaminants, most SRS streams exhibited comparatively high biotic integrity (based on IBI, HDMI, and MHSP scores) and minimal levels of pathology among individual fish (e.g., presence of tumors or extreme thinness), indicating that contaminant levels were generally insufficient to cause significant ecological degradation.« less
Effects of Urbanization on Stream Water Quality in the City of Atlanta, Georgia, USA
NASA Astrophysics Data System (ADS)
Peters, N. E.
2009-05-01
A long-term stream water-quality monitoring network was established in the City of Atlanta (COA) during 2003 to assess baseline water-quality conditions and the effects of urbanization on stream water quality. Routine hydrologically-based manual stream sampling, including several concurrent manual point and equal width increment sampling, was conducted approximately 12 times per year at 21 stations, with drainage areas ranging from 3.7 to 232 km2. Eleven of the stations are real-time (RT) water-quality stations having continuous measures of stream stage/discharge, pH, dissolved oxygen, specific conductance, water temperature, and turbidity, and automatic samplers for stormwater collection. Samples were analyzed for field parameters, and a broad suite of water-quality and sediment-related constituents. This paper summarizes an evaluation of field parameters and concentrations of major ions, minor and trace metals, nutrient species (nitrogen and phosphorus), and coliform bacteria among stations and with respect to watershed characteristics and plausible sources from 2003 through September 2007. The concentrations of most constituents in the COA streams are statistically higher than those of two nearby reference streams. Concentrations are statistically different among stations for several constituents, despite high variability both within and among stations. The combination of routine manual sampling, automatic sampling during stormflows, and real-time water-quality monitoring provided sufficient information about the variability of urban stream water quality to develop hypotheses for causes of water-quality differences among COA streams. Fecal coliform bacteria concentrations of most individual samples at each station exceeded Georgia's water-quality standard for any water-usage class. High chloride concentrations occur at three stations and are hypothesized to be associated with discharges of chlorinated combined sewer overflows, drainage of swimming pool(s), and dissolution and transport during rainstorms of CaCl2, a deicing salt applied to roads during winter storms. Water quality of one stream was highly affected by the dissolution and transport of ammonium alum [NH4Al(SO4)2] from an alum manufacturing plant in the watershed; streamwater has low pH (<5), low alkalinity and high concentrations of minor and trace metals. Several trace metals (Cu, Pb and Zn) exceed acute and chronic water-quality standards and the high concentrations are attributed to washoff from impervious surfaces.
Spatial heterogeneity of within-stream methane concentrations
Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.
2017-01-01
Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.
Liu, Linfei; Xu, Zongxue; Yin, Xuwang; Li, Fulin; Dou, Tongwen
2017-05-01
Assessment of the health of urban streams is an important theoretical and practical topic, which is related to the impacts of physiochemical processes, hydrological modifications, and the biological community. However, previous assessments of the urban water quality were predominantly conducted by measuring physical and chemical factors rather than biological monitoring. The purpose of this study was to develop an urban stream multimetric index (USMI) based on benthic macroinvertebrates to assess the health of aquatic ecosystem in Jinan City. Two hundred and eighty-eight samples were collected during two consecutive years (2014-2015) from 48 sites located within the city. Metrics related to the benthic macroinvertebrate richness, diversity, composition and abundance, and functional feeding groups were selected by using box-plots and the Kruskal-Wallis test. The final index derived from selected metrics was divided into five river quality classes (excellent, good, moderate, poor, and bad). A validation procedure using box-plots and the non-parametric Mann-Whitney U test showed that the USMI was useful to assess the health of urban streams.
Multispectral Imaging Broadens Cellular Analysis
NASA Technical Reports Server (NTRS)
2007-01-01
Amnis Corporation, a Seattle-based biotechnology company, developed ImageStream to produce sensitive fluorescence images of cells in flow. The company responded to an SBIR solicitation from Ames Research Center, and proposed to evaluate several methods of extending the depth of field for its ImageStream system and implement the best as an upgrade to its commercial products. This would allow users to view whole cells at the same time, rather than just one section of each cell. Through Phase I and II SBIR contracts, Ames provided Amnis the funding the company needed to develop this extended functionality. For NASA, the resulting high-speed image flow cytometry process made its way into Medusa, a life-detection instrument built to collect, store, and analyze sample organisms from erupting hydrothermal vents, and has the potential to benefit space flight health monitoring. On the commercial end, Amnis has implemented the process in ImageStream, combining high-resolution microscopy and flow cytometry in a single instrument, giving researchers the power to conduct quantitative analyses of individual cells and cell populations at the same time, in the same experiment. ImageStream is also built for many other applications, including cell signaling and pathway analysis; classification and characterization of peripheral blood mononuclear cell populations; quantitative morphology; apoptosis (cell death) assays; gene expression analysis; analysis of cell conjugates; molecular distribution; and receptor mapping and distribution.
Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds
Miller, Matthew P.; Boyer, Elizabeth W.; McKnight, Diane M.; Brown, Michael G.; Gabor, Rachel S.; Hunsaker, Carolyn T.; Iavorivska , Lidiia; Inamdar, Shreeram; Kaplan, Louis A.; Johnson, Dale W.; Lin, Henry; McDowell, William H.; Perdrial, Julia N.
2016-01-01
The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in analytical procedures can introduce artifacts. In this study, we used consistent sampling and analytical methods to meet the objective of defining variability in DOM quantity and quality and other measures of water quality in streamflow issuing from small forested watersheds located within five Critical Zone Observatory sites representing contrasting environmental conditions. Results show distinct separations among sites as a function of water quality constituents. Relationships among rates of atmospheric deposition, water quality conditions, and stream DOM quantity and quality are consistent with the notion that areas with relatively high rates of atmospheric nitrogen and sulfur deposition and high concentrations of divalent cations result in selective transport of DOM derived from microbial sources, including in-stream microbial phototrophs. We suggest that the critical zone as a whole strongly influences the origin, composition, and fate of DOM in streams. This study highlights the value of consistent DOM characterization methods included as part of long-term monitoring programs for improving our understanding of interactions among ecosystem processes as controls on DOM biogeochemistry.
Design and methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015
Sheibley, Rich W.; Morace, Jennifer L.; Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Nakagaki, Naomi; Button, Daniel T.; Qi, Sharon L.
2017-08-25
In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project conducted the Pacific Northwest Stream Quality Assessment (PNSQA) to investigate stream quality across the western part of the Pacific Northwest. The goal of the PNSQA was to assess the health of streams in the region by characterizing multiple water-quality factors that are stressors to in-stream aquatic life and by evaluating the relation between these stressors and the condition of biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowland and Willamette Valley Level III Ecoregions were the focus of this regional study. Findings will help inform the public and policymakers about human and environmental factors that are the most critical in affecting stream quality and, thus, provide insights into possible strategies to protect or improve the health of streams in the region.Land-use data were used in the study to identify and select sites within the region that ranged in levels of urban and agricultural development. A total of 88 sites were selected across the region—69 were on streams that explicitly spanned a range of urban land use in their watersheds, 8 were on streams in agricultural watersheds, and 11 were reference sites with little or no development in their watersheds. Depending on the type of land use, sites were sampled for contaminants, nutrients, and sediment for either a 4- or 10-week period during April, May, and June 2015. This water-quality “index period” was immediately followed with an ecological survey of all sites that included stream habitat, benthic algae, benthic macroinvertebrates, and fish. Additionally, streambed sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing.This report provides a detailed description of the specific study components and methods of the PNSQA, including (1) surveys of stream habitat and aquatic biota, (2) discrete water sampling, (3) deployment of passive polar organic chemical integrative samplers for pesticides and pharmaceuticals, and (4) sampling of streambed sediment. At selected study sites, toxicity testing of streambed sediment, continuous water-quality monitoring, and daily pesticide sampling also were conducted and are described.
Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.
2011-01-01
Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.
Groundwater-surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa
Schilling, K.E.; Li, Z.; Zhang, Y.-K.
2006-01-01
Riparian zones of many incised channels in agricultural regions are cropped to the channel edge leaving them unvegetated for large portions of the year. In this study we evaluated surface and groundwater interaction in the riparian zone of an incised stream during a spring high flow period using detailed stream stage and hydraulic head data from six wells, and water quality sampling to determine whether the riparian zone can be a source of nitrate pollution to streams. Study results indicated that bank storage of stream water from Walnut Creek during a large storm water runoff event was limited to a narrow 1.6 m zone immediately adjacent to the channel. Nitrate concentrations in riparian groundwater were highest near the incised stream where the unsaturated zone was thickest. Nitrate and dissolved oxygen concentrations and nitrate-chloride ratios increased during a spring recharge period then decreased in the latter portion of the study. We used MODFLOW and MT3DMS to evaluate dilution and denitrification processes that would contribute to decreasing nitrate concentrations in riparian groundwater over time. MT3DMS model simulations were improved with a denitrification rate of 0.02 1/d assigned to the floodplain sediments implying that denitrification plays an important role in reducing nitrate concentrations in groundwater. We conclude that riparian zones of incised channels can potentially be a source of nitrate to streams during spring recharge periods when the near-stream riparian zone is largely unvegetated. ?? 2005 Elsevier B.V. All rights reserved.
Bizzotto, E C; Villa, S; Vaj, C; Vighi, M
2009-02-01
The release of persistent organic pollutants (PCBs, HCB, HCHs and DDTs) accumulated in Alpine glaciers, was studied during spring-summer 2006 on the Frodolfo glacial-fed stream (Italian Alps). Samples were also taken on a non-glacial stream in the same valley, to compare POP contribution from different water sources (glacier ice, recent snow and spring). In late spring and early summer (May, June) recent snow melting is the most important process. POP contamination is more affected by local emissions and transport, and comparable levels have been measured in both streams for all studied compounds. In late summer and autumn (July-October), the contribution of ice melting strongly increases. In the glacial-fed stream the concentration of chlorinated pesticides (HCHs and DDTs) is about one order of magnitude higher than in the non-glacial-fed. A different behaviour was observed for PCBs, characterised by a peak in June showing, in both streams, concentrations three orders of magnitude higher than the background levels measured in May and in October. This result should be attributed to local emissions rather than long range atmospheric transport (LRAT). This hypothesis is supported by the PCB congener profile in June strictly comparable to the most commonly used Aroclor technical mixtures. The different seasonal behaviour observed for the different groups of chemicals indicates the POP loading in glacial streams is a combined role of long range atmospheric transport and local emission.
NASA Astrophysics Data System (ADS)
Sandstrom, M. W.; Battaglin, W. A.
2007-05-01
Concentrations of 11 fungicides were measured in stream samples during 2 years in agricultural areas in the United States that grow predominantly corn and soybean. The fungicides are registered for control of Asian Soybean Rust (ASR), which entered the United States in 2004. Many of these fungicides were registered under an emergency exemption because evaluation of environmental risks related to their widespread use on soybeans had not been completed. Some of these fungicides are considered moderately to highly toxic to fish and aquatic invertebrates. We developed a solid-phase extraction and gas chromatography/mass spectrometry method for determining the fungicides at low concentrations (ng/L). Stream samples were collected 2 to 4 times at study areas during the late spring through fall season when fungicides are applied. Six fungicides registered for control of ASR (Phakospora pachyrhizi) in 2005 were measured in streams in Alabama, Georgia, North Carolina, South Carolina, and Mississippi during August-November, 2005. One or more fungicides were detected in 8 of the 12 streams sampled. Azoxystrobin, pyraclostrobin, propiconazole, tebuconazole, and myclobutanil were found in at least one of the 40 samples collected, while chlorothalonil was not found. Azoxystrobin was detected most frequently, in 35 percent of the samples. In 2006, five additional fungicides registered for use in control of ASR were included in the analytical method. One or more of the fungicides (azoxystrobin, pyraclostrobin, trifloxystrobin, metconazole, propiconazole, tebuconazole, tetraconazole, myclobutanil) were detected in 12 of the 16 streams sampled from areas in the South and Midwest during May-September, 2006. Azoxystrobin was detected most frequently (40 percent of the samples) and the highest concentration was 1.1 μg/L in a small predominantly cotton and soybean watershed. The highest concentrations of azoxystrobin were measured prior to the spread of ASR in 2006, and the detections in streams might be related to use on other crops. Concentrations of the fungicides measured were about 100 times lower than aquatic toxicity levels. These results show that ASR fungicides were found in streams before extensive spread of ASR in the United States.
Short-term disturbance effects of outdoor education stream classes on aquatic macroinvertebrates
USDA-ARS?s Scientific Manuscript database
Outdoor education stream classes provide students with an opportunity to gain hands-on experience with sampling methods for evaluating stream water quality. Student trampling as a result of stream classes may disrupt the substrate and negatively impact aquatic macroinvertebrates. The impact of stude...
In-Stream Microbial Denitrification Potential at Wastewater Treatment Plant Discharge Sites
NASA Astrophysics Data System (ADS)
Hill, N. B.; Rahm, B. G.; Shaw, S. B.; Riha, S. J.
2014-12-01
Reactive nitrogen loading from municipal sewage discharge provides point sources of nitrate (NO3-) to rivers and streams. Through microbially-mediated denitrification, NO3- can be converted to dinitrogen (N2) and nitrous oxide (N2O) gases, which are released to the atmosphere. Preliminary observations made throughout summer 2011 near a wastewater treatment plant (WWTP) outfall in the Finger Lakes region of New York indicated that NO3- concentrations downstream of the discharge pipe were lower relative to upstream concentrations. This suggested that nitrate processing was occurring more rapidly and completely than predicted by current models and that point "sources" can in some cases be point "sinks". Molecular assays and stable isotope analyses were combined with laboratory microcosm experiments and water chemistry analyses to better understand the mechanism of nitrate transformation. Nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes were detected in water and sediment samples using qPCR. Denitrifcation genes were present attached to stream sediment, in pipe biofilm, and in WWTP discharge water. A comparison of δ18-O and δ15-N signatures also supported the hypothesis that stream NO3- had been processed biotically. Results from microcosm experiments indicated that the NO3- transformations occur at the sediment-water interface rather than in the water column. In some instances, quantities of denitrification genes were at higher concentrations attached to sediment downstream of the discharge pipe than upstream of the pipe suggesting that the wastewater discharge may be enriching the downstream sediment and could promote in-stream denitrification.
Pringle, C.M.; Triska, F.J.; Browder, G.
