Science.gov

Sample records for process system diagnostics

  1. Simultaneous Sensor and Process Fault Diagnostics for Propellant Feed System

    NASA Technical Reports Server (NTRS)

    Cao, J.; Kwan, C.; Figueroa, F.; Xu, R.

    2006-01-01

    The main objective of this research is to extract fault features from sensor faults and process faults by using advanced fault detection and isolation (FDI) algorithms. A tank system that has some common characteristics to a NASA testbed at Stennis Space Center was used to verify our proposed algorithms. First, a generic tank system was modeled. Second, a mathematical model suitable for FDI has been derived for the tank system. Third, a new and general FDI procedure has been designed to distinguish process faults and sensor faults. Extensive simulations clearly demonstrated the advantages of the new design.

  2. Dual Processing and Diagnostic Errors

    ERIC Educational Resources Information Center

    Norman, Geoff

    2009-01-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…

  3. Prodiag--a hybrid artificial intelligence based reactor diagnostic system for process faults

    SciTech Connect

    Reifman, J.; Wei, T.Y.C.; Vitela, J.E.; Applequist, C. A.; Chasensky, T.M.

    1996-03-01

    Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL) are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA), project to perform feasibility studies on a novel approach to Artificial Intelligence (Al) based diagnostics for component faults in nuclear power plants. Investigations are being performed in the construction of a first-principles physics-based plant level process diagnostic expert system (ES) and the identification of component-level fault patterns through operating component characteristics using artificial neural networks (ANNs). The purpose of the proof-of-concept project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use thermal hydraulic (T-H) signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance.To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. A full-scope operator training simulator representing the Commonwealth Edison Braidwood nuclear power plant is being used both as the source of development data and as the means to evaluate the advantages of the proposed diagnostic system. This is an ongoing multi-year project and this paper presents the results to date of the CRADA phase.

  4. Development and Evaluation of a Diagnostic Documentation Support System using Knowledge Processing

    NASA Astrophysics Data System (ADS)

    Makino, Kyoko; Hayakawa, Rumi; Terai, Koichi; Fukatsu, Hiroshi

    In this paper, we will introduce a system which supports creating diagnostic reports. Diagnostic reports are documents by doctors of radiology describing the existence and nonexistence of abnormalities from the inspection images, such as CT and MRI, and summarize a patient's state and disease. Our system indicates insufficiencies in these reports created by younger doctors, by using knowledge processing based on a medical knowledge dictionary. These indications are not only clerical errors, but the system also analyzes the purpose of the inspection and determines whether a comparison with a former inspection is required, or whether there is any shortage in description. We verified our system by using actual data of 2,233 report pairs, a pair comprised of a report written by a younger doctor and a check result of the report by an experienced doctor. The results of the verification showed that the rules of string analysis for detecting clerical errors and sentence wordiness obtained a recall of over 90% and a precision of over 75%. Moreover, the rules based on a medical knowledge dictionary for detecting the lack of required comparison with a former inspection and the shortage in description for the inspection purpose obtained a recall of over 70%. From these results, we confirmed that our system contributes to the quality improvement of diagnostic reports. We expect that our system can comprehensively support diagnostic documentations by cooperating with the interface which refers to inspection images or past reports.

  5. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  6. Dual processing and diagnostic errors.

    PubMed

    Norman, Geoff

    2009-09-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical, conscious, and conceptual process, called System 2. Exemplar theories of categorization propose that many category decisions in everyday life are made by unconscious matching to a particular example in memory, and these remain available and retrievable individually. I then review studies of clinical reasoning based on these theories, and show that the two processes are equally effective; System 1, despite its reliance in idiosyncratic, individual experience, is no more prone to cognitive bias or diagnostic error than System 2. Further, I review evidence that instructions directed at encouraging the clinician to explicitly use both strategies can lead to consistent reduction in error rates.

  7. EMAT weld inspection and weld machine diagnostic system for continuous coil processing lines

    NASA Astrophysics Data System (ADS)

    Latham, Wayne M.; MacLauchlan, Daniel T.; Geier, Dan P.; Lang, Dennis D.

    1996-11-01

    Weld breaks of steel coil during cold rolling and continuous pickling operations are a significant source of lost productivity and product yield. Babcock and Wilcox Innerspec Technologies has developed a weld process control system which monitors the key variables of the welding process and determines the quality of the welds generated by flash butt welding equipment. This system is known as the Temate 2000 Automated Flash Butt Weld Inspection and Weld Machine Diagnostic System. The Temate 2000 system utilizes electro- magnetic acoustic transducer (EMAT) technology as the basis for performing on-line, real-time, nondestructive weld quality evaluation. This technique accurately detects voids, laps, misalignment and over/under trim conditions in the weld. Results of the EMAT weld inspection are immediately presented to the weld machine operator for disposition. Welding process variables such as voltage, current, platen movements and upset pressures are monitored and collected with the high speed data acquisition system. This data is processed and presented in real-time display to indicate useful welding process information such as platen crabbing, upset force, peak upset current, and many others. Alarming for each variable is provided and allows detailed maintenance reports and summary information to be generated. All weld quality and process parameter data are stored, traceable to each unique weld, and available for post process evaluation. Installation of the Temate 2000 system in a major flat rolled steel mill has contributed to near elimination of weld breakage and increased productivity at this facility.

  8. Efficient Thomson Scattering Measurement System for the Diagnostics of Processing Plasmas

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Nakatani, Keigo

    1999-10-01

    Optical measurement of electron energy distribution function (EEDF) is desirable for the diagnostics of processing plasmas. In Thomson scattering measurements, EEDF is directly derived from the Doppler broadened profile of the laser light scattered by free electrons, but one must solve the problem of very low signal intensity due to the small scattering cross section. We have constructed an efficient Thomson scattering measurement system for the diagnostics of processing plasmas, which is capable of performing multi-channel measurement of the Doppler broadened profile without suffering from strong interference due to Rayleigh scattering and other stray scattering. The measurement system consists of a specially designed triple monochromator and an ICCD camera. The plasma is irradiated by a frequency-doubled Nd:YAG laser (532 nm). With the aid of a spatial filter between the first and second stage, the triple monochromator outputs the dispersed scattered light with the center wavelength region (532 ± 0.5 nm) eliminated, enabling multi-channel measurements with the ICCD camera in the photon-counting mode. Use of a lens system as the focusing elements in the monochromator enables high transmittance and low aberration, both serving for a high signal collection efficiency. Preliminary Thomson scattering measurements indicated a promising performance of the measurement system.

  9. The utility of an online diagnostic decision support system (Isabel) in general practice: a process evaluation

    PubMed Central

    Henderson, Emily J; Rubin, Greg P

    2013-01-01

    Objectives To evaluate the utility of Isabel, an online diagnostic decision support system developed by Isabel Healthcare primarily for secondary medical care, in the general practice setting. Design Focus groups were conducted with clinicians to understand why and how they used the system. A modified online post-use survey asked practitioners about its impact on their decision-making. Normalization process theory (NPT) was used as a theoretical framework to determine whether the system could be incorporated into routine clinical practice. Setting The system was introduced by NHS County Durham and Darlington in the UK in selected general practices as a three-month pilot. Participants General practitioners and nurse practitioners who had access to Isabel as part of the Primary Care Trust's pilot. Main outcome measures General practitioners’ views, experiences and usage of the system. Results Seven general practices agreed to pilot Isabel. Two practices did not subsequently use it. The remaining five practices conducted searches on 16 patients. Post-use surveys (n = 10) indicated that Isabel had little impact on diagnostic decision-making. Focus group participants stated that, although the diagnoses produced by Isabel in general did not have an impact on their decision-making, they would find the tool useful if it were better tailored to the primary care setting. Our analysis concluded that normalization was not likely to occur in its current form. Conclusions Isabel was of limited utility in this short pilot study and may need further modification for use in general practice. PMID:23772310

  10. Performance assessment and adoption processes of an information monitoring and diagnostic system prototype

    SciTech Connect

    Piette, Mary Ann

    1999-10-01

    This report addresses the problem that buildings do not perform as well as anticipated during design. We partnered with an innovative building operator to evaluate a prototype Information Monitoring and Diagnostic System (IMDS). The IMDS consists of high-quality measurements archived each minute, a data visualization tool, and a web-based capability. The operators recommend similar technology be adopted in other buildings. The IMDS has been used to identify and correct a series of control problems. It has also allowed the operators to make more effective use of the building control system, freeing up time to take care of other tenant needs. They believe they have significantly improved building comfort, potentially improving tenant health, and productivity. The reduction in hours to operate the building are worth about $20,000 per year, which could pay for the IMDS in about five years. A control system retrofit based on findings from the IMDS is expected to reduce energy use by 20 percent over the next year, worth over $30,000 per year. The main conclusion of the model-based chiller fault detection work is that steady-state models can be used as reference models to monitor chiller operation and detect faults. The ability of the IMDS to measure cooling load and chiller power to one-percent accuracy with a one-minute sampling interval permits detection of additional faults. Evolutionary programming techniques were also evaluated, showing promise in the detection of patterns in building data. We also evaluated two technology adoption processes, radical and routine. In routine adoption, managers enhance features of existing products that are already well understood. In radical adoption, innovative building managers introduce novel technology into their organizations without using the rigorous payback criteria used in routine innovations.

  11. Intelligent diagnostics systems

    NASA Technical Reports Server (NTRS)

    Mcquiston, Barbara M.; Dehoff, Ronald L.

    1992-01-01

    Intelligent systems have been applied to today's problems and could also be applied to space operations integrity. One of these systems is the XMAN tool designed for 'troubleshooting' jet engines. XMAN is the eXpert MAiNtenance tool developed to be an expert information analysis tool which stores trending and diagnostic data on Air Force engines. XMAN operates with a 'network topology' which follows a flow chart containing engine management information reports required by the governments technical order procedures. With XMAN technology, the user is able to identify engine problems by presenting the assertions of the fault isolation logic and attempting to satisfy individual assertions by referring to the databases created by an engine monitoring system. The troubleshooting process requires interaction between the technician and the computer to acquire new evidence form auxiliary maintenance tests corroboration of analytical results to accurately diagnose equipment malfunctions. This same technology will be required for systems which are functioning in space either with an onboard crew, or with an unmanned system. The technology and lessons learned developing this technology while suggesting definite applications for its use with developing space systems are addressed.

  12. PDX diagnostic control system

    SciTech Connect

    Mika, R.

    1981-01-01

    This paper describes a computer-base diagnostic control system operating on the PDX Tokamak. The prime function of the system is to control mechanical positioning devices associated with various diagnostics including Thomson Scattering, X-Ray Pulse Height Analyzer, Rotating Scanning Monochromator, Fast Ion Detection Experiment, Bolometers and Plasma Limiters. The diagnostic control system consists of a PDP-11/34 computer, a CAMAC system partitioned between the PDX control room and the PDX machine area, and special electronic control modules developed at PPL. The special modules include a digital closed loop motor controller and user interface control panel for control and status display. A standard control panel was developed for interfacing each system user with the PDP-11/34 computer, through specially developed CAMAC modules.

  13. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  14. DDS: The Dental Diagnostic Simulation System.

    ERIC Educational Resources Information Center

    Tira, Daniel E.

    The Dental Diagnostic Simulation (DDS) System provides an alternative to simulation systems which represent diagnostic case studies of relatively limited scope. It may be used to generate simulated case studies in all of the dental specialty areas with case materials progressing through the gamut of the diagnostic process. The generation of a…

  15. Image Processing Diagnostics: Emphysema

    NASA Astrophysics Data System (ADS)

    McKenzie, Alex

    2009-10-01

    Currently the computerized tomography (CT) scan can detect emphysema sooner than traditional x-rays, but other tests are required to measure more accurately the amount of affected lung. CT scan images show clearly if a patient has emphysema, but is unable by visual scan alone, to quantify the degree of the disease, as it appears merely as subtle, barely distinct, dark spots on the lung. Our goal is to create a software plug-in to interface with existing open source medical imaging software, to automate the process of accurately diagnosing and determining emphysema severity levels in patients. This will be accomplished by performing a number of statistical calculations using data taken from CT scan images of several patients representing a wide range of severity of the disease. These analyses include an examination of the deviation from a normal distribution curve to determine skewness, a commonly used statistical parameter. Our preliminary results show that this method of assessment appears to be more accurate and robust than currently utilized methods which involve looking at percentages of radiodensities in air passages of the lung.

  16. A macro-ergonomic work system analysis of the diagnostic testing process in an outpatient health care facility for process improvement and patient safety.

    PubMed

    Hallock, M L; Alper, S J; Karsh, B

    The diagnosis of illness is important for quality patient care and patient safety and is greatly aided by diagnostic testing. For diagnostic tests, such as pathology and radiology, to positively impact patient care, the tests must be processed and the physician and patient must be notified of the results in a timely fashion. There are many steps in the diagnostic testing process, from ordering to result dissemination, where the process can break down and therefore delay patient care and reduce patient safety. This study was carried out to examine the diagnostic testing process (i.e. from ordering to result notification) and used a macro-ergonomic work system analysis to uncover system design flaws that contributed to delayed physician and patient notification of results. The study was carried out in a large urban outpatient health-care facility made up of 30 outpatient clinics. Results indicated a number of variances that contributed to delays, the majority of which occurred across the boundaries of different systems and were related to poor or absent feedback structures. Recommendations for improvements are discussed.

  17. Thioaptamer Diagnostic System (TDS)

    NASA Technical Reports Server (NTRS)

    Yang, Xianbin

    2015-01-01

    AM Biotechnologies, LLC, in partnership with Sandia National Laboratories, has developed a diagnostic device that quickly detects sampled biomarkers. The TDS quickly quantifies clinically relevant biomarkers using only microliters of a single sample. The system combines ambient-stable, long shelf-life affinity assays with handheld, microfluidic gel electrophoresis affinity assay quantification technology. The TDS is easy to use, operates in microgravity, and permits simultaneous quantification of 32 biomarkers. In Phase I of the project, the partners demonstrated that a thioaptamer assay used in the microfluidic instrument could quantify a specific biomarker in serum in the low nanomolar range. The team also identified novel affinity agents to bone-specific alkaline phosphatase (BAP) and demonstrated their ability to detect BAP with the microfluidic instrument. In Phase II, AM Biotech expanded the number of ambient affinity agents and demonstrated a TDS prototype. In the long term, the clinical version of the TDS will provide a robust, flight-tested diagnostic capability for space exploration missions.

  18. Signal processing in ultrasound. [for diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Le Croissette, D. H.; Gammell, P. M.

    1978-01-01

    Signal is the term used to denote the characteristic in the time or frequency domain of the probing energy of the system. Processing of this signal in diagnostic ultrasound occurs as the signal travels through the ultrasonic and electrical sections of the apparatus. The paper discusses current signal processing methods, postreception processing, display devices, real-time imaging, and quantitative measurements in noninvasive cardiology. The possibility of using deconvolution in a single transducer system is examined, and some future developments using digital techniques are outlined.

  19. Online NIR diagnostic of laser welding processes and its potential for quality assuring sensor systems

    NASA Astrophysics Data System (ADS)

    Dorsch, Friedhelm; Braun, Holger; Keβler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2014-02-01

    We have integrated an imaging thermographic sensor into commercial welding optics for observation of the weld zone. Key element of the sensor is an InGaAs-camera that detects the thermal radiation of the welding process in the wavelength range of 1,200 to 1,700 nm. This is well suited to record images of the keyhole, the melt pool and the thermal trace. The sensor was integrated to the welding heads for on-axis observation to minimize the interfering contour to ensure easy adaption to industrial processes. The welding heads used were established industrial-grade TRUMPF optics: a BEO fixed optics with 280 mm focal length, or a TRUMPF PFO-3D scanner optics with 450 mm focal length. We used a TRUMPF TruDisk 16002 16kW-thin disk laser that transmits its power through a 200 μm core diameter light cable. The images were recorded and features of the various process zones were evaluated by image processing. It turns out that almost all weld faults can be clearly detected in the NIR images. Quantitative features like the dimension of the melt pool and the thermal trace can be derived from the captured images. They are correlated to process input parameters as well as to process results. In contrast to observation in the visible spectrum the NIR camera records the melt pool without auxiliary illumination. As an unrivaled attribute of the NIR sensor it supports an online heat flow thermography of the seam and allows identifying missing fusion ("false friends") of lap joints virtually during the welding process. Automated weld fault detection and documentation is possible by online image processing which sets the basis for comprehensive data documentation for quality assurance and traceability.

  20. The Henry Ford Production System: LEAN Process Redesign Improves Service in the Molecular Diagnostic Laboratory

    PubMed Central

    Cankovic, Milena; Varney, Ruan C.; Whiteley, Lisa; Brown, Ron; D'Angelo, Rita; Chitale, Dhananjay; Zarbo, Richard J.

    2009-01-01

    Accurate and timely molecular test results play an important role in patient management; consequently, there is a customer expectation of short testing turnaround times. Baseline data analysis revealed that the greatest challenge to timely result generation occurred in the preanalytic phase of specimen collection and transport. Here, we describe our efforts to improve molecular testing turnaround times by focusing primarily on redesign of preanalytic processes using the principles of LEAN production. Our goal was to complete greater than 90% of the molecular tests in less than 3 days. The project required cooperation from different laboratory disciplines as well as individuals outside of the laboratory. The redesigned processes involved defining and standardizing the protocols and approaching blood and tissue specimens as analytes for molecular testing. The LEAN process resulted in fewer steps, approaching the ideal of a one-piece flow for specimens through collection/retrieval, transport, and different aspects of the testing process. The outcome of introducing the LEAN process has been a 44% reduction in molecular test turnaround time for tissue specimens, from an average of 2.7 to 1.5 days. In addition, extending LEAN work principles to the clinician suppliers has resulted in a markedly increased number of properly collected and shipped blood specimens (from 50 to 87%). These continuous quality improvements were accomplished by empowered workers in a blame-free environment and are now being sustained with minimal management involvement. PMID:19661386

  1. ADHD Subtypes and Co-Occurring Anxiety, Depression, and Oppositional-Defiant Disorder: Differences in Gordon Diagnostic System and Wechsler Working Memory and Processing Speed Index Scores

    ERIC Educational Resources Information Center

    Mayes, Susan Dickerson; Calhoun, Susan L.; Chase, Gary A.; Mink, Danielle M.; Stagg, Ryan E.

    2009-01-01

    Objective: Wechsler Intelligence Scale for Children Freedom-from-Distractibility/Working Memory Index (FDI/WMI), Processing Speed Index (PSI), and Gordon Diagnostic System (GDS) scores in ADHD children were examined as a function of subtype and coexisting anxiety, depression, and oppositional-defiant disorder. Method: Participants were 587…

  2. A Self-Diagnostic System for the M6 Accelerometer

    NASA Technical Reports Server (NTRS)

    Flanagan, Patrick M.; Lekki, John

    2001-01-01

    The design of a Self-Diagnostic (SD) accelerometer system for the Space Shuttle Main Engine is presented. This retrofit system connects diagnostic electronic hardware and software to the current M6 accelerometer system. This paper discusses the general operation of the M6 accelerometer SD system and procedures for developing and evaluating the SD system. Signal processing techniques using M6 accelerometer diagnostic data are explained. Test results include diagnostic data responding to changing ambient temperature, mounting torque and base mounting impedance.

  3. [Diagnostics of cavitary processes in the lungs].

    PubMed

    Iakovlev, V N; Sheĭkh, Zh V; Arablinskiĭ, A V; Alekseev, V G; Sinopal'nikov, A I; Dunaev, A P; DrebushevskiV, N S

    2012-01-01

    The paper concerns CT-semiotics of cavitary processes in the lungs. Their major forms are discussed with reference to underlying pathological changes. The most common manifestations of the diseases associated with the cavitary processes are described. CT is a highly informative method for the visualization of pulmonary cavitation and the surrounding chest structures; this method improves diagnostics of pulmonary pathology.

  4. Laser Diagnostics for Plasma Processes

    NASA Astrophysics Data System (ADS)

    Filimonov, Serguei Victor

    The time transients of vibrational/rotational excitation up to v = 7 vibrational level of the ground electronic state of nitrogen were measured in a positive column during the 1-10 mus pulsed electric discharges, and in the afterglow. Current densities were up to 25 A/cm^2, and pressures up to 6 Torr. It is shown that initially energy is being transferred, primarily into vibrational levels above v = 1, resulting in a highly non Boltzmann distribution. The redistribution between vibrational levels takes place within 100 mus after the discharge pulse. Beyond 100 mus the vibrational populations resemble closely Boltzmann distribution. Significant rotational heating was observed in the afterglow and is attributed to energy transfer from vibration to rotation via collisions with electrons. The rotational temperature was as high as 3500 K and reached maximum values between 80 and 100 mus after the discharge pulse. Standard, Coherent Anti-Stokes Raman Spectroscopy (CARS) was employed in all measurements. A novel laser interferometric system has been developed for real time in situ monitoring of the etch rate during the plasma etching. The two-beam-two-path optical set-up provides continuous etch rate measurements while plasma parameters are changing.

  5. On-line diagnostic system for power generators

    SciTech Connect

    Skormin, V.A.; Goodenough, G.S.; Huber, R.K.

    1996-12-31

    A novel approach to diagnostics of a power generator is developed. It utilizes readily available data acquired by the existing computer-based monitoring/control system. Diagnostic procedures detect various trends in the generator data and interpret these trends in the generator data and interpret these trends as changes in the generator performance caused by incipient failures. Results of trend analyses, subjected to statistical validation, facilitate failure prediction and identification thus providing the justification for service when needed. The procedures are incorporated in a diagnostic system implemented in a PC interfaced with the existing VAX-based process monitoring and control system. The diagnostic system provides graphical display of the diagnostic messages.

  6. Bay integrated power system control and diagnostics

    SciTech Connect

    Beierl, O.

    1996-03-01

    The paper presents new concepts for control and diagnostic systems for high voltage switchgear (123-kV and above). Air insulated and gas insulated (SF6) switchgear is considered. The new aspect is the integration of monitoring and diagnostic concepts in digital control and protection systems. Communication concepts for sensors and actuators with digital process busses at bay level are discussed. The paper covers integration concepts for circuit breaker monitoring (AIS, GIS) and for GIS the integration of on-line partial discharge measurement, on-line arc detection and on-line monitoring of the gas conditions. Finally, the advantages, disadvantages and the applicability of integrated diagnostic and control concepts are discussed by means of technical and commercial aspects.

  7. Philosophy of science and the diagnostic process.

    PubMed

    Willis, Brian H; Beebee, Helen; Lasserson, Daniel S

    2013-10-01

    This is an overview of the principles that underpin philosophy of science and how they may provide a framework for the diagnostic process. Although philosophy dates back to antiquity, it is only more recently that philosophers have begun to enunciate the scientific method. Since Aristotle formulated deduction, other modes of reasoning including induction, inference to best explanation, falsificationism, theory-laden observations and Bayesian inference have emerged. Thus, rather than representing a single overriding dogma, the scientific method is a toolkit of ideas and principles of reasoning. Here we demonstrate that the diagnostic process is an example of science in action and is therefore subject to the principles encompassed by the scientific method. Although a number of the different forms of reasoning are used readily by clinicians in practice, without a clear understanding of their pitfalls and the assumptions on which they are based, it leaves doctors open to diagnostic error. We conclude by providing a case example from the medico-legal literature in which diagnostic errors were made, to illustrate how applying the scientific method may mitigate the chance for diagnostic error.

  8. MFTF-B plasma-diagnostic system

    SciTech Connect

    Throop, A.L.; Goerz, D.A.; Thomas, S.R.

    1981-10-21

    This paper describes the current design status of the plasma diagnostic system for MFTF-B. In this paper we describe the system requirement changes which have occurred as a result of the funded rescoping of the original MFTF facility into MFTF-B. We outline the diagnostic instruments which are currently planned, and present an overview of the diagnostic system.

  9. Embedding CLIPS in a database-oriented diagnostic system

    NASA Technical Reports Server (NTRS)

    Conway, Tim

    1990-01-01

    This paper describes the integration of C Language Production Systems (CLIPS) into a powerful portable maintenance aid (PMA) system used for flightline diagnostics. The current diagnostic target of the system is the Garrett GTCP85-180L, a gas turbine engine used as an Auxiliary Power Unit (APU) on some C-130 military transport aircraft. This project is a database oriented approach to a generic diagnostic system. CLIPS is used for 'many-to-many' pattern matching within the diagnostics process. Patterns are stored in database format, and CLIPS code is generated by a 'compilation' process on the database. Multiple CLIPS rule sets and working memories (in sequence) are supported and communication between the rule sets is achieved via the export and import commands. Work is continuing on using CLIPS in other portions of the diagnostic system and in re-implementing the diagnostic system in the Ada language.

  10. Diagnostics of the nucleosynthesis processes in the mass transfer binary systems: Cases u Herculis and delta Librae

    NASA Astrophysics Data System (ADS)

    Dervisoglu, Ahmet; Pavlovski, Kresimir; Kolbas, Vladimir; Southworth, John

    2016-07-01

    In the course of evolution of stars in close binary systems, mass transfer could happen due to limited space allowed for the expansion. An Algol type binary system would eventually be formed. As the consequence of the mass transfer, the layers which were originally deep in the star and have been altered by thermonuclear fusion during the star's main sequence evolution, are now exposed at the surfaces of the components. Thus, photospheric abundances give a precious way of diagnosing the nucleosynthesis processes that occurred deep in the stars. In this study, we present our previous results for u Her and ongoing analysis of δ Lib. A new set of high-resolution echelle spectra of u Her and δ Lib were obtained at CAHA, Spain. Spectral disentangling allows us to isolate the individual spectrum of the components for both systems. For both u Her and δ Lib systems, the detailed spectroscopic analysis of the primary component indicates a clear abundance pattern expected from the CNO process. Evolutionary scenario of the stars based on CAMBRIDGE version of STARS code in this systems and the effects of thermohaline mixing in the envelope of mass gainer stars will be discussed in the framework of this finding.

  11. SSME Post Test Diagnostic System: Systems Section

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy

    1995-01-01

    An assessment of engine and component health is routinely made after each test firing or flight firing of a Space Shuttle Main Engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project - the SSME Post Test Diagnostic System (PTDS) - is to develop a computer program which automates the analysis of test data from the SSME in order to detect and diagnose anomalies. This report primarily covers work on the Systems Section of the PTDS, which automates the analyses performed by the systems/performance group at the Propulsion Branch of NASA Marshall Space Flight Center (MSFC). This group is responsible for assessing the overall health and performance of the engine, and detecting and diagnosing anomalies which involve multiple components (other groups are responsible for analyzing the behavior of specific components). The PTDS utilizes several advanced software technologies to perform its analyses. Raw test data is analyzed using signal processing routines which detect features in the data, such as spikes, shifts, peaks, and drifts. Component analyses are performed by expert systems, which use 'rules-of-thumb' obtained from interviews with the MSFC data analysts to detect and diagnose anomalies. The systems analysis is performed using case-based reasoning. Results of all analyses are stored in a relational database and displayed via an X-window-based graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.

  12. Ion beam probe diagnostic system

    NASA Astrophysics Data System (ADS)

    Hickok, R. L.; Jennings, W. C.; Woo, J. T.; Connor, K. A.

    1980-07-01

    Tokomak plasmas suitable for diagnostic development were produced in RENTOR following technological improvements in the vacuum chamber and discharge cleaning systems. Secondary ion signals were obtained from the heavy ion beam probe on RENTOR leading to initial estimates of the plasma space potential, which appears to vary by several hundred volts during the plasma pulse. The principle of measuring space potential in a minimum-B geometry was established using an ion gun mounted at the center of the ALEX baseball coil. The neutral beam probe was installed for measuring the space potential using actual secondary ion signals from a hollow cathode arc in ALEX and preliminary tests have begun. The ion beam test stand was significantly altered to allow more flexibility in testing energy analyzers, ion guns, and ion focusing concepts.

  13. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  14. Digital signal processing for ionospheric propagation diagnostics

    NASA Astrophysics Data System (ADS)

    Rino, Charles L.; Groves, Keith M.; Carrano, Charles S.; Gunter, Jacob H.; Parris, Richard T.

    2015-08-01

    For decades, analog beacon satellite receivers have generated multifrequency narrowband complex data streams that could be processed directly to extract total electron content (TEC) and scintillation diagnostics. With the advent of software-defined radio, modern digital receivers generate baseband complex data streams that require intermediate processing to extract the narrowband modulation imparted to the signal by ionospheric structure. This paper develops and demonstrates a processing algorithm for digital beacon satellite data that will extract TEC and scintillation components. For algorithm evaluation, a simulator was developed to generate noise-limited multifrequency complex digital signal realizations with representative orbital dynamics and propagation disturbances. A frequency-tracking procedure is used to capture the slowly changing frequency component. Dynamic demodulation against the low-frequency estimate captures the scintillation. The low-frequency reference can be used directly for dual-frequency TEC estimation.

  15. Diagnostics for slapper detonator systems

    SciTech Connect

    Boberg, R.E.; Lee, R.E.; Lee, R.S.; Von Holle, W.

    1989-03-28

    This report discusses diagnostics which have been used to evaluate CDU characteristics and performance, slapper characteristics and performance and the response of a HE detonator output pellet to a slapper stimulus. Many of the diagnostics discussed are appropriate for development and production testing. These include CVR current measurements, voltage probe measurements, time-of-flight measurements, threshold measurements, function time measurements, use of steel witness plates and determination of design margin. Some of the more-sophisticated, expensive diagnostics discussed have yielded very useful information, but are not required for development and production testing. 8 refs., 9 figs., 1 tab.

  16. ATA diagnostic data handling system: an overview

    SciTech Connect

    Chambers, F.W.; Kallman, J.; McDonald, J.; Slominski, M.

    1984-06-14

    The functions to be performed by the ATA diagnostic data handling system are discussed. The capabilities of the present data acquisition system (System 0) are presented. The goals for the next generation acquisition system (System 1), currently under design, are discussed. Facilities on the Octopus system for data handling are reviewed. Finally, we discuss what has been learned about diagnostics and computer based data handling during the past year.

  17. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  18. System-related factors contributing to diagnostic errors.

    PubMed

    Thammasitboon, Satid; Thammasitboon, Supat; Singhal, Geeta

    2013-10-01

    Several studies in primary care, internal medicine, and emergency departments show that rates of errors in test requests and result interpretations are unacceptably high and translate into missed, delayed, or erroneous diagnoses. Ineffective follow-up of diagnostic test results could lead to patient harm if appropriate therapeutic interventions are not delivered in a timely manner. The frequency of system-related factors that contribute directly to diagnostic errors depends on the types and sources of errors involved. Recent studies reveal that the errors and patient harm in the diagnostic testing loop have occurred mainly at the pre- and post-analytic phases, which are directed primarily by clinicians who may have limited expertise in the rapidly expanding field of clinical pathology. These errors may include inappropriate test requests, failure/delay in receiving results, and erroneous interpretation and application of test results to patient care. Efforts to address system-related factors often focus on technical errors in laboratory testing or failures in delivery of intended treatment. System-improvement strategies related to diagnostic errors tend to focus on technical aspects of laboratory medicine or delivery of treatment after completion of the diagnostic process. System failures and cognitive errors, more often than not, coexist and together contribute to the incidents of errors in diagnostic process and in laboratory testing. The use of highly structured hand-off procedures and pre-planned follow-up for any diagnostic test could improve efficiency and reliability of the follow-up process. Many feedback pathways should be established so that providers can learn if or when a diagnosis is changed. Patients can participate in the effort to reduce diagnostic errors. Providers should educate their patients about diagnostic probabilities and uncertainties. The patient-safety strategies focusing on the interface between diagnostic system and therapeutic

  19. Investigating the Biases in the Antarctic Sea Ice - Ocean System of Climate Models using Process-oriented Diagnostics

    NASA Astrophysics Data System (ADS)

    Lecomte, O.; Goosse, H.; Fichefet, T.; Holland, P.; Uotila, P.; Zunz, V.

    2015-12-01

    Most analyses of Antarctic sea ice in simulations of the CMIP5 archive have so far been oriented towards the quantification of the disagreement between model results and sea ice observations only. Since the decomposition of those biases into distinct physical components is necessary to understand their origins, we propose here an ocean-sea ice-atmosphere integrated and process-oriented approach. Not only the biases in variables essential to the sea ice seasonal evolution are estimated regionally with regard to observations, but their contributions to the sea ice concentration budget are estimated. Following a previously developed method, the sea ice concentration balance over the autumn-winter seasons is decomposed into four terms, including the sea ice concentration change during the period of interest, advection, divergence and a residual accounting for the net contribution of thermodynamics and ice deformation. Concurrently, correlations between trends in ocean temperature at depth and trends in ice concentration are calculated directly from various model output fields (including CMIP5 models) to disentangle the role of ice-ocean interactions. Results show that the geographical patterns of all mean sea ice concentration budget terms over 1992-2005 are in qualitative agreement with the observed ones. Sea ice thermodynamic growth is maintained by horizontal divergence near the continent and in the central ice pack, whereas melting close to the ice edge is led by sea ice advection. However, significant errors in all budget terms are observed due to ice velocities that tend to be overestimated all around Antarctica in several models, leading to a relatively weak divergence in the inner ice pack and to an excessive advection in the marginal ice zone. Biases in ice drift speed and direction are ultimately related to biases in winds in all models. This method paves the way for a systematic assessment of forthcoming CMIP6 sea ice model outputs in the Southern Hemisphere.

  20. A recommender system for medical imaging diagnostic.

    PubMed

    Monteiro, Eriksson; Valente, Frederico; Costa, Carlos; Oliveira, José Luís

    2015-01-01

    The large volume of data captured daily in healthcare institutions is opening new and great perspectives about the best ways to use it towards improving clinical practice. In this paper we present a context-based recommender system to support medical imaging diagnostic. The system relies on data mining and context-based retrieval techniques to automatically lookup for relevant information that may help physicians in the diagnostic decision.

  1. Qualitative model-based diagnostics for rocket systems

    NASA Technical Reports Server (NTRS)

    Maul, William; Meyer, Claudia; Jankovsky, Amy; Fulton, Christopher

    1993-01-01

    A diagnostic software package is currently being developed at NASA LeRC that utilizes qualitative model-based reasoning techniques. These techniques can provide diagnostic information about the operational condition of the modeled rocket engine system or subsystem. The diagnostic package combines a qualitative model solver with a constraint suspension algorithm. The constraint suspension algorithm directs the solver's operation to provide valuable fault isolation information about the modeled system. A qualitative model of the Space Shuttle Main Engine's oxidizer supply components was generated. A diagnostic application based on this qualitative model was constructed to process four test cases: three numerical simulations and one actual test firing. The diagnostic tool's fault isolation output compared favorably with the input fault condition.

  2. TFTR diagnostic control and data acquisition system

    NASA Astrophysics Data System (ADS)

    Sauthoff, N. R.; Daniels, R. E.

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man-machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ``groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  3. TFTR diagnostic control and data acquisition system

    SciTech Connect

    Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  4. Optical signal acquisition and processing in future accelerator diagnostics

    SciTech Connect

    Jackson, G.P. ); Elliott, A. )

    1992-01-01

    Beam detectors such as striplines and wall current monitors rely on matched electrical networks to transmit and process beam information. Frequency bandwidth, noise immunity, reflections, and signal to noise ratio are considerations that require compromises limiting the quality of the measurement. Recent advances in fiber optics related technologies have made it possible to acquire and process beam signals in the optical domain. This paper describes recent developments in the application of these technologies to accelerator beam diagnostics. The design and construction of an optical notch filter used for a stochastic cooling system is used as an example. Conceptual ideas for future beam detectors are also presented.

  5. Optical signal acquisition and processing in future accelerator diagnostics

    SciTech Connect

    Jackson, G.P.; Elliott, A.

    1992-12-31

    Beam detectors such as striplines and wall current monitors rely on matched electrical networks to transmit and process beam information. Frequency bandwidth, noise immunity, reflections, and signal to noise ratio are considerations that require compromises limiting the quality of the measurement. Recent advances in fiber optics related technologies have made it possible to acquire and process beam signals in the optical domain. This paper describes recent developments in the application of these technologies to accelerator beam diagnostics. The design and construction of an optical notch filter used for a stochastic cooling system is used as an example. Conceptual ideas for future beam detectors are also presented.

  6. First mirrors for diagnostic systems of ITER

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics

    2007-08-01

    The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.

  7. Low-cost laser diagnostic system

    NASA Astrophysics Data System (ADS)

    Ramos, T. J.; Lim, D. R.; Lingenfelter, A. C.

    1985-10-01

    The principal feature of a new laser diagnostic system is real-time display of beam energy profile. This ensures on-line verification of beam mode and stability with capability for computer storage of this information for later analysis. This system provides low-cost control and repeatability, essential in precision metalworking operations.

  8. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  9. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  10. Facial-paralysis diagnostic system based on 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  11. Novel optical spectroscopy system for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Shakhova, Natalia; Turchin, Ilya; Kamensky, Vladislav; Sergeeva, Ekaterina; Golubyatnikov, German; Da Silva, Luiz; Kasthuri, Usha; Pavlycheva, Irina; Smetanina, Svetlana; Artifeksova, Anna; Belkov, Sergey; Kochemasov, Gennady

    2007-02-01

    We report on development of minimally invasive system for immediate diagnostics of breast cancer and on the results of its pilot clinical testing. The system designed by BioTelligent Inc is based on analysis of optical diffusion spectra (ODS) measured by a probe inserted into breast tissue during standard punch biopsy. Analysis of scattered spectra aimed to distinction of benign tumors from malignant ones is done by original procedure of data processing. Clinical testing of the created diagnostic system has been performed by classification of spectra collected from 146 patients with previously detected mammary neoplasms. The data of ODS study in each patient have been compared to the results of histology. The proposed technique has to date demonstrated sensitivity of 96%, specificity of 80% and diagnostic accuracy of 88%. These values are expected to improve as the data sets continue to grow and more sophisticated data processing is employed.

  12. The EMMA Accelerator, a Diagnostic Systems Overview

    SciTech Connect

    Kalinin, A.; Berg, J.; Bliss, N. Cox, G.; Dufau, M.; Gallagher, A.; Hill, C.; Jones, J.; Ma, L.; McIntosh, P.; Muratori, B.; Oates, A.; Shepherd B.; Smith, R.; Hock, K.; Holder, D.; Ibison, M., Kirkman I.; Borrell, R.; Crisp, J.; Fellenz, B.; Wendt, M.

    2011-09-04

    The 'EMMA' Non-Scaling Fixed Field Alternating Gradient (ns-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyze the single bunch beams. An upgrade still to implement includes the installation of wall current monitors. This paper gives an overview of these systems and shows some data and results from the diagnostics that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.

  13. Building Systems Diagnostics and Predictive Maintenance

    SciTech Connect

    Katipamula, Srinivas; Pratt, Robert G.; Braun, J.

    2001-01-01

    There has been an increasing interest in the development of methods and tools for automated fault detection and diagnostics (FDD) of building systems and components in the 1990s. This chapter, written for the CRC Handbook for HVAC&R Engineering, will describe the status of these methods and and methodologies as applied to HVAC&R and building systems and present certain illustrative case studies.

  14. FIDEX: An expert system for satellite diagnostics

    NASA Technical Reports Server (NTRS)

    Durkin, John; Tallo, Donald; Petrik, Edward J.

    1991-01-01

    A Fault Isolation and Diagnostic Expert system (FIDEX) was developed for communication satellite diagnostics. It was designed specifically for the 30/20 GHz satellite transponder. The expert system was designed with a generic structure and features that make it applicable to other types of space systems. FIDEX is a frame based system that enjoys many of the inherent frame base features, such as hierarchy that describes the transponder's components, with other hierarchies that provide structural and fault information about the transponder. This architecture provides a flexible diagnostic structure and enhances maintenance of the system. FIDEX also includes an inexact reasoning technique and a primitive learning ability. Inexact reasoning was an important feature for this system due to the sparse number of sensors available to provide information on the transponder's performance. FIDEX can determine the most likely faulted component under the constraint of limited information. FIDEX learns about the most likely faults in the transponder by keeping a record of past established faults. FIDEX also has the ability to detect anomalies in the sensors that provide information on the transponders performance.

  15. A method for knowledge acquisition in diagnostic expert system.

    PubMed

    Li, Weishi; Li, Aiping; Li, Shudong

    2015-01-01

    Knowledge acquisition plays very important role in the diagnostic expert system. It usually takes a long period to acquire disease knowledge using the traditional methods. To solve this problem, this paper describes relations between rough set theory and rule-based description of diseases, which corresponds to the process of knowledge acquisition of diagnostic expert system. Then the exclusive rules, inclusive rules and disease images of disease are built based on the PDES diagnosis model, and the definition of probability rule is put forward. At last, the paper presents the rule-based automated induction reasoning method, including exhaustive search, post-processing procedure, estimation for statistic test and the bootstrap and resampling methods. We also introduce automated induction of the rule-based description, which is used in our diseases diagnostic expert system. The experimental results not only show that rough set theory gives a very suitable framework to represent processes of uncertain knowledge extraction, but also that this method induces diagnostic rules correctly. This method can act as the assistant tool for development of diagnosis expert system, and has an extensive application in intelligent information systems.

  16. Optical Diagnostic System for the TLS

    SciTech Connect

    Kuan, C. K.; Tseng, T. C.; Wang, D. J.; Hsiung, G. Y.; Perng, S. Y.; Tsai, Z. D.; Ueng, T. S.; Hsueh, H. P.; Chen, J. R.

    2007-01-19

    The Taiwan light source (TLS) uses a photon beam intensity system (Io monitor) to index the electron beam stability. This index combines the information of the fluctuations of electron beam position and size. For understanding the impact of these fluctuations to the electron beam instability, a set of the optical diagnostic system was installed in the TLS BL10 diagnostics beamline. This system includes the photon beam position monitor (PBPM), the beam size monitor (BSM) and the Io monitor. From the result, we concluded that about one-third impact of beam instability came from the fluctuation of electron beam position and about two-thirds impact of beam instability came from the fluctuation of electron beam size. The hardware configuration is described in this paper.

  17. SA-SVM based automated diagnostic system for skin cancer

    NASA Astrophysics Data System (ADS)

    Masood, Ammara; Al-Jumaily, Adel

    2015-03-01

    Early diagnosis of skin cancer is one of the greatest challenges due to lack of experience of general practitioners (GPs). This paper presents a clinical decision support system aimed to save time and resources in the diagnostic process. Segmentation, feature extraction, pattern recognition, and lesion classification are the important steps in the proposed decision support system. The system analyses the images to extract the affected area using a novel proposed segmentation method H-FCM-LS. The underlying features which indicate the difference between melanoma and benign lesions are obtained through intensity, spatial/frequency and texture based methods. For classification purpose, self-advising SVM is adapted which showed improved classification rate as compared to standard SVM. The presented work also considers analyzed performance of linear and kernel based SVM on the specific skin lesion diagnostic problem and discussed corresponding findings. The best diagnostic rates obtained through the proposed method are around 90.5 %.

  18. Measuring the Accuracy of Diagnostic Systems

    NASA Astrophysics Data System (ADS)

    Swets, John A.

    1988-06-01

    Diagnostic systems of several kinds are used to distinguish between two classes of events, essentially ``signals'' and ``noise.'' For then, analysis in terms of the ``relative operating characteristic'' of signal detection theory provides a precise and valid measure of diagnostic accuracy. It is the only measure available that is uninfluenced by decision biases and prior probabilities, and it places the performances of diverse systems on a common, easily interpreted scale. Representative values of this measure are reported here for systems in medical imaging, materials testing, weather forecasting, information retrieval, polygraph lie detection, and aptitude testing. Though the measure itself is sound, the values obtained from tests of diagnostic systems often require qualification because the test data on which they are based are of unsure quality. A common set of problems in testing is faced in all fields. How well these problems are handled, or can be handled in a given field, determines the degree of confidence that can be placed in a measured value of accuracy. Some fields fare much better than others.

  19. Signal processing methods for MFE plasma diagnostics

    SciTech Connect

    Candy, J.V.; Casper, T.; Kane, R.

    1985-02-01

    The application of various signal processing methods to extract energy storage information from plasma diamagnetism sensors occurring during physics experiments on the Tandom Mirror Experiment-Upgrade (TMX-U) is discussed. We show how these processing techniques can be used to decrease the uncertainty in the corresponding sensor measurements. The algorithms suggested are implemented using SIG, an interactive signal processing package developed at LLNL.

  20. Adaptive Embedded Digital System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier

    2014-05-01

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  1. Experience report with the Alignment Diagnostic System

    SciTech Connect

    Gassner, Georg; /SLAC

    2011-03-03

    Since 2009 an Alignment Diagnostic System (ADS) has been operating at the undulator of the new Linac Coherent Light Source at SLAC National Accelerator Laboratory. The undulator spans a distance of 132 meters and is structured into 33 segments. Each segment is equipped with four hydrostatic leveling sensors and four wire position monitors. This report describes the set up and reflects the experience gained with the ADS.

  2. New diagnostic systems on HL-2A

    SciTech Connect

    Ding, X. T.; Zhou, Y.; Deng, Z. C.; Xiao, W. W.; Liu, Z. T.; Shi, Z. B.; Yan, L. W.; Hong, W. Y.; Yang, Q. W.

    2006-10-15

    Three new diagnostic systems have been presented in this article: (1) the pulse molecular beam injection as a modulated particle source and microwave reflectometry for investigation of the particle transport, (2) a new three-step electrostatic probe array for zonal flow studying, and (3) eight-channel laser interferometer with 6 m HCN laser for electron density profile measurement with good spatial resolution. The main experimental results have also been shown briefly.

  3. Combustion Chemistry Diagnostics for Cleaner Processes.

    PubMed

    Kohse-Höinghaus, Katharina

    2016-09-12

    Climate change, environmental problems, urban pollution, and the dependence on fossil fuels demand cleaner, renewable energy strategies. However, they also ask for urgent advances in combustion science to reduce emissions. For alternative fuels and new combustion regimes, crucial information about the chemical reactions from fuel to exhaust remains lacking. Understanding such relations between combustion process, fuel, and emissions needs reliable experimental data from a wide range of conditions to provide a firm basis for predictive modeling of practical combustion processes.

  4. Combustion Chemistry Diagnostics for Cleaner Processes.

    PubMed

    Kohse-Höinghaus, Katharina

    2016-09-12

    Climate change, environmental problems, urban pollution, and the dependence on fossil fuels demand cleaner, renewable energy strategies. However, they also ask for urgent advances in combustion science to reduce emissions. For alternative fuels and new combustion regimes, crucial information about the chemical reactions from fuel to exhaust remains lacking. Understanding such relations between combustion process, fuel, and emissions needs reliable experimental data from a wide range of conditions to provide a firm basis for predictive modeling of practical combustion processes. PMID:27440049

  5. Transient calorimetric diagnostics for plasma processing

    NASA Astrophysics Data System (ADS)

    Bornholdt, Sven; Kersten, Holger

    2013-08-01

    This paper reports on an improvement of the calorimetric method for the determination of energy fluxes from plasma towards substrates by using a transient technique. It provides a short overview of the traditional method used for characterization of plasma-wall-interactions during plasma processing. The mathematical framework of the method and possible implications are discussed. It is shown how the method can be improved to obtain additional and detailed information about the energy influx in a shorter measurement time. For this purpose, the probe bias (if applied), which has commonly been kept constant is varied like in Langmuir probe measurements. The experimental validation of the theoretical considerations emphasizes the potential of the method for control in plasma processing. The possibility how the passive calorimetric probe can be used in continuous measurements for process monitoring without any feedback loops used by other probes, is finally discussed.