1990-01-01
Spatial variability in selected chemical, physical and biological parameters was examined in waters draining relatively pristine tropical forests spanning elevations from 35 to 2600 meters above sea level in a volcanic landscape on Costa Rica's Caribbean slope. Waters were sampled within three different vegetative life zones and two transition zones. Water temperatures ranged from 24-25 ??C in streams draining lower elevations (35-250 m) in tropical wet forest, to 10 ??C in a crater lake at 2600 m in montane forest. Ambient phosphorus levels (60-300 ??g SRP L-1; 66-405 ??g TP L-1) were high at sites within six pristine drainages at elevations between 35-350 m, while other undisturbed streams within and above this range in elevation were low (typically <30.0 ??g SRP L-1). High ambient phosphorus levels within a given stream were not diagnostic of riparian swamp forest. Phosphorus levels (but not nitrate) were highly correlated with conductivity, Cl, Na, Ca, Mg and SO4. Results indicate two major stream types: 1) phosphorus-poor streams characterized by low levels of dissolved solids reflecting local weathering processes; and 2) phosphorus-rich streams characterized by relatively high Cl, SO4, Na, Mg, Ca and other dissolved solids, reflecting dissolution of basaltic rock at distant sources and/or input of volcanic brines. Phosphorus-poor streams were located within the entire elevation range, while phosphorus-rich streams were predominately located at the terminus of Pleistocene lava flows at low elevations. Results indicate that deep groundwater inputs, rich in phosphorus and other dissolved solids, surface from basaltic aquifers at breaks in landform along faults and/or where the foothills of the central mountain range merge with the coastal plain. ?? 1990 Kluwer Academic Publishers.
Perchlorate Data for Streams and Groundwater in Selected Areas of the United States, 2004
Kalkhoff, Stephen J.; Stetson, Sarah J.; Lund, Kris D.; Wanty, Richard B.; Linder, Gregory L.
2010-01-01
This report presents data collected as part of a reconnaissance study to evaluate the occurrence of perchlorate in rivers and streams and in shallow aquifers in selected areas of the United States. Perchlorate, a component in rocket fuels, fireworks, and some explosives is soluble in water and persists in soils and water for long periods. It is biologically active at relatively low-levels in the environment, and has been identified as an endocrine-disrupting chemical. The purpose of this reconnaissance was to determine the occurrence of perchlorate in agricultural areas of the Midwestern and North-Central United States and in arid Central and Western parts of the United States. Samples were collected from 171 sites on rivers and streams and 146 sites from wells during the summer and early fall of 2004. Samples were collected from surface-water sites in 19 states and from wells in 5 states. Perchlorate was detected in samples collected in 15 states and was detected in 34 of 182 samples from rivers and streams and in 64 of 148 groundwater samples at concentrations equal to or greater than 0.4 micrograms per liter. Perchlorate concentrations were 1.0 micrograms per liter or greater in surface-water samples from seven states and in groundwater samples in four states. Only one surface-water and one groundwater sample had concentrations greater than 5.0 micrograms per liter. Perchlorate concentrations in followup samples collected from 1 to 3 months after the initial sample were unchanged at four of five stream sites.
McCleskey, R. Blaine; Nordstrom, D. Kirk; Steiger, Judy I.; Kimball, Briant A.; Verplanck, Philip L.
2003-01-01
Water analyses are reported for 259 samples collected from the Red River, New Mexico, and its tributaries during low-flow(2001) and spring snowmelt (2002) tracer studies. Water samples were collected along a 20-kilometer reach of the Red River beginning just east of the town of Red River and ending at the U.S. Geological Survey streamflow-gaging station located east of Questa, New Mexico. The study area was divided into three sections where separate injections and synoptic sampling events were performed during the low-flow tracer study. During the spring snowmelt tracer study, three tracer injections and synoptic sampling events were performed bracketing the areas with the greatest metal loading into the Red River as determined from the low-flow tracer study. The lowflow tracer synoptic sampling events were August 17, 20, and 24, 2001. The synoptic sampling events for the spring snowmelt tracer were March 30, 31, and April 1, 2002. Stream and large inflow water samples were sampled using equal-width and depth-integrated sampling methods and composited into half-gallon bottles. Grab water samples were collected from smaller inflows. Stream temperatures were measured at the time of sample collection. Samples were transported to a nearby central processing location where pH and specific conductance were measured and the samples processed for chemical analyses. Cations, trace metals, iron redox species, and fluoride were analyzed at the U.S. Geological Survey laboratory in Boulder, Colorado. Cations and trace metal concentrations were determined using inductively coupled plasma-optical emission spectrometry and graphite furnace atomic absorption spectrometry. Arsenic concentrations were determined using hydride generation atomic absorption spectrometry, iron redox species were measured using ultraviolet-visible spectrometry, and fluoride concentrations were determined using an ion-selective electrode. Alkalinity was measured by automated titration, and sulfate, chloride, and bromide were analyzed by ion chromatography at the U.S. Geological Survey laboratory in Salt Lake City, Utah.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maassen, L.W.; Bolivar, S.L.
1979-06-01
The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less
Quantitative measurement of stream respiration using the resazurin-resorufin system
NASA Astrophysics Data System (ADS)
Gonzalez Pinzon, R. A.; Acker, S.; Haggerty, R.; Myrold, D.
2011-12-01
After three decades of active research in hydrology and stream ecology, the relationship between stream solute transport, metabolism and nutrient dynamics is still unresolved. These knowledge gaps obscure the function of stream ecosystems and how they interact with other landscape processes. To date, measuring rates of stream metabolism is accomplished with techniques that have vast uncertainties and are not spatially representative. These limitations mask the role of metabolism in nutrient processing. Clearly, more robust techniques are needed to develop mechanistic relationships that will ultimately improve our fundamental understanding of in-stream processes and how streams interact with other ecosystems. We investigated the "metabolic window of detection" of the Resazurin (Raz)-Resorufin (Rru) system (Haggerty et al., 2008, 2009). Although previous results have shown that the transformation of Raz to Rru is strongly correlated with respiration, a quantitative relationship between them is needed. We investigated this relationship using batch experiments with pure cultures (aerobic and anaerobic) and flow-through columns with incubated sediments from four different streams. The results suggest that the Raz-Rru system is a suitable approach that will enable hydrologists and stream ecologists to measure in situ and in vivo respiration at different scales, thus opening a reliable alternative to investigate how solute transport and stream metabolism control nutrient processing.
Quality of Streams in Johnson County, Kansas, and Relations to Environmental Variables, 2003-07
Rasmussen, Teresa J.; Poulton, Barry C.; Graham, Jennifer L.
2009-01-01
The quality of streams and relations to environmental variables in Johnson County, northeastern Kansas, were evaluated using water, streambed sediment, land use, streamflow, habitat, algal periphyton (benthic algae), and benthic macroinvertebrate data. Water, streambed sediment, and macroinvertebrate samples were collected in March 2007 during base flow at 20 stream sites that represent 11 different watersheds in the county. In addition, algal periphyton samples were collected twice (spring and summer 2007) at one-half of the sites. Environmental data including water and streambed-sediment chemistry data (primarily nutrients, fecal-indicator bacteria, and organic wastewater compounds), land use, streamflow, and habitat data were used in statistical analyses to evaluate relations between biological conditions and variables that may affect them. This report includes an evaluation of water and streambed-sediment chemistry, assessment of habitat conditions, comparison of biological community attributes (such as composition, diversity, and abundance) among sampling sites, placement of sampling sites into impairment categories, evaluation of biological data relative to environmental variables, and evaluation of changes in biological communities and effects of urbanization. This evaluation is useful for understanding factors that affect stream quality, for improving water-quality management programs, and for documenting changing conditions over time. The information will become increasingly important for protecting streams in the future as urbanization continues. Results of this study indicate that the biological quality at nearly all biological sampling sites in Johnson County has some level of impairment. Periphyton taxa generally were indicative of somewhat degraded conditions with small to moderate amounts of organic enrichment. Camp Branch in the Blue River watershed was the only site that met State criteria for full support of aquatic life in 2007. Since 2003, biological quality improved at one rural sampling site, possibly because of changes in wastewater affecting the site, and declined at three urban sites possibly because of the combined effects of ongoing development. Rural streams in the western and southern parts of the county, with land-use conditions similar to those found at the State reference site (Captain Creek), continue to support some organisms normally associated with healthy streams. Several environmental factors contribute to biological indicators of stream quality. The primary factor explaining biological quality at sites in Johnson County was the amount of urbanization upstream in the watershed. Specific conductance of stream water, which is a measure of dissolved solids in water and is determined primarily by the amount of groundwater contributing to streamflow, the amount of urbanization, and discharges from wastewater and industrial sites, was strongly negatively correlated with biological stream quality as indicated by macroinvertebrate metrics. Concentration of polycyclic aromatic hydrocarbons (PAHs) in streambed sediment also was negatively correlated with biological stream quality. Individual habitat variables that most commonly were positively correlated with biological indicators included stream sinuosity, buffer length, and substrate cover diversity. Riffle substrate embeddedness and sediment deposition commonly were negatively correlated with favorable metric scores. Statistical analysis indicated that specific conductance, impervious surface area (a measure of urbanization), and stream sinuosity explained 85 percent of the variance in macroinvertebrate communities. Management practices affecting environmental variables that appear to be most important for Johnson County streams include protection of stream corridors, measures that reduce the effects of impervious surfaces associated with urbanization, reduction of dissolved solids in stream water, reduction of PAHs entering streams and
Johnson, Gordon R.
1983-01-01
Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.
Aerosol mobility size spectrometer
Wang, Jian; Kulkarni, Pramod
2007-11-20
A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.
Development and evaluation of a water level proportional water sampler
NASA Astrophysics Data System (ADS)
Schneider, P.; Lange, A.; Doppler, T.
2013-12-01
We developed and adapted a new type of sampler for time-integrated, water level proportional water quality sampling (e.g. nutrients, contaminants and stable isotopes). Our samplers are designed for sampling small to mid-size streams based on the law of Hagen-Poiseuille, where a capillary (or a valve) limits the sampling aliquot by reducing the air flux out of a submersed plastic (HDPE) sampling container. They are good alternatives to battery-operated automated water samplers when working in remote areas, or at streams that are characterized by pronounced daily discharge variations such as glacier streams. We evaluated our samplers against standard automated water samplers (ISCO 2900 and ISCO 6712) during the snowmelt in the Black Forest and the Alps and tested them in remote glacial catchments in Iceland, Switzerland and Kyrgyzstan. The results clearly showed that our samplers are an adequate tool for time-integrated, water level proportional water sampling at remote test sites, as they do not need batteries, are relatively inexpensive, lightweight, and compact. They are well suited for headwater streams - especially when sampling for stable isotopes - as the sampled water is perfectly protected against evaporation. Moreover, our samplers have a reduced risk of icing in cold environments, as they are installed submersed in water, whereas automated samplers (typically installed outside the stream) may get clogged due to icing of hoses. Based on this study, we find these samplers to be an adequate replacement for automated samplers when time-integrated sampling or solute load estimates are the main monitoring tasks.
NASA Astrophysics Data System (ADS)
Aguilera, Rosana; Marcé, Rafael; Sabater, Sergi
2013-06-01
are conveyed from terrestrial and upstream sources through drainage networks. Streams and rivers contribute to regulate the material exported downstream by means of transformation, storage, and removal of nutrients. It has been recently suggested that the efficiency of process rates relative to available nutrient concentration in streams eventually declines, following an efficiency loss (EL) dynamics. However, most of these predictions are based at the reach scale in pristine streams, failing to describe the role of entire river networks. Models provide the means to study nutrient cycling from the stream network perspective via upscaling to the watershed the key mechanisms occurring at the reach scale. We applied a hybrid process-based and statistical model (SPARROW, Spatially Referenced Regression on Watershed Attributes) as a heuristic approach to describe in-stream nutrient processes in a highly impaired, high stream order watershed (the Llobregat River Basin, NE Spain). The in-stream decay specifications of the model were modified to include a partial saturation effect in uptake efficiency (expressed as a power law) and better capture biological nutrient retention in river systems under high anthropogenic stress. The stream decay coefficients were statistically significant in both nitrate and phosphate models, indicating the potential role of in-stream processing in limiting nutrient export. However, the EL concept did not reliably describe the patterns of nutrient uptake efficiency for the concentration gradient and streamflow values found in the Llobregat River basin, posing in doubt its complete applicability to explain nutrient retention processes in stream networks comprising highly impaired rivers.
Research plan and preliminary results - A field research site for emerging contaminants in Iowa
Schnoebelen, Douglas J.; Kolpin, Dana W.; Barber, Larry B.; Furlong, Edward T.; Meyer, Michael; Skopec, M.
2006-01-01
Research has recently documented the prevalence of a wide variety of pharmaceuticals and other emerging contaminants (ECs) in streams across the United States. Wastewater treatment plants (WWTPs) have been found to be an important source and collection point of ECs to streams as many ECs are incompletely removed during treatment. To investigate the complex in-stream processes (e.g., dilution, sorption, degradation, dispersion, etc.) that can affect ECs following their input from a WWTP and determining if such input is having an effect on the aquatic ecosystem requires the integration of multi-disciplinary efforts at a carefully selected field site. Preliminary work has identified an 8-km reach of Fourmile Creek in central Iowa as an ideal research site to investigate such important research questions pertaining to ECs. Unique aspects of Fourmile Creek included: (1) it single source effluent-dominated stream, (2) background data document the input of a wide variety of ECs from WWTP discharge, (3) small basin size, (4) relatively simple flow system, (5) background data suggest that undefined processes are taking place decreasing the level of select ECs during stream transport, (6) the WWTP uses a treatment technology (activated sludge) typical of many towns in Iowa and the United States (7) a hydrogeologic setting of a low-gradient, small stream (average discharge less than 1.41 m³/s) in glacial drift is typical of many areas in Iowa and across the Midwest, and (8) the existence of a low-head clam approximately 2 km upstream of the WWTP outfall allowing more accurate "above WWTP" and "below WWTP" comparisons in aquatic ecosystems. Furthermore, the WWTP is scheduled to close by 2011 providing a unique opportunity to determine how stream hydrology, water chemistry and aquatic biota react to the removal of the primary source of flow and ECs in this system. This will allow a novel "before" and "after" assessment not previously available in EC research. Research to date at the site has included installation of a streamflow gauging station, dye-tracing tests (to determine water travel times), Lagrangian water-quality sampling at two flow/water temperature regimes, and sampling for ECs in bed sediment. Selected fish have been collected for analysis and identification. In addition, basic fish community and fish health assessment for different seasons and spawning conditions are being analyzed. The research "framework" is unique at Fourmile Creek for investigating the important question of how ECs are transported through the environment and if the presence of such compounds is having a deleterious effect on aquatic ecosystems.
NASA Astrophysics Data System (ADS)
Corrigan, A.; Silins, U.; Stone, M.