  6. Diagnostic systems in DEMO: Engineering design issues

    SciTech Connect

    Todd, T. N.

    2014-08-21

    The diagnostic systems of DEMO that are mounted on or near the torus, whether intended for the monitoring and control functions of the engineering aspects or the physics behaviour of the machine, will have to be designed to suit the hostile nuclear environment. This will be necessary not just for their survival and correct functioning but also to satisfy the pertinent regulatory bodies, especially where any of them relate to machine protection or the prevention or mitigation of accidents foreseen in the safety case. This paper aims to indicate the more important of the reactor design considerations that are likely to apply to diagnostics for DEMO, drawn from experience on JET, the provisions in hand for ITER and modelling results for the wall erosion and neutron damage effects in DEMO.

  7. Expert system applications in support of system diagnostics and prognostics at EBR-II

    SciTech Connect

    Lehto, W.K.; Gross, K.C.; Argonne National Lab., IL )

    1989-01-01

    Expert systems have been developed to aid in the monitoring and diagnostics of the Experimental Breeder Reactor-II (EBR-II) at the Idaho National Engineering Laboratory (INEL) in Idaho Falls, Idaho. Systems have been developed for failed fuel surveillance and diagnostics and reactor coolant pump monitoring and diagnostics. A third project is being done jointly by ANL-W and EG G Idaho to develop a transient analysis system to enhance overall plant diagnostic and prognostic capability. The failed fuel surveillance and diagnosis system monitors, processes, and interprets information from nine key plant sensors. It displays to the reactor operator diagnostic information needed to make proper decisions regarding technical specification conformance during reactor operation with failed fuel. 8 refs., 9 figs., 2 tabs.

  8. Laser metrology — a diagnostic tool in automotive development processes

    NASA Astrophysics Data System (ADS)

    Beeck, Manfred-Andreas; Hentschel, Werner

    2000-08-01

    Laser measurement techniques are widely used in automotive development processes. Applications at Volkswagen are presented where laser metrology works as a diagnostic tool for analysing and optimising complex coupled processes inside and between automotive components and structures such as the reduction of a vehicle's interior or outer acoustic noise, including brake noise, and the combustion analysis for diesel and gasoline engines to further reduce fuel consumption and pollution. Pulsed electronic speckle pattern interferometry (ESPI) and holographic interferometry are used for analysing the knocking behaviour of modern engines and for correct positioning of knocking sensors. Holographic interferometry shows up the vibrational behaviour of brake components and their interaction during braking, and allows optimisation for noise-free brake systems. Scanning laser vibrometry analyses structure-born noise of a whole car body for the optimisation of its interior acoustical behaviour.Modern engine combustion concepts such as in direct-injection (DI) gasoline and diesel engines benefit from laser diagnostic tools which permit deeper insight into the in-cylinder processes such as flow generation, fuel injection and spray formation, atomisation and mixing, ignition and combustion, and formation and reduction of pollutants. The necessary optical access inside a cylinder is realised by so-called 'transparent engines' allowing measurements nearly during the whole engine cycle. Measurement techniques and results on double-pulse particle image velocimetry (PIV) with a frequency-doubled YAG laser for in-cylinder flow analysis are presented, as well as Mie-scattering on droplets using a copper vapour laser combined with high-speed filming, and laser-induced fluorescence (LIF) with an excimer laser for spray and fuel vapour analysis.

  9. Comparison of emerging diagnostic tools for large commercial HVAC systems

    SciTech Connect

    Friedman, Hannah; Piette, Mary Ann

    2001-04-06

    Diagnostic software tools for large commercial buildings are being developed to help detect and diagnose energy and other performance problems with building operations. These software applications utilize energy management control system (EMCS) trend log data. Due to the recent development of diagnostic tools, there has been little detailed comparison among the tools and a limited awareness of tool capabilities by potential users. Today, these diagnostic tools focus mainly on air handlers, but the opportunity exists for broadening the scope of the tools to include all major parts of heating, cooling, and ventilation systems in more detail. This paper compares several tools in the following areas: (1) Scope, intent, and background; (2) Data acquisition, pre-processing, and management; (3) Problems detected; (4) Raw data visualization; (5) Manual and automated diagnostic methods and (6) Level of automation. This comparison is intended to provide practitioners and researchers with a picture of the current state of diagnostic tools. There is tremendous potential for these tools to help improve commercial building energy and non-energy performance.

  10. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  11. Diagnostic Systems for the Ignitor Experiment

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Giammanco, F.; Ignir International Collaboration

    2011-10-01

    The main purpose of the Ignitor experiment (R0 ≅ 1 . 32 m , a × b ≅ 0 . 47 × 0 . 83m2 ,BT <= 13 T ,Ip <= 11 MA) is that of establishing the reactor physics in regimes close to ignition (Te ≅Ti ≅ 11 keV ,n0 ≅1021m-3). The pulse evolution at the maximum machine parameters is characterized by a ramp-up phase of the plasma current of 4 s and 4 s of flat-top, which allow to reach fully relaxed current profiles. The set of baseline diagnostic systems includes, among others, the advanced neutron spectrometer originally proposed for Ignitor and later adopted on JET, Thomson Scattering, ECE, High Resolution X-ray Spectrometer. A Dispersion-Interferometer operating at 1 μm instead of the conventional Two-color Interferometer at 10 μm is being considered for plasma density measurements. The high plasma density and temperature, together with the use of tritium, impose some limitations on diagnostic systems based on NB injection, escaping particles or in direct connection with the high vacumm of the plasma chamber. The high neutron flux is also expected to challenge the systems more directly exposed to it, although the low fluences do not pose particular concerns on material survival. The conceptual design of the main diagnostic systems has been carried out and the present lay-out around the machine is shown. Sponsored in part by ENEA of Italy and by the U.S. D.O.E.

  12. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  13. Efficient Probabilistic Diagnostics for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  14. Remote network control plasma diagnostic system for Tokamak T-10

    NASA Astrophysics Data System (ADS)

    Troynov, V. I.; Zimin, A. M.; Krupin, V. A.; Notkin, G. E.; Nurgaliev, M. R.

    2016-09-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet.

  15. Image processing methods and architectures in diagnostic pathology.

    PubMed

    Bueno, Gloria; Déniz, Oscar; Salido, Jesús; Rojo, Marcial García

    2009-01-01

    Grid technology has enabled the clustering and the efficient and secure access to and interaction among a wide variety of geographically distributed resources such as: supercomputers, storage systems, data sources, instruments and special devices and services. Their main applications include large-scale computational and data intensive problems in science and engineering. General grid structures and methodologies for both software and hardware in image analysis for virtual tissue-based diagnosis has been considered in this paper. This methods are focus on the user level middleware. The article describes the distributed programming system developed by the authors for virtual slide analysis in diagnostic pathology. The system supports different image analysis operations commonly done in anatomical pathology and it takes into account secured aspects and specialized infrastructures with high level services designed to meet application requirements. Grids are likely to have a deep impact on health related applications, and therefore they seem to be suitable for tissue-based diagnosis too. The implemented system is a joint application that mixes both Web and Grid Service Architecture around a distributed architecture for image processing. It has shown to be a successful solution to analyze a big and heterogeneous group of histological images under architecture of massively parallel processors using message passing and non-shared memory.

  16. Image processing methods and architectures in diagnostic pathology.

    PubMed

    Bueno, Gloria; Déniz, Oscar; Salido, Jesús; Rojo, Marcial García

    2009-01-01

    Grid technology has enabled the clustering and the efficient and secure access to and interaction among a wide variety of geographically distributed resources such as: supercomputers, storage systems, data sources, instruments and special devices and services. Their main applications include large-scale computational and data intensive problems in science and engineering. General grid structures and methodologies for both software and hardware in image analysis for virtual tissue-based diagnosis has been considered in this paper. This methods are focus on the user level middleware. The article describes the distributed programming system developed by the authors for virtual slide analysis in diagnostic pathology. The system supports different image analysis operations commonly done in anatomical pathology and it takes into account secured aspects and specialized infrastructures with high level services designed to meet application requirements. Grids are likely to have a deep impact on health related applications, and therefore they seem to be suitable for tissue-based diagnosis too. The implemented system is a joint application that mixes both Web and Grid Service Architecture around a distributed architecture for image processing. It has shown to be a successful solution to analyze a big and heterogeneous group of histological images under architecture of massively parallel processors using message passing and non-shared memory. PMID:20430740

  17. Diagnostic Testing System: A Complete Diagnostic Multiple-Choice Test Package for the Apple II.

    ERIC Educational Resources Information Center

    McArthur, David; And Others

    The Diagnostic Testing System (DX) is an integral system for developing and administering tests. The system can be utilized for testing in any subject matter, or any number of subject matters, at any level on scholastic or cognitive continuums. The major purpose of DX is to provide diagnostic data about the level at which a given student (or group…

  18. An inference engine for embedded diagnostic systems

    NASA Technical Reports Server (NTRS)

    Fox, Barry R.; Brewster, Larry T.

    1987-01-01

    The implementation of an inference engine for embedded diagnostic systems is described. The system consists of two distinct parts. The first is an off-line compiler which accepts a propositional logical statement of the relationship between facts and conclusions and produces data structures required by the on-line inference engine. The second part consists of the inference engine and interface routines which accept assertions of fact and return the conclusions which necessarily follow. Given a set of assertions, it will generate exactly the conclusions which logically follow. At the same time, it will detect any inconsistencies which may propagate from an inconsistent set of assertions or a poorly formulated set of rules. The memory requirements are fixed and the worst case execution times are bounded at compile time. The data structures and inference algorithms are very simple and well understood. The data structures and algorithms are described in detail. The system has been implemented on Lisp, Pascal, and Modula-2.

  19. DEVELOPMENT OF SIGNAL PROCESSING TOOLS AND HARDWARE FOR PIEZOELECTRIC SENSOR DIAGNOSTIC PROCESSES

    SciTech Connect

    OVERLY, TIMOTHY G.; PARK, GYUHAE; FARRAR, CHARLES R.

    2007-02-09

    This paper presents a piezoelectric sensor diagnostic and validation procedure that performs in -situ monitoring of the operational status of piezoelectric (PZT) sensor/actuator arrays used in structural health monitoring (SHM) applications. The validation of the proper function of a sensor/actuator array during operation, is a critical component to a complete and robust SHM system, especially with the large number of active sensors typically involved. The method of this technique used to obtain the health of the PZT transducers is to track their capacitive value, this value manifests in the imaginary part of measured electrical admittance. Degradation of the mechanical/electric properties of a PZT sensor/actuator as well as bonding defects between a PZT patch and a host structure can be identified with the proposed procedure. However, it was found that temperature variations and changes in sensor boundary conditions manifest themselves in similar ways in the measured electrical admittances. Therefore, they examined the effects of temperature variation and sensor boundary conditions on the sensor diagnostic process. The objective of this study is to quantify and classify several key characteristics of temperature change and to develop efficient signal processing techniques to account for those variations in the sensor diagnostis process. In addition, they developed hardware capable of making the necessary measurements to perform the sensor diagnostics and to make impedance-based SHM measurements. The paper concludes with experimental results to demonstrate the effectiveness of the proposed technique.

  20. Process Diagnostics and Monitoring Using the Multipole Resonance Probe (MRP)

    NASA Astrophysics Data System (ADS)

    Harhausen, J.; Awakowicz, P.; Brinkmann, R. P.; Foest, R.; Lapke, M.; Musch, T.; Mussenbrock, T.; Oberrath, J.; Ohl, A.; Rolfes, I.; Schulz, Ch.; Storch, R.; Styrnoll, T.

    2011-10-01

    In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. Funded by the German Ministry for Education and Research (BMBF, Fkz. 13N10462).

  1. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    and thus turning this thruster into a specially good option when it comes to space usage for longer and deep space missions, where solar panels and electric energy storage on batteries is a limiting factor. Two prototype models of permanent magnets Hall Thrusters PHALL I and II were already developed and tested with different permanent magnets systems. From the first studies in Russia (former USSR) soon it became clear that the closed electron drift current (Hall current) inside the source channel was generated by the crossed electric and magnetic (radial) field configuration inside the cylindrical channel. The radial magnetic field action on the circular Hall current inside the channel, combined with the electric field action on the ions, is believed to be the main physical process responsible for plasma acceleration. However a good understanding of the acceleration mechanism and the steady-state plasma dynamics is still missing, and many issues concerning the role of electron transport, plasma fluctuations and instabilities are still open. In this work we describe an integrated diagnostic system used to elucidate these aspects such. Ion energy spectrum, plasma potential profiles, plasma instabilities spectrum, and electron distribution function are some of the plasma diagnosticis needed to undestand the main physics issues on Permanent Magnet Hall Thrusters.

  2. Thomson scattering diagnostic systems in ITER

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.

    2016-01-01

    Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8systems installed, therefore substantial experience has been accumulated worldwide on practical methods for the optimization of the technique. However the ITER environment is imposing specific loads (e.g. gamma and neutron radiation, temperatures, disruption-induced stresses) and also access and reliability constraints that require new designs for many of the sub-systems. The challenges and the proposed solutions for all three TS systems are presented.

  3. System control module diagnostic Expert Assistant

    NASA Technical Reports Server (NTRS)

    Flores, Luis M.; Hansen, Roger F.

    1990-01-01

    The Orbiter EXperiments (OEX) Program was established by NASA's Office of Aeronautics and Space Technology (OAST) to accomplish the precise data collection necessary to support a complete and accurate assessment of Space Transportation System (STS) Orbiter performance during all phases of a mission. During a mission, data generated by the various experiments are conveyed to the OEX System Control Module (SCM) which arranges for and monitors storage of the data on the OEX tape recorder. The SCM Diagnostic Expert Assistant (DEA) is an expert system which provides on demand advice to technicians performing repairs of a malfunctioning SCM. The DEA is a self-contained, data-driven knowledge-based system written in the 'C' Language Production System (CLIPS) for a portable micro-computer of the IBM PC/XT class. The DEA reasons about SCM hardware faults at multiple levels; the most detailed layer of encoded knowledge of the SCM is a representation of individual components and layouts of the custom-designed component boards.

  4. Comparisons of polar processing diagnostics from 34 years of the ERA-Interim and MERRA reanalyses

    NASA Astrophysics Data System (ADS)

    Lawrence, Z. D.; Manney, G. L.; Minschwaner, K.; Santee, M. L.; Lambert, A.

    2014-12-01

    We present a comprehensive comparison of polar processing diagnostics derived from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Research and Applications (MERRA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). We use diagnostics that focus on meteorological conditions related to stratospheric chemical ozone loss based on temperatures, polar vortex dynamics, and air parcel trajectories to evaluate the effects these reanalyses might have on polar processing studies. Our results show that the agreement between MERRA and ERA-Interim changes significantly over the 34 years from 1979 through 2013 in both hemispheres, and in many cases improves. By comparing our diagnostics during five time periods when an increasing number of higher quality observations were brought into these reanalyses, we show how changes in the data assimilation systems (DAS) of MERRA and ERA-Interim affected their meteorological data. Many of our stratospheric temperature diagnostics show a convergence toward significantly better agreement, in both hemispheres, after 2001 when Aqua and GOES (Geostationary Operational Environmental Satellite) radiances were introduced into the DAS. Other diagnostics, such as the winter mean volume of air with temperatures below polar stratospheric cloud formation thresholds (VPSC) and some diagnostics of polar vortex size and strength, do not show improved agreement between the two reanalyses in recent years when data inputs into the DAS were more comprehensive. The polar processing diagnostics calculated from MERRA and ERA-Interim agree much better than those calculated from earlier reanalysis datasets. We still, however, see fairly large relative biases in many of the diagnostics in years prior to 2002, raising the possibility that the choice of one reanalysis over another could significantly influence the results of polar processing studies. After 2002, we see

  5. Comparisons of polar processing diagnostics from 34 years of the ERA-Interim and MERRA reanalyses

    NASA Astrophysics Data System (ADS)

    Lawrence, Z. D.; Manney, G. L.; Minschwaner, K.; Santee, M. L.; Lambert, A.

    2015-04-01

    We present a comprehensive comparison of polar processing diagnostics derived from the National Aeronautics and Space Administration (NASA) Modern Era Retrospective-analysis for Research and Applications (MERRA) and the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). We use diagnostics that focus on meteorological conditions related to stratospheric chemical ozone loss based on temperatures, polar vortex dynamics, and air parcel trajectories to evaluate the effects these reanalyses might have on polar processing studies. Our results show that the agreement between MERRA and ERA-Interim changes significantly over the 34 years from 1979 to 2013 in both hemispheres and in many cases improves. By comparing our diagnostics during five time periods when an increasing number of higher-quality observations were brought into these reanalyses, we show how changes in the data assimilation systems (DAS) of MERRA and ERA-Interim affected their meteorological data. Many of our stratospheric temperature diagnostics show a convergence toward significantly better agreement, in both hemispheres, after 2001 when Aqua and GOES (Geostationary Operational Environmental Satellite) radiances were introduced into the DAS. Other diagnostics, such as the winter mean volume of air with temperatures below polar stratospheric cloud formation thresholds (VPSC) and some diagnostics of polar vortex size and strength, do not show improved agreement between the two reanalyses in recent years when data inputs into the DAS were more comprehensive. The polar processing diagnostics calculated from MERRA and ERA-Interim agree much better than those calculated from earlier reanalysis data sets. We still, however, see fairly large differences in many of the diagnostics in years prior to 2002, raising the possibility that the choice of one reanalysis over another could significantly influence the results of polar processing studies. After 2002, we see overall

  6. Neuropsychiatric Systemic Lupus Erythematosus: A Diagnostic Conundrum

    PubMed Central

    Joseph, Vivek; Anil, Rahul; Aristy, Sary

    2016-01-01

    A 70-year-old man presented with complaints of rapid cognitive decline and new onset leukopenia. The patient had a 17-year history of refractory seizures. Detailed review of symptoms and investigations revealed the patient met American College of Rheumatology (ACR) diagnostic criteria for systemic lupus erythematosus (SLE). The patient had high titer ANA with a strongly positive dsDNA. Immunosuppressive therapy with hydroxychloroquine and mycophenolate mofetil led to significant improvement in cognition and seizures. Neuropsychiatric SLE should be considered a potential differential diagnosis for patients presenting with seizures or cognitive decline. Moreover, neuropsychiatric manifestations especially seizures are an early event in the disease course of SLE. Hence, we believe that early diagnosis of SLE by neuropsychiatric manifestations will not only lead to better control of CNS symptoms but early immunosuppressive therapy could control the progression of the underlying autoimmune disease. PMID:27635183

  7. Neuropsychiatric Systemic Lupus Erythematosus: A Diagnostic Conundrum

    PubMed Central

    Joseph, Vivek; Anil, Rahul; Aristy, Sary

    2016-01-01

    A 70-year-old man presented with complaints of rapid cognitive decline and new onset leukopenia. The patient had a 17-year history of refractory seizures. Detailed review of symptoms and investigations revealed the patient met American College of Rheumatology (ACR) diagnostic criteria for systemic lupus erythematosus (SLE). The patient had high titer ANA with a strongly positive dsDNA. Immunosuppressive therapy with hydroxychloroquine and mycophenolate mofetil led to significant improvement in cognition and seizures. Neuropsychiatric SLE should be considered a potential differential diagnosis for patients presenting with seizures or cognitive decline. Moreover, neuropsychiatric manifestations especially seizures are an early event in the disease course of SLE. Hence, we believe that early diagnosis of SLE by neuropsychiatric manifestations will not only lead to better control of CNS symptoms but early immunosuppressive therapy could control the progression of the underlying autoimmune disease.

  8. Neuropsychiatric Systemic Lupus Erythematosus: A Diagnostic Conundrum.

    PubMed

    Joseph, Vivek; Anil, Rahul; Aristy, Sary

    2016-10-01

    A 70-year-old man presented with complaints of rapid cognitive decline and new onset leukopenia. The patient had a 17-year history of refractory seizures. Detailed review of symptoms and investigations revealed the patient met American College of Rheumatology (ACR) diagnostic criteria for systemic lupus erythematosus (SLE). The patient had high titer ANA with a strongly positive dsDNA. Immunosuppressive therapy with hydroxychloroquine and mycophenolate mofetil led to significant improvement in cognition and seizures. Neuropsychiatric SLE should be considered a potential differential diagnosis for patients presenting with seizures or cognitive decline. Moreover, neuropsychiatric manifestations especially seizures are an early event in the disease course of SLE. Hence, we believe that early diagnosis of SLE by neuropsychiatric manifestations will not only lead to better control of CNS symptoms but early immunosuppressive therapy could control the progression of the underlying autoimmune disease. PMID:27635183

  9. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    NASA Astrophysics Data System (ADS)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  10. Quality and Safety in Health Care, Part XIV: The External Environment and Research for Diagnostic Processes.

    PubMed

    Harolds, Jay A

    2016-09-01

    The work system in which diagnosis takes place is affected by the external environment, which includes requirements such as certification, accreditation, and regulations. How errors are reported, malpractice, and the system for payment are some other aspects of the external environment. Improving the external environment is expected to decrease errors in diagnosis. More research on improving the diagnostic process is needed. PMID:27280903

  11. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission diagnostics for SCR systems....112 Emission diagnostics for SCR systems. Engines equipped with SCR systems using separate reductant.... This section does not apply for SCR systems using the engine's fuel as the reductant. (a)...

  12. Model-Based Diagnostics for Propellant Loading Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Foygel, Michael; Smelyanskiy, Vadim N.

    2011-01-01

    The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are necessary to quickly identify when a fault occurs, so that recovery actions can be taken or an abort procedure can be initiated. Model-based diagnosis solutions, established using an in-depth analysis and understanding of the underlying physical processes, offer the advanced capability to quickly detect and isolate faults, identify their severity, and predict their effects on system performance. We develop a physics-based model of a cryogenic propellant loading system, which describes the complex dynamics of liquid hydrogen filling from a storage tank to an external vehicle tank, as well as the influence of different faults on this process. The model takes into account the main physical processes such as highly nonequilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydrogen and vapor flows inside the system in the presence of helium gas. Since the model incorporates multiple faults in the system, it provides a suitable framework for model-based diagnostics and prognostics algorithms. Using this model, we analyze the effects of faults on the system, derive symbolic fault signatures for the purposes of fault isolation, and perform fault identification using a particle filter approach. We demonstrate the detection, isolation, and identification of a number of faults using simulation-based experiments.

  13. Optical real-time defect-enhancement diagnostic system.

    PubMed

    Gaeta, C J; Mitchell, P V; Pepper, D M

    1992-12-15

    We have demonstrated an all-optical diagnostic system that enhances the observation of defects in periodic structures. This real-time technique employs a spatial light modulator as a smart-pixel array for information processing in the Fourier transform plane of a lens. The system also includes a phase-conjugate mirror for autoalignment and for correction of optical wave-front aberrations that are imparted on the object light by the smart-pixel processor and its associated optical train. PMID:19798320

  14. A high speed imaging system for nuclear diagnostics

    NASA Technical Reports Server (NTRS)

    Eyer, H. H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays was designed for use in nuclear diagnostics. The system is comprised of a front end rapid scan solid state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a snapshot of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to a computational facility. In the talk, the impetus for such a system as well as its operation was discussed, along with systems under development which incorporate higher data rates and more resolution.

  15. The diagnostic process: examples in orthopedic physical therapy.

    PubMed

    Delitto, A; Snyder-Mackler, L

    1995-03-01

    Diagnosis by the physical therapist has received increased attention in the physical therapy literature. The contributions thus far are in agreement that although physical therapists do not identify disease in the sense of pathology, they certainly can identify clusters of signs, symptoms, symptom-related behavior, and other data from patient history and other testing. These clusters can be labeled as classifications or diagnoses by physical therapists and can guide management of the patient. The purpose of this article is to discuss what has yet to be included in articles about diagnosis: the diagnostic process. We first acknowledge the complexity of the diagnostic process, reviewing the study of clinical diagnosis mostly from the field of medicine, including statistical as well as process-tracing approaches. We next discuss steps we believe are important to consider in order to interface the diagnostic process into entry-level training curricula, urging teachers and mentors of future physical therapists to rethink our emphasis on the problem-oriented medical record's "SOAP" type of approach as a clinical decision-making format. We next discuss error and clinical judgment and strategies to constructively deal with error in the clinical environment. We urge physical therapists to strive to reach a point at which we can (1) identify and classify patients in such a manner that allows for more efficient treatment management and (2) demonstrate such abilities in peer-reviewed publication form.

  16. Theoretical studies in molecular fragmentation: Processes, energetics and diagnostics

    NASA Astrophysics Data System (ADS)

    Kirby, K. P.

    1983-09-01

    This research is directed toward providing diagnostic tools with which to identify and quantify the presence of fragment species and their energy states resulting from molecular destruction processes. Ab initio methods were used to calculate potential energy curves and transition moments for excited Sigma + and 1 Pi states of CO. Vibration rotation transition probabilities for vibrationally hot CN have been obtained. Work is commencing on the excited electronic states of NH.

  17. Two powder stream diagnostics for laser deposition processes

    SciTech Connect

    Schanwald, L.P.

    1995-12-31

    The velocity, density, and mass flow of particles suspended in a subsonic gas stream are important aspects of plasma spray and laser deposition processes. This paper will focus on two optical diagnostic techniques applied to the metal powder streams out of a powder feeder and into a new nozzle developed specifically for such applications. An important characteristic of the new powder nozzle is that it produces a very small column (approximately I mm diameter) of powder which can be used for small focus laser deposition and cladding processes. Laser Doppler Velocimetry (LDV) was applied to the nozzle`s output to better understand the kinetic parameters (velocity and spatial density) of exiting particles. Optical scattering of the powder stream was used to measure the total mass flow into the nozzle. Different light scattering detector scenarios applied to the input powder stream were used to identify signals useful for mass flow feedback control. Both of these techniques have the advantages of being fast, noninvasive diagnostics of the powder flow characteristics, and with a well established theoretical framework. Together, or individually, these diagnostics can provide real-time control or post-process analysis of the powder stream.

  18. Development of Optical Diagnostic Techniques for Microgravity Materials Processing

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung Stephen

    1999-01-01

    Materials processing including crystal growth, either under a gravity environment on ground or a microgravity environment in space, involves complicated phenomena of fluid motions in gas or liquid phases as well as interaction of various species. To obtain important physical insight, it is very necessary to provide gross-field optical diagnostics for monitoring various physical properties. Materials processing inhibits easy access by ordinary instruments and thus characterizing gross-field physical properties is very challenging. Typical properties of importance can be fluid velocity, temperature, and species concentration for fluids, and surface topology and defects for solids. Observing surface grow rate during crystal growth is also important. Material microstructures, i.e., integrity of crystal structures, is strongly influenced by the existence of thermally-induced flow as well as local nucleation of particles during solidification, which may act in many detrimental ways. In both ground-based and microgravity experiments, the nature of product property changes resulting from three-dimensional fluid or particle motions need be characterized. Gross-field diagnostics is thus required to identify their effects on product defects and process deficiencies. The quantitative visualization techniques can also be used for validation of numerical modeling. For optical nonintrusive gross-field diagnostic techniques, two approaches were developed as summer projects. One optical approach allows us to provide information of species concentration and temperature for monitoring in real time. The other approach, that is, the concept which is formulated for detection of surface topography measurement can provide unprecedented spatial resolution during crystal growth.

  19. Large sample hydrology in NZ: Spatial organisation in process diagnostics

    NASA Astrophysics Data System (ADS)

    McMillan, H. K.; Woods, R. A.; Clark, M. P.

    2013-12-01

    A key question in hydrology is how to predict the dominant runoff generation processes in any given catchment. This knowledge is vital for a range of applications in forecasting hydrological response and related processes such as nutrient and sediment transport. A step towards this goal is to map dominant processes in locations where data is available. In this presentation, we use data from 900 flow gauging stations and 680 rain gauges in New Zealand, to assess hydrological processes. These catchments range in character from rolling pasture, to alluvial plains, to temperate rainforest, to volcanic areas. By taking advantage of so many flow regimes, we harness the benefits of large-sample and comparative hydrology to study patterns and spatial organisation in runoff processes, and their relationship to physical catchment characteristics. The approach we use to assess hydrological processes is based on the concept of diagnostic signatures. Diagnostic signatures in hydrology are targeted analyses of measured data which allow us to investigate specific aspects of catchment response. We apply signatures which target the water balance, the flood response and the recession behaviour. We explore the organisation, similarity and diversity in hydrological processes across the New Zealand landscape, and how these patterns change with scale. We discuss our findings in the context of the strong hydro-climatic gradients in New Zealand, and consider the implications for hydrological model building on a national scale.

  20. A new classification system for lesbians: the Dyke Diagnostic Manual.

    PubMed

    Eliason, Michele J

    2010-01-01

    There has been a long-standing need for a diagnostic manual that documents the unique pathological behaviors of lesbians. The Dyke Diagnostic Manual (DDM) is meant to supplement mainstream classification systems used to identify problematic behaviors in heterosexuals. This article presents thirteen uniquely lesbian conditions that are nowhere to be found in heterosexist diagnostic systems. The DDM may help to reduce the pain and suffering found in many lesbian relationships where one or both partners are afflicted. PMID:20661801

  1. Electrostatic containerless processing system

    NASA Astrophysics Data System (ADS)

    Rulison, Aaron J.; Watkins, John L.; Zambrano, Brian

    1997-07-01

    We introduce a materials science tool for investigating refractory solids and melts: the electrostatic containerless processing system (ESCAPES). ESCAPES maintains refractory specimens of materials in a pristine state by levitating and heating them in a vacuum chamber, thereby avoiding the contaminating influences of container walls and ambient gases. ESCAPES is designed for the investigation of thermophysical properties, phase equilibria, metastable phase formation, undercooling and nucleation, time-temperature-transformation diagrams, and other aspects of materials processing. ESCAPES incorporates several design improvements over prior electrostatic levitation technology. It has an informative and responsive computer control system. It has separate light sources for heating and charging, which prevents runaway discharging. Both the heating and charging light sources are narrow band, which allows the use of optical pyrometry and other diagnostics at all times throughout processing. Heat is provided to the levitated specimens by a 50 W Nd:YAG laser operating at 1.064 μm. A deuterium arc lamp charges the specimen through photoelectric emission. ESCAPES can heat metals, ceramics, and semiconductors to temperatures exceeding 2300 K; specimens range in size from 1 to 3 mm diam. This article describes the design, capabilities, and applications of ESCAPES, focusing on improvements over prior electrostatic levitation technology.

  2. SOPROLIFE System: An Accurate Diagnostic Enhancer

    PubMed Central

    Zeitouny, Mona; Feghali, Mireille; Nasr, Assaad; Abou-Samra, Philippe; Saleh, Nadine; Bourgeois, Denis; Farge, Pierre

    2014-01-01

    Objectives. The aim of this study was to evaluate a light-emitting diode fluorescence tool, the SOPROLIFE light-induced fluorescence evaluator, and compare it to the international caries detection and assessment system-II (ICDAS-II) in the detection of occlusal caries. Methods. A total of 219 permanent posterior teeth in 21 subjects, with age ranging from 15 to 65 years, were examined. An intraclass correlation coefficient (ICC) was computed to assess the reliability between the two diagnostic methods. Results. The results showed a high reliability between the two methods (ICC = 0.92; IC = 0.901–0.940; P < 0.001). The SOPROLIFE blue fluorescence mode had a high sensitivity (87%) and a high specificity (99%) when compared to ICDAS-II. Conclusion. Compared to the most used visual method in the diagnosis of occlusal caries lesions, the finding from this study suggests that SOPROLIFE can be used as a reproducible and reliable assessment tool. At a cut-off point, categorizing noncarious lesions and visual change in enamel, SOPROLIFE shows a high sensitivity and specificity. We can conclude that financially ICDAS is better than SOPROLIFE. However SOPROLIFE is easier for clinicians since it is a simple evaluation of images. Finally in terms of efficiency SOPROLIFE is not superior to ICDAS but tends to be equivalent with the same advantages. PMID:25401161

  3. Computer-based diagnostic monitoring to enhance the human-machine interface of complex processes

    SciTech Connect

    Kim, I.S.

    1992-02-01

    There is a growing interest in introducing an automated, on-line, diagnostic monitoring function into the human-machine interfaces (HMIs) or control rooms of complex process plants. The design of such a system should be properly integrated with other HMI systems in the control room, such as the alarms system or the Safety Parameter Display System (SPDS). This paper provides a conceptual foundation for the development of a Plant-wide Diagnostic Monitoring System (PDMS), along with functional requirements for the system and other advanced HMI systems. Insights are presented into the design of an efficient and robust PDMS, which were gained from a critical review of various methodologies developed in the nuclear power industry, the chemical process industry, and the space technological community.

  4. Measuring the Accuracy of Diagnostic Systems.

    ERIC Educational Resources Information Center

    Swets, John A.

    1988-01-01

    Discusses the relative operating characteristic analysis of signal detection theory as a measure of diagnostic accuracy. Reports representative values of this measure in several fields. Compares how problems in these fields are handled. (CW)

  5. Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Jensen, David; Poll, Scott

    2009-01-01

    Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.

  6. Portable Knowledge-Based Diagnostic And Maintenance Systems

    NASA Astrophysics Data System (ADS)

    Darvish, John; Olson, Noreen S.

    1989-03-01

    It is difficult to diagnose faults and maintain weapon systems because (1) they are highly complex pieces of equipment composed of multiple mechanical, electrical, and hydraulic assemblies, and (2) talented maintenance personnel are continuously being lost through the attrition process. To solve this problem, we developed a portable diagnostic and maintenance aid that uses a knowledge-based expert system. This aid incorporates diagnostics, operational procedures, repair and replacement procedures, and regularly scheduled maintenance into one compact, 18-pound graphics workstation. Drawings and schematics can be pulled up from the CD-ROM to assist the operator in answering the expert system's questions. Work for this aid began with the development of the initial knowledge-based expert system in a fast prototyping environment using a LISP machine. The second phase saw the development of a personal computer-based system that used videodisc technology to pictorially assist the operator. The current version of the aid eliminates the high expenses associated with videodisc preparation by scanning in the art work already in the manuals. A number of generic software tools have been developed that streamlined the construction of each iteration of the aid; these tools will be applied to the development of future systems.

  7. REDEX: The ranging equipment diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Luczak, Edward C.; Gopalakrishnan, K.; Zillig, David J.

    1989-01-01

    REDEX, an advanced prototype expert system that diagnoses hardware failures in the Ranging Equipment (RE) at NASA's Ground Network tracking stations is described. REDEX will help the RE technician identify faulty circuit cards or modules that must be replaced, and thereby reduce troubleshooting time. It features a highly graphical user interface that uses color block diagrams and layout diagrams to illustrate the location of a fault. A semantic network knowledge representation technique was used to model the design structure of the RE. A catalog of generic troubleshooting rules was compiled to represent heuristics that are applied in diagnosing electronic equipment. Specific troubleshooting rules were identified to represent additional diagnostic knowledge that is unique to the RE. Over 50 generic and 250 specific troubleshooting rules have been derived. REDEX is implemented in Prolog on an IBM PC AT-compatible workstation. Block diagram graphics displays are color-coded to identify signals that have been monitored or inferred to have nominal values, signals that are out of tolerance, and circuit cards and functions that are diagnosed as faulty. A hypertext-like scheme is used to allow the user to easily navigate through the space of diagrams and tables. Over 50 graphic and tabular displays have been implemented. REDEX is currently being evaluated in a stand-alone mode using simulated RE fault scenarios. It will soon be interfaced to the RE and tested in an online environment. When completed and fielded, REDEX will be a concrete example of the application of expert systems technology to the problem of improving performance and reducing the lifecycle costs of operating NASA's communications networks in the 1990's.

  8. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.112 Emission diagnostics for SCR systems. Engines equipped with SCR systems using separate reductant... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Emission diagnostics for SCR...

  9. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.112 Emission diagnostics for SCR systems. Engines equipped with SCR systems using separate reductant... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Emission diagnostics for SCR...

  10. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.112 Emission diagnostics for SCR systems. Engines equipped with SCR systems using separate reductant... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Emission diagnostics for SCR...

  11. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.112 Emission diagnostics for SCR systems. Engines equipped with SCR systems using separate reductant... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Emission diagnostics for SCR...

  12. Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters

    SciTech Connect

    L. Dorf; Y. Raitses; N.J. Fisch

    2003-09-08

    A diagnostic setup for characterization of near-anode processes in Hall-current plasma thrusters consisting of biased and emissive electrostatic probes, high-precision positioning system and low-noise electronic circuitry was developed and tested. Experimental results show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for accurate near-anode measurements.

  13. MFTF-B plasma-diagnostics-system instrumentation and data-acquisition system

    SciTech Connect

    Goerz, D.A.; Lau, N.H.C.; Mead, J.E.; Throop, A.L.

    1981-10-21

    The change of scope for MFTF from a simple mirror to a tandem mirror configuration utilizing thermal barriers has expanded the range of plasma parameters and increased the requirements of the plasma diagnostics system. The instrument set that is needed for start-up operation has been identified and conceptual design work is proceeding. This paper describes the diagnostic instrumentation as presently envisioned for start-up operation, with a summary of the detectors and data channels. Also presented is an overview of the current conceptual design for the Local Control and Data Acquisition System and the Data Processing and Display system. As more detailed design is done, the exact number and nature of instruments may change, but overall, the system described here is one expected to satisfy the requirements for start-up and be expandable to the basic set of diagnostics.

  14. Method and system for diagnostics of apparatus

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry (Inventor)

    2012-01-01

    Proposed is a method, implemented in software, for estimating fault state of an apparatus outfitted with sensors. At each execution period the method processes sensor data from the apparatus to obtain a set of parity parameters, which are further used for estimating fault state. The estimation method formulates a convex optimization problem for each fault hypothesis and employs a convex solver to compute fault parameter estimates and fault likelihoods for each fault hypothesis. The highest likelihoods and corresponding parameter estimates are transmitted to a display device or an automated decision and control system. The obtained accurate estimate of fault state can be used to improve safety, performance, or maintenance processes for the apparatus.

  15. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  16. Effects of temperature variations on piezoelectric sensor diagnostics process based on impedance measurements (presentation video)

    NASA Astrophysics Data System (ADS)

    Jo, HyeJin; Park, Tong-il; Park, Gyehae

    2014-05-01

    A sensor diagnostic and validation process that performs in-situ monitoring of the operational status of piezoelectric (PZT) active-sensors in structural health monitoring (SHM) applications is presented. The basis of this process is to track the changes in the capacitive value of piezoelectric materials, which shows up in measured admittance. Both degradation of the mechanical/electrical properties of a PZT transducer and the bonding defects between a PZT patch and a host structure could be identified by the proposed process. Due to the temperature dependent nature of piezoelectric materials, we investigated the effects of temperature on sensor diagnostic process. The effect of temperature found to be remarkable, modifying the measured capacitive values significantly. This results indicates that there is need for developing a rigorous signal processing technique to normalizing the temperature effects. It has been also found that, as the temperature changes, the sensor diagnostic process was influenced not only by a sensor and a structure, but by a bonding materials that was used for attaching a piezoelectric transducers to a structure, which would be an important characteristic when designing an SHM system. This paper summarizes considerations needed to develop such sensor diagnostic processes, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  17. Post-processing of structural MRI for individualized diagnostics

    PubMed Central

    Bender, Benjamin; Focke, Niels K.

    2015-01-01

    Currently, a relevant proportion of all histopathologically proven focal cortical dysplasia (FCD) escape visual detection; this shows the need for additional improvements in analyzing MRI data. A positive MRI is still the strongest prognostic factor for postoperative freedom of seizures. Among several post-processing methods voxel-based morphometry (VBM) of T1- and T2-weighted sequences and T2 relaxometry are routinely applied in pre-surgical diagnostics of cryptogenic epilepsy in epilepsy centers. VBM is superior to conventional visual analysis with 9-15% more identified epileptogenic foci, while T2 relaxometry has its main application in (mesial) temporal lobe epilepsy. Further methods such as surface-based morphometry (SBM) or diffusion tensor imaging are promising but there is a lack of current studies comparing their individual diagnostic value. Post-processing methods represent an important addition to conventional visual analysis but need to be interpreted with expertise and experience so that they should be apprehended as a complementary tool within the context of the multi-modal evaluation of epilepsy patients. This review will give an overview of existing post-processing methods of structural MRI and outline their clinical relevance in detection of epileptogenic structural changes. PMID:25853079

  18. Ethical issues in the diagnostic genetic testing process.

    PubMed

    Nyrhinen, Tarja; Leino-Kilpi, Helena; Hietala, Marja

    2004-04-01

    The diagnostic genetic testing process has certain unique ethical features and deserves special consideration. The purpose of this study was to determine through empirical research, using focussed interview, what ethical issues are involved in the diagnostic genetic testing process. This article describes views and perceptions of adult patients, parents of child patients and various personnel groups (n=30). The ethical issues were analysed classified into three main categories: a) personnel characteristics, including personality, professional skills, morals and values; b) realization of ethical principles in the examination process, with subcategories of knowledge, autonomy, data protection and equity; and c) consequences of genetic testing, including patients' control over their own lives, manifestation of heterogeneity and outlook on the world. Problematic ethical issues in all three main categories were described in a more many-sided way by parents and personnel than by adult patients. In the future, attention should be paid to the content areas highlighted by the study, in both clinical practice and further studies.

  19. Reactor protection system with automatic self-testing and diagnostic

    DOEpatents

    Gaubatz, Donald C.

    1996-01-01

    A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.

  20. Reactor protection system with automatic self-testing and diagnostic

    DOEpatents

    Gaubatz, D.C.

    1996-12-17

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.

  1. Atomic Processes and Diagnostics of Low Pressure Krypton Plasma

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh; Goyal, Dipti; Gangwar, Reetesh; Stafford, Luc

    2015-03-01

    Optical emission spectroscopy along with suitable collisional-radiative (CR) model is used in plasma diagnostics. Importance of reliable cross-sections for various atomic processes is shown for low pressure argon plasma. In the present work, radially-averaged Kr emission lines from the 2pi --> 1sj were recorded as a function of pressure from 1 to 50mTorr. We have developed a CR model using our fine-structure relativistic-distorted wave cross sections. The various processes considered are electron-impact excitation, ionization and their reverse processes. The required rate coefficients have been calculated from these cross-sections assuming Maxwellian energy distribution. Electron temperature obtained from the CR model is found to be in good agreement with the probe measurements. Work is supported by IAEA Vienna, DAE-BRNS Mumbai and CSIR, New Delhi.

  2. Development of Optical Diagnostics to Probe Post-Detonation Processes

    NASA Astrophysics Data System (ADS)

    Pangilinan, G. I.

    2005-07-01

    Recent developments have spurred a need to recognize processes that occur after the detonation of energetic materials. Understanding enhanced explosive effects whereby substantial energy releasing steps happen nanoseconds to milliseconds after a detonation is a critical need. Optical diagnostic methods are promising because they can meet stringent requirements inherent in detonation events. Optical sensors can monitor fast events and can be remotely placed to be immune from the heat and pressure inherent in a detonation. They thus complement electrical gauges currently in use. We have applied time-resolved emission spectroscopy in monitoring the transient chemical processes in several detonating formulations. Gauges using refractive index to measure pressure have also been developed. Optical fibers have also been tremendously useful in determining shock velocities. These measurements of transient chemistry, pressure and particle flow are essential in unraveling these complex post detonation processes. Other optical techniques in development will be discussed. The scope of applications for these gauges and their limitations will be presented.

  3. Mechanical system diagnostics using vibration testing techniques

    NASA Technical Reports Server (NTRS)

    Mcleod, Catherine D.; Raju, P. K.; Crocker, M. J.

    1990-01-01

    The 'Cepstrum' technique of vibration-path identification allows the recovery of the transfer function of a system with little knowledge as to its excitation force, by means of a mathematical manipulation of the system output in conjunction with subtraction of part of the output and suitable signal processing. An experimental program has been conducted to evaluate the usefulness of this technique in the cases of simple, cantilever-beam and free-free plate structures as well as in that of a complex mechanical system. On the basis of the transfer functions thus recovered, it was possible to evaluate the shifts in the resonance frequencies of a structure due to the presence of defects.

  4. A Systems Approach to Diagnostic Prescriptive Instruction.

    ERIC Educational Resources Information Center

    Kozma, Robert B.; And Others

    This five-part document presents three approaches to research on instructional improvement, with the final two sections concentrating on problems and implications for diagnostic prescriptive instruction. Part 1 reviews comparative instructional effectiveness studies. Part 2 discusses the Trait-Treatment Interaction Approach (TTI) which is…

  5. Target diagnostic system for the National Ignition Facility (NIF)

    SciTech Connect

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.

    1996-07-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests.

  6. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    SciTech Connect

    Isa, Nor Ashidi Mat

    2015-05-15

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  7. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    NASA Astrophysics Data System (ADS)

    Isa, Nor Ashidi Mat

    2015-05-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  8. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    PubMed

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  9. Target Diagnostic Control System Implementation for the National Ignition Facility

    SciTech Connect

    Shelton, R T; Kamperschroer, J H; Lagin, L J; Nelson, J R; O'Brien, D W

    2010-05-12

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A Diagnostic Control System (DCS) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. DCS instruments are reusable by replication with reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and high reliability. Collaborators save costs by assembling diagnostics with existing DCS instruments. This talk discusses target diagnostic instrumentation used on NIF and presents the DCS architecture and framework.

  10. Intelligent approach to prognostic enhancements of diagnostic systems

    NASA Astrophysics Data System (ADS)

    Vachtsevanos, George; Wang, Peng; Khiripet, Noppadon; Thakker, Ash; Galie, Thomas R.

    2001-07-01

    This paper introduces a novel methodology to prognostics based on a dynamic wavelet neural network construct and notions from the virtual sensor area. This research has been motivated and supported by the U.S. Navy's active interest in integrating advanced diagnostic and prognostic algorithms in existing Naval digital control and monitoring systems. A rudimentary diagnostic platform is assumed to be available providing timely information about incipient or impending failure conditions. We focus on the development of a prognostic algorithm capable of predicting accurately and reliably the remaining useful lifetime of a failing machine or component. The prognostic module consists of a virtual sensor and a dynamic wavelet neural network as the predictor. The virtual sensor employs process data to map real measurements into difficult to monitor fault quantities. The prognosticator uses a dynamic wavelet neural network as a nonlinear predictor. Means to manage uncertainty and performance metrics are suggested for comparison purposes. An interface to an available shipboard Integrated Condition Assessment System is described and applications to shipboard equipment are discussed. Typical results from pump failures are presented to illustrate the effectiveness of the methodology.

  11. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  12. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species

  13. The development of a post-test diagnostic system for rocket engines

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.

    1991-01-01

    An effort was undertaken by NASA to develop an automated post-test, post-flight diagnostic system for rocket engines. The automated system is designed to be generic and to automate the rocket engine data review process. A modular, distributed architecture with a generic software core was chosen to meet the design requirements. The diagnostic system is initially being applied to the Space Shuttle Main Engine data review process. The system modules currently under development are the session/message manager, and portions of the applications section, the component analysis section, and the intelligent knowledge server. An overview is presented of a rocket engine data review process, the design requirements and guidelines, the architecture and modules, and the projected benefits of the automated diagnostic system.

  14. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  15. NIR-camera-based online diagnostics of laser beam welding processes

    NASA Astrophysics Data System (ADS)

    Dorsch, Friedhelm; Braun, Holger; Keßler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2012-03-01

    We have developed an on-axis camera-based online sensor system for laser beam welding diagnostics that detects the thermal radiation in the near-infrared (NIR) spectral range between 1200 and 1700 nm. In addition to a sensor in the visible (VIS) range, our camera detects the thermal radiation of the weld pool more clearly, and it is also sensible to the radiation of the solidified weld seam. The NIR images are analyzed by real-time image processing. Features are extracted from the images and evaluated to characterize the welding process. Keyhole and weld pool analysis complement VIS diagnostics, whereas the observation of the weld seam and heat affected zone with an NIR camera allows online heat flux thermography. By this means we are able to detect bad joints in overlap weldings ("false friends") online during the welding process.

  16. Diagnostics of Nano-Particle Formation in Process Plasmas

    NASA Astrophysics Data System (ADS)

    Kersten, Holger

    2015-09-01

    The main sources of particle generation during plasma surface processing and the formation of nano-composite materials are (i) the formation of large molecules, mesoscopic clusters and particles in the plasma bulk by chemically reactive gases, and (ii) the formation and incorporation of particles at surfaces (target, substrate) by means of plasma-wall interaction. The plasma process promotes the particle formation by excitation, dissociation and reaction of the involved species in the gas phase. The different stages of the particle growth in the gas phase can be observed by various plasma diagnostics as mass spectrometry, laser induced evaporation, photo-detachment, IR absorption, microwave cavity measurements, Mie scattering and self-excited electron resonance spectroscopy (SEERS). Common diagnostics of particle formation also use the observation and analysis of harmonics and other discharge characteristics. Especially the early stages of the particle growth are not well investigated since they are experimentally inaccessible by standard methods as mentioned above. A novel collection method based on neutral drag was tested in order to get a better insight into the early stages of particle growth. The experiments were performed in an asymmetric, capacitively coupled rf-discharge, where multiple growth cycles can be obtained. Making use of the correlation between the particle growth cycles and the bias voltage as well as the phase angle between discharge current and voltage it was possible to monitor each growth process in-situ. This allowed to collect particles at any desired stage of the growth cycle via the neutral drag method. Size distributions of the nanoparticles at the different stages of the growth cycle were determined ex-situ by transmission electron microscopy. The observed correlations of particle size and bias voltage, which can be used for prediction of the particle growth, are qualitatively explained. Furthermore, the change of the electron density

  17. Development of a New Diagnostic System for Human Liver Diseases Based on Conventional Ultrasonic Diagnostic Equipment

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun

    2001-05-01

    In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.

  18. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  19. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  20. Evaluating Students' Learning and Communication Processes: Handbook 3--Diagnostic Teaching Units: Social Studies.

    ERIC Educational Resources Information Center

    Alberta Dept. of Education, Edmonton. Student Evaluation Branch.

    Presenting the diagnostic teaching units for grades 7, 8, and 9 social studies, this handbook is intended to be used along with the companion handbook 1, "Evaluating Students' Learning and Communication Processes: Integrating Diagnostic Evaluation and Instruction." The student activities of the diagnostic teaching units in the handbook have been…

  1. Saliva as a diagnostic tool for oral and systemic diseases

    PubMed Central

    Javaid, Mohammad A.; Ahmed, Ahad S.; Durand, Robert; Tran, Simon D.

    2015-01-01

    Early disease detection is not only vital to reduce disease severity and prevent complications, but also critical to increase success rate of therapy. Saliva has been studied extensively as a potential diagnostic tool over the last decade due to its ease and non-invasive accessibility along with its abundance of biomarkers, such as genetic material and proteins. This review will update the clinician on recent advances in salivary biomarkers to diagnose autoimmune diseases (Sjogren's syndrome, cystic fibrosis), cardiovascular diseases, diabetes, HIV, oral cancer, caries and periodontal diseases. Considering their accuracy, efficacy, ease of use and cost effectiveness, salivary diagnostic tests will be available in dental offices. It is expected that the advent of sensitive and specific salivary diagnostic tools and the establishment of defined guidelines and results following rigorous testing will allow salivary diagnostics to be used as chair-side tests for several oral and systemic diseases in the near future. PMID:26937373

  2. An easy-to-use diagnostic system development shell

    NASA Technical Reports Server (NTRS)

    Tsai, L. C.; Ross, J. B.; Han, C. Y.; Wee, W. G.

    1987-01-01

    The Diagnostic System Development Shell (DSDS), an expert system development shell for diagnostic systems, is described. The major objective of building the DSDS is to create a very easy to use and friendly environment for knowledge engineers and end-users. The DSDS is written in OPS5 and CommonLisp. It runs on a VAX/VMS system. A set of domain independent, generalized rules is built in the DSDS, so the users need not be concerned about building the rules. The facts are explicitly represented in a unified format. A powerful check facility which helps the user to check the errors in the created knowledge bases is provided. A judgement facility and other useful facilities are also available. A diagnostic system based on the DSDS system is question driven and can call or be called by other knowledge based systems written in OPS5 and CommonLisp. A prototype diagnostic system for diagnosing a Philips constant potential X-ray system has been built using the DSDS.

  3. Diagnostic techniques in thermal plasma processing (Part II). Volume 2

    SciTech Connect

    Boulos, M.; Fauchais, P.; Pfender, E.

    1986-02-01

    Techniques for diagnostics for thermal plasmas are discussed. These include both optical techniques and in-flight measurements of particulate matter. In the core of the plasma, collisional excitation of the various chemical species is so strong that the population of the corresponding quantum levels becomes high enough for net emission from the plasma. In that case, the classical methods of emission spectroscopy may be applied. But in the regions where the temperatures are below 4000/sup 0/K (these regions are of primary importance for plasma processing), the emission from the plasma is no longer sufficient for emission spectroscopy. In this situation, the population of excited levels must be increased by the absorption of the light from an external source. Such sources, as for example pulsed tunable dye lasers, are now commercially available. The use of such new devices leads to various techniques such as laser induced fluorescence (LIF) or Coherent Anti Stockes Raman Spectroscopy (CARS) that can be used for analyzing plasmas. Particle velocity measurements can be achieved by photography and laser Doppler anemometry. Particle flux measurements are typically achieved by collecting particles on a substrate. Particle size measurements are based on intensity of scattered light. (WRF)

  4. Diagnostic Systems Approach to Watershed Management

    SciTech Connect

    Davisson, M L

    2001-02-23

    The water quality of discharge from the surface water system is ultimately dictated by land use and climate within the watershed. Water quality has vastly improved from point source reduction measures, yet, non-point source pollutants continue to rise. 30 to 40% of rivers still do not meet water quality standards for reasons that include impact from urban storm water runoff, agricultural and livestock runoff, and loss of wetlands. Regulating non-point source pollutants proves to be difficult since specific dischargers are difficult to identify. However, parameters such as dissolved organic carbon (DOC) limit the amounts of chlorination due to simultaneous disinfection by-product formation. The concept of watershed management has gained much ground over the years as a means to resolve non-point source problems. Under this management scheme stakeholders in a watershed collectively agree to the nature and extent of non-point sources, determine water quality causes using sound scientific approaches, and together develop and implement a corrective plan. However, the ''science'' of watershed management currently has several shortcomings according to a recent National Research Council report. The scientific component of watershed management depends on acquiring knowledge that links water quality sources with geographic regions. However, there is an observational gap in this knowledge. In particular, almost all the water quality data that exists at a utility are of high frequency collected at a single point over a long period of time. Water quality data for utility purposes are rarely collected over an entire watershed. The potential is high, however, for various utilities in a single watershed to share and integrate water quality data, but no regulatory incentives exist at this point. The only other available water quality data originate from special scientific studies. Unfortunately these data rarely have long-term records and are usually tailored to address unrelated

  5. Electrically heated particulate filter diagnostic systems and methods

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  6. Correlating Log Messages for System Diagnostics

    SciTech Connect

    Gunasekaran, Raghul; Dillow, David A; Shipman, Galen M; Maxwell, Don E; Hill, Jason J; Park, Byung H; Geist, Al

    2010-01-01

    In large-scale computing systems, the sheer volume of log data generated presents daunting challenges for debugging and monitoring of these systems. The Oak Ridge Leadership Computing Facility s premier simulation platform, the Cray XT5 known as Jaguar, can generate a few hundred thousand log entries in less than a minute for many system level events. Determining the root cause of such system events requires analyzing and interpretation of a large number of log messages. Most often, the log messages are best understood when they are interpreted collectively rather than individually. In this paper, we present our approach to interpreting log messages by identifying their commonalities and grouping them into clusters. Given a set of log messages within a time interval, we group the messages based on source, target, and/or error type, and correlate the messages with hardware and application information. We monitor the Lustre log messages in the XT5 console log and show that such grouping of log messages assists in detecting the source of system events. By intelligent grouping and correlation of events in the log, we are able to provide system administrators with meaningful information in a concise format for root cause analysis.

  7. Reactor coolant pump monitoring and diagnostic system

    SciTech Connect

    Singer, R.M.; Gross, K.C.; Walsh, M. ); Humenik, K.E. )

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs.

  8. Integrated real-time fracture-diagnostics instrumentation system

    SciTech Connect

    Engi, D

    1983-01-01

    The use of an integrated, real-time fracture-diagnostics instrumentation system for the control of the fracturing treatment during massive hydraulic fracturing is proposed. The proposed system consists of four subsystems: an internal-fracture-pressure measurement system, a fluid-flow measurement system, a borehole seismic system, and a surface-electric-potential measurement system. This use of borehole seismic and surface-electric-potential measurements, which are essentially away-from-the-wellbore measurements, in conjunction with the use of the more commonly used types of measurements, i.e., at-the-wellbore pressure and fluid-flow measurements, is a distinctive feature of the composite real-time diagnostics system. Currently, the real-time capabilities of the individual subsystems are being developed, and the problems associated with their integration into a complete, computer-linked instrumentation system are being addressed. 2 figures.

  9. [SCAN system--semi-structured interview based on diagnostic criteria].

    PubMed

    Adamowski, Tomasz; Kiejna, Andrzej; Hadryś, Tomasz

    2006-01-01

    This paper presents the main features of contemporary diagnostic systems which are implemented into the SCAN--modern and semi-structured diagnostic interview. The concepts of further development of the classifications, rationale for operationalized diagnostic criteria and for the divisional approach to mental diagnoses will be in focus. The structure and components of SCAN ver. 2.1 (WHO), i.e. Present State Examination--10th edition, Item Group Checklist, Clinical History Schedule, Glossary of Definitions and computer software with the diagnostic algorithm: I-Shell, as well as rules for a reliable use of diagnostic rating scales, will be discussed within the scope of this paper. The materials and training sets necessary for the learning of proper use of the SCAN, especially training sets for SCAN Training Centers and the Reference Manual--a form of guidebook for SCAN shall be introduced. Finally the paper will present evidence that SCAN is an instrument feasible in different cultural settings. Reliability and validity data of SCAN will also be dealt with indicating that SCAN could be widely used in research studies as well as in everyday clinical practice facilitating more detailed diagnostic approach to a patient. PMID:17068947

  10. [SCAN system--semi-structured interview based on diagnostic criteria].

    PubMed

    Adamowski, Tomasz; Kiejna, Andrzej; Hadryś, Tomasz

    2006-01-01

    This paper presents the main features of contemporary diagnostic systems which are implemented into the SCAN--modern and semi-structured diagnostic interview. The concepts of further development of the classifications, rationale for operationalized diagnostic criteria and for the divisional approach to mental diagnoses will be in focus. The structure and components of SCAN ver. 2.1 (WHO), i.e. Present State Examination--10th edition, Item Group Checklist, Clinical History Schedule, Glossary of Definitions and computer software with the diagnostic algorithm: I-Shell, as well as rules for a reliable use of diagnostic rating scales, will be discussed within the scope of this paper. The materials and training sets necessary for the learning of proper use of the SCAN, especially training sets for SCAN Training Centers and the Reference Manual--a form of guidebook for SCAN shall be introduced. Finally the paper will present evidence that SCAN is an instrument feasible in different cultural settings. Reliability and validity data of SCAN will also be dealt with indicating that SCAN could be widely used in research studies as well as in everyday clinical practice facilitating more detailed diagnostic approach to a patient.

  11. Diagnostic system monitors gearboxes at hydro plant

    SciTech Connect

    1995-06-01

    This article describes how, by applying real-time, tooth-by-tooth vibration ``imaging,`` this system detects gear-tooth defects -- such as pitting and cracking. To keep Swan Falls hydroelectric generating station in service, Idaho Power Co constructed a new two-unit, open-pit-turbine powerhouse. Swan Falls, Kuna, Idaho, the oldest on the Snake River, services southern Idaho and parts of Oregon -- one of 17 hydroelectric plants maintained by the utility. The hydro units use speed increasers (gearboxes) so higher-speed generators are possible. To monitor these gearboxes, engineers at Swan Falls required a continuous on-line predictive maintenance system. The system monitors the planetary step-up gearboxes in the two main 12.5-MW pit turbine/generators. In some Idaho Power plants with a similar hydro turbine/generator design, the gearboxes have experienced major failures, leading to hundreds of thousands of dollars in collateral damage.

  12. Diagnostics, Modeling and Simulation: Three Keys Towards Mastering the Cutting Process with Fiber, Disk and Diode Lasers

    NASA Astrophysics Data System (ADS)

    Petring, Dirk; Molitor, Thomas; Schneider, Frank; Wolf, Norbert

    Even established laser processing technologies such as cutting are far away from being completely understood. Nevertheless, the progress in industrially available laser cutting systems and applications is quite respectable. Fiber and disk laser cutting changed from a debatable newcomer to a serious part of the business while the diode laser appears at the horizon as the next player to be reckoned. Understanding of the process and its performance are continually improved. This paper highlights results of research and development from the recent years. Some speculations, simulations, diagnostics and facts about the process, its properties and capabilities are assessed. Earlier and latest diagnostics and CALCut simulation results of laser beam cutting processes are presented.

  13. The oral-systemic connection: role of salivary diagnostics

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2013-05-01

    Utilizing saliva instead of blood for diagnosis of both local and systemic health is a rapidly emerging field. Recognition of oral-systemic interrelationships for many diseases has fostered collaborations between medicine and dentistry, and many of these collaborations rely on salivary diagnostics. The oral cavity is easily accessed and contains most of the analytes present in blood. Saliva and mucosal transudate are generally utilized for oral diagnostics, but gingival crevicular fluid, buccal swabs, dental plaque and volatiles may also be useful depending on the analyte being studied. Examples of point-of-care devices capable of detecting HIV, TB, and Malaria targets are being developed and discussed in this overview.

  14. Progress of development of Thomson scattering diagnostic system on COMPASS

    SciTech Connect

    Bilkova, P.; Melich, R.; Aftanas, M.; Boehm, P.; Sestak, D.; Jares, D.; Weinzettl, V.; Stoeckel, J.; Hron, M.; Panek, R.; Walsh, M. J.

    2010-10-15

    A new Thomson scattering diagnostic system has been designed and is being built now on the COMPASS tokamak at the Institute of Plasma Physics ASCR in Prague (IPP Prague) in the Czech Republic. This contribution focuses on design, development, and installation of the light collection and detection system. High spatial resolution of 3 mm will be achieved by a combination of design of collection optics and connected polychromators. Imaging characteristics of both core and edge plasma collection objectives are described and fiber backplane design is presented. Several calibration procedures are discussed. The operational deployment of the Thomson scattering diagnostic is planned by the end of 2010.

  15. STATUS OF VARIOUS SNS DIAGNOSTIC SYSTEMS

    SciTech Connect

    Blokland, Willem; Purcell, J David; Patton, Jeff; Pelaia II, Tom; Sundaram, Madhan; Pennisi, Terry R

    2007-01-01

    The Spallation Neutron Source (SNS) accelerator systems are ramping up to deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. Enhancements or additions have been made to several instrument systems to support the ramp up in intensity, improve reliability, and/or add functionality. The Beam Current Monitors now support increased rep rates, the Harp system now includes charge density calculations for the target, and a new system has been created to collect data for the beam accounting and present the data over the web and to the operator consoles. The majority of the SNS beam instruments are PC-based and their configuration files are now managed through the Oracle relational database. A new version for the wire scanner software was developed to add features to correlate the scan with beam loss, parking in the beam, and measuring the longitudinal beam current. This software is currently being tested. This paper also includes data from the selected instruments.

  16. Chapter 8: The Diagnostic Systems in the FTU

    SciTech Connect

    Tudisco, O.; Apruzzese, G.M.; Buratti, P.; Cantarini, L.; Canton, A.; Carraro, L.; Cocilovo, V.; Angelis, R. de; Benedetti, M. de; Esposito, B.; Gabellieri, L.; Giovannozzi, E.; Granucci, G.; Grosso, L.A.; Grosso, G.; Innocente, P.; Kroegler, H.; Leigheb, M.; Monari, G.; Pacella, D.; Panaccione, L.; Pericoli-Ridolfini, V.; Pizzicaroli, G.; Podda, S.; Puiatti, M.E.; Rocchi, G.; Sibio, A.; Simonetto, A.; Smeulders, P.; Tartari, U.; Tartoni, N.; Tilia, B.; Valisa, M.; Zanza, V.; Zerbini, M.

    2004-05-15

    The design of diagnostics for the Frascati Tokamak Upgrade (FTU) is challenging because of the compactness of the machine (8-cm-wide ports) and the low operating temperatures requiring the presence of a cryostat. Nevertheless, a rather complete diagnostic system has been progressively installed. The basic systems include a set of magnetic probes, various visible and ultraviolet spectrometers, electron cyclotron emission (ECE) for electron temperature profiles measurements and electron tails monitoring, far-infrared and CO{sub 2} interferometry, X-ray (soft and hard) measurements, a multichord neutron diagnostics (with different type detectors), and a Thomson scattering system. Some diagnostics specific to the FTU physics program have been used such as microwave reflectometry for turbulence studies, edge-scanning Langmuir probes for radio-frequency coupling assessment, oblique ECE, and a fast electron bremsstrahlung (FEB) camera for lower hybrid current drive-induced fast electron tails.These systems are briefly reviewed in this paper. Further developments including a scanning CO{sub 2} laser two-color interferometer, two FEB cameras for tomographic analysis, a motional Stark effect system, and a collective Thomson scattering system are also described.

  17. Teacher's Psycho-Diagnostic Activities in School Educational System

    ERIC Educational Resources Information Center

    Minakhmetova, Albina Z.; Pyanova, Ekaterina N.; Akhmetshina, Enze M.

    2016-01-01

    The urgency of the problem stated in the article stems from the fact that in modern conditions the study of the psycho-diagnostic component of the teacher's activities is relevant in practical terms, since the functions of these activities affect the efficiency of pedagogical activity and the educational process itself, including the effectiveness…

  18. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST)

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Wu, Z. W.; Gao, W.; Chen, Y. J.; Wu, C. R.; Zhang, L.; Huang, J.; Chang, J. F.; Yao, X. J.; Gao, W.; Zhang, P. F.; Jin, Z.; Hou, Y. M.; Guo, H. Y.

    2016-11-01

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including Dα (656.1 nm), Dγ (433.9 nm), He ii (468.5 nm), Li i (670.8 nm), Li ii (548.3 nm), C iii (465.0 nm), O ii (441.5 nm), Mo i (386.4 nm), W i (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.

  19. Preliminary consideration of CFETR ITER-like case diagnostic system

    NASA Astrophysics Data System (ADS)

    Li, G. S.; Yang, Y.; Wang, Y. M.; Ming, T. F.; Han, X.; Liu, S. C.; Wang, E. H.; Liu, Y. K.; Yang, W. J.; Li, G. Q.; Hu, Q. S.; Gao, X.

    2016-11-01

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.

  20. A large distributed digital camera system for accelerator beam diagnostics

    NASA Astrophysics Data System (ADS)

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-01

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  1. Alignment and diagnostics on the National Ignition Facility laser system

    SciTech Connect

    Bliss, E S; Boege, S J; Boyd, B; Demaret, R D; Feldman, M; Gates, A J; Holdener, F R; Hollis, J; Knopp, C F; McCarville, T J; Miller-Kamm; Rivera, W E; Salmon, J T; Severyn, J R; Thompson, C E; V J; Wang, D Y; Zacharias, R A

    1999-07-01

    The NIF laser system will be capable of delivering 1.8MJ of 351nm energy in 192 beams. Diagnostics instruments must measure beam energy, power vs. time, wavefront quality, and beam intensity profile to characterize laser performance. Alignment and beam diagnostics are also used to set the laser up for the high power shots and to isolate problems when performance is less than expected. Alignment and beam diagnostics are multiplexed to keep the costs under control. At the front-end the beam is aligned and diagnosed in an input sensor package. The output 1053nm beam is sampled by collecting a 0.1% reflection from an output beam sampler and directing it to the output sensor package (OSP). The OSP also gets samples from final focus lens reflection and samples from the transport spatial filter pinhole plane. The output 351nm energy is measured by a calorimeter collecting the signal from an off-axis diffractive beam-sampler. Detailed information on the focused beam in the high-energy target focal plane region is gathered in the precision diagnostics. This paper describes the design of the alignment and diagnostics on the NIF laser system.

  2. Diagnostic system with database application for laryngological and dermatological disorders

    NASA Astrophysics Data System (ADS)

    Paczesny, Daniel; Kuls, Michal; Tarapata, Grzegorz

    2006-03-01

    This article describes the design and construction of a diagnostic system for laryngological and dermatological disorders. Searching for both solutions based on a dew point hygrometer with a semiconductor structure introduced. Some constructional solutions like the framework of a computer application for both systems are similar but the measurement approach is different. The major emphasis is put on the database applications dedicated for medical doctors. The database application which is a common part in both systems and also measurement devices together, create a diagnostic system which has been designed and constructed. Both systems have been tested in a hospital with the assistance of doctors specialized in this subjects. In the near future, the system will enable the analysis between achieved data and different disorders.

  3. [Diagnostic imaging of central nervous system vasculitis].

    PubMed

    Yokota, Hajime; Yamada, Kei

    2015-03-01

    Vasculitis involving the central nervous system presents with infarction and hemorrhage, which are often nonspecific findings. Laboratory examinations are essential for diagnosis of vasculitis in addition to comprehensive and systematic review of the clinical course. Although most findings tend to be nonspecific, enhancement and thickening of the vascular wall indicate vasculitis. Visualization of the vascular wall requires selection of the appropriate imaging modality and mode of image acquisition. Contrast-enhanced CT, MRI, and FDG-PET are useful for visualizing large vessel vasculitis, while CT, MRI, and angiography are effective for medium vessel vasculitis. The use of ultrasound is limited to evaluating vessels on the body surface. Although relatively thick vessels can be demonstrated by angiography, complete survey of small vessels is difficult. Here, we summarize the characteristics of each imaging modality and imaging findings of typical vasculitides-Takayasu arteritis, giant cell arteritis, ANCA-associated vasculitis, Behçet's disease, primary angiitis of the CNS, and vasculitis associated with systemic disease. Differential diagnoses are also shown, including infective endocarditis, tuberculous meningitis, Ehlers-Danlos syndrome, and reversible cerebral vasoconstriction syndrome. PMID:25846439

  4. Spacelab Life Sciences-1 electrical diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Kao, C. Y.; Morris, W. S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  5. The Feasibility of a Diagnostic Media Test System Model.

    ERIC Educational Resources Information Center

    Rapp, Alfred V.

    Research investigated the feasibility of a diagnostic media test system. Two distinct tests were developed for sixth grade and university populations, each having: 1) a main phase with three specific teaching sequences, one for each media form; 2) test items for each teaching sequence; and 3) a validation phase with one teaching sequence…

  6. Investigating Reading Disabilities Using the Rauding Diagnostic System.

    ERIC Educational Resources Information Center

    Clark, Susan W.; Carver, Ronald P.

    1998-01-01

    Three studies investigated the effectiveness of the Computer Assisted Reading Diagnosis, a diagnostic system based on "rauding" theory (a collection of theories, constructs, and equations developed to describe, explain, predict and control the ability to comprehend relatively easy sentences) and a causal model of reading achievement. Results…

  7. Mechanical considerations for MFTF-B plasma-diagnostic system

    SciTech Connect

    Thomas, S.R. Jr.; Wells, C.W.

    1981-10-19

    The reconfiguration of MFTF to a tandem mirror machine with thermal barriers has caused a significant expansion in the physical scope of plasma diagnostics. From a mechanical perspective, it complicates the plasma access, system interfaces, growth and environmental considerations. Conceptual designs characterize the general scope of the design and fabrication which remains to be done.

  8. A modern diagnostic approach for automobile systems condition monitoring

    NASA Astrophysics Data System (ADS)

    Selig, M.; Shi, Z.; Ball, A.; Schmidt, K.

    2012-05-01

    An important topic in automotive research and development is the area of active and passive safety systems. In general, it is grouped in active safety systems to prevent accidents and passive systems to reduce the impact of a crash. An example for an active system is ABS while a seat belt tensioner represents the group of passive systems. Current developments in the automotive industry try to link active with passive system components to enable a complete event sequence, beginning with the warning of the driver about a critical situation till the automatic emergency call after an accident. The cross-linking has an impact on the current diagnostic approach, which is described in this paper. Therefore, this contribution introduces a new diagnostic approach for automotive mechatronic systems. The concept is based on monitoring the messages which are exchanged via the automotive communication systems, e.g. the CAN bus. According to the authors' assumption, the messages on the bus are changing between faultless and faulty vehicle condition. The transmitted messages of the sensors and control units are different depending on the condition of the car. First experiments are carried and in addition, the hardware design of a suitable diagnostic interface is presented. Finally, first results will be presented and discussed.

  9. Nanocrystalline-oxide ceramics: Synthesis, diagnostics, and processing

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Jia

    A flat-flame combustion process is employed to synthesize oxide-ceramic powder with nanoparticle size. An extensive study is made of the influence of processing parameters on final particle size. The parameters include precursor feed rate, burner-to-chill distance, chamber pressure, and location in the reaction chamber. Laser induced fluorescence is used as an in-situ diagnostic tool to obtain information on precursor concentration, the extent of precursor decomposition, particle formation, and temperature profiles. It is found that the precursor feed rate affects the precursor decomposition rate, and that most of the precursor decomposition is complete at one third of the burner-to-chill distance. Evidence for nanoparticle formation, which immediately follows precursor decomposition, is obtained from visible light emission. The effect of the chill is to establish a fixed aspect ratio (burner diameter to burner-to-chill distance) and to ensure one-dimensional flow. Decomposition of the precursor is complete within the stand-off distance, while particle coalescence is the main feature outside the burner region. A non-agglomerated nanopowder with particle size ranging from several to tens of nanometers is easily obtained using the flat-flame combustion process. After the optimum powder processing conditions are established, the as-synthesized powder is collected and used as starting material for a sintering study. A torroidal type of high pressure apparatus is used to sinter the green compacts, using a wide range of sintering conditions up to 8GPa and 2000°C. To sinter the nanopowder into single-phase material, while maintaining nano-sized grains, pressures in the GPa range are required to close the pores, because of the small pore size and associated high curvature. In the sintering of nanoparticles involving a phase transformation, accompanied by a reduced molar volume, pressure acts as a nucleation promoter. By applying high pressure, the sintering temperature is

  10. Final design of thermal diagnostic system in SPIDER ion source

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.

    2016-11-01

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H- production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  11. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)

    NASA Astrophysics Data System (ADS)

    Woskov, P. P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.

  12. Medical image processing system

    NASA Astrophysics Data System (ADS)

    Wang, Dezong; Wang, Jinxiang

    1994-12-01

    In this paper a medical image processing system is described. That system is named NAI200 Medical Image Processing System and has been appraised by Chinese Government. Principles and cases provided here. Many kinds of pictures are used in modern medical diagnoses, for example B-supersonic, X-ray, CT and MRI. Some times the pictures are not good enough for diagnoses. The noises interfere with real situation on these pictures. That means the image processing is needed. A medical image processing system is described in this paper. That system is named NAI200 Medical Image Processing System and has been appraised by Chinese Government. There are four functions in that system. The first part is image processing. More than thirty four programs are involved. The second part is calculating. The areas or volumes of single or multitissues are calculated. Three dimensional reconstruction is the third part. The stereo images of organs or tumors are reconstructed with cross-sections. The last part is image storage. All pictures can be transformed to digital images, then be stored in hard disk or soft disk. In this paper not only all functions of that system are introduced, also the basic principles of these functions are explained in detail. This system has been applied in hospitals. The images of hundreds of cases have been processed. We describe the functions combining real cases. Here we only introduce a few examples.

  13. Spitzer Telemetry Processing System

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  14. Data mining based full ceramic bearing fault diagnostic system using AE sensors.

    PubMed

    He, David; Li, Ruoyu; Zhu, Junda; Zade, Mikhail

    2011-12-01

    Full ceramic bearings are considered the first step toward full ceramic, oil-free engines in the future. No research on full ceramic bearing fault diagnostics using acoustic emission (AE) sensors has been reported. Unlike their steel counterparts, signal processing methods to extract effective AE fault characteristic features and fault diagnostic systems for full ceramic bearings have not been developed. In this paper, a data mining based full ceramic bearing diagnostic system using AE based condition indicators (CIs) is presented. The system utilizes a new signal processing method based on Hilbert Huang transform to extract AE fault features for the computation of CIs. These CIs are used to build a data mining based fault classifier using a k-nearest neighbor algorithm. Seeded fault tests on full ceramic bearing outer race, inner race, balls, and cage are conducted on a bearing diagnostic test rig and AE burst data are collected. The effectiveness of the developed fault diagnostic system is validated using real full ceramic bearing seeded fault test data.

  15. Investigation of PACVD protective coating processes using advanced diagnostics techniques

    SciTech Connect

    Roman, W.C.

    1993-05-07

    Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB[sub 2] and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB[sub 2].

  16. Physical processes in eclipsing pulsars: Eclipse mechanisms and diagnostics

    NASA Technical Reports Server (NTRS)

    Thompson, C.; Blandford, R. D.; Evans, Charles R.; Phinney, E. S.

    1994-01-01

    We investigate how the radio emission of a pulsar interacts with plasma derived from a stellar companion. Various physical mechanisms that can cause radio pulse eclipse are discussed, and predictions are made for the polarization properties of the emergent radio wave. We consider eclipses by a wind from the stellar companion, by a stellar magnetosphere, or by material entrained in the pulsar wind. Eclipses due to refraction require either a relatively high plasma density or a sharp edge to the plasma distribution. The conditions that must prevail for free-free absorption to be effective in eclipsing a radio beam are also outlined. Pulse smearing may be important at higher frequencies; related eclipse mechanisms include pulse spreading due to a rapidly changing electron column, and scattering by Langmuir turbulence. The high brightness temperature radio beam can generate its own plasma turbulence via a number of nonlinear parametric instabilities, such as the instability associated with stimulated Raman scattering. When the plasma turbulence is heavily damped, the radio bean can still undergo induced Compton scattering. Stimulated scattering effects such as these are very sensitive to the presence of narrow-band substructure in the pulsar radio emission. Finally, we consider the possibility that plasma derived from a stellar companion may mix with the relativistic pulsar wind and cause cyclotron absorption at low radio frequencies. Even if the cyclotron optical depth is small, fluctuations in the emergent polarization of the radio beam on the timescale of a few seconds are a very sensitive probe of the spatial structure of the magnetic field in the pulsar wind. The current observational properties of two known eclipsing pulsar systems, PSR 1957+20 and PSR 1744-24A, are used to construct tentative eclipse models. The favored model for PSR 1957+20 is cyclotron or synchrotron absorption by plasma embedded in the pulsar wind combined with pulse smearing at high

  17. Evaluation of negative ion distribution changes by image processing diagnostic

    SciTech Connect

    Ikeda, K. Nakano, H.; Tsumori, K.; Kisaki, M.; Nagaoka, K.; Tokuzawa, T.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Geng, S.

    2015-04-08

    Distributions of hydrogen Balmer-α (H{sub α}) intensity and its reduction behavior close to a plasma grid (PG) surface have been observed by a spectrally selective imaging system in an arc discharge type negative hydrogen ion source in National Institute for Fusion Science. H{sub α} reduction indicates a reduction of negative hydrogen ions because the mutual neutralization process between H{sup +} and H{sup −} ions causes the dominant excitation process for H{sub α} emission in the rich H{sup −} condition such as in ionic plasma. We observed a significant change in H{sub α} reduction distribution due to change in the bias voltage, which is used to suppress the electron influx. Small H{sub α} reduction in higher bias is likely because the production of negative ions is suppressed by the potential difference between the plasma and PG surface.

  18. Application of statistical process control to qualitative molecular diagnostic assays.

    PubMed

    O'Brien, Cathal P; Finn, Stephen P

    2014-01-01

    Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control (SPC). Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply SPC to an assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater sample numbers to mitigate a protracted time to detection. Modeled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of SPC to qualitative laboratory data. PMID:25988159

  19. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  20. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  1. Optimal Sequential Diagnostic Strategy Generation Considering Test Placement Cost for Multimode Systems.

    PubMed

    Zhang, Shigang; Song, Lijun; Zhang, Wei; Hu, Zheng; Yang, Yongmin

    2015-10-08

    Sequential fault diagnosis is an approach that realizes fault isolation by executing the optimal test step by step. The strategy used, i.e., the sequential diagnostic strategy, has great influence on diagnostic accuracy and cost. Optimal sequential diagnostic strategy generation is an important step in the process of diagnosis system construction, which has been studied extensively in the literature. However, previous algorithms either are designed for single mode systems or do not consider test placement cost. They are not suitable to solve the sequential diagnostic strategy generation problem considering test placement cost for multimode systems. Therefore, this problem is studied in this paper. A formulation is presented. Two algorithms are proposed, one of which is realized by system transformation and the other is newly designed. Extensive simulations are carried out to test the effectiveness of the algorithms. A real-world system is also presented. All the results show that both of them have the ability to solve the diagnostic strategy generation problem, and they have different characteristics.

  2. Optimal Sequential Diagnostic Strategy Generation Considering Test Placement Cost for Multimode Systems

    PubMed Central

    Zhang, Shigang; Song, Lijun; Zhang, Wei; Hu, Zheng; Yang, Yongmin

    2015-01-01

    Sequential fault diagnosis is an approach that realizes fault isolation by executing the optimal test step by step. The strategy used, i.e., the sequential diagnostic strategy, has great influence on diagnostic accuracy and cost. Optimal sequential diagnostic strategy generation is an important step in the process of diagnosis system construction, which has been studied extensively in the literature. However, previous algorithms either are designed for single mode systems or do not consider test placement cost. They are not suitable to solve the sequential diagnostic strategy generation problem considering test placement cost for multimode systems. Therefore, this problem is studied in this paper. A formulation is presented. Two algorithms are proposed, one of which is realized by system transformation and the other is newly designed. Extensive simulations are carried out to test the effectiveness of the algorithms. A real-world system is also presented. All the results show that both of them have the ability to solve the diagnostic strategy generation problem, and they have different characteristics. PMID:26457709

  3. [Clinical decision making and critical thinking in the nursing diagnostic process].

    PubMed

    Müller-Staub, Maria

    2006-10-01

    The daily routine requires complex thinking processes of nurses, but clinical decision making and critical thinking are underestimated in nursing. A great demand for educational measures in clinical judgement related with the diagnostic process was found in nurses. The German literature hardly describes nursing diagnoses as clinical judgements about human reactions on health problems / life processes. Critical thinking is described as an intellectual, disciplined process of active conceptualisation, application and synthesis of information. It is gained through observation, experience, reflection and communication and leads thinking and action. Critical thinking influences the aspects of clinical decision making a) diagnostic judgement, b) therapeutic reasoning and c) ethical decision making. Human reactions are complex processes and in their course, human behavior is interpreted in the focus of health. Therefore, more attention should be given to the nursing diagnostic process. This article presents the theoretical framework of the paper "Clinical decision making: Fostering critical thinking in the nursing diagnostic process through case studies".

  4. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management

    NASA Technical Reports Server (NTRS)

    Wu, G. Gordon

    1995-01-01

    Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.

  5. Industrial process surveillance system

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  6. Industrial Process Surveillance System

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  7. Industrial process surveillance system

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  8. Hazard analysis of a computer based medical diagnostic system.

    PubMed

    Chudleigh, M F

    1994-07-01

    Medical screening of sectors of the population is now a routine and vital part of health care: an example is cervical smear testing. There is currently significant interest in the possible introduction of semi-automated microscopy systems for cervical cytology and one such experimental system is now undergoing laboratory trials. A collaborative project has been set up to demonstrate the benefits and constraints that arise from applying safety-critical methods developed in other domains to such a diagnostic system. We have carried out a system hazard analysis, successfully using the HAZOP technique adapted from the petrochemical industry. PMID:7988111

  9. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    PubMed

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases. PMID:27475558

  10. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  11. Diagnostics monitor of the braking efficiency in the on board diagnostics system for the motor vehicles

    NASA Astrophysics Data System (ADS)

    Gajek, Andrzej

    2016-09-01

    The article presents diagnostics monitor for control of the efficiency of brakes in various road conditions in cars equipped with pressure sensor in brake (ESP) system. Now the brake efficiency of the vehicles is estimated periodically in the stand conditions on the base of brake forces measurement or in the road conditions on the base of the brake deceleration. The presented method allows to complete the stand - periodical tests of the brakes by current on board diagnostics system OBD for brakes. First part of the article presents theoretical dependences between deceleration of the vehicle and brake pressure. The influence of the vehicle mass, initial speed of braking, temperature of brakes, aerodynamic drag, rolling resistance, engine resistance, state of the road surface, angle of the road sloping on the deceleration have been analysed. The manner of the appointed of these parameters has been analysed. The results of the initial investigation have been presented. At the end of the article the strategy of the estimation and signalization of the irregular value of the deceleration are presented.

  12. A Scalable, Out-of-Band Diagnostics Architecture for International Space Station Systems Support

    NASA Technical Reports Server (NTRS)

    Fletcher, Daryl P.; Alena, Rick; Clancy, Daniel (Technical Monitor)

    2002-01-01

    The computational infrastructure of the International Space Station (ISS) is a dynamic system that supports multiple vehicle subsystems such as Caution and Warning, Electrical Power Systems and Command and Data Handling (C&DH), as well as scientific payloads of varying size and complexity. The dynamic nature of the ISS configuration coupled with the increased demand for payload support places a significant burden on the inherently resource constrained computational infrastructure of the ISS. Onboard system diagnostics applications are hosted on computers that are elements of the avionics network while ground-based diagnostic applications receive only a subset of available telemetry, down-linked via S-band communications. In this paper we propose a scalable, out-of-band diagnostics architecture for ISS systems support that uses a read-only connection for C&DH data acquisition, which provides a lower cost of deployment and maintenance (versus a higher criticality readwrite connection). The diagnostics processing burden is off-loaded from the avionics network to elements of the on-board LAN that have a lower overall cost of operation and increased computational capacity. A superset of diagnostic data, richer in content than the configured telemetry, is made available to Advanced Diagnostic System (ADS) clients running on wireless handheld devices, affording the crew greater mobility for troubleshooting and providing improved insight into vehicle state. The superset of diagnostic data is made available to the ground in near real-time via an out-of band downlink, providing a high level of fidelity between vehicle state and test, training and operational facilities on the ground.

  13. Combining principles of Cognitive Load Theory and diagnostic error analysis for designing job aids: Effects on motivation and diagnostic performance in a process control task.

    PubMed

    Kluge, Annette; Grauel, Britta; Burkolter, Dina

    2013-03-01

    Two studies are presented in which the design of a procedural aid and the impact of an additional decision aid for process control were assessed. In Study 1, a procedural aid was developed that avoids imposing unnecessary extraneous cognitive load on novices when controlling a complex technical system. This newly designed procedural aid positively affected germane load, attention, satisfaction, motivation, knowledge acquisition and diagnostic speed for novel faults. In Study 2, the effect of a decision aid for use before the procedural aid was investigated, which was developed based on an analysis of diagnostic errors committed in Study 1. Results showed that novices were able to diagnose both novel faults and practised faults, and were even faster at diagnosing novel faults. This research contributes to the question of how to optimally support novices in dealing with technical faults in process control.

  14. Design process for NIF laser alignment and beam diagnostics

    SciTech Connect

    Grey, A., LLNL

    1998-06-09

    In a controller for an adaptive optic system designed to correct phase aberrations in a high power laser, the wavefront sensor is a discrete Hartmann-Shack design. It uses an army of lenslets (like a fly` s eye) to focus the laser into 77 spots on a CCD camera. Average local tilt of the wavefront across each lenslet changes the position of its focal spot. The system requires 0.1 pixel accuracy in determining the focal spot location. We determine a small area around each spot` s previous location. Within this area, we calculate the centroid of the light intensity in x and y. This calculation fails if the spot regions overlap. Especially during initial acquisition of a highly distorted beam, distinguishing overlapping spots is difficult. However, low resolution analysis of the overlapping spots allows the system to estimate their positions. With this estimate, it can use the deformable mirror to correct the beam enough so we can detect the spots using conventional image processing.

  15. Process evaluation distributed system

    NASA Technical Reports Server (NTRS)

    Moffatt, Christopher L. (Inventor)

    2006-01-01

    The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.

  16. Needs assessment for diagnostic decision support systems (DDSS).

    PubMed Central

    Berner, E. S.; Shugerman, A. A.

    1991-01-01

    Diagnostic decision support systems are often developed without a clear idea of how well the system will meet the needs of its users. The present study was designed to assess the information needs of clinicians. A set of questions submitted to an information service by family physicians was used to determine how much need there was for diagnostic decision support, the types of support needed, and the general content areas of their questions. Results showed that less than half of the questions were related to diagnosis and that most of those were requests for general information about a given condition. In addition, the fewest diagnosis questions were for conditions that were seen frequently in ambulatory care in a survey of family practitioners. PMID:1807674

  17. Realization of process improvement at a diagnostic radiology department with aid of simulation modeling.

    PubMed

    Oh, Hong-Choon; Toh, Hong-Guan; Giap Cheong, Eddy Seng

    2011-11-01

    Using the classical process improvement framework of Plan-Do-Study-Act (PDSA), the diagnostic radiology department of a tertiary hospital identified several patient cycle time reduction strategies. Experimentation of these strategies (which included procurement of new machines, hiring of new staff, redesign of queue system, etc.) through pilot scale implementation was impractical because it might incur substantial expenditure or be operationally disruptive. With this in mind, simulation modeling was used to test these strategies via performance of "what if" analyses. Using the output generated by the simulation model, the team was able to identify a cost-free cycle time reduction strategy, which subsequently led to a reduction of patient cycle time and achievement of a management-defined performance target. As healthcare professionals work continually to improve healthcare operational efficiency in response to rising healthcare costs and patient expectation, simulation modeling offers an effective scientific framework that can complement established process improvement framework like PDSA to realize healthcare process enhancement.

  18. Programmable bio-nano-chip system for saliva diagnostics

    NASA Astrophysics Data System (ADS)

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W.; McRae, Michael P.; Wong, Jorge; Kosten, Thomas R.; Miller, Craig S.; Ebersole, Jeffrey L.; McDevitt, John

    2014-06-01

    This manuscript describes programmable Bio-Nano-Chip (p-BNC) approach that serves as miniaturized assay platform designed for the rapid detection and quantitation of multiple analytes in biological fluids along with the specific applications in salivary diagnostics intended for the point of need (PON). Included here are oral fluid-based tests for local periodontal disease, systemic cardiac disease and multiplexed tests for drugs of abuse.

  19. WEAVE core processing system

    NASA Astrophysics Data System (ADS)

    Walton, Nicholas A.; Irwin, Mike; Lewis, James R.; Gonzalez-Solares, Eduardo; Dalton, Gavin; Trager, Scott; Aguerri, J. Alfonso L.; Allende Prieto, Carlos; Benn, Chris R.; Abrams, Don Carlos; Picó, Sergio; Middleton, Kevin; Lodi, Marcello; Bonifacio, Piercarlo

    2014-07-01

    WEAVE is an approved massive wide field multi-object optical spectrograph (MOS) currently entering its build phase, destined for use on the 4.2-m William Herschel Telescope (WHT). It will be commissioned and begin survey operations in 2017. This paper describes the core processing system (CPS) system being developed to process the bulk data flow from WEAVE. We describe the processes and techniques to be used in producing the scientifically validated 'Level 1' data products from the WEAVE data. CPS outputs will include calibrated one-d spectra and initial estimates of basic parameters such as radial velocities (for stars) and redshifts (for galaxies).

  20. Automated process planning system

    NASA Technical Reports Server (NTRS)

    Mann, W.

    1978-01-01

    Program helps process engineers set up manufacturing plans for machined parts. System allows one to develop and store library of similar parts characteristics, as related to particular facility. Information is then used in interactive system to help develop manufacturing plans that meet required standards.

  1. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  2. MIDAS, prototype Multivariate Interactive Digital Analysis System, Phase 1. Volume 2: Diagnostic system

    NASA Technical Reports Server (NTRS)

    Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.

    1974-01-01

    The MIDAS System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughout. The hardware and software generated in Phase I of the over-all program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating 2 x 105 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. Diagnostic programs used to test MIDAS' operations are presented.

  3. [Lab-on-a-chip systems in the point-of-care diagnostics].

    PubMed

    Szabó, Barnabás; Borbíró, András; Fürjes, Péter

    2015-12-27

    The need in modern medicine for near-patient diagnostics being able to accelerate therapeutic decisions and possibly replacing laboratory measurements is significantly growing. Reliable and cost-effective bioanalytical measurement systems are required which - acting as a micro-laboratory - contain integrated biomolecular recognition, sensing, signal processing and complex microfluidic sample preparation modules. These micro- and nanofabricated Lab-on-a-chip systems open new perspectives in the diagnostic supply chain, since they are able even for quantitative, high-precision and immediate analysis of special disease specific molecular markers or their combinations from a single drop of sample. Accordingly, crucial requirements regarding the instruments and the analytical methods are the high selectivity, extremely low detection limit, short response time and integrability into the healthcare information networks. All these features can make the hierarchical examination chain shorten, and revolutionize laboratory diagnostics, evolving a brand new situation in therapeutic intervention. PMID:26686745

  4. Mining balance disorders' data for the development of diagnostic decision support systems.

    PubMed

    Exarchos, T P; Rigas, G; Bibas, A; Kikidis, D; Nikitas, C; Wuyts, F L; Ihtijarevic, B; Maes, L; Cenciarini, M; Maurer, C; Macdonald, N; Bamiou, D-E; Luxon, L; Prasinos, M; Spanoudakis, G; Koutsouris, D D; Fotiadis, D I

    2016-10-01

    In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts.