2016-12-01
Best management practices (BMPs) and associated erosion control measures for mitigating sediment impacts from forestry roads and road-stream crossings are well documented. While rapid road decommissioning after forestry operations may serve to limit broader impacts on sediment production in high value headwater streams, few studies have evaluated the combined effects of accelerated harvest operations and rapid retirement of logging roads and road-stream crossings on stream sediment. The objectives of this study were to evaluate the initial impacts of these strategies on fine sediment loading and fate during a short duration harvesting operation in 3 headwater sub-catchments in the southwestern Rocky Mountains of Alberta, Canada. A multi-pronged sampling approach (ISCOs, event focused grab sampling, continuous wash load sampling, and stream bed sediment intrusion measurements) was used to measure sediment loading and deposition in streambeds upstream and downstream of road-stream bridge crossings during harvest operations (2015) and after road and bridge crossing retirement (2016). Sediment production from forestry roads was generally much lower than has been reported from other studies in similar settings. Average total suspended solids (TSS) downstream of the bridge crossings were actually lower (-3.28 g/L; -0.704 g/L) than upstream of two bridge crossings while in-stream sediment sources contributed to elevated sediment downstream of a third road-stream crossing. Minimal in stream sediment impacts from forest harvest and road-stream crossings was likely a reflection of combined factors including a) employment of erosion control BMPs to roads and bridge crossings, b) rapid decommissioning of roads and crossings to limit exposure of linear land disturbance features, and c) drier El Niño climatic conditions during the study.
Stream food web response to a salmon carcass analogue addition in two central Idaho, U.S.A. streams
KOHLER, ANDRE E; RUGENSKI, AMANDA; TAKI, DOUG
2008-01-01
Pacific salmon and steelhead once contributed large amounts of marine-derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of delivering nutrients to freshwater and linked riparian ecosystems where marine-derived nutrients have been reduced or eliminated. We compared four streams: two reference and two treatment streams using salmon carcass analogue(s) (SCA) as a treatment. Response variables measured included: surface streamwater chemistry; nutrient limitation status; carbon and nitrogen stable isotopes; periphyton chlorophyll a and ash-free dry mass (AFDM); macroinvertebrate density and biomass; and leaf litter decomposition rates. Within each stream, upstream reference and downstream treatment reaches were sampled 1 year before, during, and 1 year after the addition of SCA. Periphyton chlorophyll a and AFDM and macroinvertebrate biomass were significantly higher in stream reaches treated with SCA. Enriched stable isotope (δ15N) signatures were observed in periphyton and macroinvertebrate samples collected from treatment reaches in both treatment streams, indicating trophic transfer from SCA to consumers. Densities of Ephemerellidae, Elmidae and Brachycentridae were significantly higher in treatment reaches. Macroinvertebrate community composition and structure, as measured by taxonomic richness and diversity, did not appear to respond significantly to SCA treatment. Leaf breakdown rates were variable among treatment streams: significantly higher in one stream treatment reach but not the other. Salmon carcass analogue treatments had no detectable effect on measured water chemistry variables. Our results suggest that SCA addition successfully increased periphyton and macroinvertebrate biomass with no detectable response in streamwater nutrient concentrations. Correspondingly, no change in nutrient limitation status was detected based on dissolved inorganic nitrogen to soluble reactive phosphorus ratios (DIN/SRP) and nutrient-diffusing substrata experiments. Salmon carcass analogues appear to increase freshwater productivity. Salmon carcass analogues represent a pathogen-free nutrient enhancement tool that mimics natural trophic transfer pathways, can be manufactured using recycled fish products, and is easily transported; however, salmon carcass analogues should not be viewed as a replacement for naturally spawning salmon and the important ecological processes they provide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spangler, Lorenz R.; Most, Wm. A.
The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) limits the allowable emissions of volatile organic compounds (VOCs) from contact handled (CH) transuranic (TRU) waste. The environmental Performance standard within the HWFP, Module IV, Table IV.D.1, prescribes the allowed VOC emissions from the waste to ensure protection of human health and the environment. Compliance with the performance standard to ensure control of VOC emissions is based on VOC concentrations and monitoring in the underground. One of the mechanisms used to ensure compliance with the emissions standards is measuring the VOC concentration in the headspace gas of waste containersmore » prior to disposal. Headspace gas sampling and analysis is the waste characterization activity used to determine the concentration of VOCs in the headspace of waste containers. In addition to being used to demonstrate compliance with the emissions standards of Module IV, Table IV.D.1, the results of the headspace gas sampling and analysis are used to confirm the hazardous wastes identified in the acceptable knowledge (AK) process. Headspace gas sampling and analysis has been an ongoing part of the CH TRU waste characterization program and therefore data are now available concerning its use and applicability. The information from approved Waste Stream Profile Forms (WSPFs) and the headspace gas sampling and analysis results for over 16,000 containers of CH TRU waste were considered as part of this study. The headspace gas sampling and analysis results are based on data from the WIPP Waste Information System (WWIS). These results were evaluated to determine the usefulness of headspace gas sampling and analysis for confirming AK information. The evaluation shows that the reliability of using the results of headspace gas sampling and analysis to confirm AK information can be grouped by mixed and non-mixed waste streams. In general, for mixed waste streams due to VOCs (i.e., carrying VOC-related hazardous waste numbers), there is no reliable comparison that can be made for the detection of a particular target analyte and its associated hazardous waste number(s) based on the AK information on a compound by compound basis. However, for non-mixed waste streams, the results of headspace gas sampling and analysis show a better correlation to the AK information.« less
A statistical software tool, Stream Fish Community Predictor (SFCP), based on EMAP stream sampling in the mid-Atlantic Highlands, was developed to predict stream fish communities using stream and watershed characteristics. Step one in the tool development was a cluster analysis t...
Probability surveys of stream and river resources (hereafter referred to as streams) provide reliable estimates of stream condition when the areas for the estimates have sufficient number of sample sites. Monitoring programs are frequently asked to provide estimates for areas th...
Campbell Grant, Evan H.; Bailey, Larissa L.; Ware, Joy L.; Duncan, Karen L.
2008-01-01
The amphibian chytrid fungus Batrachochytrium dendrobatidis, responsible for the potentially fatal amphibian disease chytridiomycosis, is known to occur in a large and ever increasing number of amphibian populations around the world. However, sampling has been biased towards stream- and wetland-breeding anurans, with little attention paid to stream-associated salamanders. We sampled three frog and three salamander species in the Chesapeake and Ohio Canal National Historic Park, Maryland, by swabbing animals for PCR analysis to detect DNA of B. dendrobatidis. Using PCR, we detected B. dendrobatidis DNA in both stream and wetland amphibians, and report here the first occurrence of the pathogen in two species of stream-associated salamanders. Future research should focus on mechanisms within habitats that may affect persistence and dissemination of B. dendrobatidis among stream-associated salamanders
Heilweil, Victor M.; Risser, Dennis W.; Conger, Randall W.; Grieve, Paul L.; Hynek, Scott A.