  5. Mining balance disorders' data for the development of diagnostic decision support systems.

    PubMed

    Exarchos, T P; Rigas, G; Bibas, A; Kikidis, D; Nikitas, C; Wuyts, F L; Ihtijarevic, B; Maes, L; Cenciarini, M; Maurer, C; Macdonald, N; Bamiou, D-E; Luxon, L; Prasinos, M; Spanoudakis, G; Koutsouris, D D; Fotiadis, D I

    2016-10-01

    In this work we present the methodology for the development of the EMBalance diagnostic Decision Support System (DSS) for balance disorders. Medical data from patients with balance disorders have been analysed using data mining techniques for the development of the diagnostic DSS. The proposed methodology uses various data, ranging from demographic characteristics to clinical examination, auditory and vestibular tests, in order to provide an accurate diagnosis. The system aims to provide decision support for general practitioners (GPs) and experts in the diagnosis of balance disorders as well as to provide recommendations for the appropriate information and data to be requested at each step of the diagnostic process. Detailed results are provided for the diagnosis of 12 balance disorders, both for GPs and experts. Overall, the reported accuracy ranges from 59.3 to 89.8% for GPs and from 74.3 to 92.1% for experts. PMID:27619194

  6. Supervisory control and diagnostics system for the mirror fusion test facility: overview and status 1980

    SciTech Connect

    McGoldrick, P.R.

    1981-01-01

    The Mirror Fusion Test Facility (MFTF) is a complex facility requiring a highly-computerized Supervisory Control and Diagnostics System (SCDS) to monitor and provide control over ten subsystems; three of which require true process control. SCDS will provide physicists with a method of studying machine and plasma behavior by acquiring and processing up to four megabytes of plasma diagnostic information every five minutes. A high degree of availability and throughput is provided by a distributed computer system (nine 32-bit minicomputers on shared memory). Data, distributed across SCDS, is managed by a high-bandwidth Distributed Database Management System. The MFTF operators' control room consoles use color television monitors with touch sensitive screens; this is a totally new approach. The method of handling deviations to normal machine operation and how the operator should be notified and assisted in the resolution of problems has been studied and a system designed.

  7. Expert systems in the process industries

    NASA Technical Reports Server (NTRS)

    Stanley, G. M.

    1992-01-01

    This paper gives an overview of industrial applications of real-time knowledge based expert systems (KBES's) in the process industries. After a brief overview of the features of a KBES useful in process applications, the general roles of KBES's are covered. A particular focus is diagnostic applications, one of the major applications areas. Many applications are seen as an expansion of supervisory control. The lessons learned from numerous online applications are summarized.

  8. Pre-PCR processing in bioterrorism preparedness: improved diagnostic capabilities for laboratory response networks.

    PubMed

    Hedman, Johannes; Knutsson, Rickard; Ansell, Ricky; Rådström, Peter; Rasmusson, Birgitta

    2013-09-01

    Diagnostic DNA analysis using polymerase chain reaction (PCR) has become a valuable tool for rapid detection of biothreat agents. However, analysis is often challenging because of the limited size, quality, and purity of the biological target. Pre-PCR processing is an integrated concept in which the issues of analytical limit of detection and simplicity for automation are addressed in all steps leading up to PCR amplification--that is, sampling, sample treatment, and the chemical composition of PCR. The sampling method should maximize target uptake and minimize uptake of extraneous substances that could impair the analysis--so-called PCR inhibitors. In sample treatment, there is a trade-off between yield and purity, as extensive purification leads to DNA loss. A cornerstone of pre-PCR processing is to apply DNA polymerase-buffer systems that are tolerant to specific sample impurities, thereby lowering the need for expensive purification steps and maximizing DNA recovery. Improved awareness among Laboratory Response Networks (LRNs) regarding pre-PCR processing is important, as ineffective sample processing leads to increased cost and possibly false-negative or ambiguous results, hindering the decision-making process in a bioterrorism crisis. This article covers the nature and mechanisms of PCR-inhibitory substances relevant for agroterrorism and bioterrorism preparedness, methods for quality control of PCR reactions, and applications of pre-PCR processing to optimize and simplify the analysis of various biothreat agents. Knowledge about pre-PCR processing will improve diagnostic capabilities of LRNs involved in the response to bioterrorism incidents.

  9. Commissioning results of the APS storage ring diagnostics systems

    SciTech Connect

    Lumpkin, A.H.

    1996-12-31

    Initial commissionings of the Advanced Photon Source (APS) 7-GeV storage ring and its diagnostics systems have been done. Early studies involved single-bunch measurements for beam transverse size ({sigma}{sub x} {approx} 150 {mu}m, {sigma}{sub y} {approx} 50 {mu}m), current, injection losses, and bunch length. The diagnostics have been used in studies related to the detection of an extra contribution to beam jitter at {approximately} 6.5 Hz frequency; observation of bunch lengthening ({sigma} {approx} 30 to 60 ps) with single-bunch current; observation of an induced vertical, head-tail instability; and detection of a small orbit change with insertion device gap position. More recently, operations at 100-mA stored-beam current, the baseline design goal, have been achieved with the support of beam characterizations.

  10. Commissioning results of the APS storage ring diagnostics systems

    NASA Astrophysics Data System (ADS)

    Lumpkin, Alex H.

    1997-01-01

    Initial commissionings of the Advanced Photon Source (APS) 7-GeV storage ring and its diagnostics systems have been done. Early studies involved single-bunch measurements for beam transverse size (σx≈150 μm, σy≈50 μm,) current, injection losses, and bunch length. The diagnostics have been used in studies related to the detection of an extra contribution to beam jitter at ˜6.5 Hz frequency; observation of bunch lengthening (σ≈30 to 60 ps) with single-bunch current; observation of an induced vertical, head-tail instability; and detection of a small orbit change with insertion device gap position. More recently, operations at 100-mA stored-beam current, the baseline design goal, have been achieved with the support of beam characterizations.

  11. A Statistical Evaluation of the Diagnostic Performance of MEDAS-The Medical Emergency Decision Assistance System

    PubMed Central

    Georgakis, D. Christine; Trace, David A.; Naeymi-Rad, Frank; Evens, Martha

    1990-01-01

    Medical expert systems require comprehensive evaluation of their diagnostic accuracy. The usefulness of these systems is limited without established evaluation methods. We propose a new methodology for evaluating the diagnostic accuracy and the predictive capacity of a medical expert system. We have adapted to the medical domain measures that have been used in the social sciences to examine the performance of human experts in the decision making process. Thus, in addition to the standard summary measures, we use measures of agreement and disagreement, and Goodman and Kruskal's λ and τ measures of predictive association. This methodology is illustrated by a detailed retrospective evaluation of the diagnostic accuracy of the MEDAS system. In a study using 270 patients admitted to the North Chicago Veterans Administration Hospital, diagnoses produced by MEDAS are compared with the discharge diagnoses of the attending physicians. The results of the analysis confirm the high diagnostic accuracy and predictive capacity of the MEDAS system. Overall, the agreement of the MEDAS system with the “gold standard” diagnosis of the attending physician has reached a 90% level.

  12. Evaluation of the NDP (neutron diagnostic probe) system

    SciTech Connect

    Pentaleri, E.A.; Eisen, Y.Y.

    1990-12-01

    The neutron diagnostic probe (NDP), an explosive detection system developed by Consolidated Controls Corporation and based on the associated-alpha-particle technique, was evaluated. Although many problems were found with the prototype system that make it useless for most practical applications, the NDP system may be considered a successful proof-of-principle for the basic explosive detection system design. In addition to evaluating the design and performance of the present system, models were developed to estimate the performance that might reasonably be expected from full scale systems of different conceptual design. Specific examples involved various types of bulk and sheet explosives contained in a suitcase and a large crate. Also considered were the effects of innocuous materials surrounding explosives in different scenarios, including the deliberate use of shielding materials as a countermeasure to detection. 11 refs., 46 figs., 24 tabs.

  13. Design of Thomson scattering diagnostic system on J-TEXT

    NASA Astrophysics Data System (ADS)

    Zhou, Yinan; Gao, Li; Huang, Jiefeng; Qiu, Qingshuang; Zhuang, Ge

    2016-11-01

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT at present and in the near future. A detailed description of the system design is presented in this paper.

  14. Clinical cognition and diagnostic error: applications of a dual process model of reasoning.

    PubMed

    Croskerry, Pat

    2009-09-01

    Both systemic and individual factors contribute to missed or delayed diagnoses. Among the multiple factors that impact clinical performance of the individual, the caliber of cognition is perhaps the most relevant and deserves our attention and understanding. In the last few decades, cognitive psychologists have gained substantial insights into the processes that underlie cognition, and a new, universal model of reasoning and decision making has emerged, Dual Process Theory. The theory has immediate application to medical decision making and provides an overall schema for understanding the variety of theoretical approaches that have been taken in the past. The model has important practical applications for decision making across the multiple domains of healthcare, and may be used as a template for teaching decision theory, as well as a platform for future research. Importantly, specific operating characteristics of the model explain how diagnostic failure occurs.

  15. ORION OPTICAL DIAGNOSTIC SYSTEMS Construction and commissioning progress

    NASA Astrophysics Data System (ADS)

    Palmer, J. B. A.; Drew, D.; Fyrth, J.; Hill, M. P.; Kemshall, P.; Oades, K.; Harvey, E.; Gumbrell, E. T.

    2012-10-01

    The Orion facility provides a unique combined long- and short-pulse laser capability. We report on the progress in constructing a comprehensive plasma optical diagnostic suite for the facility, developed for a range of warm dense matter and other materials' properties experiments. The first VISAR imaging line for the suite is due to be commissioned in 2012 and its progress will be reported. The system consists of configurable optical elements mounted on a TIM, relay optics to an optical table, optics to direct the light through a VISAR bed onto an optical streak camera and the infrastructure systems to provide remote control and services. Due to the operational model of Orion the diagnostic must have comprehensive remote control for its set up and alignment. This makes the system design more complicated than otherwise. The sub-systems required to give the degree of remote control required will be described. A modified version of the suite's ASBO imaging line was used in 2011 to support the commissioning of Orion's long- and short-pulse laser beam lines by imaging optical emission from laser targets. The set up of this system and the data it recorded with an optical streak camera during a short pulse experiment will be presented.

  16. How to Use the DX SYSTEM of Diagnostic Testing. Methodology Project.

    ERIC Educational Resources Information Center

    McArthur, David; Cabello, Beverly

    The DX SYSTEM of Diagnostic Testing is an easy-to-use computerized system for developing and administering diagnostic tests. A diagnostic test measures a student's mastery of a specific domain (skill or content area). It examines the necessary subskills hierarchically from the most to the least complex. The DX SYSTEM features tailored testing with…

  17. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  18. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  19. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  20. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  1. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray systems and their major... PRODUCTS § 1020.30 Diagnostic x-ray systems and their major components. (a) Applicability. (1) The provisions of this section are applicable to: (i) The following components of diagnostic x-ray systems:...

  2. Optical Diagnostic System for Solar Sails: Phase 1 Final Report

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.

    2004-01-01

    NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.

  3. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  4. The Diagnostic Value of Skin Disease Diagnosis Expert System

    PubMed Central

    Jeddi, Fatemeh Rangraz; Arabfard, Masoud; Arabkermany, Zahra; Gilasi, Hamidreza

    2016-01-01

    Background: Evaluation is a necessary measure to ensure the effectiveness and efficiency of all systems, including expert systems. The aim of this study was to determine the diagnostic value of expert system for diagnosis of complex skin diseases. Methods: A case-control study was conducted in 2015 to determine the diagnostic value of an expert system. The study population included patients who were referred to Razi Specialized Hospital, affiliated to Tehran University of Medical Sciences. The control group was selected from patients without the selected skin diseases. Data collection tool was a checklist of clinical signs of diseases including pemphigus vulgaris, lichen planus, basal cell carcinoma, melanoma, and scabies. The sample size formula estimated 400 patients with skin diseases selected by experts and 200 patients without the selected skin diseases. Patient selection was undertaken with randomized stratified sampling and their sign and symptoms were logged into the system. Physician’s diagnosis was determined as the gold standard and was compared with the diagnosis of expert system by SPSS software version 16 and STATA. Kappa statistics, indicators of sensitivity, specificity, accuracy and confidence intervals were calculated for each disease. An accuracy of 90% was considered appropriate. Results: Comparing the results of expert system and physician’s diagnosis at the evaluation stage showed an accuracy of 97.1%, sensitivity of 97.5% and specificity of 96.5% The Kappa test indicated a high agreement of 93.6%. Conclusion: The expert system can diagnose complex skin diseases. Development of such systems is recommended to identify all skin diseases. PMID:27046943

  5. [Minor head trauma - trivial matter or sirious diagnostic and therapeutic problem? The role of Infrascanner in the diagnostic process].

    PubMed

    Lewartowska-Nyga, Dorota; Skotnicka-Klonowicz, Grażyna

    2016-01-01

    Head injuries in children, especially minor head injuries, still constitute a important diagnostic and therapeutic problem. Despite progress in medical sciences, there is no definition of minor head injury or standards of the management of children with a minor head injury. In consequence, the diagnostic procedure in the child who does not show any signs of central nervous system damage as a result of head injury is individual and depends on the experience and knowledge of the aid provider and as well as procedures established in a given ward. Therefore, a problem which requires to be urgently solved is to determine the justification and indications for imaging investigations (justification for skull X-ray, performance indications for carrying out computed tomography of the head) as well as indications for inpatient observation in such cases. The study presents currently existing definitions and proposals for the management of children presenting with a minor head injury. On the basis of own investigation we would stress that there is an opportunity to use in the initial diagnostics of head injuries in children, a modern non-invasive method already available in Poland, utilising the near-infrared NIR technology in order to detect intracranial haemorrhages by means of the Infrascanner. PMID:27442697

  6. [Minor head trauma - trivial matter or sirious diagnostic and therapeutic problem? The role of Infrascanner in the diagnostic process].

    PubMed

    Lewartowska-Nyga, Dorota; Skotnicka-Klonowicz, Grażyna

    2016-01-01

    Head injuries in children, especially minor head injuries, still constitute a important diagnostic and therapeutic problem. Despite progress in medical sciences, there is no definition of minor head injury or standards of the management of children with a minor head injury. In consequence, the diagnostic procedure in the child who does not show any signs of central nervous system damage as a result of head injury is individual and depends on the experience and knowledge of the aid provider and as well as procedures established in a given ward. Therefore, a problem which requires to be urgently solved is to determine the justification and indications for imaging investigations (justification for skull X-ray, performance indications for carrying out computed tomography of the head) as well as indications for inpatient observation in such cases. The study presents currently existing definitions and proposals for the management of children presenting with a minor head injury. On the basis of own investigation we would stress that there is an opportunity to use in the initial diagnostics of head injuries in children, a modern non-invasive method already available in Poland, utilising the near-infrared NIR technology in order to detect intracranial haemorrhages by means of the Infrascanner.

  7. Monitoring and diagnostics systems for nuclear power plant operating regimes

    SciTech Connect

    Abagyan, A.A.; Dmitriev, V.M.; Klebanov, L.A.; Kroshilin, A.E.; Larin, E.P.; Morozov, S.K.

    1988-05-01

    The development of new monitoring and diagnostics systems for Soviet reactors is discussed. An experimental test station is described where industrial operation of new experimental systems can be conducted for purposes of bringing their performance to the level of standard Soviet systems for monitoring reactor operation regimes and equipment resources. The requirements and parameters of the systems are described on a unit-by-unit basis, including the sensor reading monitoring unit, the vibroacoustic monitoring unit, the noise monitoring unit, the accident regime identification unit, and the nonstationary regime monitoring unit. Computer hardware and software requirements are discussed. The results of calculational and experimental research on two complex nonstationary regimes of reactor operation are given. The accident regimes identification unit for the VVER-1000 is analyzed in detail.

  8. Development of burner flame diagnostic system for utility boilers

    SciTech Connect

    Ito, F. ); Watanabe, N.; Misono, K.Y. ); Miyamae, S.; Hashimoto, H.; Tagami, I. )

    1990-01-01

    The combustion monitoring system in utility boilers generally consists of equipment for analyzing O{sub 2}, NO{sub x} and dust in flue gas at the boiler exit. The burner flame diagnostic system developed in this research is comprised of optical probes, optical fibers connecting the burners to a multispectrometer through an optical scanner for multiple burners of the boiler and computer for evaluating flame behavior, so as to serve precise spectroscopic analysis. This research began with a small size test furnace in order to derive combustion evaluation indices, thus successfully leading to theoretical expression in application to a large scale utility boiler. A ploto-type system was mounted on a 350 MW boiler with test result that clearly demonstrate this system to be effective for precise evaluation of individual burners of the boiler.

  9. Process control using new approaches in plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Reeves, Steve; Fullwood, Clayton; Turner, Terry R.

    1994-09-01

    As semiconductor processing requirements evolve to meet the demands of decreasing geometries, new approached in plasma metrology will be needed to monitor the performances of the equipment and its processes. This performance has traditionally been monitored via Statistical Process Control (SPC) on output parameters such as etch rate and uniformity. These measurements are typically taken on single film wafers which may not be an accurate representation of product. With emerging, nonintrusive, RF sensor technology, equipment and process engineers have access to signals which provide better resolution in determining the health of the equipment. This paper will discuss the relationships between machine settings, real-time RF sensor measurements and the etch rate and uniformity metrics typically used in machine/process qualifications. Run to run control algorithms using the RF sensor measurements will also be presented. Finally, the implications of using RF sensor measurements to provide real-time closed loop control of machine settings will be discussed.

  10. Flight Test of Propulsion Monitoring and Diagnostic System

    NASA Technical Reports Server (NTRS)

    Gabel, Steve; Elgersma, Mike

    2002-01-01

    The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.

  11. F100 engine diagnostic system status to date

    NASA Technical Reports Server (NTRS)

    Boyless, J. A.

    1981-01-01

    An engine diagnostic system, proposed for the F100 engine, was tested in five specially modified Tactical Air Command F-15 aircraft during a 16-month flight evaluation. After more than 3300 engine operating hours encompassing almost 900 flights during the flight evaluation, these aircraft provided a data base, still being analyzed, that has shown successful demonstration of the original functional characteristics. Four general design requirements, recording engine operating time/low cycle fatigue event detection, engine trim, and trend and performance data collection were demonstrated. Also, validation of maintenance actions taken and indicated needed maintenance were successfully demonstrated.

  12. Systems biology meets -omic technologies: novel approaches to biomarker discovery and companion diagnostic development.

    PubMed

    Caberlotto, Laura; Lauria, Mario

    2015-02-01

    The next generation of biomarkers and companion diagnostics will require the development of technologies capable of conjugating the advances in high-throughput techniques in biology with computational methods. Systems biology is poised to contribute through an integrated view, capturing the complexity of the system, both in terms of a collection of interacting molecular components and also in terms of multiple intersecting views. Following this system-centered view, novel approaches have been developed for the identification of signatures of both disease processes and drug modes of action with the promising perspectives of better diagnosis of disease and of the discovery of more efficacious and safe drugs. The application of systems biology to the development of companion diagnostics is very recent and to date a few pioneering steps have been made in this direction. In this review, we describe the ongoing studies and the potential developments in this area of research.

  13. Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems

    SciTech Connect

    Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.; Haves, Philip; Sohn, Michael D.

    2010-05-30

    Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models are imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.

  14. [Diagnostic image management and communication systems: experience at the University of Pisa].

    PubMed

    Caramella, D; Del Sarto, M; Bartolozzi, C; Beltrame, F; Sobel, I

    1995-01-01

    Our work was aimed at implementing and validating a system for the acquisition, local management and remote transmission of diagnostic images. Integration of imaging equipment was performed in each of the two sites (5 km apart) in which the Department of Radiology of the University of Pisa is divided. Teleradiology was carried out using 64 Kbit/s lines as well as a 140 Mbit/s Metropolitan Area Network compliant with the Distributed Queue Dual Bus standard. Application domains included remote expert consultation and teleprocessing of diagnostic images. Remote expert consultation was performed in particular by using the 34 Mbit/s interconnection with the Metropolitan Area Network of Florence. Remote processing of diagnostic images using the high speed link allowed the cooperative work with scientific institutions in a field often limited by the complexity of image transfer and by the lack of a timely feed-back concerning the clinical value of processed images. Advanced processing of diagnostic images was performed in the field of stereographic display of CT and MR data sets. Moreover, experience was gained in the visualization, on a single composite image, of the multiparametric data obtained by means of different MR sequences (T1, Spin Density, T2), thus allowing to summarize, by using false colors, different tissue contrast information.

  15. Cooperative research and development for artificial intelligence based reactor diagnostic system

    SciTech Connect

    Reifman, J.; Wei, T.Y.C.; Abboud, R.G.; Chasensky, T.M.

    1994-10-01

    Artificial Intelligence (AI) techniques in the form of knowledge-based Expert Systems (ESs) have been proposed to provide on-line decision-making support for plant operators during both normal and emergency conditions. However, in spite of the great interest in these advanced techniques, their application in the diagnosis of large-scale processes has not yet reached its full potential because of limitations of the knowledge base. These limitations include problems with knowledge acquisition and the use of an event-oriented approach for process diagnosis. To investigate the capabilities of this two-level hierarchical knowledge structure, Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL)are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA) project to perform feasibility studies on the proposed diagnostic system. Investigations are being performed in the construction of a physics-based plant level process diagnostic ES and the characterization of component-level fault project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use T-H signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance. To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. This is an ongoing multi-year project and the remainder of this paper presents a mid-term status report.

  16. Medial prefrontal dissociations during processing of trait diagnostic and nondiagnostic person information.

    PubMed

    Mitchell, Jason P; Cloutier, Jasmin; Banaji, Mahzarin R; Macrae, C Neil

    2006-06-01

    Previous research has suggested that perceivers spontaneously extract trait-specific information from the behaviour of others. However, little is known about whether perceivers spontaneously engage in the same depth of social-cognitive processing for all person information or reserve such processing specifically for information that conveys diagnostic clues about another person's dispositions. Moreover, a question remains as to whether the processing of such nondiagnostic information can be affected by perceivers' explicit goal to consider another's dispositions or not. To examine processing of diagnostic and nondiagnostic social information as a function of perceivers' explicit social-cognitive goals, participants underwent functional magnetic resonance imaging (fMRI) scanning while performing social (impression formation) or non-social orienting tasks using statements that conveyed either diagnostic or nondiagnostic information about the target's personality traits. Replicating two earlier studies, results identified a region of dorsal medial prefrontal cortex (mPFC) that was preferentially activated by impression formation. Interestingly, no difference between trait-diagnostic and nondiagnostic information was observed when participants had the explicit goal of forming an impression, but a substantial effect of diagnosticity emerged when task instructions oriented them away from considering the target as a social agent. These results suggest that trait-nondiagnostic information is not subject to spontaneous social-cognitive processing, but that such processing may nevertheless occur when perceivers have the explicit goal to use that information to form an impression of a target. PMID:18985100

  17. Medial prefrontal dissociations during processing of trait diagnostic and nondiagnostic person information.

    PubMed

    Mitchell, Jason P; Cloutier, Jasmin; Banaji, Mahzarin R; Macrae, C Neil

    2006-06-01

    Previous research has suggested that perceivers spontaneously extract trait-specific information from the behaviour of others. However, little is known about whether perceivers spontaneously engage in the same depth of social-cognitive processing for all person information or reserve such processing specifically for information that conveys diagnostic clues about another person's dispositions. Moreover, a question remains as to whether the processing of such nondiagnostic information can be affected by perceivers' explicit goal to consider another's dispositions or not. To examine processing of diagnostic and nondiagnostic social information as a function of perceivers' explicit social-cognitive goals, participants underwent functional magnetic resonance imaging (fMRI) scanning while performing social (impression formation) or non-social orienting tasks using statements that conveyed either diagnostic or nondiagnostic information about the target's personality traits. Replicating two earlier studies, results identified a region of dorsal medial prefrontal cortex (mPFC) that was preferentially activated by impression formation. Interestingly, no difference between trait-diagnostic and nondiagnostic information was observed when participants had the explicit goal of forming an impression, but a substantial effect of diagnosticity emerged when task instructions oriented them away from considering the target as a social agent. These results suggest that trait-nondiagnostic information is not subject to spontaneous social-cognitive processing, but that such processing may nevertheless occur when perceivers have the explicit goal to use that information to form an impression of a target.

  18. Methodology of Diagnostics of Interethnic Relations and Ethnosocial Processes

    ERIC Educational Resources Information Center

    Maximova, Svetlana G.; Noyanzina, Oksana Ye.; Omelchenko, Daria A.; Maximov, Maxim B.; Avdeeva, Galina C.

    2016-01-01

    The purpose of this study was to research the methodological approaches to the study of interethnic relations and ethno-social processes. The analysis of the literature was conducted in three main areas: 1) the theoretical and methodological issues of organizing the research of inter-ethnic relations, allowing to highlight the current…

  19. TiN Deposition and Process Diagnostics using Remote Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Yang, Wonkyun; Kim, Gi-Taek; Lee, Seunghun; Kim, Do-Geun; Kim, Jong-Kuk

    2013-08-01

    The discharge voltage-current characteristics and the optical diagnostics of a remote plasma sputtering system called by high density plasma assisted sputtering source (HiPASS) were investigated. The remote plasma was generated by the hollow cathode discharge (HCD) gun and was transported to the target surface by external electromagnet coils. This showed a wide process window because the sputtering voltage and current could be individually controlled. The ion density and energy distribution could be also controlled unlike the conventional magnetron sputtering. Titanium nitride films were deposited under different sputtering voltage. The high voltage mode induced the high ionization ratio of the sputtered atoms and the high ion energy toward the substrate. That resulted in the enlarged grain size, and the preferred orientation toward (220). Eventually, this optimized condition of HiPASS obtained the best hardness of TiN films to be about 48 GPa at the sputtering voltage of -800 V.

  20. Comparative guide to emerging diagnostic tools for large commercial HVAC systems

    SciTech Connect

    Friedman, Hannah; Piette, Mary Ann

    2001-05-01

    This guide compares emerging diagnostic software tools that aid detection and diagnosis of operational problems for large HVAC systems. We have evaluated six tools for use with energy management control system (EMCS) or other monitoring data. The diagnostic tools summarize relevant performance metrics, display plots for manual analysis, and perform automated diagnostic procedures. Our comparative analysis presents nine summary tables with supporting explanatory text and includes sample diagnostic screens for each tool.

  1. FTDD973: A multimedia knowledge-based system and methodology for operator training and diagnostics

    NASA Technical Reports Server (NTRS)

    Hekmatpour, Amir; Brown, Gary; Brault, Randy; Bowen, Greg

    1993-01-01

    FTDD973 (973 Fabricator Training, Documentation, and Diagnostics) is an interactive multimedia knowledge based system and methodology for computer-aided training and certification of operators, as well as tool and process diagnostics in IBM's CMOS SGP fabrication line (building 973). FTDD973 is an example of what can be achieved with modern multimedia workstations. Knowledge-based systems, hypertext, hypergraphics, high resolution images, audio, motion video, and animation are technologies that in synergy can be far more useful than each by itself. FTDD973's modular and object-oriented architecture is also an example of how improvements in software engineering are finally making it possible to combine many software modules into one application. FTDD973 is developed in ExperMedia/2; and OS/2 multimedia expert system shell for domain experts.

  2. Mach-Zehnder Recording Systems for Pulsed Power Diagnostics

    SciTech Connect

    Miller, E K; McKenna, I; Macrum, G; Baker, D; Tran, V; Rodriguez, E; Kaufman, M I; Tibbits, A; Silbernagel, C T; Waltman, T B; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; Caldwell, S E; Evans, S C; Sedillo, T J; Stoeffl, W; Grafil, E; Liebman, J; Beeman, B; Watts, P; Carpenter, A; Horsfied, C J; Rubery, M S; Chandler, G A; Torres, J A; Smelser, R M

    2012-10-01

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as Z-R at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History (GRH) diagnostic at OMEGA and NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  3. Materials issues in diagnostic systems for BPX and ITER

    SciTech Connect

    Clinard, F.W. Jr.; Farnum, E.H. ); Griscom, D.L. ); Mattas, R.F. ); Medley, S.S.; Young, K. M. . Plasma Physics Lab.); Wiffen, F.W. ); Wojtowicz, S.S. (General Atomics, San Diego, CA (Unit

    1991-01-01

    Diagnostic systems in advanced D-T-burning fusion devices will be subjected to intense fluxes and fluences of high-energy neutrons and gamma rays. Materials used in these systems may suffer significant degradation of structural, optical, and electrical properties, either promptly upon irradiation or after accumulation of structural damage. Of particular concern are windows, optical fibers, reflectors, and insulators. Many materials currently specified for these components are known to degrade under anticipated operating conditions. However, careful materials selection and modification based on an appropriate irradiation testing program, when combined with optimization of design-sensitive factors such as location, shielding, and ease of replacement, should help to alleviate these materials problems. 30 refs., 2 figs., 1 tab.

  4. Computer-Aided Diagnostic System For Mass Survey Chest Images

    NASA Astrophysics Data System (ADS)

    Yasuda, Yoshizumi; Kinoshita, Yasuhiro; Emori, Yasufumi; Yoshimura, Hitoshi

    1988-06-01

    In order to support screening of chest radiographs on mass survey, a computer-aided diagnostic system that automatically detects abnormality of candidate images using a digital image analysis technique has been developed. Extracting boundary lines of lung fields and examining their shapes allowed various kind of abnormalities to be detected. Correction and expansion were facilitated by describing the system control, image analysis control and judgement of abnormality in the rule type programing language. In the experiments using typical samples of student's radiograms, good results were obtained for the detection of abnormal shape of lung field, cardiac hypertrophy and scoliosis. As for the detection of diaphragmatic abnormality, relatively good results were obtained but further improvements will be necessary.

  5. Intelligent, Self-Diagnostic Thermal Protection System for Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; SanSoucie, Michael P.; Pepyne, David; Hanlon, Alaina B.; Deshmukh, Abhijit

    2005-01-01

    The goal of this project is to provide self-diagnostic capabilities to the thermal protection systems (TPS) of future spacecraft. Self-diagnosis is especially important in thermal protection systems (TPS), where large numbers of parts must survive extreme conditions after weeks or years in space. In-service inspections of these systems are difficult or impossible, yet their reliability must be ensured before atmospheric entry. In fact, TPS represents the greatest risk factor after propulsion for any transatmospheric mission. The concepts and much of the technology would be applicable not only to the Crew Exploration Vehicle (CEV), but also to ablative thermal protection for aerocapture and planetary exploration. Monitoring a thermal protection system on a Shuttle-sized vehicle is a daunting task: there are more than 26,000 components whose integrity must be verified with very low rates of both missed faults and false positives. The large number of monitored components precludes conventional approaches based on centralized data collection over separate wires; a distributed approach is necessary to limit the power, mass, and volume of the health monitoring system. Distributed intelligence with self-diagnosis further improves capability, scalability, robustness, and reliability of the monitoring subsystem. A distributed system of intelligent sensors can provide an assurance of the integrity of the system, diagnosis of faults, and condition-based maintenance, all with provable bounds on errors.

  6. Using hypermedia to develop an intelligent tutorial/diagnostic system for the Space Shuttle Main Engine Controller Lab

    NASA Technical Reports Server (NTRS)

    Oreilly, Daniel; Williams, Robert; Yarborough, Kevin

    1988-01-01

    This is a tutorial/diagnostic system for training personnel in the use of the Space Shuttle Main Engine Controller (SSMEC) Simulation Lab. It also provides a diagnostic capable of isolating lab failures at least to the major lab component. The system was implemented using Hypercard, which is an program of hypermedia running on Apple Macintosh computers. Hypercard proved to be a viable platform for the development and use of sophisticated tutorial systems and moderately capable diagnostic systems. This tutorial/diagnostic system uses the basic Hypercard tools to provide the tutorial. The diagnostic part of the system uses a simple interpreter written in the Hypercard language (Hypertalk) to implement the backward chaining rule based logic commonly found in diagnostic systems using Prolog. Some of the advantages of Hypercard in developing this type of system include sophisticated graphics, animation, sound and voice capabilities, its ability as a hypermedia tool, and its ability to include digitized pictures. The major disadvantage is the slow execution time for evaluation of rules (due to the interpretive processing of the language). Other disadvantages include the limitation on the size of the cards, that color is not supported, that it does not support grey scale graphics, and its lack of selectable fonts for text fields.

  7. Laser beam control and diagnostic systems for the copper-pumped dye laser system at Lawrence Livermore National Laboratory

    SciTech Connect

    Bliss, E.S.; Peterson, R.L.; Salmon, J.T.; Thomas, R.A.

    1992-11-01

    The laser system described in the previous paper is used for experiments in which success requires tight tolerances on beam position, direction, and wavefront. Indeed, the optimum performance of the laser itself depends on careful delivery of copper laser light to the dye amplifiers, precise propagation of dye laser beams through restricted amplifier apertures, and accurate monitoring of laser power at key locations. This paper describes the alignment systems, wavefront correction systems, and laser diagnostics systems which ensure that the control requirements of both the laser and associated experiments are met. Because laser isotope separation processes utilize more than one wavelength, these systems monitor and control multiple wavelengths simultaneously.

  8. An intelligent advisory system for pre-launch processing

    NASA Technical Reports Server (NTRS)

    Engrand, Peter A.; Mitchell, Tami

    1991-01-01

    The shuttle system of interest in this paper is the shuttle's data processing system (DPS). The DPS is composed of the following: (1) general purpose computers (GPC); (2) a multifunction CRT display system (MCDS); (3) mass memory units (MMU); and (4) a multiplexer/demultiplexer (MDM) and related software. In order to ensure the correct functioning of shuttle systems, some level of automatic error detection has been incorporated into all shuttle systems. For the DPS, error detection equipment has been incorporated into all of its subsystems. The automated diagnostic system, (MCDS) diagnostic tool, that aids in a more efficient processing of the DPS is described.

  9. Optical and electrical diagnostics of fluorocarbon plasma etching processes

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul

    1999-05-01

    This article reviews recent work concerning the role of CF and CF2 radicals in etching and polymerization processes occurring in capacitively coupled radio-frequency plasmas in fluorocarbon gases used for the selective etching of SiO2 layers in microelectronic device fabrication. Laser-induced fluorescence (LIF) was used to determine time-resolved axial concentration profiles of these species in continuous and pulse-modulated CF4 and C2F6 plasmas. Calibration techniques, including broad-band UV absorption spectroscopy, were developed to put the LIF measurements on an absolute scale. A novel technique was used to determine the ion flux to the reactor walls in these polymerizing environments. The mass distribution of the ions arriving at the reactor walls was determined using a quadrupole mass spectrometer. It was found that CFx radicals are produced predominantly by the reflection of neutralized and dissociated CFx+ ions at the powered electrode surface. When the fluorine atom concentration is high, the CFx radicals are destroyed effectively by recombination catalysed by the reactor walls. When the fluorine atom concentration is lowered, the CF2 concentration rises markedly, and it participates in gas-phase oligomerization processes, forming large CxFy molecules and, after ionization, large CxFy+ ions. These species appear to be the true polymer precursors. This mechanism explains the well known correlation between high CF2 concentrations, polymer deposition and SiO2 over Si etch selectivity.

  10. A Diagnostic System for Improving Biomass Quality Based on a Sensor Network

    PubMed Central

    Bochtis, Dionysis D.; Sørensen, Claus G.; Green, Ole; Bartzanas, Thomas

    2011-01-01

    Losses during storage of biomass are the main parameter that defines the profitability of using preserved biomass as feed for animal husbandry. In order to minimize storage losses, potential changes in specific physicochemical properties must be identified to subsequently act as indicators of silage decomposition and form the basis for preventive measures. This study presents a framework for a diagnostic system capable of detecting potential changes in specific physicochemical properties, i.e., temperature and the oxygen content, during the biomass storage process. The diagnostic system comprises a monitoring tool based on a wireless sensors network and a prediction tool based on a validated computation fluid dynamics model. It is shown that the system can provide the manager (end-user) with continuously updated information about specific biomass quality parameters. The system encompasses graphical visualization of the information to the end-user as a first step and, as a second step, the system identifies alerts depicting real differences between actual and predicted values of the monitored properties. The perspective is that this diagnostic system will provide managers with a solid basis for necessary preventive measures. PMID:22163886

  11. Diagnostic Reasoning using Prognostic Information for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Roychoudhury, Indranil; Kulkarni, Chetan

    2015-01-01

    With increasing popularity of unmanned aircraft, continuous monitoring of their systems, software, and health status is becoming more and more important to ensure safe, correct, and efficient operation and fulfillment of missions. The paper presents integration of prognosis models and prognostic information with the R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) monitoring and diagnosis framework. This integration makes available statistically reliable health information predictions of the future at a much earlier time to enable autonomous decision making. The prognostic information can be used in the R2U2 model to improve diagnostic accuracy and enable decisions to be made at the present time to deal with events in the future. This will be an advancement over the current state of the art, where temporal logic observers can only do such valuation at the end of the time interval. Usefulness and effectiveness of this integrated diagnostics and prognostics framework was demonstrated using simulation experiments with the NASA Dragon Eye electric unmanned aircraft.

  12. Clementine Sensor Processing System

    NASA Technical Reports Server (NTRS)

    Feldstein, A. A.

    1993-01-01

    The design of the DSPSE Satellite Controller (DSC) is baselined as a single-string satellite controller. The DSC performs two main functions: health and maintenance of the spacecraft; and image capture, storage, and playback. The DSC contains two processors: a radiation-hardened Mil-Std-1750, and a commercial R3000. The Mil-Std-1750 processor performs all housekeeping operations, while the R3000 is mainly used to perform the image processing functions associated with the navigation functions, as well as performing various experiments. The DSC also contains a data handling unit (DHU) used to interface to various spacecraft imaging sensors and to capture, compress, and store selected images onto the solid-state data recorder. The development of the DSC evolved from several key requirements; the DSPSE satellite was to do the following: (1) have a radiation-hardened spacecraft control system and be immune to single-event upsets (SEU's); (2) use an R3000-based processor to run the star tracker software that was developed by SDIO (due to schedule and cost constraints, there was no time to port the software to a radiation-hardened processor); and (3) fly a commercial processor to verify its suitability for use in a space environment. In order to enhance the DSC reliability, the system was designed with multiple processing paths. These multiple processing paths provide for greater tolerance to various component failures. The DSC was designed so that all housekeeping processing functions are performed by either the Mil-Std-1750 processor or the R3000 processor. The image capture and storage is performed either by the DHU or the R3000 processor.

  13. Diagnostic agreement predicts treatment process and outcomes in youth mental health clinics.

    PubMed

    Jensen-Doss, Amanda; Weisz, John R

    2008-10-01

    Several studies have documented low rates of agreement between clinician- and researcher-generated diagnoses. However, little is known about whether this lack of agreement has implications for the processes and outcomes of subsequent treatment. To study this possibility, the authors used diagnostic agreement to predict therapy engagement and outcomes for 197 youths treated in 5 community mental health clinics. Diagnostic agreement predicted better therapy engagement, with the agree group having fewer therapy no-shows and cancellations and a decreased likelihood of therapy dropout. Additionally, support for a link between agreement and treatment outcomes was found, as the agree group obtained larger reductions in parent-reported internalizing problems during treatment. These findings suggest that diagnostic accuracy may be an important precursor to successful treatment and highlight the importance of future research to find ways to incorporate standardized diagnostic procedures into clinical care settings. PMID:18837589

  14. Lab-on-a-CD: A Fully Integrated Molecular Diagnostic System.

    PubMed

    Kong, Ling X; Perebikovsky, Alexandra; Moebius, Jacob; Kulinsky, Lawrence; Madou, Marc

    2016-06-01

    The field of centrifugal microfluidics has experienced tremendous growth during the past 15 years, especially in applications such as lab-on-a-disc (LoD) diagnostics. The strength of LoD systems lies in its potential for development into fully integrated sample-to-answer analysis systems. This review highlights the technologies necessary to develop the next generation of these systems. In addition to outlining valving and other fluid-handling operations, we discuss the recent advances and future outlook in four categories of LoD processes: reagent storage, sample preparation, nucleic acid amplification, and analyte detection strategies.

  15. UAS-Systems Integration, Validation, and Diagnostics Simulation Capability

    NASA Technical Reports Server (NTRS)

    Buttrill, Catherine W.; Verstynen, Harry A.

    2014-01-01

    As part of the Phase 1 efforts of NASA's UAS-in-the-NAS Project a task was initiated to explore the merits of developing a system simulation capability for UAS to address airworthiness certification requirements. The core of the capability would be a software representation of an unmanned vehicle, including all of the relevant avionics and flight control system components. The specific system elements could be replaced with hardware representations to provide Hardware-in-the-Loop (HWITL) test and evaluation capability. The UAS Systems Integration and Validation Laboratory (UAS-SIVL) was created to provide a UAS-systems integration, validation, and diagnostics hardware-in-the-loop simulation capability. This paper discusses how SIVL provides a robust and flexible simulation framework that permits the study of failure modes, effects, propagation paths, criticality, and mitigation strategies to help develop safety, reliability, and design data that can assist with the development of certification standards, means of compliance, and design best practices for civil UAS.

  16. A new beam diagnostic system for the MASHA setup

    NASA Astrophysics Data System (ADS)

    Motycak, S.; Rodin, A. M.; Novoselov, A. S.; Podshibyakin, A. V.; Krupa, L.; Belozerov, A. V.; Vedeneyev, V. Yu.; Gulyaev, A. V.; Gulyaeva, A. V.; Kliman, J.; Salamatin, V. S.; Stepantsov, S. V.; Chernysheva, E. V.; Yuchimchuk, S. A.; Komarov, A. B.; Kamas, D.

    2016-09-01

    A new beam diagnostic system based on the PXI standard was developed, tested, and used in the MASHA setup experiment. The beam energy and beam current measurements were carried out using several methods. The online time-of-flight energy measurements were carried out using three pick-up detectors. We used two electronic systems to measure the time between the pick-ups. The first system was based on fast Agilent digitizers (2-channel, 4-GHz sampling rate), and the second one was based on a constant fraction discriminator (CFD) connected to a time-to-digital converter (TDC, 5-ps resolution). A new graphical interface to monitor the electronic devices and to perform the online calculations of energy was developed using MFC C++. The second system based on microchannel plate (time-of-flight) and silicon detectors for the determination of beam energy and the type of accelerated particles was also used. The beam current measurements were carried out with two different sensors. The first sensor is a rotating Faraday cup placed in front of the target, and the second one is an emission detector installed at the rear of the target. This system is now used in experiments for the synthesis of superheavy elements at the U400M cyclotron of the Flerov Laboratory of Nuclear Reactions (FLNR).

  17. Filter-fluorescer diagnostic system for the National Ignition Facility

    SciTech Connect

    McDonald, J.W.; Kauffman, R.L.; Celeste, J.R.; Rhodes, M.A.; Lee, F.D.; Suter, L.J.; Lee, A.P.; Foster, J.M.; Slark, G.

    2004-10-01

    An early filter-fluorescer diagnostic system is being fielded at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) to measure the amount of hard x rays (20

  18. [Diagnostic studies in the planning process of human resources: the Central American experience].

    PubMed

    de Canales, F; Martínez Chopen, O; Tercero Talavera, I; González, G

    1987-01-01

    In this paper the authors analyze various aspects of one of the essential stages in the process of planning human resources--diagnostic studies and research which will serve as a starting point. They stress the role of diagnostic personnel studies in formulating human resources policies and planning, and describe the phases to be followed in their execution, according to the results obtained in the three Central American countries (Guatemala, Honduras, and Nicaragua) in which the studies were completed. The paper concludes with a summary of the process in the three countries. PMID:3451871

  19. [Diagnostic studies in the planning process of human resources: the Central American experience].

    PubMed

    de Canales, F; Martínez Chopen, O; Tercero Talavera, I; González, G

    1987-01-01

    In this paper the authors analyze various aspects of one of the essential stages in the process of planning human resources--diagnostic studies and research which will serve as a starting point. They stress the role of diagnostic personnel studies in formulating human resources policies and planning, and describe the phases to be followed in their execution, according to the results obtained in the three Central American countries (Guatemala, Honduras, and Nicaragua) in which the studies were completed. The paper concludes with a summary of the process in the three countries.

  20. Mission Evaluation Room Intelligent Diagnostic and Analysis System (MIDAS)

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Falgout, Jane; Barcio, Joseph; Shnurer, Steve; Wadsworth, David; Flores, Louis

    1994-01-01

    The role of Mission Evaluation Room (MER) engineers is to provide engineering support during Space Shuttle missions, for Space Shuttle systems. These engineers are concerned with ensuring that the systems for which they are responsible function reliably, and as intended. The MER is a central facility from which engineers may work, in fulfilling this obligation. Engineers participate in real-time monitoring of shuttle telemetry data and provide a variety of analyses associated with the operation of the shuttle. The Johnson Space Center's Automation and Robotics Division is working to transfer advances in intelligent systems technology to NASA's operational environment. Specifically, the MER Intelligent Diagnostic and Analysis System (MIDAS) project provides MER engineers with software to assist them with monitoring, filtering and analyzing Shuttle telemetry data, during and after Shuttle missions. MIDAS off-loads to computers and software, the tasks of data gathering, filtering, and analysis, and provides the engineers with information which is in a more concise and usable form needed to support decision making and engineering evaluation. Engineers are then able to concentrate on more difficult problems as they arise. This paper describes some, but not all of the applications that have been developed for MER engineers, under the MIDAS Project. The sampling described herewith was selected to show the range of tasks that engineers must perform for mission support, and to show the various levels of automation that have been applied to assist their efforts.

  1. Mars Aqueous Processing System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Wilson, Cherie; Carrera, Stacy; Rose, Heather; Muscatello, Anthony; Kilgore, James; Zubrin, Robert

    2012-01-01

    The goal of the Mars Aqueous Processing System (MAPS) is to establish a flexible process that generates multiple products that are useful for human habitation. Selectively extracting useful components into an aqueous solution, and then sequentially recovering individual constituents, can obtain a suite of refined or semi-refined products. Similarities in the bulk composition (although not necessarily of the mineralogy) of Martian and Lunar soils potentially make MAPS widely applicable. Similar process steps can be conducted on both Mars and Lunar soils while tailoring the reaction extents and recoveries to the specifics of each location. The MAPS closed-loop process selectively extracts, and then recovers, constituents from soils using acids and bases. The emphasis on Mars involves the production of useful materials such as iron, silica, alumina, magnesia, and concrete with recovery of oxygen as a byproduct. On the Moon, similar chemistry is applied with emphasis on oxygen production. This innovation has been demonstrated to produce high-grade materials, such as metallic iron, aluminum oxide, magnesium oxide, and calcium oxide, from lunar and Martian soil simulants. Most of the target products exhibited purities of 80 to 90 percent or more, allowing direct use for many potential applications. Up to one-fourth of the feed soil mass was converted to metal, metal oxide, and oxygen products. The soil residue contained elevated silica content, allowing for potential additional refining and extraction for recovery of materials needed for photovoltaic, semiconductor, and glass applications. A high-grade iron oxide concentrate derived from lunar soil simulant was used to produce a metallic iron component using a novel, combined hydrogen reduction/metal sintering technique. The part was subsequently machined and found to be structurally sound. The behavior of the lunar-simulant-derived iron product was very similar to that produced using the same methods on a Michigan iron

  2. Study on Unified Chaotic System-Based Wind Turbine Blade Fault Diagnostic System

    NASA Astrophysics Data System (ADS)

    Kuo, Ying-Che; Hsieh, Chin-Tsung; Yau, Her-Terng; Li, Yu-Chung

    At present, vibration signals are processed and analyzed mostly in the frequency domain. The spectrum clearly shows the signal structure and the specific characteristic frequency band is analyzed, but the number of calculations required is huge, resulting in delays. Therefore, this study uses the characteristics of a nonlinear system to load the complete vibration signal to the unified chaotic system, applying the dynamic error to analyze the wind turbine vibration signal, and adopting extenics theory for artificial intelligent fault diagnosis of the analysis signal. Hence, a fault diagnostor has been developed for wind turbine rotating blades. This study simulates three wind turbine blade states, namely stress rupture, screw loosening and blade loss, and validates the methods. The experimental results prove that the unified chaotic system used in this paper has a significant effect on vibration signal analysis. Thus, the operating conditions of wind turbines can be quickly known from this fault diagnostic system, and the maintenance schedule can be arranged before the faults worsen, making the management and implementation of wind turbines smoother, so as to reduce many unnecessary costs.

  3. Model performance metrics and process diagnostics for boreal summer intraseasonal variability

    NASA Astrophysics Data System (ADS)

    Neena, J. M.; Waliser, Duane; Jiang, Xianan

    2016-05-01

    Representation of the boreal summer intraseasonal oscillations (BSISO) is evaluated in the 20-year climate simulations from 27 general circulation models (GCMs), produced as part of a global multi-model evaluation project coordinated to study the vertical structure and physical processes of the Madden-Julian oscillation (MJO). Model performance metrics are developed to assess the simulated BSISO characteristics, with a special focus on its northward propagation over the Asian monsoon domain. Several process-oriented diagnostics developed by the MJO community are also tested for the BSISO. Simulating the phase speed and meridional extent of BSISO northward propagation, the northwest-southeast tilted rain-band structure and the quasi-biweekly mode are identified as some of the persisting problems for many GCMs. Interestingly, many of the GCMs, which capture BSISO eastward propagation, also show good fidelity in simulating BSISO northward propagation. Meridional vertical profiles of anomalous wind, temperature and diabatic heating of BSISO are better simulated in the GCMs that simulate the northward propagation. Process-oriented diagnostics based on seasonal mean vertical shear of zonal and meridional wind, large-scale rain fraction and relative humidity are also examined, but it still remains challenge to find a process diagnostic which is strongly linked to BSISO northward propagation. The complex spatial structure and presence of multi-scale disturbances, demand the development of more focused GCM evaluation metrics and process diagnostics specifically for the BSISO.

  4. Spontaneous Raman Scattering Diagnostics: Applications in Practical Combustion Systems. Chapter 5

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Viet-Nguyen, Quang; Lackner, Maximilian (Editor); Winter, Franz (Editor); Agarwal, Avinash (Editor)

    2010-01-01

    In this chapter, the recent advancements and practical aspects of laser SRS diagnostics have been reviewed wi til regards to applications in practical combustion systems. Clearly, SRS represents a theoretically and experimentally mature diagnostic technology that has become an essential tool for multiscalar measurements in turbulent combustion at elevated pressures. Today, time-, space-, spectrally, and even polarization-resolved S RS diagnostics is at hand, with aid from recent innovations in theoretical and technological developments on electro-optical or electromechanical devices. Whilst a linear increase in SRS signals can be expected in high-pressure systems (this is perhaps one of the most important advantages for using SRS in high-pressure systems), there are practical (often severe) restrictions associated with pressurized vessels, due mainly to the limited degree of optical access. This narrows ti,e available choice of diagnostics that can be employed at any given time. Point-wise SRS diagnostics provides the highest accuracy on the chemical species and temperature measurements, and will continue to remain a vital approach for the study in such harsh environments. The practical design considerations and hands-on set-up guide for SRS diagnostics provided in this chapter are rarely presented elsewhere. Although the second-harmonic Nd:YAG pulsed laser (532 nm), combined with pulse-stretching optics or the recently introduced White Cell-based laser, seems to be the most favored excitation source of choice by the research community, UV excitation will undoubtedly continue to be used on many occasions, and especially in sooting flames. Detection methods may be divided into ICCD-based nanosecond-gate detection or a rotary-chopper electromechanical shutter-based CCD array detection, and the levels of background flame emission in individual cases would determine this critical design choice. Here, a process of Raman signal calibration based on ti,e crosstalk matrix

  5. The analysis of diagnostics possibilities of the Dual- Drive electric power steering system using diagnostics scanner and computer method

    NASA Astrophysics Data System (ADS)

    Szczypiński-Sala, W.; Dobaj, K.

    2016-09-01

    The article presents the analysis of diagnostics possibilities of electric power steering system using computer diagnostics scanner. Several testing attempts were performed. There were analyzed the changes of torque moment exerted on steering wheel by the driver and the changes of the angle of rotation steering wheel accompanying them. The tests were conducted in variable conditions comprising wheel load and the friction coefficient of tyre road interaction. Obtained results enabled the analysis of the influence of changeable operations conditions, possible to acquire in diagnostics scanners of chosen parameters of electric power steering system. Moreover, simulation model of operation, electric drive power steering system with the use of the Matlab simulation software was created. The results of the measurements obtained in road conditions served to verify this model. Subsequently, model response to inputs change of the device was analyzed and its reaction to various constructional and exploitative parameters was checked. The entirety of conducted work constitutes a step to create a diagnostic monitor possible to use in self-diagnosis of electric power steering system.

  6. Application Of The CSRL Language To The Design Of Diagnostic Expert Systems: The Moodis Experience, A Preliminary Report

    NASA Astrophysics Data System (ADS)

    Bravos, Angelo; Hill, Howard; Choca, James; Bresolin, Linda B.; Bresolin, Michael J.

    1986-03-01

    Computer technology is rapidly becoming an inseparable part of many health science specialties. Recently, a new area of computer technology, namely Artificial Intelligence, has been applied toward assisting the medical experts in their diagnostic and therapeutic decision making process. MOODIS is an experimental diagnostic expert system which assists Psychiatry specialists in diagnosing human Mood Disorders, better known as Affective Disorders. Its diagnostic methodology is patterned after MDX, a diagnostic expert system developed at LAIR (Laboratory for Artificial Intelligence Research) of Ohio State University. MOODIS is implemented in CSRL (Conceptual Structures Representation Language) also developed at LAIR. This paper describes MOODIS in terms of conceptualization and requirements, and discusses why the MDX approach and CSRL were chosen.

  7. System diagnostics using qualitative analysis and component functional classification

    DOEpatents

    Reifman, Jaques; Wei, Thomas Y. C.

    1993-01-01

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system.

  8. System diagnostics using qualitative analysis and component functional classification

    DOEpatents

    Reifman, J.; Wei, T.Y.C.

    1993-11-23

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system. 5 figures.

  9. Miniature magnetic resonance system for robust and portable diagnostics

    NASA Astrophysics Data System (ADS)

    Min, Changwook; Issadore, David; Chung, Jaehoon; Shao, Huilin; Liong, Monty; Weissleder, Ralph; Lee, Hakho

    2012-02-01

    We have recently developed a new diagnostic platform, microNMR(μNMR), specifically designed for clinical applications This new μNMR system performs rapid, accurate, and robust measurements of cells, proteins and small molecules in point-of-care settings. The system utilizes magnetic nanoparticles (MNPs) to amplify the analytical signals in NMR detection. When molecularly-specific MNPs identify their targets, the particles induce large, amplified changes in the transverse relaxation of water protons by producing local magnetic fields. A major challenge in achieving reliable NMR detection is the fluctuation of NMR frequency (f0) with temperature, which originates from the the temperature-dependent drift of the magnetic field. To overcome the challenge, we have implemented a new, automated feedback controller that keeps track of f0 and reconfigures measurement settings. The mechanism enables robust μNMR measurements in realistic clinical environments (4-50 ^oC). Moreover, the μNMR interfaces with mobile devices for its operation, maximizing the portability of μNMR. The clinical utility of the new μNMR system is demonstrated by detecting and molecularly profiling cancer cells from patient samples.

  10. SEALED COMBUSTION SYSTEM WITH DIAGNOSTIC SELF-TUNING.

    SciTech Connect

    KRISHNA,C.R.

    2004-09-30

    This task grew out of a proposal to develop a ''concept'' oil-fired heating system that would incorporate advanced technologies available and suitable for a residential system. Discussions among the program and project personnel resulted in the identification of a sealed combustion system as of programmatic interest and the objective was to develop an approach to a sealed system with diagnostic self-tuning. The major conclusion with regard to the specific objective for this task is that a measurement of the static pressure in the input pipe can be used to provide a measure of the excess air for a limit control. Its implementation would require a suitable pressure sensor, and a circuit to combine its output signal, at the appropriate time in the operating cycle, to the burner control. The sensor and control combination will also have to be tested successfully under all conceivable contingencies that can cause the airflow to decrease. It could also be implemented, possibly even more reliably, if a mass flow sensor, such as is used in automobile engines and hence may be cheap, could be used. The pressure measurements reported here, both steady and transient, represent only the subset of a much larger set that gave a useful answer to meet the objective. These measurements suggest that they can provide useful insights into both the combustion and gas flow performance of the system. Of course, this could be extended to other types of heating systems, such as those with natural draft, those with different burners, burners with different atomization schemes (air atomization etc.), blue flame burners etc.

  11. Distributed diagnostic system for tokamaks high-voltage power supply section

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Juszczyk, B.; Zienkiewicz, P.

    2015-09-01

    This paper describes recently developed system for diagnostics of high-voltage power supply section of tokamaks'. Such system is necessary for real-time monitoring of high-voltage power supply section with ability to perform automatic and fast decisions related to protection system. The system is distributed, allowing data acquisition of components installed away from the systems' controller. Remote communication is based on fiber links. Main processing units are FPGA circuits. The system can pass-through analog and digital signals from local to remote or remote to local locations. In the main FPGA unit, independent user developed algorithms can be implemented. The system structure is based on the uTCA standard. The micro TCA crate controller is implemented as PC unit in AMC standard. Communication is based on gigabit transceivers providing low-latency of data transmission. The system is working with specialized diagnostics and control software. The graphical user interface is provided for the end user. Several tests were made in term of data latency, proper signal transmission and system control.

  12. A diagnostic interface for the ICOsahedral Non-hydrostatic (ICON) modelling framework based on the Modular Earth Submodel System (MESSy v2.50)

    NASA Astrophysics Data System (ADS)

    Kern, Bastian; Jöckel, Patrick

    2016-10-01

    Numerical climate and weather models have advanced to finer scales, accompanied by large amounts of output data. The model systems hit the input and output (I/O) bottleneck of modern high-performance computing (HPC) systems. We aim to apply diagnostic methods online during the model simulation instead of applying them as a post-processing step to written output data, to reduce the amount of I/O. To include diagnostic tools into the model system, we implemented a standardised, easy-to-use interface based on the Modular Earth Submodel System (MESSy) into the ICOsahedral Non-hydrostatic (ICON) modelling framework. The integration of the diagnostic interface into the model system is briefly described. Furthermore, we present a prototype implementation of an advanced online diagnostic tool for the aggregation of model data onto a user-defined regular coarse grid. This diagnostic tool will be used to reduce the amount of model output in future simulations. Performance tests of the interface and of two different diagnostic tools show, that the interface itself introduces no overhead in form of additional runtime to the model system. The diagnostic tools, however, have significant impact on the model system's runtime. This overhead strongly depends on the characteristics and implementation of the diagnostic tool. A diagnostic tool with high inter-process communication introduces large overhead, whereas the additional runtime of a diagnostic tool without inter-process communication is low. We briefly describe our efforts to reduce the additional runtime from the diagnostic tools, and present a brief analysis of memory consumption. Future work will focus on optimisation of the memory footprint and the I/O operations of the diagnostic interface.

  13. Morphological Processing of Ultraviolet Emissions of Electrical Corona Discharge for Analysis and Diagnostic Use

    NASA Technical Reports Server (NTRS)

    Schubert, Matthew R.; Moore, Andrew J.

    2015-01-01

    Electron cascades from electrical discharge produce secondary emissions from atmospheric plasma in the ultraviolet band. For a single point of discharge, these emissions exhibit a stereotypical discharge morphology, with latent information about the discharge location. Morphological processing can uncover the location and therefore can have diagnostic utility.

  14. Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters

    SciTech Connect

    L. Dorf; Y. Raitses; N. J. Fisch

    2003-05-29

    A diagnostic setup for characterization of the near-anode processes in Hall thrusters was designed and assembled. Experimental results with a single floating probe show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for near-anode measurements.

  15. XPERT DESIGN AND DIAGNOSTICS' (XDD) IN-SITU CHEMICAL OXIDATION PROCESS USING POTASSIUM PERMANGANATE (KMNO4)

    EPA Science Inventory

    Xpert Design and Diagnostic's (XDD)potassium permanganate in situ chemical oxidation (ISCO) process was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program at the former MEC Building site located in Hudson, New Hampshire. At this site, both soil and ...

  16. Examining Shifts in Medical Students' Microanalytic Motivation Beliefs and Regulatory Processes during a Diagnostic Reasoning Task

    ERIC Educational Resources Information Center

    Cleary, Timothy J.; Dong, Ting; Artino, Anthony R., Jr.

    2015-01-01

    This study examined within-group shifts in the motivation beliefs and regulatory processes of second-year medical students as they engaged in a diagnostic reasoning activity. Using a contextualized assessment methodology called self-regulated learning microanalysis, the authors found that the 71 medical student participants showed statistically…

  17. Negotiating Knowledge: Parents' Experience of the Neuropsychiatric Diagnostic Process for Children with Autism

    ERIC Educational Resources Information Center

    Carlsson, Emilia; Miniscalco, Carmela; Kadesjö, Björn; Laakso, Katja

    2016-01-01

    Background: Parents often recognize problems in their child's development earlier than health professionals do and there is new emphasis on the importance of involving parents in the diagnostic process. In Gothenburg, Sweden, over 100 children were identified as having an autism spectrum disorder (ASD) in 2009-11 through a general population…

  18. Miniaturized nucleic acid amplification systems for rapid and point-of-care diagnostics: a review.

    PubMed

    Ahmad, Farhan; Hashsham, Syed A

    2012-07-01

    Point-of-care (POC) genetic diagnostics critically depends on miniaturization and integration of sample processing, nucleic acid amplification, and detection systems. Polymerase chain reaction (PCR) assays have extensively applied for the diagnosis of genetic markers of disease. Microfluidic chips for microPCR with different materials and designs have been reported. Temperature cycling systems with varying thermal masses and conductivities, thermal cycling times, flow-rates, and cross-sectional areas, have also been developed to reduce the nucleic acid amplification time. Similarly, isothermal amplification techniques (e.g., loop-mediated isothermal amplification or LAMP), which are still are emerging, have a better potential as an alternative to PCR for POC diagnostics. Isothermal amplification techniques have: (i) moderate incubation temperature leading to simplified heating and low power consumption, (ii) yield high amount of amplification products, which can be detected either visually or by simple detectors, (iii) allow direct genetic amplification from bacterial cells due to the superior tolerance to substances that typically inhibit PCR, (iv) have high specificity, and sensitivity, and (v) result in rapid detection often within 10-20 min. The aim of this review is to provide a better understanding of the advantages and limitations of microPCR and microLAMP systems for rapid and POC diagnostics. PMID:22704369

  19. ITER diagnostic systems in development in Ioffe Institute

    SciTech Connect

    Petrov, M.; Afanasyev, V.; Petrov, S.; Mironov, M.; Mukhin, E.; Tolstyakov, S.; Chugunov, I.; Shevelev, A.

    2014-08-21

    Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.

  20. Process diagnostics for precision grinding brittle materials in a production environment

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    Precision grinding processes are steadily migrating from research laboratory environments into manufacturing production lines as precision machines and processes become increasingly more commonplace throughout industry. Low-roughness, low-damage precision grinding is gaining widespread commercial acceptance for a host of brittle materials including advanced structural ceramics. The development of these processes is often problematic and requires diagnostic information and analysis to harden the processes for manufacturing. This paper presents a series of practical precision grinding tests developed and practiced at Lawrence Livermore National Laboratory that yield important information to help move a new process idea into production.

  1. Diagnostics of metal inert gas and metal active gas welding processes

    NASA Astrophysics Data System (ADS)

    Uhrlandt, D.

    2016-08-01

    The paper gives a review on studies on metal inert gas (MIG) and metal active gas (MAG) welding processes with the focus on diagnostics of the arc, the material transfer, and the temporal process behaviour in welding experiments. Recent findings with respect to an improved understanding of the main mechanisms in the welding arc and the welding process are summarized. This is linked to actual developments in welding arc and welding process modelling where measurements are indispensable for validation. Challenges of forthcoming studies are illustrated by means of methods under development for welding process control as well as remaining open questions with respect to arc-surface interaction and arc power balance.

  2. TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    NASA Technical Reports Server (NTRS)

    Manner, David B.

    1990-01-01

    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system.

  3. Economic comparison of diagnostic antibody production in perfusion stirred tank and in hollow fiber bioreactor processes.

    PubMed

    Vermasvuori, Raisa; Hurme, Markku

    2011-01-01

    The total operating costs of small-scale monoclonal antibody production were calculated for two different upstream options and general downstream procedure based on protein A chromatography. The upstream options were a spin-filter equipped stirred-tank bioreactor (STR) and a hollow fiber bioreactor (HFB). Both the bioreactors were operated in perfusion mode. The total operating costs of the processes were 6,900 €/g for STR option and 6,400 €/g for the HFB option. In the both systems, the costs were dominated by expenses derived from the downstream section (almost 80%) that was almost identical in the both systems. In the upstream section, the investment depreciation was the largest cost item. The lower total costs of the HFB option were a result of lower investment costs and more concentrated product that led into savings also in downstream section. This study brings out the HFB as on viable alternative for stirred-tank bioreactor, especially in small-scale diagnostic monoclonal antibody production. PMID:21954092

  4. Established and Adapted Diagnostic Tools for Investigation of a Special Twin-Wire Arc Spraying Process

    NASA Astrophysics Data System (ADS)

    König, Johannes; Lahres, Michael; Zimmermann, Stephan; Schein, Jochen

    2016-10-01

    In the LDS® ( Lichtbogendrahtspritzen) process, a twin-wire arc spraying (TWAS) process developed by Daimler AG, the gas injection and feed to the arc play a crucial role in separating the molten particles from the wire ends. This paper describes an investigation of the gas and particle behavior according to individual LDS® process parameters. Coating problems are not considered. The measurements are separated into two different parts: "cold" (without arc and particles) and "hot" (with arc and particles). The results provide the first detailed understanding of the effect of different LDS® process parameters. A correlation between the gas parameter settings and the particle beam properties was found. Using established and adapted diagnostic tools, as also applied for conventional TWAS processes, this special LDS® process was investigated and the results (gas and particle behavior) validated, thereby allowing explanation and comparison of the diagnostic methods, which is the main focus of this paper. Based on error analysis, individual instabilities, limits, and deviations during the gas determinations and particle measurements are explained in more detail. The paper concludes with presentation of the first particle-shadow diagnostic results and main statements regarding these investigations.

  5. Established and Adapted Diagnostic Tools for Investigation of a Special Twin-Wire Arc Spraying Process

    NASA Astrophysics Data System (ADS)

    König, Johannes; Lahres, Michael; Zimmermann, Stephan; Schein, Jochen

    2016-09-01

    In the LDS® (Lichtbogendrahtspritzen) process, a twin-wire arc spraying (TWAS) process developed by Daimler AG, the gas injection and feed to the arc play a crucial role in separating the molten particles from the wire ends. This paper describes an investigation of the gas and particle behavior according to individual LDS® process parameters. Coating problems are not considered. The measurements are separated into two different parts: "cold" (without arc and particles) and "hot" (with arc and particles). The results provide the first detailed understanding of the effect of different LDS® process parameters. A correlation between the gas parameter settings and the particle beam properties was found. Using established and adapted diagnostic tools, as also applied for conventional TWAS processes, this special LDS® process was investigated and the results (gas and particle behavior) validated, thereby allowing explanation and comparison of the diagnostic methods, which is the main focus of this paper. Based on error analysis, individual instabilities, limits, and deviations during the gas determinations and particle measurements are explained in more detail. The paper concludes with presentation of the first particle-shadow diagnostic results and main statements regarding these investigations.

  6. SSME HPOTP post-test diagnostic system enhancement project

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1995-01-01

    An assessment of engine and component health is routinely made after each test or flight firing of a space shuttle main engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project is to further develop a computer program which automates the analysis of test data from the SSME high-pressure oxidizer turbopump (HPOTP) in order to detect and diagnose anomalies. This program fits into a larger system, the SSME Post-Test Diagnostic System (PTDS), which will eventually be extended to assess the health and status of most SSME components on the basis of test data analysis. The HPOTP module is an expert system, which uses 'rules-of-thumb' obtained from interviews with experts from NASA Marshall Space Flight Center (MSFC) to detect and diagnose anomalies. Analyses of the raw test data are first performed using pattern recognition techniques which result in features such as spikes, shifts, peaks, and drifts being detected and written to a database. The HPOTP module then looks for combination of these features which are indicative of known anomalies, using the rules gathered from the turbomachinery experts. Results of this analysis are then displayed via a graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.

  7. Imaging system for hypervelocity dust injection diagnostic on NSTX

    NASA Astrophysics Data System (ADS)

    Dorf, L. A.; Roquemore, A. L.; Wurden, G. A.; Ticos, C. M.; Wang, Zhehui

    2006-10-01

    The novel hypervelocity dust injection diagnostic will facilitate our understanding of basic aspects of dust-plasma interaction and magnetic field topology in fusion plasma devices, by observing "comet tails" associated with the injected micron-size dust particles. A single projection of the tail onto an image plane will not provide sufficient information; therefore, we plan to use two views, with intensified DiCam-Pro cameras on two NSTX ports. Each camera can furnish up to five overlaying sequential images with gate times greater than 3ns and 1280×1024pixel resolution. A coherent fiber bundle with 1500×1200 fibers will relay the image from an imaging lens installed directly on the port to the camera optics. The lens receives light from the outer portion of the NSTX cross section and focuses a 1cm tail onto at least 60 fibers for adequate resolution. The estimated number of photons received by the camera indicates signal-to-noise ratios of 102-104, with the use of a 10nm bandwidth filter. The imaging system with one camera was successfully tested on NSTX in 2005. Photographing lithium pellets yielded bright and distinctive pictures of the tails nearly aligned with B lines. We also observed that the bright "filaments"—plasma cords with high density and temperature—are present in both top and bottom portions of the machine.

  8. Central waste processing system

    NASA Technical Reports Server (NTRS)

    Kester, F. L.

    1973-01-01

    A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.

  9. Evolving a Diagnostic Assessment System for Formative Use by Senior School System Executives in the USA.

    ERIC Educational Resources Information Center

    Carter, D. S. G.; And Others

    1991-01-01

    Describes the Diagnostic Executive Competency Analysis System (DECAS) developed by researchers at the University of Texas (Austin). Applies assessment center methods conventionally used for selection and screening purposes to formative needs-based professional development activities. Presents DECAS within the framework of the U.S. Multi-Site…

  10. A contactless microwave-based diagnostic tool for high repetition rate laser systems

    SciTech Connect

    Braggio, C.; Borghesani, A. F.

    2014-02-15

    We report on a novel electro-optic device for the diagnostics of high repetition rate laser systems. It is composed of a microwave receiver and of a second order nonlinear crystal, whose irradiation with a train of short laser pulses produces a time-dependent polarization in the crystal itself as a consequence of optical rectification. This process gives rise to the emission of microwave radiation that is detected by a receiver and is analyzed to infer the repetition rate and intensity of the pulses. We believe that this new method may overcome some of the limitations of photodetection techniques.

  11. Process to generate a synthetic diagnostic for microwave imaging reflectometry with the full-wave code FWR2D.

    PubMed

    Ren, X; Domier, C W; Kramer, G; Luhmann, N C; Muscatello, C M; Shi, L; Tobias, B J; Valeo, E

    2014-11-01

    A synthetic microwave imaging reflectometer (MIR) diagnostic employing the full-wave reflectometer code (FWR2D) has been developed and is currently being used to guide the design of real systems, such as the one recently installed on DIII-D. The FWR2D code utilizes real plasma profiles as input, and it is combined with optical simulation tools for synthetic diagnostic signal generation. A detailed discussion of FWR2D and the process to generate the synthetic signal are presented in this paper. The synthetic signal is also compared to a prescribed density fluctuation spectrum to quantify the imaging quality. An example is presented with H-mode-like plasma profiles derived from a DIII-D discharge, where the MIR focal is located in the pedestal region. It is shown that MIR is suitable for diagnosing fluctuations with poloidal wavenumber up to 2.0 cm(-1) and fluctuation amplitudes less than 5%.

  12. Development of a Diagnostic and Remedial Learning System Based on an Enhanced Concept--Effect Model

    ERIC Educational Resources Information Center

    Panjaburees, Patcharin; Triampo, Wannapong; Hwang, Gwo-Jen; Chuedoung, Meechoke; Triampo, Darapond

    2013-01-01

    With the rapid advances in computer technology during recent years, researchers have demonstrated the pivotal influences of computer-assisted diagnostic systems on student learning performance improvement. This research aims to develop a Diagnostic and Remedial Learning System (DRLS) for an algebra course in a Thai lower secondary school context…

  13. Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods

    SciTech Connect

    Upadhyaya, B.R.; Yan, W.

    1993-11-01

    The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods.

  14. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  15. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  16. Dual Processing Model for Medical Decision-Making: An Extension to Diagnostic Testing.

    PubMed

    Tsalatsanis, Athanasios; Hozo, Iztok; Kumar, Ambuj; Djulbegovic, Benjamin

    2015-01-01

    Dual Processing Theories (DPT) assume that human cognition is governed by two distinct types of processes typically referred to as type 1 (intuitive) and type 2 (deliberative). Based on DPT we have derived a Dual Processing Model (DPM) to describe and explain therapeutic medical decision-making. The DPM model indicates that doctors decide to treat when treatment benefits outweigh its harms, which occurs when the probability of the disease is greater than the so called "threshold probability" at which treatment benefits are equal to treatment harms. Here we extend our work to include a wider class of decision problems that involve diagnostic testing. We illustrate applicability of the proposed model in a typical clinical scenario considering the management of a patient with prostate cancer. To that end, we calculate and compare two types of decision-thresholds: one that adheres to expected utility theory (EUT) and the second according to DPM. Our results showed that the decisions to administer a diagnostic test could be better explained using the DPM threshold. This is because such decisions depend on objective evidence of test/treatment benefits and harms as well as type 1 cognition of benefits and harms, which are not considered under EUT. Given that type 1 processes are unique to each decision-maker, this means that the DPM threshold will vary among different individuals. We also showed that when type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect a decision; the decision is based on the assessment of benefits and harms of treatment. These findings could explain variations in the treatment and diagnostic patterns documented in today's clinical practice.

  17. Dual Processing Model for Medical Decision-Making: An Extension to Diagnostic Testing.

    PubMed

    Tsalatsanis, Athanasios; Hozo, Iztok; Kumar, Ambuj; Djulbegovic, Benjamin

    2015-01-01

    Dual Processing Theories (DPT) assume that human cognition is governed by two distinct types of processes typically referred to as type 1 (intuitive) and type 2 (deliberative). Based on DPT we have derived a Dual Processing Model (DPM) to describe and explain therapeutic medical decision-making. The DPM model indicates that doctors decide to treat when treatment benefits outweigh its harms, which occurs when the probability of the disease is greater than the so called "threshold probability" at which treatment benefits are equal to treatment harms. Here we extend our work to include a wider class of decision problems that involve diagnostic testing. We illustrate applicability of the proposed model in a typical clinical scenario considering the management of a patient with prostate cancer. To that end, we calculate and compare two types of decision-thresholds: one that adheres to expected utility theory (EUT) and the second according to DPM. Our results showed that the decisions to administer a diagnostic test could be better explained using the DPM threshold. This is because such decisions depend on objective evidence of test/treatment benefits and harms as well as type 1 cognition of benefits and harms, which are not considered under EUT. Given that type 1 processes are unique to each decision-maker, this means that the DPM threshold will vary among different individuals. We also showed that when type 1 processes exclusively dominate decisions, ordering a diagnostic test does not affect a decision; the decision is based on the assessment of benefits and harms of treatment. These findings could explain variations in the treatment and diagnostic patterns documented in today's clinical practice. PMID:26244571

  18. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  19. Development of life prediction capabilities for liquid propellant rocket engines. Post-fire diagnostic system for the SSME system architecture study

    NASA Technical Reports Server (NTRS)

    Gage, Mark; Dehoff, Ronald

    1991-01-01

    This system architecture task (1) analyzed the current process used to make an assessment of engine and component health after each test or flight firing of an SSME, (2) developed an approach and a specific set of objectives and requirements for automated diagnostics during post fire health assessment, and (3) listed and described the software applications required to implement this system. The diagnostic system described is a distributed system with a database management system to store diagnostic information and test data, a CAE package for visual data analysis and preparation of plots of hot-fire data, a set of procedural applications for routine anomaly detection, and an expert system for the advanced anomaly detection and evaluation.

  20. System Diagnostic Builder - A rule generation tool for expert systems that do intelligent data evaluation. [applied to Shuttle Mission Simulator

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph; Burke, Roger

    1993-01-01

    Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.

  1. Complex interferometry potential in case of sufficiently stable diagnostic system

    NASA Astrophysics Data System (ADS)

    Kalal, M.

    2016-06-01

    Classical interferometry is one of the key methods among active optical diagnostics. Its more advanced version, which allows recording and subsequent reconstruction of up to three sets of data using just one data object —a complex interferogram—was developed in the past and became known as complex interferometry. Employing this diagnostics, not only the usual phase shift, but also the amplitude of the probing beam as well as the fringe contrast (leading directly to the phase shift time derivative) can be reconstructed simultaneously from such a complex interferogram. In this paper it will be demonstrated that even in the case of a not particularly good diagnostic beam quality these three quantities can be reconstructed with a high degree of accuracy provided both the diagnostic beam as well as the corresponding optical line feature a reasonable stability. Such stability requirement is important as in an ideal case four shots need to be gradually recorded (one by one): the signal complex interferogram, the reference interferogram as well as the intensity structures of the signal and reference part of the diagnostic beam. Two examples of complex interferograms obtained in experiments will be analyzed: the laser produced plasma (spark in the air) and the high pressure gas jet. A general ray-tracing based iterative algorithm will be outlined in order to increase a precision of the index of refraction spatial profile taking into account refraction effects (omitted in the Abel inversion) and employing the original reconstructed phase shift and amplitude.

  2. Biased Processing of Ambiguous Symptoms Favors the Initially Leading Hypothesis in Sequential Diagnostic Reasoning.

    PubMed

    Rebitschek, Felix G; Bocklisch, Franziska; Scholz, Agnes; Krems, Josef F; Jahn, Georg

    2015-01-01

    In sequential diagnostic reasoning, observed pieces of evidence activate hypotheses in memory and are integrated to reach a final diagnosis. The order of evidence can influence diagnostic reasoning. This article examines the processing of ambiguous evidence underlying order effects if multiple hypotheses are activated. In five experiments with a quasi-medical scenario, participants dealt with symptom sequences supporting multiple diagnoses. The symptom order, the response mode (end-of-sequence, step-by-step), and the consistency of evidence were manipulated. A primacy order effect occurred with both response modes suggesting that ambiguous pieces of evidence were distorted toward the hypothesis that strongly corresponded with the first piece. The primacy effect was partially counteracted by stepwise belief ratings, which strengthened the weight of recent evidence and promoted switching to an alternative diagnosis. We conclude that once hypotheses are generated, the interplay of coherence-oriented information distortion and memory-dependent analytic processes propagates into distinct order effects in diagnoses.

  3. On-board fault diagnostics for fly-by-light flight control systems using neural network flight processors

    NASA Astrophysics Data System (ADS)

    Urnes, James M., Sr.; Cushing, John; Bond, William E.; Nunes, Steve

    1996-10-01

    Fly-by-Light control systems offer higher performance for fighter and transport aircraft, with efficient fiber optic data transmission, electric control surface actuation, and multi-channel high capacity centralized processing combining to provide maximum aircraft flight control system handling qualities and safety. The key to efficient support for these vehicles is timely and accurate fault diagnostics of all control system components. These diagnostic tests are best conducted during flight when all facts relating to the failure are present. The resulting data can be used by the ground crew for efficient repair and turnaround of the aircraft, saving time and money in support costs. These difficult to diagnose (Cannot Duplicate) fault indications average 40 - 50% of maintenance activities on today's fighter and transport aircraft, adding significantly to fleet support cost. Fiber optic data transmission can support a wealth of data for fault monitoring; the most efficient method of fault diagnostics is accurate modeling of the component response under normal and failed conditions for use in comparison with the actual component flight data. Neural Network hardware processors offer an efficient and cost-effective method to install fault diagnostics in flight systems, permitting on-board diagnostic modeling of very complex subsystems. Task 2C of the ARPA FLASH program is a design demonstration of this diagnostics approach, using the very high speed computation of the Adaptive Solutions Neural Network processor to monitor an advanced Electrohydrostatic control surface actuator linked through a AS-1773A fiber optic bus. This paper describes the design approach and projected performance of this on-line diagnostics system.

  4. Real-time Optical Alignment and Diagnostic System (ROADS)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The ultimate and most frequent usage of ROADS will be the alignment of subassemblies (collector and collimator) prior to their installation in a chamber. The system as designed has inherent associated capabilities well applied to acceptance testing of the No. 4 mirror, prediction of in-chamber performance, generation of a catalog of test results and other data, providing data for the plotting of isointensity lines, and other applications which are discussed. The ROADS system will collect, process, display, analyze, and retain data as required for components, partial subassemblies, complete subassemblies, complete modules, and multimodular arrays.

  5. Spatial Expansion and Automation of the Pegasus Thomson Scattering Diagnostic System

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    The Pegasus Thomson scattering diagnostic system has recently undergone modifications to increase the spatial range of the diagnostic and automate the Thomson data collection process. Two multichannel spectrometers have been added to the original configuration, providing a total of 24 data channels to view the plasma volume. The new system configuration allows for observation of three distinct regions of the plasma: the local helicity injection (LHI) source (R ~ 67-73.8 cm), the plasma edge (R ~ 51.5-57.6 cm), and the plasma core (R ~ 35-41.1 cm). Each spectrometer utilizes a volume-phase holographic (VPH) grating and a gated-intensified CCD camera. The edge and the LHI spectrometers have been fitted with low-temperature VPH gratings to cover Te = 10 - 100 eV, while the core spectrometer has been fitted with a high-temperature VPH grating to cover Te = 0 . 1 - 1 . 0 keV. The additional spectrometers have been calibrated to account for detector flatness, detector linearity, and vignetting. Operation of the Thomson system has been overhauled to utilize LabVIEW software to synchronize the major components of the Thomson system with the Pegasus shot cycle and to provide intra-shot beam alignment. Multi-point Thomson scattering measurements will be obtained in the aforementioned regions of LHI and Ohmic discharges and will be compared to Langmuir probe measurements. Work supported by US DOE grant DE-FG02-96ER54375.

  6. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses.

    PubMed

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination. PMID:26877781

  7. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses

    PubMed Central

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination. PMID:26877781

  8. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses.

    PubMed

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination.

  9. Digital TV processing system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two digital video data compression systems directly applicable to the Space Shuttle TV Communication System were described: (1) For the uplink, a low rate monochrome data compressor is used. The compression is achieved by using a motion detection technique in the Hadamard domain. To transform the variable source rate into a fixed rate, an adaptive rate buffer is provided. (2) For the downlink, a color data compressor is considered. The compression is achieved first by intra-color transformation of the original signal vector, into a vector which has lower information entropy. Then two-dimensional data compression techniques are applied to the Hadamard transformed components of this last vector. Mathematical models and data reliability analyses were also provided for the above video data compression techniques transmitted over a channel encoded Gaussian channel. It was shown that substantial gains can be achieved by the combination of video source and channel coding.

  10. Guidelines for the Development of an Effective Diagnostic System.

    ERIC Educational Resources Information Center

    Morreau, Lanny; And Others

    Described is the diagnostic teaching model developed by the Illinois Regional Resource Center to provide assessment and programing for children with unexplained handicaps. The model is explained to involve a multidisciplinary approach and to include six basic components: referals, information gathering, diagnosis, prescription, consultation, and…

  11. Psychoacoustic Assessment of Speech Communication Systems. The Diagnostic Discrimination Test.

    ERIC Educational Resources Information Center

    Grether, Craig Blaine

    The present report traces the rationale, development and experimental evaluation of the Diagnostic Discrimination Test (DDT). The DDT is a three-choice test of consonant discriminability of the perceptual/acoustic dimensions of consonant phonemes within specific vowel contexts. The DDT was created and developed in an attempt to provide a…

  12. Automated high-throughput flow-through real-time diagnostic system

    DOEpatents

    Regan, John Frederick

    2012-10-30

    An automated real-time flow-through system capable of processing multiple samples in an asynchronous, simultaneous, and parallel fashion for nucleic acid extraction and purification, followed by assay assembly, genetic amplification, multiplex detection, analysis, and decontamination. The system is able to hold and access an unlimited number of fluorescent reagents that may be used to screen samples for the presence of specific sequences. The apparatus works by associating extracted and purified sample with a series of reagent plugs that have been formed in a flow channel and delivered to a flow-through real-time amplification detector that has a multiplicity of optical windows, to which the sample-reagent plugs are placed in an operative position. The diagnostic apparatus includes sample multi-position valves, a master sample multi-position valve, a master reagent multi-position valve, reagent multi-position valves, and an optical amplification/detection system.

  13. ASIC design of a digital fuzzy system on chip for medical diagnostic applications.

    PubMed

    Roy Chowdhury, Shubhajit; Roy, Aniruddha; Saha, Hiranmay

    2011-04-01

    The paper presents the ASIC design of a digital fuzzy logic circuit for medical diagnostic applications. The system on chip under consideration uses fuzzifier, memory and defuzzifier for fuzzifying the patient data, storing the membership function values and defuzzifying the membership function values to get the output decision. The proposed circuit uses triangular trapezoidal membership functions for fuzzification patients' data. For minimizing the transistor count, the proposed circuit uses 3T XOR gates and 8T adders for its design. The entire work has been carried out using TSMC 0.35 µm CMOS process. Post layout TSPICE simulation of the whole circuit indicates a delay of 31.27 ns and the average power dissipation of the system on chip is 123.49 mW which indicates a less delay and less power dissipation than the comparable embedded systems reported earlier.

  14. Integrated optical system for investigation and diagnostics of abnormal combustion in an automotive engine

    NASA Astrophysics Data System (ADS)

    Piernikarski, Dariusz

    2004-09-01

    The paper presents a research project oriented towards development of existing measurement methods which use optical sensors for the research and diagnostics of the combustion process in the internal-combustion automotive enigne. Experiments assume usage of photometric techniques and in particular spectrophotometry of the flames existing in the combustion chamber. Gathered results will enable expanding knowledge about processes taking place during combustion of air-fuel mixture and accompanying phenomena (i.e. knock, misfires). The work is also aimed at designing a diagnostic system which will enable an on-line identification of unfavorable phenomena like knocking combustion or misfires (lack of combustion). Extracted synthetic quality indexes will be used in the improvement of combustion process and as a feedback signals in the engine control algorithms. Research is made on the typical automotive engine equipped with an optical sensor located in the engine head and having direct access into the combustion chamber. The sensor enables on-line transmission of the optical signal during the combustion through the bundle of optical waveguides and two parallel filtering paths. Then optical signal was filtered with set of interference filters. The paper is illustrated with some results obtained during preliminary experiments.

  15. Evaluation of Diagnostic Systems: The Selection of Students at Risk of Academic Difficulties

    ERIC Educational Resources Information Center

    Smolkowski, Keith; Cummings, Kelli D.

    2015-01-01

    Diagnostic tools can help schools more consistently and fairly match instructional resources to the needs of their students. To ensure the best educational outcome for each child, diagnostic decision-making systems seek to balance time, clarity, and accuracy. However, recent research notes that many educational decisions tend to be made using…

  16. Process gas solidification system

    DOEpatents

    Fort, William G. S.; Lee, Jr., William W.

    1978-01-01

    It has been the practice to (a) withdraw hot, liquid UF.sub.6 from various systems, (b) direct the UF.sub.6 into storage cylinders, and (c) transport the filled cylinders to another area where the UF.sub.6 is permitted to solidify by natural cooling. However, some hazard attends the movement of cylinders containing liquid UF.sub.6, which is dense, toxic, and corrosive. As illustrated in terms of one of its applications, the invention is directed to withdrawing hot liquid UF.sub.6 from a system including (a) a compressor for increasing the pressure and temperature of a stream of gaseous UF.sub.6 to above its triple point and (b) a condenser for liquefying the compressed gas. A network containing block valves and at least first and second portable storage cylinders is connected between the outlet of the condenser and the suction inlet of the compressor. After an increment of liquid UF.sub.6 from the condenser has been admitted to the first cylinder, the cylinder is connected to the suction of the compressor to flash off UF.sub.6 from the cylinder, thus gradually solidifying UF.sub.6 therein. While the first cylinder is being cooled in this manner, an increment of liquid UF.sub.6 from the condenser is transferred into the second cylinder. UF.sub.6 then is flashed from the second cylinder while another increment of liquid UF.sub.6 is being fed to the first. The operations are repeated until both cylinders are filled with solid UF.sub.6, after which they can be moved safely. As compared with the previous technique, this procedure is safer, faster, and more economical. The method also provides the additional advantage of removing volatile impurities from the UF.sub.6 while it is being cooled.

  17. Theoretical studies of nonadiabatic and spin-forbidden processes: Investigations of the reactions and spectroscopy of radical species relevant to combustion reactions and diagnostics

    SciTech Connect

    Yarkony, D.R.

    1993-12-01

    This research program focusses on studies of spin-forbidden and electronically nonadiabatic processes involving radical species relevant to combustion reactions and combustion diagnostics. To study the electronic structure aspects of these processes a unique and powerful system of electronic structure programs, developed over the past nine years, the BROOKLYN codes, is employed. These programs enable the authors to address questions basic to the understanding of elementary combustion processes not tractable using more standard quantum chemistry codes.

  18. Medical diagnostic decision support systems--past, present, and future: a threaded bibliography and brief commentary.

    PubMed Central

    Miller, R A

    1994-01-01

    Articles about medical diagnostic decision support (MDDS) systems often begin with a disclaimer such as, "despite many years of research and millions of dollars of expenditures on medical diagnostic systems, none is in widespread use at the present time." While this statement remains true in the sense that no single diagnostic system is in widespread use, it is misleading with regard to the state of the art of these systems. Diagnostic systems, many simple and some complex, are now ubiquitous, and research on MDDS systems is growing. The nature of MDDS systems has diversified over time. The prospects for adoption of large-scale diagnostic systems are better now than ever before, due to enthusiasm for implementation of the electronic medical record in academic, commercial, and primary care settings. Diagnostic decision support systems have become an established component of medical technology. This paper provides a review and a threaded bibliography for some of the important work on MDDS systems over the years from 1954 to 1993. PMID:7719792

  19. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  20. Fault Diagnostics for Electrically Operated Pitch Systems in Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Teja Kandukuri, Surya; Khang Huynh, Van; Karimi, Hamid Reza; Robbersmyr, Kjell Gunnar

    2016-09-01

    This paper investigates the electrically operated pitch systems of offshore wind turbines for online condition monitoring and health assessment. The current signature based fault diagnostics is developed for electrically operated pitch systems using model-based approach. The electrical motor faults are firstly modelled based on modified winding function theory and then, current signature analysis is performed to detect the faults. Further, in order to verify the fault diagnostics capabilities in realistic conditions, the operating profiles are obtained from FAST simulation of offshore wind turbines in various wind conditions. In this way, the applicability of current signature analysis for fault diagnostics in offshore wind turbine pitch systems is demonstrated.

  1. Conversion-Integration of MSFC Nonlinear Signal Diagnostic Analysis Algorithms for Realtime Execution of MSFC's MPP Prototype System

    NASA Technical Reports Server (NTRS)

    Jong, Jen-Yi

    1996-01-01

    NASA's advanced propulsion system Small Scale Magnetic Disturbances/Advanced Technology Development (SSME/ATD) has been undergoing extensive flight certification and developmental testing, which involves large numbers of health monitoring measurements. To enhance engine safety and reliability, detailed analysis and evaluation of the measurement signals are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce the risk of catastrophic system failures and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. During the development of SSME, ASRI participated in the research and development of several advanced non- linear signal diagnostic methods for health monitoring and failure prediction in turbomachinery components. However, due to the intensive computational requirement associated with such advanced analysis tasks, current SSME dynamic data analysis and diagnostic evaluation is performed off-line following flight or ground test with a typical diagnostic turnaround time of one to two days. The objective of MSFC's MPP Prototype System is to eliminate such 'diagnostic lag time' by achieving signal processing and analysis in real-time. Such an on-line diagnostic system can provide sufficient lead time to initiate corrective action and also to enable efficient scheduling of inspection, maintenance and repair activities. The major objective of this project was to convert and implement a number of advanced nonlinear diagnostic DSP algorithms in a format consistent with that required for integration into the Vanderbilt Multigraph Architecture (MGA) Model Based Programming environment. This effort will allow the real-time execution of these algorithms using the MSFC MPP Prototype System. ASRI has completed the software conversion and integration of a sequence of nonlinear signal analysis techniques specified in the SOW for real

  2. A fully automated in vitro diagnostic system based on magnetic tunnel junction arrays and superparamagnetic particles

    NASA Astrophysics Data System (ADS)

    Lian, Jie; Chen, Si; Qiu, Yuqin; Zhang, Suohui; Shi, Stone; Gao, Yunhua

    2012-04-01

    A fully automated in vitro diagnostic (IVD) system for diagnosing acute myocardial infarction was developed using high sensitivity MTJ array as sensors and nano-magnetic particles as tags. On the chip is an array of 12 × 106 MTJ devices integrated onto a 3 metal layer CMOS circuit. The array is divided into 48 detection areas, therefore 48 different types of bio targets can be analyzed simultaneously if needed. The chip is assembled with a micro-fluidic cartridge which contains all the reagents necessary for completing the assaying process. Integrated with electrical, mechanical and micro-fluidic pumping devices and with the reaction protocol programed in a microprocessor, the system only requires a simple one-step analyte application procedure to operate and yields results of the three major AMI bio-markers (cTnI, MYO, CK-MB) in 15 mins.