2014-01-01
A stream-sampling study was conducted to estimate methane concentrations and loads in groundwater discharge to a small stream in an active shale-gas development area of northeastern Pennsylvania. Grab samples collected from 15 streams in Bradford, Lycoming, Susquehanna, and Tioga Counties, Pa., during a reconnaissance survey in May and June 2013 contained dissolved methane concentrations ranging from less than the minimum reporting limit (1.0) to 68.5 micrograms per liter (µg/L). The stream-reach mass-balance method of estimating concentrations and loads of methane in groundwater discharge was applied to a 4-kilometer (km) reach of Sugar Run in Lycoming County, one of the four streams with methane concentrations greater than or equal to 5 µg/L. Three synoptic surveys of stream discharge and methane concentrations were conducted during base-flow periods in May, June, and November 2013. Stream discharge at the lower end of the reach was about 0.10, 0.04, and 0.02 cubic meters per second, respectively, and peak stream methane concentrations were about 20, 67, and 29 µg/L. In order to refine estimated amounts of groundwater discharge and locations where groundwater with methane discharges to the stream, the lower part of the study reach was targeted more precisely during the successive studies, with approximate spacing between stream sampling sites of 800 meters (m), 400 m, and 200 m, in May, June, and November, respectively. Samples collected from shallow piezometers and a seep near the location of the peak methane concentration measured in streamwater had groundwater methane concentrations of 2,300 to 4,600 µg/L. These field data, combined with one-dimensional stream-methane transport modeling, indicate groundwater methane loads of 1.8 ±0.8, 0.7 ±0.3, and 0.7 ±0.2 kilograms per day, respectively, discharging to Sugar Run. Estimated groundwater methane concentrations, based on the transport modeling, ranged from 100 to 3,200 µg/L. Although total methane load and the uncertainty in calculated loads both decreased with lower streamflow conditions and finer-resolution sampling in June and November, the higher loads during May could indicate seasonal variability in base flow. This is consistent with flowmeter measurements indicating that there was less inflow occurring at lower streamflow conditions during June and November.
Testing common stream sampling methods for broad-scale, long-term monitoring
Eric K. Archer; Brett B. Roper; Richard C. Henderson; Nick Bouwes; S. Chad Mellison; Jeffrey L. Kershner
2004-01-01
We evaluated sampling variability of stream habitat sampling methods used by the USDA Forest Service and the USDI Bureau of Land Management monitoring program for the upper Columbia River Basin. Three separate studies were conducted to describe the variability of individual measurement techniques, variability between crews, and temporal variation throughout the summer...
Seasonal species composition of invertebrates in several Oregon streams.
Pamela E. Porter; William R. Meehan
1987-01-01
The invertebrate communities ofeight Oregon streams were sampled seasonally from 1974 to 1976. Benthic, drift, and two types of aerial-trap samples were collected. Occurrence and percentage composition are summarized by sample type, season, and geographic area (coastal, Cascade, central, and eastern Oregon). Within 276 families, 426 taxa were identified; the 20...
Microbiological quality of Puget Sound Basin streams and identification of contaminant sources
Embrey, S.S.
2001-01-01
Fecal coliforms, Escherichia coli, enterococci, and somatic coliphages were detected in samples from 31 sites on streams draining urban and agricultural regions of the Puget Sound Basin Lowlands. Densities of bacteria in 48 and 71 percent of the samples exceeded U.S. Environmental Protection Agency's freshwater recreation criteria for Escherichia coli and enterococci, respectively, and 81 percent exceeded Washington State fecal coliform standards. Male-specific coliphages were detected in samples from 15 sites. Male-specific F+RNA coliphages isolated from samples taken at South Fork Thornton and Longfellow Creeks were serotyped as Group II, implicating humans as potential contaminant sources. These two sites are located in residential, urban areas. F+RNA coliphages in samples from 10 other sites, mostly in agricultural or rural areas, were serotyped as Group I, implicating non-human animals as likely sources. Chemicals common to wastewater, including fecal sterols, were detected in samples from several urban streams, and also implicate humans, at least in part, as possible sources of fecal bacteria and viruses to the streams.
NASA Astrophysics Data System (ADS)
Kaplan, D. A.; Reaver, N.; Hensley, R. T.; Cohen, M. J.
2017-12-01
Hydraulic transport is an important component of nutrient spiraling in streams. Quantifying conservative solute transport is a prerequisite for understanding the cycling and fate of reactive solutes, such as nutrients. Numerous studies have modeled solute transport within streams using the one-dimensional advection, dispersion and storage (ADS) equation calibrated to experimental data from tracer experiments. However, there are limitations to the information about in-stream transient storage that can be derived from calibrated ADS model parameters. Transient storage (TS) in the ADS model is most often modeled as a single process, and calibrated model parameters are "lumped" values that are the best-fit representation of multiple real-world TS processes. In this study, we developed a roving profiling method to assess and predict spatial heterogeneity of in-stream TS. We performed five tracer experiments on three spring-fed rivers in Florida (USA) using Rhodamine WT. During each tracer release, stationary fluorometers were deployed to measure breakthrough curves for multiple reaches within the river. Teams of roving samplers moved along the rivers measuring tracer concentrations at various locations and depths within the reaches. A Bayesian statistical method was used to calibrate the ADS model to the stationary breakthrough curves, resulting in probability distributions for both the advective and TS zone as a function of river distance and time. Rover samples were then assigned a probability of being from either the advective or TS zone by comparing measured concentrations to the probability distributions of concentrations in the ADS advective and TS zones. A regression model was used to predict the probability of any in-stream position being located within the advective versus TS zone based on spatiotemporal predictors (time, river position, depth, and distance from bank) and eco-geomorphological feature (eddies, woody debris, benthic depressions, and aquatic vegetation). Results confirm that TS is spatially variable as a function of spatiotemporal and eco-geomorphological features. A substantial number of samples with nearly equivalent chances of being from the advective or TS zones suggests that the distinction between zones is often poorly defined.
Geochemistry of aquatic humic substances in the Lake Fryxell basin, Antarctica
Aiken, G.; McKnight, D.; Harnish, R.; Wershaw, R.
1996-01-01
Dissolved organic carbon (DOC) in Lake Fryxell, 10 streams flowing into the lake, and the moat surrounding the lake was studied to determine the influence of sources and biogeochemical processes on its distribution and chemical nature. Lake Fryxell is an amictic, permanently ice-covered lake in the McMurdo Dry Valleys which contains benthic and planktonic microbial populations, but receives essentially no input of organic material from the ahumic soils of the watershed. Biological activity in the water column does not appear to influence the DOC depth profile, which is similar to the profiles for conservative inorganic constituents. DOC values for the streams varied with biomass in the stream channel, and ranged from 0.2 to 9.7 mg C/L. Fulvic acids in the streams were a lower percentage of the total DOC than in the lake. These samples contain recent carbon and appear to be simpler mixtures of compounds than the lake samples, indicating that they have undergone less humification. The fulvic acids from just above the sediments of the lake have a high sulfur content and are highly aliphatic. The main transformations occurring as these fractions diffuse upward in the water column are 1) loss of sulfur groups through the oxycline and 2) decrease in aliphatic carbon and increase in the heterogeneity of aliphatic moieties. The fraction of modem 14C content of the lake fulvic acids range from a minimum of 0.68 (approximately 3000 years old) at 15m depth to 0.997 (recent material) just under the ice. The major processes controlling the DOC in the lake appear to be: 1) The transport of organic matter by the inflow streams resulting in the addition of recent organic material to the moat and upper waters of the lake; 2) The diffusion of organic matter composed of relict organic material and organic carbon resulting from the degradation of algae and bacteria from the bottom waters or sediments of the lake into overlying glacial melt water; 3) The addition of recent organic matter to the bottom waters of the lake from the moat.
The Stream-Catchment (StreamCat) and Lake-Catchment ...