  3. Computer Aided Diagnostic Support System for Skin Cancer: A Review of Techniques and Algorithms

    PubMed Central

    Masood, Ammara; Al-Jumaily, Adel Ali

    2013-01-01

    Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique's performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided. PMID:24575126

  4. Megahertz pulse-burst alexandrite laser diagnostic systems

    NASA Astrophysics Data System (ADS)

    Luff, Jon David

    document the reliability and tunability of the ring as a master oscillator for the pulse-burst system. The final chapter of this dissertation, Chapter 7, presents a new design which was not built, but was inspired by all of the technological advances developed in the process of building the MHz pulse-burst systems. With the proper funding, this author believes, the final system would be capable of producing 3--10 megahertz-repetition-rate pulses with 10--30 mJ/pulse and stable pulse linewidths of 88 MHz or better, as documented in Chapter 6. Furthermore, this system would be tunable from 710--800 nm which provides a range of wavelengths (through harmonic doubling and tripling crystals, and Raman, spectral-shifting gas cells) which would reach a number of the molecular species of interest in reacting and nonreacting high-speed flows, as presented in Chapter 1.

  5. Use of the target diagnostic control system in the National Ignition Facility

    SciTech Connect

    Shelton, R; Lagin, L; Nelson, J

    2011-07-25

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.

  6. Target diagnostic control system implementation for the National Ignition Facility (invited)

    SciTech Connect

    Shelton, R. T.; Kamperschroer, J. H.; Lagin, L. J.; Nelson, J. R.; O'Brien, D. W.

    2010-10-15

    The extreme physics of targets shocked by NIF's 192-beam laser is observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A diagnostic control system (DCS) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost WINDOWS XP processor and JAVA application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The JAVA framework provides data management, control services, and operator graphical user interface generation. DCS instruments are reusable by replication with reconfiguration for specific diagnostics in extensible markup language. Advantages include minimal application code, easy testing, and high reliability. Collaborators save costs by assembling diagnostics with existing DCS instruments. This talk discusses target diagnostic instrumentation used on NIF and presents the DCS architecture and framework.

  7. Upgrade of a CHERS diagnostic system for fast-ion and drift-instability measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Craig, D.; den Hartog, D. J.; Nornberg, M. D.

    2015-11-01

    Energetic particle modes and drift instabilities have fluctuation frequencies above the 100 kHz design specification for the current Charge Exchange Recombination Spectroscopy (CHERS) diagnostic on MST. Upgrading the CHERS system to detect fluctuations at these frequencies requires an optimization of all the light detection stages including the photomultiplier tubes (PMTs), the transimpedance amplifiers, and the data acquisition system. The PMTs need to have a linear response to the photon flux and be protected against abnormal events with much brighter light than ordinary plasmas. For this purpose, the resistor- divider network for the PMTs has been optimized based on the results of circuit-simulations and gain and linearity measurements. The pulse outputs of the PMTs corresponding to a single photoelectron are about 7.5 ns long. Therefore, the raw PMT signals require transimpedance amplifiers with shaping capabilities that will allow practical digitization rates. This digitization intrinsically causes errors in photon counts. We modeled each stage involved in the diagnostic using a Poisson process, circuit-simulations, and the superposition theorem to estimate those errors. We will discuss the details of the measurements and simulations and how parameters are optimized. This work is supported by the US DOE.

  8. In Depth Diagnostics for RF System Operation in the PEP-II B Factory

    SciTech Connect

    Van Winkle, Daniel; Fox, John; Teytelman, Dmitry; /SLAC

    2005-05-27

    The PEP-II RF systems incorporate numerous feedback loops in the low-level processing for impedance control and operating point regulation. The interaction of the multiple loops with the beam is complicated, and the systems incorporate online diagnostic tools to configure the feedback loops as well as to record fault files in the case of an RF abort. Rapid and consistent analysis of the RF-related beam aborts and other failures is critical to the reliable operation of the B-Factory, especially at the recently achieved high beam currents. Procedures and algorithms used to extract diagnostic information from time domain fault files are presented and illustrated via example interpretations of PEP-II fault file data. Example faults presented will highlight the subtle interpretation required to determine the root cause. Some such examples are: abort kicker firing asynchronously, klystron and cavity arcs, beam loss leading to longitudinal instability, tuner read back jumps and poorly configured low-level RF feedback loop.

  9. The Process of Systemic Change

    ERIC Educational Resources Information Center

    Duffy, Francis M.; Reigeluth, Charles M.; Solomon, Monica; Caine, Geoffrey; Carr-Chellman, Alison A.; Almeida, Luis; Frick, Theodore; Thompson, Kenneth; Koh, Joyce; Ryan, Christopher D.; DeMars, Shane

    2006-01-01

    This paper presents several brief papers about the process of systemic change. These are: (1) Step-Up-To-Excellence: A Protocol for Navigating Whole-System Change in School Districts by Francis M. Duffy; (2) The Guidance System for Transforming Education by Charles M. Reigeluth; (3) The Schlechty Center For Leadership In School Reform by Monica…

  10. Shifting Diagnostic Systems for Defining Intellectual Disability in Death Penalty Cases: Hall vs. Florida

    ERIC Educational Resources Information Center

    Mukherjee, Mina; Westphal, Alexander

    2015-01-01

    The case of Hall vs. Florida tested Florida's so called "bright line rule" in determining intellectual disability in capital cases. The Supreme Court Decision reflects a more general trend from categorical to dimensional approaches in psychiatric diagnostic systems.

  11. Shifting Diagnostic Systems for Defining Intellectual Disability in Death Penalty Cases: Hall vs. Florida.

    PubMed

    Mukherjee, Mina; Westphal, Alexander

    2015-07-01

    The case of Hall vs. Florida tested Florida's so called "bright line rule" in determining intellectual disability in capital cases. The Supreme Court Decision reflects a more general trend from categorical to dimensional approaches in psychiatric diagnostic systems.

  12. Shifting Diagnostic Systems for Defining Intellectual Disability in Death Penalty Cases: Hall vs. Florida.

    PubMed

    Mukherjee, Mina; Westphal, Alexander

    2015-07-01

    The case of Hall vs. Florida tested Florida's so called "bright line rule" in determining intellectual disability in capital cases. The Supreme Court Decision reflects a more general trend from categorical to dimensional approaches in psychiatric diagnostic systems. PMID:25663625

  13. Continuous scanning laser Doppler vibrometry and wavelet processing for diagnostics: A time domain approach

    NASA Astrophysics Data System (ADS)

    Chiariotti, P.; Revel, G. M.; Martarelli, M.

    2016-06-01

    Continuous Scanning Laser Doppler Vibrometry (CSLDV) is a well-known technique within the structural dynamic community. However, the whole potentials of CSLDV for diagnostic purposes have not been fully exploited yet. This paper presents a time domain approach for identifying damages in structures. The method, which is based on a wavelet processing of vibration data collected by CSLDV, does not need any a-priori knowledge of the vibration behavior of the undamaged sample. Applications on real test cases are presented and discussed in the paper, demonstrating the promising performance of the approach as a non-destructive testing technique.

  14. Combining neural network models for automated diagnostic systems.

    PubMed

    Ubeyli, Elif Derya

    2006-12-01

    This paper illustrates the use of combined neural network (CNN) models to guide model selection for diagnosis of internal carotid arterial (ICA) disorders. The ICA Doppler signals were decomposed into time-frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The first level networks were implemented for the diagnosis of ICA disorders using the statistical features as inputs. To improve diagnostic accuracy, the second level network was trained using the outputs of the first level networks as input data. The CNN models achieved accuracy rates which were higher than that of the stand-alone neural network models. PMID:17233161

  15. Halo current diagnostic system of experimental advanced superconducting tokamak

    SciTech Connect

    Chen, D. L.; Shen, B.; Sun, Y.; Qian, J. P. Wang, Y.; Xiao, B. J.; Granetz, R. S.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  16. Halo current diagnostic system of experimental advanced superconducting tokamak.

    PubMed

    Chen, D L; Shen, B; Granetz, R S; Sun, Y; Qian, J P; Wang, Y; Xiao, B J

    2015-10-01

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  17. Active spectroscopic measurements using the ITER diagnostic system

    SciTech Connect

    Thomas, D. M.; Counsell, G.; Johnson, D.; Vasu, P.; Zvonkov, A.

    2010-10-15

    Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale ({approx}1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.

  18. Active spectroscopic measurements using the ITER diagnostic system.

    PubMed

    Thomas, D M; Counsell, G; Johnson, D; Vasu, P; Zvonkov, A

    2010-10-01

    Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale (∼1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.

  19. Intelligent Work Process Engineering System

    NASA Technical Reports Server (NTRS)

    Williams, Kent E.

    2003-01-01

    Optimizing performance on work activities and processes requires metrics of performance for management to monitor and analyze in order to support further improvements in efficiency, effectiveness, safety, reliability and cost. Information systems are therefore required to assist management in making timely, informed decisions regarding these work processes and activities. Currently information systems regarding Space Shuttle maintenance and servicing do not exist to make such timely decisions. The work to be presented details a system which incorporates various automated and intelligent processes and analysis tools to capture organize and analyze work process related data, to make the necessary decisions to meet KSC organizational goals. The advantages and disadvantages of design alternatives to the development of such a system will be discussed including technologies, which would need to bedesigned, prototyped and evaluated.

  20. Laser ablation plasmas for diagnostics of structured electronic and optical materials during or after laser processing

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Yoo, Jong H.; González, Jhanis J.

    2012-03-01

    Laser induced plasma can be used for rapid optical diagnostics of electronic, optical, electro-optical, electromechanical and other structures. Plasma monitoring and diagnostics can be realized during laser processing in real time by means of measuring optical emission that originates from the pulsed laser-material interaction. In post-process applications, e.g., quality assurance and quality control, surface raster scanning and depth profiling can be realized with high spatial resolution (~10 nm in depth and ~3 μm lateral). Commercial instruments based on laser induced breakdown spectrometry (LIBS) are available for these purposes. Since only a laser beam comes in direct contact with the sample, such diagnostics are sterile and non-disruptive, and can be performed at a distance, e.g. through a window. The technique enables rapid micro-localized chemical analysis without a need for sample preparation, dissolution or evacuation of samples, thus it is particularly beneficial in fabrication of thin films and structures, such as electronic, photovoltaic and electro-optical devices or circuits of devices. Spectrum acquisition from a single laser shot provides detection limits for metal traces of ~10 μg/g, which can be further improved by accumulating signal from multiple laser pulses. LIBS detection limit for Br in polyethylene is 90 μg/g using 50-shot spectral accumulation (halogen detection is a requirement for semiconductor package materials). Three to four orders of magnitude lower detection limits can be obtained with a femtosecond laser ablation - inductively coupled plasma mass spectrometer (LA-ICP-MS), which is also provided on commercial basis. Laser repetition rate is currently up to 20 Hz in LIBS instruments and up to 100 kHz in LA-ICP-MS.

  1. Attitude Determination and Control System (ADCS) and Maintenance and Diagnostic System (MDS): A maintenance and diagnostic system for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Toms, David; Hadden, George D.; Harrington, Jim

    1990-01-01

    The Maintenance and Diagnostic System (MDS) that is being developed at Honeywell to enhance the Fault Detection Isolation and Recovery system (FDIR) for the Attitude Determination and Control System on Space Station Freedom is described. The MDS demonstrates ways that AI-based techniques can be used to improve the maintainability and safety of the Station by helping to resolve fault anomalies that cannot be fully determined by built-in-test, by providing predictive maintenance capabilities, and by providing expert maintenance assistance. The MDS will address the problems associated with reasoning about dynamic, continuous information versus only about static data, the concerns of porting software based on AI techniques to embedded targets, and the difficulties associated with real-time response. An initial prototype was built of the MDS. The prototype executes on Sun and IBM PS/2 hardware and is implemented in the Common Lisp; further work will evaluate its functionality and develop mechanisms to port the code to Ada.

  2. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    PubMed

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion. PMID:12961909

  3. [Real time diagnostics of instantaneous temperature of combustion and explosion process by modern spectroscopy].

    PubMed

    Zhou, Xue-tie; Wang, Jun-de; Li, Yan; Liu, Da-bing

    2003-04-01

    The combustion temperature is one of the important parameters to express flame combustion and explosion characteristics. It will effectively guide the design and manufacture of new model explosives, industrial explosive materials, and weapons. The recent developments and applications of real time diagnostics of instantaneous temperature of combustion and explosion processes by modern spectroscopic methods, such as atomic absorption-emission method, atomic emission two-line spectroscopy, atomic emission multiline spectroscopy, molecular rotation-vibration spectroscopy, coherent anti-stokes Raman scattering (CARS) and plane laser-induced fluorescence (PLIF), were reviewed in this paper. The maximum time resolution of atomic absorption-emission method is 25 microseconds. The time resolution of atomic emission two-line spectroscopy can reach 0.1 microsecond. These two methods can completely suit the need of real time and instantaneous temperature diagnostics of violent explosion and flame combustion. Other methods will also provide new effective research methods for the processes and characteristics of combustion, flame and explosion.

  4. A vibroacoustic diagnostic system as an element improving road transport safety.

    PubMed

    Komorska, Iwona

    2013-01-01

    Mechanical defects of a vehicle driving system can be dangerous on the road. Diagnostic systems, which monitor operations of electric and electronic elements and devices of vehicles, are continuously developed and improved, while defects of mechanical systems are still not managed properly. This article proposes supplementing existing on-board diagnostics with a system of diagnosing selected defects to minimize their impact. It presents a method of diagnosing mechanical defects of the engine, gearbox and other elements of the driving system on the basis of a model of the vibration signal obtained adaptively. This method is suitable for engine valves, engine head gasket, main gearbox, joints, etc.

  5. Performance optimization of a diagnostic system based upon a simulated strain field for fatigue damage characterization

    NASA Astrophysics Data System (ADS)

    Sbarufatti, C.; Manes, A.; Giglio, M.

    2013-11-01

    The work presented hereafter is about the development of a diagnostic system for crack damage detection, localization and quantification on a typical metallic aeronautical structure (skin stiffened through riveted stringers). Crack detection and characterization are based upon strain field sensitivity to damage. The structural diagnosis is carried out by a dedicated smart algorithm (Artificial Neural Network) which is trained on a database of Finite Element simulations relative to damaged and undamaged conditions, providing the system with an accurate predictor at low overall cost. The algorithm, trained on numerical damage experience, is used in a simulated environment to provide reliable preliminary information concerning the algorithm performances for damage diagnosis, thus further reducing the experimental costs and efforts associated with the development and optimization of such systems. The same algorithm has been tested on real experimental strain patterns acquired during real fatigue crack propagation, thus verifying the capability of the numerically trained algorithm for anomaly detection, damage assessment and localization on a real complex structure. The load variability, the discrepancy between the Finite Element Model and the real structure, and the uncertainty in the algorithm training process have been addressed in order to enhance the robustness of the system inference process. Some further algorithm training strategies are discussed, aimed at minimizing the risk for false alarms while maintaining a high probability of damage detection.

  6. Advanced Ground Systems Maintenance Physics Models for Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Harp, Janicce Leshay

    2014-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations.

  7. High repetition rate laser systems: targets, diagnostics and radiation protection

    SciTech Connect

    Gizzi, Leonida A.; Clark, Eugene; Neely, David; Tolley, Martin; Roso, Luis

    2010-02-02

    Accessing the high repetition regime of ultra intense laser-target interactions at small or moderate laser energies is now possible at a large number of facilities worldwide. New projects such as HiPER and ELI promise to extend this regime to the high energy realm at the multi-kJ level. This opportunity raises several issues on how best to approach this new regime of operation in a safe and efficient way. At the same time, a new class of experiments or a new generation of secondary sources of particles and radiation may become accessible, provided that target fabrication and diagnostics are capable of handling this rep-rated regime. In this paper, we explore this scenario and analyse existing and perspective techniques that promise to address some of the above issues.

  8. Development of simple designs of multitip probe diagnostic systems for RF plasma characterization.

    PubMed

    Naz, M Y; Shukrullah, S; Ghaffar, A; Rehman, N U

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures.

  9. Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization

    PubMed Central

    Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326

  10. Computer-based diagnostic expert systems in rheumatology: where do we stand in 2014?

    PubMed

    Alder, Hannes; Michel, Beat A; Marx, Christian; Tamborrini, Giorgio; Langenegger, Thomas; Bruehlmann, Pius; Steurer, Johann; Wildi, Lukas M

    2014-01-01

    Background. The early detection of rheumatic diseases and the treatment to target have become of utmost importance to control the disease and improve its prognosis. However, establishing a diagnosis in early stages is challenging as many diseases initially present with similar symptoms and signs. Expert systems are computer programs designed to support the human decision making and have been developed in almost every field of medicine. Methods. This review focuses on the developments in the field of rheumatology to give a comprehensive insight. Medline, Embase, and Cochrane Library were searched. Results. Reports of 25 expert systems with different design and field of application were found. The performance of 19 of the identified expert systems was evaluated. The proportion of correctly diagnosed cases was between 43.1 and 99.9%. Sensitivity and specificity ranged from 62 to 100 and 88 to 98%, respectively. Conclusions. Promising diagnostic expert systems with moderate to excellent performance were identified. The validation process was in general underappreciated. None of the systems, however, seemed to have succeeded in daily practice. This review identifies optimal characteristics to increase the survival rate of expert systems and may serve as valuable information for future developments in the field.

  11. Evaluation of a vibration diagnostic system for the detection of spur gear pitting failures

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Zakrajsek, James J.

    1993-01-01

    A vibration diagnostic system was used to detect spur gear surface pitting fatigue in a closed-loop spur gear fatigue test rig. The diagnostic system, comprising a personal computer with an analog-to-digital conversion board, a diagnostic system unit, and software, uses time-synchronous averaging of the vibration signal to produce a vibration image of each tooth on any gear in a transmission. Several parameters were analyzed including gear pair stress wave and raw baseband vibration, kurtosis, peak ratios, and others. The system provides limits for the various parameters and gives a warning when the limits are exceeded. Several spur gear tests were conducted with this system and vibration data analyzed at 5-min. intervals. The results presented herein show that the system is fairly effective at detecting spur gear tooth surface fatigue pitting failures.

  12. Evaluation of a vibration diagnostic system for the detection of spur gear pitting failures

    SciTech Connect

    Townsend, D.P.; Zakrajsek, J.J.

    1993-06-01

    A vibration diagnostic system was used to detect spur gear surface pitting fatigue in a closed-loop spur gear fatigue test rig. The diagnostic system, comprising a personal computer with an analog-to-digital conversion board, a diagnostic system unit, and software, uses time-synchronous averaging of the vibration signal to produce a vibration image of each tooth on any gear in a transmission. Several parameters were analyzed including gear pair stress wave and raw baseband vibration, kurtosis, peak ratios, and others. The system provides limits for the various parameters and gives a warning when the limits are exceeded. Several spur gear tests were conducted with this system and vibration data analyzed at 5-min. intervals. The results presented herein show that the system is fairly effective at detecting spur gear tooth surface fatigue pitting failures. 4 refs.

  13. Advanced System for Process Engineering

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  14. Plasma Diagnostics For The Investigation of Silane Based Glow Discharge Deposition Processes

    NASA Astrophysics Data System (ADS)

    Mataras, Dimitrios

    2001-10-01

    In this work is presented the study of microcrystalline silicon PECVD process through highly diluted silane in hydrogen discharges. The investigation is performed by applying different non intrusive plasma diagnostics (electrical, optical, mass spectrometric and laser interferometric measurements). Each of these measurements is related to different plasma sub-processes (gas physics, plasma chemistry and plasma surface interaction) and compose a complete set, proper for the investigation of the effect of external discharge parameters on the deposition processes. In the specific case these plasma diagnostics are applied for prospecting the optimal experimental conditions from the ic-Si:H deposition rate point of view. Namely, the main characteristics of the effect of frequency, discharge geometry, power consumption and total gas pressure on the deposition process are presented successively. Special attention is given to the study of the frequency effect (13.56 MHz 50 MHz) indicating that the correct way to compare results of different driving frequency discharges is by maintaining constant the total power dissipation in the discharge. The important role of frequency in the achievement of high deposition rates and on the optimization of all other parameters is underlined. Finally, the proper combination of experimental conditions that result from the optimal choice of each of the above-mentioned discharge parameters and lead to high microcrystalline silicon deposition rates (7.5 Å/sec) is presented. The increase of silane dissociation rate towards neutral radicals (frequency effect), the contribution of highly sticking to the surface radicals (discharge geometry optimum) and the controlled production of higher radicals through secondary gas phase reactions (total gas pressure), are presented as prerequisites for the achievement of high deposition rates.

  15. A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser

    SciTech Connect

    Neumayer, P; Sorce, C; Froula, D H; Rekow, V; Loughman, K; Knight, R; Glenzer, S H; Bahr, R; Seka, W

    2009-10-09

    A calibration system has been developed that allows a direct determination of the sensitivity of the laser backscatter diagnostics at the Omega laser. A motorized mirror at the target location redirects individual pulses of a mJ-class laser onto the diagnostic to allow the in-situ measurement of the local point response of the backscatter diagnostics. Featuring dual wavelength capability at the 2nd and 3rd harmonic of the Nd:YAG laser, both spectral channels of the backscatter diagnostics can be directly calibrated. In addition, channel cross-talk and polarization sensitivity can be determined. The calibration system has been employed repeatedly over the last two years and has enabled precise backscatter measurements of both stimulated Brillouin scattering and stimulated Raman scattering in gas-filled hohlraum targets that emulate conditions relevant to those in inertial confinement fusion targets.

  16. Modular microfluidic cartridge-based universal diagnostic system for global health applications

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Klemm, Richard; Dietze, William; White, Wallace; Hlawatsch, Nadine; Freyberg, Susanne; Moche, Christian; Dailey, Peter; Gärtner, Claudia

    2016-03-01

    Current microfluidics-enabled point-of-care diagnostic systems are typically designed specifically for one assay type, e.g. a molecular diagnostic assay for a single disease of a class of diseases. This approach often leads to high development cost and a significant training requirement for users of different instruments. We have developed an open platform diagnostic system which allows to run molecular, immunological and clinical assays on a single instrument platform with a standardized microfluidic cartridge architecture in an automated sample-in answer-out fashion. As examples, a molecular diagnostic assay for tuberculosis, an immunoassay for HIV p24 and a clinical chemistry assay for ALT liver function have been developed and results of their pre-clinical validation are presented.

  17. An evidence-based diagnostic classification system for low back pain

    PubMed Central

    Vining, Robert; Potocki, Eric; Seidman, Michael; Morgenthal, A. Paige

    2013-01-01

    Introduction: While clinicians generally accept that musculoskeletal low back pain (LBP) can arise from specific tissues, it remains difficult to confirm specific sources. Methods: Based on evidence supported by diagnostic utility studies, doctors of chiropractic functioning as members of a research clinic created a diagnostic classification system, corresponding exam and checklist based on strength of evidence, and in-office efficiency. Results: The diagnostic classification system contains one screening category, two pain categories: Nociceptive, Neuropathic, one functional evaluation category, and one category for unknown or poorly defined diagnoses. Nociceptive and neuropathic pain categories are each divided into 4 subcategories. Conclusion: This article describes and discusses the strength of evidence surrounding diagnostic categories for an in-office, clinical exam and checklist tool for LBP diagnosis. The use of a standardized tool for diagnosing low back pain in clinical and research settings is encouraged. PMID:23997245

  18. The Diagnostic Challenge Competition: Probabilistic Techniques for Fault Diagnosis in Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Ricks, Brian W.; Mengshoel, Ole J.

    2009-01-01

    Reliable systems health management is an important research area of NASA. A health management system that can accurately and quickly diagnose faults in various on-board systems of a vehicle will play a key role in the success of current and future NASA missions. We introduce in this paper the ProDiagnose algorithm, a diagnostic algorithm that uses a probabilistic approach, accomplished with Bayesian Network models compiled to Arithmetic Circuits, to diagnose these systems. We describe the ProDiagnose algorithm, how it works, and the probabilistic models involved. We show by experimentation on two Electrical Power Systems based on the ADAPT testbed, used in the Diagnostic Challenge Competition (DX 09), that ProDiagnose can produce results with over 96% accuracy and less than 1 second mean diagnostic time.

  19. Oil well fluid processing system

    SciTech Connect

    Cobb, J.R.

    1988-10-25

    This patent describes an oil well fluid processing system, comprising: a skid having a first skid section and a second skid section separable from the first skid section; means for connecting one end of the first skid section to one end of the second skid section; a cylindrical fluid processing apparatus pivotally mounted at a lower end thereof on the first skid section for pivoting movement between a raised position wherein the fluid processing apparatus extends vertically from the first skid section and a lowered position wherein the fluid processing apparatus overlays the second skid section at such times that the two sections of the skid are connected together; and means mounted on the second skid section and connectable to the fluid processing apparatus for moving the fluid processing apparatus between the raised and lowered positions at such times that the two sections of the skid are connected together.

  20. Parallel processing spacecraft communication system

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary S. (Inventor); Donaldson, James A. (Inventor); Luong, Huy H. (Inventor); Wood, Steven H. (Inventor)

    1998-01-01

    An uplink controlling assembly speeds data processing using a special parallel codeblock technique. A correct start sequence initiates processing of a frame. Two possible start sequences can be used; and the one which is used determines whether data polarity is inverted or non-inverted. Processing continues until uncorrectable errors are found. The frame ends by intentionally sending a block with an uncorrectable error. Each of the codeblocks in the frame has a channel ID. Each channel ID can be separately processed in parallel. This obviates the problem of waiting for error correction processing. If that channel number is zero, however, it indicates that the frame of data represents a critical command only. That data is handled in a special way, independent of the software. Otherwise, the processed data further handled using special double buffering techniques to avoid problems from overrun. When overrun does occur, the system takes action to lose only the oldest data.

  1. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  2. A Diagnostic System for Studying Energy Partitioning and Assessing the Response of the Ionosphere during HAARP Modification Experiments

    NASA Technical Reports Server (NTRS)

    Djuth, Frank T.; Elder, John H.; Williams, Kenneth L.

    1996-01-01

    This research program focused on the construction of several key radio wave diagnostics in support of the HF Active Auroral Ionospheric Research Program (HAARP). Project activities led to the design, development, and fabrication of a variety of hardware units and to the development of several menu-driven software packages for data acquisition and analysis. The principal instrumentation includes an HF (28 MHz) radar system, a VHF (50 MHz) radar system, and a high-speed radar processor consisting of three separable processing units. The processor system supports the HF and VHF radars and is capable of acquiring very detailed data with large incoherent scatter radars. In addition, a tunable HF receiver system having high dynamic range was developed primarily for measurements of stimulated electromagnetic emissions (SEE). A separate processor unit was constructed for the SEE receiver. Finally, a large amount of support instrumentation was developed to accommodate complex field experiments. Overall, the HAARP diagnostics are powerful tools for studying diverse ionospheric modification phenomena. They are also flexible enough to support a host of other missions beyond the scope of HAARP. Many new research programs have been initiated by applying the HAARP diagnostics to studies of natural atmospheric processes.

  3. The possibilities of improvement in the sensitivity of cancer fluorescence diagnostics by computer image processing

    NASA Astrophysics Data System (ADS)

    Ledwon, Aleksandra; Bieda, Robert; Kawczyk-Krupka, Aleksandra; Polanski, Andrzej; Wojciechowski, Konrad; Latos, Wojciech; Sieron-Stoltny, Karolina; Sieron, Aleksander

    2008-02-01

    Background: Fluorescence diagnostics uses the ability of tissues to fluoresce after exposition to a specific wavelength of light. The change in fluorescence between normal and progression to cancer allows to see early cancer and precancerous lesions often missed by white light. Aim: To improve by computer image processing the sensitivity of fluorescence images obtained during examination of skin, oral cavity, vulva and cervix lesions, during endoscopy, cystoscopy and bronchoscopy using Xillix ONCOLIFE. Methods: Function of image f(x,y):R2 --> R 3 was transformed from original color space RGB to space in which vector of 46 values refers to every point labeled by defined xy-coordinates- f(x,y):R2 --> R 46. By means of Fisher discriminator vector of attributes of concrete point analalyzed in the image was reduced according to two defined classes defined as pathologic areas (foreground) and healthy areas (background). As a result the highest four fisher's coefficients allowing the greatest separation between points of pathologic (foreground) and healthy (background) areas were chosen. In this way new function f(x,y):R2 --> R 4 was created in which point x,y corresponds with vector Y, H, a*, c II. In the second step using Gaussian Mixtures and Expectation-Maximisation appropriate classificator was constructed. This classificator enables determination of probability that the selected pixel of analyzed image is a pathologically changed point (foreground) or healthy one (background). Obtained map of probability distribution was presented by means of pseudocolors. Results: Image processing techniques improve the sensitivity, quality and sharpness of original fluorescence images. Conclusion: Computer image processing enables better visualization of suspected areas examined by means of fluorescence diagnostics.

  4. Diagnostic and prognostic histopathology system using morphometric indices

    DOEpatents

    Parvin, Bahram; Chang, Hang; Han, Ju; Fontenay, Gerald V

    2015-05-12

    Determining at least one of a prognosis or a therapy for a patient based on a stained tissue section of the patient. An image of a stained tissue section of a patient is processed by a processing device. A set of features values for a set of cell-based features is extracted from the processed image, and the processed image is associated with a particular cluster of a plurality of clusters based on the set of feature values, where the plurality of clusters is defined with respect to a feature space corresponding to the set of features.

  5. A CLIPS based personal computer hardware diagnostic system

    NASA Technical Reports Server (NTRS)

    Whitson, George M.

    1991-01-01

    Often the person designated to repair personal computers has little or no knowledge of how to repair a computer. Described here is a simple expert system to aid these inexperienced repair people. The first component of the system leads the repair person through a number of simple system checks such as making sure that all cables are tight and that the dip switches are set correctly. The second component of the system assists the repair person in evaluating error codes generated by the computer. The final component of the system applies a large knowledge base to attempt to identify the component of the personal computer that is malfunctioning. We have implemented and tested our design with a full system to diagnose problems for an IBM compatible system based on the 8088 chip. In our tests, the inexperienced repair people found the system very useful in diagnosing hardware problems.

  6. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  7. Evaluation Of Vibration-Monitoring Gear-Diagnostic System

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Zakrajsek, James J.

    1995-01-01

    Report describes experimental evaluation of commercial electronic system designed to monitor vibration signal from accelerometer on gear-box to detect vibrations indicative of damage to gears. System includes signal-conditioning subsystem and personal computer in which analog-to-digital converter installed. Results show system fairly effective in detecting surface fatigue pits on spur-gear teeth.

  8. Microwave tomography for GPR data processing in archaeology and cultural heritages diagnostics

    NASA Astrophysics Data System (ADS)

    Soldovieri, F.

    2009-04-01

    Ground Penetrating Radar (GPR) is one of the most feasible and friendly instrumentation to detect buried remains and perform diagnostics of archaeological structures with the aim of detecting hidden objects (defects, voids, constructive typology; etc..). In fact, GPR technique allows to perform measurements over large areas in a very fast way thanks to a portable instrumentation. Despite of the widespread exploitation of the GPR as data acquisition system, many difficulties arise in processing GPR data so to obtain images reliable and easily interpretable by the end-users. This difficulty is exacerbated when no a priori information is available as for example arises in the case of historical heritages for which the knowledge of the constructive modalities and materials of the structure might be completely missed. A possible answer to the above cited difficulties resides in the development and the exploitation of microwave tomography algorithms [1, 2], based on more refined electromagnetic scattering model with respect to the ones usually adopted in the classic radaristic approach. By exploitation of the microwave tomographic approach, it is possible to gain accurate and reliable "images" of the investigated structure in order to detect, localize and possibly determine the extent and the geometrical features of the embedded objects. In this framework, the adoption of simplified models of the electromagnetic scattering appears very convenient for practical and theoretical reasons. First, the linear inversion algorithms are numerically efficient thus allowing to investigate domains large in terms of the probing wavelength in a quasi real- time also in the case of 3D case also by adopting schemes based on the combination of 2D reconstruction [3]. In addition, the solution approaches are very robust against the uncertainties in the parameters of the measurement configuration and on the investigated scenario. From a theoretical point of view, the linear models allow

  9. What Happens Along the Diagnostic Pathway to CHD Treatment? Qualitative Results Concerning Cognitive Processes

    PubMed Central

    Lutfey, Karen E.; McKinlay, John. B.

    2014-01-01

    Extensive research on health disparities documents persistent differential diagnosis and treatment of many conditions according to patient characteristics, physician attributes, and healthcare systems. Less is known about how physicians arrive at their decisions. We use qualitative data from a vignette-based factorial experiment to examine how physicians reason through and account for their clinical decisions, and how variations arise despite the presentation of identical symptoms of CHD. We find that physicians show evidence of cognitive biases but also actively interpret social characteristics they deem relevant to medical treatment. In an uncertain clinical context, these diagnostic pathways expose key junctures wherein physicians are detoured to alternative diagnoses, their certainty of CHD lowered, and scientific logic makes it difficult to return to a CHD diagnosis—thereby providing a fuller picture of why some cases are counted as CHD while others are not. These results have important implications insofar as diagnostic decisions like these contribute to the compilation of epidemiologic base rates, and are therefore used as part of Bayesian decision making to determine the probability of CHD in subsequent patients. This work resonates with social constructivist concerns regarding the ways disease categories are established and maintained, and potential sources of bias in official rates. PMID:19619155

  10. XCPU2 process management system

    SciTech Connect

    Ionkov, Latchesar; Van Hensbergen, Eric

    2009-01-01

    Xcpu2 is a new process management system that allows the users to specify custom file system for a running job. Most cluster management systems enforce single software distribution running on all nodes. Xcpu2 allows programs running on the cluster to work in environment identical to the user's desktop, using the same versions of the libraries and tools the user installed locally, and accessing the configuration file in the same places they are located on the desktop. Xcpu2 builds on our earlier work with the Xcpu system. Like Xcpu, Xcpu2's process management interface is represented as a set of files exported by a 9P file server. It supports heterogeneous clusters and multiple head nodes. Unlike Xcpu, it uses pull instead of push model. In this paper we describe the Xcpu2 clustering model, its operation and how the per-job filesystem configuration can be used to solve some of the common problems when running a cluster.

  11. Network command processing system overview

    NASA Technical Reports Server (NTRS)

    Nam, Yon-Woo; Murphy, Lisa D.

    1993-01-01

    The Network Command Processing System (NCPS) developed for the National Aeronautics and Space Administration (NASA) Ground Network (GN) stations is a spacecraft command system utilizing a MULTIBUS I/68030 microprocessor. This system was developed and implemented at ground stations worldwide to provide a Project Operations Control Center (POCC) with command capability for support of spacecraft operations such as the LANDSAT, Shuttle, Tracking and Data Relay Satellite, and Nimbus-7. The NCPS consolidates multiple modulation schemes for supporting various manned/unmanned orbital platforms. The NCPS interacts with the POCC and a local operator to process configuration requests, generate modulated uplink sequences, and inform users of the ground command link status. This paper presents the system functional description, hardware description, and the software design.

  12. A handheld point-of-care genomic diagnostic system.

    PubMed

    Myers, Frank B; Henrikson, Richard H; Bone, Jennifer M; Bone, Jennifer; Lee, Luke P

    2013-01-01

    , and source code for the µBAR instrument with the goal of spurring further innovation toward low-cost genetic diagnostics. PMID:23936402

  13. A Handheld Point-of-Care Genomic Diagnostic System

    PubMed Central

    Myers, Frank B.; Henrikson, Richard H.; Bone, Jennifer; Lee, Luke P.

    2013-01-01

    , and source code for the µBAR instrument with the goal of spurring further innovation toward low-cost genetic diagnostics. PMID:23936402

  14. Note: Neutron bang time diagnostic system on Shenguang-III prototype

    SciTech Connect

    Tang, Qi; Chen, Jiabin; Liu, Zhongjie; Zhan, Xiayu; Song, Zifeng

    2014-04-15

    A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.

  15. A balanced diagnostic system compatible with a barotropic prognostic model. [for weather forecasting

    NASA Technical Reports Server (NTRS)

    Ghil, M.; Shkoller, B.; Yangarber, V.

    1977-01-01

    A system of diagnostic equations for the velocity field, or wind laws, for a barotropic primitive-equation model of large-scale atmospheric flow is derived. Attention is given to the classical balance equation and its ellipticity condition. Numerical solutions of the diagnostic system are presented, including examples of cases of the mixed elliptic-hyperbolic type and cases with non-zero divergence. Procedures for implementing such a system are outlined, along with a review of factors in using the technique for operational numerical weather prediction.

  16. Production diagnostics of geothermal wells by means of a computerized expert system

    SciTech Connect

    Arellano, Victor M.; Iglesias, Eduardo R.

    1992-01-01

    Diagnostic of production problems in geothermal wells is a complex inferential task, which requires considerable knowledge of its possible causes, careful assessment of (sometimes bewildering) multidisciplinary evidence, and, of course, enough experience. These characteristics make this task a good candidate for a computerized expert system. On this conviction, we have developed the first version of WELL-DR, an expert system for geothermal-well production diagnostics. Though still in a rapid stage of evolution, this expert system already provides a convenient and useful tool for geothermal field development, operation and management.

  17. Characteristic parameters in combustion processes and their accessibility to current and future diagnostics. Annual report

    SciTech Connect

    Goulard, R.

    1980-05-01

    A review of current combustion research shows a growing awareness of the potential offered by the new high speed three-dimensional techniques. Some of the recent advances in the fluid dynamics of jet mixing are discussed, with an emphasis on the 10 kHz range (especially vortex shedding). Also the very fast subnanosecond range of radical kinetics is investigated, as well as the comparably fast scattering and fluorescence processes. High speed diagnostics are discussed in these two ranges of time resolution, with an emphasis on optical tomography for the fluid dynamic time range (10/sup -4/ s) and on picosecond techniques for the physical chemistry range (10/sup -9/ s). This work was carried out during the period June 1, 1979 to May 31, 1980.

  18. An Embedded Rule-Based Diagnostic Expert System in Ada

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Liberman, Eugene M.

    1992-01-01

    Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with it portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assumed a growing role in providing human-like reasoning capability expertise for computer systems. The integration is discussed of expert system technology with Ada programming language, especially a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell. NASA Lewis was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-based power expert system, in ART-Ada. Three components, the rule-based expert systems, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The rules were written in the ART-Ada development environment and converted to Ada source code. The graphics interface was developed with the Transportable Application Environment (TAE) Plus, which generates Ada source code to control graphics images. SMART-Ada communicates with a remote host to obtain either simulated or real data. The Ada source code generated with ART-Ada, TAE Plus, and communications code was incorporated into an Ada expert system that reads the data from a power distribution test bed, applies the rule to determine a fault, if one exists, and graphically displays it on the screen. The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.

  19. Parallel processing and expert systems

    NASA Technical Reports Server (NTRS)

    Lau, Sonie; Yan, Jerry C.

    1991-01-01

    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited.

  20. Development of procedures to ensure quality and integrity in Tandem Mirror Experiment-Upgrade (TMX-U) diagnostics systems

    SciTech Connect

    Coutts, G.W.; Coon, M.L.; Hinz, A.F.; Hornady, R.S.; Lang, D.D.; Lund, N.P.

    1983-11-30

    The diagnostic systems for Tandem Mirror Experiment-Upgrade (TMX-U) have grown from eleven initial systems to more than twenty systems. During operation, diagnostic system modifications are sometimes required to complete experimental objectives. Also, during operations new diagnostic systems are being developed and implemented. To ensure and maintain the quality and integrity of the data signals, a set of plans and systematic actions are being developed. This paper reviews the procedures set in place to maintain the integrity of existing data systems and ensure the performance objectives of new diagnostics being added.

  1. Diagnostic Assessment of Troubleshooting Skill in an Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Gitomer, Drew H.; And Others

    This paper lays out the rationale and implementation of student modeling and updating in the HYDRIVE intelligent tutoring system (ITS) for aircraft hydraulic systems. An epistemic level of modeling concerns the plans and goals students are using to guide their problem solving, as inferred from specific actions in specific contexts. These results…

  2. Interactive Error Diagnostics for an Instructional Programming System.

    ERIC Educational Resources Information Center

    Davis, Alan; And Others

    The development of an interactive error analysis system for a highly interactive programing language compiler is explored. A project is underway at the University of Illinois to automate the teaching of elementary computer science programing language courses by utilizing the PLATO IV interactive computer system. One goal of the project is to…

  3. VLSI mixed signal processing system

    NASA Technical Reports Server (NTRS)

    Alvarez, A.; Premkumar, A. B.

    1993-01-01

    An economical and efficient VLSI implementation of a mixed signal processing system (MSP) is presented in this paper. The MSP concept is investigated and the functional blocks of the proposed MSP are described. The requirements of each of the blocks are discussed in detail. A sample application using active acoustic cancellation technique is described to demonstrate the power of the MSP approach.

  4. Diagnostic Solution Assistant cornerstone for intelligent system monitoring, management, analysis and administration

    NASA Astrophysics Data System (ADS)

    Aaseng, Gordon; Holland, Courtney; Nelson, Bill

    2000-01-01

    The Diagnostic Solution Assistant (DSA) provides diagnostics for space hardware and subsystems. Advanced Honewell `smart' model-based technology performs the real-time fault detection, isolation and diagnostics. This model-based technology provides 24-hour access to the operational knowledge of the system experts. The complexity of the International Space Station (ISS) and other manned space vehicles requires that a full staff of ground based system diagnosis experts be trained and available at all times. Response to critical situations must be immediate no matter what time of the day or night. Installation of new systems plus normal staff turnover cause personnel to be in training constantly. Domain knowledge lost due to staff attrition may also never be regained. All of these factors lead to higher cost ground based flight system monitoring stations and sub-optimal efficiency. The Diagnostic Solution Assistant (DSA) provides a solution to these issues. The DSA can be deployed into the ISS Mission Control Center to enhance Flight Controller awareness and decision making. DSA can be utilized onboard the vehicle to enhance crew awareness and potentially offload the crew in time- or safety-critical situations. The DSA can be used to isolate and diagnose faults during flight preparation, thus reducing the overall vehicle turn-around time. In addition to having diagnostic capability, DSA is a tremendous requirements and operations knowledge capture tool that could streamline training for the flight controller and crew, and facilitate the rapid location of important information. .

  5. ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS

    SciTech Connect

    Jianxun Yan; Daniel Sexton; Steven Moore; Albert Grippo; Kevin Jordan

    2006-10-24

    An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller was built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.

  6. Data processing for soft X-ray diagnostics based on GEM detector measurements for fusion plasma imaging

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2015-12-01

    The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.

  7. Expert diagnostic system for moving-coil loudspeakers using nonlinear modeling.

    PubMed

    Bai, Mingsian R; Huang, Chau-Min

    2009-02-01

    This work aims at the development of an expert diagnostic system for moving-coil loudspeakers. Special emphasis is placed on the defects resulting from loudspeaker nonlinearities. As a loudspeaker operates in the large signal domain, nonlinear distortions may arise and impair sound quality. Analysis of nonlinear responses can shed light on potential design faults of a loudspeaker. By exploiting this fact, this expert diagnostic system enables classification of design faults using a defect database alongside an intelligent fault inference module. Six types of defects are investigated in this paper. A large signal model based on electromechanical analogous circuits is employed for generating the defect database, through which a neural-fuzzy network is utilized for inferring the defect types. Numerical simulations and experimental investigations were undertaken for validating the loudspeaker diagnostic system.

  8. Design predictions and diagnostic test methods for hydronic heating systems in ASHRAE standard 152P

    SciTech Connect

    Andrews, J.W.

    1996-04-01

    A new method of test for residential thermal distribution efficiency is currently being developed under the auspices of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). The initial version of this test method is expected to have two main approaches, or ``pathways,`` designated Design and Diagnostic. The Design Pathway will use builder`s information to predict thermal distribution efficiency in new construction. The Diagnostic Pathway will use simple tests to evaluate thermal distribution efficiency in a completed house. Both forced-air and hydronic systems are included in the test method. This report describes an approach to predicting and measuring thermal distribution efficiency for residential hydronic heating systems for use in the Design and Diagnostic Pathways of the test method. As written, it is designed for single-loop systems with any type of passive radiation/convection (baseboard or radiators). Multiloop capability may be added later.

  9. Combined medical diagnostic system with separated laser-Doppler and reflectance oximeter channels

    NASA Astrophysics Data System (ADS)

    Amzina, M. V.; Micheev, A. A.; Rogatkin, D. A.; Sidorov, V. V.

    2006-08-01

    On the basis of studying of opportunities of Reflectance Tissues Oximetry (RTO) as well as on the basis of RTO and Laser Doppler Flowmetry (LDF) comparative data, received in Moscow Regional Research and Clinical Institute "MONIKI" while patients with the peripheral blood microcirculation disorders were under examination, it was offered to unite the RTO and LDF techniques in a single diagnostic system. The new two-channel diagnostic system will contain the first LDF channel to measure the blood microcirculation parameters and the second RTO channel to register an average peripheral blood oxygenation. In the report the features of the new system design and a number of experimental data on correlation of RTO and LDF results are considered. The prospects of amalgamation of these two different techniques in a single diagnostic device are shown as well.

  10. Continued Development of Expert System Tools for NPSS Engine Diagnostics

    NASA Technical Reports Server (NTRS)

    Lewandowski, Henry

    1996-01-01

    The objectives of this grant were to work with previously developed NPSS (Numerical Propulsion System Simulation) tools and enhance their functionality; explore similar AI systems; and work with the High Performance Computing Communication (HPCC) K-12 program. Activities for this reporting period are briefly summarized and a paper addressing the implementation, monitoring and zooming in a distributed jet engine simulation is included as an attachment.

  11. SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips

    DOEpatents

    Vo-Dinh, Tuan

    2007-09-11

    A Raman integrated sensor system for the detection of targets including biotargets includes at least one sampling platform, at least one receptor probe disposed on the sampling platform, and an integrated circuit detector system communicably connected to the receptor. The sampling platform is preferably a Raman active surface-enhanced scattering (SERS) platform, wherein the Raman sensor is a SERS sensor. The receptors can include at least one protein receptor and at least one nucleic acid receptor.