Background/Question/MethodsLake and stream conditions respond to both natural and human-related landscape features. Characterizing these features within contributing areas (i.e., delineated watersheds) of streams and lakes could improve our understanding of how biological conditions vary spatially and improve the use, management, and restoration of these aquatic resources. However, the specialized geospatial techniques required to define and characterize stream and lake watersheds has limited their widespread use in both scientific and management efforts at large spatial scales. We developed the StreamCat and LakeCat Datasets to model, predict, and map the probable biological conditions of streams and lakes across the conterminous US (CONUS). Both StreamCat and LakeCat contain watershed-level characterizations of several hundred natural (e.g., soils, geology, climate, and land cover) and anthropogenic (e.g., urbanization, agriculture, mining, and forest management) landscape features for ca. 2.6 million stream segments and 376,000 lakes across the CONUS, respectively. These datasets can be paired with field samples to provide independent variables for modeling and other analyses. We paired 1,380 stream and 1,073 lake samples from the USEPAs National Aquatic Resource Surveys with StreamCat and LakeCat and used random forest (RF) to model and then map an invertebrate condition index and chlorophyll a concentration, respectively. Results/ConclusionsThe invertebrate
Parallel Processing of Broad-Band PPM Signals
NASA Technical Reports Server (NTRS)
Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement
2010-01-01
A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).
Using regression methods to estimate stream phosphorus loads at the Illinois River, Arkansas
Haggard, B.E.; Soerens, T.S.; Green, W.R.; Richards, R.P.
2003-01-01
The development of total maximum daily loads (TMDLs) requires evaluating existing constituent loads in streams. Accurate estimates of constituent loads are needed to calibrate watershed and reservoir models for TMDL development. The best approach to estimate constituent loads is high frequency sampling, particularly during storm events, and mass integration of constituents passing a point in a stream. Most often, resources are limited and discrete water quality samples are collected on fixed intervals and sometimes supplemented with directed sampling during storm events. When resources are limited, mass integration is not an accurate means to determine constituent loads and other load estimation techniques such as regression models are used. The objective of this work was to determine a minimum number of water-quality samples needed to provide constituent concentration data adequate to estimate constituent loads at a large stream. Twenty sets of water quality samples with and without supplemental storm samples were randomly selected at various fixed intervals from a database at the Illinois River, northwest Arkansas. The random sets were used to estimate total phosphorus (TP) loads using regression models. The regression-based annual TP loads were compared to the integrated annual TP load estimated using all the data. At a minimum, monthly sampling plus supplemental storm samples (six samples per year) was needed to produce a root mean square error of less than 15%. Water quality samples should be collected at least semi-monthly (every 15 days) in studies less than two years if seasonal time factors are to be used in the regression models. Annual TP loads estimated from independently collected discrete water quality samples further demonstrated the utility of using regression models to estimate annual TP loads in this stream system.
Mahler, Barbara J.; Van Metre, Peter C.; Burley, Thomas E.; Loftin, Keith A.; Meyer, Michael T.; Nowell, Lisa H.
2017-01-01
Glyphosate and atrazine are the most intensively used herbicides in the United States. Although there is abundant spatial and temporal information on atrazine occurrence at regional scales, there are far fewer data for glyphosate, and studies that compare the two herbicides are rare. We investigated temporal patterns in glyphosate and atrazine concentrations measured weekly during the 2013 growing season in 100 small streams in the Midwestern United States. Glyphosate was detected in 44% of samples (method reporting level 0.2 μg/L); atrazine was detected above a threshold of 0.2 μg/L in 54% of samples. Glyphosate was detected more frequently in 12 urban streams than in 88 agricultural streams, and at concentrations similar to those in streams with high agricultural land use (> 40% row crop) in the watershed. In contrast, atrazine was detected more frequently and at higher concentrations in agricultural streams than in urban streams. The maximum concentration of glyphosate measured at most urban sites exceeded the maximum atrazine concentration, whereas at agricultural sites the reverse was true. Measurement at a 2-day interval at 8 sites in northern Missouri revealed that transport of both herbicide compounds appeared to be controlled by spring flush, that peak concentration duration was brief, but that peaks in atrazine concentrations were of longer duration than those of glyphosate. The 2-day sampling also indicated that weekly sampling is unlikely to capture peak concentrations of glyphosate and atrazine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualheim, B.
1979-04-01
This report represents the results of the reconnaissance sampling of the Deep Creek Mountains of western Utah. The Deep Creek range is located in the northwest corner of the Delta NTMS 1:250,000 and the southwestern corner of the Tooele NTMS 1:250,000 sheets and covers an area of 1750 km/sup 2/. Samples collected in this study include dry and wet stream sediments and water from available streams, wells, and springs. The samples were analyzed for uranium, as well as 15 to 20 trace elements, using neutron activation techniques. In addition, field and laboratory measurements were made on the water samples. Analyticalmore » data and field measurements are presented in tabular hard copy and fiche format. Water-sample site locations, water-sample uranium concentrations, sediment-sample site locations, and sediment-sample uranium concentrations are shown on separate overlays.« less
Comparison of waste pumpkin material and its potential use in extruded snack foods.
Norfezah, M N; Hardacre, A; Brennan, C S
2011-08-01
Material was produced from Crown pumpkin (Cucurbita maxima) processed from fractions of the fruit which are regarded as waste stream products (peel, flesh and seed). The flour from the three different fractions (peel, flesh and seed) of Crown pumpkin flour was incorporated into an extruded snack product formulation at levels 10%, 30% and 50% (w/w with corn grit) and processed in a twin-screw extruder to make 10 expanded snack products. Proximate analysis was carried out to determine the nutritional value of the raw pumpkin and pumpkin flour. A physical analysis of the product was used to determine its color, the expansion ratio, bulk density and texture. Inclusion of waste stream material (peel and seed) at 10%, yielded extruded products with similar expansion and density characteristics to the control sample; however, an inclusion of greater than 10% yielded significant challenges to product quality (hardness of the product).
Diel cycles in dissolved metal concentrations in streams: Occurrence and possible causes
Nimick, David A.; Gammons, Christopher H.; Cleasby, Thomas E.; Madison, James P.; Skaar, Don; Brick, Christine M.
2003-01-01
Substantial diel (24‐hour) cycles in dissolved (0.1‐μm filtration) metal concentrations were observed during low flow for 18 sampling episodes at 14 sites on 12 neutral and alkaline streams draining historical mining areas in Montana and Idaho. At some sites, concentrations of Cd, Mn, Ni, and Zn increased as much as 119, 306, 167, and 500%, respectively, from afternoon minimum values to maximum values shortly after sunrise. Arsenic concentrations exhibited the inverse temporal pattern with increases of up to 54%. Variations in Cu concentrations were small and inconsistent. Diel metal cycles are widespread and persistent, occur over a wide range of metal concentrations, and likely are caused primarily by instream geochemical processes. Adsorption is the only process that can explain the inverse temporal patterns of As and the divalent metals. Diel metal cycles have important implications for many types of water‐quality studies and for understanding trace‐metal mobility.