  12. Bianalyte multicommutated flow analysis system for microproteinuria diagnostics.

    PubMed

    Strzelak, Kamil; Misztal, Jagoda; Tymecki, Łukasz; Koncki, Robert

    2016-02-01

    In this work a bianalyte multicommutated flow analysis (MCFA) system for determination of microproteinuria is presented. The developed MCFA system is based on two dedicated optoelectronic flow-through detectors which allow estimation of urinary protein creatinine ratio. For total protein determination, turbidimetric Exton's method was used, whereas creatinine was determined by the photometric Jaffe reaction. The developed analytical system is fully-mechanized, easy to operate, economic in reagent consumption and characterized by satisfactory analytical parameters. It allows protein determination in the range 36-300 mg L(-1) with 33 mg L(-1) detection limit and simultaneous determination of creatinine in the range 0.045-2.50 mmol L(-1) with 0.025 mmol L(-1) detection limit. The measurement procedure for the presented MCFA system offers performing 30 peaks per hour for both analytes. To prove the analytical usefulness of the system, real human urine samples have been analyzed. The correlation and agreement between results offered by the developed system and clinical analyzers are fully acceptable.

  13. Ultrafast laser processing of transparent materials supported by in-situ diagnostics

    NASA Astrophysics Data System (ADS)

    Kumkar, M.; Kaiser, M.; Kleiner, J.; Grossmann, D.; Flamm, D.; Bergner, K.; Nolte, S.

    2016-03-01

    For the development of industrial NIR ultrafast laser processing of transparent materials, the absorption inside the bulk material has to be controlled. Applications we aim for are front and rear side ablation, drilling and inscription of modifications for cleaving and selective laser etching of glass and sapphire in sheet geometry. We applied pump probe technology and in situ stress birefringence microscopy for fundamental studies on the influence of energy and duration (100 fs - 20 ps), temporal and spatial spacing, focusing and beam shaping of the laser pulses. Applying pump probe technique we are able to visualize differences of spatio-temporal build up of absorption, self focusing, shock wave generation for standard, multispot and beam shaped focusing. Incubation effects and disturbance of beam propagation due to modifications or ablation can be observed. In-situ imaging of stress birefringence gained insight in transient build up of stress with and without translation. The results achieved so far, demonstrate that transient stress has to be taken into account in scaling the laser machining throughput of brittle materials. Furthermore it points out that transient stress birefringence is a good indicator for accumulation effects, supporting tailored processing strategies. Cutting results achieved for selective laser etching by single pass laser modification exemplifies the benefits of process development supported by in situ diagnostics.

  14. Development of prototype polychromator system for KSTAR Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, S. H.; Son, S. H.; Ko, W. H.; Seo, D. C.; Yamada, I.; Her, K. H.; Jeon, J. S.; Bog, M. G.

    2015-12-01

    A polychromator is widely used by the Thomson scattering system for measuring the electron temperature and density. This type of spectrometer includes optic elements such as band-pass filters, focusing lens, collimating lens, and avalanche photodiodes (APDs). The characteristics of band-pass filters in the polychromator are determined by the measuring range of the Thomson system. KSTAR edge polychromators were developed by co-works at NIFS in Japan, and the KSTAR core polychromators were developed by NFRI in Korea. The power supply system of these polychromators is connected only to one power supply module and can manually control the APD's voltage at the front side of the power supply by using a potentiometer. In this paper, a prototype polychromator is introduced at the KSTAR. The prototype polychromator system has a built-in power supply unit that includes high voltage for the APD and ± 5 V for an op-amp IC. The high voltage for the APD is finely controlled and monitored using a PC with the LabView software. One out of the six band pass-filters has a center wavelength of 523.5 nm with 2-nm bandwidth, which can measure Zeff, and the other five band-pass filters can simultaneously measure the Thomson signal. In addition, we will show the test result of this prototype polychromator system during the KSTAR experiment campaign (2015).

  15. Advanced System for Process Engineering

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  16. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  17. Advanced development of particle beam probe diagnostic systems

    SciTech Connect

    Hickok, R.L.; Crowley, T.P.; Connor, K.A.

    1990-11-01

    This progress report covers the period starting with the approval to go ahead with the 2 MeV heavy ion beam probe (HIBP) for TEXT Upgrade to the submission of the grant renewal proposal. During this period the co-principal investigators, R. L. Hickok and T. P. Crowley have each devoted 45% of their time to this Grant. Their effort has been almost exclusively devoted to the design and fabrication of the 2 MeV HIBP system. The 1989 report that described the advantages of a 2 MeV HIBP for TEXT Upgrade compared to the existing 0.5 MeV HIBP and outlined the design of the 2 MeV system is attached as Appendix A. Since the major effort under the renewal proposal will be the continued fabrication, installation and operation of the 2 MeV system on TEXT Upgrade, we describe some of the unique results that have been obtained with the 0.5 MeV system on TEXT. For completeness, we also include the preliminary operation of the 160 keV HIBP on ATF. We present the present fabrication status of the 2 MeV system with the exception of the electrostatic energy analyzer. The energy analyzer which is designed to operate with 400 kV on the top plate is a major development effort and is treated separately. Included in this section are the results obtained with a prototype no guard ring analyzer, the conceptual design for the 2 MeV analyzer, the status of the high voltage testing of full size analyzer systems and backup plans if it turns out that it is impossible to hold 400 kV on an analyzer this size.

  18. Autonomous Control and Diagnostics of Space Reactor Systems

    SciTech Connect

    Upadhyaya, B.R.; Xu, X.; Perillo, S.R.P.; Na, M.G.

    2006-07-01

    This paper describes three key features of the development of an autonomous control strategy for space reactor systems. These include the development of a reactor simulation model for transient analysis, development of model-predictive control as part of the autonomous control strategy, and a fault detection and isolation module. The latter is interfaced with the control supervisor as part of a hierarchical control system. The approach has been applied to the nodal model of the SP-100 reactor with a thermo-electric generator. The results of application demonstrate the effectiveness of the control approach and its ability to reconfigure the control mode under fault conditions. (authors)

  19. System of polarization phasometry of polycrystalline blood plasma networks in mammary gland pathology diagnostics

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Oliinychenko, Bogdan P.; Radchenko, Kostiantyn O.; Krasnoshchoka, Anastasiia K.; Shcherba, Olga K.

    2015-09-01

    The polarizing phase meter system of polycrystalline networks of human blood plasma which is used for the mammary gland pathology diagnostics was proposed in this paper. Increasing the accuracy of the phase value determination was achieved using a combination of low coherent source of radiation and circularly polarized probing of biological object. Thus, high informativity of polarizing phase meter system for the diagnosis of breast pathology using the phase mapping of the human blood plasma films were determined, thereafter statistical, correlational, fractal structure analysis of the obtained phase maps was carried out and the quantitative criterias of the phase diagnostics and differentiation of the breast pathological conditions were determined too.

  20. Lunar materials processing system integration

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  1. On the processes generating latitudinal richness gradients: identifying diagnostic patterns and predictions

    SciTech Connect

    Hurlbert, Allen H.; Stegen, James C.

    2014-12-02

    Many processes have been put forward to explain the latitudinal gradient in species richness. Here, we use a simulation model to examine four of the most common hypotheses and identify patterns that might be diagnostic of those four hypotheses. The hypotheses examined include (1) tropical niche conservatism, or the idea that the tropics are more diverse because a tropical clade origin has allowed more time for diversification in the tropics and has resulted in few species adapted to extra-tropical climates. (2) The productivity, or energetic constraints, hypothesis suggests that species richness is limited by the amount of biologically available energy in a region. (3) The tropical stability hypothesis argues that major climatic fluctuations and glacial cycles in extratropical regions have led to greater extinction rates and less opportunity for specialization relative to the tropics. (4) Finally, the speciation rates hypothesis suggests that the latitudinal richness gradient arises from a parallel gradient in rates of speciation. We found that tropical niche conservatism can be distinguished from the other three scenarios by phylogenies which are more balanced than expected, no relationship between mean root distance and richness across regions, and a homogeneous rate of speciation across clades and through time. The energy gradient, speciation gradient, and disturbance gradient scenarios all exhibited phylogenies which were more imbalanced than expected, showed a negative relationship between mean root distance and richness, and diversity-dependence of speciation rate estimates through time. Using Bayesian Analysis of Macroevolutionary Mixtures on the simulated phylogenies, we found that the relationship between speciation rates and latitude could distinguish among these three scenarios. We emphasize the importance of considering multiple hypotheses and focusing on diagnostic predictions instead of predictions that are consistent with more than one hypothesis.

  2. Decentralized diagnostics based on a distributed micro-genetic algorithm for transducer networks monitoring large experimental systems.

    PubMed

    Arpaia, P; Cimmino, P; Girone, M; La Commara, G; Maisto, D; Manna, C; Pezzetti, M

    2014-09-01

    Evolutionary approach to centralized multiple-faults diagnostics is extended to distributed transducer networks monitoring large experimental systems. Given a set of anomalies detected by the transducers, each instance of the multiple-fault problem is formulated as several parallel communicating sub-tasks running on different transducers, and thus solved one-by-one on spatially separated parallel processes. A micro-genetic algorithm merges evaluation time efficiency, arising from a small-size population distributed on parallel-synchronized processors, with the effectiveness of centralized evolutionary techniques due to optimal mix of exploitation and exploration. In this way, holistic view and effectiveness advantages of evolutionary global diagnostics are combined with reliability and efficiency benefits of distributed parallel architectures. The proposed approach was validated both (i) by simulation at CERN, on a case study of a cold box for enhancing the cryogeny diagnostics of the Large Hadron Collider, and (ii) by experiments, under the framework of the industrial research project MONDIEVOB (Building Remote Monitoring and Evolutionary Diagnostics), co-funded by EU and the company Del Bo srl, Napoli, Italy. PMID:25273768

  3. Primary systemic amyloidosis as a real diagnostic challenge – case study

    PubMed Central

    Jerzykowska, Sonia; Gil, Lidia A.; Balcerzak, Andrzej; Pupek-Musialik, Danuta; Komarnicki, Mieczysław A.

    2014-01-01

    Primary amyloidosis (AL) is a rare variety of plasma cell dyscrasia, the diagnosis of which is often difficult to establish. Pathogenesis of amyloidosis involves extracellular deposition of insoluble protein fibrils in tissues, leading to insufficiency of affected organs. According to various sources, mean survival rate of patients with primary amyloidosis ranges from 12 to 24 months, making primary amyloidosis a disease with a very poor prognosis. Survival rate is significantly lowered in case of cardiac manifestation of amyloidosis (about 6 months survival in untreated patients). In recent years a considerable progress in AL treatment has been observed. Nowadays we are able not only to delay progression of amyloidosis, but also to improve the function of the affected organs. Unfortunately as first signs and symptoms of AL are usually nonspecific, the diagnosis of AL is often delayed, resulting in late introduction of optimal therapy. There are many diagnostic tests which can be used in diagnostic process of amyloidosis, i.e. electrophoresis, serum and urine immunofixation or affected organs and bone marrow biopsy. On establishing the diagnosis in a patient with suspected amyloidosis it should be remembered that particular diagnostic methods vary considerably in sensitivity. The aim of this paper is to present a case report of a 27-year-old patient with primary amyloidosis focusing on diagnostic aspect of this condition. On the basis of this case, the authors would like to emphasize the value of precise diagnostic process, with immunological techniques playing undoubtedly a crucial role. PMID:26155101

  4. Strategic Explanations for a Diagnostic Consultation System. Technical Report #8.

    ERIC Educational Resources Information Center

    Hasling, Diane Warner; And Others

    This paper examines the problem of automatic explanation of reasoning, or the ability of a program to discuss what it is doing in some understandable way, particularly as part of an expert system. An introduction presents a general framework in which to view explanation and reviews some of the research in this area. This is followed by a…

  5. Development of a system to provide diagnostics-while-drilling.

    SciTech Connect

    Wise, Jack LeRoy; Jacobson, Ronald David; Finger, John Travis; Mansure, Arthur James; Knudsen, Steven Dell

    2003-06-01

    This report describes development of a system that provides high-speed, real-time downhole data while drilling. Background of the project, its benefits, major technical challenges, test planning, and test results are covered by relatively brief descriptions in the body of the report, with some topics presented in more detail in the attached appendices.

  6. Development of a BPM Lock-In Diagnostic System

    SciTech Connect

    Richard Dickson

    2003-05-12

    A system has been developed for the acquisition and analysis of high rate, time coherent BPM data across the Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF). This system will allow the acquisition of Beam Position Monitor (BPM) position and intensity information at a rate in excess 7 KHz for approximately 200 BPMs in a time synchronous manner. By inducing minute sinusoidal transverse beam motion in the CEBAF injector, with known phase relative to the synchronized BPM acquisition, it is possible to derive several types of useful information. Analysis of the BPM intensity data, which is proportional to beam current, by beating the signal with an in-phase sinusoidal representation of the transverse kick can localize beam scraping to a particular BPM. Similarly, real-time optics information may be deduced with an analysis of BPM position data. This paper will detail the frequency lock-in technique applied and present status.

  7. Combined pulse-oximeter-NIRS system for biotissue diagnostics

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, Vladimir A.

    2005-08-01

    Multi-wavelength (670, 805, 848 and 905 nm), multi-detector device for non-invasive measurement of biochemical components concentration in human or animal tissues, combining the methods of conventional pulse-oximetry and near infrared spectroscopy, is developed. The portable and clinically applicable system allows to measure heart pulse rate, oxygen saturation of arterial hemoglobin (pulse-oximetry method) and local absolute concentration of oxyhemoglobin, deoxyhemoglobin and oxidized cytochrome aa3 or other IR absorbed compounds (NIRS method). The system can be applied in monitoring of oxygen availability and utilization by the brain in neonatal and adults, neuro- traumatology, intensive care medicine, transplantation and plastic surgery, in sport, high-altitude and aviation medicine.

  8. A Diagnostic Decision Support System for BMP Selection in Small Urban Watersheds

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Montas, H. J.; Leisnham, P.; Shirmohammadi, A.; Brubaker, K. L.; Reiling, S.

    2013-12-01

    Overall water quality in the United States has improved since the establishment of the Clean Water Act in 1972. While waste water and other point source discharge treatments are expanding and improving in quality, non-point source pollution remains a problem. Best Management Practices (BMPs) are structural and nonstructural methods to mitigate these problems. Much attention has focused on non-point source pollutants in rural areas, where agricultural activities increase the nutrients (fertilizers), toxics (pesticides), and sediments in surface water. Urban and suburban areas also suffer from severe water quantity and quality problems, largely due to stormwater. Low Impact Development (LID), a series of spatially distributed and engineered small-scale hydrologic controls, is an appropriate approach to reduce flow rate and improve urban stormwater quality before it discharges into surface water bodies. This research sought to develop a Diagnostic Decision Support System (DDSS) for urban BMP/LID selection. The process-based hydrologic model, Soil and Water Assessment Tool (SWAT), was used to simulate the hydrologic processes and to estimate related water quality variables. A logic based simple method was developed to identify the critical water quality and quantity hotspots using the SWAT outputs for multiple Hydrologic Response Units (HRUs) within the study watershed. The DDSS consisted of two parts: a Diagnostic Expert System (DES), which identifies the most likely reasons for excessive pollutants; and a Prescriptive Expert System (PES), which selects the best set of spatially distributed BMPs. The DDSS is tested in Watts Branch, a small urban subwatershed in metropolitan Washington D.C. A SWAT model for the watershed was calibrated and validated first. The DDSS was then applied. The final selected series of BMPs was simulated again in the SWAT model for a ten-year period to quantify their effectiveness. The identified hotspots, possible reasons, and BMP solutions

  9. Diagnostic Evaluation of Ozone Production and Horizontal Transport in a Regional Photochemical Air Quality Modeling System

    EPA Science Inventory

    A diagnostic model evaluation effort has been performed to focus on photochemical ozone formation and the horizontal transport process since they strongly impact the temporal evolution and spatial distribution of ozone (O3) within the lower troposphere. Results from th...

  10. Design Considerations for an Integrated Solar Sail Diagnostics System

    NASA Technical Reports Server (NTRS)

    Jenkins, Christopher H. M.; Gough, Aaron R.; Pappa, Richard S.; Carroll, Joe; Blandino, Joseph R.; Miles, Jonathan J.; Rakoczy, John

    2004-01-01

    Efforts are continuing under NASA support to improve the readiness level of solar sail technology. Solar sails have one of the best chances to be the next gossamer spacecraft flown in space. In the gossamer spacecraft community thus far, solar sails have always been considered a "low precision" application compared with, say, radar or optical devices. However, as this paper shows, even low precision gossamer applications put extraordinary demands on structural measurement systems if they are to be traceable to use in space.

  11. Beam Diagnostics Based on AC Modulation of System Parameters

    SciTech Connect

    Michael Tiefenback

    2004-11-10

    To improve the performance of operating accelerators, quantities such as lattice functions, beam transfer functions, betatron frequencies, etc, can be measured turn by turn with beam position monitors or from difference measurements using step changes in system parameters. Spectral measurements in closed orbit machines provide accurate values for some properties. But for open-ended systems and some measurements in closed-orbit machines, periodic modulation can be very useful for obtaining information about the beam line. Using examples from existing machines, we compare and contrast beam based modulation techniques and step function or passive measurements. For example, large amplitude dipole modulation in rings can be used in dedicated exploration of nonlinear optical properties without beam degradation, even allowing for tune spread effects. Low-level modulation can provide real-time system monitoring with no adverse effect on beam users. Examples considered include fully resonant dipole modulation in storage rings such as RHIC (hadrons) and PEP-II (electrons), and the continuous low-level modulation used in the CEBAF recirculating electron linac for real-time feedback to improve availability.

  12. [Content-based image-retrieval system - development, usefulness and perspectives of diagnostic assistant robot].

    PubMed

    Endo, Masahiro; Aramaki, Takeshi; Moriguchi, Michihisa; Sawada, Akihiro; Asakura, Koiku; Bekku, Emima; Yamaguchi, Ken

    2012-07-01

    In recent years, diagnostic imaging modalities have proliferated from standard X-ray to CT, MRI and PET, and the working environments of radiologists have changed greatly with the popular spread of the PACS system. Radiologists are now facing enormous duties due to the dramatic increase in the volume of images from various modalities, and the shortage of radiologists in Japan has reached near-crisis levels. Furthermore, it is difficult to gain the knowledge needed to interpret diagnostic imaging and modalities under the growing, increasingly diverse and complex modalities and methods, for general physicians and trainees. On the other hand, there are some computer-aided diagnosis and detection systems that support radiologists. Here, we introduce a new diagnostic assistant robot that automatically retrieves cases on record that are similar to new cases, helps in making diagnoses, and can create CT reports semi-automatically, using an existing past CT database of pulmonary nodules with a structured report. PMID:22790038

  13. Developmental trauma disorder: pros and cons of including formal criteria in the psychiatric diagnostic systems

    PubMed Central

    2013-01-01

    Background This article reviews the current debate on developmental trauma disorder (DTD) with respect to formalizing its diagnostic criteria. Victims of abuse, neglect, and maltreatment in childhood often develop a wide range of age-dependent psychopathologies with various mental comorbidities. The supporters of a formal DTD diagnosis argue that post-traumatic stress disorder (PTSD) does not cover all consequences of severe and complex traumatization in childhood. Discussion Traumatized individuals are difficult to treat, but clinical experience has shown that they tend to benefit from specific trauma therapy. A main argument against inclusion of formal DTD criteria into existing diagnostic systems is that emphasis on the etiology of the disorder might force current diagnostic systems to deviate from their purely descriptive nature. Furthermore, comorbidities and biological aspects of the disorder may be underdiagnosed using the DTD criteria. Summary Here, we discuss arguments for and against the proposal of DTD criteria and address implications and consequences for the clinical practice. PMID:23286319

  14. Condensation Processes in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Norman, D. I.; Moore, J. N.

    2005-12-01

    We model condensation processes in geothermal systems to understand how this process changes fluid chemistry. We assume two processes operate in geothermal systems: 1) condensation of a vapor phase derived by boiling an aqueous geothermal fluid into a cool near surface water and 2) condensation of a magmatic vapor by a deep circulating meteoric thermal fluid. It is assumed that the condensation process has two stages. Initially the condensing fluid is under saturated in gaseous species. Condensation of the vapor phase continues until the pressure on the fluid equals the sum of the partial pressures of water and the dissolved gaseous species. At that time bubbles flux through the condensing fluid. In time the fluid and fluxing gas phase come to equilibrium. Calculation shows that during the second stage of the condensation process the liquid phase becomes enriched in more soluble gaseous species like CO2 and H2S, and depleted in less soluble species like CH4 and N2. Stage 2 condensation processes can therefore be monitored by ratios of more and less condensable species like CO2/N2. Condensation of vapor released by boiling geothermal fluids results in liquids with high concentrations of H2S and CO2 like is seen in geothermal system steam-heated waters. Condensation of a magmatic vapor into circulating meteoric water has been proposed, but not well demonstrated. We compare to our models the Cerro Prieto, Mexico gas analysis data set collected over twelve years time by USGS personnel. It was assumed for modeling that the Cerro Prieto geothermal fluids are circulating meteoritic fluids with N2/Ar ratios about 40 to which is added a magmatic vapor with N2/Ar ratio = 400. The Cerro Prieto analyses show a strong correlation between N2/Ar and CO2/N2 as predicted by calculation. Two dimensional image plots of well N2/Ar + CO2/N2 show a bull's-eye pattern on the geothermal field. Image plots of analyses collected over a year or less time show N2/Ar and CO2/N2 hot spots

  15. Parallel processing and expert systems

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Lau, Sonie

    1991-01-01

    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited.

  16. In situ diagnostics of the crystal-growth process through neutron imaging: application to scintillators

    PubMed Central

    Tremsin, Anton S.; Makowska, Małgorzata G.; Perrodin, Didier; Shalapska, Tetiana; Khodyuk, Ivan V.; Trtik, Pavel; Boillat, Pierre; Vogel, Sven C.; Losko, Adrian S.; Strobl, Markus; Kuhn, L. Theil; Bizarri, Gregory A.; Bourret-Courchesne, Edith D.

    2016-01-01

    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e.g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studied in situ during the melting and solidification processes with a temporal resolution of 5–7 s. The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ∼50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging for in situ diagnostics and the optimization of crystal-growth procedures. PMID:27275133

  17. Development of dosimetry using detectors of diagnostic digital radiography systems

    SciTech Connect

    Ariga, Eiji; Ito, Shigeki; Deji, Shizuhiko; Saze, Takuya; Nishizawa, Kunihide

    2007-01-15

    Dosimetry using an imaging plate (IP) of computed radiography (CR) systems was developed for quality control of output of the x-ray equipment. Sensitivity index, or the S number, of the CR systems was used for estimating exposure dose under the routine condition: exposure dose from 1.0 to 1.0x10{sup 2} {mu}C kg{sup -1}, tube voltages from 50 to 120 kV, and added filtration from 0 to 4.0 mm Al. The IP was calibrated by using a 6 cc ionization chamber having traceability to the National Standard Ionization Chamber. The uncertainty concerning the fading effect was suppressed less than 1.9% by reading the latent image 4 min{+-}5 s after irradiation at the room temperature 25.9{+-}1.0 degree sign C. The S number decreased linearly on the logarithmic graph regardless of the beam quality as exposure dose increased. The relationship between the exposure dose (E) and the S number was fitted by the equation E=a{sup '}xS{sup -b}. The coefficient a{sup '} decreased when the added filtration and the tube voltage were increased. The coefficient b was 0.977{+-}0.007 in all beam qualities. The dosimetry using the IP and the equation can estimate the exposure dose in a range from 9.0x10{sup -2} to 5.0 {mu}C kg{sup -1} within an uncertainty of {+-}5% required by the Japanese Industry Standard. This dose range partially included the doses under routine condition. The doses between 1.0 and 1.0x10{sup 2} {mu}C kg{sup -1} under the routine condition can be shifted to the 5% region by using an absorber. The IP dosimetry is applicable to the quality control of the CR systems.

  18. Microcomputerized electric field meter diagnostic and calibration system

    NASA Technical Reports Server (NTRS)

    Holley, L. D.; Mason, J. W. (Inventor)

    1978-01-01

    A computerized field meter calibration system which includes an apparatus for testing the calibration of field meters normally utilized for measuring electromagnetic field potentials is described. A reference voltage is applied to the field meter for causing signals to be produced on the output terminals thereof. A bank of relays is provided for selectively connecting output terminals of the field meter to a multiplexer by means of a digital voltmeter and an oscilloscope. A frequency-shift-keyed receiver is also connected to one of the terminals of the field meter for transmitting and converting a frequency shift keyed signal to a digital signal which is, subsequently, applied to the multiplexer.

  19. Priming nanoparticle-guided diagnostics and therapeutics towards human organs-on-chips microphysiological system

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Ha; Lee, Jaewon; Shin, Woojung; Choi, Jeong-Woo; Kim, Hyun Jung

    2016-10-01

    Nanotechnology and bioengineering have converged over the past decades, by which the application of multi-functional nanoparticles (NPs) has been emerged in clinical and biomedical fields. The NPs primed to detect disease-specific biomarkers or to deliver biopharmaceutical compounds have beena validated in conventional in vitro culture models including two dimensional (2D) cell cultures or 3D organoid models. However, a lack of experimental models that have strong human physiological relevance has hampered accurate validation of the safety and functionality of NPs. Alternatively, biomimetic human "Organs-on-Chips" microphysiological systems have recapitulated the mechanically dynamic 3D tissue interface of human organ microenvironment, in which the transport, cytotoxicity, biocompatibility, and therapeutic efficacy of NPs and their conjugates may be more accurately validated. Finally, integration of NP-guided diagnostic detection and targeted nanotherapeutics in conjunction with human organs-on-chips can provide a novel avenue to accelerate the NP-based drug development process as well as the rapid detection of cellular secretomes associated with pathophysiological processes.

  20. Real-time expert system diagnostics and monitoring for the High Resolution Microwave Survey Targeted Search

    NASA Technical Reports Server (NTRS)

    Macalou, A.; Glass, B. J.

    1993-01-01

    An automated monitoring and diagnostics system (MDS) using virtual real-time software was developed for NASA's High Resolution Microwave Survey (HRMS) Targeted Search System (TSS). The four main tasks required of the MDS were monitoring and recording system health, alerting operators of problems, diagnosing poor system performance, and performing an emergency system shutdown. The MDS was implemented using commercial expert system software tools in addition to interface hardware and software developed on site. The expert system used objects, rules, and schematics in its TSS knowledge representation. The MDS was successfully integrated into the HRMS computer environment, and its performance met or exceeded its requirements.

  1. The Introduction of a Diagnostic Decision Support System (DXplain™) into the workflow of a teaching hospital service can decrease the cost of service for diagnostically challenging Diagnostic Related Groups (DRG)s

    PubMed Central

    Elkin, Peter L.; Liebow, Mark; Bauer, Brent A.; Chaliki, Swarna; Wahner-Roedler, Dietlind; Bundrick, John; Lee, Mark; Brown, Steven H.; Froehling, David; Bailey, Kent; Famiglietti, Kathleen; Kim, Richard; Hoffer, Ed; Feldman, Mitchell; Barnett, G. Octo

    2010-01-01

    Background In an era of short inpatient stays, residents may overlook relevant elements of the differential diagnosis as they try to evaluate and treat patients. However, if a resident’s first principal diagnosis is wrong, the patient’s appropriate evaluation and treatment may take longer, cost more, and lead to worse outcomes. A diagnostic decision support system may lead to the generation of a broader differential diagnosis that more often includes the correct diagnosis, permitting a shorter, more effective, and less costly hospital stay. Methods We provided residents on General Medicine services access to DXplain, an established computer-based diagnostic decision support system, for 6 months. We compared charges and cost of service for diagnostically challenging cases seen during the fourth through sixth month of access to DXplain (intervention period) to control cases seen in the six months before the system was made available. Results 564 cases were identified as diagnostically challenging by our criteria during the intervention period along with 1173 cases during the control period. Total charges were $1281 lower (P=.006), Medicare Part A charges $1032 lower (p=.006) and cost of service $990 lower (P=.001) per admission in the intervention cases than in control cases. Conclusions Using DXplain on all diagnostically challenging cases might save our medical center over $2,000,000 a year on the General Medicine Services alone. Using clinical diagnostic decision support systems may improve quality and decrease cost substantially at teaching hospitals. PMID:20951080

  2. NDMAS System and Process Description

    SciTech Connect

    Larry Hull

    2012-10-01

    Experimental data generated by the Very High Temperature Reactor Program need to be more available to users in the form of data tables on Web pages that can be downloaded to Excel or in delimited text formats that can be used directly for input to analysis and simulation codes, statistical packages, and graphics software. One solution that can provide current and future researchers with direct access to the data they need, while complying with records management requirements, is the Nuclear Data Management and Analysis System (NDMAS). This report describes the NDMAS system and its components, defines roles and responsibilities, describes the functions the system performs, describes the internal processes the NDMAS team uses to carry out the mission, and describes the hardware and software used to meet Very High Temperature Reactor Program needs.

  3. Chemical production processes and systems

    SciTech Connect

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  4. Chemical production processes and systems

    SciTech Connect

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  5. [Systemic sarcoidosis: a diagnostic challenge in pediatrics. Case report].

    PubMed

    Díaz Angarita, Tomás; Morales Camacho, William; Lozano Neira, Laura; Plata Ortiz, Jessica; Zárate Taborda, Linda

    2016-10-01

    Sarcoidosis is a granulomatous inflammatory disease of unknown etiology, evidenced most often in young adults, which can compromise several organs, mainly lung, lymph nodes, eyes and skin. The presence of the disease in pediatric population is rare. Denomination in pediatrics is made based on age and clinical manifestations of the patient. The aim of this report is to present a case of systemic sarcoidosis in a pediatric patient without lung involvement with severe extrapulmonary manifestations. Fifteen year old patient who debuted with nonspecific symptoms (emesis, weight loss). Radiographic studies without lung involvement but with findings suggestive of Langerhans cell histiocytosis; however, histopathological report (bone and lymph) showed the presence of chronic granulomatous nonnecrotizing disease, sarcoidosis type. Childhood sarcoidosis is a rare and difficult entity to diagnose, mainly by the lack of specific biomarkers for diagnosis. PMID:27606655

  6. A telemetric measurement system for flow diagnostic after bypass surgery.

    PubMed

    Zacheja, J; Bach, T

    2002-01-01

    In medical applications minimal invasive techniques become more and more important. This paper is focused on the results of vascular flow measurements based on micromachined acceleration sensors. A telemetry circuit will be designed to transmit energy to the system and transmit data from it. The sensors were placed outside on artificial blood vessels. With special prepared measuring equipment we have varied the flow through elastic flexible tubes. The tubes were narrowed to different levels to simulate different states of a stenosis. The duty cycled output signals of the acceleration sensors modulates the amplitude of an analogue carrier frequency. The demodulator in the receiving module rebuilds the transferred sensor signals which are evaluated by a microcontroller. PMID:12451859

  7. [Systemic sarcoidosis: a diagnostic challenge in pediatrics. Case report].

    PubMed

    Díaz Angarita, Tomás; Morales Camacho, William; Lozano Neira, Laura; Plata Ortiz, Jessica; Zárate Taborda, Linda

    2016-10-01

    Sarcoidosis is a granulomatous inflammatory disease of unknown etiology, evidenced most often in young adults, which can compromise several organs, mainly lung, lymph nodes, eyes and skin. The presence of the disease in pediatric population is rare. Denomination in pediatrics is made based on age and clinical manifestations of the patient. The aim of this report is to present a case of systemic sarcoidosis in a pediatric patient without lung involvement with severe extrapulmonary manifestations. Fifteen year old patient who debuted with nonspecific symptoms (emesis, weight loss). Radiographic studies without lung involvement but with findings suggestive of Langerhans cell histiocytosis; however, histopathological report (bone and lymph) showed the presence of chronic granulomatous nonnecrotizing disease, sarcoidosis type. Childhood sarcoidosis is a rare and difficult entity to diagnose, mainly by the lack of specific biomarkers for diagnosis.

  8. A telemetric measurement system for flow diagnostic after bypass surgery.

    PubMed

    Zacheja, J; Bach, T

    2002-01-01

    In medical applications minimal invasive techniques become more and more important. This paper is focused on the results of vascular flow measurements based on micromachined acceleration sensors. A telemetry circuit will be designed to transmit energy to the system and transmit data from it. The sensors were placed outside on artificial blood vessels. With special prepared measuring equipment we have varied the flow through elastic flexible tubes. The tubes were narrowed to different levels to simulate different states of a stenosis. The duty cycled output signals of the acceleration sensors modulates the amplitude of an analogue carrier frequency. The demodulator in the receiving module rebuilds the transferred sensor signals which are evaluated by a microcontroller.

  9. [Support by telecommunication of decisions in diagnostic pathology. Experience with the first telepathology system in Hungary].

    PubMed

    Gombás, P; Szende, B; Stotz, G

    1996-10-20

    The term of telepathology can be determined as diagnostic work of the pathologist at distance via an interactive telecommunication connection in which the image of the specimen appears on a monitor instead of viewing it directly through a microscope. Being a part of the telemedicine, the fast development of the telepathology is based on the revolution of the new digital technology. Technical advances of telecommunication and of image procession in the latest 80s have provided the means to transfer huge amount of visual information in narrow communication bandwidth in two direction link. In 1995 multiple live image transmission with simultaneous voice transfer has been performed between the Department of Pathology of MI Central Hospital and 1.st Institute of Pathology and Experimental Cancer Research of Semmelweis Medical University, Budapest. Transfer rate via ISDN channel was 128 kbit/sec. The first live image telemedicine system in CCE/NIS countries has achieved transmission of cytological smears, frozen sections and paraffin embedded slides supplemented with immunohistochemical preparations. Quality of visual information using video-conference software of standard H.320 was suitable for diagnosis. Development of global telepathology services depends on compatibility of different systems and on comprehensive examinations of cost, accessibility and quality for the clients and providers of telemedicine. Recent paper surveys shortly the historical development of the telepathology, analyses the essence of the new consultation technology, summaries the first experiences in Hungary and raises some questions have to be answered in the near future.

  10. Transformation of Personal Computers and Mobile Phones into Genetic Diagnostic Systems

    PubMed Central

    2014-01-01

    Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone—devices that have become readily accessible in developing countries—into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite. PMID:25223929

  11. Transformation of personal computers and mobile phones into genetic diagnostic systems.

    PubMed

    Walker, Faye M; Ahmad, Kareem M; Eisenstein, Michael; Soh, H Tom

    2014-09-16

    Molecular diagnostics based on the polymerase chain reaction (PCR) offer rapid and sensitive means for detecting infectious disease, but prohibitive costs have impeded their use in resource-limited settings where such diseases are endemic. In this work, we report an innovative method for transforming a desktop computer and a mobile camera phone--devices that have become readily accessible in developing countries--into a highly sensitive DNA detection system. This transformation was achieved by converting a desktop computer into a de facto thermal cycler with software that controls the temperature of the central processing unit (CPU), allowing for highly efficient PCR. Next, we reconfigured the mobile phone into a fluorescence imager by adding a low-cost filter, which enabled us to quantitatively measure the resulting PCR amplicons. Our system is highly sensitive, achieving quantitative detection of as little as 9.6 attograms of target DNA, and we show that its performance is comparable to advanced laboratory instruments at approximately 1/500th of the cost. Finally, in order to demonstrate clinical utility, we have used our platform for the successful detection of genomic DNA from the parasite that causes Chagas disease, Trypanosoma cruzi, directly in whole, unprocessed human blood at concentrations 4-fold below the clinical titer of the parasite. PMID:25223929

  12. Development and improvement of the operating diagnostics systems of NPO CKTI works for turbine of thermal and nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kovalev, I. A.; Rakovskii, V. G.; Isakov, N. Yu.; Sandovskii, A. V.

    2016-03-01

    The work results on the development and improvement of the techniques, algorithms, and software-hardware of continuous operating diagnostics systems of rotating units and parts of turbine equipment state are presented. In particular, to ensure the full remote service of monitored turbine equipment using web technologies, the web version of the software of the automated systems of vibration-based diagnostics (ASVD VIDAS) was developed. The experience in the automated analysis of data obtained by ASVD VIDAS form the basis of the new algorithm of early detection of such dangerous defects as rotor deflection, crack in the rotor, and strong misalignment of supports. The program-technical complex of monitoring and measuring the deflection of medium pressure rotor (PTC) realizing this algorithm will alert the electric power plant staff during a deflection and indicate its value. This will give the opportunity to take timely measures to prevent the further extension of the defect. Repeatedly, recorded cases of full or partial destruction of shrouded shelves of rotor blades of the last stages of low-pressure cylinders of steam turbines defined the need to develop a version of the automated system of blade diagnostics (ASBD SKALA) for shrouded stages. The processing, analysis, presentation, and backup of data characterizing the mechanical state of blade device are carried out with a newly developed controller of the diagnostics system. As a result of the implementation of the works, the diagnosed parameters determining the operation security of rotating elements of equipment was expanded and the new tasks on monitoring the state of units and parts of turbines were solved. All algorithmic solutions and hardware-software implementations mentioned in the article were tested on the test benches and applied at some power plants.

  13. A Model-Based Expert System for Space Power Distribution Diagnostics

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Schlegelmilch, Richard F.

    1994-01-01

    When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for the Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for applying this approach to analog systems such as the test bed, as well. The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation. The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.

  14. Application of Diagnostic Analysis Tools to the Ares I Thrust Vector Control System

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Melcher, Kevin J.; Chicatelli, Amy K.; Johnson, Stephen B.

    2010-01-01

    The NASA Ares I Crew Launch Vehicle is being designed to support missions to the International Space Station (ISS), to the Moon, and beyond. The Ares I is undergoing design and development utilizing commercial-off-the-shelf tools and hardware when applicable, along with cutting edge launch technologies and state-of-the-art design and development. In support of the vehicle s design and development, the Ares Functional Fault Analysis group was tasked to develop an Ares Vehicle Diagnostic Model (AVDM) and to demonstrate the capability of that model to support failure-related analyses and design integration. One important component of the AVDM is the Upper Stage (US) Thrust Vector Control (TVC) diagnostic model-a representation of the failure space of the US TVC subsystem. This paper first presents an overview of the AVDM, its development approach, and the software used to implement the model and conduct diagnostic analysis. It then uses the US TVC diagnostic model to illustrate details of the development, implementation, analysis, and verification processes. Finally, the paper describes how the AVDM model can impact both design and ground operations, and how some of these impacts are being realized during discussions of US TVC diagnostic analyses with US TVC designers.

  15. Ultraviolet Spectral Diagnostics of the Age of Old Stellar Systems

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth

    2007-05-01

    For our Hubble Treasury program GO-9455, we are modeling the mid- and near-ultraviolet regions of old stars across the color-magnitude diagram. After revising the list of input atomic and molecular line parameters from 2200A to 9000A, we are calculating spectra of individual stars from first principles, and combining their weighted fluxes to form composite spectra representing single-age, single-metallicity populations older than 1Gyr. We are doing this for metallicities from one-hundredth to three times solar, and for three different ratios of the abundances of light versus iron-peak elements. We show plots comparing the calculated spectra with observations of stars, M31 globular clusters, and more distant galaxies. We find that the light-element ratio affects not only the strengths of individual lines and bands, but also the blue continuum in cool stars of near-solar metallicity and higher, as the continuous opacity is increased by high magnesium abundance. We also note that at such metallicities, the mid-ultraviolet spectrum of composite systems is suppressed below 2500A, and the near-ultraviolet becomes the spectral region providing the strongest observable constraints on age, metallicity, and abundance ratio.

  16. Feature extraction from Doppler ultrasound signals for automated diagnostic systems.

    PubMed

    Ubeyli, Elif Derya; Güler, Inan

    2005-11-01

    This paper presented the assessment of feature extraction methods used in automated diagnosis of arterial diseases. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Different feature extraction methods were used to obtain feature vectors from ophthalmic and internal carotid arterial Doppler signals. In addition to this, the problem of selecting relevant features among the features available for the purpose of classification of Doppler signals was dealt with. Multilayer perceptron neural networks (MLPNNs) with different inputs (feature vectors) were used for diagnosis of ophthalmic and internal carotid arterial diseases. The assessment of feature extraction methods was performed by taking into consideration of performances of the MLPNNs. The performances of the MLPNNs were evaluated by the convergence rates (number of training epochs) and the total classification accuracies. Finally, some conclusions were drawn concerning the efficiency of discrete wavelet transform as a feature extraction method used for the diagnosis of ophthalmic and internal carotid arterial diseases. PMID:16278106

  17. Automatic diagnostic system for measuring ocular refractive errors

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; Chiaradia, Caio; de Sousa, Sidney J. F.; de Castro, Jarbas C.

    1996-05-01

    Ocular refractive errors (myopia, hyperopia and astigmatism) are automatic and objectively determined by projecting a light target onto the retina using an infra-red (850 nm) diode laser. The light vergence which emerges from the eye (light scattered from the retina) is evaluated in order to determine the corresponding ametropia. The system basically consists of projecting a target (ring) onto the retina and analyzing the scattered light with a CCD camera. The light scattered by the eye is divided into six portions (3 meridians) by using a mask and a set of six prisms. The distance between the two images provided by each of the meridians, leads to the refractive error of the referred meridian. Hence, it is possible to determine the refractive error at three different meridians, which gives the exact solution for the eye's refractive error (spherical and cylindrical components and the axis of the astigmatism). The computational basis used for the image analysis is a heuristic search, which provides satisfactory calculation times for our purposes. The peculiar shape of the target, a ring, provides a wider range of measurement and also saves parts of the retina from unnecessary laser irradiation. Measurements were done in artificial and in vivo eyes (using cicloplegics) and the results were in good agreement with the retinoscopic measurements.

  18. A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems.

    PubMed

    Palladino, A; Fiengo, G; Lanzo, D

    2012-01-01

    In-vehicle driving tests for evaluating the performance and diagnostic functionalities of engine control systems are often time consuming, expensive, and not reproducible. Using a hardware-in-the-loop (HIL) simulation approach, new control strategies and diagnostic functions on a controller area network (CAN) line can be easily tested in real time, in order to reduce the effort and the cost of the testing phase. Nowadays, spark ignition engines are controlled by an electronic control unit (ECU) with a large number of embedded sensors and actuators. In order to meet the rising demand of lower emissions and fuel consumption, an increasing number of control functions are added into such a unit. This work aims at presenting a portable electronic environment system, suited for HIL simulations, in order to test the engine control software and the diagnostic functionality on a CAN line, respectively, through non-regression and diagnostic tests. The performances of the proposed electronic device, called a micro hardware-in-the-loop system, are presented through the testing of the engine management system software of a 1.6 l Fiat gasoline engine with variable valve actuation for the ECU development version. PMID:22075387

  19. Evaluating the Diagnostic Validity of a Facet-Based Formative Assessment System

    ERIC Educational Resources Information Center

    DeBarger, Angela Haydel; DiBello, Louis; Minstrell, Jim; Feng, Mingyu; Stout, William; Pellegrino, James; Haertel, Geneva; Harris, Christopher; Ructinger, Liliana

    2011-01-01

    This paper describes methods for an alignment study and psychometric analyses of a formative assessment system, Diagnoser Tools for physics. Diagnoser Tools begin with facet clusters as the interpretive framework for designing questions and instructional activities. Thus each question in the diagnostic assessments includes distractors that…

  20. Diagnostic opto-electronic system for measuring physical and biological characteristics of the skin in vivo

    NASA Astrophysics Data System (ADS)

    Makara, Ivanna V.; Kozhukhar, Oleksander T.; Komada, Pawel; Dussembayeva, Shynar

    2015-12-01

    Actuality development of optoelectronic rapid diagnostic system for measuring physical and biological characteristics of the skin in vivo with radiation of electromagnetic radiation in the optical range to obtain objective information on the spatial distribution of biochemical and morphological and anatomical components are different for state standards and pathology.

  1. Fault diagnostic instrumentation design for environmental control and life support systems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; You, K. C.; Wynveen, R. A.; Powell, J. D., Jr.

    1979-01-01

    As a development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. As part of continous development efforts, a program to evaluate, design, and demonstrate advanced instrumentation fault diagnostics was successfully completed. Fault tolerance designs for reliability and other instrumenation capabilities to increase maintainability were evaluated and studied.

  2. Medicare Program; Medicare Clinical Diagnostic Laboratory Tests Payment System. Final rule.

    PubMed

    2016-06-23

    This final rule implements requirements of section 216 of the Protecting Access to Medicare Act of 2014 (PAMA), which significantly revises the Medicare payment system for clinical diagnostic laboratory tests. This final rule also announces an implementation date of January 1, 2018 for the private payor rate-based fee schedule required by PAMA. PMID:27373013

  3. A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems.

    PubMed

    Palladino, A; Fiengo, G; Lanzo, D

    2012-01-01

    In-vehicle driving tests for evaluating the performance and diagnostic functionalities of engine control systems are often time consuming, expensive, and not reproducible. Using a hardware-in-the-loop (HIL) simulation approach, new control strategies and diagnostic functions on a controller area network (CAN) line can be easily tested in real time, in order to reduce the effort and the cost of the testing phase. Nowadays, spark ignition engines are controlled by an electronic control unit (ECU) with a large number of embedded sensors and actuators. In order to meet the rising demand of lower emissions and fuel consumption, an increasing number of control functions are added into such a unit. This work aims at presenting a portable electronic environment system, suited for HIL simulations, in order to test the engine control software and the diagnostic functionality on a CAN line, respectively, through non-regression and diagnostic tests. The performances of the proposed electronic device, called a micro hardware-in-the-loop system, are presented through the testing of the engine management system software of a 1.6 l Fiat gasoline engine with variable valve actuation for the ECU development version.

  4. The Cornell Diagnostic Observatory and Reporting System for Student Description of College Teaching.

    ERIC Educational Resources Information Center

    Tom, F. K. T.; Cushman, H. R.

    1975-01-01

    The development of an innovative approach to the improvement of college teaching is described. The main objective was to develop a practical diagnostic observation and reporting system for student description of college teaching. A total of 120 professors participated in identifying seven general teaching objectives considered satisfactory for…

  5. Medicare Program; Medicare Clinical Diagnostic Laboratory Tests Payment System. Final rule.

    PubMed

    2016-06-23

    This final rule implements requirements of section 216 of the Protecting Access to Medicare Act of 2014 (PAMA), which significantly revises the Medicare payment system for clinical diagnostic laboratory tests. This final rule also announces an implementation date of January 1, 2018 for the private payor rate-based fee schedule required by PAMA.