Baldigo, Barry P.; Sporn, Lee Ann; George, Scott D.; Ball, Jacob
2016-01-01
Environmental DNA (eDNA) analysis is rapidly evolving as a tool for monitoring the distributions of aquatic species. Detection of species’ populations in streams may be challenging because the persistence time for intact DNA fragments is unknown and because eDNA is diluted and dispersed by dynamic hydrological processes. During 2015, the DNA of Brook Trout Salvelinus fontinalis was analyzed from water samples collected at 40 streams across the Adirondack region of upstate New York, where Brook Trout populations were recently quantified. Study objectives were to evaluate different sampling methods and the ability of eDNA to accurately predict the presence and abundance of resident Brook Trout populations. Results from three-pass electrofishing surveys indicated that Brook Trout were absent from 10 sites and were present in low (<100 fish/0.1 ha), moderate (100–300 fish/0.1 ha), and high (>300 fish/0.1 ha) densities at 9, 11, and 10 sites, respectively. The eDNA results correctly predicted the presence and confirmed the absence of Brook Trout at 85.0–92.5% of the study sites; eDNA also explained 44% of the variability in Brook Trout population density and 24% of the variability in biomass. These findings indicate that eDNA surveys will enable researchers to effectively characterize the presence and abundance of Brook Trout and other species’ populations in headwater streams across the Adirondack region and elsewhere.
Micro-environment measurement along a climatic gradient
NASA Astrophysics Data System (ADS)
Szita, Renáta; Ambrus, András
2017-04-01
Aquatic macroinvertebrates are heavily influenced by the climatic changes even in temperate, forested habitats. The potential impacts of global climate change may be an increase in water temperatures, changes in seasonal patterns (including intensity) of precipitation and runoff which can alter hydrologic characteristics of aquatic systems. Rapid changes in hydrology caused by extreme heavy rainfalls - especially if there are clearcuts within the catchment area - may cause changes in the hydromorphology, restructure the stream bed or alter the path of the stream itself. All these affect the species composition, that is why the investigated aquatic ecosystems, the streams in forested area have limited ability to adapt to climate change. In recent study, the samples were taken from three streams which are located in similar, forested areas. The sampling sites were chosen along a climatic gradient. The first sampling site is in Mecsek mountains (South Hungary), the second one is in Kőszeg mountains (West Hungary) and the third one is in Sopron mountains (Northwest Hungary). The biological samples were taken with a specific cross-section transect arrangement, applying a new, microhabitat-based quadrat sampling method in all selected areas. Parallel with the macroinvertebrate sampling, there were taken hydraulic measures too. The velocity profile, shear velocity, shear stress, drag force and the Reynold's and Froude numbers were estimated to define the near-bed hydraulic conditions, which influence the community structure of aquatic macroinvertebrates. The main aims of the study were recognize differences along the climatic gradient in a similar habitat types of small streams in forested area if there are any, check up the ability of detection fine differences between similar communities of the new sampling methode which focuses on the microhabitat-structure of certain stream sections instead of taking and analyzing composit samples from the whole section. One more additional important aim was to investigate the microhabitat preference of the Habitats Directive Annex II. Dragonfly species, the Cordulegaster heros which inhabits each sampling sites. This project was partly supported by VKSZ_12-1-2013-0034 project.
Pervaporation process and use in treating waste stream from glycol dehydrator
Kaschemekat, Jurgen; Baker, Richard W.
1994-01-01
Pervaporation processes and apparatus with few moving parts. Ideally, only one pump is used to provide essentially all of the motive power and driving force needed. The process is particularly useful for handling small streams with flow rates less than about 700 gpd. Specifically, the process can be used to treat waste streams from glycol dehydrator regeneration units.
NASA Astrophysics Data System (ADS)
Shirina Begum, Most; Jin, Hyojin; Yoon, Tae Kyung; Park, Ji-Hyung
2016-04-01
To understand how anthropogenic perturbations such as dams and pollution modify the chemical characteristics and biological transformations of riverine organic matter during transit through urbanized watersheds, we compared the optical characteristics and biodegradability of dissolved organic matter (DOM) and particulate organic matter (POM) along different reaches and urban tributary streams of the Han River watershed during short-term incubations. Laboratory incubations were conducted for 5-7 days at 20-25 oC with filtered or unfiltered water samples collected from up-, mid-, and downstream reaches with different levels of anthropogenic perturbations and three urban streams along the downstream reach that receive effluents from waste water treatment facilities in the metropolitan Seoul. Optical parameters such as ultraviolet absorbance at 254 nm, absorption coefficients at 254 nm and 350 nm, fluorescence index, humic-like fluorescence, microbial humic-like fluorescence, and protein-like fluorescence, and spectral slope at 350-400 nm were significantly correlated with increasing concentration of biodegradable dissolved organic carbon (BDOC) in filtered and unfiltered sample along the Han River up-, mid-, down-, and urban streams. The concentrations of BDOC in the urban streams were 6-12 times higher than in the filtered and unfiltered main-stem river samples, with significantly higher values in presence of POM in the unfiltered samples than in the filtered samples. In a separate 5-day incubation experiment with the unfiltered water sample from a downstream location of the Han River and its urban tributary water in isolation or mixed , the rate of concurrent biodegradation of both DOM and POM, as measured by the cumulative rate of CO2 production, was higher in the mixture than the average rate of the separately incubated samples, indicating the priming effect of mixed organic materials on the biodegradation of allochthonous organic materials from the other site. Greater amounts of CO2 were produced in all the samples than could be explained by BDOC alone, indicating the role of POM as a source of CO2. Faster and more intense changes in the consumed or produced components detected in the differential images between the fluorescence excitation emission matrices collected at intervals also suggested activated organic matter processing and CO2 production upon mixing the mainstem and tributary organic matter. Overall results suggest that dams and urban water pollution leave idiosyncratic imprints in the optical characteristics of DOM along waterways of the dammed and urbanized watershed and that inputs of anthropogenic organic materials via urban tributary streams can exert a strong priming effect on the biodegradation of both DOM and POM downstream.
Adjustable shear stress erosion and transport flume
Roberts, Jesse D.; Jepsen, Richard A.
2002-01-01
A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.
Heilweil, Victor M; Stolp, Bert J; Kimball, Briant A; Susong, David D; Marston, Thomas M; Gardner, Philip M
2013-01-01
Gaining streams can provide an integrated signal of relatively large groundwater capture areas. In contrast to the point-specific nature of monitoring wells, gaining streams coalesce multiple flow paths. Impacts on groundwater quality from unconventional gas development may be evaluated at the watershed scale by the sampling of dissolved methane (CH4 ) along such streams. This paper describes a method for using stream CH4 concentrations, along with measurements of groundwater inflow and gas transfer velocity interpreted by 1-D stream transport modeling, to determine groundwater methane fluxes. While dissolved ionic tracers remain in the stream for long distances, the persistence of methane is not well documented. To test this method and evaluate CH4 persistence in a stream, a combined bromide (Br) and CH4 tracer injection was conducted on Nine-Mile Creek, a gaining stream in a gas development area in central Utah. A 35% gain in streamflow was determined from dilution of the Br tracer. The injected CH4 resulted in a fivefold increase in stream CH4 immediately below the injection site. CH4 and δ(13) CCH4 sampling showed it was not immediately lost to the atmosphere, but remained in the stream for more than 2000 m. A 1-D stream transport model simulating the decline in CH4 yielded an apparent gas transfer velocity of 4.5 m/d, describing the rate of loss to the atmosphere (possibly including some microbial consumption). The transport model was then calibrated to background stream CH4 in Nine-Mile Creek (prior to CH4 injection) in order to evaluate groundwater CH4 contributions. The total estimated CH4 load discharging to the stream along the study reach was 190 g/d, although using geochemical fingerprinting to determine its source was beyond the scope of the current study. This demonstrates the utility of stream-gas sampling as a reconnaissance tool for evaluating both natural and anthropogenic CH4 leakage from gas reservoirs into groundwater and surface water. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.