  6. Adaptive-array Electron Cyclotron Emission diagnostics using data streaming in a Software Defined Radio system

    NASA Astrophysics Data System (ADS)

    Idei, H.; Mishra, K.; Yamamoto, M. K.; Hamasaki, M.; Fujisawa, A.; Nagashima, Y.; Hayashi, Y.; Onchi, T.; Hanada, K.; Zushi, H.; the QUEST Team

    2016-04-01

    Measurement of the Electron Cyclotron Emission (ECE) spectrum is one of the most popular electron temperature diagnostics in nuclear fusion plasma research. A 2-dimensional ECE imaging system was developed with an adaptive-array approach. A radio-frequency (RF) heterodyne detection system with Software Defined Radio (SDR) devices and a phased-array receiver antenna was used to measure the phase and amplitude of the ECE wave. The SDR heterodyne system could continuously measure the phase and amplitude with sufficient accuracy and time resolution while the previous digitizer system could only acquire data at specific times. Robust streaming phase measurements for adaptive-arrayed continuous ECE diagnostics were demonstrated using Fast Fourier Transform (FFT) analysis with the SDR system. The emission field pattern was reconstructed using adaptive-array analysis. The reconstructed profiles were discussed using profiles calculated from coherent single-frequency radiation from the phase array antenna.

  7. Knowledge based jet engine diagnostics

    NASA Technical Reports Server (NTRS)

    Jellison, Timothy G.; Dehoff, Ronald L.

    1987-01-01

    A fielded expert system automates equipment fault isolation and recommends corrective maintenance action for Air Force jet engines. The knowledge based diagnostics tool was developed as an expert system interface to the Comprehensive Engine Management System, Increment IV (CEMS IV), the standard Air Force base level maintenance decision support system. XMAM (trademark), the Expert Maintenance Tool, automates procedures for troubleshooting equipment faults, provides a facility for interactive user training, and fits within a diagnostics information feedback loop to improve the troubleshooting and equipment maintenance processes. The application of expert diagnostics to the Air Force A-10A aircraft TF-34 engine equipped with the Turbine Engine Monitoring System (TEMS) is presented.

  8. Use of the focusing multi-slit ion optical system at RUssian Diagnostic Injector (RUDI)

    SciTech Connect

    Listopad, A.; Davydenko, V.; Ivanov, A.; Mishagin, V.; Savkin, V.; Shulzhenko, G.; Coenen, J.; Schweer, B.; Uhlemann, R.

    2012-02-15

    The upgrade of the diagnostic neutral beam injector RUDI in 2010 was performed to increase the beam density at the focal plane in accordance with the requirements of charge-exchange recombination spectroscopy diagnostics. A new focusing ion-optical system (IOS) with slit beamlets and an enlarged aperture was optimized for 50% higher nominal beam current and reduced angular divergence with respect to the previous multi-aperture IOS version. The upgraded injector provides the beam current up to 3 A, the measured beam divergence in the direction along the slits is 0.35 deg. Additionally, the plasma generator was modified to extend the beam pulse to 8 s.

  9. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  10. A systems process of reinforcement.

    PubMed

    Sudakov, K V

    1997-01-01

    Functional systems theory was used to consider the process of reinforcement of the actions on the body of reinforcing factors, i.e., the results of behavior satisfying the body's original needs. The systems process of reinforcement includes reverse afferentation entering the CNS from receptors acted upon by various parameters of the desired results, and mechanisms for comparing reverse afferentation with the apparatus which accepts the results of the action and the corresponding emotional component. A tight interaction between reinforcement and the dominant motivation is generated on the basis of the hologram principle. Reinforcement forms an apparatus for predicting a desired result, i.e. a result-of-action acceptor. Reinforcement procedures significant changes in the activities of individual neurons in the various brain structures involved in dominant motivation, transforming their spike activity for a burst pattern to regular discharges; there are also molecular changes in neuron properties. After preliminary reinforcement, the corresponding motivation induces the ribosomal system of neurons to start synthesizing special effector molecules, which organize molecular engrams of the acceptor of the action's result. Sensory mechanisms of reinforcement are considered, with particular reference to the information role of emotions.

  11. In situ process diagnostics of silane plasma for device-quality a-Si:H deposition

    NASA Astrophysics Data System (ADS)

    Shing, Y. H.; Perry, J. W.; Hermann, A. M.

    Coherent anti-Stokes Raman spectroscopy (CARS) and mass spectrometry (MS) have been applied to in situ process diagnostics of a silane plasma for device-quality a-Si:H film deposition. Silane depletion was directly measured by CARS and is linearly dependent on RF power in the region of 4-12 W with a slope of 0.5 percent/mW-sq cm. The depletion is also dependent on SiH4 flow rate starting with a 50 percent depletion at a low flow rate of 5.6 sccm and asymptotically approaching an 8 percent depletion at a flow rate of 80 sccm. The mass spectral line signal intensity of disilane increases with RF power and shows an apparent transition at 6 W. Disilane formation in silane plasma, film deposition rate, and silane depletion ratio as a function of the RF power indicate that the film growth mechanism in the low-power region of 3.5-6.5 W is substantially different from that in the high-power region of 6.5-12 W.

  12. Improvement in data processing of Thomson scattering diagnostic on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Wang, Y. Q.; Feng, Z.; Huang, Y.

    2015-12-01

    There are two types of digitizers to acquire the values of Thomson scattering signals in HL-2A tokamak. One is charge-sensitive analogue-to-digital converters (Q-ADCs) which simply integrates the signal over a gate interval, and the other is transient recorders with 12 bits resolution and 1 GHz sampling rate at each channel. Because the Thomson scattering diagnostic is prone to electrical noisy environment, in which Q-switched Nd:YAG lasers and polychromators are located closely to the HL-2A device, the high speed transient digitizers are found helpful to reduce noise overlapped in Thomson scattering signals. After triggered by the front of TTL pulse generated by laser light, data acquisition is fulfilled from -250 ns to 250 ns, so that the temporal evolution of Thomson scattering signals is obtained. A Gaussian function is utilized to fit the pulse shape of the digitized scattering signal by nonlinear least square methods. By pulse fitting and data processing, the influence of background perturbations is substantially reduced.

  13. In situ process diagnostics of silane plasma for device-quality a-Si:H deposition

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Perry, J. W.; Hermann, A. M.

    1987-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) and mass spectrometry (MS) have been applied to in situ process diagnostics of a silane plasma for device-quality a-Si:H film deposition. Silane depletion was directly measured by CARS and is linearly dependent on RF power in the region of 4-12 W with a slope of 0.5 percent/mW-sq cm. The depletion is also dependent on SiH4 flow rate starting with a 50 percent depletion at a low flow rate of 5.6 sccm and asymptotically approaching an 8 percent depletion at a flow rate of 80 sccm. The mass spectral line signal intensity of disilane increases with RF power and shows an apparent transition at 6 W. Disilane formation in silane plasma, film deposition rate, and silane depletion ratio as a function of the RF power indicate that the film growth mechanism in the low-power region of 3.5-6.5 W is substantially different from that in the high-power region of 6.5-12 W.

  14. [The systems process of reinforcement].

    PubMed

    Sudakov, K V

    1996-01-01

    The process of reinforcement is considered in the context of the general theory of functional systems as an important part of behavioural act organization closely interacting with the dominant motivation. It is shown that reinforcement substantially changes the activities of separate neurons in different brain structures involved in dominant motivation. After a preliminary reinforcement under the influence of corresponding motivation the ribosomal apparatus of neurons begins to synthesize special molecular engrams of the action acceptor. The sensory mechanisms of reinforcement and, especially, the role of emotions are considered in details in the paper.

  15. On the Development of a Computer Based Diagnostic Assessment Tool to Help in Teaching and Learning Process

    ERIC Educational Resources Information Center

    Ahmad, Afaq; Al-Mashari, Ahmed; Al-Lawati, Ali

    2010-01-01

    This paper presents a computer based diagnostic tool developed to facilitate the learning process. The developed tool is capable of generating possible error syndromes associated with the answers received. The developed tool simulates the error pattern of the test results and then accordingly models the action plan to help in children's learning…

  16. X-ray and EUV micro-imaging systems for laser ICF diagnostics

    NASA Astrophysics Data System (ADS)

    Yi, S.; Mu, B.; Wang, X.; Huang, W.; Li, J.; Wang, Z.

    2013-10-01

    Plasma imaging diagnostics plays an important role for laser ICF. Based on the urgent need to carry out high-resolution, high-throughput plasma diagnostics, grazing-incidence X-ray Kirkpatrick-Baez (KB) microscopes and normal-incidence EUV Schwarzschild imaging system were developed. The X-ray multilayer KB microscopes were successfully been applied in the physics experiments of SGII laser facility. Combined with streaked camera, the Mo-backlit implosion flow line of hollow Carbon-Hydrogen (CH) spherical target was obtained in SGII. The 4.75keV single-channel and four-channel KB microscopes were also developed for self-emission and short-pulse backlit imaging diagnostic of CH cylindrical target. In addition, according to the need of ultra-short laser pulse plasma diagnostics, the Schwarzschild imaging system working at 68eV was researched, and the physical experiments of hot electron transport with Schwarzschild imaging system were performed in SILEX-I laser facility.

  17. [Validation of a diagnostic scoring system (Ohmann score) in acute appendicitis].

    PubMed

    Zielke, A; Sitter, H; Rampp, T A; Schäfer, E; Hasse, C; Lorenz, W; Rothmund, M

    1999-07-01

    A diagnostic scoring system, recently published by Ohmann et al. in this journal, was validated by analyzing the clinicopathological data of a consecutive series of 2,359 patients, admitted for suspicion of acute appendicitis. The results of the scoring system were compared to the results of clinical evaluation by junior (provisional) and senior surgeons (final clinical diagnosis). To assess the diagnostic ability of the score, the accuracy and positive predictive value were defined as the major diagnostic performance parameters; the rate of theoretical negative laparotomies and that of diagnostic errors served as the major procedural performance parameters. Of 2,359 patients admitted for suspected acute appendicitis, 662 were proven to have acute appendicitis by histology, for a prevalence of 28%. The overall sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the provisional clinical diagnosis were 0.50, 0.94, 0.77, 0.83, and 0.82; 0.93, for the score 0.63, 0.93, 0.77, 0.86 and 0.84, and for the final clinical diagnosis 0.90, 0.94, 0.85, 0.96, and 0.93, respectively. Of the main diagnostic performance parameter, the accuracy of the score was significantly better than that of provisional clinical diagnosis (P < 0.05, chi 2 test). The score yielded a rate of negative appendecomies and laparotomies of 14.3 and 12.3%. With respect to the rate of overlooked cases of acute apendicitis, the score demonstrated a superior performance, with only 6 cases missed (0.9%). However, the number of patients with acute appendicitis, including those with perforated disease, who were not identified by the score, was almost four times that of the final clinical diagnosis (245 vs 63). With regard to the main procedural performance parameter, the score resulted in a significantly smaller number of diagnostic errors than the provisional clinical investigator (P < 0.05, chi 2 test). The results of this study indicate that the diagnostic scoring

  18. Rotorcraft Diagnostics

    NASA Technical Reports Server (NTRS)

    Haste, Deepak; Azam, Mohammad; Ghoshal, Sudipto; Monte, James

    2012-01-01

    Health management (HM) in any engineering systems requires adequate understanding about the system s functioning; a sufficient amount of monitored data; the capability to extract, analyze, and collate information; and the capability to combine understanding and information for HM-related estimation and decision-making. Rotorcraft systems are, in general, highly complex. Obtaining adequate understanding about functioning of such systems is quite difficult, because of the proprietary (restricted access) nature of their designs and dynamic models. Development of an EIM (exact inverse map) solution for rotorcraft requires a process that can overcome the abovementioned difficulties and maximally utilize monitored information for HM facilitation via employing advanced analytic techniques. The goal was to develop a versatile HM solution for rotorcraft for facilitation of the Condition Based Maintenance Plus (CBM+) capabilities. The effort was geared towards developing analytic and reasoning techniques, and proving the ability to embed the required capabilities on a rotorcraft platform, paving the way for implementing the solution on an aircraft-level system for consolidation and reporting. The solution for rotorcraft can he used offboard or embedded directly onto a rotorcraft system. The envisioned solution utilizes available monitored and archived data for real-time fault detection and identification, failure precursor identification, and offline fault detection and diagnostics, health condition forecasting, optimal guided troubleshooting, and maintenance decision support. A variant of the onboard version is a self-contained hardware and software (HW+SW) package that can be embedded on rotorcraft systems. The HM solution comprises components that gather/ingest data and information, perform information/feature extraction, analyze information in conjunction with the dependency/diagnostic model of the target system, facilitate optimal guided troubleshooting, and offer

  19. Early diagnostic of concurrent gear degradation processes progressing under time-varying loads

    NASA Astrophysics Data System (ADS)

    Guilbault, Raynald; Lalonde, Sébastien

    2016-08-01

    This study develops a gear diagnostic procedure for the detection of multi- and concurrent degradation processes evolving under time-varying loads. Instead of a conventional comparison between a descriptor and an alarm level, this procedure bases its detection strategy on a descriptor evolution tracking; a lasting descriptor increase denotes the presence of ongoing degradation mechanisms. The procedure works from time domain residual signals prepared in the frequency domain, and accepts any gear conditions as reference signature. To extract the load fluctuation repercussions, the procedure integrates a scaling factor. The investigation first examines a simplification assuming a linear connection between the load and the dynamic response amplitudes. However, while generally valuable, the precision losses associated with large load variations may mask the contribution of tiny flaws. To better reflect the real non-linear relation, the paper reformulates the scaling factor; a power law with an exponent value of 0.85 produces noticeable improvements of the load effect extraction. To reduce the consequences of remaining oscillations, the procedure also includes a filtering phase. During the validation program, a synthetic wear progression assuming a commensurate relation between the wear depth and friction assured controlled evolutions of the surface degradation influence, whereas the fillet crack growth remained entirely determined by the operation conditions. Globally, the tested conditions attest that the final strategy provides accurate monitoring of coexisting isolated damages and general surface deterioration, and that its tracking-detection capacities are unaffected by severe time variations of external loads. The procedure promptly detects the presence of evolving abnormal phenomena. The tests show that the descriptor curve shapes virtually describe the constant wear progression superimposed on the crack length evolution. At the tooth fracture, the mean values of

  20. Repeated Diagnostic Imaging Studies in Ontario and the Impact of Health Information Exchange Systems.

    PubMed

    Welk, Blayne; Liu, Kuan; Al-Jaishi, Ahmed; McArthur, Eric; Jain, Arsh K; Ordon, Michael

    2016-01-01

    Health information exchange systems can link the results of diagnostic imaging tests across hospitals and geographic areas. One of the potential benefits of these systems is a reduction in imaging studies ordered by physicians who do not know about or have access to the previous imaging results. We used administrative data from Ontario, Canada (from the year 2013), to measure how frequently the same cross-sectional imaging study is repeated in a patient. Overall, 12.8% of the specified imaging tests were repeated within 90 days. An area of Southwestern Ontario with a health information exchange system for diagnostic imaging tests had a 13% lower rate of repeat cross-sectional imaging compared with the rest of the province (11.2 vs 12.8%, p < 0.01). The use of linked radiology systems may be able to reduce the number of repeated imaging tests and improve patient safety and hospital efficiency. PMID:27133604

  1. Advanced development of particle-beam-probe diagnostic systems. Technical progress report, 1 July 1980-30 April 1981

    SciTech Connect

    Hickok, R.L.; Jennings, W.C.; Woo, J.T.; Connor, K.A.

    1981-05-01

    The heavy ion beam probe system on the RENTOR tokamak has been reinstalled with considerably improved performance. The heavy neutral beam probe system on the ALEX baseball facility has demonstrated the capability of measuring space potential in minimum-B geometry. A large amount of data were obtained from the highly successful TMX beam probe system and are presently being analyzed. Technological improvements were made on both the RENTOR and ALEX diagnostic systems, new ion sources and extraction configurations were investigated, and the superiority of off-line processing techniques for beam probe data has been demonstrated. The development of high energy probing beams for application to major confinement experiments has been initiated and cross-over sweep systems to improve spatial resolution, differential pumping, and reduce energy requirements have been designed.

  2. Development and implementation of an expert information system (BRITE) used in technical support of medical diagnostics customers.

    PubMed

    Hopkins, T; Advani, R; Gudmunson, G

    1995-09-01

    We developed BRITE (Bringing Resources and Information to Employees), an expert information retrieval system, for problem solving and retrieving technical product information. Specialists in our Technical Assistance Center (TAC) use the BRITE system on a Pentium workstation to access information in < 3 s. Manuals, technical bulletins, parts lists, and administrative tools such as word processing and network fax are available electronically. The system allows consistent troubleshooting and definition of customers' problems by TAC specialists. BRITE seamlessly integrates expert system, document retrieval, and relational database technologies; the system runs on a token ring local area network, which is part of a Ciba Corning Diagnostics wide area network. Information received over the wide area network is used to develop and update BRITE daily. BRITE is kept current by input or troubleshooting and new applications from TAC specialists.

  3. A Study of Laser System Requirements for Application in Beam Diagnostics And Polarimetry at the ILC

    SciTech Connect

    Dixit, S.; Delerue, N.; Foster, B.; Howell, D.F.; Peach, K.; Quelch, G.; Qureshi, M.; Reichold, A.; Hirst, G.; Ross, I.; Urakawa, J.; Soskov, V.; Variola, A.; Zomer, F.; Blair, G.A.; Boogert, S.T.; Boorman, G.; Bosco, A.; Driouichi, C.; Karataev, P.; Brachmann, A.; /SLAC

    2007-02-12

    Advanced laser systems will be essential for a range of diagnostics devices and polarimetry at the ILC. High average power, high beam quality, excellent stability and reliability will be crucial in order to deliver the information required to attain the necessary ILC luminosity as well as for efficient polarimetry. The key parameters are listed together with the R & D required to achieve the necessary laser system performance.

  4. Processing system for an enhanced vision system

    NASA Astrophysics Data System (ADS)

    Yelton, Dennis J.; Bernier, Ken L.; Sanders-Reed, John N.

    2004-08-01

    Enhanced Vision Systems (EVS) combines imagery from multiple sensors, possibly running at different frame rates and pixel counts, on to a display. In the case of a Helmet Mounted Display (HMD), the user line of sight is continuously changing with the result that the sensor pixels rendered on the display are changing in real time. In an EVS, the various sensors provide overlapping fields of view which requires stitching imagery together to provide a seamless mosaic to the user. Further, different modality sensors may be present requiring the fusion of imagery from the sensors. All of this takes place in a dynamic flight environment where the aircraft (with fixed mounted sensors) is changing position and orientation while the users are independently changing their lines of sight. In order to provide well registered, seamless imagery, very low throughput latencies are required, while dealing with huge volumes of data. This provides both algorithmic and processing challenges which must be overcome to provide a suitable system. This paper discusses system architecture, efficient stitching and fusing algorithms, and hardware implementation issues.

  5. A Multi-Expert Approach for Developing Testing and Diagnostic Systems Based on the Concept-Effect Model

    ERIC Educational Resources Information Center

    Panjaburee, Patcharin; Hwang, Gwo-Jen; Triampo, Wannapong; Shih, Bo-Ying

    2010-01-01

    With the popularization of computer and communication technologies, researchers have attempted to develop computer-assisted testing and diagnostic systems to help students improve their learning performance on the Internet. In developing a diagnostic system for detecting students' learning problems, it is difficult for individual teachers to…

  6. Laser system for high resolution Thomson scattering diagnostics on the COMPASS tokamak

    SciTech Connect

    Bohm, P.; Sestak, D.; Bilkova, P.; Aftanas, M.; Weinzettl, V.; Hron, M.; Panek, R.; Dunstan, M. R.; Naylor, G.

    2010-10-15

    A new Thomson scattering diagnostic has been designed and is currently being installed on the COMPASS tokamak in IPP Prague in the Czech Republic. The requirements for this system are very stringent with approximately 3 mm spatial resolution at the plasma edge. A critical part of this diagnostic is the laser source. To achieve the specified parameters, a multilaser solution is utilized. Two 30 Hz 1.5 J Nd:YAG laser systems, used at the fundamental wavelength of 1064 nm, are located outside the tokamak area at a distance of 20 m from the tokamak. The design of the laser beam transport path is presented. The approach leading to a final choice of optimal focusing optics is given. As well as the beam path to the tokamak, a test path of the same optical length was built. Performance tests of the laser system carried out using the test path are described.

  7. Beam Diagnostics On The HELEN Laser System At Atomic Weapons Research Establishment (AWRE)

    NASA Astrophysics Data System (ADS)

    Cooke, R. L.; Norman, C. J.; Danson, C. N.

    1982-11-01

    The HELEN laser system at the Atomic Weapons Research Establishment, is a two beam Nd-glass laser used for the study of laser plasma phenomena relevant to weapons physics, and is capable of generating 100 J pulses of 1TW peak power in each arm. This paper presents an overview of the system with particular reference to recent developments in beam diagnostics. The diagnostics discussed fall into two categories of equal importance. Firstly, the measurement of beam parameters required for the complete analysis of experimental target data, namely laser pulse energy, pulse width, pre-pulse ratio and far-field intensity distribution; and secondly, measurement of parameters used to ensure optimum system performance such as near-field intensity distribution, amplifier gains and passive component transmission.

  8. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    NASA Astrophysics Data System (ADS)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  9. Studying the Impact of Spaceflight Environment on Immune Functions Using New Molecular Diagnostics System

    NASA Astrophysics Data System (ADS)

    Cohen, Luchino

    Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.

  10. Are faces processed like words? A diagnostic test for recognition by parts.

    PubMed

    Martelli, Marialuisa; Majaj, Najib J; Pelli, Denis G

    2005-02-04

    Do we identify an object as a whole or by its parts? This simple question has been surprisingly hard to answer. It has been suggested that faces are recognized as wholes and words are recognized by parts. Here we answer the question by applying a test for crowding. In crowding, a target is harder to identify in the presence of nearby flankers. Previous work has described crowding between objects. We show that crowding also occurs between the parts of an object. Such internal crowding severely impairs perception, identification, and fMRI face-area activation. We apply a diagnostic test for crowding to a word and a face, and we find that the critical spacing of the parts required for recognition is proportional to distance from fixation and independent of size and kind. The critical spacing defines an isolation field around the target. Some objects can be recognized only when each part is isolated from the rest of the object by the critical spacing. In that case, recognition is by parts. Recognition is holistic if the observer can recognize the object even when the whole object fits within a critical spacing. Such an object has only one part. Multiple parts within an isolation field will crowd each other and spoil recognition. To assess the robustness of the crowding test, we manipulated familiarity through inversion and the face- and word-superiority effects. We find that threshold contrast for word and face identification is the product of two factors: familiarity and crowding. Familiarity increases sensitivity by a factor of x1.5, independent of eccentricity, while crowding attenuates sensitivity more and more as eccentricity increases. Our findings show that observers process words and faces in much the same way: The effects of familiarity and crowding do not distinguish between them. Words and faces are both recognized by parts, and their parts -- letters and facial features -- are recognized holistically. We propose that internal crowding be taken as the

  11. Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics

    SciTech Connect

    Steinberg, Adam M.; Driscoll, James F.

    2009-12-15

    The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configuration were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)

  12. Dynamic MRI-based computer aided diagnostic systems for early detection of kidney transplant rejection: A survey

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Khalifa, Fahmi; Alansary, Amir; Soliman, Ahmed; Gimel'farb, Georgy; El-Baz, Ayman

    2013-10-01

    Early detection of renal transplant rejection is important to implement appropriate medical and immune therapy in patients with transplanted kidneys. In literature, a large number of computer-aided diagnostic (CAD) systems using different image modalities, such as ultrasound (US), magnetic resonance imaging (MRI), computed tomography (CT), and radionuclide imaging, have been proposed for early detection of kidney diseases. A typical CAD system for kidney diagnosis consists of a set of processing steps including: motion correction, segmentation of the kidney and/or its internal structures (e.g., cortex, medulla), construction of agent kinetic curves, functional parameter estimation, diagnosis, and assessment of the kidney status. In this paper, we survey the current state-of-the-art CAD systems that have been developed for kidney disease diagnosis using dynamic MRI. In addition, the paper addresses several challenges that researchers face in developing efficient, fast and reliable CAD systems for the early detection of kidney diseases.

  13. An Update of The Diagnostic Systems Proposed for The New Third Generation UK Light Source, DIAMOND

    NASA Astrophysics Data System (ADS)

    Buckley, Stephen R.; Dufau, Michael J.; Smith, Robert J.

    2002-12-01

    This paper describes the currently proposed systems for electron beam position monitoring (EBPM) and diagnostics for the DIAMOND synchrotron. Although the basic requirements have remained unaltered, the philosophy of implementation has been subject to change, influenced by the experiences of other national light sources, and the emerging availability of commercial equipment, suited to the needs of DIAMOND. This paper focuses in greatest detail on the storage ring systems, including data acquisition and control. Details of Total Current Monitor (TCM) systems, and an active, beam position based interlock system for protecting ID vessels against thermal damage, by beam mis-steer, are also included.

  14. Hybrid systems process mixed wastes

    SciTech Connect

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  15. The video fluorescent device for diagnostics of cancer of human reproductive system

    NASA Astrophysics Data System (ADS)

    Brysin, Nickolay N.; Linkov, Kirill G.; Stratonnikov, Alexander A.; Savelieva, Tatiana A.; Loschenov, Victor B.

    2008-06-01

    Photodynamic therapy (PDT) is one of the advanced methods of treatment of skin cancer and surfaces of internal organs. The basic advantages of PDT are high efficiency and low cost of treatment. PDT technique is needed for providing fluorescent diagnostics. Laser-based systems are widely applied to the fluorescence excitations for diagnostic because of a narrow spectrum of fluorescence excitation and high density of radiation. Application of laser systems for carrying out fluorescent diagnostics gives the image of a tumor distorted by speckles that does not give an opportunity to obtain full information about the form of a tumor quickly. Besides, these laser excitation systems have complicated structure and high cost. As a base for the development and creation of a video fluorescent device one of commercially produced colposcopes was chosen. It allows to decrease cost of the device, and also has enabled to make modernization for already used colposcopes. A LED-based light source was offered to be used for fluorescence excitation in this work. The maximum in a spectrum of radiation of LEDs corresponds to the general spectral maximum of protoporphyrin IX (PPIX) absorption. Irradiance in the center of a light spot is 31 mW/cm2. The receiving optical system of the fluorescent channel is adjusted at 635 nm where a general spectral maximum of fluorescence PPIX is located. Also the device contains a RGB video channel, a white light source and a USB spectrometer LESA-01-BIOSPEC, for measurement of spectra of fluorescence and diffusion reflections in treatment area. The software is developed for maintenance of the device. Some studies on laboratory animals were made. As a result, areas with the increased concentration of a PPIX were correctly detected. At present, the device is used for diagnostics of cancer of female reproductive system in Research Centre for Obstetrics, Gynecology and Perinatology of the Russian Academy of Medical Sciences (Moscow, Russia).

  16. Experimental analysis of a novel and low-cost pin photodiode dosimetry system for diagnostic radiology

    NASA Astrophysics Data System (ADS)

    Nazififard, Mohammad; Suh, Kune Y.; Mahmoudieh, Afshin

    2016-07-01

    Silicon PIN photodiode has recently found broad and exciting applications in the ionizing radiation dosimetry. In this study a compact and novel dosimetry system using a commercially available PIN photodiode (BPW34) has been experimentally tested for diagnostic radiology. The system was evaluated with clinical beams routinely used for diagnostic radiology and calibrated using a secondary reference standard. Measured dose with PIN photodiode (Air Kerma) varied from 10 to 430 μGy for tube voltages from 40 to 100 kVp and tube current from 0.4 to 40 mAs. The minimum detectable organ dose was estimated to be 10 μGy with 20% uncertainty. Results showed a linear correlation between the PIN photodiode readout and dose measured with standard dosimeters spanning doses received. The present dosimetry system having advantages of suitable sensitivity with immediate readout of dose values, low cost, and portability could be used as an alternative to passive dosimetry system such as thermoluminescent dosimeter for dose measurements in diagnostic radiology.

  17. Ontology-Oriented Diagnostic System for Traditional Chinese Medicine Based on Relation Refinement

    PubMed Central

    Gu, Peiqin; Chen, Huajun

    2013-01-01

    Although Chinese medicine treatments have become popular recently, the complicated Chinese medical knowledge has made it difficult to be applied in computer-aided diagnostics. The ability to model and use the knowledge becomes an important issue. In this paper, we define the diagnosis in Traditional Chinese Medicine (TCM) as discovering the fuzzy relations between symptoms and syndromes. An Ontology-oriented Diagnosis System (ODS) is created to address the knowledge-based diagnosis based on a well-defined ontology of syndromes. The ontology transforms the implicit relationships among syndromes into a machine-interpretable model. The clinical data used for feature selection is collected from a national TCM research institute in China, which serves as a training source for syndrome differentiation. The ODS analyzes the clinical cases to obtain a statistical mapping relation between each syndrome and associated symptom set, before rechecking the completeness of related symptoms via ontology refinement. Our diagnostic system provides an online web interface to interact with users, so that users can perform self-diagnosis. We tested 12 common clinical cases on the diagnosis system, and it turned out that, given the agree metric, the system achieved better diagnostic accuracy compared to nonontology method—92% of the results fit perfectly with the experts' expectations. PMID:23533534

  18. Solar-thermal complex sample processing for nucleic acid based diagnostics in limited resource settings

    PubMed Central

    Gumus, Abdurrahman; Ahsan, Syed; Dogan, Belgin; Jiang, Li; Snodgrass, Ryan; Gardner, Andrea; Lu, Zhengda; Simpson, Kenneth; Erickson, David

    2016-01-01

    The use of point-of-care (POC) devices in limited resource settings where access to commonly used infrastructure, such as water and electricity, can be restricted represents simultaneously one of the best application fits for POC systems as well as one of the most challenging places to deploy them. Of the many challenges involved in these systems, the preparation and processing of complex samples like stool, vomit, and biopsies are particularly difficult due to the high number and varied nature of mechanical and chemical interferents present in the sample. Previously we have demonstrated the ability to use solar-thermal energy to perform PCR based nucleic acid amplifications. In this work demonstrate how the technique, using similar infrastructure, can also be used to perform solar-thermal based sample processing system for extracting and isolating Vibrio Cholerae nucleic acids from fecal samples. The use of opto-thermal energy enables the use of sunlight to drive thermal lysing reactions in large volumes without the need for external electrical power. Using the system demonstrate the ability to reach a 95°C threshold in less than 5 minutes and maintain a stable sample temperature of +/− 2°C following the ramp up. The system is demonstrated to provide linear results between 104 and 108 CFU/mL when the released nucleic acids were quantified via traditional means. Additionally, we couple the sample processing unit with our previously demonstrated solar-thermal PCR and tablet based detection system to demonstrate very low power sample-in-answer-out detection. PMID:27231636

  19. Solar-thermal complex sample processing for nucleic acid based diagnostics in limited resource settings.

    PubMed

    Gumus, Abdurrahman; Ahsan, Syed; Dogan, Belgin; Jiang, Li; Snodgrass, Ryan; Gardner, Andrea; Lu, Zhengda; Simpson, Kenneth; Erickson, David

    2016-05-01

    The use of point-of-care (POC) devices in limited resource settings where access to commonly used infrastructure, such as water and electricity, can be restricted represents simultaneously one of the best application fits for POC systems as well as one of the most challenging places to deploy them. Of the many challenges involved in these systems, the preparation and processing of complex samples like stool, vomit, and biopsies are particularly difficult due to the high number and varied nature of mechanical and chemical interferents present in the sample. Previously we have demonstrated the ability to use solar-thermal energy to perform PCR based nucleic acid amplifications. In this work demonstrate how the technique, using similar infrastructure, can also be used to perform solar-thermal based sample processing system for extracting and isolating Vibrio Cholerae nucleic acids from fecal samples. The use of opto-thermal energy enables the use of sunlight to drive thermal lysing reactions in large volumes without the need for external electrical power. Using the system demonstrate the ability to reach a 95°C threshold in less than 5 minutes and maintain a stable sample temperature of +/- 2°C following the ramp up. The system is demonstrated to provide linear results between 10(4) and 10(8) CFU/mL when the released nucleic acids were quantified via traditional means. Additionally, we couple the sample processing unit with our previously demonstrated solar-thermal PCR and tablet based detection system to demonstrate very low power sample-in-answer-out detection.

  20. Solar-thermal complex sample processing for nucleic acid based diagnostics in limited resource settings.

    PubMed

    Gumus, Abdurrahman; Ahsan, Syed; Dogan, Belgin; Jiang, Li; Snodgrass, Ryan; Gardner, Andrea; Lu, Zhengda; Simpson, Kenneth; Erickson, David

    2016-05-01

    The use of point-of-care (POC) devices in limited resource settings where access to commonly used infrastructure, such as water and electricity, can be restricted represents simultaneously one of the best application fits for POC systems as well as one of the most challenging places to deploy them. Of the many challenges involved in these systems, the preparation and processing of complex samples like stool, vomit, and biopsies are particularly difficult due to the high number and varied nature of mechanical and chemical interferents present in the sample. Previously we have demonstrated the ability to use solar-thermal energy to perform PCR based nucleic acid amplifications. In this work demonstrate how the technique, using similar infrastructure, can also be used to perform solar-thermal based sample processing system for extracting and isolating Vibrio Cholerae nucleic acids from fecal samples. The use of opto-thermal energy enables the use of sunlight to drive thermal lysing reactions in large volumes without the need for external electrical power. Using the system demonstrate the ability to reach a 95°C threshold in less than 5 minutes and maintain a stable sample temperature of +/- 2°C following the ramp up. The system is demonstrated to provide linear results between 10(4) and 10(8) CFU/mL when the released nucleic acids were quantified via traditional means. Additionally, we couple the sample processing unit with our previously demonstrated solar-thermal PCR and tablet based detection system to demonstrate very low power sample-in-answer-out detection. PMID:27231636

  1. Comparison of measures to assess change in diagnostic performance due to a decision support system.

    PubMed Central

    Maisiak, R. S.; Berner, E. S.

    2000-01-01

    Little has been done to examine the relative merit of measures used to assess the impact of diagnostic decision support systems (DDSS) on physician performance. In this study, 10 different single-measures of diagnostic performance were compared empirically. The measures were of three types: rank-order, all-or-none, and appropriateness. The responsiveness (RESP) of each measure was estimated under two repeated-measures experimental conditions. RESP is the degree to which a measure could detect differences between conditions of low and high performance. The diagnostic performance of 108 physicians was compared on medical cases of varying diagnostic difficulty and with or without a high level of assistance from a DDSS. The results showed that the RESP among the measures varied nearly tenfold. The rank-order measures tended to provide the highest RESP values (maximum = 2.14) while appropriateness measures provided the lowest RESP values (maximum = 1.41). The most responsive measures were rank-orders of the correct diagnosis within the top 5 to 10 listed diagnoses. PMID:11079940

  2. A System for Simulating Fluctuation Diagnostics for Application to Turbulence Computations

    SciTech Connect

    Bravenec, R V; Nevins, W M

    2006-02-21

    Present-day nonlinear microstability codes are able to compute the saturated fluctuations of a turbulent fluid versus space and time, whether the fluid be liquid, gas, or plasma. They are therefore able to determine turbulence-induced fluid (or particle) and energy fluxes. These codes, however, must be tested against experimental data, not only with respect to transport, but also characteristics of the fluctuations. The latter is challenging because of limitations in the diagnostics (e.g., finite spatial resolution) and the fact that the diagnostics typically do not measure exactly the quantities the codes compute. In this work, we present a system based on IDL{reg_sign} analysis and visualization software in which user-supplied ''diagnostic filters'' are applied to the code outputs to generate simulated diagnostic signals. The same analysis techniques as applied to the measurements, e.g., digital time-series analysis, may then be applied to the synthesized signals. Their statistical properties, such as rms fluctuation level, mean wave numbers, phase and group velocities, correlation lengths and times, and in some cases full S(k,{omega}) spectra can then be compared directly to those of the measurements.

  3. Results from a National Central Auditory Processing Disorder Service: A Real-World Assessment of Diagnostic Practices and Remediation for Central Auditory Processing Disorder.

    PubMed

    Cameron, Sharon; Glyde, Helen; Dillon, Harvey; King, Alison; Gillies, Karin

    2015-11-01

    This article describes the development and evaluation of a national service to diagnose and remediate central auditory processing disorder (CAPD). Data were gathered from 38 participating Australian Hearing centers over an 18-month period from 666 individuals age 6, 0 (years, months) to 24, 8 (median 9, 0). A total of 408 clients were diagnosed with either a spatial processing disorder (n = 130), a verbal memory deficit (n = 174), or a binaural integration deficit (n = 104). A hierarchical test protocol was used so not all children were assessed on all tests in the battery. One hundred fifty clients decided to proceed with deficit-specific training (LiSN & Learn or Memory Booster) and/or be fitted with a frequency modulation system. Families were provided with communication strategies targeted to a child's specific listening difficulties and goals. Outcomes were measured using repeat assessment of the relevant diagnostic test, as well as the Client Oriented Scale of Improvement measure and Listening Inventories for Education teacher questionnaire. Group analyses revealed significant improvements postremediation for all training/management options. Individual posttraining performance and results of outcome measures also are discussed. PMID:27587910

  4. Expert diagnostics system as a part of analysis software for power mission operations

    NASA Technical Reports Server (NTRS)

    Harris, Jennifer A.; Bahrami, Khosrow A.

    1993-01-01

    The operation of interplanetary spacecraft at JPL has become an increasingly complex activity. This complexity is due to advanced spacecraft designs and ambitious mission objectives which lead to operations requirements that are more demanding than those of any previous mission. For this reason, several productivity enhancement measures are underway at JPL within mission operations, particularly in the spacecraft analysis area. These measures aimed at spacecraft analysis include: the development of a multi-mission, multi-subsystem operations environment; the introduction of automated tools into this environment; and the development of an expert diagnostics system. This paper discusses an effort to integrate the above mentioned productivity enhancement measures. A prototype was developed that integrates an expert diagnostics system into a multi-mission, multi-subsystem operations environment using the Galileo Power / Pyro Subsystem as a testbed. This prototype will be discussed in addition to background information associated with it.

  5. Optical diagnostics for condensed-phase shock-compressed molecular systems

    SciTech Connect

    Schmidt, S.C.; Moore, D.S.; Shaner, J.W.

    1983-01-01

    Experimental techniques capable of obtaining information about the molecular phenomenology in the region through and immediately behind the shockfront during the shock-compression of condensed-phase molecular systems are discussed and compared. Difficulties associated with performing measurements in this region are briefly reviewed. Some concomitant static experiments that can be used to complement the dynamic measurements are suggested. Developments and advances expected in diagnostic techniques during the next few years are summarized.

  6. Design of decision support system when undertaking medical-diagnostic action

    NASA Astrophysics Data System (ADS)

    Povoroznyuk, Anatoliy I.; Filatova, Anna E.; Surtel, Wojciech; Burlibay, Aron; Zhassandykyzy, Maral

    2015-12-01

    In the work the formalization of the problem of diagnostic and treatment activities (DTA) steps complex estimation for increasing of their efficiency and minimization of the risk of doctor's mistakes was completed. The decision support system during conducting of DTA based on formalizations of steps of DTA performing with theirs complex estimation was developed that allows to minimize the risks of doctor's mistakes, raise validity of decisions.

  7. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources

    NASA Astrophysics Data System (ADS)

    Bundesmann, C.; Tartz, M.; Scholze, F.; Leiter, H. J.; Scortecci, F.; Gnizdor, R. Y.; Neumann, H.

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1.

  8. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.

    PubMed

    Bundesmann, C; Tartz, M; Scholze, F; Leiter, H J; Scortecci, F; Gnizdor, R Y; Neumann, H

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1. PMID:20441379

  9. The Sandtray Technique for Swedish Children 1945-1960: Diagnostics, Psychotherapy and Processes of Individualisation

    ERIC Educational Resources Information Center

    Nelson, Karin Zetterqvist

    2011-01-01

    The present article examines the development of a diagnostic and therapeutic technique named The Sandtray at the Erica Foundation, a privately-run child counselling service in Stockholm. Originally it was called The World, developed by the British paediatrician and child psychiatrist Margaret Lowenfeld. In the 1930s it was imported to Sweden,…

  10. Data acquisition and processing system of the electron cyclotron emission imaging system of the KSTAR tokamak

    SciTech Connect

    Kim, J. B.; Lee, W.; Yun, G. S.; Park, H. K.; Domier, C. W.; Luhmann, N. C. Jr.

    2010-10-15

    A new innovative electron cyclotron emission imaging (ECEI) diagnostic system for the Korean Superconducting Tokamak Advanced Research (KSTAR) produces a large amount of data. The design of the data acquisition and processing system of the ECEI diagnostic system should consider covering the large data production and flow. The system design is based on the layered structure scalable to the future extension to accommodate increasing data demands. Software architecture that allows a web-based monitoring of the operation status, remote experiment, and data analysis is discussed. The operating software will help machine operators and users validate the acquired data promptly, prepare next discharge, and enhance the experiment performance and data analysis in a distributed environment.

  11. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.

    2016-11-01

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  12. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay; Wilder, Michael C.; Porter, Barry; Brown, Jeff; Yeung, Dickson; Battazzo, Steve; Brubaker, Tim

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnsons arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  13. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (TALIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. Use of TALIF expanded at NASA Ames and to NASA Johnson's arc jet facility in the late 2000s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the original AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper documents the overall system design from measurement requirements to implementation. Representative data from the redeveloped AHF and IHF LIF systems are also presented.

  14. Consolidated Laser-Induced Fluorescence Diagnostic Systems for the NASA Ames Arc Jet Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Porter, Barry J.; Brown, Jeffrey D.; Yeung, Dickson; Battazzo, Stephen J.; Brubaker, Timothy R.

    2016-01-01

    The spectroscopic diagnostic technique of two photon absorption laser-induced fluorescence (LIF) of atomic species for non-intrusive arc jet flow property measurement was first implemented at NASA Ames in the mid-1990s. In 2013-2014, NASA combined the agency's large-scale arc jet test capabilities at NASA Ames. Concurrent with that effort, the agency also sponsored a project to establish two comprehensive LIF diagnostic systems for the Aerodynamic Heating Facility (AHF) and Interaction Heating Facility (IHF) arc jets. The scope of the project enabled further engineering development of the existing IHF LIF system as well as the complete reconstruction of the AHF LIF system. The updated LIF systems are identical in design and capability. They represent the culmination of over 20 years of development experience in transitioning a specialized laboratory research tool into a measurement system for large-scale, high-demand test facilities. This paper will document the latest improvements of the LIF system design and demonstrations of the redeveloped AHF and IHF LIF systems.

  15. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    SciTech Connect

    Graca, S.; Santos, J.; Manso, M.E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut fuer Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusao Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  16. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    NASA Astrophysics Data System (ADS)

    Graça, S.; Santos, J.; Manso, M. E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut für Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusão Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  17. PV Manufacturing R&D Project Status and Accomplishments under 'In-Line Diagnostics and Intelligent Processing' and 'Yield, Durability and Reliability': Preprint

    SciTech Connect

    Friedman, D. J.; Mitchell, R. L.; Keyes, B. M.; Bower, W. I.; King, R.; Mazer, J.

    2006-05-01

    The PV Manufacturing R&D (PVMR&D) Project conducts cost-shared research and development programs with U.S. PV industry partners. There are currently two active industry partnership activities. ''In-line Diagnostics and Intelligent Processing'', launched in 2002, supports development of new in-line diagnostics and monitoring with real-time feedback for optimal process control and increased yield in the fabrication of PV modules, systems, and other system components. ''Yield, Durability and Reliability'', launched in late 2004, supports enhancement of PV module, system component, and complete system reliability in high-volume manufacturing. A second key undertaking of the PVMR&D Project is the collection and analysis of module production cost-capacity metrics for the U.S. PV industry. In the period from 1992 through 2005, the average module manufacturing cost in 2005 dollars fell 54% (5.7% annualized) to $2.74/Wp, and the capacity increased 18.6-fold (25% annualized) to 253 MW/yr. An experience curve analysis gives progress ratios of 87% and 81%, respectively, for U.S. silicon and thin-film module production.

  18. KHz combustion diagnostics by means of an onboard drop capsule laser system

    NASA Astrophysics Data System (ADS)

    Paa, Wolfgang; Wagner, Volker; Klinkov, Konstantin; Eigenbrod, Christian

    kHz combustion diagnostics by means of an onboard drop capsule laser system We present an onboard drop capsule laser system, based on a combination of two diode-pumped solid-state Yb:YAG disk lasers. The laser system itself consists of oscillator (seed laser), power amplifier and frequency conversion units which are mounted on three platforms designed for high mechanical stability at minimal weight. The design of the cw seed laser -including frequency selective elements like intracavity etalon and two birefringent filters -yields a tuning range from 1005 nm to 1053 nm. A Pockels cell is used to generate short pulses (10 ns) at repetition rates of up to 4 kHz. Subsequently, the spectrally and temporally well defined pulses (∆λ << 1 pm, 10 ns, M2 = 1.3) are amplified in the Yb:YAG disk regenerative amplifier on the second platform. The amplification results in pulse energies of up to 25 mJ, depending both on the power pumping the Yb:YAG disk and the number of round trips within the resonator. The third platform accommodates crystals for second, third or fourth harmonic generation of the laser fundamental (SHG, THG, FHG) as well as beam shaping optics for experiments. Conversion efficiencies of 20% and 10% can be achieved for THG and FHG (UV spectral region around 343 nm and 257 nm), respectively. Thus, a number of combustion-relevant species like OH or formaldehyde can be investigated in this way. The laser provides excellent beam quality combined with a broad tuning range in single-frequency mode as well as high pulse energies at high repetition rates. These features enable the tracking of fast processes like turbulences or ignition. To demonstrate the capabilities of the drop capsule laser system at 1 kHz under µg-conditions, we investigated flame turbulences of a v-shaped H2 /O2 -burner recorded by means of a high speed intensified camera. The temporally and spatially resolved imaging of the flame turbulence is realized by planar laser induced fluo

  19. Design of a New Optical System for Alcator C-Mod Motional Stark Effect Diagnostic

    SciTech Connect

    Ko, Jinseok; Scott, Steve; Manfred, Bitter; Lerner, Lerner

    2009-11-12

    The motional Stark effect (MSE) diagnostic on Alcator C-Mod uses an in-vessel optical system (five lenses and three mirrors) to relay polarized light to an external polarimeter because port access limitations on Alcator C-Mod preclude a direct view of the diagnostic beam. The system experiences unacceptable, spurious drifts of order several degrees in measured pitch angle over the course of a run day. Recent experiments illuminated the MSE diagnostic with polarized light of fixed orientation as heat was applied to various optical elements. A large change in measured angle was observed as two particular lenses were heated, indicating that thermal-stress-induced birefringence is a likely cause of the spurious variability. Several new optical designs have been evaluated to eliminate the affected in-vessel lenses and to replace the focusing they provide with curved mirrors; however, ray tracing calculations imply that this method is not feasible. A new approach is under consideration that utilizes in situ calibrations with in-vessel reference polarized light sources. 2008 American Institute of Physics.

  20. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    SciTech Connect

    Barry, Walter; Chin, Mike; Robin, David; Sannibale, Fernando; Scarvie, Tom; Steier, Christoph

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is described in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.